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Abstract 

Background study 1: individuals with vestibular disorders usually complain of dizziness, 

disorientation, and vertigo in moving visual environments associated with activities such as 

walking in visually busy environment. Vestibular rehabilitation is considered the clinically 

accepted intervention for non-surgical vestibular disorders. Part of the intervention is to practice 

sensory alterations and manipulations that start gradually with one sensory modality then 

multiple alterations are advised. Habituation exercises using visually provocative stimuli have 

been shown to be useful during vestibular rehabilitation. Virtual reality based therapy is an 

emerging technology that can be used in vestibular rehabilitation to provide visual habituation 

exercises for individuals with vestibular disorders. The purpose of the study was to explore the 

use of virtual reality based therapy in the treatment of individuals with vestibular disorders. 

The first aim in this dissertation was to explore the use of virtual reality based therapy 

based therapy as an intervention of individuals with vestibular disorders. Methods: Twenty 

subjects with vestibular disorders participated in the study. All individuals with vestibular 

disorders underwent virtual reality based therapy vestibular rehabilitation; the dose of the 

intervention was one time per week for six weeks. To determine the effect of the intervention, 
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subjects were tested using self-report and performance measures before, one week after the 

intervention, and at six months follow up. Results demonstrated that the majority of subjects 

improved on each measure except for the Timed Up and Go and gait speed. The majority of 

subjects maintained improvements of each measure at six months.     

The second aim was to examine the difference in self report and performance measures 

between virtual reality based therapy and customized physical therapy. Methods: Forty subjects 

with vestibular disorders participated in the study; subjects were assigned into two groups 

(virtual reality based therapy or customized physical therapy). Both groups had six treatment 

sessions for six weeks, and were assessed using self-report and performance measures. Results:  

both groups improved in most of self-report and performance measures and maintained 

improvements six months after the intervention ended. Virtual reality based therapy provided 

similar outcomes for individuals with vestibular disorders when compared with customized 

physical therapy.     

Background study 2: Falling is a risk factor associated with vestibular disorders that can 

impact quality of life and reduce physical and psychological aspects in participation in daily life. 

Falling can be caused by a decline in function of sensory inputs associated with aging. 

Measuring sensory control during standing may help to investigate age and vestibular disease 

effects on balance. The measurement of postural control during standing has been investigated 

using low and high tech methods. The recently developed Balance Rehabilitation Unit (BRUTM) 

utilizes high technology in balance assessment. The psychometric properties of the BRU 

including the reliability and validity (convergent) have not been studied. The purpose of study 2 

was to examine the reliability and validity of the BRU in the assessment of people with and 

without vestibular disorders.   
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 The third aim of this dissertation is to examine the reliability and concurrent validity of 

the BRU compared with the Sensory Organization Test (SOT) and to examine its ability to 

discriminate among healthy people and people with vestibular disorders. Methods: Ninety 

subjects (30 young healthy, 30 older healthy over 60 years of age, 15 young individuals with 

vestibular disorders (< 60 years of age), and 15 older individuals with vestibular disorders over 

the age of 60) participated in this study. Results: The BRU provided a reliable and valid measure 

for measuring the sensory contributions to postural control for healthy persons and people with 

vestibular disorders. The BRU and SOT provide similar results related to age and disease effect 

on sway measures during quiet standing.     
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1.0  INTRODUCTION 

1.1 THE USE OF VIRTUAL REALITY BASED THERAPY IN VESTIBULAR 

REHABILITATION 

Individuals with vestibular disorders usually complain about dizziness, vertigo, balance 

problems, and falls.1  They usually complain of blurred vision with activities requiring head 

movements while walking such as looking for products in shopping malls or reading signs while 

driving.1  Individuals with vestibular disorders report increased symptoms in visually complex 

environments and demonstrate increased sway when exposed to full-field visual motion, possibly 

because they become more dependent on information from non-vestibular systems, particularly 

vision.2-6  

Symptoms resulting from vestibular disorders impact activities that require postural 

control such as standing and ambulation in different environments, and unwanted consequences 

may result from poor postural control such as a fall.7, 8  Sensory disturbances and motor 

impairments resulting from vestibular disorders lead to disruptions in activities of daily living 

(ADL) and quality of life.9, 10  

During treatment of individuals with vestibular disorders, part of the intervention for 

postural control disorders is to practice exercises that promote visual-vestibular and/or 

somatosensory-vestibular conflict.11-13  Visual information can be altered by asking subjects to 
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perform exercises in visually busy environment, in poorly lit environment, or with full 

background visual fields. Difficulty of the training is increased gradually by adding vestibular 

stimulation such as incorporating head movements.11-13  

Virtual reality based therapy may be an ideal way to provide habituation exercises for 

individuals with vestibular disorders who become symptomatic in complex visual environments. 

Several groups have used provocative visual stimulation to enhance vestibular adaptation and 

habituation in people with vestibular disorders. Viirre (2002) used visual displays as an 

incremental adaptation protocol in an experiment with subjects with low VOR gain and found 

that VOR gain increased significantly after the experience compared to the control group with 

head movement exercises without the visual display.14 Pavlou (2004) reported significant 

improvement in posturography scores and visual vertigo symptoms in individuals with vestibular 

disorders after the use of desensitization exposure to optokinetic visual stimulation with whole 

body or surround rotation as a habituation tool.15  

Virtual reality based therapy using the Balance Near Automatic Virtual reality based 

therapy Device (BNAVE), grocery store version, may provide good method for visual 

habituation training for individuals with vestibular disorders since the healthcare provider can 

control the amount and intensity of the visual stimuli according to the individual situation and 

progress. The VRBT may help individuals with vestibular disorders to lessen hypersensitivity to 

visual and motion stimuli, reduce the avoidance of certain activities, and progress their self 

confidence.  Habituation exercises are one method to decrease space and motion sensitivity and 

to decrease the dependence on one type of sensory feedback for postural control. 
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1.1.1 Statement of problem 

Individuals with vestibular disorders report increased symptoms in visually complex 

environments and demonstrate increased sway when exposed to full-field visual motion that 

impact activities that require postural control such as standing and ambulation in different 

environments and lead to disruptions in activities of daily living (ADL) and quality of life. One 

of the treatment methods used to treat individual with vestibular disorders is through the use of 

habituation exercises; visually provocative habituation exercises have been shown to be useful 

during vestibular rehabilitation. Virtual reality based therapy (VRBT) may be an ideal way to 

provide visually provocative habituation exercises for individuals with vestibular disorders who 

become symptomatic in complex visual environments. We investigated the use of VRBT in the 

rehabilitation of individuals with vestibular disorders to facilitate desensitization of symptoms 

increased in visually complex environment. 

1.1.2 The purpose 

The first specific aim was to examine the use of virtual reality based therapy as an intervention 

for individuals with vestibular disorders. The study examined the effect of a VRBT intervention 

on self report measures and performance measures to determine the immediate and long term (6 

months) effect of VRBT on gait, balance, nausea, headache, dizziness and visual blurring 

symptoms.    

The second specific aim was to determine the difference in self report and performance 

measures between conventional therapy and therapy in the Balance Near Automatic Virtual 

reality based therapy Device (VRBT) in persons with vestibular disorders. 
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1.2 PSYCHOMETRIC PROPERTIES OF THE BALANCE REHABILITATION 

UNIT ASSESSMENT MODULE OF SENSORY CONTROL DURING STANDING  

Postural control can be described as the ability to control body position in space in different 

environments that require different tasks.  Postural control is essential in every task performed, 

postural control is important in activities like sitting, standing, walking, and running performed 

in different environments.  

The CNS must organize sensory information from visual, somatosensory, and vestibular 

systems to have an accurate picture of postural orientation and to know when and how to 

generate appropriate movement strategies for controlling balance in space.16, 17  Sensory 

information from vision provides important information to the CNS concerning the position and 

motion of the body relative to the environment. Information to the CNS about body position and 

movement in space relative to the support surface is provided by the somatosensory system. 

Information to the CNS about movement and acceleration of the head in space is provided by the 

vestibular system.  

Quiet stance is associated with small amounts of sway that help the body to maintain 

equilibrium, the backward and forward sway during standing provide feedback information to 

the nervous system about postural orientation and help the body to maintain equilibrium.18, 19   

Center of pressure sway magnitude may increase when exposed to accurate vs. inaccurate visual 

information. Center of pressure sway magnitude may differ when standing in different support 
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surfaces that provide accurate vs. inaccurate somatosensory information. Center of pressure sway 

magnitude may differ among persons with or without intact vestibular information.20  

Aging is an important factor that influences postural control. A decline in function of 

multisensory inputs including somatosensory system, visual system, and vestibular system are 

associated with aging.21, 22 Falls rates among elderly people are at least 33% per year, and 

considered the seventh most cause of death in people over 60 years.23, 24 Measuring postural 

control among different age groups may help to investigate age effect on balance. 

Measuring postural control may help to differentiate between individuals with sensory 

conflict/over reliance and/or sensory selection problems for balance control. Subjects who are 

more likely to have inter-sensory conflict are more likely to have limited ability to organize 

sensory information.25   

Examining balance in the 6 conditions of the sensory organization test (SOT) provides 

insights into the persons’ ability to organize and select sensory information appropriate for 

balance which may demonstrate the type of environments and tasks responsible for imbalance.25 

The Balance Rehabilitation Unit is a new measure for balance that uses Head Mounted Display 

and foam as part of the balance assessment and can measure balance in the same conditions used 

with Sensory Organization Test. The Balance Rehabilitation Unit requires less space and is 

considered less expensive. The balance assessment module in the Balance Rehabilitation Unit 

might be used as an objective balance assessment modality for people with/without vestibular 

disorders.  The psychometric properties of the BRU are important to be established in order for 

the device to be useful. The reliability and validity of the BRU are the main psychometric 

properties to be examined. The Balance Rehabilitation Unit device will be compared to the 
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Sensory Organization Test in healthy (young, older) and individuals with vestibular and balance 

disorders. 

1.2.1 Statement of problem 

There is clear evidence of aging effect and vestibular disorders effect on balance. The BRU is a 

new device that has an assessment module of sensory control during standing. It uses foam and a 

head mounted display to provide inaccurate somatosensory and visual sway referenced feedback 

during standing. Psychometric properties including reliability and validity have not been 

established for the BRU. 

1.2.2 The purpose  

The purpose of this study was to examine the reliability (test retest) and convergent validity of 

the Balance Rehabilitation Unit in the assessment of balance in young healthy, old healthy, and 

in persons with vestibular disorders compared with a standard objective measure of balance, the 

Sensory Organization Test.  

1.2.2.1 Specific aims  

Aim 3: To examine the test-retest reliability of the Balance Rehabilitation Unit in the 

assessment of balance in young healthy, old healthy, and in persons with vestibular 

disorders by examining balance twice in every subject. 

Aim 4: To examine the convergent validity of the Balance Rehabilitation Unit in the 

assessment of balance in young healthy, old healthy, and in persons with vestibular 
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disorders by comparing the results of the Balance Rehabilitation Unit with the results of 

the Sensory Organization test.  

Aim 5: To examine group differences among the study groups (young healthy vs. old 

healthy vs. individuals with vestibular disorders) in the BRU and CDP six balance 

conditions. 
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2.0  BACKGROUND AND SIGNIFICANCE  

2.1 PREVALENCE OF VESTIBULAR DISORDERS   

Individuals with vestibular disorders usually complain about dizziness, vertigo, balance 

problems, and falls.1  Prevalence studies have shown that 20% to 30% of the general population 

have complaints of dizziness.26, 27  The life time prevalence of vertigo resulting from vestibular 

dysfunction among adults within the age range 20-79 years is 29%, and the one year incidence of 

vertigo is 3.1 %.28  Females have a higher vertigo prevalence than males with a ratio of 2.7:1 

(female to male one year prevalence).28  Vertigo has a high recurrence rate of 88% and has a 

negative impact on patients’ life.28 Forty percent of the affected individuals had interrupted daily 

activities, 41% had sick leave, and 19% avoided leaving the house because of their vertigo.28  

Vestibular disorders may be the main intrinsic factor leading to incidents of falling among the 

elderly; among 546 incidents of falling that resulted in a visit to an emergency department, 80% 

had vestibular impairments and 40% were complaining of vertigo.10  The incidence of falls 

among individual s with bilateral vestibular loss (51%) is significantly higher than the incidence 

of falls in the general population (25%) in people between 30-80 years of age.29  A cost study 

shows that 1 of 10 falls results in serious injuries for the elderly and requires hospitalization; the 

average cost for the hospitalization is 11,800 US dollars.30  
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2.2 THE EFFECT OF VESTIBULAR DISORDERS ON QUALITY OF LIFE 

The quality of life (QoL) of individuals with vestibular disorders can be reduced and their 

participation in daily life activities can be restrained due to physical, psychological, and 

cognitive deficits resulting from their vestibular disorders.29, 31 Dizziness, blurred vision, and 

poor postural control resulted from vestibular disorders negatively impact activities that require 

postural control such as standing and ambulation in different environments, and unwanted 

consequences may result from poor postural control such as a fall.7, 8  Sensory disturbances and 

motor impairments resulting from vestibular disorders lead to disruptions in activities of daily 

living (ADL) and quality of life.9, 10 Normal processing of visual, vestibular, and somatosensory 

afferent inputs provide correct spatial orientation and adaptive eye and body movement which 

produce clear vision during head movement and sustained balance. Abnormal central processing 

due to vestibular dysfunction leads to dizziness or vertigo, balance difficulties, and blurred vision 

that cause interruptions in ADLs, cognitive impairments, and associated anxiety symptoms.10  

Recognizing symptoms alone may not be enough for understanding associated functional 

impairments since it is highly influenced by the individual’s nature and needs.32, 33  The patient’s 

rating of their symptoms is critical for determining their level of disablement; individuals with 

vestibular disorders rate themselves as functionally disabled in many skills and having reduced 

quality of life. 32, 34 

Studying disability associated with peripheral, central, or mixed vestibular disorders 

assists in the understanding of the impact of vestibular disorders related to quality of life and 

ADLs.35  Benign Paroxysmal Positional Vertigo (BPPV) is one example of a vestibular disorder 

that affects quality of life. Individuals with BPPV complain of episodes of vertigo associated 

with changes in head position that may limit their ADL.36  People with BPPV have reduced 
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quality of life and ADLs associated with their disease including: 1) difficulty sleeping, 2) 

discomfort and reduced independence, 3) an inability to work, and 4) some have severe impact 

on major occupational life roles such as difficulty making the bed or doing chores that require 

bending.9, 37  

Another example of how vestibular disorders affect quality of life is reflected in 

individuals with Meniere’s disease. They complain of sudden vertigo attacks that come and go, 

sometimes leading to a constant low level of discomfort and fear during and after the episodes.31  

They complain of disrupted and discontinued activities at home, work, and social life.38  They 

reported moderate to severe handicap in emotional and physical activities associated with the 

disease using the Dizziness Handicap Inventory.39  Decreased quality of life associated with 

Meniere’s disease can be explained by the functional limitations resulting from vertigo plus the 

emotional and psychological problems associated with the hearing problems.31  Studies reported 

various quality of life limitations associated with vestibular dysfunction including difficulty 

walking in dark places (23-46%),40  reduced life satisfaction at work and leisure time and less 

participation social activities,38  difficulty using a telephone and other activities that require good 

hearing,41   and difficulty in driving.41  

Individuals with chronic vestibular diseases due to unilateral vestibular weakness, 

vestibular neuronitis or labyrinthitis have chronic vertigo that affects their ADLs and decreases 

their level of independence.42 Patients have limitations in activities inside and outside the house, 

including home management, walking in and outside the house, participation in social events, 

difficulty driving in traffic, and difficulty driving in visually degraded environments.9, 32, 43  

Bilateral vestibular disorders (BVD) provide another example for how vestibular 

disorders disturb quality of life. Disability associated with BVD can be explained by two factors 
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affecting ADLs: oscillopsia and poor balance control.44  Individuals with BVD have difficulty 

reading signs in the street while driving or walking and sometimes recognizing people while 

walking.45, 46  People with BVD are at high risk of falling, are handicapped because of 

oscillopsia, have difficulty in the shower, and have difficulty walking on uneven surfaces and in 

low light environments.44  

2.3 SIGNS AND SYMPTOMS OF VESTIBULAR DISORDERS 

2.3.1 Description of dizziness 

Dizziness is one of the most common complaints to physicians in the United States, responsible 

for over 8 million medical visits per year.47  It has been used as a general term to describe many 

sensations including light-headedness, being off-balance, vertigo, presyncope, and various other 

symptoms. Decreased blood flow to the brain resulting from some pharmacological side effects 

or cardiovascular problems can lead to the sensation of light-headedness. Symptoms associated 

with fainting episodes including constricted vision, shortness of breath, a cold feeling or 

sweating can best describe light-headedness.47  Finally, individuals with inner ear problems often 

report vertigo symptoms. Fifty four percent of dizziness reported in primary care is classified as 

vertigo.35  Vertigo is a feeling of spinning either of self or movement of the surrounding.47  

Dizziness can result from disorders that can be assigned a specific diagnosis due to 

peripheral vestibular lesions including bilateral vestibular loss, vestibular neuritis, Meniere’s 

disease, and BPPV; and disorders due to central vestibular lesions such as migraine-associated 

dizziness, vertebro-basilar insufficiency, and dizziness after head trauma.48  Symptoms seen in 
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individuals with peripheral vestibular loss other than what has been described in the prevalence 

section for specific diagnoses include dizziness, oscillopsia, and balance dysfunction. Individuals 

with unilateral and bilateral vestibular loss complain of dizziness that usually increases when the 

person is moving and decreases while sitting and lying down. The decreases in vestibular 

function result in reduction in visual acuity during motion with individuals often complaining of 

visual blurring. With oscillopsia, patients see objects jumping; symptoms increase during 

walking and with head movements which affects the person’s ability to recognize people while 

walking, reading street signs while driving, and finding objects while shopping. Individuals with 

bilateral or unilateral vestibular loss often have problems with their balance during standing, 

walking, and sitting down or lying down in the acute stage. Balance problems may be a long 

term problem since presently there is no long term substitution for vestibular function. Central 

disorders such as migraine associated dizziness is a quite common form of central dizziness 

among the population with a 6.5% one year prevalence.48  Individuals complain of dizziness with 

or without headache.48 Vertebro-basilar insufficiency caused by an ischemic attack in the 

posterior circulation can affect the labyrinth resulting in dizziness and imbalance.48  Individuals 

who had head trauma report dizziness that is non clearly described and nonspecific; they report 

floating or dizziness with no vertigo symptoms.48, 49  

2.3.2 Common causes of dizziness 

Dizziness resulting from inner ear problems can be caused by various conditions with different 

symptoms and can be classified based on the location of the dysfunction (peripheral, central, or 

mixed).  Benign paroxysmal positional vertigo (BPPV) is one cause of vertigo that is triggered 

by head movement during turning in bed or changing head positions relative to gravity that lasts 
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for seconds to minutes. BPPV occurs when otoconia float free in the semicircular canals.50  

Meniere’s disease can cause vertigo attacks that lasts minutes to days associated with tinnitus, 

impaired hearing, and disequilibrium between attacks.51  Finally, another factor associated with 

the occurrence of dizziness is migraine. Migraine associated dizziness is common, with two third 

of individuals with migraine complaining of  vertigo and dizziness.52 Viral infections can cause 

vestibular hypo-function and manifest as peripheral disorders such as neuronitis. Individuals are 

vertiginous, nauseous and experience emesis but have intact hearing.47, 53  Pathologies affecting 

all three sensory channels (vision, vestibular system, and somatosensory), reported mostly in the 

elderly, lead to multisensory dizziness and is manifested as unsteadiness and balance 

dysfunction.54 Dizziness is often associated with many neurological disorders including stroke, 

migraine, infections in the nervous system, inflammatory diseases, tumors and other neurological 

causes.47   

2.3.3 Dizziness: a common symptom in balance disorders and psychiatric disorders 

Some individuals with both psychological and vestibular disorders describe dizziness as their 

chief complaint. Anxiety and psychiatric disorders are common in individuals with vestibular 

disorders, and also vestibular disorders are common among individuals with psychiatric 

disorders.49, 55  The presence of one of them does not rule out the presence of the other one.55  

Light-headedness is  common in individuals with vestibular and psychiatric disorders and can 

result from hyperventilation; individuals report symptoms of spinning during and between 

attacks.48  

Dizziness can be confounded with anxiety and psychological disorders.  Individuals may 

describe subjective symptoms of non-specific light-headedness associated with imbalance. 



14 

Individuals may report an increase in their symptoms in crowded places with a visually rich 

environment.56-58   Key clinical features may include physical neuro-otologic symptoms 

including head fullness, unsteadiness, and being more prone to swaying and developing visual or 

surface dependence since they are highly sensitive to visual and proprioceptive stimuli, 

particularly in busy and complex environments.56, 58   

Since anxiety is associated with vestibular disorders, a two-step diagnosis process is used 

to examine balance and psychiatric disorders, especially in cases simulating chronic subjective 

dizziness accompanied with anxiety.59  Physical neuro-otologic symptoms are described, then in 

the second step psychiatric symptoms are investigated. Psychiatric associated symptoms may 

include: panic attacks that could occur in individuals with or without vestibular disorders, 

anticipatory anxiety that indicates early worry of activities associated with dizziness, and phobic 

avoidance that include the avoidance of positions or places because of fear of the dizziness 

consequences.56   

2.3.4 The interface between dizziness and anxiety  

Several large case series have elucidated the clinical characteristics of vestibular disorders. 56, 60  

People with vestibular disorders usually complain of anxiety (general anxiety and/ or persistent 

agoraphobic symptoms).55  A questionnaire based study was conducted in over 2,000 random 

individuals in outpatient clinics; 20% had dizziness during the preceding month and 50% 

reported anxiety and avoidance behaviors.27  Individuals with both balance disorders and anxiety 

report increased symptoms in visually complex environments including space phobia, 

supermarket syndrome, height and visual vertigo.2, 4, 5  Individuals with vestibular disorders may 
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demonstrate increased sway when exposed to full field visual motion if they become more 

dependent on information from non-vestibular systems, particularly vision.61   

One way to understand the relationship between anxiety and vestibular disorders is that 

dizziness and anxiety factors can exacerbate each other.62  Psychiatric symptoms may appear as 

somatic vestibular symptoms and severe dizziness may affect the psychiatric defense negatively 

when the individual develops fear and avoidance symptoms of positions and environments 

associated with their dizziness, which may lead to chronic dizziness.63  However, the explanation 

that anxiety and dizziness enhance the chronicity of each other depends on the individual’s 

ability to cope with dizziness; symptoms of anxiety are more likely to develop in those prone to 

anxiety due to previous history or social conditions.64  

Somatopsychic effects start when the individual develops severe vestibular symptoms 

that cause the individual to fear vestibular symptoms and consequently develop panic attacks 

even with less severe vestibular symptoms. They are also prone to develop agoraphobia and 

avoid situations because vestibular symptoms usually are aggravated in certain environments and 

situations, including visually complex environments.48  

Psychosomatic symptoms are the other aspect that can explain the interface between 

anxiety and dizziness. Psychiatric disorders can lead to the occurrence and/or the enhancement of 

vestibular symptoms.65  Cognitive and behavioral means as one form of psychosomatic processes 

is used in vestibular rehabilitation and can explain the interface between anxiety and vestibular 

symptoms. Dizziness triggered by head movement is translated as warning behaviors that lead to 

balance dysfunction. Vestibular rehabilitation that includes repeated head movements or an 

exposure to visually complex environment that aggravate dizziness with the intention of 

encouraging central tuning and recalibration can be considered as a behavioral form of 
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intervention that teaches the individual to know the causes of dizziness and also to control and 

cope psychologically and systemically with the aggravating factors.65-67  

Psycho-physiological means as another form of psychosomatic processes can also explain 

the interface between anxiety and vestibular symptoms. Anxiety arousal is strongly associated 

with an increase in autonomic symptoms, which in turn promotes self-restriction activities 

especially in visually complex environments, that may lead to higher levels of handicap and 

prolongs recovery time.31, 52  Knowing that anxiety arousal is associated with hyperventilation, 

and that hyperventilation has been shown to unmask vestibular disorders,68 this process may  

explain the psycho-physiologic effect of anxiety on dizziness and other vestibular symptoms. 

Hyperventilation engenders and provokes somatic symptoms which in turn inspires self- 

restriction activities and increases the handicap resulting from dizziness.54, 69, 70  

The psychosomatic influence can also be explained by the role of attention and cognitive 

tasks on postural control. The impact of attention and cognitive tasks on postural control has 

been studied in dual tasks studies that examine the execution of diverse mental activities while 

performing balance tasks.71, 72  Cognitive tasks that require attention include memory tasks and 

complex orientation activities such as reading road signs while driving and looking for products 

while shopping in visually complex supermarkets. Studies show that individuals with vestibular 

disorders have difficulty performing advanced balance tasks when combined with cognitive 

tasks.65, 73 Cognitive and complex orientation tasks increase dizziness in individuals with 

vestibular disorders.65, 73  Activities that require a high level of attention cause a high level of 

competition on cortical spatial processing which may affect the processing capacity required for 

orientation in space while performing balance activities, leading to reduction in either the 
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cognitive task or balance task.65, 73 Cognitive and complex orientation tasks in visually complex 

environments may be useful in the intervention of individuals with vestibular disorders.  

2.3.5 Symptoms resulting from vestibular/ vision/ somatosensory mismatch  

To understand the mechanism of dizziness resulting from vestibular/ visual/ somatosensory 

mismatch during balance assessment and vestibular rehabilitation, one should understand the 

three systems responsible for postural control. Sensory inputs from vision, somatosensory, and 

vestibular systems are integrated together and processed in the central nervous system to control 

balance. A mismatch between information from these three systems can cause balance 

dysfunction and dizziness. Individuals with vestibular disorders who up-weight information from 

somatosensory channels are called surface dependent. Persons who are surface dependent may 

have more sway during standing and reduced balance control in situations with the support 

surface unstable. Individuals with vestibular disorders who up-weight information from vision 

over vestibular information are called visually dependent and may have sway during standing 

and reduced balance control when exposed to complex visual scenes.49 

Competition among the three sensory systems, during balance assessment and vestibular 

rehabilitation, challenges postural control and compels the central nervous system to process the 

integrated information to determine the correct positioning and alignment in space.74  

Information from the eyes can be used to ascertain and distinguish between movement of the 

surround and movement of the body; unsteadiness and disequilibrium may take place in 

situations when the eyes are unable to distinguish between self-motion and movement of the 

surround.75  Peripheral and central visual fields are sensitive to moving visual scenes and 

engender postural sway, with the peripheral visual field being more stimulated by moving visual 
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stimuli and stimulating body sway.76  The amount of sway associated with visual stimuli, during 

balance assessment and vestibular rehabilitation, is affected by the frequency of the moving 

scene and the features of the moving scene, including the quantity and quality of the visual 

environment.77, 78        

2.3.5.1 Space and motion sensitivity, discomfort, phobia, and visual vertigo with 

challenging conditions  

Conflict and contradiction among the three sensory channels is most likely condition specific, 

and occurs in situations that are challenging for the balance system (vision or somatosensory) in 

situations that require the vestibular system to be intact for good postural control. Sensory 

mismatch occurs when the vestibular system provides information that disagrees with the 

information from the other two systems or when there is a mismatch between vision and 

somatosensory.48  Symptoms of height vertigo, increased body sway, and dizziness can occur in 

a healthy individual in challenging conditions that require intact function of the three sensory 

channels when there is information reduction from any of the channels.2, 79  A reduction of 

sensory information in a challenging condition may lead to a mismatch among the sensory 

channels and produce space and motion sensitivity for the conditions that cause the mismatch.2, 79  

Individuals with vestibular disorders may become space and motion sensitive when 

exposed to somatosensory or visual challenging conditions.48  Space and motion sensitivity in 

individuals with balance disorders is displayed as increased body sway in challenging conditions 

that provide confusing sensory information for balance.48 Since space and motion sensitivity in 

individuals with balance disorders is situationally specific, if not treated, individuals may 

develop space and motion discomfort or visual vertigo that are triggered by complex visual 

environment such as shopping malls.48  Studies show that space and motion discomfort 
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symptoms have been recognized in both individuals with balance disorders and anxiety 

disorders.80  However, the consequence of space and motion discomfort may become critical and 

affect quality of life and activities of daily living and participation when the individual avoids 

behaviors that incite symptoms. Such avoiding behaviors are the consequence of having space 

and motion discomfort as a symptom that may develop into space and motion phobia.48       

Visuo-vestibular mismatch may also produce symptoms called visual vertigo in 

individuals with vestibular disorders.81, 82  Visual vertigo is prompted by visual stimuli in specific 

visual environments and the individuals’ symptoms are of a vestibular nature. Individuals show 

symptoms of disorientation, dizziness, and vertigo in moving visual environments like driving in 

traffic, walking in crowds, and walking in busy environments such as supermarkets.81  

Individuals who can be classified as visually dependent in postural control (i.e. individuals who 

show increased sway when exposed to visual stimuli) and have a vestibular disorder may 

develop visual vertigo.81, 83  The goal of treatment for those individuals is to promote 

desensitization and tolerance to the triggering stimuli.82  

2.4 VESTIBULAR REHABILITATION FOR VESTIBULAR DISORDERS  

2.4.1 Efficacy of vestibular rehabilitation 

Vestibular rehabilitation provided by physical and occupational therapists is now considered to 

be an accepted intervention for individuals with inner ear disorders. Vestibular rehabilitation is 

the recommended intervention for individuals with gait and balance disorders by the American 

Academy of Orthopedic Surgery and the American Geriatric Society.84, 85  Quality of life and 
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participation in daily activities has shown to be significantly improved in individuals with 

vestibular disorders after vestibular rehabilitation.34, 86, 87   

Standard vestibular rehabilitation programs consist of a set of exercises that encourage 

sensory compensation or vestibulo-spinal and vestibular ocular reflex adaptation. For vestibulo-

ocular reflex adaptation, the individual is encouraged to practice repeated eye-head movements 

to promote retinal slip.88 Vestibular rehabilitation also includes strategies for improving balance 

and reducing anxiety.88  

Studies have shown that vestibular rehabilitation is an effective intervention for reducing 

vertigo and dizziness symptoms and improving balance and physical functioning.89  Cohen 

determined that subjects with labyrinthine lesions displayed significant improvements after 

vestibular rehabilitation and showed reduced levels of disability and enhanced independence in 

activities of daily living.34  Yardley et al. investigated the effectiveness of vestibular 

rehabilitation in a randomized controlled trial for individuals with inner ear disorders. Subjective 

self report measures showed reduction in symptoms of vertigo, dizziness, and discomfort; 

functional measures showed significant improvements in balance.29   

Mira et al. studied the effect of vestibular rehabilitation on quality of life for individuals 

with vestibular disorders and compared that with medication care. After 3 months of 

rehabilitation, subjects receiving vestibular rehabilitation had improved significantly compared 

to the medication group and subjects maintained improvement at 6 months follow up. Vestibular 

rehabilitation had a significant positive influence on postural control and reduced handicap 

related to dizziness.29   

Also studies by Horak et al.90, Keimet al.91, and Telian et al.92 used measures for self 

assessment including ADLs, questionnaires and functional performance for balance, gait, and 



21 

posturography to study the efficacy of vestibular rehabilitation. The majority of subjects 

improved significantly in their symptoms after the intervention. Horak et al. compared vestibular 

rehabilitation intervention that included balance training and head movement exercises compared 

to a medication group and found that subjects in the vestibular rehab group had enhanced 

improvement in postural control.90   

Cohen et al. reported on individuals with chronic peripheral vestibular disorders who 

were treated for 6 weeks with a program that included head movement exercises at home or 

during biweekly outpatient sessions.93  Subjects’ vertigo symptoms were reduced over the 

treatment period; balance and functional gait outcomes improved and the important factor 

believed to influence improvement was the combination of repetitive head movement with the 

gradual increases in movement speed and visual/vestibular interaction.   

Yardley et al. also investigated the effect of a 6 weeks vestibular rehabilitation program 

that included a head body movement exercise and relaxation program on subjects with vertigo 

and balance disabilities resulting from inner ear disorders. Symptoms of vertigo and anxiety 

lessened significantly in the vestibular rehab group and balance skills abilities improved after the 

rehabilitation program.94   

Cohen et al. studied the effect of a vestibular rehabilitation program on activities of daily 

living, psychosocial and functional activities after treating dizziness and vertigo. They found that 

the reduction of vertigo after the rehabilitation program lead to improvements in activities of 

daily living and participation in psychosocial activities. Home management, self-care 

management and occupational management were improved.42 Cowand et al. investigated the 

effect of a vestibular rehabilitation program using self-report and performance measures among 

three groups: individuals with peripheral vestibular lesions, central vestibular lesions, and mixed 
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vestibular lesions. The intervention program included balance training, head movement 

exercises, gaze stabilization exercises, motor coordination exercises, and a home program. 

Seventy eight percent of all groups improved in the Dizziness Handicap Inventory in the physical 

and functional subscales.95   

Studies have investigated the impact of vestibular rehabilitation on reducing the risk of 

falling in individuals with vestibular disorders using falls assessments and prediction measures 

such as the Dynamic Gait Index, the Timed Up and Go, and gait speed. Macias et al.96 , Brown et 

al.44,  Wrisley et al.97 , Whitney et al.98 , and Herdman et al.12 found that vestibular rehabilitation 

is able to reduce the risk of falls in individuals with inner ear disorders and has a positive impact 

on both subjective and objective measures of balance. 

Several studies have investigated the impact of vestibular rehabilitation in individuals 

with unilateral and bilateral vestibular dysfunction. Vestibular ocular reflex gain and dynamic 

visual acuity improves significantly after vestibular rehabilitation.99, 100  Badke et al.101, Horak et 

al.90, and Yardley et al.94  reported improvement in dynamic visual acuity, postural stability, and 

subjective symptoms of dizziness and vertigo for individuals with acute or chronic peripheral 

vestibular hypofunction. Other studies have investigated the impact of vestibular rehabilitation 

on postural control and locomotion stability for young and older individuals with vestibular 

disorders using Sensory Organization test, gait, and balance assessment measures. Most studies 

report an increase in the ability of individuals to control balance and stability after vestibular 

rehabilitation.97, 98, 101  

2.4.1.1 Appropriate individuals for vestibular rehabilitation 

Vestibular rehabilitation is optimal for individuals with stable non-fluctuating unilateral 

or bilateral vestibular lesions with partial central compensation.13 After a vestibular lesion, acute 
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compensation immediately occurs within the first 3 days that controls symptoms of nausea, 

vertigo, poor gaze stability, and space and motion discomfort. The acute compensation produces 

a more symmetrical firing rate at the vestibular nuclei under the inhibition influence of the 

cerebellum.102 Individuals with incomplete acute compensation are good candidates for 

vestibular rehabilitation compensation intervention.13  However, individuals with unstable 

symptoms that occur spontaneously such as central vestibular disorders or Meniere’s disease 

may not benefit significantly from vestibular rehabilitation, but they can be educated about their 

symptoms and provided with strategies to manage their vestibular disorders.13  

Individuals with unilateral vestibular loss usually complain of blurred vision and 

oscillopsia that is called gaze instability with activities requiring head movements while walking 

such as looking for products in shopping malls or reading signs while driving or walking. 

Persons with unilateral loss may also complain of space and motion sensitivity in certain busy 

environments such as supermarkets and train stations manifested as dizziness, disequilibrium, or 

blurred vision. Complaints of dizziness related to head movement are common. Postural 

instability and disequilibrium are other complaints of individuals with unilateral vestibular 

disorders.13 The aims and strategies of physical therapy interventions are focused to improve the 

symptoms and reduce the impairments.  

Individuals with bilateral vestibular loss have impairments affecting postural control, 

instability, and gait disturbances especially in visually degraded environments and/or 

somatosensory disturbing surfaces since individuals with bilateral vestibular loss tend to be 

vision dependent or somatosensory dependent.103  Individuals with bilateral vestibular loss also 

have oscillopsia (visual blurring) that becomes worse in dark environments with head 
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movements.103  Individuals need to develop strategies to help hold the image of the object fixed 

on the fovea with head movements.  

In individuals with vestibular disorders, information from the vestibular system is 

distorted or reduced and the individual becomes more dependent on information from their 

vision and/or proprioception systems.104  Somatosensory information to the CNS provides 

essential input about stability, body sway, position in space, and motion of body segments. 

Sensory information from the upper limbs, lower limbs, trunk, and neck are important and 

influence postural control. Inputs from the hand through various surfaces (rails, walls, or cane) 

can enhance postural control. Sway increases in normal and individuals with inner ear disorders 

when sensory information from the ankle during standing or walking is reduced through surface 

perturbations. Normal subjects have the ability to perform head and neck counter-rotation in 

stationary or motion tasks; subjects with inner ear disorders practice compensatory strategies to 

reduce their symptoms that sometimes work against their rehabilitation such as head locked on 

trunk movements where they reduce neck movement.104   

Studies show that visual information is important when the somatosensory information or 

the vestibular information is absent or disturbed.3, 6  Subjects with inner ear disorders have more 

sway when asked to close their eyes with or without sway reference disturbance; the incidence of 

falls increased when the subjects are asked to close their eyes while standing.3, 6  The importance 

of visual information increases when both somatosensory and vestibular systems are impaired.105   

During treatment of individuals with vestibular disorders, part of the intervention for 

postural control disorders is to practice visual-vestibular and/or somatosensory-vestibular 

alterations.11-13   Manipulation of sensory information should start gradually with one sensory 

modality, then multiple sensory alterations are advised. Visual information can be altered in the 
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intervention by asking subjects to close their eyes and move their head side to side or in the 

vertical plane; subjects may be asked to perform exercises in busy environment, in poorly lit 

environment, or with full background visual fields. Somatosensory information can be altered 

using unstable, uneven, or a small base of support during sitting, walking or standing positions. 

Difficulty of the training is increased gradually by adding vestibular stimulation such as 

incorporating head movements.11-13  

2.4.2 Mechanisms of recovery from vestibular dysfunction  

Understanding the mechanism of recovery is essential for successful vestibular rehabilitation. 

The brain has an important role to adapt the VOR with vestibular lesions and impairments of 

vestibular, visual, or somatosensory mismatch. Adaptation of the VOR starts when the vestibular 

system sends error signals and asymmetric levels of tonic activity that cause spontaneous 

nystagmus and gaze instability during head motion.106  The CNS during adaptation detects the 

error signals and adjusts signals to decrease spontaneous nystagmus. The key feature in VOR 

adaptation is the role of vision during the habituation training. The long term visual error signals 

during head motion or visual vestibular mismatch adaptation strategies are important to enhance 

VOR adaptation. Another important factor for the adaptation program is the repetitive constant 

low frequency stimuli that contain vestibular error signals.106   

Brain studies suggest significant changes in cortical and sub-cortical areas during 

habituation programs.107  The role of vision in vestibular adaptation has been studied in both 

cortical and sub-cortical areas. During static vestibular imbalance, spontaneous nystagmus with 

the slow phase toward the affected side occurs without head movement; with static vestibular 

imbalance, vision can reduce the velocity and facilitate the suppression of the spontaneous 
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nystagmus.106  However, nystagmus velocity will be reduced with time even without the 

influence of vision after the restoration of the function of the affected ear.106  Strategies like 

suppression of activity of the intact ear to balance both ears signals may occur at early stages.108, 

109  Suppression of signal activities from the intact ear for long period of time may increase the 

sensitivity of the intact ear as an adaptive response.110  In the later stages, individuals may use 

compensatory strategies to compensate for reduced signals from one ear by using saccadic 

responses.111, 112   

Vestibular symptoms aggravated mostly by head, body, or the surrounding motion is 

considered dynamic vestibular imbalance.106  Visual information is critical for recovery from the 

dynamic vestibular imbalance. Vestibular ocular reflex gain does not improve without visual 

inputs.106  For dynamic vestibular imbalance and during head movements, the slippage of images 

on the retina is sent from the occipital lobe to the caudal structures (the brainstem going through 

the nucleus of the optic tract to the inferior olive and the cerebellum and the vestibular 

commissure).106  

Important phases of adaptation occur in the cerebellum and the vestibular commissure.113  

The compensation and the adaptation processes start from the inner ears where vestibular 

information (from the intact and from the residual of the impaired ears) are sent to the central 

nervous system to be readjusted.114  The vestibular nucleus on both sides of the vestibular 

commissure plays an important role in changing the neural tone activities bilaterally.113  Tone 

level may be adjusted by both the vestibular nuclei and some deep cerebellar nuclei.115-117   

The adaptation process is accompanied by membrane changes of the vestibular nuclei and 

specific transmitters may relate to some specifications regarding the level of the frequency (high 

vs. low) and the direction of motion.118, 119  Changes in the vestibular nuclei occurs when the 
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impaired VOR causes inappropriate drift of images on the retina, then error signals are sent via 

the inferior olivary nucleus and climbing fibers to the Purkinje cells in the flocculus, whereas 

vestibular information is sent to the parallel fibers.120-122 A long term depression of synaptic 

transmission occurs between both the parallel fibers and the Purkinje cells in the vestibule-

cerebellum to make the appropriate changes in the VOR.120-122   

The flocculus is not only the site for VOR adaptation but also VOR motor learning 

processes can happen as well through error correction signals in the floculus target neurons.106  

In the cerebellum, other adaptation strategies can occur such as central preprogramming of eye 

movements.123   

The cerebral hemispheres play an important role in vestibular sensation; vestibular 

projections to the cerebral hemispheres carry important information related to the sense of spatial 

orientation and motion perception.124  Visual-somatosensory-vestibular information important 

for distinguishing self motion vs. the surrounding motion, the perception of the position of the 

body in space and the head on body, the ability to maintain a sense of a stable world during 

locomotion, the detection of visual-somatosensory-vestibular conflict, and the resolution of any 

sensory conflict are all processed in the cerebral cortex.106   

There is a wide spread anatomic connection to and from the vestibular system to the 

cerebral hemispheres. The vestibular nuclei project excitatory vestibular neurons to the lateral 

and inferior ventro-posterior lateral thalamic nucleus (VPL) to report head motion activities in 

darkness, whereas descending projection neurons that are mostly inhibitory project from the 

cerebral cortex to the vestibulo-cerebellum.125-127  Projections from the vestibular to the cerebral 

cortex lead to both activation of certain areas of the brain and deactivation of activities in some 

areas of the brain.106   
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The cerebral cortex, particularly the Peri-Insular Vestibular Cortex (PIVC), receives 

information not only from the vestibular system but also visual and somatosensory stimuli, and 

vestibular neurons in the PIVC are activated not only by vestibular stimuli but also 

somatosensory and visual stimuli; sensory information conflict may cause feelings of nausea, 

motion discomfort and motion sickness.128-131  The relationship between the visual and vestibular 

system in the cerebral cortex is a reciprocal interaction that is used for motion perception, spatial 

orientation and for resolving sensory conflict when one side of the brain views the world moving 

and the other side perceives the world not moving. The interaction between the two hemispheres 

plays an important role in solving sensory conflict among sensory channels by up-weighting 

some information and down-weighting other information.106      

Mechanisms of habituation, adaptation, and sensory substitution can explain the success 

of vestibular rehabilitation for individuals with vestibular disorders. During habituation, graded 

exercises are used to train the brain and to decrease the response to the visual, vestibular, and  

somatosensory stimuli, and to facilitate desensitization of symptoms resulting from sensory 

conflict among visual, vestibular, and somatosensory systems. The central nervous system is 

trained to correctly up-weight and down-weight sensory inputs to improve postural control.132   

Short term compensation occurs after a lesion in the vestibular system and leads to reductions of 

symptoms like nausea, unsteadiness, and motion sensitivity. Chronic dizziness occurs when short 

term compensation is disrupted because of the severity of the lesion or impairment in the CNS.1, 

95, 133   

Vestibular rehabilitation provides long term improvements for vestibular disorders. 

Vestibular adaptation exercises to the VOR during the movement of the image on the retina 

combining head movement and visual inputs to the CNS can cause long term VOR 
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adaptation.134-139 Vestibular habituation to provoking stimuli also leads to long term 

improvement. The provoking stimuli of either visual or visual-vestibular conflict are repeated at 

regular intervals aiming to raise the threshold at which symptoms are aggravated. The general 

role for vestibular habituation to such stimuli is that stimuli are provided slowly and the increase 

in the stimuli should be according to the individual’s tolerance.140, 141 

The vestibular system is context specific plastic and the adaptation of the VOR depends 

on the frequency, direction, and environment of habituation.142-147  The success of vestibular 

habituation depends on providing the appropriate error signal that drives vestibular adaptation. 

The error signal can be provided through visual stimulation such as optokinetic visual 

stimulation and visual flow signals to the CNS.15, 82  Successful vestibular rehabilitation 

evaluates the sensory weighting for orientation in space and addresses performing exercises in 

altered visual/ somatosensory/ vestibular environments.90, 148  The brain has the ability to weight 

and reweight the person’s reliance on sensory modalities for orientation and postural control.149 

Virtual reality based therapy (VRBT) is one emerging technology that can be used in vestibular 

rehabilitation that may help individuals with vestibular disorders to lessen hypersensitivity to 

visual and motion stimuli, reduce the avoidance of activities, and progress self confidence.15  

2.4.3 The use of virtual reality based therapy as a rehabilitation tool  

2.4.4 Understanding the essential components of virtual reality based therapy (VRBT)   

Webster’s New Universal Unabridged Dictionary defines virtual reality based therapy as “an 

artificial environment which is experienced through sensory stimuli, sights, or proprioceptive 

inputs provided by a computer and in which one's actions partially determine what happens in 

the environment; also the technology used to create or access a virtual reality based therapy”.150  
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Understanding the key components of VR explains the definition of VR. The key components of 

VR are the virtual world, the immersion, the sensory feedback, and the interaction.151 The virtual 

world is an invented space displayed through a medium and can exist without being systemically 

displayed because it is much like a movie script and when viewed via a system in an immersive 

way called virtual reality based therapy. The second component of VR is the immersion into the 

environment. The state of immersion can be explained as the feeling of being in the invented 

environment either mentally, physically, or both; one can be mentally immersed when deeply 

and mentally involved.151  One can be physically immersed when the body senses have the 

ability to be in the medium. For individuals with vestibular disorders, to be immersed in the VR, 

one has to be physically immersed, and the quality of the VR medium and software depends on 

its ability to be physically and mentally immersive to the participant. The third component of VR 

is the sensory feedback provided by the VR to the subject based on their actions and bodily 

movements. The participant receives immediate interactive feedback from the VR (mostly visual 

feedback) while being able to affect events and objects in the virtual world. The VR provides 

sensory feedback using many tracking systems including tracking systems to the head, hand, legs 

or any major body joints. The fourth component of VR is the ability of the virtual environment 

objects to interact with the user and the ability of the user to interact with the environment by 

being able to move within the environment, change positions of objects within the environment, 

picking them up or putting them down, to give the sense of being an effective and part of the 

environment.151  

2.4.4.1 Interaction with VR: participant input to the virtual environment 

The quality of the VR experience is greatly affected by the mechanism of monitoring the 

participant interactions during the VR experience.152  The VR system has to be able to accept 
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input from the participant to be sufficiently interactive, and the VR user has to be able to 

influence the VR system using appropriate input tracking systems. For the VR system to provide 

optimal physical immersion to the user, it has to accept active and passive forms of input from 

the user to provide monitoring to the participant interaction. Active ways of input monitoring 

include the response to the user commands either through joysticks, dashboards, keyboards or 

verbal commands. A key component to VR is the passive way of tracking body positions and 

movements in the space. Position tracking informs the VR system the location of the participant 

in space, and sensors tracking are usually used to track the head and or the hands in space. 

Immersion and quality of the experience is affected by the level of accuracy of the position 

tracking methods. Examples of tracking systems are described below:152  

1. Locomotion based tracking: The Balance Near Automatic Virtual reality based 

therapy Device (BNAVE) is a custom-built treadmill with a maximum velocity of 1.2 

m/s. At the front end of the treadmill is a grocery cart that is instrumented with two 

load cells on the push bar. The velocity of the treadmill and movement within the 

environment is controlled by the force and direction applied to the cart providing 

active input for user locomotion monitoring (Figure 2-2-1).152  
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2. Inertial tracking: including an accelerometer and inclinometer that provide passive 

input to the VR system user monitoring. Accelerometers detect the motion of the user 

by measuring the change in acceleration; inclinometers provide information about 

changes in inclination. Inertial tracking provide information about change in 

orientation in space.152  

3. Body tracking: the use of tracking systems to provide either passive or active input 

from the user body as feed forward to the VR. Body tracking includes tracking of the 

position and movements of the head, eyes, hand, fingers, feet, or torso.152  The load 

cells on the push bar in the BNAVE are one form of body tracking systems. The 

velocity of the treadmill and movement within the environment in the BNAVE is 

Figure 2-2-1: Locomotion based tracking 
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controlled by the force and direction applied to the load cells on the cart providing 

active input for user locomotion monitoring.  

4. Platforms: platforms provide passive and active input to the VR monitoring the user. 

Information coming from the platforms provides balance information to the VR 

system and also provides an interactive experience for the user. Platforms also 

provides the opportunity for controlling the difficulty of the interaction with the VR 

world.152  

2.4.4.2 Interaction with VR: VR output to the participant          

The output of the VR is the information presented to the body senses through sensory (visual, 

aural, or haptic) displays according to the available sources and the goal of the experiment. For 

all sensory displays there are three categories of VR output displays: head based, stationary 

based, and hand based. Displays related to the visual sense will be described. The general 

properties of visual displays and how that affects the quality of the experience including mental 

and physical immersion will be described.153  

The quality of the VR experience is influenced by the visual images presented. The 

quality of the visual displays can better be measured through the following factors:153  

1. The resolution of the visual display, which is affected by the size of the screen and 

the distance of the display from the eye, is a critical factor for the appropriate choice 

among the stationary, head based, and the hand based displays.153  

2. Contrast and brightness of the visual display have a positive impact on the VR 

experience since a picture with good contrast makes it easy for the user to distinguish 

dark from light objects in the VR world; high brightness usually makes the VR 
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experience better. Both factors are influenced by the size and the distance from the 

eye are also critical in choosing the type of display.153  

3. The user ability to move with freedom and have few constraints like space 

limitations, cables connected to the displays, and tracking systems. Each type of 

display allows for a specific range of mobility, consequently impacting the 

immersiveness of the VR experience.153  

4. Portability of the visual display, safety, and the cost affect the choice among the three 

display categories.153  

The BNAVE is a multi screen environment that displays the virtual world in 3 screens, 

2.4 X 1.8 m (vertical X horizontal), surround the subject. The BNAVE has 16 aisles with 8 levels 

of visual complexity that depend on the spatial frequency and contrast of the product textures. 

The aisles increase in complexity from aisle one to aisle sixteen. The subject is approximately 

2.9 m from the front screen. The images are displayed using Epson 810p PowerLite LCD 

monoscopic projectors, with a pixel resolution of 1024 X 768 for each screen.  The update rate of 

the images is consistently at least 30 frames per second.  

The different paradigms used for visual displays including stationary displays the 

projection based VR, and head based VR will be discussed.153  

Projection based display 

The projection based display VR has a large screen and usually surrounds the user in a 

cave like environment giving the user a larger field of VR view. The projection based displays  a 

less real world view and a large area to move which all enhance immersion.153  The cave like 

projection based displays require big screens, back projecting projectors, body tracking systems 

that may cover the hands and the movement inside the VR cave, and multiple computers 
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synchronized together to control the cave VR system. The projection of the VR onto large 

screens requires high resolution and high cost. The user in the cave projection VR is not isolated 

completely from the real world. The user stands away from the screens which decreases the eye 

strain developed during standing in front of screens and allows the user to remain for longer 

times immersed in the VR experience. Advantages of projected displays include 1) they provide 

a  large field of view; 2) less eye strain and longer immersion time in the experience; 3) higher 

resolution; 4) fewer cables connected to the user; and 5) better mobility.153   

Head mounted display 

The HMD presents the virtual world to the user through lenses, but provides less 

immersion compared to the projection based display. Another advantage of head based displays 

is that the HMD only requires small light screens that allow the user the ability to move more 

freely in more open areas since screens move with the user’s head. The selection of head based 

displays can provide wide selection of tracking systems. However the user is more subject to eye 

strain resulting from the near screens, which limit the time of the experience. Neck strain may 

also be associated with heavy head mounted displays. Advantages of head mounted displays 

include 1) the HMD field isolates the user from the real world; 2) lower costs and may be easier 

to build than cave like environments; and 3) less concern about surrounding environmental 

factors such as lighting and space. A disadvantage of the HMD compared to a projection based 

display is that it provides a limited field of view.153  
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2.4.4.3 Interacting with VR: ways of interaction  

The ability to interact with the virtual world between oneself and the VR is what differentiates 

VR from other systems, which provides the sense of presence and immersion. Interaction with 

the VR occurs through many means including manipulation and navigation.154  

Manipulation is the ability of the user to adjust, change or transform the virtual world 

objects through selection of virtual items by the user. Selecting an object in VR occurs through 

indicating the direction or picking an item. Operating an action usually occurs through 

positioning, locating, arranging, and sizing the objects. Manipulation can occur through physical 

control where the user is able to apply force to real devices like buttons and switches. 

Manipulation can also occur through direct control where the user acts in the VR world as they 

would in the real world by performing body movements required to accomplish a task.154  

Navigation occurs when the user moves in the VR world from one place to another 

walking or driving. In the BNAVE (the grocery store model), the user has the ability to navigate 

in the store using a physical manipulation method (the load cells in the push par) to walk and 

navigate through the virtual world.154  

2.4.4.4 Immersion in VR 

Both physical and mental immersions are important elements of the VR experience and are 

affected by the design of the virtual world and the goal of the experiment. Physical immersion is 

the critical unique factor that distinguishes VR from other media and systems. To have physical 

immersion in the virtual world, the set up is affected by the location and orientation of the user 

inside the virtual world. The virtual reality based therapy device provides stimuli to the user 

about their location and actions in the environment as the system tracks actions of the user and 
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sends responding images, sounds and tactile information to the user. The presence of physical 

immersion means the experience is VR and the absence of it means it is not VR.155  

The second form of immersion is mental immersion; the presence and importance of 

being mentally immersed depends on the goals of the experience in which some experiments 

consider it critical and desirable. Physical immersion is important for the experience to make it 

VR, and it also affects the level of mental immersion. The level of physical immersion affects the 

level of realism which also influences mental immersion. The level of sensory immersion 

required to establishing mental immersion is still not known. There are other factors affecting 

mental immersion other than physical immersion. Resolution of the displays, the quantity of 

sensory tracking systems and how many senses are engaged in the experience, plus the amount 

of time between action tracking and system response are important factors affecting the level of 

immersion.155 The level of immersion may differ for different projection based systems. 

Projection based systems like the BNAVE may provide better resolution than the head 

projection-based and sufficient physical and mental immersion. 
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2.4.5 Rationale: The use of VRBT in vestibular rehabilitation 

Virtual reality based therapy has been used as a rehabilitation tool for individuals with 

neurological impairments after stroke, and showed to be a promising tool for community 

ambulation, gait training, sensorimotor training and hand function training (Table 1).  Virtual 

reality based therapy (VRBT) is one emerging technology that can be used in vestibular 

rehabilitation. Virtual reality based therapy provides the possibility for precise control in 

treatment environments within which individuals can be exposed to a range of stimuli that are 

difficult to be controlled for in the real world. In VRBT, an artificial environment that simulates 

the real world is created for the individuals to provide more personalized and controlled 

intervention programs.156  
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Table 1: The use of virtual reality based therapy in the rehabilitation of persons post stroke 

 

Intervention  Virtual reality 
based therapy 
Software  

Evidence  
for improvement 

Outcome measures 

Sensorimotor 

training  

-VR PlayStation-2 
with eye toy 

Flynn, S. et al 2007.157  1. Dynamic Gait Index  

2. Fugl-Meyer Assessment 

3. Berg Balance Scale 

Community 

ambulation and 

gait rehabilitation 

-Virtual reality 

based therapy 

based treadmill  

 

-Robot VR 

Yang Y. et al 2008,158 

and Fung J. et al 2006.159  

 

Mirelman, A. 2009.160  

 

1. Gait speed 

2. Walking time 

3. Walking ability 

questionnaire  

4. Activities Specific- 

confidence scale 

Attention and 

compensation 

training 

-Crossing street 

training Desktop 

model  

Kim, J.et al 2007.161  1. Attention through responding 

to visual stimuli 

2. Successful rate of number of 

crossings 

 

Individuals with vestibular disorders report increased symptoms in visually complex 

environments and demonstrate increased sway when exposed to full-field visual motion, possibly 

because they become more dependent on information from non-vestibular systems, particularly 

vision.3, 6  Subjects with inner ear disorders have more sway when asked to close their eyes with 

or without sway reference disturbance; the incidence of falls increased when the subjects are 
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asked to close their eyes while standing.3, 6  The importance of visual information increases when 

both somatosensory and vestibular systems are impaired.105   

Virtual reality based therapy may be an ideal way to provide habituation exercises for 

individuals with vestibular disorders who become symptomatic in complex visual environments. 

During treatment of individuals with vestibular disorders, part of the intervention for postural 

control disorders is to practice visual-vestibular and/or somatosensory-vestibular alterations.11-13   

Manipulation of sensory information should start gradually with one sensory modality, then 

multiple sensory alterations are advised. Visual information can be altered in the intervention by 

asking subjects to move their head side to side or in the vertical plane; subjects may be asked to 

perform exercises in visually busy environment, in poorly lit environment, or with full 

background visual fields. Somatosensory information can be altered using unstable, uneven, or a 

small base of support during sitting, walking or standing positions. Difficulty of the training is 

increased gradually by adding vestibular stimulation such as incorporating head movements.11-13  

Some individuals with vestibular disorders report an increase of symptoms in visually 

complex environments such as busy places, grocery stores, and environment with flickering and 

fluorescent lighting plus crowds.162 Several groups have used provocative visual stimulation to 

adapt the VOR to habituate dizziness in people with vestibular disorders. Viirre (2003) reported 

an experience of postural instability and vertigo after one exposure to virtual reality based 

therapy display with a subject with no history of inner ear problems.163  He also used visual 

displays as an incremental adaptation protocol in another experiment with subjects with low 

VOR gain and found that VOR gain increased significantly after the experience compared to the 

control group with head movement exercises without the visual display.14  Pavlou (2004) 

reported significant improvement in posturography scores and visual vertigo symptoms in 
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individuals with vestibular disorders after the use of desensitization exposure to optokinetic 

visual stimulation with whole body or surround rotation as a habituation tool.15  The Wii Fit is 

one application of virtual reality based therapy that has been used for rehabilitation of individuals 

with neurological disorders and balance problems.164  Nitz (2010) used the Wii Fit form of 

virtual reality based therapy to improve balance and increase strength among ten young (30-58 

years) healthy women. The intervention program included a one hour practice on the Wii Fit for 

ten weeks. Subjects’ balance and strength improved significantly after the ten weeks on measures 

including the modified clinical test for sensory integration, the step test, and the Timed Up and 

Go. The Wii Fit virtual reality based therapy is used in combination with a physical activity 

program to treat two young individuals with poor walking ability and week interaction abilities 

with people affecting performance of activities of daily living. The intervention program helped 

the two people to significantly increase their level of physical activity and walking from one 

destination to another.165  

Virtual reality based therapy using the BNAVE (grocery store version) may be an ideal 

method for visual habituation training for individuals with vestibular disorders since the 

healthcare provider can control the amount and intensity of the visual stimuli according to the 

individual situation and progress. The VRBT may help individuals with vestibular disorders to 

lessen hypersensitivity to visual and motion stimuli, reduce the avoidance of certain activities, 

and progress their self confidence.  Habituation exercises are one method to decrease space and 

motion sensitivity and to decrease the dependence on one type of sensory feedback for postural 

control. The vestibular rehabilitation goals are to (1) enhance perception of orientation and 

motion in busy environments, (2) use various sensory strategies for balance, (3) improve gaze 
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stabilization, (4) VOR adaptation, (5) sensory substitution, and (6) reduce functional disability 

and improve quality of life.   

2.5 BALANCE ASSESSMENT FOR PERSONS WITH/WITHOUT VESTIBULAR 

DISORDERS: POSTUROGRAPHY 

Postural control can be described as the ability to control body position in space in different 

environments that require different tasks. Postural control involves the maintenance of the 

alignment of the body posture and a vertical relationship against gravity forces. Maintenance of 

equilibrium, the projection of the center of gravity of the body inside base of support boundaries, 

is another function of postural control. The relationship between the body segments in respect to 

each other and between the body segments in respect to the surrounding environment can best 

describe postural orientation. The central nervous system must have an accurate picture of the 

body orientation in space, while sensory information from vision, somatosensory and vestibular 

systems monitor the body interaction in space.166, 167  

 Postural control is essential in every task performed, postural control is important in 

activities like sitting, standing, walking, and running performed in different environments. For 

every task requires postural control, postural control has stability component and orientation 

component that change with every task and environment.167, 168  Postural orientation during 

sitting includes orientation of head position, gaze position, and hand position, while size of base 

of support during sitting influences the stability component of postural control. During standing, 

position of head and gaze influence the orientation component of postural control. The stability 

component during standing requires controlling center of total body mass (COM) and center of 
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gravity (COG), the vertical projection of  the COM, relative to the stability of the base of support 

(unstable base of support include standing in a bus, foam, or challenging surfaces).169   

Orientation and stability are influenced by neural components such as: sensory/perceptual 

processes (organizing sensory information from somatosensory, vision, and vestibular systems 

for balance), motor processes (organizing motor synergies for balance), and cognitive processes 

(organizing adaptive anticipatory sensory and motor strategies to changing tasks and 

environmental changes).169   

2.5.1 Measures of postural control 

Understanding the functions of balance variables is important in understanding postural control. 

Center of mass (COM), center of gravity (COG), center of pressure (COP), base of support 

(BOS), and limits of stability (LOS) all have been used to measure and define balance. Center of 

mass is a passive variable that represents the center of total body mass controlled by the balance 

systems; the vertical projection of COM onto the ground is called the COG.169, 170  The common 

balance variable that has been used in many studies of balance is the position and velocity of 

COP. Center of pressure represents the center of distribution of the total force of body weight on 

the ground.171 Center of pressure is an active variable that moves continuously in all directions 

and has been recorded in anteroposterior (A/P) and mediolateral (M/L) directions. The COP 

moves around the COM to keep the COG within the base of support. The area of the body in 

contact with the ground is called the BOS, while the boundaries within which the body can 

maintain balance without losing balance or changing the base of support is called the LOS.170, 172 

Because LOS is not fixed and changes with different tasks and environments due to varied body 
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reactions, strength, and joints flexibility, it has not frequently reported in many balance research 

studies.173  

Quiet stance is associated with small amounts of sway that help the body to maintain 

equilibrium, the backward and forward sway during standing provide feedback information to 

the nervous system about postural orientation and help the body to maintain equilibrium.18  

During quiet stance, body sway in the (A/P) direction is controlled by the relationship between 

COP and the vertical reaction force; the optimal relationship between the two factors with less 

body sway would be equal and opposite in direction. During forward sway, body weight force 

would be greater than the vertical reaction force making the body experience a clockwise angular 

acceleration, COP will increase and will be anterior to the COG. Muscles around the ankle 

(planter-flexors and dorsi-flexors) are continuously active to regulate the relationship between 

the COG and the COP, and COP is always moving in all directions somewhat greater than the 

COG and around the COG.174, 175   

Ankle muscles have a major role during ankle strategy for balance control. The ankle 

strategy involves the activation of ankle evertors (peroneii), invertors (tibialis anterior and 

posterior, extensor digitorum longus, and hallucis longus), planter-flexors, and dorsi-flexors. The 

A/P control of balance requires collaborations between the right and left planter-flexors and 

dorsi-flexors that control the COP in the anterior/posterior direction. The M/L control of balance 

requires the collaborations between the right and left evertors and invertors plus hip muscles that 

control the COP in the medial/lateral direction.173, 176, 177  Center of pressure path length in both 

A/P and M/L directions was studied, center of pressure change was higher in A/P directions than 

in M/L direction; during quiet stance the hip provides the load/unload mechanism that makes the 
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changes in M/L COP limited whereas the A/P control of COP occurs at the ankle level during 

ankle strategy.178-181  

 

2.5.2  Postural control strategies during quiet stance 

2.5.2.1 CNS contribution to postural control 

The CNS has an important role in controlling postural orientation and stability during task/ 

environment changing demands. The cerebellum controls postural adaptation and muscles 

response magnitude due to task/environment requirements. Brainstem nuclei role in postural 

control include: 1) regulation of muscles facilitation/inhibition activities and muscle/postural 

tone adjustment for postural control, and 2) regulation of sensory information important for 

anticipatory movements strategies for balance control. Spinal cord neural circuitry controls 

postural tone and activates antigravity muscles.182-184   

The CNS must organize sensory information form visual, somatosensory, and vestibular 

systems to have an accurate picture of postural orientation and to know when and how to 

generate appropriate movement strategies for controlling balance in space.16, 17  Sensory 

information from vision provides important information to the CNS concerning the position and 

motion of the body relative to the environment. Vision provides a reference for the relationship 

between the body and the surrounding as a reference for the verticality of the surroundings and a 

reference for the relative motion of the body in space. Visual information is not the only type of 

information important for postural control.19  Center of pressure sway magnitude may differ 

when exposed to accurate vs. inaccurate visual information. Information to the CNS about body 

position and movement in space relative to the support surface is provided by the somatosensory 
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system. Center of pressure sway magnitude may differ when standing in different support 

surfaces that provide accurate vs. inaccurate somatosensory information. Information to the CNS 

about movement and acceleration of the head in space is provided by the vestibular system. 

Center of pressure sway magnitude may differ among persons with or without intact vestibular 

information.20    

2.5.2.2 Sensory organization and motor strategies during quiet stance 

Sensory organization for postural control has been discussed by many theories to describe how 

the CNS integrates sensory information for balance across changing environments. An old 

theory, intermodal theory of sensory organization, discuss that all three senses (vision, 

somatosensory, and vestibular) are used equally for orientation, and these systems provide 

information that act independently from each other but they all contribute to increasing postural 

control specificity.185  The intermodal theory excludes the idea of sensory conflict among 

sensory systems and considers that the relationship among sensory information in the CNS to be 

invariant relationship.185  The new theory, the sensory weighting model, suggests the three senses 

for balance and orientation do not act independently, and does not agree with the idea that all the 

three senses act equally for orientation. The theory suggests that the three senses not only 

contribute to increasing postural control specificity; but depending on task/environment 

difficulty, in some conditions inaccuracy for orientation may happen from any of the three 

senses. The theory suggests that the CNS takes into account the task/environment characteristics 

for orientation and postural control, and modifies the weight and importance of sensory input and 

resolves sensory conflict that may happen in altered sensory environments, to enhance stance in 

different sensory conditions.186-190  In conditions where visual information becomes inaccurate 

for orientation and postural control, the CNS will decrease reliance on vision, and increase 
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reliance on somatosensory information.  Lee et al. studied the sensory weighting model and 

discussed sensory weighting on vision for postural control during leaning a new task in a 

different environment. A person will increase reliance on vision in the early phases of a new 

task/environment, and will decrease reliance on vision as the task/environment becomes 

automatic.191 In environments where somatosensory is inaccurate or less reliable, reliance on 

vision increases while reliance on somatosensory decrease.186-189, 192         

 Nashner et al. studied sensory organization and body sway in six different conditions that 

investigated the effect of presence/absence and accurate/inaccurate sensory information from 

vision and somatosensory systems. Condition 1 examines how the 3 systems (vision, vestibular, 

and somatosensory) contribute to balance control. Condition 2 and 3 examine how absent or 

inaccurate visual feedback information may influence balance control. Condition 4 examines 

how inaccurate somatosensory information influences balance control. Conditions 5 and 6 

examine how inaccurate somatosensory plus the absence or inaccuracy of visual feedback may 

influence balance control.189, 192  

 The role of sensory systems for postural control has been studied in the 6 sensory 

organization conditions. Amplitude of COP sway in condition 2 in healthy individuals increased 

compared with COP sway with eyes open, suggesting that visual information is an important but 

not required factor for postural control.191, 193, 194  Center of pressure sway amplitude and velocity 

also increased when vision provided inaccurate information for balance (condition 3), suggesting 

that not only presence of vision is an important factor for balance but also accurate visual 

reference that matches information from other sensory systems are important for balance 

control.191 Center of pressure sway also increased in healthy individuals when exposed to 

platform perturbations (condition 4) compared with (condition 1).195-197  Individuals with 
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vestibular disorders may lose balance or fall in conditions that force them to use vestibular 

information only for balance such as condition 5 and 6.198       

 Measuring sensory control during standing has been investigated using subjective and 

objective measures of sway. Shumway-Cook and Horak (1986) described a subjective method 

for measuring sensory control during standing. The method uses a dome and foam to provide 

inaccurate somatosensory and visual sway referenced feedback. The foam provide 

destabilization in conditions 4, 5, and 6; the dome provides visual vestibular conflict in 

conditions 3 and 6. The therapist observes the subjects sway and subjectively quantifies the 

amount of sway on a scale 1 to 4 (1= minimal sway, 2= mild sway, 3= moderate sway, 4= 

fall).199  

Objective ways of quantifying sway have been developed using computerized dynamic 

posturography (Equitest™). The Sensory Organization Test (SOT) of the  Equitest is used to 

measure sensory control during standing. The SOT uses a tilting floor and moving walls to 

provide inaccurate somatosensory and visual sway referenced feedback during standing. Tilting 

of the floor only provides sensory destabilization in the antero-posertior (AP) direction; the 

movement of the walls is also in one direction (AP) . The SOT quantifies sway objectively by 

calculating an equilibrium score, an initial dynamic alignment score, and a strategy score. The 

equilibrium score indicates how well the subjects remains within the limit sof stability during 

each SOT condition; the equilibrium score is calculated  using the following formula: 

Equilibrium=  12.5 °−(𝜃max− 𝜃 min )
12.5°

 × 100         

The normal limits of stability is 12.5° of AP sway. Equilibrium scores range between 0 – 100, 0 

indicates that the subject is reaching the limit of stability due to high sway, and scores near 100 

indicates that the subjects’ sway is very small. In cases where a subject falls, no equilibrium 



49 

score is recorded. The initial alignment score reflects the average position of the subject COG 

700 msec before each trial. The dynamic alignment score reflects the average position of the 

subjects’ COG during the 20 second trial. The strategy score indicates the strategy used during 

the 20 second trial and it is calculated using the following formula:  

 Movement strategy = �1 − (𝑆𝐻𝑚𝑎𝑥 −𝑆𝐻𝑚𝑖𝑛) 
25

� × 100 

The difference measured between the highest shear force and the smallest shear force is 25 

pounds. Movement strategy scores range between 0 – 100; scores near 100 indicates that the 

subject used an ankle strategy, and scores near 0 indicate that the subject used a hip strategy 

during the trial.200  

 The difference between using the foam vs. tilting floor that provide inaccurate 

somatosensory sway referenced feedback has been studied to investigate balance deficits.  Allum 

et al (2002) compared the amount of sway associated with standing on a foam eyes open/ closed, 

standing on a tilting floor with pitch ankle sway referencing eyes open/ eyes closed, and standing 

on the tilting floor with lateral ankle sway referencing eyes open/ eyes closed (using Neurocom 

Equitest SOT conditions 4 and 5). Sensors were mounted on a belt to quantify sway on the foam. 

The foam provided multidirectional sway across all frequencies in the range 0.8- 5.2 Hz. 

Standing on the tilting floor with sway in the pitch direction only increased body sway in the 

pitch direction with different characteristics to sway in the AP direction than on the foam.  Sway 

in the lateral direction only increased body sway in the lateral direction with similar 

characteristics to sway in the ML direction on the foam. The foam showed to be easier to use and 

provide more difficult balance task for subjects.201      
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2.5.2.3 Psychometric properties of the Computerized Dynamic Posturography: SOT 

protocol  

The functional contribution of vestibular, visual, and somatosensory inputs for postural control 

and balance is measured using Computerized Dynamic Posturography (CDP). The psychometric 

properties of CDP protocols including clinical efficacy, cost effectiveness, validity, and 

reliability have been established.202  The CDP protocols include the SOT test that assesses 

balance, and tests the subject’s abilities to use, select, and organize sensory inputs from vision, 

vestibular system, and proprioceptive system under sensory conflict conditions. The clinical 

efficacy and cost effectiveness of SOT have been established in the literature.  

 The validity of SOT protocol has been tested among individuals with vestibular 

disorders. El-kashlan et al. evaluated the clinical validity of balance measures including the SOT 

in the management of individuals with vestibular disorders, and found that the SOT is an 

important test for individuals with vestibular disorders.203  The SOT showed to be a sensitive test 

to diagnose individuals with dizziness.204  The SOT also showed to be able to distinguish 

between individuals with bilateral vestibular loss and normal subjects, and to identify individuals 

appropriate for vestibular rehabilitation.205, 206  

 The efficacy of SOT in measuring health outcomes for individuals with vestibular 

disorders after a vestibular rehabilitation programs has been investigated. Perez et al. treated 

individuals with chronic peripheral vestibular disorders and used SOT to measure its impact on 

health outcomes. The SOT provided significant information related to individuals improvement 

after vestibular rehabilitation.207 SOT results were used to customize vestibular rehabilitation 

programs for individuals with peripheral vestibular loss. Individuals received customized 

vestibular rehabilitation based on SOT results showed significant improvement.208  
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 Test retest reliability of the SOT has been established. Test-retest reliability of SOT 

among young healthy subjects (< 50 years), conditions 4-6, were fair to good reliability, range 

(0.35-0.79).209   The SOT test-retest reliability, conditions 3-6, among elderly healthy individuals 

was measured; reliability was moderate to high, range (0.73-0.94).210  

2.5.3 Aging and postural control 

Aging is an important factor that influences postural control. A decline in function of 

multisensory inputs and motor systems is associated with aging.21, 22  The effect of age on 

postural control has been described in many theories that suggest that abnormal postural control 

may happen due to internal causes of aging genetically determined, external causes of abnormal 

postural control associated with aging related to environmental and nutritional factors, or the 

combination of both internal causes of aging and the external causes of abnormal postural 

control.25  Studies of aging classifications consider individuals 60 years old and over as elderly 

adults.211  Studies of gait and walking ability among elderly, healthy individuals over the age of 

60, found great variability of sway among elderly individuals which can be explained by the 

theories of aging.212    

Falls rates among elderly people are at least 33% per year, and considered the seventh 

most cause of death in people over 60 years.23, 24  Fall as an indicator of instability is defined as 

the movements of the center of mass outside the limits of the base of support in which the person 

loses control and falls to the ground.25 The American and British Geriatric Society and American 

Academy of Orthopedic surgery guidelines for prevention falls in elderly described 11 risk 

factors for falls including: visual problems, vestibular problems, use of assistive devices, muscle 
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weakness, history of falls, balance deficits, gait impairments, cognitive deficits, arthritis, 

impaired ADLs, and age > 80 years.25, 213  

2.5.3.1 Rationale: studying age effect on balance 

With aging, there are changes in: muscle strength, endurance, and range of motion that may 

influence balance control. Muscle strength has been shown to decline as age increases. 

Anniansson et al.214 compared muscle strength changes among healthy groups between 30 and 

80 years, noted that forces production in the lower extremities declined up to 40 % with aging. 

Hughes et al.215 investigated the impact of aging non-uniformity changes in muscle strength in a 

10 year prospective study of individuals 60 years old. Lower extremities strength was reduced by 

12 % to 17 % with aging. Muscle endurance declines with age, mostly lower extremities. 

Anderson et al.216, Spirduso et al.217, and Medina et al.218 reported an age related change in 

muscles including: muscle size (become smaller), muscle tissues (exchange with fat), muscle 

fibers (lose fibers important for postural control (type 1) and muscle fibers important for running 

(type 2)), and neuromuscular junctions and motor units (lose motor units). Range of motion has 

been shown to decrease in all body joints with aging; arthritis is one common risk factor 

associated with aging that deteriorate range of motion. Lewis et al.219 , Einkauf et al.220 , and 

Studenski et al.221 studied the age effect on spinal flexibility among young (20-29) healthy and 

old (70-84) healthy, spinal extension was reduced 50% in the elderly group compared with the 

young group. 

Changes in sensory systems including: somatosensory system, visual system, and 

vestibular system are associated with aging. Vibratory sensation, tactile sensation, plus pressure 

sensation has been shown to be impaired with aging, especially in the lower extremities.222-224 
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Elderly individuals are more likely to be dependent on sensory information from vision and 

vestibular systems and more likely to have peripheral neuropathy in the lower extremities.25  

Visual information including information about visual field, visual acuity, and visual 

contrast show to decline among the elderly groups.225, 226 Changes in visual abilities in the 

elderly are associated with changes in the eyes sensitivity to the light.225, 226   In conditions where 

visual information was inaccurate for orientation in space, COP showed more sway among the 

elderly healthy group compared with young healthy group.227, 228  

Vestibular information to the CNS can be reduced with aging. Studies show that 

reduction of vestibular function with aging is associated with changes in the structure of the 

vestibular system. Rosenhall et al. reported that the vestibular system loses around 40% of the 

nerve and hair cells with > 60 years.229  Reduction in the structure and function of the vestibular 

system among elderly people may increase COP sway, increase imbalance, and increase the 

probability of sensory conflict.25  

2.5.4 Abnormal postural control: individuals with vestibular disorders 

Falling is a risk factor associated with vestibular disorders that can impact quality of life (QoL) 

of individuals with vestibular disorders and reduce participation in daily life activities including 

physical and psychological aspects.29, 31  Among 546 incidents of falling that resulted in a visit to 

an emergency department, 80% had vestibular impairments and 40% were complaining of 

vertigo.10  The incidence of falls among individuals with bilateral vestibular loss (51%) is 

significantly higher than the incidence of falls in the general population (25%) in people between 

30-80 years of age.29  
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 Vestibular disorders may influence alignment, muscular coordination and postural 

synergies.230  Abnormal alignment, restricted joint movements, and abnormal COM/COP sway 

magnitude are associated with vestibular disorders.230  Abnormalities of body alignment and 

joints range of motion can be interpreted as musculoskeletal impairments or as compensatory 

strategies for balance control.231  

 Horak at al.232 used Sensory Organization test to measure the magnitude of COP sway 

among individuals with vestibular disorders. Interrupting sensory information from the legs 

among healthy individuals increased COP sway. Intact vestibular information assists subjects to 

maintain balance when somatosensory or visual information are disrupted. Individuals with 

vestibular disorders when tested during conditions 5 and 6, where information from both vision 

and somatosensory is reduced or made inaccurate, COP sway increased and subjects experienced 

sudden falls.232  

2.5.4.1 Rationale: studying vestibular disorders effect on balance 

Measuring postural control may help to differentiate between individuals with sensory 

conflict/over reliance and/or sensory selection problems for balance control. Subjects who are 

more likely to have inter-sensory conflict are more likely to have limited ability to organize 

sensory information.25  Subjects with sensory organization problems are more likely to show an 

over reliance on visual information for balance if they are visually dependent for postural 

orientation. Their COP sway increases in situations in which visual information is absent or 

inaccurate.233  Subjects who are over dependent on somatosensory information for postural 

orientation are more likely to experience increased COP sway in situations when sensory 

information from the lower limbs is absent or disturbed.234  
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 Subjects who have sensory selection problems are more likely to have balance problems 

in any condition or environment with inaccurate of absent sensory information.  Not every 

subject with balance problems can be categorized as over-dependent on sensory information or 

as experiencing sensory conflict because of limited sensory organization abilities. Subjects may 

have difficulties selecting the appropriate sensory information for balance when exposed to any 

environment with inaccurate or absent sensory information for balance.235, 236  

 Examining balance in the 6 conditions of the sensory organization test (SOT) provides 

insights into the persons’ ability to organize and select sensory information appropriate for 

balance which may demonstrate the type of environments and tasks responsible for imbalance.25 

In situations where a subject falls or COP sway increases with disruptions of somatosensory 

information from the lower limbs, (condition 4, 5, and 6), subjects may be considered surface 

dependent.237  During conditions where there is inaccurate or no visual information (conditions 

2, 3, and 6), subjects may be categorized as visually dependent.237  During conditions which 

involve disruptions of information from both visual and somatosensory systems (condition 5 and 

6), a subject is more likely to experience increased COP sway leading to a fall if there are 

problems in the vestibular system. In situations when a subject experiences a large magnitude of 

COP sway in situation involving disruptions of visual or somatosnesory information (conditions 

3, 4, 5, and 6), the subject may have sensory selection problem and may have an inability to 

correctly select sensory information for postural orientation.238  

Sensory Organization test is the standard objective measure for balance. However, 

Sensory Organization test is expensive. The Balance Rehabilitation Unit is a new objective 

measure for balance that uses head mounted display device as part of the balance assessment and 

can measure balance in the same conditions used with Sensory Organization test. The Balance 
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Rehabilitation Unit requires less space and is considered cheaper in price, less than half the CDP 

price. The balance assessment module in the Balance Rehabilitation Unit might be used as an 

objective balance assessment modality for people with/without vestibular disorders.  The 

psychometric properties of a new objective balance measure are important to be established in 

order for the device to be useful. The reliability and validity are the main psychometric 

properties to be examined. The Balance Rehabilitation Unit device needs to be compared to the 

CDP in healthy and individuals with vestibular and balance disorders. Table 2 summarizes the 

differences between the BRU and CDP. 
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Table 2: Differences between the Balance Rehabilitation Unit and Sensory Organization 

test 

 

Stimulus  Sensory Organization test   Balance Rehabilitation Unit 

Visual stimuli:  

condition 3 and 6 

Walls around the subject move in 

the A/P direction with the body 

sway. 

Walls do not move in the M/L 

direction of the body sway. 

Goggles present a virtual basket 

ball court.  

Visual scene, HMD, moves with 

the body sway in the A/P 

direction, and M/L direction. 

Visual scenes presented via HMD 

may provide better visual 

reference than walls. 

Somatosensory stimuli: 

condition 4, 5, and 6 

The floor moves with the body 

sway only in one direction A/P 

direction. 

The destabilization does not cover 

M/L direction. 

Subject stands on a foam that 

provides destabilization in A/P, 

M/L. 

Space  Large space required Small space required 

Price  Expensive   Less expensive  

 



58 

2.6 SPECIFIC AIMS 

2.6.1 The use of virtual reality based therapy as an intervention tool  

Aim 1: To examine the use of virtual reality based therapy as an intervention for individuals with 

vestibular disorders. The study will examine the effect of a VRBT intervention on self report 

measures and performance measures to determine the immediate and long term (6 months) effect 

of VRBT on gait, balance, nausea, headache, dizziness and visual blurring symptoms.  

 

Aim 2: To determine the difference of self report and performance measures between 

conventional therapy and the Virtual reality based therapy (VRBT) in persons with vestibular 

disorders. 

Outcome measures include the Activities-specific Balance Confidence scale (ABC), the 

Dizziness Handicap Inventory (DHI), the Situational Characteristics Questionnaire (SCQ) part A 

and part B, the Visual Analog Scale (dizziness, headache, visual blurring, nausea), and the 

Simulator Sickness Questionnaire (SSQ). Performance measures include the Functional Gait 

Assessment (FGA), the Dynamic Gait Index (DGI), gait speed, the Timed Up and Go (TUG), 

and the Sensory Organization Test (SOT). 
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2.6.1.1 Research Hypotheses 

Hypothesis aim 1:  

Hο: VRBT will have no effect on self report and performance measures immediately after the 

intervention, or after 6 months of follow up, (no effect on gait, balance, symptoms of nausea, 

headache, dizziness, or visual vertigo) on individuals with vestibular disorders.    

 

Hypothesis aim 2:  

Hο: There will be no difference on self report and performance measures between conventional 

therapy and the Virtual reality based therapy (VRBT) in persons with vestibular disorders. 
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2.6.2 The use of Balance Rehabilitation Unit for balance assessment 

The purpose of this study is to examine the reliability (test retest) and convergent validity of the 

Balance Rehabilitation Unit in the assessment of balance in young healthy, old healthy, and in 

persons with vestibular disorders compared with a standard objective measure of balance, the 

Sensory Organization test.  

2.6.2.1 Specific aims  

Aim 3: To examine the test-retest reliability of the Balance Rehabilitation Unit in the assessment 

of balance in young healthy, old healthy, and in persons with vestibular disorders by examining 

balance twice in every subject. 

Aim 4: To examine the convergent validity of the Balance Rehabilitation Unit in the 

assessment of balance in young healthy, old healthy, and in persons with vestibular disorders by 

comparing the results of the Balance Rehabilitation Unit with the results of the Sensory 

Organization test.  

Aim 5: To examine group differences among the study groups (young healthy vs. old 

healthy vs. individuals with vestibular disorders) in the BRU and CDP six balance conditions. 
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2.6.2.2 Research hypotheses 

Hypothesis aim 4: 

Hο: There is no correlation between the two devices. 

 

Hypotheses aim 5: 

Hο: There will be no significant differences in the amount of sway in the BRU sensory 

conditions among study groups. 

Hο: The amount of sway in the young healthy subjects will be similar to the amount of sway for 

the older healthy group and young individuals with vestibular disorders. 

Hο: There will be significant difference in the amount of sway between the older healthy group 

and individuals with vestibular disorders. 
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3.0  METHOD 

3.1 THE USE OF VIRTUAL REALITY BASED THERAPY IN VESTIBULAR 

REHABILITATION 

3.1.1 Study design 

The study was a clinical trial designed to compare 2 interventions in a group of individuals with 

vestibular disorders across 3 time points (pre, post, and 6 month follow up). The first group of 20 

subjects was treated with conventional vestibular rehabilitation. Subjects were treated for 6 

treatment sessions (one session per week) by a physical therapist. The intervention included gaze 

stabilization exercises, functional gait and balance exercises. The second group of 20 subjects 

was treated using a virtual reality based therapy cave-like environment (the grocery store 

VRBT). During the treatment session, subjects received habituation training during ambulation 

in the grocery store. Subjects turned their head right and left while looking for grocery products 

while walking. Each subject was treated for 6 treatment sessions in the VRBT for 6 weeks. Each 

treatment session consisted of 6 (4 minute) trials for a total of 24 min/session.  
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3.1.2 Inclusion criteria 

The study consisted of 40 subjects who had peripheral, central, or mixed vestibular disorders. 

Subjects were recruited from the vestibular disorders clinic after examination by a neurologist. 

The protocol was approved by the Institutional Review Board. All subjects were provided 

informed consent and agreed to participate in the study. The benefits and risks of the study were 

explained to participants during the recruitment period.  

3.1.3 Intervention  

3.1.3.1 Virtual reality based therapy (VRBT) 

The virtual environment consisted of a grocery store modeled in 3D Studio Max and imported 

into Unreal Tournament (UT2004), adapted for multi-screen environments with the CaveUT 

modification. The store was displayed on 3 screens that surrounded the subject in a full-field 

CAVE-like environment. The store contained 16 aisles (20 m long) and had 8 levels of visual 

complexity that depended on the spatial frequency and contrast of the product textures. The 

aisles increased in complexity from aisle one to aisle sixteen.  

Three 2.4 X 1.8 m (vertical X horizontal) back-projected screens were arranged as shown 

in figure (2.2.1). The side screens make an included angle of 110º with the front screen. The 

front screen is 1.5 m from the user, and the opening of the structure at the location of the subject 

is approximately 2.9 m from the front screen. The images are displayed using Epson 810p 

PowerLite LCD monoscopic projectors, with a pixel resolution of 1024 X 768 for each screen. 

Each projector is connected to an NVIDIA GeForce4 graphics processing unit (64 MB texture 

memory) installed in a separate PC (Pentium, 2.2 GHz, 512 MB RAM) running Windows XP. 
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The movement of the images on the three PCs is synchronized and controlled by a server via a 

local area network. The update rate of the images is consistently at least 30 frames per second.  

The virtual environment is interfaced to a custom-built treadmill with a maximum velocity of 1.2 

m/s. At the front end of the treadmill is a grocery cart that is instrumented with two load cells on 

the push bar. The velocity of the treadmill and movement within the environment is controlled 

by the force applied to the cart. 

3.1.3.2 Conventional therapy  

The aims and strategies of physical therapy interventions were focused to improve the symptoms 

and reduce the impairments. Examples of exercises and reasons for their uses were provided 

below: 

• Symptoms of visual blurring and gaze instability in activities that require head 

movements such as shopping or walking in busy places: the aim of the treatment was 

to increase gaze stability during activities of daily living. Vestibular Ocular Reflex 

(X1): the individual views a stationary object while turning the head side to side until 

the point oscillopsia is induced; (X2): the target moves in the opposite direction of the 

head movement. VOR exercises can cause retinal slip error signals to drive the central 

nervous system (CNS) to enhance VOR gain that improves gaze stability.239  

• Symptoms of space and motion sensitivity manifested as dizziness, nausea, and 

headache provoked in busy environments: the aim of the intervention was to teach the 

individual to control their symptoms to become less sensitive and more tolerant to 

such environments in their ADLs. Habituation training using gradually incremental 

tasks and contexts was used to decrease symptoms and improve space and motion 

tolerance. Individuals may start sitting in a busy environment, then walking without 
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head movement, walking in less busy places before more busy places, and walking 

with the flow of the crowd before walking against a moving crowd.11, 12  

• Symptoms of dizziness increased by certain head movements: the aim of the 

treatment was to reduce symptoms with head movements. Habituation training was 

also used for this aim where the individual performed repetitive self exposure to 

exercises that aggravate symptoms. Symptoms of dizziness and vertigo may reduce 

temporarily in the early stages of the habituation training due to the reduction in the 

amplitude of excitatory postsynaptic potentials in the interneuron and motor 

neuron.11, 12  To have a permanent reduction of symptoms, structural changes in the 

interneuron and the motor neuron, this needs to continue for weeks in order for neuro-

plasticity to take place. The therapist distinguish specific movements and positions 

that provoke symptoms, then ask the individual to expose oneself to a mild to 

moderate level of dizziness in these movements. Movements should be done quickly 

to provoke moderate symptoms with a small rest between exercises to allow 

symptoms to diminish.11-13  

• Symptoms of postural instability and disequilibrium: the aim of the intervention was 

to improve postural stability and to reduce disequilibrium. The individual was asked 

to learn how to use the intact remaining vestibular information and to use the 

appropriate visual and somatosensory information in challenging situations.11-13  

Information from the vestibular, vision, and somatosensory systems are essential for 

normal postural control.104  The central nervous system (CNS) has the ability to 

process information from the three sensory channels to provide postural control. The 



66 

CNS can up weight or down weight inputs from any of the three sensory systems 

when there is any distortion of postural control.104   

• Symptoms of oscillopsia: the aim of the intervention was to solve this impairment. 

Anticipatory eye movement activities to teach the subject to successfully compensate 

for eye movements correctly by giving predictable eye movement tasks that help the 

individual to maintain better gaze stability.103  The individuals were taught 

substitution strategies to facilitate central preprogramming and therefore teach the 

individual to use the same strategy in predictable head movement situations. 

However, central preprogramming may not be effective in situations when head 

movements are not predictable.103   

• The use of eye head exercises encourage the use of saccadic and smooth pursuit 

movements to facilitate maintaining gaze stability.13  Individuals may use these 

exercises to help stabilize the eyes.103 

• The use of VOR x1 and x2 exercises improve residual vestibular function and 

complement that by adding compensatory cervical-ocular reflex (COR) strategies.13  

Some studies report that the COR can help gaze stability since sensory information 

from neck joints and muscles helps eyes produce slow phase movements opposite to 

head movements.103 

3.1.4 Study protocol 

Every subject had six treatment sessions in the VR grocery store over the course of 6 weeks. The 

treatment session lasted for one hour and included six trials of habituation training; each trial was 

4 minutes duration. One of 2 physical therapists (SLW, PJS) was present for each session to 
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ensure subject safety and guide the treatment session in the VRBT. During the treatment session 

in the VRBT, subjects were asked to push an instrumented grocery cart and walk on the treadmill 

in the grocery store. Over the 6 week period, subjects were exposed to more visually complex 

aisles depending on the subject’s tolerance. The therapist asked the subject to locate products on 

the right and left, up and down the shelves as they ambulate, and the subject should respond 

verbally when they locate the product.  

The subjects’ tolerance to the virtual environments was assessed by recording their vital 

signs (blood pressure and pulse rate) and their Subjective Units of Discomfort (SUD, 0-100 

range) before and after each trial. The investigators used the SUDs score to determine if subjects 

should move to a more complex or less complex aisle in the virtual grocery store environment. 

The session was stopped if the SUD score indicated that the subject was highly symptomatic. 

Scores of 0 indicated no discomfort and scores of 100 indicated maximum discomfort. Subjects 

were given home exercises for their dizziness and balance and asked to keep a daily exercise 

diary. 

3.1.5 Typical outcomes of vestibular rehabilitation  

Subjects enrolled in the study were examined before and after the intervention using self report 

measures and performance-based measures of functional balance, by a therapist who was blinded 

to the VRBT intervention.  

3.1.5.1 Intervention outcome measures: Self report  

The Activities-specific Balance Confidence scale (ABC) is a questionnaire used to measure the 

individual perceived level of balance confidence in a 16 daily living activities, with 16 
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questions.240  Responses range from 0% to 100%, the lowest score indicates low confidence in 

balance and the highest score indicates high level of confidence.240  The ABC was found to be 

reliable with elderly people (65-95 years) over a two-week period with r = 0.92 (p < 0.001) and 

to have high internal consistency (Cronbach = 0.96) with minimal detectable changes (MDC) 

ranging between 13% - 38%. 33, 240-243 

The Dizziness Handicap Inventory (DHI) is a validated scale that recorded the level of 

disability and handicap resulting from dizziness.33  The DHI score ranges between 0% to 100% 

with the lowest score indicating low disability resulting from dizziness and the highest score 

indicating a high level of disability. The DHI scale has three subscales (physical, emotional, and 

functional). In this study I calculated the sum score of all DHI subscales. The test-retest 

reliability for the DHI was 0.97 and the internal consistency was 0.91. 33 

The Situational Characteristics Questionnaire (SCQ) is a validated questionnaire that has 

two parts (A and B).244  Subjects rated situations that may elicit anxiety or discomfort for the 

subject in real life. The SCQ (part A) has shown its ability to distinguish individuals with 

vestibular dysfunction among individuals complaining of anxiety disorders.245, 246  The SCQ (part 

A) test-retest reliability was r = .66 and internal consistency (Cronbach = 0.74 to 0.76).246  The 

SCQ (part B) has shown its ability to identify people with vestibular disorders. It is more 

powerful in discriminating balance and hearing disorders than SCQ (part A), but it is not able to 

discriminate individuals with vestibular disorders among individuals complaining of anxiety. 

The SCQ (part B) test-retest reliability was r =.87. 245 

3.1.5.2 Intervention outcome measures: Performance 

The Dynamic Gait Index (DGI) examined a person’s ability to perform different gait activities 

such as walking with head turns and avoiding obstacles.247  The scale has 8 items with each item 
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scored from 0 to 3 (0 means severe impairment, 3 means normal ability). The optimal score in 

the DGI is 24 and ≤ 19 the subject has high risk of falling.248  The DGI has been found to be 

valid and highly reliable with people with vestibular dysfunction (kappa=.95).247   The DGI had a 

moderate positive correlation with the ABC (r= .68) and had moderate negative correlations with 

the Timed Up and Go (TUG) (r = - .77). 249 

The Functional Gait Assessment (FGA) also measured balance control during walking.250  

The FGA has 10 walking tasks, 7 of which are from the Dynamic Gait Index and 3 are new tasks 

added by Wrisley et al to increase the challenge of the test to be more sensitive to small changes 

in balance control during walking.250  The FGA total score is 30 with each item scored in an 

ordinal scale (0-3, 0 means severe impairment, 3 means normal performance). The FGA inter-

rater reliability was found to be high with an ICC of .83.250  Internal consistency of the FGA was 

good with Cronbach alpha = .81.250  The FGA scores also highly correlated with other balance 

measures (with DGI r =.8, with TUG r = -.5, with number of falls r = -.66, and with the DHI r = -

.64).251  Fall risk has been defined with a score of ≤ 22.252  

To record gait speed, subjects were asked to walk 6.1 meters at their comfortable speed 5 

times, then their average speed was calculated. Gait speed had shown good correlation with falls 

and functional abilities.253  Whitney et al (1994) found that people with vestibular disorders have 

low gait speed compared to healthy controls.254  

The TUG required subjects to stand up from a chair, walk three meters, turn around, then 

walk back to the chair and sit. Subjects were timed for the task; subjects who score 13.5 seconds 

or more are at high risk of falling.255  The TUG had good intra rater reliability and good inter 

rater reliability r= .93 and .96 respectively.256  The TUG also correlated with other balance and 

self report measures.249, 250 
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The Sensory Organization Test (SOT) was used to record postural sway in 6 conditions 

related to various sensory inputs important for balance (vestibular, vision, and somatosensory 

input).257  In this study we used the composite SOT score. 

3.1.5.3 Within session symptom measures   

Before and after each treatment session, subjects reported the amount of nausea, dizziness, 

headache, visual blurring, oculomotor stress, and disorientation using a visual analog scale 

(VAS) and simulator sickness questionnaire (SSQ). Subjects rated the severity of their nausea, 

headache, dizziness, and visual blurring using a Visual Analog Scale.258  Subjects were asked to 

mark a 10-cm vertical line corresponding to the severity of symptoms. One end of the line 

represented no symptoms at all, and the other end represented as bad as the symptoms can be. 

The Simulator Sickness Questionnaire (SSQ) was used to record the severity of 16 

different symptoms across three subscales: nausea (general discomfort, increased salivation, 

stomach awareness, burping, sweating, nausea, and difficulty concentrating), oculomotor stress 

(general discomfort, blurred vision, headache, eyestrain, fatigue, difficulty focusing, and 

difficulty concentrating), and disorientation (dizzy  eyes open, dizzy eyes closed, head fullness, 

vertigo, blurred vision, nausea, and difficulty focusing).259, 260  For each item, a 0 was recorded if 

none of the component symptoms were present and a 1 was recorded if any degree of the 

symptom was present (mild, medium, or severe). The sum of the component scores for each 

subscale was computed. 
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3.1.6 Statistical analysis (Aim 1)  

Aim 1: To examine the use of virtual reality based therapy as an intervention for individuals with 

vestibular disorders. The study examined the effect of a VRBT intervention on self report 

measures and performance measures to determine the immediate and long term (6 months) effect 

of VRBT on gait, balance, nausea, headache, dizziness and visual blurring symptoms.  

3.1.6.1 Self-report and performance measures 

RESEARCH QUESTION:  

Is there a significant difference on self-report and performance measures among the assessment 

times (pre intervention, after 6 week intervention, and after 6 months follow up after the 

intervention)? 

Dependent variable (DV): self-report and performance measures- interval/ ratio; Independent 

variable (IV): assessment time (3 levels) 

ASSUMPTION OF NORMALITY WAS TESTED FOR THE FOLLOWING:  

1- Normality: the distribution of the DVs (self report and performance measures) should be 

normally distributed within each time of testing (pre, post, 6 months follow up). Normality 

assumption was tested using the Shapiro-Wilk statistic. 

2- Outliers: there should be no extreme scores within each time of assessment. Outliers were 

checked by examining histograms and Quantile- Quantile (Q-Q) plots. 

3- Sphericity assumption: it included testing for homogeneity of variance and homogeneity of 

covariance.261  Sphericity assumes that the variances of the DV (self report and performance 

measures) among the levels of the IV (assessment time) are the same.261  Sphericity was 
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tested using the Mauchly’s test ( χ2 test with 𝑑𝑓 = J(J−1)
2

− 1, J is the IV leveles).261  To adjust 

for a violation of assumption of sphericity, the Huynh-Feldt method was used to compute the 

magnitude of violation (epsilon Є) that was multiplied with degrees of freedom. If Є =1, then 

the assumption is met, and if the Є < 1, then the assumption is violated. 

If the assumptions are met, a one way within subjects analysis of variance is performed 

on self-report and performance measures to test the effect of the intervention (before vs. after the 

6 week intervention vs. after 6 months follow up after the intervention). If the main effect (F - 

test) is significant, a simple effect analysis is performed to provide specific comparisons between 

assessment times. In order to find the pattern of differences on self-report and performance 

measures among assessment times, post hoc pairwise comparisons are performed using the 

Bonferroni adjustment. Bonferroni adjustment is used to adjust for inflation of a type one error. 

If the assumptions are not met, nonparametric statistics (distribution-free tests) are used. 

Both parametric and nonparametric statistics test hypotheses and use statistical ratio or test 

statistics. Both tests are evaluated using an alpha level significance. The parametric statistics are 

generally more powerful and considered more sensitive to identify significant differences for a 

given sample size.262 The power efficiency differences between both types are because 

nonparametric statistics involve ranking scores rather than comparing the metric changes.262 The 

nonparametric statistics uses rank ordering of scores from smallest to largest score rank. Rank 1 

is given to the smallest score, and highest rank is equal to the sample size (n).   

The Friedman two-way analysis of variance by ranks, a nonparametric test, was used to 

test the effect of the intervention on self-report and performance measures among assessment 

times (pre intervention, post 6 week intervention, and 6 month follow up). The Friedman 

ANOVA test is a powerful alternative test to parametric repeated measures ANOVA.262  During 
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the Friedman ANOVA test, scores are converted to ranks, and the ranking process is within each 

subject among assessment times. The Friedman ANOVA test uses χ2. When χ2 is significant, 

pairwise differences for multiple comparisons among assessment times are done using the 

Wilcoxon signed ranks test. The Wilcoxon signed ranks test was used to test the effect of the 

intervention on the self-report and performance measures before vs. after the 6 week intervention 

and before vs. after 6 months follow up. The Wilcoxon signed ranks test can evaluate the 

differences within paired scores and examine both the direction of difference and the relative 

amount of difference among assessment times.262  

3.1.6.2 Within session symptom measures (VAS, SSQ) 

Assumptions of normality and outliers were tested. If the assumptions are met, a 2 X 6 within-

subjects analysis of variance are performed on VAS and SSQ as a function of test time (pre 

session, post session) and the 6 treatment sessions (session 1, 2, 3 , 4, 5, 6). The dependent 

variables (DV) were VAS and SSQ symptom measures, the 1st independent variable (IV) was 

test time (pre treatment session, post treatment session); the 2nd IV was the 6 treatment sessions. 

The following three research questions were answered:   

• Is there a significant difference on the symptom measures (VAS, SSQ) among the 6 

treatment sessions averaged across test time (pre, post)? (Main effect of treatment sessions: 

provide information about habituation success) 

• Is there a significant difference on the symptom measures (VAS, SSQ) between pre and post 

every treatment session averaged across the 6 treatment sessions? (main effect of every 

single treatment session) 

• Is the pattern of difference on the symptom measures (VAS, SSQ) among the 6 treatment 

sessions significantly different before vs. after each treatment session? (interaction effect)    
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If the assumptions are not met, nonparametric statistics are used to answer the following 

question: Is there a significant difference on VAS and SSQ scores before vs. after each treatment 

session? The Wilcoxon signed ranks test was used to measure the immediate effect of VRBT on 

VAS and SSQ subscales before vs. after each treatment session.  

Also a nonparametric statistics were used to answer the following question: Is there a 

significant difference on VAS and SSQ post scores among treatment sessions?  To measure the 

treatment-related effect of VRBT on VAS and SSQ scores, the post treatment VAS and SSQ 

scores were compared across the six visits using the Friedman test.  For all analyses, the level of 

significance were set at α= 0.05. Intention to treat analysis was used for subjects with missing 

data at the 6 months follow up. 

To measure how dizziness severity (DHI) and space and motion sensitivity (SCQ-A, 

SCQ-B) at baseline may influence symptoms (VAS, SSQ) during treatment sessions, appropriate 

correlation coefficient between initial scores of the (DHI, SCQ-A, SCQ-B) and the average 

amount of change in VAS and SSQ during treatment sessions was calculated to investigate how 

dizziness severity and space and motion sensitivity may influence symptoms during treatment 

sessions.  

3.1.7 Statistical analysis (Aim 2) 

Aim 2: to determine the difference of self-report and performance measures between 

conventional therapy and virtual reality based therapy (VRBT) in persons with vestibular 

disorders. 

Outcome measures included the Activities-specific Balance Confidence scale (ABC), the 

Dizziness Handicap Inventory (DHI), the Situational Characteristics Questionnaire (SCQ) part A 
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and part B, the Visual Analog Scale (dizziness, headache, visual blurring, nausea), and the 

Simulator Sickness Questionnaire (SSQ). Performance measures included the Functional Gait 

Assessment (FGA), the Dynamic Gait Index (DGI), gait speed, the Timed Up and Go (TUG), 

and the Sensory Organization Test (SOT). 

Assumptions of normality, outliers, homogeneity of variance, and homogeneity of 

covariance were tested. Compound symmetry for both (homogeneity of variance, and 

homogeneity of covariance) were tested using Box’s M test with α =.001 since Box’s M test is 

conservative.261  

If the assumptions are met, a 2 X 3 mixed analysis of variance is performed on self-report 

and performance measures as a function of assessment time and intervention type. The within 

subjects independent variable was assessment time (pre, post, 6 month follow-up). The between 

subject independent variable was the intervention type (VRBT, conventional therapy).  And the 

DV were self-report and performance measures. The following questions were answered: 

• Is there a significant difference on self report and performance measures among the 

assessment times (pre intervention, after 6 week intervention, and after 6 months follow up 

after the intervention) averaged across intervention type (conventional therapy, VRBT)? 

(main effect of assessment time) 

• Is there significant difference on self report and performance measures between the VRBT 

group and the conventional therapy group averaged across assessment times? (main effect of 

intervention type) 

• Is the pattern of difference on self report and performance measures among assessment times 

significantly different between the VRBT and the conventional therapy? (interaction effect of 

assessment time and intervention type) 
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If the assumptions are not met, nonparametric statistics are used to answer the following 

question: Is there a significant difference on self report and performance measures among the 

assessment times (pre intervention, after 6 week intervention, and after 6 months follow up after 

the intervention) for both groups? Friedman ANOVA test was used to measure the significant 

difference for each group among assessment times, then pairwise differences for multiple 

comparisons among assessment times were done using the Wilcoxon signed ranks test. The 

Wilcoxon signed ranks test was used to test the effect of the intervention on the self-report and 

performance measures before vs. after the 6 week intervention and before vs. after 6 months 

follow up after the intervention.   

Also nonparametric statistics were used to answer the following question: Is there 

significant difference on self report and performance measures between the VRBT group and the 

conventional therapy group among assessment times? Wilcoxon signed ranks test was used to 

compare intervention groups at pre 6-week intervention, post 6-week intervention, and at 6 

month follow up. 

3.2 THE USE OF THE BALANCE REHABILITATION UNIT IN BALANCE 

ASSESSMENT  

3.2.1 Study design 

This was an experimental-cross sectional study design. The psychometric properties (reliability 

and validity) of the Balance Rehabilitation Unit (BRU) in the assessment of balance in young 

healthy, old healthy, and in persons with vestibular disorders were examined. The BRU was 



77 

compared with a standard objective measure of balance, Sensory Organization Test (SOT). Each 

subject was tested twice in the Balance Rehabilitation Unit and one time using SOT during the 

same visit. 

3.2.2 Inclusion criteria 

The study consisted of 90 (male and female) subjects; 30 subjects with vestibular disorders 

between the age of 18 to 85 who were referred by Dr. Joseph Furman because of vestibular 

disorders, 30 young healthy controls between the age of 18 and 50, and 30 older healthy controls 

between the age of 60 and 85 were included in the study. Subjects with vestibular disorders with 

complaints of dizziness, vertigo, balance problems, falls, or difficulty focusing were included in 

the study. A power analysis based on 3 trial averages of 20 second average sway (cm/sec) was 

conducted to determine the appropriate number of subjects to be tested for aim 3. An estimate of 

the number of subjects required to attain a power of 0.8 with alpha = 0.05 for the different factors 

was 30 in each group. 

Exclusion criteria for all subjects included known pregnancy and the use of assistive 

devices for standing. Healthy control subjects should not have any symptoms of inner ear 

disorders such as complaints of dizziness, vertigo, or balance problems. Healthy controls were 

screened before testing to make sure that subjects did not have vestibular disorders with the 

screening procedures taking around 15-20 minutes. The principal investigator (KAA) screened 

subjects. The screening physical examinations included examinations of the following: 1) 

spontaneous nystagmus, 2) cranial nerves 3, 4, and 6 (H test), 3) Dix-Hallpike testing, 4) the roll 

test, 5) the horizontal Head shake test, and 6) the head thrust test (HTT).  
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3.2.3 Assessment devices 

3.2.3.1 The Balance Rehabilitation Unit (BRU) 

The BRU had an assessment module that uses a head mounted display and foam for balance 

assessment. The BRU measures COP sway area and sway velocity under 6 different conditions. 

The BRU comes with a balance platform, head mounted device that projects different visual 

environments, and a safety harness. Subjects were asked to stand on the balance platform 

wearing a light head mounted device and also wearing the safety harness attached to the ceiling 

to prevent falls. The harness was a vest with a strap that wraps around the legs. Testing 

conditions included: 1) condition 1 standing on a firm surface eyes open looking forward, 2) 

condition 2 standing on a firm surface with eyes closed, 3) condition 3 standing on a firm surface 

looking at a visual world room (basket ball gym) displayed in the head mounted goggles that 

sways with the subject, 4) condition 4 standing on foam eyes open looking forward to the wall, 

5) condition 5 standing on a foam with eyes closed, and 6) condition 6 standing on a foam 

looking at the visual world displayed in the head mounted goggles that sway as the subject 

sways. 

3.2.3.2 Sensory Organization Test   

Sensory Organization Test, the Smart Equitest by Neurocom version, is an objective tool for 

measuring balance and performing the sensory organization test. Subjects stood on the balance 

platform that can move back and forth while wearing the safety harness attached to the ceiling to 

prevent falls. The platform is surrounded on three sides by panels that may sway with the 

subject. Testing conditions include: 1) standing on a firm surface eyes open looking forward, 2) 

standing on a firm surface with eyes closed, 3) standing on a firm surface with a moving wall in 
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front of them that sways with the subject, 4) standing on a platform that pivots about the ankles 

with eyes open, 5) standing on a platform that pivots about the ankles with eyes closed, and 6) 

standing on a platform pivots about the ankles with eyes open with a moving wall in front of 

them that sways with the subject. 

3.2.4 Study protocol 

The individual group was recruited from Eye and Ear Institute, with the clinic nurse introducing 

the study to individuals during their initial history intake. If interested, a member of the study 

team discussed the study, obtained consent, and then screened for eligibility. Healthy controls 

were recruited through ads that were placed around the University of Pittsburgh, Duquesne 

University, Carnegie Mellon University, and Point Park University. Subjects from other balance 

research studies who had agreed to be contacted for future studies were contacted and screened 

for eligibility. 

The primary investigator received training in the use of the BRU. The primary 

investigator travelled to Montevideo, Uruguay for a training program for 7 days to learn how to 

use the BRU and to see the important elements of the BRU assessment and rehabilitation therapy 

programs. 

The study procedures were performed at the Eye and Ear Institute by the principal 

investigator for one (2 hours) visit. Each subject was tested twice in the Balance Rehabilitation 

Unit and had 15 minute breaks in between testing (to examine the test-retest reliability), and was 

tested one time on the SOT (to examine the validity) the same day. To minimize the "order 

effect" bias, the order of testing of the two devices was changed with every other subject. For 
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both devices, every subject was tested in 6 conditions and had 3 trials/ condition, with 20 second/ 

trials. 

3.2.5 Outcome measures 

Posturography test results including magnitude of sway velocity were examined in both devices. 

COP sway area and sway velocity was measured every trial/condition in both devices. COM is a 

passive variable that represents the center of total body mass controlled by the balance systems; 

the vertical projection of COM onto the ground is called the COG. The common balance variable 

that has been used in many studies of balance is the position and velocity of COP (representing 

the center of distribution of the total force of body weight on the ground).171 COP is an active 

variable that moves continuously in all directions and has been recorded in anteroposterior (A/P) 

and mediolateral (M/L) directions. The COP moves around the COM to keep the COG within the 

base of support.  

Theoretically, the term COP is the application point of all forces applied by the feet to the 

ground. COP is calculated from the weight distribution over the Base of support and sampled at a 

certain frequency (50 Hz). The sampled COP is a group of paired values (COP in AP direction, 

COP in ML direction). The COP A/P and COP M/L were used to estimate the area where the 

COP is moving and the velocity of the COP movement.  COP area was measured in cm2.  The 

area of the XY plane where the points are distributed was used to estimate COP area. The 

standard way to estimate this area is by adjusting an ellipse known as the ellipse of confidence at 

95%. The statistical definition of this ellipse is that there is 95% confidence that the center of a 

population would be inside the ellipse and that COP area is the estimation of the area of the 

ellipse. The following standard formula will be used to calculate COP area: 
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T is the duration of the trial, SV is sway velocity,  is path length, COPap is the data distribution 

in the AP direction, and COP ml is the data distribution in the ML direction. A Butterworth low 

pass filter (4th order, 2Hz cutoff) was used in Matlab to calculate filtered sway velocity (FSV) to 

reduce noise.  

Root mean square (RMS) was computed using the following: 

𝑅𝑀𝑆𝑎𝑝 = �∑ 𝐶𝑂𝑃𝑎𝑝𝑖2𝑛
𝑖=1
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Peak to Peak (PTP) was calculated using the following: 

𝑃𝑇𝑃𝑎𝑝 = 𝑚𝑎𝑥 (𝐶𝑂𝑃𝑎𝑝) −𝑚𝑖𝑛  (𝐶𝑂𝑃𝑎𝑝) 

𝑃𝑇𝑃𝑚𝑙 = 𝑚𝑎𝑥 (𝐶𝑂𝑃𝑚𝑙) −  𝑚𝑖𝑛  (𝐶𝑂𝑃𝑚𝑙) 

Max (COPap) is the highest sway amplitude in the AP direction, Min (COPap) is the lowest 

sway amplitude in the AP direction, Max (COPml) is the highest sway amplitude in the ML 

direction, and Min (COPml) is the lowest sway amplitude in the ML direction. 
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3.2.6 Statistical analysis (Aim 3)  

Aim 3: To examine the test-retest reliability of the Balance Rehabilitation Unit in the assessment 

of balance in young healthy, old healthy, and in persons with vestibular disorders by examining 

balance twice in every subject.  

The usefulness of the BRU in measuring balance depends on the extent to which we can 

rely on its data. Measuring reliability of the BRU and its consistency and the error associated 

with testing is the first prerequisite for the BRU to be a useful tool for balance assessment. 

Without testing BRU reliability, we cannot have confidence that the data that is collected from 

the BRU is accurate. Random errors may occur due to chance, inattention, or unpredictable 

sources of measurement error and may affect reliability. The study protocol was detailed and 

specific enough to ensure consistent testing. Sources of error that may affect reliability were 

addressed in the study. Tracing paper was used between testing to track feet position for every 

subject to control changes in the distance between feet during test retest. Subjects were given 

enough time between test and retest to rest, plus they were given a break during testing any time 

they feel fatigue during standing. 

Test-retest reliability, the stability of the BRU to obtain reliable results with repeated 

administrations, was investigated. The time interval between tests was considered carefully with 

testing far enough apart to avoid fatigue but also close enough (same day) to avoid big changes 

in balance and dizziness.  

Correlation between test and retest may not be enough to measure reliability of the BRU. 

The correlation describes how the scores vary together but it does not describe the agreement 

between the two tests. Using a correlation coefficient, only two ratings can be correlated at one 
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time; subjects were tested three trials/ condition. The variance component due to a true 

difference cannot be separated from the variance due to error using correlations.   

Another method to test reliability of the BRU is to use both correlation and a t-test 

together to assess consistency and average agreement between test and retest. This method 

addresses the interpretation of agreement. However, we did not use this method since it does not 

provide a single index to describe and interpret reliability, and would be difficult to interpret. 

An interclass correlation coefficient (ICC) was used to investigate reliability between test 

and retest because an ICC considers both correlation and agreement and provides a single index 

to describe reliability. The ICC uses variance estimates using analysis of variance (ANOVA), 

and it can assess the reliability among more than 2 readings. The ICC considers the differences 

between observed scores that are due to variations of the measurement system including factors 

related to the testing environment and subjects conditions, and not only as true score variance 

and random error. 

The purpose and design of this study involved the use of the same rater representing only 

raters of interest, with no intention of generalizing findings beyond the raters involved. The rater 

was considered a fixed factor and not randomly selected in this design. Inter class correlation 

coefficient model 3 was the appropriate ICC to be used for this study. The form of measurement 

involved a single measurement, form (1). For relative reliability, the intra-class correlation 

coefficient, ICC (3, 1) and 95% CI was used to describe the level of agreement between test and 

retest. 

For absolute reliability, average mean difference between trials with confidence limits, 

the standard error of mean (SEM), and the Bland and Altman method were used to describe the 

extent to which a balance score varies on test-retest measurements.263-268  
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A Bland Altman plot were used to graph the difference of each pair of measures, the 

mean difference, and the confidence limits on the vertical against the average of the two ratings 

on the horizontal. The Bland Altman plot described the following 1) overall the degree of 

agreement and whether the agreement was related to the value of the balance measure, 2) 

identification of bias and outliers, 3) visual illustration of the relationship between the mean and 

variance of the measurement scores, and 4) offered a supplemental way to the ICC for assessing 

reliability in clinical research. 

The SEM was used to investigate whether the change in test scores in the study subjects 

was real. The smaller the SEM indicates a more reliable and useful measure of balance.  

3.2.7 Statistical analysis (Aim 4) 

Aim 4: To examine the convergent validity of the Balance Rehabilitation Unit in the assessment 

of balance in young healthy, old healthy, and in persons with vestibular disorders by comparing 

the results of the Balance Rehabilitation Unit with the results of SOT.  

In convergent validity we examined the degree to which the BRU was similar to the SOT 

in measuring sensory organization for balance. Convergent validity was computed using an 

appropriate correlation coefficient between the BRU and the SOT measures of posturography.   

RESEARCH QUESTION 

Is there a significant association in sway measures between the BRU assessment module and the 

Equi-test™ SOT among the study sample (young healthy, old healthy, individuals with 

vestibular disorders)?  

HYPOTHESIS 

  There is no correlation between the two devices. 0:0 =ρH
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Assumptions of normality and linearity were tested by examining scatter plots. If the 

assumptions are met, parametric statistics such as Pearson product-moment correlation is used to 

measure the correlation between the scores of the two devices. If the assumptions are not met, 

nonparametric statistics such as Spearman rank order correlation is used to test the correlation 

between scores in the two devices.  

3.2.8 Statistical analysis (Aim 5) 

Aim 5: To examine group differences among the study groups (young healthy vs. old 

healthy vs. individuals with vestibular disorders) in the six balance conditions of testing using 

the BRU and the SOT.  

A one-way ANOVA (group effect) on sway for the simple comparisons and group as the 

only between subject effect (the repeated measures across the within subject effect of sensory 

conditions on sway) was used.  
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4.0  THE USE OF VIRTUAL REALITY BASED THERAPY FOR PEOPLE WITH 

BALANCE AND VESTIBULAR DISORDERS:  THE PITTSBURGH EXPERIENCE 

4.1 INTRODUCTION  

Virtual reality based therapy has frequently been used in the treatments of motor or 

psychological dysfunction.269, 270  Virtual reality based therapy may also demonstrate promise in 

people with sensory disorders, including vestibular dysfunction.  The purpose of this paper is to 

describe how our experiments with virtual reality based therapy in the treatment in people with 

vestibular disorders have evolved and to provide you with some of our recent insights as to how 

effective virtual reality based therapy use can be in people with complaints of dizziness and 

balance loss.   

Vestibular sensation is one of the three main sensory modalities for balance control.  The 

other two senses include somatosensation (the feeling in the feet and extremities) and 

vision.  With vestibular injury, vision is often affected because input from the vestibular organs 

in the inner ear drives eye movement via the vestibulo-ocular reflex (VOR).  Usually after a 

peripheral vestibular event, there is a drop in the gain of the VOR (the ratio of the eye velocity to 

the head velocity).271-273 As a result, people with vestibular disorders may complain of things 

jumping in their visual field (oscillopsia) or visual blurring.274  They have difficulty focusing on 

objects when their head is moving, especially if they look away from the side of the injured ear, 
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and their balance is disrupted.  Difficulties with vision can last for longer than the acute phase of 

vestibular injury (a few weeks) and some individuals continue to complain of visual blurring 

with head movement for months or even years.86 In addition to the complaints of visual blurring, 

dizziness results from head movements. Consequently, many individuals with vestibular 

disorders are afraid to move their heads, and they start to move less and can become 

sedentary.274, 275  

The use of virtual reality based therapy may be beneficial for addressing the vision-

related symptoms and restriction in head movement caused by vestibular disorders. Recovery of 

the gain of the VOR requires visual inputs and active head movement,14, 276 both of which can be 

encouraged and monitored with the use of virtual reality based therapy. Viirre 277 and Kramer et 

al 278 were the first to attempt to use virtual reality based therapy for people with vestibular 

disorders.  Viirre and Sitarz 14 demonstrated that virtual reality based therapy training can induce 

adaptations in the VOR and reduce dizziness.   

Vestibular disorders may also activate anxiety pathways which can significantly affect 

outcome of people with vestibular loss.65, 279-284    For example, Jacob et al80 and Bronstein 81 

have both reported that people with vestibular disorders can experience increased dizziness and 

anxiety in visual environments that consist of complex textures and motion, such as large 

grocery stores, stores that have many small products or even stores that have high contrast 

floors.285    

Consequently, virtual reality based therapy may be used by the therapist as a form of 

habituation or exposure therapy.14  These methods are similar to what is often called exposure 

therapy that has been used effectively for the treatment of anxiety disorders, such as fear of 

heights, fear of flying, and for post-traumatic stress disorder.65, 270, 279, 283, 286-289  By repeatedly 
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exposing individuals to the stimuli that cause the symptoms, there is an attempt to decrease 

symptoms via central nervous system compensation.279  The advantage of a virtual environment 

is that one can expose the individual to environments that match the individuals experience and 

also one can easily dose the treatment. 

Our goal at the University of Pittsburgh has been to develop a systematic way of 

evaluating the safety and efficacy of using virtual reality based therapy for treatment of people 

with vestibular disorders. In the remainder of this article, we will report on our findings in three 

experiments that we have conducted in our three screen, wide field of view (FOV) environment 

(BNAVE: Balance NAVE Automatic Virtual Environment). In all cases the physical structure 

for displaying the virtual environment was the same, although different software platforms have 

been used to generate and the environments. Three 2.4 m X 1.8 m (vertical X horizontal) back-

projected screens are arranged as shown in Figures 4.1 and 4.2. The side screens make an 

included angle of 110o with the front screen. The front screen is 1.5 m from the user, and the 

opening of the structure at the location of the subject is approximately 2.9 m. The images are 

displayed using Epson 810p PowerLite LCD monoscopic projectors, with a pixel resolution of 

1024 X 768 for each screen. Each projector is connected to an NVIDIA GeForce4 graphics 

processing unit (64 MB texture memory) installed in a separate PC (Pentium, 2.2 GHz, 512 MB 

RAM) running Windows 2000. The movement of the images on the three PCs is synchronized 

and controlled by a server via a local area network. The update rate of the images is consistently 

at least 30 frames per second. 
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4.2 EXPERIMENT 1 

Goal: We first examined the degree of simulator sickness in participants with and without 

vestibular disorders as they performed coordinated gaze shifts in different optic flow fields.290, 291 

The primary goal of this experiment was to determine if participants could tolerate making head 

movements in a virtual environment, using outcome measures of simulator sickness and 

discomfort.  

Participants: Seven participants with unilateral vestibular hypofunction (UVH) and 25 

control participants participated.  The mean age was 53 years (range 27-77 years) for the 

participants with UVH and 52 years (range 22-83 years) for the control participants.   

Protocol: Participants were tested on 6 visits, during which they performed the same 

coordinated gaze shifts with a different optic flow background on each visit. The optic flow 

fields consisted of light and dark stripes moving toward the subject from the front, with different 

levels of contrast and spatial frequency. During the high contrast conditions, the luminance of the 

stripes was 1 and 170 cd/m2 (candelas per square meter) respectively. During the low contrast 

conditions, the luminance of the stripes was 15 and 34 cd/m2. The low contrast condition was 

based on average measurements of luminance obtained from products sampled at a local grocery 

store, using a luminance meter (LS-100 Luminance Light Meter, Minolta Corp. Ramsey, NJ). 

The spatial frequencies were set according to common sizes of soup cans (high, 4.2 cycles/meter) 

and cereal boxes (low, 1.4 cycles/meter) found in the local grocery store. 

Prior to the first trial and after every trial during the rest break, the Subjective Units of 

Discomfort (SUDS, 0-100 range) was rated according to how much “anxiety” the subject 

perceived during the trial. In addition, the Simulator Sickness Questionnaire (SSQ) was 

completed.260 The SSQ contains 16 items on which participants rate the degree of particular 
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symptoms on a 4-item severity scale (0=none, 1=slight, 2=moderate, 3=severe). The SSQ has 

three subscales that were comprised of the following symptom types: nausea (general 

discomfort, increased salivation, sweating, nausea, difficulty concentrating, stomach awareness, 

burping), oculomotor stress (general discomfort, fatigue, headache, eyestrain, difficulty focusing, 

difficulty concentrating, blurred vision), and disorientation (difficulty focusing, nausea, head 

fullness, blurred vision, dizzy with eyes open, dizzy with eyes closed, vertigo).  

Control participants rated their SUDS at 0 after 85% of the trials and rated items on the 

SSQ at zero greater than 90% of the time. As a result, computing the transformed scores as 

detailed by Kennedy et al. did not provide meaningful information.260 Therefore, for examining 

SUDS and SSQ ratings, the number of non-zero scores were tabulated for each subject at 

baseline and after each of the 8 trials, for each of 6 visits (54 scores per subject). The effect of 

group on the number of non-zero scores was tested using the Mann-Whitney U test. Because of 

the low occurrence of symptoms in the control group, the effect of visit number, type of visual 

environment, and trial number during each visit on the symptom severity was examined only in 

the vestibular group. Furthermore, we investigated these factors for items that were rated greater 

than zero at least 20% of the time. Friedman two-way analysis of variance by ranks was used to 

investigate if the independent variables of visit number, the type of visual environment or the 

trial number during each visit had a significant effect on the number of non-zero scores for the 

SUDS and SSQ. An alpha = 0.05 was used to indicate significance. 

Results: The percentage of trials in which participants had a symptom rating greater than 

zero is shown in Table 3. Control participants had non-zero SUDS scores in 15% of the trials 

and rated items on the SSQ above 0 less than 10% of the time. Participants with vestibular 

disease had a significantly higher proportion of non-zero responses for the SUDS and the 
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following items of the SSQ: fatigue, difficulty focusing, dizziness: eyes open, and dizziness: eyes 

closed. Two of these symptoms are components of the oculomotor stress subscale and three are 

components of the disorientation subscale.  

The number of non-zero symptoms did not change significantly for any of the items 

during any particular visits or visual environment. However, there were increases in the number 

of non-zero ratings as a function of the trial number.  Specifically, the ratings increased after the 

second trial for the following the items: SUDS, SSQ: general discomfort, difficulty focusing, and 

dizziness with eyes open. 

Interpretation: Greater scores in the participants with vestibular disease can be explained, 

in part, by greater symptoms scores at baseline, i.e. before testing began. In addition, continued 

exposure to the environment during the visit resulted in increased symptoms in participants with 

vestibular disease. The increase in symptoms in participants with vestibular disease was not 

unexpected, and in our clinical experience, similar increases in symptom severity are commonly 

encountered during vestibular rehabilitation. No participants discontinued the study because of 

symptoms they experienced. As a result, we progressed to the next experiment in which 

participants with and without vestibular disease walked through one aisle of a virtual grocery 

store. 

4.3 EXPERIMENT 2 

Goal: The aim of the next study was to determine the change in symptoms induced in subjects 

while they ambulated through a long aisle of a virtual grocery store, while looking for 

products.292 We wanted to examine if participants would be able to tolerate moving through the 
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environment without having an increase in symptoms that would dissuade them from returning 

for additional visits. 

Participants: Twenty healthy participants with no evidence of neurological disease (10 

female, mean age 45 years, range 21 - 79 years) and 10 individuals with unilateral vestibular 

hypofunction, UVH (4 female, mean age 58 years, range 37 - 69 years) participated.  

Protocol: Participants navigated down the aisle 6 times on each of 2 visits. On one visit, 

they navigated down the aisle by standing and pushing forward on a joystick; on the other visit 

they walked on a custom-made treadmill placed within the environment. During four of the 6 

trials, participants were asked to search for common cereal boxes (Frosted Flakes and Cheerios) 

that had been pseudo-randomly placed 20 times along the length of a 120 m aisle. The aisle was 

a repeating pattern of shelves that were 5 m long with a 2 m inter-shelf break. The other parts of 

the aisle were completely filled with 30 other brands of products. On the other 2 trials, 

participants navigated down the aisle without searching for any products. Only one aisle was 

used because we did not want to induce any sensation of turning. 

The speed of the treadmill was controlled by the amount of force participants exerted on 

an instrumented shopping cart. The speed of movement through the store was matched to the 

treadmill speed during the walking trials. During the standing trials, the speed of movement was 

controlled by pushing forward on the joystick. The maximum speed of movement of the 

treadmill and in the store was 1.2 m/s, based on maximum output produced by the treadmill 

motor. Each visit, participants underwent several practice trials to ensure that they were 

comfortable with the equipment and procedures.  All participants were secured to an overhead 

harness to ensure that they were safe on the treadmill.   
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As in experiment 1, perceived anxiety was measured prior to testing and after each trial 

using the SUDS scale and participants completed the SSQ. A similar statistical analysis to that 

detailed in Experiment 1 was conducted. The number of symptoms that had an intensity greater 

than 0 for the SSQ was computed for each of the 6 trials. The scores from both measures were 

not normally distributed; in particular, there were a large number of trials in which the SUD was 

0, and no symptoms were reported on the SSQ. Therefore, differences in SUD and SSQ between 

healthy controls and participants with UVH were examined with the non-parametric Mann-

Whitney U test, using the median of each subject’s scores as the estimate of central tendency. 

Between-visit (standing vs. walking) and between-trial differences (search vs. no search) were 

tested using the non-parametric Friedman test, again using the median of each subject’s scores. 

An alpha = 0.05 was used to indicate significance.  

Results: The prevalence of SUD ratings that were greater than zero during the testing 

demonstrated a large difference between controls and participants with UVH. After 81% of the 

trials, participants with UVH had a SUD score greater than zero, compared with 39% of the trials 

in controls. Participants with UVH had greater median SUD scores compared with controls 

during both the pre-test assessment and virtual reality based therapy exposure (p = 0.002). 

However, there was no difference in the change in SUD from pre-test to virtual reality based 

therapy exposure between the two subject groups. None of the experimental factors had a 

significant effect on SUD score, including the visit number, mode of locomotion (standing vs. 

walking), and search strategy.  

The prevalence of SSQ ratings that were greater than zero during the testing also show 

group differences. After 81% of the trials, participants with UVH reported at least one symptom, 

compared with 29% of the trials in controls (p<0.002). As in Experiment 1, oculomotor and 
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disorientation symptoms were more prevalent than nausea symptoms. The range of median 

number of symptoms reported by the participants with UVH was 0 to 12 out of 16. The range of 

median number of symptoms reported by control participants was 0 to 2 out of 16.  The change 

in number of SSQ symptoms reported from pre-test to virtual reality based therapy exposure did 

not differ between the groups.  

Interpretation: Participants with and without vestibular abnormalities were able to 

complete all trials when navigating through a virtual grocery store, except for one individual. She 

was unable to complete the final trial on her second visit due to nausea. Individuals with 

vestibular disorders reported more symptoms during the pre-test than the control participants. 

These remained relatively stable over the visit, suggesting that participants in both groups 

tolerated exposure to the virtual grocery store. Once safety was established, we decided to use a 

16 aisle virtual grocery store to treat people with dizziness over a 6 week intervention.  

4.4 EXPERIMENT 3 

Goal: The purpose of the final study which is currently ongoing is to test the effectiveness of 

using the virtual reality based therapy in treating individuals with vestibular disorders.  

Participants: Twelve participants with vestibular disorders (mean age 52 years, age 18 - 

80 years) who complained of dizziness and loss of balance participated.  

Protocol: Participants attended 6 treatment sessions over the course of 6 weeks.  Six 

treatment sessions were used because it is in the range of the treatment duration reported in 

several studies, including retrospective studies reflective of clinical practice.42, 293, 294 All 

participants were tested prior to and after the intervention using self-report measures and 
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performance-based measures of functional balance. The self report measures included the 

Dizziness Handicap Inventory (DHI),33 and the Activities-specific Balance Confidence Scale 

(ABC).240 The Dizziness Handicap Inventory (DHI) is a validated tool used to asses the degree 

of handicap associated with dizziness.  It has a range from 0 to 100, with higher scores indicating 

greater (worse) perceived handicap.33 The Activities-specific Balance Confidence Scale (ABC) 

is a 16-item scale.  Each item is rated from 0% (no confidence) to 100% (complete confidence) 

to assess balance confidence in daily activities. A score of 100 indicates the highest level of 

confidence that the individual will not lose the balance and scores of 0 indicate the most 

impairment.240  

The performance-based measures included the Dynamic Gait Index (DGI),295 Timed Up 

and Go (TUG),296 and the Sensory Organization Test (SOT) of computerized dynamic 

posturogrpahy.297  The DGI and TUG were used to determine the risk of falling 255, 298 and the 

Sensory Organization Test to assess the individual’s ability to use the sensory information for 

their balance.  

The subject began by standing on the treadmill and pushing the grocery cart.  The speed 

of the treadmill and movement through the virtual grocery store increased linearly with the force 

in the anterior direction, up to a maximum speed of 1.2 m/s. Application of greater force by the 

left hand resulted in turning to the right, and vice versa, as if one were pushing a cart.  During 

each treatment, the participants were asked to ambulate up and down the aisles at their 

comfortable speed 4 minutes at a time, 6 times per visit for a total exposure of 24 minutes per 

visit. All individuals were secured with an overhead safety harness during all trials. The store 

had 16 aisles where the visual contrast of the product textures and density of products in the 

greater numbered aisles. Participants were asked to continuously find different products by a 
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physical therapist experienced in vestibular rehabilitation. Participants reported SUDS scores 

before and after each 4 minute trial. The therapist used the subject’s SUDs scores to determine 

the aisle characteristics. For example, if symptoms increased substantially, they were asked to 

start in an “easier” aisle or if they experienced no difficulty, they were asked to walk and find 

products in an aisle that had greater contrast and product density.  

The effect of the intervention on scores for all of the measures was tested using the 

Wilcoxon signed ranks test, with an α = 0.05. 

Results: At least two-thirds of the participants improved on all of the outcome measures 

except for the TUG (Table 4). The greatest improvement occurred for the self-report measures, 

indicating reduction in perceived dizziness handicap and improved confidence in their balance 

while performing daily activities.  

Interpretation: Statistically significant improvements were found in four of the five 

measures, and the magnitude of change was comparable with improvements seen with 

conventional vestibular rehabilitation performed in our clinic.97, 293 Although minimum 

detectable change (MDC) scores have not been firmly established on these measures for this 

population, the amount of improvement seen in this study is less than what has been reported in 

literature. The mean change in ABC of 14 compares favorably with MDCs ranging from 6 to 

38% reported in the literature.97, 243 However, mean changes in the DHI (15 points), DGI (2 

points), and SOT (5 points), are less than reported MDCs of 18 for the DHI,33 4 for the DGI,97 

and 10 for the SOT.299 A potential reason why the change was not as large in this study 

compared to others is that our sample of participants was less impaired compared with other 

studies.97, 293 Despite improvement in the DGI, a gait measure that incorporates functional 

activities such as walking with head turns and stair climbing, the TUG, a measure related to gait 
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speed, was unaffected, possibly because all subjects had TUG scores that were within normal 

limits at the initial evaluation. 

4.5 CONCLUSION  

The use of virtual reality based therapy for people with vestibular disorders appears promising.  

People with vestibular disease had a transient increase in symptoms in the optic flow and virtual 

environment,. Overall, individuals improve on both self-perception and objective measures of 

balance and postural control.  Our next goal is to determine if virtual reality based therapy 

intervention is superior to results attained from conventional physical therapy treatment.  

Despite the promise of the use of virtual reality based therapy for rehabilitation of people 

with vestibular disorders, there are several challenges that must be overcome to make it available 

on widespread basis. For one, the hardware and software used for virtual reality based therapy 

are continuously changing. We are using our second software package, and for each package, 

considerable time has been spent in development. In addition, we have changed used 2 different 

projector systems, 3 different personal computer systems. Each of these changes requires time to 

integrate. Furthermore, our current installation is probably cost and space prohibitive for most 

clinics to use. If we continue to demonstrate improvement in outcomes, our goal is to determine 

if the same improvements can be realized with equipment that requires less resources (e.g. a head 

mounted display or small display dome). We are confident that these challenges can be 

overcome.  
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Table 3: The percentage of non-zero responses for the Subjective Units of Discomfort 

(SUDS) and the Simulator Sickness Questionnaire (SSQ) 

  

Symptom Scale CON VEST P 
SUDS  15 60 0.01 
SSQ     
   General Discomfort (N, O) 10 41 0.08 
   Fatigue (O) 6 24 0.01 
   Headache (O) 6 10 0.09 
   Eyestrain (O) 10 12 0.08 
   Difficulty Focusing (O, D) 2 22 0.02 
   Increased Salivation (N) 0 2 0.79 
   Sweating (N) 1 3 0.82 
   Nausea (N, D) 1 14 0.79 
   Difficulty Concentrating (N, O) 1 16 0.37 
   Fullness of Head (D) 1 19 0.15 
   Blurred Vision (O, D) 1 15 0.05 
   Dizziness: Eyes Open (D) 3 51 0.01 
   Dizziness: Eyes Closed (D) 0 29 0.02 
   Vertigo (D) 0 3 0.42 
   Stomach Awareness (N) 1 15 0.56 
   Burping (N) 0 3 0.69 
 

Given by controls (CON) and participants with vestibular disease (VEST), across all trials and 

visits. For each SSQ item, the subscales to which the item belongs is listed in parentheses (N: 

Nausea, O: Oculomotor stress, D: Disorientation).  
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Table 4: Mean scores of outcome measures taken before and after a 6 week virtual reality 

based therapy intervention for treatment of people with dizziness 

 

Measure Pre-treatment Post-treatment Change #of 
participants 
improved 

p-value 

ABC 67 (22) 81 (14) 14 (19) 10/12 0.034 
DHI 36 (16) 21 (14) -15 (15) 11/12 0.008 
DGI 20 (2) 22 (2) 2 (2) 8/12 0.031 
SOT 63 (21) 68 (22) 5 (6) 9/12 0.027 
TUG (s) 9.3 (1.4) 9.4 (1.4) -0.1 (0.8) 5/12 0.638 
 

p-values determined from Wilcoxon signed ranks test. ABC: Activities-specific Balance 

Confidence scale, DHI: Dizziness Handicap Inventory, DGI: Dynamic Gait Index, SOT: Sensory 

Organization Test, TUG: Timed Up and. 
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Figure  4-1: Participant standing in a wide field of view environment while viewing optic 

flow  with high (left) and low (right) spatial frequency (Experiment 1) 
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Figure  4-2: Participant walking through virtual grocery store while pushing on grocery 

cart instrumented with force transducers. The speed of the treadmill and movement 

through the store is proportional to the amount of force applied to the cart handle. See 

experiments 2 and 3 for details.  
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5.0  THE USE OF BALANCE NEAR AUTOMATIC VIRTUAL ENVIRONMENT IN 

THE TREATMENT OF VESTIBULAR DISORDERS 

5.1 INTRODUCTION   

Twenty to thirty percent of the general population have complaints of dizziness.26, 27  Vertigo has 

a high negative impact on persons’ quality of life, as 40% of individuals with vestibular disorders 

have interrupted daily activities, 41% take sick leave, and 19% avoid leaving their home because 

of their dizziness.28 In addition, falls are significant problems associated with vestibular 

dysfunction that increase morbidity and mortality rates.23, 300, 301  

People with vestibular disorders have complaints of dizziness, vertigo, balance problems, 

falls, and difficulty focusing.1  They also may report blurred vision with activities requiring head 

movements while walking such as looking for products in shopping malls or reading signs while 

driving.15, 81  Individuals with balance disorders may report increased symptoms in visually 

complex environments that have been described in the literature as “space and motion 

discomfort”,  “space phobia”, “supermarket syndrome”, “height vertigo”,  and “visual vertigo”.2, 

4, 5  Situations that have been reported to precipitate space and motion discomfort or visual 

vertigo include: walking in supermarket aisles or shopping malls,  large open areas, or complex 

and confusing visual stimuli. 
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Anxiety in the form of generalized anxiety or persistent agoraphobic symptoms is a 

common co-morbid condition in people with vestibular disorders.55 Symptoms resulting from 

anxiety and vestibular disorders, including dizziness, nausea, or sweating have a large degree of 

overlap, and generally reflect activation of the autonomic nervous system. Moreover, people 

with dizziness who have greater autonomic symptomatology report greater handicap and recover 

less quickly.69, 70  In some cases, fear of these symptoms may lead people with vestibular 

disorders to restrict or avoid activities that induce symptoms, which would have the unintended 

effect of delaying central compensation.65, 279  

 One of the most common interventions for individuals with vestibular disorders is 

vestibular rehabilitation, which reduces symptoms and improves balance problems in both young 

and older adults.12, 98, 302    Vestibular rehabilitation attempts to (1) adapt the VOR gain, (2) 

improve gait stability, (3) correct overdependence on any specific sensory channel in postural 

control (e.g. either vision dependence, i.e. increased reliance on visual stimuli, or somatosensory 

dependence, i.e. increased reliance on somatosensory stimuli), (4) decrease anxiety from space 

and motion sensitivity, and (5) return the person to normal activities of daily living.302  One of 

the treatment methods used to achieve these goals is through the use of habituation exercises.303 

Habituation exercises may be particularly helpful in combating the over-reliance on a sensory 

modality and reducing associated anxiety. Bronstein (2004) has suggested that in addition to 

customized vestibular rehabilitation, desensitizing individuals to visual motion and visuo-

vestibular conflict may be of benefit to those who have visual vertigo. Furthermore, visually 

provocative habituation exercises have been shown to be useful during vestibular 

rehabilitation.15, 82   
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Virtual reality based therapy (VRBT) may be an ideal way to provide habituation 

exercises for individuals with vestibular disorders who become symptomatic in complex visual 

environments. The gradual exposures to the visual scenes may allow individuals to habituate to 

the provocative stimuli and help diminish symptoms.  Using VR for exposure therapy has a well-

established foundation in the treatment of specific phobias (e.g. fear of heights).286, 288  The 

purpose of this study was to examine the use of virtual reality based therapy using the VRBT in 

the intervention of individuals with vestibular disorders. We explored the effect of a VRBT 

intervention on self report and performance measures to examine the immediate and long term (6 

months) effect of VRBT on symptoms and balance function. 

5.2 METHODS 

5.2.1 Setting and participants  

Twenty subjects were recruited from a vestibular disorders clinic after examination by a 

neurologist who specializes in balance disorders. The study was approved by the Institutional 

Review Board of the University of Pittsburgh. All subjects provided informed consent and 

agreed to participate in the study.  The benefits and the risks of the study were explained to 

participants during the recruitment period and before the first treatment session. 

 Subject demographics and information about their vestibular disorder are described in 

Tables 5 and 6. The mean (SD) age of the subjects was 54 (10) years. The median duration of 

symptoms was 6.5 months. Thirteen subjects had peripheral vestibular abnormality, 4 subjects 

had mixed central and peripheral vestibular dysfunction, and 3 subjects had central vestibular 
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dysfunction. The most common laboratory abnormalities were decreased gain, asymmetry on 

rotational chair testing, and abnormalities on vestibular-evoked myogenic potential testing. 

5.2.2 Virtual reality based therapy environment  

The virtual environment consisted of a grocery store modeled in 3D Studio Max and imported 

into Unreal Tournament (UT2004), as shown in Fig. 5-1, adapted for multi-screen environments 

with the Cave UT modification.304 The BNAVE displays a store environment on three screens 

that surround the subject in a full-field CAVE-like environment. The store contains 16 aisles (20 

m long) and has eight levels of visual complexity that depend on the spatial frequency and 

contrast of the product textures. The aisles increase in complexity from aisle one to aisle 

sixteen.305  

Three 2.4 x 1.8 m (vertical X horizontal) back-projected screens are used. The side 

screens make an included angle of 110º with the front screen. The front screen is 1.5 m from the 

user, and the opening of the structure at the location of the subject is approximately 2.9 m. The 

images are displayed using Epson 810p PowerLite LCD monoscopic projectors, with a pixel 

resolution of 1024 X 768 for each screen. Each projector is connected to an NVIDIA GeForce4 

graphics processing unit (64 MB texture memory) installed in a separate PC (Pentium, 2.2 GHz, 

512 MB RAM) running Windows XP. The movement of the images on the three PCs is 

synchronized and controlled by a server via a local area network. The update rate of the images 

is consistently at least 30 frames per second.305  

The virtual environment is interfaced to a custom-built treadmill with a maximum 

velocity of 1.2 m/s. At the front end of the treadmill is a grocery cart that is instrumented with 

two load cells on the push bar as shown in Fig. 5-2. The velocity of the treadmill and movement 
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within the environment are coupled and proportional to the force applied to the cart.305 Turning 

right and left is accomplished by pushing with more force on one side of the push bar vs. the 

other side. 

5.2.3 Intervention  

Every subject had six treatment sessions in the VRBT grocery store over the course of 6 weeks. 

The treatment session lasted approximately one hour and included six trials of virtual grocery 

shopping, each of four minutes duration. One of two physical therapists (SLW, PJS) was present 

for each session to ensure subject safety and guide the treatment session. During the treatment 

session, the subjects were asked to push the instrumented grocery cart while walking on the 

treadmill in the grocery store. Over the 6-week period, subjects were exposed to more visually 

complex aisles depending on the subject’s tolerance. The therapist asked the subject to locate 

products on the right and left, up and down the shelves as they ambulated, and the subject 

responded verbally when they located the product.  

The subjects’ tolerance to the virtual environment was assessed by recording their vital 

signs (blood pressure and pulse rate) and their Subjective Units of Discomfort (SUD, 0-100 

range) after each trial. The investigators also used the SUD score to determine if subjects should 

move to a more complex or less complex aisle, or stop the session if the SUD score indicated 

that the subject was highly symptomatic. Scores of 0 indicate no discomfort and scores of 100 

indicate maximum discomfort. Table 7 demonstrates the treatment protocol. At the end of each 

treatment session, subjects were given home exercises for their dizziness and balance and asked 

to keep a daily exercise diary. Examples of home exercises provided to the individuals included: 

1) standing exercises with/without head turns on firm or foam surfaces with feet apart, together, 
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or in tandem position, 2) gait exercises with head turns right/left and up/down while walking 

forward, backward, tandem, around obstacles, or over obstacles, 3) gaze stabilization exercises 

VOR (X1) where the individual views a stationary object while turning the head side to side; 

exercises started with sitting, standing, then with walking in place on firm or foam surfaces, 

forward toward an object, backward away from an object, and tandem walking toward an object, 

4) VOR (X2) where the target moves in the opposite direction of the head movement, and 5) 

otolith stimulation exercises that include head tilt in sitting, standing or walking.  

5.2.4 Outcome measures  

Subjects were examined before, one week after, and 6 months after the intervention using self-

report and performance-based measures of functional balance by a physical therapist. 

5.2.5 Self-report measures 

The Activities-specific Balance Confidence scale (ABC) is a questionnaire used to measure the 

patient-perceived level of balance confidence in 16 activities of daily living.240  Responses range 

from 0% to 100%, the lowest score indicates low confidence in balance and a higher score 

indicates high level of confidence.240  The ABC is known to be reliable among older people aged 

65-95 years over a two-week period with r = 0.92 (p < 0.001) and among individuals with 

vestibular disorders with an ICC range between .67 and .93 (p < 0.05) and Cronbach alpha = 

0.95.240, 306  The ABC minimal detectable change (MDC)  ranges between 13% - 38% in older 

adults and persons with Parkinson’s disease.240, 243  The ABC scale has high internal consistency, 

ranging between 0.8-0.97.241, 243  
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 The Dizziness Handicap Inventory (DHI) is a validated scale that records the level of 

disability and handicap resulting from dizziness.33  The DHI score ranges between 0% to 100% 

with the lowest score indicating low disability resulting from dizziness and the highest score 

indicating a high level of perceived disability. The DHI scale has three subscales (physical, 

emotional, and functional). In this study the sum score of all DHI subscales was calculated. The 

test-retest reliability for the DHI is 0.97 and the internal consistency is 0.91.33 

 The Situational Characteristics Questionnaire (SCQ) is a validated questionnaire that has 

two parts (A and B).307 Subjects rate characteristics of situations that may elicit anxiety or 

discomfort for the subject in real life and make comparisons between the characteristics of the 

same situations. The SCQ (part A) has shown its ability to distinguish individuals with vestibular 

dysfunction among individuals complaining of anxiety disorders.80, 307  The SCQ (part A) test-

retest reliability is r = .66, and internal consistency is .74 to 76.80  The SCQ (part B) has shown 

its ability to identify people with vestibular disorders. It is more powerful in discriminating 

balance and hearing disorders than SCQ (part A), but it is not able to discriminate individuals 

with vestibular disorders among individuals complaining of anxiety. The SCQ (part B) test-retest 

reliability is r =.87.80  

5.2.6 Performance measures  

The Dynamic Gait Index (DGI) examines a person’s ability to perform various gait activities 

such as walking with head turns and avoiding obstacles.247  The scale has 8 items; each item can 

be scored from 0 to 3 (0 means severe impairment, 3 means normal ability). The optimal score 

on the DGI is 24 and below 19 the subject has a high risk of falling.248  The DGI has been found 

to be valid and highly reliable with people with vestibular dysfunction (kappa=.95).247   
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The Functional Gait Assessment (FGA) measures balance control during walking.250  The 

FGA has 10 walking tasks, seven of which are from the Dynamic Gait Index and three are new 

tasks added to increase the challenge of the test to be more sensitive to small changes in balance 

control during walking.250  The FGA total score is 30 with each item scored using an ordinal 

scale (0-3, 0 = severe impairment, 3 = normal performance). The FGA inter-rater reliability is 

high with an ICC of .83.250 Internal consistency of the FGA is good with Cronbach alpha = 

.81.250 The FGA scores are also highly correlated with other balance measures (with DGI r =.8, 

with TUG r = -.5, with number of falls r = -.66, with DHI r = -.64).250  Scores of 22 or less have 

been related to fall risk in older adults.252   

 To record gait speed, subjects ambulated 6.1 meters at their comfortable speed 5 times, 

with their mean speed calculated. Gait speed has shown a good correlation with falls and 

mortality.308   

The TUG requires subjects to rise from a chair, walk three meters, turn around, then walk 

back to the chair and sit. Subjects are timed during the task; subjects who score 13.5 seconds or 

greater are at higher risk of falling.255  The TUG has good intra-rater reliability and good inter-

rater reliability (r = .93 and .96) respectively.256  The TUG also correlates with other balance and 

self report measures.250  

The Sensory Organization Test (SOT) of the EquiTest is used to record postural sway in 

six conditions related to various sensory inputs important for balance (vestibular, vision, and 

somatosensory input).192  In this study the composite SOT score was utilized.  
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5.2.7 Within-session symptom measures 

Before and after each treatment session, subjects rated the severity of their nausea, headache, 

dizziness, and visual blurring using a visual analog scale (VAS).258  Subjects were asked to mark 

a 10-cm vertical line corresponding to the severity of symptoms. One end of the line represents 

no symptoms, and the other end represents “as bad as it can be”. 

 The Simulator Sickness Questionnaire (SSQ) was used to record the severity of 16 

different symptoms across three subscales: nausea (general discomfort, increased salivation, 

stomach awareness, burping, sweating, nausea, and difficulty concentrating), oculomotor stress 

(general discomfort, blurred vision, headache, eyestrain, fatigue, difficulty focusing, and 

difficulty concentrating,), and disorientation (dizzy with eyes open, dizzy with eyes closed, head 

fullness, vertigo, blurred vision, nausea, and difficulty focusing).259, 260  For each item, a 0 was 

recorded if none of the component symptoms were present and a 1 was recorded if any degree of 

the symptom was present (mild, medium, or severe). The sum of the component scores for each 

subscale was computed. 

5.2.8 Statistical analysis  

Four statistical analyses were conducted. First a repeated measures ANOVA was used to 

examine if the self-report and performance measures differed at one week after the intervention 

and at the 6 month follow-up, compared with before the intervention.  All of the measures 

satisfied the assumption of being normally distributed. In cases of unequal variance, the 

Greenhouse-Geisser correction was applied. Post-hoc testing was performed using a Bonferroni 
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correction with 2 planned comparisons and α = 0.025. Intention to treat analysis was used for 

subjects with missing data at the 6 months follow up (4 subjects did not return). 

Next we explored if a short-term change in symptoms (VAS and SSQ subscales) 

occurred from before the first trial to after the last trial within each session. To accomplish this, 

we used a repeated measures ANOVA for the measures that were normally distributed 

(Dizziness VAS, Nausea SSQ, Disorientation SSQ and Oculomotor SSQ). The main effects were 

within-session (2 levels: Pre, Post) and between-session (6 levels, Session 1 to 6). In addition, we 

wanted to determine if the amount of change differed across the six sessions by examining the 

interaction of the within- and between-session factors. For the measures that were not normally 

distributed (Nausea VAS, Headache VAS, and Visual Blurring VAS), the Wilcoxon signed ranks 

test was used to test for the effect of the short-term change on the average score before and after 

each treatment session. The Friedman test was used to determine if the change differed among 

the 6 sessions. 

To measure the long-term habituation change effect of VRBT on VAS and SSQ scores, 

the post treatment VAS and SSQ scores were compared across the six sessions using a non-

parametric Friedman test.   

Finally, a Pearson correlation was performed between initial scores of the DHI, SCQ-A, 

SCQ-B and the average amount of change in VAS and SSQ during treatment sessions to 

investigate how dizziness handicap and space and motion sensitivity may influence symptoms 

during treatment sessions.  For all analyses, the level of significance was set at α = 0.05. 
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5.3  RESULTS  

5.3.1 Self-report and performance measures 

Table 8 presents the pretest scores, the posttest scores and the 6-month follow-up scores of self-

report and performance measures for all subjects. At least 70% (14/20) of subjects demonstrated 

improvements in all self-report measures at the post-test and 6-month follow-up. After the 

intervention, subjects demonstrated significant improvement in the ABC (p = 0.03), DHI (p = 

0.004), and SCQ-B scales (p = 0.01). At the 6-month follow up, subjects maintained their 

improvement in these self-report measures.  For the performance measures, significant 

improvements were observed on the DGI (p = 0.03), and the SOT (p = 0.012), but not the FGA, 

gait speed and TUG. At the 6 month follow up, subjects preserved their recovery on the DGI and 

the SOT. 

5.3.2 Within-session symptom measures 

Figure 5-3 demonstrates changes in the VAS scores across all sessions. The dizziness VAS score 

increased significantly from pre-session to post-session (p = 0.001), but this increase did not 

differ among the six sessions (p = 0.10).  Similarly nausea VAS (p = 0.012), headache VAS (p = 

0.039), and visual blurring VAS (p = 0.005) increased during the session. However, the amount 

of change per session was not significantly different.  Nausea, oculomotor stress, and 

disorientation SSQ scores showed a significant increase post-session compared with pre-session 

(p < 0.001). The amount of increase in the SSQ subscales within the session declined from the 

first session to the last session (p < 0.05 for all subscales), (Figure 5-4). 
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5.3.3 Long term habituation  

To measure the overall effect of habituation to the environment, the post-session scores were 

compared from session one to session six. Dizziness VAS scores decreased significantly from 

2.2 at the end of the first session to 0.5 at the end of the last session (p = 0.03, Figure 5-5). The 

visual blurring VAS scores decreased significantly from 1.1 at the first session to 0.2 at the 6th 

session (p = 0.004). Significant changes were not observed for nausea and headache VAS scores. 

There were significant decreases in nausea, oculomotor stress, and disorientation SSQ responses 

to the VRBT grocery store across treatment sessions (Figure 5-6). Nausea decreased from 2.4 to 

1.5 (p = 0.03), oculomotor stress decreased from 4.0 to 1.7 (p = 0.001), and disorientation 

decreased from 3.7 to 1.5 (p = 0.001) respectively.  

5.3.4 Relationship between initial self-report measures and within-treatment session 

symptom measures 

Pearson correlations were performed between the self-report (DHI, SCQ-A, SCQ-B) initial 

scores and the average change in VAS and SSQ across all 6 treatment sessions to investigate 

how pre-treatment dizziness severity and space and motion sensitivity may influence symptoms 

during treatment sessions. Table 9 shows fair to moderate positive relationships between the 

initial scores of the SCQ-A , SCQ-B, and DHI with the amount of change in visual blurring VAS 

within treatment sessions, indicating that higher (worse) symptoms of visual blurring during the 

exposure to VRBT were related to greater levels of anxiety in environments that evoke visual 

and vestibular stimulation.    
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5.4 DISCUSSION  

5.4.1 Self-report and performance measures 

In this study we explored the effect of virtual reality based therapy intervention on self-report 

measures (ABC, DHI, SCQ A-B) and performance measures (FGA, DGI, gait speed, TUG, and 

SOT). Subjects improved significantly in 3 of the 4 self-report measures, 2 of the 5 performance 

measures, and maintained these improvements 6 months after the intervention ended. The 

amount of improvement was greatest for the self-report measures; in particular the effect sizes at 

the 6-month follow-up for the ABC and DHI were 0.70 and 0.60, respectively.  In contrast, the 

effect sizes for the performance measures ranged from 0.12 to 0.50. It is possible that relatively 

limited improvement in the performance measures was found because many subjects were within 

normal limits at the time of the initial assessment.  Gait speed (mean = 1.10) and TUG (mean = 

9.2) are considered within normal limits for their age.252, 298, 309-313  The DGI (mean = 21) and 

FGA (mean = 24) scores are considered higher than the cutoff points (DGI = 19, FGA = 22) 

associated with risk of falls and impairments of gait.248, 252, 298, 314, 315  Although the amount of 

improvement in the ABC and DHI did not reach the level of minimum detectable change as 

reported in the literature (ABC: 22 pts (Powell and Myers, 1995), DHI: 18 pts (Jacobson and 

Newman, 1990)), the improvement was consistent with other trials of vestibular rehabilitation.33, 

95, 98, 240, 306  
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5.4.2 Within-session symptom measures 

Most of the subjects reported symptom increases during the training sessions. The dizziness VAS 

significantly increased in all sessions, and by the greatest amount compared with the other 

symptom ratings. Other measures that increased consistently during the sessions included visual 

blurring VAS and the nausea subscale of the SSQ. While the increase in symptoms may appear 

to be an unwanted and unintended side effect of the virtual reality based therapy intervention, it 

is a common occurrence in individuals who perform gaze stabilization, dynamic gait and static 

standing balance exercises that comprise standard vestibular rehabilitation interventions.316  In 

fact, vestibular rehabilitation therapists routinely instruct their clients that an increase in 

symptoms is to be expected.103, 316  

5.4.3 Long-term habituation  

Analysis of the change in SSQ scores, as well as the post-session VAS and SSQ scores allowed 

us to examine how the subjects habituated to the intervention over the course of the 6 week 

intervention.  The amount of increase in the reported nausea, oculomotor discomfort, and 

disorientation symptoms as reported on the SSQ was reduced from session 1 to session 6. A 

significant reduction in dizziness VAS from 2.2 to 0.5 and in visual blurring from 1.1 to 0.2 

suggests that subjects were habituating to the virtual reality based therapy stimuli. Furthermore, 

all of the SSQ subscales measured at the end of the session decreased from session one to session 

6. It is important to note that during this period, the intensity of the intervention progressed in 

terms of the simulated optic flow velocity perceived by the subjects during the locomotion 

through the store. 
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5.4.4 Relationship between initial self-report measures and within-treatment session 

symptom measures  

The correlations between the initial DHI, SCQ-A and SCQ-B initial scores and the amount of 

change in VAS and SSQ during treatment sessions indicated that people with high dizziness 

handicap and space and motion discomfort also report greater problems with visual blurring. 

Jacob et al (Jacob et al 1993) suggested that the SCQ-A was a possible marker for vestibular 

dysfunction.80  Higher scores (worse) on the SCQ-A and SCQ-B indicate that persons have 

greater discomfort or anxiety performing normal activities such as shopping, riding in a car or 

bus, in movie theaters, on escalators or elevators, and in the shower.  Having greater difficulty 

with the above functional activities was related to our subject’s reported headaches, dizziness 

and visual blurring, possibly suggesting that when individuals have symptoms, they are more 

functionally limited in their activities and ability to participate. 

The current study extends the work of previous groups that have used technology-based 

visual stimuli for habituation of dizziness symptoms. One of the first studies delivered 

optokinetic stimulation in horizontal and vertical directions to individuals who had unilateral and 

bilateral vestibular disease.82  The subjects were no longer symptomatic after an average of 8 

sessions lasting 15 minutes, and posturography scores were improved. Viirre and Sitarz (2002) 

attempted to induce vestibulo-ocular reflex (VOR) gain adaptation in subjects with chronic 

dizziness, by having subjects search for objects within a panoramic scene displayed using a head 

mounted display (HMD).14  After 10 sessions lasting up to 30 minutes, the subjects did increase 

their VOR gain, in contrast with subjects who did not receive the intervention.  Pavlou et al. 

(2004) studied 2 groups of subjects with chronic dizziness; one group received custom vestibular 

rehabilitation and the other group received custom vestibular rehabilitation in combination with 
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exposure to moving visual displays.15 Significant improvement was demonstrated in both groups 

over the course of 8 weeks (16 sessions), but the subjects who received the additional visual-

based treatment made greater improvements, in particular with space and motion discomfort. 

More recently, Suarez et al (2006) reported on using an HMD to display panoramic images for 

optokinetic stimulation, and visuo-vestibular interaction in older subjects with balance disorders. 

At the end of the six-week, daily intervention subjects demonstrated reduced sway.317   

Several notable differences exist between the previous studies using technology-based 

habituation therapy and the current study. Foremost, rather than relying primarily on optokinetic 

stimulation, the virtual grocery environment was designed with the intent of increased subject 

interaction with the environment. To this end, the environment was based on a situation in which 

individuals with vestibular disorders commonly report increased symptoms. In fact, several 

questionnaires (Dizziness Handicap Inventory (Powell and Myers, 1995, Situational 

Characteristics Questionnaire, Jacob et al., 1993, Vestibular Activities of Daily Living, Cohen 

and Kimball, 2000) include walking in a grocery store as an item. Also, the subjects performed a 

functional task within the environment, by walking and moving their head to search for products 

that they would encounter in a real grocery store. In vestibular rehabilitation, individuals are 

encouraged to move their head during daily activities because movement is needed for 

adaptation and reweighting of the sensory signals.318  In addition, as subjects ambulated, they 

pushed on a haptic grocery cart. This served two important purposes. For one, it allowed subjects 

to control the speed of their interaction with the virtual environment. Secondly, it allowed them 

to interact with the environment in a natural way.  All of these factors would presumably 

enhance the subjects’ sense of presence, which may allow them to more effectively habituate to 

the stimuli that cause the increased symptoms.319, 320  
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5.4.5 Limitation and future work  

The study is a non-randomized cohort study that has no control group. As seen in Table 5, the 

duration of symptoms was beyond the acute stage (often greater than 6 months), and rotational 

chair abnormalities suggest that at least half of the subjects were not compensated. 

Consequently, we believe that improvements made were due to the intervention and not passage 

of time. Future work will include the comparison with conventional vestibular rehabilitation. 

Home exercises provided to the subjects by the end of each treatment session may also have 

helped in the improvement of the subjects. Examination of the type of dysfunction (peripheral, 

central or mixed) did not reveal any strong relationship between the magnitude of improvement 

and site of dysfunction, therefore, we are unable to state a relative benefit in any one type of 

diagnostic category.  

5.4.6 Conclusion  

Virtual reality based therapy (VRBT) may be a promising new intervention for individuals with 

vestibular disorders. The VRBT grocery store can be used as a habituation technique for 

individuals with vestibular and balance problems and may reduce vestibular symptoms and 

improve gait and balance.  
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Table 5: Characteristics of subjects at baseline concerning age, gender, duration of 

symptoms, and laboratory tests (oculomotor testing, positional testing, calorics testing, 

rotational chair testing, and vestibular-evoked myogenic potentials (VEMPs)) (n = 20) 

 

Age (y) 

Mean SD 

Range 

 

54 ±10 

27-70 

Gender 14 Female, 6 Male 

Duration of symptoms 

Median 

Mean SD 

Range 

 

6.5 

5 ± 4 

1-16 

Abnormal laboratory testing (n) 

Oculomotor 

Positional 

Calorics (reduced vestibular response) 

Rotational Chair (decreased gain, asymmetry) 

VEMPs 

 

2 

6 

6 

10 

9 
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Table 6: Diagnosis, localization of the affected side, and duration of symptoms 

 

ID Diagnosis  Location of 
dysfunction 

Side Duration of 
symptoms 
(months) 

1 Mal de debarquement; migraine-
related dizziness  

Mixed Right 4 

2 Vestibular neuritis; VOR asymmetry  Peripheral Right  10 
3 Posterior Canal BPPV 

cupulolithiasis  
Peripheral Left  7 

4 Vestibular Hypofunction Peripheral Left  Unknown 
5 Central suppression of vestibular 

sensitivity  
Peripheral Right  2 

6 Post traumatic balance disorder Central  4 
7 Migraine-related dizziness, possible 

Meniere's Disease 
Mixed Left  6 

8 Meniere's Disease Peripheral Right  28 
9 Diabetes complication Peripheral Left  18 
10 Migraine-related dizziness Central  1 
11 Meniere's Disease Peripheral Bilateral  1 
12 Vestibular hypofunction; migraine-

anxiety related dizziness 
Mixed Left  8 

13 Dizziness of uncertain etiology; 
anxiety; VOR asymmetry 

Central  8 

14 Migraine-anxiety related dizziness 
vestibular hypofunction 

Peripheral Right 12 

15 VOR asymmetry  Peripheral Unknown  2 
16 Peripheral vestibular hypofunction Peripheral Right  3 
17 Vestibular hypofunction; migraine-

related dizziness 
Mixed Left  9 

18 Vestibular neuritis Peripheral Left  6 
19 Superior vestibular neuritis Peripheral Right  4 
20 Unknown etiology / VOR 

asymmetry 
Peripheral  Unknown  1 

 

VOR: vestibular ocular reflex; BPPV: Benign Paroxysmal Positional Vertigo. 
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Table 7: A summary of the treatment protocol from baseline assessment to the post-

treatment follow up assessment 

 

Week 0 

Pre-treatment assessment 

Self-report measures: ABC, DHI, SCQ-A, SCQ-B 

Performance measures: FGA, DGI, gait speed, TUG, SOT 

 

Week 1 to 6 

VRBT session 1 to 6 

VAS and SSQ ratings before and after each treatment session 

SUD ratings before and after each of the 6 (4 minutes) trials 

 

Week 7 

Post-treatment assessment 

Self-report measures: ABC, DHI, SCQ-A, SCQ-B 

Performance measures: FGA, DGI, gait speed, TUG, SOT 

 

6-month follow-up 

assessment 

Self-report measures: ABC, DHI, SCQ-A, SCQ-B 

Performance measures: FGA, DGI, gait speed, TUG, SOT 

 
 
ABC: Activities-Specific Confidence scale; DHI: Dizziness Handicap Inventory; SCQ-A: 

Situational Characteristics Questionnaire part A; SCQ-B: Situational Characteristics 

Questionnaire part B; FGA: Functional Gait Assessment; DGI: Dynamic Gait Index; TUG: 

Timed Up and Go; SOT: Sensory Organization test; VAS: Visual Analog Scale for dizziness, 

headache, visual blurring, and nausea; SSQ: Simulator Sickness Questionnaire; SUD: Subjective 

Units of Discomfort. 
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Table 8: Self-report and performance measures (mean ± SD) for pre-treatment vs. post-

treatment vs. 6-month follow-up 

 

Outcome 

measure 

Pre 

 

Post 

 

6-month 

follow-up 

 

p value 

(Pre v. Post) 

p value 

(Pre v. 6-month 

follow-up) 

Self-report measures: 

ABC 66 ± 20 77 ± 19 81 ± 15 0.031 0.009 

DHI 37 ± 17 25 ± 18 25 ± 16 0.004 0.007 

SCQ part A 4 ± 3 3 ± 2 4 ± 3 NS NS 

SCQ part B 20 ± 12 13 ± 9 13 ± 9 0.014 0.027 

Performance measures: 

FGA 24 ± 6 25 ± 3 25 ± 4 NS NS 

DGI 21 ± 2 22 ± 1 22 ± 2 .03 0.02 

Gait speed 1.13 ± .17 1.14 ± .13 1.13 ± .15 NS NS 

TUG 9.0 ± 1.6 9.1 ± 1.3 9.3 ± 1.5 NS NS 

SOT 63 ± 18 68 ± 19 69 ± 17 0.012 0.007 

 

Higher scores on the Activities-specific Balance Confidence scale (ABC), Functional Gait 

Assessment (FGA), Dynamic Gait Index (DGI), gait speed, and Sensory Organization Test 

(SOT) indicate better outcomes.  Lower scores on the Dizziness Handicap Inventory (DHI), 

Timed Up and Go (TUG), and Situational Characteristics Questionnaire (SCQ) indicate better 

outcome.  
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Table 9: The Pearson correlation between the DHI, SCQ-A, and SCQ-B initial scores and amount of change in VAS and SSQ 

during treatment sessions.  Positive correlations indicate that larger increases in VAS or SSQ scores during the session were 

associated with greater DHI and SCQ scores (i.e. worse) at baseline 

  

         The average change across all  
                        6 treatment sessions 
 
DHI, SCQ-A, and  
SCQ-B Pre scores 

VAS 
Nausea 
 

VAS 
Headache 
 

VAS 
Dizziness 
 

VAS 
Visual 
Blurring 

SSQ 
Disorient-
ation 

SSQ 
Nausea 
 

SSQ 
Oculomotor 
stress 

Pearson 

correlation 

DHI  

Pre  

Pearson r .189 .449 .380 .470 .076 .073 -.080 

p-value .439 .054 .108 .042 .758 .765 .746 

SCQ-A 

Pre 

Pearson r -.041 .167 .298 .516 .114 .071 .286 

p-value .871 .508 .238 .028 .652 .778 .250 

SCQ-B 

Pre 

Pearson r  .031 .501 .332 .524 -.006 .116 -.150 

p-value .900 .029 .165 .021 .981 .636 .541 
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Figure  5-1: Two aisles are shown in the VRBT grocery store with different products complexities on the shelves. The subject 

walks inside the store and looks for products called out by the physical therapist 
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Figure  5-2: The virtual environment is interfaced to a custom-built treadmill with a maximum velocity of 1.2 m/s. A grocery 

cart at the front end of the treadmill is instrumented with load cells on the push bar to control velocity and movement within 

the environment  

  

Push bar 
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Figure  5-3: Mean ± standard deviation of the Visual Analog Scale (VAS) dizziness, nausea, headache and visual blurring pre 

and after post the  treatment session, averaged across all 6 sessions.  * The difference between pre scores and post scores was 

significant (p < 0.05) 
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Figure  5-4: Mean ± standard deviation of the change in Simulator Sickness Questionnaire (SSQ) subscales (Nausea, 

oculomotor stress, and disorientation) from before to after the treatment session. * The linear trend for the reduction in the 

magnitude of the change was significant (p < 0.05)  
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Figure  5-5: The Visual Analog Scale (VAS) post-treatment scores from session 1 to session 6. Dizziness and visual blurring 

scores lessened significantly across treatment sessions. * The non-parametric Friedman test for magnitude of the post scores 

was significant (p < 0.05) 
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Figure  5-6: The Simulator Sickness Questionnaire (SSQ) post-treatment scores from session 1 to session 6. SSQ scores lessened 

significantly across treatment sessions. * The non-parametric Friedman test for magnitude of the post scores was significant (p 

< 0.05) 
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6.0  COMPARISON OF VIRTUAL REALITY BASED THERAPY WITH 

CUSTOMIZED PHYSICAL THERAPY FOR THE TREATMENT OF VESTIBULAR 

DISORDERS 

6.1 INTRODUCTION  

Individuals with vestibular disorders usually complain of dizziness, vertigo, balance problems, 

and falls.1  Dizziness is one of the most common complaints to physicians in the United States 

responsible for over 8 million medical visits per year.47  Hannford  et al. (2005) reported that 20 

% to 30 % of the general population have complaints of dizziness.26  Among 546 falls of 

unknown origin presenting to the emergency room, 80% had symptoms of vestibular disorders 

and 40 % were complaining of vertigo.10 

In individuals with vestibular disorders, information from the vestibular system is 

unreliable and individuals can become more dependent on information from non-vestibular 

inputs, particularly vision.49, 104  Individuals may have space and motion sensitivity or discomfort 

in conditions and environments that may cause conflict among the somatosensory, visual, and 

vestibular systems.2, 48   For example, individuals may report increased symptoms such as space 

phobia, supermarket syndrome, height vertigo, and visual vertigo in visually complex 

environments.2, 4, 5, 81    Individuals report symptoms of disorientation, dizziness, and vertigo in 

moving visual environments associated with activities such as walking in crowded places while 

trying to recognize faces, walking in busy environments such as supermarkets while trying to 

find products, and driving in traffic while trying to recognize signs.81  Visual vertigo is triggered 
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by visual stimuli in specific visual environments and the individual often experiences dizziness.81  

A reduction of vestibular function in the challenging environment may lead to a mismatch 

among the sensory control systems.49  Space and motion sensitivity can be displayed as increased 

body sway in challenging conditions that cause conflict among sensory control channels.77, 78, 83, 

321 Consequences of symptoms resulting from conflict among sensory control systems in 

challenging conditions may become critical and affect quality of life and participation in daily 

life activities when the individual develops avoiding behaviors.48  

Vestibular rehabilitation is considered an accepted intervention for individuals with 

vestibular disorders.1, 66, 88, 90, 92, 96, 274   Customized vestibular rehabilitation programs consist of 

exercises to encourage sensory compensation,  vestibulo-spinal and vestibular ocular reflex 

(VOR) adaptation.88  Vestibular rehabilitation has a positive influence on symptoms and 

impairments associated with vestibular disorders including 1) improving quality of life,29, 86  2) 

reducing vertigo and dizziness symptoms,32, 42  3) improving balance and physical functioning,89  

4) reducing level of disability associated with dizziness,34 5) reducing anxiety symptoms,94 and 

6) reducing the risk of falls and improving postural control during standing and walking leading 

to improvements in self-care, occupational, and home management skills.12, 29, 34, 44, 89-92, 94-97  

Part of the intervention for people with vestibular disorders is to practice visual-vestibular 

and/or somatosensory-vestibular alterations and manipulations.11, 12  Sensory manipulation 

generally starts gradually with one sensory modality, then multiple alterations are advised.  

Visual information can be altered by asking subjects to perform exercises in busy environments 

or visually degraded environments.11-13   The difficulty of the training can be increased gradually 

by adding vestibular stimulation such as incorporating head movements.   Vestibular 

rehabilitation that includes repeated head movements with the exposure to visually complex 
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environments aggravates dizziness with the intention of encouraging central tuning and 

recalibration.65  Vestibular rehabilitation can be considered a form of behavioral intervention that 

teaches the individual to know the causes of dizziness and also to control and cope 

psychologically and systemically with the aggravating factors.65-67  

Behavioral interventions including habituation exercises using virtual reality based 

therapy (VRBT) technology have been used to treat individuals with anxiety disorders such as 

fear of flying, panic disorder, social phobia, and post-traumatic stress disorders.270, 322  Anxiety 

and psychiatric disorders are common among individuals with vestibular disorders; likewise, 

vestibular disorders are common among individuals with anxiety and psychiatric disorders.49, 55  

Individuals with both anxiety and vestibular disorders often describe dizziness as their chief 

complaint.55  Dizziness and anxiety can exacerbate each other.62  Consequently, the use of virtual 

reality based therapy for the treatment of vestibular disorders may provide an effective means of 

addressing both symptoms of dizziness and anxiety.   

Habituation exercises have been used to treat individuals with vestibular disorders.132  

Visually provocative habituation exercises have been shown to be useful during vestibular 

rehabilitation.14, 15, 163   Virtual reality based therapy is one emerging technology that can be used 

in vestibular rehabilitation to provide habituation exercises for individuals with vestibular 

disorders who become symptomatic in complex visual environments.285, 305, 323   Virtual reality 

based therapy may be used to provide graded exercises in visually complex environments to train 

the brain to decrease the response to visual and vestibular stimuli.285, 305  Using virtual reality 

based therapy in vestibular rehabilitation may be a successful way to facilitate desensitization of 

symptoms resulting from sensory conflict among visual, vestibular, and somatosensory systems. 

Provoking stimuli in the virtual world either through visual stimuli or visual-vestibular conflict 



134 

may train the brain to correctly up-weight and down- weight sensory inputs for sensory 

control.285, 305   

The purpose of this study is to examine if there is a difference in self report and 

performance measures between customized physical therapy and virtual reality based therapy in 

persons with vestibular disorders after a 6 week intervention program and at 6 months. 

6.2 METHODS 

6.2.1 Design  

The protocol was approved by the University of Pittsburgh Institutional Review Board.  A 

clinical trial was designed to compare virtual reality based therapy (VRBT) with the standard of 

care customized physical therapy (PT) in individuals with vestibular disorders, using a 

nonequivalent two-group pretest-posttest design.324  For the PT intervention, subjects were 

treated for 6 treatment sessions (one session per week) by a physical therapist. For the VRBT 

intervention, subjects were treated for 6 treatment sessions (one session per week) using a virtual 

grocery store displayed in an immersive CAVE-like environment. Both interventions also 

included prescription of home exercises. 

6.2.2 Subjects  

The Tstudy consisted of 38 subjects with peripheral, central, or mixed vestibular disorders. 

Inclusion criteria were complaints of dizziness, imbalance, and abnormal objective laboratory 
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testing (caloric testing, rotational chair testing, vestibular evoked myogenic testing, spontaneous 

nystagmus, and/or posturography). Exclusion criteria included the following: a history of 

neurologic disease, use of assistive devices for ambulation, a total hip or knee replacement, and 

severe arthritis.  Subjects were recruited from the vestibular disorders clinic at the University of 

Pittsburgh after examination by a neurotologist. All subjects provided informed consent and 

agreed to participate in the study. The benefits and risks of the study were explained to 

participants during the recruitment period. The allocation of the subjects to the two intervention 

groups occurred in blocks of approximately 10 subjects over a four year period. 

6.2.3 Intervention  

6.2.3.1 Customized Physical Therapy (PT) 

Subjects had six treatment sessions over the course of 6 weeks, a frequency that has been 

shown to improve outcomes in individuals with vestibular disorders.90-93  An initial evaluation of 

1 hour duration was followed by five (check) follow-up sessions lasting 45-60 min. (Describe the 

initial evaluation) Based on impairments and functional limitations discovered during the initial 

evaluation, the PT program was designed to address: 1) gaze stability in activities that require 

head movements such as shopping or walking in busy places; 2) space and motion sensitivity, 3) 

dizziness associated with head movements; and 4) postural instability and disequilibrium. 

Subjects were provided with home exercises for their dizziness and balance and were asked to 

maintain a daily exercise diary. Two physical therapists specialized in vestibular rehabilitation 

(the first therapist is a DPT, NCS with 20 years experience, 10 years in vestibular rehabilitation; 

the second therapist is a DPT with 8 years experience, 3 years in vestibular rehabilitation) 

performed the intervention. 



136 

6.2.3.2 Virtual reality based therapy (VRBT) 

Subjects had six treatment sessions in the VRBT grocery store over the course of 6 

weeks.  The treatment session lasted for one hour and included six trials of habituation training; 

each trial was 4 minutes duration.  The treatment session was conducted in the Medical Virtual 

reality based therapy Facility at the University of Pittsburgh (see details below). Two physical 

therapists administered the intervention (the first therapist is a DPT, NCS with 35 years 

experience as a PT, 27 years experience in vestibular rehabilitation; the second therapist is a PT 

with  12 years experience as a PT, 10 years in  vestibular rehabilitation). Over the 6 week period, 

subjects were exposed to more visually complex aisles depending on the subject’s tolerance. The 

therapists asked the subject to locate products on the shelves as they ambulated, and the subjects 

responded verbally when they located the product.  

The subjects’ tolerance to the virtual environments was assessed by recording their vital 

signs (blood pressure and pulse rate) and their Subjective Units of Discomfort (SUD, 0-100 

range) before and after each trial.258  The investigators used the SUDs score to determine if 

subjects should move to a more complex or less complex aisle in the VRBT. The session 

terminated if the SUD score indicated that the subject was highly symptomatic. Scores of 0 

indicate no discomfort and scores of 100 indicate maximum discomfort. Subjects were given 

home exercises for their dizziness and balance and asked to keep a daily exercise diary. 

6.2.3.3 Medical virtual reality based therapy center 

The virtual environment consists of a grocery store modeled in 3D Studio Max and 

imported into Unreal Tournament (UT2004), adapted for multi-screen environments with the 

CaveUT modification.304  The store scene is displayed on 3 screens that surround the subject in a 

full-field CAVE-like environment (Figure 5-1). The store contains 16 aisles (20 m long) and has 



137 

8 levels of visual complexity that depend on the spatial frequency and contrast of the product 

textures. The aisles increase in complexity from aisle one to aisle sixteen.  

Three 2.4 X 1.8 m (vertical X horizontal) back-projected screens were used. The side 

screens make an included angle of 110º with the front screen. The front screen is 1.5 m from the 

user, and the opening of the structure at the location of the subject is approximately 2.9 m from 

the front screen. The images are displayed using Epson 810p PowerLite LCD monoscopic 

projectors, with a pixel resolution of 1024 X 768 for each screen. Each projector is connected to 

an NVIDIA GeForce4 graphics processing unit (64 MB texture memory) installed in a separate 

PC (Pentium, 2.2 GHz, 512 MB RAM) running Windows XP. The movement of the images on 

the three PCs is synchronized and controlled by a server via a local area network. The update rate 

of the images is consistently at least 30 frames per second.  

The virtual environment is interfaced to a custom-built treadmill, 2.0 m long and 1.2 m 

wide with a maximum velocity of 1.2 m/s. At the front end of the treadmill is a grocery cart that 

is instrumented with two load cells on the push bar. The velocity of the treadmill and movement 

within the environment is controlled by the force applied to the cart.305  Turns in the virtual 

grocery store were made by pushing harder on one side of the push-bar compared to the other. 

6.2.4 Outcome measures 

Subjects were examined one week before, one week after, and 6 months after the intervention 

using self-report and performance-based measures of functional balance by a physical therapist 

blinded to treatment groups. 
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6.2.4.1 Self-report measures 

The Activities-specific Balance Confidence scale (ABC) was used to record the 

individual’s perceived level of balance confidence during 16 daily living activities.240   

Responses ranged from 0% to 100%; the lowest score indicated low confidence in balance and 

the highest score indicated high level of confidence.240  The Dizziness Handicap Inventory (DHI) 

recorded the level of disability and handicap resulting from dizziness.33  The DHI score ranged 

between 0% to 100% with the lowest score indicating low disability resulting from dizziness and 

the highest score indicating a high level of disability.  The sum score of all DHI subscales was 

reported. For the Situational Characteristics Questionnaire (SCQ), subjects rated situations that 

elicited anxiety or discomfort for the subject in real life situations.80 The SCQ (part A) score 

ranged between 0 and 30 with the highest scores (worse) on the SCQ-A indicate that persons 

have greater discomfort or anxiety performing normal activities such as shopping, riding in a car 

or bus, in movie theaters, on escalators or elevators, and in the shower. The SCQ (part A) has 

shown its ability to distinguish individuals with vestibular dysfunction among individuals 

complaining of anxiety disorders.80, 246  The SCQ (part B) ranged between 0 and 60 with the 

highest scores (worse) on the SCQ-B indicate that persons have greater discomfort or anxiety 

associated with vestibular symptoms. The SCQ-B has shown its ability to identify people with 

vestibular disorders.246 

6.2.4.2 Performance measures 

The Dynamic Gait Index (DGI) examined a person’s ability to perform various gait 

activities such as walking with head turns and avoiding obstacles.247  The scale has 8 items; each 

item can be scored from 0 to 3 (0 means severe impairment, 3 means normal ability). The 

optimal score on the DGI is 24 and below 19 the subject has a high risk of falling.248, 314  The 
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Functional Gait Assessment (FGA) measured balance control during walking.250  The FGA has 

10 walking tasks.  The FGA total score is 30 with each item scored using an ordinal scale (0-3, 0 

= severe impairment, 3 = normal performance).  Scores of 22 or less have been related to fall risk 

in older adults.252  To record gait speed, subjects walked 6.1 meters at their comfortable speed 5 

times, with their mean speed calculated. Gait speed has shown to be related to falls and 

functional abilities.254, 308  The Timed Up and Go (TUG) test required subjects to rise from a 

chair, walk three meters, turn around, then walk back to the chair and sit.296   Subjects were 

timed during the task; persons with vestibular disorders who score 13.5 seconds or greater are at 

high risk of falling.255  The Sensory Organization Test (SOT) was used to record postural sway 

in six conditions related to various sensory inputs important for balance (vestibular, vision, and 

somatosensory input).192  The composite SOT score was used in the analysis. 

6.2.5 Statistical analysis  

A 2 × 3 mixed analysis of variance was performed on self-report and performance measures as a 

function of time and intervention type. The within-subjects independent variable was assessment 

time with 3 levels (pre, post, and 6-month follow up). The between subjects independent variable 

was the intervention type with 2 levels (VRBT, PT).  The Greenhouse-Geisser correction was 

applied in all cases.  Post-hoc testing was performed using a Bonferroni correction with 3 

planned comparisons (pre vs. post, pre vs. 6-month follow up, and post vs. 6-month follow up) 

and α = 0.017. Intention to treat analysis was used for subjects with missing data at the 6 months 

follow up (4 subjects did not return in VRBT group, 2 subjects did not return in PT group). The 

assumption of normality was met for all self-report and performance measures except for the 

DGI and SOT.  For the measures that were not normally distributed, the Mann-Whitney U test 
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was used to compare intervention groups at each assessment time, and the Wilcoxon signed 

ranks test was used to test for the significant differences between assessment times (average of 

both intervention groups). 

6.3 RESULTS 

6.3.1 Participants  

The demographic information of all subjects including age, gender, duration of symptoms, and 

laboratory tests for individuals [oculomotor testing, positional testing, calorics testing, rotational 

chair testing, and vestibular-evoked myogenic potentials (VEMPs)] are presented in Table 10 for 

both groups. There were no significant differences between groups in demographic 

characteristics, laboratory tests, location of dysfunction, and duration of symptoms. 

6.3.2 Self-report and performance measures 

Table 11 provides the differences between study groups in all self-report and performance 

measures at baseline. There were no significant differences between two groups in all self-report 

and performance measures at baseline (p > 0.05).  A t-test was also used to compare groups at 

end of therapy and at 6-moth follow up. There was no significant differences between the two 

groups in all self-report and performance measures (p > 0.05) at either time point. For the DGI 

and SOT, Mann-Whitney U test was used to compare groups at end of therapy and at 6-month 

follow up.  There was no significant differences between the two groups (p > 0.05) at either time 
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point for the DGI, there was a significant difference between the two groups (p = 0.03) only at 

end of therapy for the SOT.    

There were no significant differences on self-report and performance measures between 

intervention types averaged across assessment times, p > .05.  There was a significant difference 

on self-report and performance measures due to time, averaged across intervention types, p < .05, 

effect size eta-squared (η2) range (.1 - .4), Table 12.     

 In order to determine the pattern of differences on the self-report and performance 

measures depending on assessment time, post hoc pairwise comparisons were performed using 

the Bonferroni adjustment.  Table 13 shows significant improvement in all self-report measures,  

except SCQ-A, after the intervention (p < .001). At the 6-month follow up, subjects maintained 

their improvement in these self-report measures, p < .001. For the performance measures, 

significant improvements were observed on gait speed (p = .02), but not for the FGA and TUG 

(Table 14). For all self-report and performance measures, there was no significant differences 

between post and 6-month follow up.         

For the measures that were not normally distributed (DGI, SOT), the Mann-Whitney U 

test was used to compare intervention groups at each assessment times, there were no significant 

differences on DGI and SOT between intervention types, p > .05. The Wilcoxon signed ranks 

test was used to test for the significant differences among assessment times on DGI and SOT; 

significant improvements were observed on the DGI (p = .001) and the SOT (p = .002) average 

score, and subjects preserved their recovery on the DGI and SOT at the 6 month follow up 

(Table 15). 
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6.4 DISCUSSION  

In this study we examined the difference in self report and performance measures between 

customized physical therapy and virtual reality based therapy in persons with vestibular 

disorders.  Groups were similar at baseline in all self-report and performance measures. Both 

groups improved significantly in 3 of the 4 self-report measures, in 3 of the 5 performance 

measures, and maintained these improvements 6 months after the intervention ended.  Our study 

findings suggest that using VRBT in vestibular rehabilitation produces equivalent outcomes for 

individuals with vestibular disorders when compared with the clinically accepted physical 

therapy.  

The feedback from the cart provided important information to the patient related to 

direction of navigation and speed inside the virtual environment which may have enhanced the 

level of immersion and the feeling of presence inside the environment, but may not necessarily 

improved gait speed.  Subjects in the customized physical therapy group received different gait 

exercises which may have improved gait speed compared with the VRBT group.  The minimal 

clinical important difference for gait speed is 0.1 m/s, the number of subjects who improved by a 

clinically significant amount is higher in the customized physical therapy group (8 subjects) 

compared to the VRBT group (4 subjects).  Physical therapists in the customized physical 

therapy group may have had more chances to modify the difficulty of the training and to 

customize exercises every session based upon the patients’ conversations within the session. In 

the VRBT, difficulty of the training was based on the patient’s level of discomfort (0-100) and 

the physical therapist only controlled the amount of visual stimuli from the easy aisle to a more 

complex aisle (1 to 16).     
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The current study extends the work of previous studies that examined the use of 

technology-based visual stimuli for vestibular rehabilitation. Previous studies delivered 

optokinetic stimulation in horizontal and vertical directions to individuals who had unilateral and 

bilateral vestibular disease.14, 82  The subjects were no longer symptomatic after an average of 8 

sessions lasting 15 minutes, and subjects increased VOR gain, and posturography scores were 

improved.14, 82   Suarez et al (2006) reported on using head mounted display that provides 

optokinetic stimulation, and visuo-vestibular interaction in older subjects with balance disorders. 

At the end of the six-week, daily intervention subjects demonstrated reduced sway.317  Several 

notable differences exist between the previous studies and the current study.  The VRBT was 

designed to increase subject interaction with the grocery store environment in which individuals 

commonly report increased symptoms rather than just relying on optokinetic stimulation. Also, 

subjects performed a functional task within the environment, by walking and moving their head 

to search for products that they would encounter in a real grocery store. In vestibular 

rehabilitation, individuals are encouraged to move their head during daily activities because 

movement is needed for adaptation and reweighting of the sensory signals.319, 320  

Vestibular rehabilitation using the VRBT included repeated head movements with the 

exposure to visually complex environments that aggravate vestibular symptoms.  Vestibular 

symptoms aggravated mostly by head, body, or the surrounding motion is considered dynamic 

vestibular imbalance.106  Using VRBT, visual information is critical for recovery from the 

dynamic vestibular imbalance. Vestibular ocular reflex gain does not improve without visual 

inputs.106      

The mechanism of habituation can explain the success of vestibular rehabilitation for 

individuals in the VRBT and customized physical therapy groups. During habituation, graded 
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exercises are used to train the brain and to decrease the response to the visual, vestibular, and 

somatosensory stimuli, and to facilitate desensitization of symptoms resulting from sensory 

conflict among visual, vestibular, and somatosensory systems. The central nervous system is 

trained to correctly up-weight and down-weight sensory inputs to improve postural control.132   

Short term compensation occurs after a lesion in the vestibular system and leads to reductions of 

symptoms like nausea, unsteadiness, and motion sensitivity. Chronic dizziness occurs when short 

term compensation is disrupted because of the severity of the lesion or impairment in the CNS.1, 

95, 133   

Vestibular rehabilitation in both groups provided long term improvements for vestibular 

disorders. Vestibular adaptation exercises to the VOR during the movement of the image on the 

retina combining head movement and visual inputs to the CNS can cause long term VOR 

adaptation.142-147   Vestibular habituation to provoking stimuli also leads to long term 

improvement.15   The provoking stimuli of either visual or visual-vestibular conflict are repeated 

at regular intervals aiming to raise the threshold at which symptoms are aggravated. The general 

role for vestibular habituation to such stimuli, in both the VRBT and the PT groups, is that 

stimuli are provided slowly and the increases in the intensity of the stimuli should be according 

to the individual’s tolerance.11, 273  

Pavlou et al. (2004) studied 2 groups of subjects with chronic unilateral vestibular 

disorders; one group received customized physical therapy and the other group received 

customized physical therapy in combination with exposure to moving visual displays.15  Both 

groups demonstrated significant improvements over the course of 8 weeks (16 visits), but 

subjects who received the additional visual-based treatment had greater improvements, in 

particular with space and motion discomfort.  The combination of PT and VRBT in Pavlou study 
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may explain the differences in the findings.15  In our study, subjects in the VRBT group did not 

receive customized physical therapy. The combination of both VRBT and PT may provide better 

results than just PT or VRBT alone. Dosage of intervention was different in both studies with 

one session/ week for 6 weeks in our study and 2 session/ week for 8 weeks in Pavlou et al study.  

Subject criteria were different in both studies. Pavlou et al included only subjects with peripheral 

vestibular loss (homogenous sample) and our study included subjects with peripheral, central, 

and mixed vestibular disorders (heterogeneous sample). Secondary analysis also compared 

subjects with high space and motion sensitivity reported in SCQ at baseline in both groups, no 

significant differences were found between study groups.      

Vestibular rehabilitation using the VRBT considers that the vestibular system is context-

specific plastic and the adaptation of the VOR depends on the frequency, direction, and 

environment of habituation.142-147  The success of vestibular habituation using VRBT depends on 

providing the appropriate error signal that drives vestibular adaptation. The error signals using 

the VRBT were provided through visual stimulation and visual flow signals to the CNS.15, 82  

Successful vestibular rehabilitation evaluates the sensory weighting for orientation in space and 

addresses performing exercises in altered visual/ somatosensory/ vestibular environments.90, 148  

The brain has the ability to weight and reweight the person’s reliance on sensory modalities for 

orientation and postural control.149   Virtual reality based therapy (VRBT) is one emerging 

technology that can be used in vestibular rehabilitation that may help individuals with vestibular 

disorders to lessen hypersensitivity to visual and motion stimuli, reduce the avoidance of 

activities, and progress self-confidence.15 However, currently the cost and effort of using VRBT 

is high compared to PT, so there is no advantage of using VRBT since the results were similar 

between the VRBT and PT groups. 
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6.4.1 Limitations and future work 

This is a nonrandomized study, by including a heterogeneous sample in the efficacy study, it 

may have influenced the results. However, examination of the type of dysfunction (peripheral, 

central or mixed) did not reveal any strong relationship between the magnitude of improvement 

and site of dysfunction, therefore, we are unable to state a relative benefit in any one type of 

diagnostic category. Subjects in the VRBT group did not receive customized physical therapy in 

the clinic, future research should consider the combination of both the VRBT and PT 

interventions and compare the three groups (VRBT group, PT group, and VRBT + PT group). 

6.4.2 Conclusion 

The use of virtual reality based therapy appears to improve symptoms for individuals with 

vestibular disorders at least as much as customized physical therapy.  The VRBT can be used as 

a habituation technique for individuals with vestibular and balance disorders and provides similar 

effects to customized physical therapy; therefore, the VRBT may be used as a tool in vestibular 

rehabilitation. However, currently the cost and effort of using VRBT is high compared to PT, so 

there is no advantage of using VRBT since the results were the similar between the VRBT and 

PT groups. 
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Table 10: Characteristics and demographics of subjects in the virtual reality based therapy 

group (VRBT) and the customized physical therapy group (PT) at baseline concerning age, 

gender, duration of symptoms, laboratory tests, location and side of dysfunction (n = 38) 

  

  VRBT group PT group P 
Age (years)    
Mean ± SD 53.7 ± 9 59.8 ± 13 .57 
Range 27 – 70 30 - 78  
Gender     
Female 15 16 .28 
Male 5 2  
Duration of symptoms (months)    
Mean ± SD 5 ± 4 7 ± 5 .4 
Median 4.5 5.5  
Range 1-16 .25-21  
Abnormal laboratory testing (n)    
Oculomotor 2 0 .16 
Positional 6 9 .22 
Calorics (reduced vestibular response) 6 9 .35 
Rotational Chair (decreased gain, asymmetry) 10 5 .17 
VEMPs 7 9 .12 
Location of dysfunction    
Peripheral 12 12 .94 
Central 3 2  
Mixed 4 3  
Unknown  1 1  
Side   .67 
Right 7 9  
Left 
Bilateral 

7 
1 

0 
2 

 
 

Unable to determine side of lesion  2 5  
 

VEMP: vestibular-evoked myogenic potentials.  
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Table 11: Self-report and performance measures (mean ± SD) for subjects in the virtual 

reality based therapy (VRBT) and the customized physical therapy groups (PT) at baseline 

 

Outcome 
measures 

Pre (VRBT) Pre (PT) p value 
t-test  

 

ABC 66 ± 20 67 ± 30 .91 
DHI 38 ± 17 37 ± 26 .91 
SCQ part A 4 ± 3 4 ± 3 .87 
SCQ part B 20 ± 13 20 ± 14 .98 
FGA 24 ± 7 21 ± 7 .10 
DGI 21 ± 2 19 ± 5 .16 
Gait speed 1.13 ± .2 1.10 ± .2 .25 
TUG 9 ± 1.6 10.5 ± 3.6 .10 
SOT 63 ± 18 55 ± 20 .20 

 

Higher scores on the Activities-specific Balance Confidence scale (ABC), Functional Gait 

Assessment (FGA), Dynamic Gait Index (DGI), gait speed, and Sensory Organization Test 

(SOT) indicate better outcomes at baseline.  Lower scores on the Dizziness Handicap Inventory 

(DHI), Timed Up and Go (TUG), and Situational Characteristics Questionnaire (SCQ) indicate 

better outcomes at baseline. 

  



149 

Table 12: Using repeated ANOVA, the pattern of difference on self-report and 

performance measures among assessment times (interaction effect); group effect with 2 

levels (VRBT, customized physical therapy); assessment time effect with 3 levels (pre, post, 

6 month follow up) 

 

Outcome  
measures Group 

Assessment 
time 

 

Group x 
Assessment 

time 
Self-report measures: 

ABC p value 0.92 .000 .42 
DHI  0.75 .000 .90 

SCQ-A  0.60 .33 .39 
SCQ-B  0.83 .000 .77 

Performance measures: 
FGA P value 0.11 .048 .48 

Gait speed  0.60 .007 .25 
TUG  0.82 .15 .08 

 

Higher scores on the Activities-specific Balance Confidence scale (ABC), Functional Gait 

Assessment (FGA), and gait speed indicate better outcomes.  Lower scores on the Dizziness 

Handicap Inventory (DHI), Timed Up and Go (TUG), and Situational Characteristics 

Questionnaire (SCQ) indicate better outcomes.  
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Table 13: Self-report measures (mean ± SD) for subjects in the virtual reality based 

therapy group (VRBT) and the customized physical therapy group (PT) at pre-treatment 

vs. post-treatment vs. 6-month follow-up with the effect size (ES), (n=38) 

 

Outcome 
 measures 

Group Pre Post 6-month 
Follow-up 

p value 
 (Pre v. 
Post) 

 p value 
(Pre v.  

6-months)  

P value 
 (Post v.  

6-month) 

ES 

Self-report measures 
ABC VRBT 66 ± 20 75 ± 20 81 ± 16     
 PT 67 ± 30 79 ± 28 78 ± 29     
 Total 66 ± 25 77 ± 24 80 ± 23 .000 .000 .24 .33 
DHI VRBT 38 ± 17 26 ± 19 25 ± 17     
 PT 37 ± 26 23 ± 23 22 ± 22     
 Total 37 ± 21 25 ± 21 24 ± 19 .000 .000 .95 .3 
SCQ part A VRBT 4 ± 3 3 ± 2 4 ± 3     
 PT 4 ± 3 3 ± 3 3 ± 3     
 Total 4 ± 3 3 ± 2 3 ± 3 .65 .60 .98 .05 
SCQ part B VRBT 20 ± 13 13 ± 10 13 ± 10     
 PT 20 ± 14 14 ± 15 14 ± 15     
 Total 20 ± 13 14 ± 12 14 ± 12 .000 .001 .86 .3 

 

Higher scores on the Activities-specific Balance Confidence scale (ABC) indicate better 

outcomes.  Lower scores on the Dizziness Handicap Inventory (DHI) and Situational 

Characteristics Questionnaire (SCQ) indicate better outcomes. 
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Table 14: Performance measures (mean ± SD) for subjects in the virtual reality based 

therapy group (VRBT) and the customized physical therapy group (PT) for pre-treatment 

vs. post-treatment vs. 6-month follow-up, with the effect size (ES), (n=38) 

 

Outcome  
Measures 

Group Pre Post 6 month 
Follow-up 

p value 
 (Pre v. 
Post) 

p value 
 (Pre v.  

6-month) 

p value 
(post v. 

6-month) 

ES 

Performance measures 
FGA  VRBT 24 ± 7 25 ± 3 25 ± 4     
  PT 21 ± 7 24 ± 6 23 ± 7     
 Total  22 ± 7 24 ± 5 24 ± 6  .07 .27 .94 .1 
Gait speed VRBT 1.13 ± .2 1.14 ± .1 1.12 ± .1     
  PT 1.10 ± .2 1.15 ± .3 1.10 ± .2     
 Total  1.10 ± .2 1.15 ± .2 1.11 ± .2 .02 .40 .11 .1 
TUG VRBT 9 ± 1.6 9.2 ± 1.3 9.3 ± 1.5     
  PT 10.5 ± 3.6 9.5 ± 3.5 9.9 ± 3.2     
 Total  9.7 ± 2.8 9.3 ± 2.6 9.6 ± 2.4 .20 .93 .19 .06 

 

Higher scores on the Functional Gait Assessment (FGA), Dynamic Gait Index (DGI), gait speed, 

and Sensory Organization Test (SOT) indicate better outcomes.  Lower scores on the Timed Up 

and Go (TUG) indicate better outcomes. 
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Table 15: Non-parametric statistics for Dynamic Gait Index (DGI) and Sensory 

Organization Test (SOT), mean ± SD, for subjects in the virtual reality based therapy 

group (VRBT) and the customized physical therapy group (PT) for pre-treatment vs. post-

treatment vs. 6-month follow up 

 

Outcome  
measures 

Group pre post 6 month 
Follow-

up 

p value 
 (Pre v. 
Post) 

p value 
 (Pre v.  

6-month) 

p value 
(post v. 

6-month) 

DGI 
  

VRBT 21 ± 2 22 ± 2 22 ± 2    
PT 19 ± 5 21 ± 4 20 ± 6    
Total  20 ± 4 21 ± 3 21 ± 4 .001 .001 .52 

SOT 
  

VRBT 63 ± 18 68 ± 19 69 ± 17    
PT 55 ± 20 57 ± 24 62 ± 20    
Total  60 ± 19 62 ± 22 66 ± 19 .002 .000 .29 
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7.0  RELIABILITY AND VALIDITY OF THE BALANCE REHABILITATION UNIT 

ASSESSMENT MODULE 

7.1 INTRODUCTION 

Falling is a risk factor associated with vestibular disorders that can impact quality of life (QoL) 

and reduce participation in daily life activities including physical and psychological aspects.29, 31  

Vestibular disorders may be the main intrinsic factor leading to incidents of falling among the 

elderly; among 546 incidents of falling that resulted in a visit to an emergency department, 80 % 

had vestibular impairments and 40 % were complaining of vertigo.10  The incidence of falls 

among individuals with bilateral vestibular loss (51%) is significantly higher than the incidence 

of falls in the general population (25%) in people between 30-80 years of age.29  

 Aging is an important factor that influences postural control.22, 25, 222-226, 325-332  Falls rates 

among elderly people are at least 42% per year, and considered the seventh most frequent cause 

of death in people over 60.23, 333  The American and British Geriatric Society and American 

Academy of Orthopedic Surgery guidelines for prevention of falls in the elderly have described 

many risk factors for falls associated with aging including: decreased sensory function,  visual 

problems, vestibular problems, use of assistive devices, and history of falls.25, 84, 85, 213          

Measuring sensory control during standing may help to investigate age and vestibular 

disease effect on balance.25, 227, 228   Quiet stance is typically associated with small amounts of 
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sway that assist the body in maintaining equilibrium.18, 19  Center of pressure (COP) sway 

magnitude is dependent on the following conditions: 1) exposure to accurate, inaccurate or 

absent visual information 190, 191, 194,  2) exposure to different support surfaces that provide 

accurate,  inaccurate, or absent somatosensory information 3, 186, 187, 195, 197,  and 3) intact or 

disrupted vestibular sensation.20, 198, 207, 233, 334   According to the sensory weighting model of 

postural control, sensory information for balance and orientation are not weighted independently, 

and the CNS takes into account the task/environment characteristics for orientation and postural 

control.190  The CNS has the ability to resolve sensory conflict among visual, vestibular, and 

somatosensory systems that may happen in altered sensory environments.    

Nashner et al. studied sensory organization and body sway in six different conditions that 

investigated the effect of presence/absence and accurate/inaccurate sensory information from 

vision, somatosensation, and vestibular systems.297 Condition 1 examined how the 3 systems 

(vision, vestibular, and somatosensory) contributed to balance control. Conditions 2 and 3 

examined how absent or inaccurate visual feedback information may influence balance control. 

Condition 4 examined how inaccurate somatosensory information influences balance. Conditions 

5 and 6 examined how inaccurate somatosensory plus the absence or inaccuracy of visual 

feedback may influence postural control.189 Interrupting sensory information from the legs 

among healthy individuals increased COP sway. Intact vestibular information assists subjects to 

maintain balance when somatosensory or visual information are disrupted. When tested during 

conditions 5 and 6, where information from both vision and somatosensory is reduced or made 

inaccurate, individuals with vestibular disorders, had increased COP sway and experienced 

sudden falls.232  
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Measuring postural control during standing has been investigated using low and high tech 

methods. Shumway-Cook and Horak (1986) described the use of a sensory conflict dome and 

foam to provide visual sway referenced and inaccurate somatosensory feedback. The foam 

provides destabilization in conditions 4, 5, and 6;  the dome provides visual vestibular conflict in 

conditions 3 and 6. Sway is observed and subjectively quantified on a scale 1 to 4 (1= minimal 

sway, 2= mild sway, 3= moderate sway, 4= fall).199  The study suggested that the test can assist 

clinicians to identify patterns of instability, and that the test does not provide a comprehensive 

approach to balance assessment.    

Methods of quantifying sway have been developed using computerized dynamic 

posturography such as the Equitest (Neurocom, Inc). The Sensory Organization Test of the 

Equitest is used to measure postural control under various standing conditions. The SOT utilizes 

a tilting floor and moving walls to provide inaccurate somatosensory and visual sway referenced 

feedback during standing. Tilting of the floor provides sensory destabilization in the sagittal 

plane resulting in measured COP sway in the antero-posterior (AP) direction. The movement of 

the walls is also in the sagittal plane. However, studies show that difficulty controlling balance in 

the mediolateral (ML) direction is associated with the history of falls, and can be predictive of 

falls in the future among elderly people.335, 336       

The difference between the use of foam versus use of tilting floor to provide inaccurate 

somatosensory feedback has been studied.  Allum et al (2002) compared the amount of sway 

associated with standing on foam with eyes open and closed, with standing on a platform tilting 

in the AP or mediolateral ML direction with eyes open and closed.  During platform AP sway-

referencing, sway velocity in the ML direction was reduced in the 2 - 5 Hz range compared with 

the platform ML sway-referencing and the foam. Sway velocity in the AP direction increased up 
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to 1 Hz compared with the foam.  During the platform ML sway-referencing, ML sway velocity 

was similar to ML sway velocity on the foam but higher than sway velocity on the platform AP 

sway-referencing. The study concluded that 1) the use of the foam is a more complex balance 

task than the platform AP sway-referencing, and 2) while standing on foam, subjects must 

coordinate ML and AP sway simultaneously.201      

The recently developed Balance Rehabilitation Unit (BRU, Medicaa Balance for life, 

Interacoustics) utilizes a head mounted display and foam as part of the sensory organization 

assessment SOT.317, 337-339  However, the psychometric properties of the BRU need to be 

established. The aims of this study include: 1) to examine the test-retest reliability of the BRU in 

young healthy, older healthy, and individuals with vestibular disorders, 2) to examine the 

concurrent validity of the BRU compared to the SOT, and 3) to examine age and disease effects 

on balance performance using the BRU (discriminative validity). 

7.2 METHODS 

7.2.1 Design 

The study is an experimental-cross sectional design.  Each subject was tested twice on the BRU 

and one time on the SOT during the same visit.  Subjects were given a 15 minute break after 

each test on the BRU and SOT. To minimize the "order effect" bias, the order of testing of the 

two devices was changed with every other subject. For both devices, every subject was tested in 

6 conditions and had 3 trials per condition, with 20 second trials. 



157 

7.2.2 Subjects 

The study included 90 subjects; 30 subjects with vestibular disorders between the age of 18 to 85 

who were referred by a neurotologist; 30 young healthy controls between the age of 18 and 50; 

and 30 older healthy controls between the age of 60 and 85. A power analysis based on finding 

differences in sway between young and older healthy adult subjects was conducted to determine 

the appropriate number of subjects to be tested. An estimate of the number of subjects required 

to attain a power of 0.8 with alpha = 0.05 was 30 in each group. 

Exclusion criteria for all subjects included known pregnancy and the use of assistive 

devices for standing. For the healthy control subjects, exclusion criteria included symptoms of 

inner ear disorders such as complaints of dizziness, vertigo, or balance problems. Healthy 

controls were screened before testing to confirm that subjects did not have vestibular disorders.   

Exclusion criteria for controls included the following: 1) observation of spontaneous nystagmus, 

2) abnormal oculomotor assessment, 3) positive Dix-Hallpike or roll test for benign paroxysmal 

positional vertigo, 4) positive horizontal head shake test and head thrust test for vestibule-ocular 

reflex dysfunction. The study protocol had been approved by the University of Pittsburgh 

Institutional Review Board, and all subjects provided informed consent and agreed to participate 

in the study. 

Healthy subjects were recruited through local advertisements and from previous balance 

research studies. Individuals with vestibular disorders who had complaints of dizziness, vertigo, 

balance problems, falls, or difficulty focusing were recruited from the practice of a neurotologist. 

Vestibular disorder diagnosis and vestibular laboratory test results (audiogram, oculomotor 

testing, positional testing, calorics testing, rotational chair testing, and vestibular evoked 

myogenic potentials) were retrieved from the individuals’ medical records. Figure 7-1 is a 
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participant flow diagram that includes information about number of subjects recruited, 

excluded/included in each group, tested, and included in the analysis. 

The demographic and clinical information of all subjects including age, gender, duration 

of symptoms, and laboratory tests for individuals [oculomotor testing, positional testing, calorics 

testing, rotational chair testing, and vestibular-evoked myogenic potentials (VEMPs)] are 

presented in Table 16. 

7.2.3 Assessment devices  

The BRU consists of a force platform, a head mounted display (HMD) device that displays 

different visual environments, overhead safety harness, and foam cushion. The BRU measures 

COP sway area (SA) and COP sway velocity (SV) under 6 different testing conditions that assess 

the same sensory organization abilities as the SOT and CTSIB, including: Condition 1: standing 

on a firm surface eyes open looking forward, Condition 2: standing on a firm surface with eyes 

closed, Condition 3: standing on a firm surface viewing a stationary visual scene (basketball 

gym) displayed in the HMD, Condition 4: standing on foam eyes open looking forward to a wall, 

Condition 5: standing on foam with eyes closed, and Condition 6: standing on foam viewing a 

stationary visual scene displayed in the HMD. In a similar fashion to the SOT conditions, in 

conditions 3 and 6 the head fixed visual environment moves with the subject, and thus provide 

sway referencing. In conditions 4, 5, and 6, the form surface distorts the normal reference to 

ground sensed by lower extremity somatosensation.   

The Smart Equitest (Neurocom, Inc) consists of a movable platform that is surrounded on 

three sides by panels that sway with the subject (i.e sway-referenced visual surround). Testing 

conditions included: 1) standing on a firm surface eyes open looking forward, 2) standing on a 
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firm surface with eyes closed, 3) standing on a firm surface with a sway-referenced visual 

surround, 4) standing on a sway-referenced platform that pivots about the ankles with eyes open, 

5) standing on a sway-referenced platform with eyes closed, and 6) standing on a sway-

referenced platform and sway-referenced visual surround. 

7.2.4 Outcome measures 

A common balance variable that has been used in many studies of balance is the center of 

pressure (COP).  The COP represents the center of distribution of the total force of body weight 

on the ground and is considered an active variable that moves continuously. It is computed from 

data points distribution and recorded in the anteroposterior (A/P) and mediolateral (M/L) 

directions at a sampling frequency of 50 Hz.171, 340  The COP A/P and COP M/L were used to 

estimate sway area (SA), sway velocity (SV), root mean square RMS (A/P, M/L) and peak to 

peak PTP (A/P, M/L). The measures of SA and SV are the normal output of the BRU; the 

measures of RMS and PTP were also calculated of their use in many studies.     

Sway area was measured in cm2.  The standard method to estimate this area is by 

computing a 95 % confidence ellipse of the distribution of COP coordinates in the A/P and M/L 

directions. The statistical definition of this ellipse is that there is 95% confidence that the center 

of a population would be inside the ellipse and that SA is the estimation of the area of the ellipse. 

The following standard formula was used to calculate SA: 

2
.

22
]2,2[05.0 ***2 mlapmlapnFArea σσσπ −= −  

F is the Fisher distribution at 95%, σ2 ap is the variance of COP data in the APdirection, and σ2 
ml  

is  the variance of COP data in the ML direction, σ2 ap.ml  is the covariance of COP data in the AP 
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and ML directions, (2, n-2: degrees of freedom); For the sample of 1000 data points (20 s * 50 

Hz), F was equal to 3.  

 

Sway Velocity (SV) was computed using the following: 
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T is the duration of the trial, SV is sway velocity, Dxy is path length, COPap is the data 

distribution in the AP direction, and COP ml is the data distribution in the ML direction. A 

Butterworth low pass filter (4th order, 2Hz cutoff) was used in Matlab to calculate filtered sway 

velocity (FSV) to reduce noise.  

 

Root mean square (RMS) was computed using the following: 

𝑅𝑀𝑆𝑎𝑝 = �∑ 𝐶𝑂𝑃𝑎𝑝𝑖2𝑛
𝑖=1

𝑛
      𝑅𝑀𝑆𝑚𝑙 = �∑ 𝐶𝑂𝑃𝑚𝑙𝑖2𝑛

𝑖=1
𝑛

    

 

Peak to Peak (PTP) was calculated using the following: 

𝑃𝑇𝑃𝑎𝑝 = max (𝐶𝑂𝑃𝑎𝑝) − min  (𝐶𝑂𝑃𝑎𝑝)   

𝑃𝑇𝑃𝑚𝑙 = max (𝐶𝑂𝑃𝑚𝑙) − min  (𝐶𝑂𝑃𝑚𝑙) 

Max (COPap) is the highest sway amplitude in the AP direction, Min (COPap) is the lowest 

sway amplitude in the AP direction, Max (COPml) is the highest sway amplitude in the ML 

direction, and Min (COPml) is the lowest sway amplitude in the ML direction. 
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7.2.5 Statistical analysis 

To investigate the test-retest reliability, the intra-class correlation coefficient (ICC) was used for 

the entire group of 90 subjects and within each study group; the ICC considers both correlation 

and agreement and provides a single index to describe reliability. The ICC uses variance 

estimates from the analysis of variance (ANOVA), and it can assess the reliability among more 

than 2 readings. The ICC considers the differences between observed scores that are due to 

variations of the measurement system including factors related to the testing environment and 

subject conditions. The interpretation includes the following: ICC >.75 indicates excellent 

reliability, .40-.74 indicates fair to good reliability, and <.40 indicates poor reliability.341  

The purpose and design of this study involved the use of the same rater representing the 

only raters of interest, with no intention of generalizing findings beyond the raters involved. The 

rater was considered a fixed factor and not randomly selected in this design. The average of 3 

trials/ condition was used. The intra-class correlation coefficient, ICC (3, 1) and 95% CI were 

used to describe the level of agreement between test and retest. 

For absolute reliability, the average mean difference between trials with confidence 

limits, the standard error of measurment (SEM), and the Bland and Altman method were used to 

describe the extent to which a balance score varies on test-retest measurements.263-268   

Secondary analysis included evaluation of standard error of measurment proportion 

(SEM %), minimal detectable change (MDC95), and minimal detectable change proportion 

(MDC %), and were calculated using these following formulas:  

𝑆𝐸𝑀 = 𝑠𝑑 × �(1 − r)   𝑆𝐸𝑀 % = 𝑆𝐸𝑀
𝑀𝐸𝐴𝑁

× 100  

𝑀𝐷𝐶95 = SEM × 1.96 × √2  𝑀𝐷𝐶 % = 𝑀𝐷𝐶95
𝑀𝐸𝐴𝑁

× 100 
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The SEM can be interpreted as the standard deviation of measurement errors, and the 

smaller the SEM, the smaller the deviation of measurement errors around the true mean and the 

more reliable the measure.342  The SEM% also provides information about measurement error, 

and the smaller the SEM% means lower measurement error.  The MDC95 is a clinically useful 

measure for absolute reliability and estimates the true change versus the error change.342  It 

indicates how much change must occur in a measure with a given degree of random error (the 

SEM), and with 95% certainty, to conclude that change is due to true change not error change.  

The MDC% provides information about measurement responsiveness, and the smaller the 

MDC% the higher the responsiveness. It provides insights about what is the percentage of the 

mean the subject needs to score to be considered a clinical change. 

To examine the concurrent validity of the BRU in the assessment of balance in young 

healthy, old healthy, and in persons with vestibular disorders, Spearman rank order correlation 

(rho) between the BRU (time 1) and the SOT measures was computed for the entire sample to 

estimate the concurrent validity (average of 3 trials for BRU and SOT). Correlations were 

computed on 7 outcome measures including two measures from the BRU: sway area (SA), and 

sway velocity (SV); and 5 additional measures including filtered sway velocity (FSV), root mean 

square in the antero-posterior and medio-lateral directions (RMSap, RMSml), and peak to peak 

in the antero-posterior and medio-lateral directions (PTPap, PTPml). Nonparametric statistics 

were used since assumptions of normality were not met. A Spearman correlation coefficient of ≥ 

0.75 indicates good to excellent relationship, 0.5-0.75 indicates moderate to good relationship, 

0.25-0.50 indicates fair relationship, and 0.00-0.25 indicates little or no relationship.343  
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To examine group differences among sensory conditions to investigate age and disease 

effects, a nonparametric Mann-Whitney U test was used. because assumptions of normality were 

not met. 

7.3 RESULTS 

7.3.1 Reliability 

Table 17 reports relative reliability (ICC) and absolute reliability (SEM) of sway area and sway 

velocity measures from the BRU (n= 90). Both ICC and SEM are calculated for sway area (SA) 

and sway velocity (SV) for all 6 sensory conditions (C1 to C6) in the BRU. The ICC for test-

retest reliability were good to excellent for all outcome measures in all sensory organization 

conditions for the 2 consecutive times in the BRU (ICC range 0.64-0.87, p < .001).  

 Analysis of variance for absolute reliability was calculated for sway measures in all 

sensory control conditions in the BRU to provide a comparison of individual variability of 

performance across groups (Table 17). The SEM was small for all groups indicating high 

reliability for the instrument. Smaller SEM were found among the young healthy group (for 

sway area SEM < 1.0 all conditions except condition 5 and 6, SEM < 2.0 in conditions 5 and 6; 

for sway velocity, SEM < 0.2 all conditions except condition 5, SEM < 0.4 in condition 5). 

Larger SEM were found among the older healthy group (for sway area, SEM < 2.0 all conditions 

except 5 and 6, SEM range (3.0- 4.0) in conditions 5 and 6; for sway velocity, SEM > 0.4 

conditions 4, 5, and 6).  
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 Table 18 includes the evaluation of standard error of measurement proportion (SEM %), 

minimal detectable change (MDC95), and minimal detectable change proportion (MDC %) for 

both SA and SV measured for all 6 sensory organization in the BRU.   The table shows the SEM 

standardized to the mean (SEM %) that allows a comparison of the magnitude of measurement 

error between the two different measures. The magnitude of measurement error associated with 

sway area was at least 20 % higher than the magnitude of measurement error associated with 

sway velocity across the 6 sensory control conditions. Smaller SEM% reflects lower 

measurement error.  

 Minimal detectable change values for SA are presented in Table 18, with the highest 

MDC scores for individuals with vestibular disorders, then older healthy, then younger healthy in 

all sensory control conditions. Conditions 5 and 6 show the highest MDC for all groups, and 

Condition 1 shows the smallest MDC for all groups. The MDC standardized to the mean (MDC 

%) allows the comparison of the magnitude of responsiveness between the two different 

measures (SA and SV) with smaller MDC% reflecting greater responsiveness. Sway velocity 

MDC% was at least 50% smaller than MDC% for sway area for all conditions.  

7.3.2 Concurrent validity  

All 90 subjects were tested in the SOT at the same day as the BRU. Significant moderate to 

excellent correlations (p<.001) were found between the BRU and the SOT in SA (all conditions), 

FSV (all conditions), RMSap (all conditions), RMSml (all conditions), PTPap (all conditions), 

and PTPml (all conditions) [Table 19]. The filtered sway velocity (FSV) showed stronger 

correlations compared to unfiltered (SV).  
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7.3.3 Group differences  

Using the Mann-Whitney U test to compare the effect of age on SA and SV obtained from the 

BRU testing, the older healthy group had significantly higher SA and SV in all conditions (p < 

.001). Using the SOT to compare YH and OH, older healthy had significantly higher SA and SV 

in all conditions (p < .01) (Tables 5). 

 To investigate disease effect on sensory control, the YH group was compared with the 

young patient group (YP, n= 15) using the Mann-Whitney U test (Table 20). For the BRU, the 

amount of sway (SA and SV) for YP was significantly higher than amount of sway for YH (p < 

.001). The older healthy group was also compared with older patient group (OH, n= 15) and both 

the BRU and the SOT showed no significant differences between the two groups in SA and SV 

(p >.05) except condition one and two in the SOT.   

For the SOT, the amount of sway (SA) for YP was significantly higher than amount of sway for 

YH (p < .05); amount of sway (SV) was significantly higher than amount of sway for YH (p < 

.01) in conditions 4, 5 and 6. 

7.4 DISCUSSION 

The reliability and validity of the BRU balance assessment module were established in this 

study. The BRU provides an accurate, reliable, and valid measure for sensory organization 

abilities using the HMD and foam as part of the balance assessment module for healthy persons 

and people with vestibular disorders. The BRU demonstrated strong reliability in most of the 

sway measures for the 6 sensory conditions. A strong positive correlation was found between the 
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BRU and SOT in almost all of the outcome measures. The BRU and SOT provided similar 

results about age and disease effect on sway measures during standing.  

Previous studies have examined the reliability of the SOT.  Wrisley et al (2007) 

examined the reliability of the SOT among young healthy subjects (21- 36 y). Intraclass 

correlation coefficients were fair to good for all conditions (0.43 to 0.79 ), except condition 3 

where the ICC indicated poor reliability (0.35).209  Cheryl et al (1995) examined SOT reliability 

among older healthy (65- 87 y). Intraclass correlation coefficients were fair to good for all 

conditions (0.43 to 0.70), except condition 3 with the ICC indicating poor reliability (0.15).344  

The BRU may be more reliable than the SOT especially for condition three.  A learning effect 

may explain the poor reliability in condition three in the SOT. During condition 3 in the SOT, 

the subject can hear and see the movements of the surrounding walls.  Subjects’ reaction to the 

movement of the walls may be unreliable and difficult for the person to predict which may 

explain the poor reliability compared to the BRU.             

The reliability of the BRU assessment module has not been studied previously. One study 

investigated the efficacy of using the BRU to discriminate between patients with relapsing-

remitting multiple sclerosis (MS) with peripheral vestibular disorders and healthy older adults.345 

Subjects were tested in ten conditions; four conditions similar to Conditions 1, 2, 4, and 5 in our 

study; six more conditions included different optokinetic visual stimulations using the HMD. 

The MS group was significantly different in SA and SV from the control group in all conditions 

and the BRU was able to discriminate between the MS group and the control group.345  In our 

study, I established the reliability of the BRU among healthy and patients with vestibular 

disorders for different age groups.  
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The size of SEM was largest for the patient group followed by the older healthy group 

and smaller for the young healthy group. The smaller SEM indicates a more reliable measure. 

The amount of variability expected from each group is one explanation for the SEM variation 

among study groups. Variability is expected to be higher among patients and older healthy 

groups compared with the young healthy group. Another interpretation for SEM differences 

among groups can be inferred from the Bland and Altman graph that shows that most of the 

subjects had smaller SEM; subjects who experienced high amounts of sway (patients, and older 

healthy) are more likely to show higher SEM (Figure 7-2).   

Standard error of the measurement was highest during conditions 5 and 6 for all 

subgroups. Conditions 5 and 6 involve absent/inaccurate sensory information from both visual 

and somatosensory systems important for balance sensory control. Conditions 5 and 6 are the 

most difficult conditions in the test; the amount of sway expected during these conditions is high 

compared to the other conditions. 

7.4.1 Concurrent validity  

A strong relationship was found between the BRU and the SOT magnitude of sway for all study 

groups. A strong correlation was expected because both devices examine similar sensory 

organization constructs during standing.  The psychometric properties of SOT including the 

clinical efficacy, cost effectiveness, validity, and reliability have been established.202-208  Test-

retest reliability of SOT among young healthy subjects (< 50 years), conditions 4-6, were fair to 

good reliability, range (0.35-0.79).209   The SOT test-retest reliability, conditions 3-6, among 

elderly healthy individuals was measured; reliability was moderate to high, range (0.73-0.94).210  

The SOT correlated significantly with the following: Tinetti Balance Scale and functional 
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measures of gait 346,  post head shake test and caloric asymmetry symptoms 347,  the Dizziness 

Handicap Inventory in patients with dizziness problems 348,  and with lower extremities length 

and gait speed test.349  The strong correlation between the BRU and SOT support the future use 

of BRU as a clinical tool in the management of patients with vestibular disorders. 

7.4.2 Discriminant validity  

Our final research goal was to examine group differences to investigate the effect of age and 

vestibular disease on balance (discriminant validity). Significant differences in sway measures 

between young and older healthy were found in both the SOT and the BRU suggesting that age 

is an important factor that influences balance. Studies have suggested that aging is associated 

with decline in structure and function of multisensory systems including somatosensory system, 

visual system, and vestibular system.21, 22   Vibratory sensation, tactile sensation, and pressure 

sensation has been shown to be impaired with aging, especially in the lower extremities.222-224 

Studies also show that reduction of vestibular function with aging is associated with changes in 

the structure of the vestibular system. Rosenhall et al. reported that the vestibular system loses 

around 40% of the nerve and hair cells with > 60 years.229  Reduction in the structure and 

function of the vestibular system among elderly people may increase COP sway, increase 

imbalance, and increase the probability of sensory conflict.25  Elderly individuals are more likely 

to be dependent on sensory information from vision and vestibular systems and more likely to 

have peripheral neuropathy in the lower extremities.25 Sparto et al. examined the amount of head 

sway associated with visual optic flow stimulation while standing on fixed or sway referenced 

support surface among young healthy, older healthy, and patients with unilateral vestibular 

loss.350   The magnitude of sway in the older healthy group was significantly higher than the 
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amount of sway in the young heathy group.350  In another study, the amount of sway associated 

with an attention task increased significantly in the older healthy group compared with the young 

healthy group.74 Our study findings were consistent with previous studies that show that in 

conditions where visual or somatosensation information was inaccurate for orientation in space, 

the amount of COP sway was greater in the elderly healthy group compared with young healthy 

group.227, 228  In our study, COP magnitude of sway among older healthy was higher in all 6 

sensory conditions.   

To investigate the effect of vestibular disease on sensory control during standing, we 

compared young healthy with young patients (age < 60). The significant difference between the 

two groups in both the SOT and BRU in all sensory conditions suggests that objective ways for 

quantifying sway are helpful tools to investigate vestibular disorders effect on balance for 

subjects < 60 years. However, there was no significant difference in the amount of sway between 

the older healthy group and older patients. This result is consistent with the findings of Sparto et 

al., who found no difference in the amount of head sway associated with visual optic flow 

stimulation while standing on fixed or sway referenced support surface between older healthy 

and older patients with unilateral vestibular loss.350  We were unable to explain the significant 

differences in the amount of sway between the older healthy and older patients in conditions one 

and two. 

In our study, patients with vestibular disorders experienced difficulties in all sensory 

conditions.  Patients with vestibular disorders when tested during conditions 5 and 6, where 

information from both vision and somatosensory are reduced or made inaccurate, COP sway 

increased and subjects experienced sudden falls.232  
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Subjects who have sensory selection problems are more likely to have balance problems 

in any condition or environment with inaccurate or absent sensory information.  Not every 

subject with balance problems can be categorized as over-dependent on sensory information or 

as experiencing sensory conflict because of limited sensory organization abilities. Subjects may 

have difficulties selecting the appropriate sensory information for balance when exposed to any 

environment with inaccurate or absent sensory information for balance.235, 236  

Examining balance in the 6 conditions of SOT and BRU may provide insights into the 

persons’ ability to organize and select sensory information appropriate for balance which may 

demonstrate the type of environments and tasks responsible for imbalance. In situations where a 

subject falls or magnitude of sway increases with disruptions of somatosensory information from 

the lower limbs during standing on the foam (condition 4, 5, and 6), subjects may be considered 

surface dependent.237  During conditions where magnitude of sway increase with inaccurate or 

no visual information using the HMD or with eyes closed (conditions 2, 3, and 6), subjects may 

be categorized as visually dependent.237   A patient with vestibular disorder will experience 

increased sway or fall during conditions (4, 5, and 6) that involve disruptions of information 

from both visual and somatosensory systems.  The subject may have sensory selection problem 

and may have an inability to correctly select sensory information for postural orientation if they 

experience large magnitude of sway in all situation involving disruptions of visual or 

somatosnesory information (conditions 3, 4, 5, and 6).238 

7.4.3 Limitations and future work 

The time between the BRU testing, retesting, and SOT testing was 15-20 minutes. The short time 

between test/retesting may affect the generalization of our study; a longer time (one day) may 
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enhance generalization. The short time between the BRU testing and SOT testing may influence 

the subjects’ performance on the second test.  

Future studies may use the BRU to identify individuals with vestibular disorders, 

measure health outcomes after vestibular rehabilitation, and to customize vestibular 

rehabilitation programs for individuals with vestibular disorders. Using both the BRU and SOT, 

older healthy and older patients had similar sway; future research may use the BRU to add visual 

stimuli or a cognitive task, such as optokinetic stimuli, to increase the sensitivity of the test to 

discriminate disease effect among older subjects. The balance rehabilitation module in the BRU 

can also be investigated. 
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Figure  7-1: Participant flow diagram: includes number of subjects recruited, 

excluded/included in each group, tested, and included in the analysis 

  

Assessed for Eligibility  
(n= 95)  

Randomization 
(Testing Order) 

Odd numbered subjects                  
BRU time1/BRU time 2/ SOT 

Even numbered subjects                   
SOT/BRU time 1/BRU time 2 

Analysis n= 90 

33 Young healthy 

Excluded (n=3) 
not meeting 

inclusion criteria  

30 Patients 32 Older healthy  

Excluded (n=2) 
not meating 

inclusion criteria  
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Table 16: Characteristics of all subjects including age, gender, duration of symptoms, and 

laboratory test results for patients (n = 90) 

 

 
Young 
Healthy 

Older 
Healthy 

Young 
Patients 

Older 
Patients  

Age (years)     
N 30 30 15 15 
Mean ± SD 28.20 ± 6.06 77.2 ± 4.5 39.5 ± 10.8 65.5 ± 8.3 
Range 19-45 68-85 25-55 56-81 
Gender (Male;%) 17; 56% 12; 40% 5; 33% 5; 33% 
Duration of symptoms (Months) N/A N/A   
Mean ± SD 
Median 

  42.7 ± 77.9 
7.5 

31 ± 42.6 
12 

     
Range   1-240 1-132 
Abnormal laboratory testing 
(n;%) 

N/A N/A   

Oculomotor    0; 0% 1; 6.7% 
Positional   5; 33% 7; 46.7% 
Calorics (reduced vestibular 
response) 

  7; 46.7% 8; 53.3% 

Rotational Chair (decreased gain, 
asymmetry) 

  10; 66.7% 8; 53.3% 

VEMPs   5; 33% 8; 53% 
 

Laboratory testing included oculomotor testing, positional testing, caloric testing, rotational chair 

testing, and vestibular-evoked myogenic potentials (VEMPs). 
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Table 17: Intraclass correlation coefficient (ICC) and standard error of the measurement 

(SEM) of sway area (SA) and sway velocity (SV) measures from the Balance Rehabilitation 

Unit (BRU) (n= 90) 

 

 ICC SEM 
 ALL YH OH P ALL YH OH P 
SA_C1 0.74 0.49 0.71 0.72 0.78 0.45 0.78 1.04 
SA_C2 0.84 0.82 0.61 0.83 2.22 0.36 1.21 3.75 
SA_C3 0.68 0.50 0.60 0.64 1.66 0.91 0.85 2.61 
SA_C4 0.84 0.85 0.74 0.84 1.77 0.53 1.60 2.61 
SA_C5 0.74 0.74 0.72 0.69 5.01 1.94 3.34 7.74 
SA_C6 0.68 0.71 0.62 0.66 6.43 1.64 3.53 5.33 
   
SV_C1 0.82 0.68 0.72 0.81 0.26 0.12 0.21 0.41 
SV_C2 0.80 0.61 0.68 0.79 0.60 0.14 0.38 0.99 
SV_C3 0.64 0.74 0.83 0.53 0.46 0.13 0.19 0.79 
SV_C4 0.82 0.86 0.69 0.81 0.41 0.13 0.41 0.63 
SV_C5 0.82 0.68 0.85 0.76 0.62 0.38 0.42 1.02 
SV_C6 0.87 0.84 0.74 0.88 0.41 0.19 0.50 0.51 
 

Both SA and SV are measured for all 6 sensory conditions (C1 to C6) in the BRU. ICC and SEM 

are calculated for all subjects (ALL), young healthy (YH), older healthy (OH), and individuals 

with vestibular disorders (P). C1: (condition 1) involves standing on a firm surface eyes open 

looking forward; C2: (condition 2) involves standing on a firm surface with eyes closed; C3 

(condition 3) involves standing on a firm surface looking at a visual world room (basket ball 

gym) displayed in the head mounted display (HMD) that sways with the subject; C4 (condition 

4) involves standing on foam eyes open looking forward to the wall; C5 (condition 5) involves 

standing on a foam with eyes closed;  C6 (condition 6) involves standing on a foam looking at 

the visual world displayed in the HMD that sway as the subject sways. 
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Table 18: Secondary analysis included evaluation of standard error of measurement 

proportion (SEM %), minimal detectable change (MDC95), and minimal detectable change 

proportion (MDC%) for both sway area (SA) and sway velocity (SV) measured for all 6 

sensory conditions in the BRU 

 

Sensory 
Condition 

SEM% MDC95 MDC% 
All All YH OH P All 

SA_C1 56.46 2.16 1.24 2.15 2.87 156.51 
SA_C2 82.91 6.17 1.01 3.34 10.41 229.81 
SA_C3 69.70 4.61 2.53 3.01 7.22 193.21 
SA_C4 45.01 4.90 1.48 4.45 7.24 124.77 
SA_C5 48.11 13.88 5.39 9.26 21.45 133.35 
SA_C6 50.89 10.72 4.53 9.77 14.76 141.06 

   
SV_C1 27.47 0.72 0.32 0.57 1.13 76.13 
SV_C2 43.20 1.65 0.40 1.07 2.74 119.74 
SV_C3 37.22 1.28 0.35 0.53 2.18 103.18 
SV_C4 25.75 1.13 0.35 1.14 1.73 71.37 
SV_C5 22.92 1.71 1.05 1.17 2.83 63.52 
SV_C6 17.65 1.14 0.53 1.38 1.42 48.91 

 

C1: (condition 1) involves standing on a firm surface eyes open looking forward; C2: (condition 

2) involves standing on a firm surface with eyes closed; C3 (condition 3) involves standing on a 

firm surface looking at a visual world room (basket ball gym) displayed in the head mounted 

display (HMD) that sways with the subject; C4 (condition 4) involves standing on foam eyes 

open looking forward to the wall; C5 (condition 5) involves standing on a foam with eyes closed;  

C6 (condition 6) involves standing on a foam looking at the visual world displayed in the HMD 

that sway as the subject sways. 
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Table 19: Concurrent validity of the Balance Rehabilitation Unit (BRU) in the assessment 

of balance in young healthy, old healthy, and in persons with vestibular disorders.  

Spearman rank order correlation (rho) between the BRU and the sensory organization test 

was calculated 

 

    C1 C2 C3 C4 C5 C6  p (for all 
conditions) 

SA rho 0.67 0.81 0.74 0.62 0.64 0.67 p < .001 
SV rho 0.44 0.67 0.56 0.70 0.76 0.76 p < .001 
FSV rho 0.76 0.85 0.72 0.74 0.72 0.74 p < .001 
RMSap rho 0.57 0.80 0.67 0.48 0.50 0.45 p < .001 
RMSml rho 0.64 0.76 0.71 0.63 0.61 0.65 p < .001 
PTPap rho 0.57 0.80 0.67 0.58 0.58 0.57 p < .001 
PTPml rho 0.65 0.72 0.68 0.65 0.64 0.68 p < .001 
 

C1: (condition 1) involves standing on a firm surface eyes open looking forward; C2: (condition 

2) involves standing on a firm surface with eyes closed; C3 (condition 3) involves standing on a 

firm surface looking at a visual world room (basket ball gym) displayed in the head mounted 

display (HMD) that sways with the subject; C4 (condition 4) involves standing on foam eyes 

open looking forward to the wall; C5 (condition 5) involves standing on a foam with eyes closed;  

C6 (condition 6) involves standing on a foam looking at the visual world displayed in the HMD 

that sway as the subject sways; p: significance for all conditions; SA: sway area; SV: sway 

velocity; FSV: filtered sway velocity calculated at university of Pittsburgh; RMSap: root mean 

square calculated in the anterior-posterior direction; RMSml: root mean square calculated in the 

mediolateral direction; PTPap: peak to peak calculated in the anterior-posterior direction; 

PTPml: peak to peak calculated in the mediolateral direction. 
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Table 20: A nonparametric statistic (the Mann-Whitney U test) was used to compare the 

young healthy (YH) (n= 30), older healthy (OH) (n= 30), young patients (YP) (n= 15), and 

older patients (OP) (n= 15) sway data for  sensory conditions 1-6 in both the BRU and SOT 

 

        C1 C2 C3 C4 C5 C6 
  SA YH  (n=30) OH  (n=30) p= .003 p= .001 p= .001 p < .001 p= .001 p= .001 
    YH  (n=30) YP   (n=15) p < .001 p < .001 p < .001 p= .001 p= .001 p= .001 

BRU   OH (n=30) OP  (n=15) p= .555 p= .258 p= .324 p= .665 p= .700 p= 1.00 
  SV YH  (n=30) OH  (n=30) p < .001 p < .001 p < .001 p < .001 p < .001 p < .001 
    YH  (n=30) YP   (n=15) p < .001 p < .001 p < .001 p= .001 p= .001 p= .001 
    OH (n=30) OP  (n=15) p= .360 p= .268 p= .379 p= .102 p= .312 p= .354 
  SA YH  (n=30) OH  (n=30) p= .006 p= .003 p= .002 p= .001 p < .001 p < .001 
    YH  (n=30) YP   (n=15) p= .046 p < .001 p= .002 p < .001 p < .001 p < .001 

SOT   OH (n=30) OP  (n=15) p= .163 p= .828 p= .736 p= .202 p= .075 p= .324 
  SV YH  (n=30) OH  (n=30) p < .001 p < .001 p < .001 p < .001 p < .001 p < .001 
    YH  (n=30) YP   (n=15) p= .847 p= .065 p= .360 p= .002 p= .004 p < .001 
    OH (n=30) OP  (n=15) p= .004 p= .016 p= .090 p= .800 p= .847 p= .112 

 

C1: (condition 1) involves standing on a firm surface eyes open looking forward; C2: (condition 

2) involves standing on a firm surface with eyes closed; C3 (condition 3) involves standing on a 

firm surface looking at a visual world room (basket ball gym) displayed in the head mounted 

display (HMD) that sways with the subject; C4 (condition 4) involves standing on foam eyes 

open looking forward to the wall; C5 (condition 5) involves standing on a foam with eyes closed;  

C6 (condition 6) involves standing on a foam looking at the visual world displayed in the HMD 

that sway as the subject sways. 
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Figure  7-2: Sway area (SA) mean value (Time 1, Time 2), and difference (Time 1 – Time 2) 

with mean absolute agreement and upper and lower limits of agreement indicated by 

unbroken and dashed lines, respectively 

The line in the middle is the mean between time 1 and 2, subjects scores vary around the mean, 

variation is small with young healthy and bigger with old healthy and patients. 

       Mean SA v Diff SA 
_____ Mean absolute agreement  
----- Upper limit 
----- Lower limit 
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8.0  GENERAL DISCUSSION  

In this dissertation, I extended the work of previous groups that have used technology-based 

visual stimuli for habituation of dizziness symptoms. I explored the effect of VRBT on self-

report and performance measures and explored the use of VRBT as an intervention for 

individuals with vestibular disorders. Our study findings suggested that subjects improved 

significantly and maintained improvements in self report and performance measures. Subjects 

reported symptoms increased during treatment sessions, but overall reports of symptoms reported 

during treatment sessions reduced from session 1 to session 6 suggesting long term habituation. 

Furthermore, the symptom reduction from session 1 to session 6 was associated with increases in 

the intensity and complexity of the visual stimuli provided in terms of optic flow velocity and 

product density. Virtual reality based therapy may be a promising new intervention for 

individuals with vestibular disorders that may be used as a tool to provide habituation exercises. 

 I also examined the difference in self report and performance measures between 

customized physical therapy and VRBT in persons with vestibular disorders. Our study findings 

suggested that both groups (PT and VRBT) improved significantly and maintained 

improvements for six months. Both interventions provided equivalent outcomes. The virtual 

reality based therapy appeared to improve symptoms of individuals with vestibular disorders at 

least as much as customized physical therapy. However, currently the cost and effort of using 

VRBT is high compared to PT, so there is no advantage of using VRBT.    
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In the second part of this dissertation, I established the reliability and validity of the BRU 

as a tool for balance assessment. The BRU demonstrated strong reliability in sway measures, and 

provided a valid measure for balance using the HMD and foam among healthy persons and 

people with vestibular disorders. A strong relationship was found between the BRU and SOT for 

all groups in sway measures. The BRU was able to discriminate age effect and vestibular disease 

effect on balance. The BRU is another example of virtual reality based therapy technology that 

may provide visual stimuli using cheaper methods such as an HMD. The BRU takes less space, 

is a cost effective method of proving virtual reality based therapy stimulation compared to a 

virtual reality based therapy cave and can be used for balance assessment. 

8.1 LIMITATIONS/ OBSERVATIONS  

The difficulty in the recruitment varied between the virtual reality based therapy and the BRU 

studies. In the VRBT study, I recruited 40 subjects over the course of four years; the recruitment 

of subjects who met the criteria was difficult. In the virtual reality based therapy study, people 

seemed  not interested to make a commitment to attend the three hours of assessment before, 

after, and at the 6 month follow up and commit to coming to physical therapy each week for 6 

weeks. In the BRU study, I recruited 90 subjects over the course of 6 months. The recruitment 

procedure was easier in the BRU study possibly because the study involved one session and 

subjects were tested the same day that they came to the clinic to see the doctor for their 

diagnosis. 

For the BRU study, there were multiple things that delayed the start of the study.  . The 

BRU was initially developed outside the United States, and there were no training programs in 
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the United States for using the BRU. The primary investigator (K.A) had to travel to Uruguay for 

a week and received training on the BRU from experienced clinicians in Uruguay. It took about 

3 months to obtain a visa in order to be able to travel for the training. After training was 

completed, it took another 4 months to ship and install the device at the Eye and Ear Institute in 

Pittsburgh.    

8.2 FUTURE WORK  

Future studies may compare three interventional groups (VRBT, customized physical therapy 

group, and combination of VRBT and customized physical therapy). Future VRBT studies 

should consider using less expensive and smaller technology such as HMD.  

Future studies may compare the use the rehabilitation module in the BRU to provide 

visual stimulation using the HMD in the rehabilitation of individuals with vestibular disorders. A 

second step may be to compare three groups (customized physical therapy (PT), BRU 

rehabilitation combined with PT, and BRU rehabilitation only). The BRU assessment module 

may also be used to provide outcome measures after vestibular rehabilitation and to customize 

vestibular rehabilitation programs for individuals with vestibular disorders.  

 Other future studies may investigate use of the BRU to investigate the influence of 

different visual stimuli, such as optokinetic stimuli, using the HMD on balance and postural 

control. The balance rehabilitation treatment module in the BRU can be investigated in future 

work. 
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9.0  CONCLUSION  

Virtual reality based therapy may be a promising new intervention for individuals with vestibular 

disorders that can be used as a form of habituation training for symptoms induced in visually 

complex environments. However, the cost and effort of using VRBT is high compared to 

customized physical therapy. So there is no advantage of using VRBT since the results were 

similar to the customized physical therapy.  

The BRU provides a new tool for balance assessment that records postural sway in both 

the medio-lateral and anterior posterior directions. The strong correlation between the BRU and 

SOT in almost all of the outcome measures indicated that the BRU provided similar results about 

age and disease effect on balance during standing. 
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