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Confirmatory factor analyses and theories of posttraumatic stress disorder (PTSD) support the 

clinical and scientific relevance of a distinct emotional numbing construct in PTSD.  Increased 

emotional numbing has been linked with increased nicotine use.  D eficits in reward system 

functioning may be related to symptoms of emotional numbing and nicotine use.  Previous 

research has found altered neurotransmitter function and brain activation in response to reward in 

reward system brain structures in PTSD.  In normal REM sleep, these brain structures have 

increased activity and are related to sleep-wake mechanisms, which may be dysregulated in 

PTSD. This study used polysomnography (PSG) and [18F]-FDG PET imaging to conduct region 

of interest analyses (ROIs) examining possible resting state brain activity deficits in Operation 

Enduring Freedom and Operation Iraqi Freedom veterans in the striatum and amygdala.  It was 

hypothesized that 1) increased emotional numbing would be associated with decreased activity 

during wakefulness and REM; 2) increased emotional numbing would be associated with 

increased nicotine use; and 3) increased nicotine use would be associated with decreased activity 

during wakefulness and REM.  Results indicate that increased emotional numbing corresponds 

with decreased activity during wakefulness in the striatum and amygdala, but not after adjusting 

for all non-emotional numbing symptoms of PTSD.  This pattern was reversed during REM, with 

increased emotional numbing corresponding with increased activity in the striatum, which 

survived adjusting for non-emotional numbing symptoms of PTSD.  Emotional numbing was not 
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correlated with nicotine use, possibly because heavy smokers were underrepresented in the 

sample.  Increased nicotine use was associated with decreased activity during wakefulness in the 

striatum, but was not related to activity during REM.  Results support the involvement of reward 

structures in nicotine use, emotional numbing, and other symptoms of PTSD.  Dysregulation in 

the reward system may exaggerate patterns of activity seen in healthy adults, with less activity in 

reward structures during quiet wakefulness and increased activity during REM sleep.             
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1.0  INTRODUCTION 

Posttraumatic Stress Disorder (PTSD) is a serious psychological disorder currently defined by 

the persistence of three clusters of seventeen total symptoms for at least one month following a 

traumatic experience, which causes significant distress or impairment in functioning.  T he re-

experiencing cluster (criteria B1-B5) contains symptoms such as intrusive recollections of the 

traumatic event, reactivity to trauma-related cues, and nightmares of the traumatic event.  The 

avoidance and numbing cluster (criteria C1-C7) includes items such as avoidance of trauma-

related cues, restricted affect, and diminished interest in activities.  F inally, the hyperarousal 

cluster (criteria D1-D5) contains such symptoms as insomnia, hypervigilance, and exaggerated 

startle response (American Psychiatric Association, 2000).  (See Table 1 for a complete listing of 

all seventeen symptoms).  Trauma associated with combat exposure and service in the military is 

a significant risk factor for PTSD.  More than 1.7 million men and women have served in the 

Unites States military in support of Operation Enduring Freedom in Afghanistan (OEF) and 

Operation Iraqi Freedom (OIF) since 2001(Sollinger, Fisher & Metscher, 2008), and estimates of 

overall PTSD prevalence among OEF/OIF veterans range from 10 to 15 percent (Ramchand et 

al., 2011).  T here is thus a particular impetus to understand the psychological factors and 

biological mechanisms which contribute to PTSD in OEF/OIF veterans.         

Although the current diagnostic criteria for PTSD presents a three factor model of PTSD 

symptoms, previous research on the factor structure of PTSD has supported a four factor model 

that divides the symptoms of PTSD into re-experiencing, avoidance, hyperarousal and emotional 

numbing (King et al., 1998; Asmundson, Stapleton, & Taylor, 2004).  This model separates the 
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single DSM-IV-TR avoidance and numbing symptom cluster into separate avoidance and 

emotional numbing clusters, with the empirically-based emotional numbing construct consisting 

of amnesia for the traumatic event, diminished interest in activities, detachment from others, 

restricted affect, and a sense of foreshortened future.  T he DSM-IV-TR offers a narrower 

theoretical definition of emotional numbing which includes only diminished interest, 

detachment, and restricted affect (American Psychiatric Association, 2000).  

According to Litz and Gray’s (2002) theory of emotional numbing, the symptoms of 

emotional numbing do not  reflect a complete inability of PTSD patients to experience positive 

emotions.  R ather, PTSD patients retain their complete pre-traumatic emotional capacity, but 

positive emotional responses become harder to access due to the salience of post-traumatic 

negative emotional responses, particularly in the presence of trauma-related cues and re-

experiencing symptoms.  T his suggests that symptoms of PTSD may be phasic, with re-

experiencing symptoms triggering periods of heightened emotional numbing, while hyperarousal 

symptoms further deplete emotional and cognitive resources necessary for positive emotions by 

redirecting attention to threat and anxiety cues.  Stein and Paulus (2009) characterized the 

distinction between emotional numbing and the other three clusters of re-experiencing, 

avoidance and hyperarousal as a dysregulation in the homeostatic balance between the approach 

and avoidance systems.  Emotional numbing is conceptualized as the result of dysfunction in 

reward processes leading to a downregulation of approach, while the remaining symptom 

clusters are conceptualized as the products of dysfunction in fear-related processes leading to an 

upregulation of avoidance.  T ogether, these theories provide a context for the importance of 

emotional numbing in PTSD and its relation to the other symptom clusters.         
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Emotional numbing is thus an important construct in PTSD symptomology, and is also 

present in other disorders, such as depersonalization disorder (Sierra et al, 2005). Emotional 

numbing is a predictor of chronic PTSD (Feeny et al., 2000) and is positively correlated with 

higher levels of alcohol misuse (Jakupcak et al., 2012), nicotine use (Kirby et al., 2008; Cook et 

al., 2009; Greenberg et al., 2012), sexual dysfunction (Nunnink et al., 2010), non-adherence to 

psychotherapy (Angeli, 2009), violent behaviors (Maguen et al., 2009), and poorer interpersonal 

relationships (Beck et al., 2009).  Empirical evidence also supports the existence of an emotional 

numbing construct in PTSD separate from depression (Feeny et al., 2000). Furthermore, 

emotional numbing has been identified as a significant factor of PTSD in western and non-

western cultures and in civilian and military samples, indicating a b road significance and 

applicability beyond American military service members (Costa et al., 2011). 

Despite the clinical relevance of emotional numbing, there is limited data on its 

neurobiological underpinnings.  Previous research on the neural correlates of PTSD suggests that 

underactivation in the medial prefrontal cortex (mPFC) may lead to overactivation in the 

amygdala due to less inhibition via downward projections from the mPFC to the amygdala 

(Koenigs & Grafman, 2009).  The amygdala is a critical structure in regulating fear responses, 

and dysregulation of the amygdala may explain chronic fear-related symptoms in PTSD.  

However, this model may not fully account for symptoms of emotional numbing, particularly 

anhedonia (Garfinkel & Liberzon, 2009).  Recent research has examined the role of the reward 

system in PTSD, since dysregulation in this system may explain symptoms of emotional 

numbing.  T wo previous fMRI studies have found lower levels of activation in response to 

reward in the reward system of PTSD patients relative to controls.  Sailer et al. (2008) found less 

activation in the nucleus accumbens, thalamus, and mesial PFC of 13 women with PTSD due to 
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various traumas, as compared to healthy controls.  Elman et al. (2009) found less activation in 

the striatum, defined as the nucleus accumbens, caudate nucleus, and putamen, in 20 c ivilian 

men and women with PTSD due to various traumas, as compared to healthy controls.  Elman et 

al. (2009) additionally found that less activation in the striatum in response to reward was 

correlated with increases in two symptoms of emotional numbing, namely diminished interest 

and detachment. However, striatal activation was not correlated with restricted affect or sense of 

foreshortened future.  P TSD patients also demonstrated a non-significant trend towards less 

striatal deactivation in response to monetary loss, as compared to controls.  

Further support for the potential importance of the reward system in PTSD comes from 

Liberzon et al. (2007), who examined µ-opioid receptor binding potential (BP2) in healthy 

controls, combat-exposed controls, and combat-exposed PTSD patients using positron emission 

tomography (PET) and the radioactive opioid [11C] carfentanil tracer.  They found that both 

combat-exposed groups had lower BP2 than healthy controls in the nucleus accumbens and 

extended amygdala, as well as the dorsal frontal and insular cortex.  Reduced BP2 was found in 

the anterior cingulate cortex of PTSD patients relative to both non-PTSD groups, and in the 

amygdala of combat-exposed controls relative to PTSD patients and healthy controls.  P TSD 

patients had a higher BP2 in the orbitofrontal cortex than healthy controls.  C ombat-exposed 

controls had a higher BP2 in the orbitofrontal cortex and lower BP2 in the amygdala than both 

PTSD patients and healthy controls.  T hese regions are involved in reward and emotional 

processes, and abnormal opioid receptor functioning in these areas may contribute to emotional 

numbing and anhedonia.   

Consistent with the finding of altered opioid receptor functioning in PTSD, animal 

research has shown that inescapable stress produces increased opioid release in the presence of 
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trauma-related cues causing conditioned analgesia (Hyson et al., 1982). Foa, Zinbarg, and 

Rothbaum (1992) argued that this phenomenon approximates emotional numbing in humans 

with PTSD, and that analgesia in PTSD patients may be one manifestation of emotional 

numbing. Evidence of conditioned analgesia in PTSD patients supports this hypothesis (Pitman 

et al, 1990; Diener et al., 2012).     

Complementary to the finding of opioid-mediated analgesia in PTSD, it has also been 

hypothesized that a depletion of catecholamines, particularly norepinephrine and dopamine, may 

account for emotional numbing (van der Kolk et al., 1985).  Dopamine within the reward system 

is associated with positive emotions and feelings of pleasure, and opioid release triggers 

catecholamine release, causing an initial increase in dopamine followed by a period of depletion.  

These theories postulate that there may be alternating periods of increased and 

subsequently decreased opioid and catecholamine activity which relate to symptoms of 

emotional numbing.  The mixed evidence from preliminary evaluations of opiate antagonists and 

dopamine agonists provides some highly circumstantial evidence that either may potentially 

alleviate some symptoms of PTSD under the correct conditions.  A  preliminary study of the 

opiate antagonist nalmefene found a decrease in PTSD symptoms, including emotional numbing, 

in a small, uncontrolled sample of veterans (Glover, 1993).  The opiate antagonist naltrexone 

was found effective in reducing flashbacks in two case studies of an adult male and female (Bills 

& Kreisler, 1993).  However, there is no convincing support for the effects of nalmefene, and a 

preliminary study of naltrexone did not find clinically significant decreases in any PTSD 

symptoms (Lubin et al. 2002). Furthermore, opiate antagonists may actually increase symptoms 

of PTSD after initial administration (Glover, 1995). These mixed findings may indicate 

fluctuating levels of natural opioid release in the reward system, so that opioid antagonists 
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reduce symptoms during periods of increased opioid release (such as in the presence of a trauma-

related cue), but not otherwise.  There is also preliminary support for the hypothesis that PTSD 

may include at least periodic catecholamine depletion.  In three case studies of PTSD treatment 

with psychostimulants, Houlihan (2011) saw improvement in overall functioning and PTSD 

symptoms in three military veterans.  O ne veteran specifically reported improvements in 

symptoms of emotional numbing, consistent with the hypothesis that emotional numbing may be 

caused by catecholamine depletion.  H owever, these results have yet to be replicated and 

subjected to vigorous, controlled evaluation.       

In addition to psychostimulants, substances of abuse are also known to alter functioning 

in the reward system by triggering the release of mesolimbic dopamine (Blum et al., 2000), and 

21.7% of military veterans with PTSD have been found to have a comorbid substance abuse 

disorder (Petrakis, Rosenheck, & Desai, 2011).  Likewise, alcohol and nicotine use affect 

mesolimbic dopamine reward system function and are prevalent in civilians and military 

personnel with PTSD (Blum et al., 2000).  Furthermore, Jakupkap et al. (2010) found that 

emotional numbing symptoms were more strongly associated with alcohol misuse than other 

symptom clusters in OEF/OIF veterans, and that this relationship persisted after controlling for 

depression.  However, Maguen et al. (2009) found that only re-experiencing symptoms of PTSD 

predicted post-deployment problem drinking in veterans of the peacekeeping assignment in 

Kosovo.  

Three studies have linked nicotine use and symptoms of emotional numbing.  Kirby et al. 

(2008) found that among male OEF/OIF veterans with PTSD, current smokers had significantly 

higher symptoms of emotional numbing, but were statistically equal with non-smokers in all 

other symptom clusters.  Cook et al. (2009) found that veterans (with and without a diagnosis of 
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PTSD) with higher levels of overall PTSD severity were more likely to report heavy smoking 

(greater than or equal to 20 cigarettes per day), as were veterans with higher levels of emotional 

numbing.  None of the other symptom clusters of PTSD predicted smoking.  Greenberg et al. 

(2012) found that emotional numbing was the only symptom cluster to significantly predict 

lifetime smoking in U.S. adults with a trauma history after controlling for all other symptom 

clusters and demographic variables.  However, no clusters were uniquely associated with lifetime 

cigarettes per day, defined as the highest number of cigarettes smoked on a “usual” day.  The use 

of substances of abuse, alcohol and nicotine in veterans with PTSD may reflect an attempt to 

stimulate an underactive reward system (Blum et al., 2000), and the same underactivity may also 

contribute to emotional numbing.         

The preceding evidence suggests that there may be associations between emotional 

numbing, nicotine use, and reward system activity during wakefulness in PTSD.  In addition, 

there is also reason to suspect that neurobiological functioning in sleep influences symptoms of 

PTSD, including emotional numbing.  S leep disturbances, i.e. insomnia and nightmares, are 

among the most commonly reported symptoms of PTSD (Green, 2003), indicating that the 

neurobiological mechanisms responsible for PTSD can also alter sleep-wake brain mechanisms.  

Sleep deprivation has been shown to increase reactivity to both positive and negative stimuli in 

healthy adults, and can increase feelings of anxiety and negatively affect mood (Talbot et al., 

2010).  Using fMRI techniques, Gujar et al. (2011) observed increased activation in response to 

reward following sleep deprivation in the ventral tegmental area, left putamen, amygdala, and 

left insular cortex, while Venkatraman et al. (2007; 2011) observed increased activation in the 

right nucleus accumbens and ventral striatum, and decreased activation in the insular and 

orbitofrontal cortices, indicating a greater response to reward and a lesser response to loss.  Sleep 
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regulation and reward processing in the mesolimbic pathway are jointly influenced by orexin 

projections from the lateral hypothalamus, which may mediate the relationship between sleep 

and reward (Harris, Wimmer, and Aston-Jones, 2005; Sakurai, 2007). This indicates that 

mesolimbic activity during sleep may be of relevance to the neurobiological model of PTSD, 

particularly during rapid eye movement sleep (REM).   

In healthy REM sleep, there is a r elative increase in glucose metabolism compared to 

quiet wakefulness in brain structures relevant to reward processing and PTSD, including the 

amygdala, ventral striatum, and orbitofrontal and cingulate cortices (Nofzinger et al., 1998).  

Dysregulation in REM sleep thus has the potential to affect reward processing and symptoms of 

PTSD, including emotional numbing, and may contribute to nicotine use.       

This study used [18F]-fluorodeoxyglucose (FDG) PET in conjunction with 

polysomnography (PSG) in order to investigate the neural correlates of emotional numbing, 

nicotine use, and relative regional cerebral metabolic rate of glucose (rCMRglc) in both quiet 

wakefulness and REM among OEF/OIF veterans, with a primary focus on brain regions of the 

reward system.  Due to previous findings of less activation in the reward system in response to 

reward in adult PTSD patients (Sailer et al., 2008; Elman et al., 2009), in addition to the 

dysregulation of neurotransmitters implicated in reward and emotional processing, it was firstly 

hypothesized that there would be a negative correlation between emotional numbing and relative 

rCMRglc in wakefulness and REM in reward structures.  B ased on the previous findings of 

increased nicotine use with increased emotional numbing (Kirby et al., 2008; Cook et al. 2009; 

Greenberg et al., 2012), it was secondly hypothesized that nicotine use and severity of emotional 

numbing symptoms would be positively correlated.  It was thirdly hypothesized that there would 

be a negative correlation between nicotine use and relative rCMRglc in wakefulness and REM in 
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rewards structures, as nicotine use may represent an attempt to stimulate a dysregulated reward 

system.   
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2.0  METHODS 

2.1 PARTICIPANTS 

Data were collected from participants enrolled in one of two study protocols (Grant PT073961-

W81XWH-07-PTSD-IIRA and Grant MH083035) conducted by the Veterans Sleep Studies in 

the Department of Psychiatry at the University of Pittsburgh between June 2008 a nd October 

2011.  Procedures for both protocols were approved by the University of Pittsburgh, Institutional 

Review Board and the Human Use Subcommittee of the Radioactive Drug Safety Committee.  

Written informed consent was obtained from participants before being enrolled in the study and 

compensation was provided.  E ligible participants were 18-50 year old male and female 

OEF/OIF veterans recruited through local media advertising and military-focused health fairs.  

Participants were excluded for a diagnosis of current, untreated severe depression, history of 

substance or alcohol abuse or dependence within three months prior to study enrollment, 

significant or unstable acute or chronic medical conditions, history of traumatic brain injury or 

current concussive symptoms, current sleep disorders other than insomnia or nightmares, a 

traumatic experience within three months prior to study enrollment, presence of implanted 

devices or metal in the body, fear of enclosed spaces, previous radiation exposure within the past 

year exceeding recommended safety limits, pregnancy or breastfeeding, and unexpected, 

untreated, or serious EKG findings.  In addition, participants had not taken medications known to 
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affect sleep or wake function within a minimum of two weeks prior to beginning study 

procedures.  Sobriety was required during all study procedures.  Participants were requested not 

to consume more than four cups of coffee or the caffeine-equivalent per 24 hour period, and no 

more than two alcoholic drinks per day, or more than 14 d rinks per week on average.  

Participants were permitted to remain in ongoing counseling services they may have been 

receiving prior to study enrollment, but were excluded if they were receiving cognitive 

behavioral therapy for PTSD.                                             

2.2 ASSESSMENTS 

Psychiatric symptoms were assessed by a research clinician during a diagnostic interview using 

the following standardized assessments: 

Structured Clinical Interview for DSM-IV (SCID) – The SCID assesses current and past 

symptoms of DSM-IV disorders, including mood, anxiety, psychotic, alcohol, substance, 

somatic, and eating disorders (First et al., 1996). 

Structured Interview for DSM-IV Sleep Disorders (SID-SD) – The SID-SD assesses the presence, 

frequency, and severity of current and past symptoms of DSM-IV sleep disorders, as well as 

other common sleep disorders including obstructive sleep apnea and restless leg syndrome.  

Clinician Administered PTSD Scale-Part 1 (CAPS) – The CAPS assess the frequency and 

intensity of the 17 DSM-IV diagnostic criteria for PTSD (Weathers, Keane, & Davidson, 2001).  

This study utilized the CAPS to assess past month and lifetime PTSD symptoms.  A minimum 

score of one for frequency and two for intensity was required of an item to contribute to a 

diagnosis of PTSD.  Per the emotional numbing factor of King et al. (1998), an emotional 
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numbing scale was created by summing the frequency and intensity scores of items 8-12 (C3-

C7), yielding a possible emotional numbing score 0-40 with higher scores indicating greater 

endorsement of emotional numbing symptoms.  A non-emotional numbing scale was created by 

summing the frequency and intensity scores of the remaining items (1-7, 13-17), yielding a 

possible non-emotional numbing score 0-96, which was used as a covariate to control for PTSD 

severity among all symptoms other than emotional numbing. The emotional numbing and non-

emotional numbing scales are summarized in Table 1. 

Pittsburgh Sleep Quality Index (PSQI) – The PSQI is a s elf-report measure of past month 

subjective sleep quality with higher scores indicating lower quality sleep.  S cores less than 5 

indicate good quality sleep (Buysse et al., 1989). 

Beck Depression Inventory (BDI) – The BDI is a s elf-report questionnaire that assesses the 

severity of depression symptoms, with scores of 13 and below indicating minimal depression 

(Beck, Steer, & Brown, 1996).   
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Table 1. PTSD symptoms included on emotional numbing and non-emotional numbing scales 

 

Combat exposure was measured with the Combat Exposure Scale (CES), which is a 

seven item self-report questionnaire that assesses the frequency of dangerous combat 

experiences.  S cores range from 0-41, with higher scores indicating a higher frequency of 

dangerous combat experiences (Keane et al., 1989).     

Sleep and substance use behaviors were assessed for one to two weeks following the 

diagnostic interview, using the Pittsburgh Sleep Diary (PghSD) (Monk et al., 1994).  Participants 

recorded their behavior in the PghSD twice per day.  In the morning, participants reported on 

their previous nights’ sleep, including sleep quantity and quality measures.  Habitual bedtimes 

and rising times were calculated from this sleep diary data.  In the evening, participants reported 

on their sleep-related activities during the day, including their caffeine intake, nicotine and 

alcohol use, and other medication use.  Average daily use of caffeine, nicotine and alcohol was 
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computed from PghSD reports.  Although participants were supposed to complete the PghSD for 

7-14 days, the prospective, self-report nature of the PghSD makes it difficult to ensure that 

participants complete it fully.  In the case that a diary was not fully completed, data was obtained 

and averaged according to the days that were completed.  In total, seven participants provided 

less than seven days of PghSD data.  Three of these participants provided six days of data, two 

provided five days of data, and two provided four days of data. No participants provided less 

than four days of PghSD data.  Participants additionally completed a urine drug screen and 

breathalyzer test before completing study procedures to verify sobriety.  S moking was not 

permitted during imaging procedures or between the participant’s habitual bedtime and morning 

awakening time while completing a sleep study, but was not otherwise restricted.   

In addition, a sleep screening study was completed in the University of Pittsburgh 

Neuroscience and Clinical Translational Research Center (NCTRC) (Grant UL1RR024153) to 

verify the absence of obstructive sleep apnea or any other exclusionary sleep disorders.  

Physical health was assessed by a study physician during a physical evaluation including 

a medical history questionnaire, a traumatic brain injury screening questionnaire, a blood draw to 

test blood chemistry, a urine drug screen, and an EKG. Included participants did not endorse any 

current concussive symptoms or other significant medical conditions.   

Additionally, magnetic resonance imaging (MRI) was used to assess any potential brain 

pathology and served for co-registration with PET images.  An MRI scan was completed at the 

University of Pittsburgh Magnetic Resonance Research Center (MRRC) using a Siemens 3T Trio 

scanner.  An axial series oriented to the anterior-posterior commissure line with a 5mm section 

thickness/1mm intersection gap was used to detect structural brain anomalies.  A  volumetric 

MPRAGE sequence was obtained in the sagittal plane, which was optimized for maximal 
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contrast between brain matters and used a high resolution slice thickness of 1.5/1.2mm, 0mm 

interslice.  T his image served for MR-guided region of interest (ROI) placement and co-

registration with PET images via Automated Image Restoration (AIR).  

2.3 POLYSOMNOGRAPHY AND PET PROCEDURES 

PSG and PET procedures were conducted according to validated methods (Nofzinger et al., 

1998).  P articipants stayed overnight in the NCTRC a minimum of four nights, including the 

sleep screening study. Figure 1 provides a graphic overview of the experimental protocol.  On 

each experimental night, participants were monitored via PSG, including bilateral central and 

occipital EEG channels, EOG, and submentalis EMG, and had intravenous tubing placed in each 

arm to allow for accommodation and administration of the [18F]-FDG and to sample blood 

radiation levels following injection.  Participants were instructed to go to bed each night at their 

habitual bedtime, as determined by PghSD data.  Participants completed two PET scans over the 

four nights in the lab.  The first scan assessed relative rCMRglc in wakefulness, while the second 

scan assessed relative rCMRglc in REM.   
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Figure 1. Timeline of PET procedures 

GNT = habitual bedtime; GMT = habitual awakening time. 

In order to optimize alertness during the wake scan, the first [18F]-FDG injection occurred 

two to four hours after the habitual wake time following Night 2.  Participants were instructed to 

lie supine with their eyes closed while still being monitored by PSG to ensure wakefulness.  

After a 15 minute accommodation period, participants were injected with the [18F]-FDG through 

the intravenous catheter already in place.  The uptake of [18F]-FDG is complete at 20 minutes, 

and is 70-80% maximal in the first 12 minutes (Nofzinger et al., 1998).  P articipants thus 

remained in a state of quiet wakefulness for an additional 20 m inutes following the injection.  

After the completion of the uptake period, participants were transported from the NCTRC to the 

PET center facilities, where scans were completed using a S iemens/CTI ECAT HR+ scanner 

with a N euro-insert (CTI PET Systems, Knoxville, TN) in 3D mode.  S ixty minutes after 

injection time, a series of six sequential five minute emission scans was begun, allowing for a 

composite 30 m inute scan which excluded data corrupted by movement.  T he emission scans 

were followed by a 15 minute transmission scan to allow for quantitative correction of 

attenuation.  

Wake Scan 

 

REM Scan 
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After completing the wake scan, participants completed a recovery night in the NCRTC 

without a PET scan.  On the fourth night, injection of [18F]-FDG was made at the onset of the 

second REM period, as indicated by PSG.  T he participant was awoken 20 m inutes after the 

injection and the same scanning procedures following the injection during wakefulness were 

repeated.  The participant was then allowed to return to the NCRTC and sleep ad lib through the 

morning.   

2.4 IMAGE ANALYSES 

PET scans were considered valid if participants remained in the target state for at least 10 

minutes after injection and did not move during the scan.  One to two non-contiguous epochs of 

a state which was not the target state were allowed within the first 10 minutes.  A lthough 

injection times were chosen to optimize state consistency, states can change quickly and sleep in 

veterans tends to be particularly fragmented.  H owever, uptake of [18F]-FDG is low after the 

initial 10 minute uptake period, so PET scans still approximate the stage maintained in the first 

10 minute period, regardless of state inconsistency in the second 10 minutes of uptake 

(Nofzinger et al., 1998).  Brain/non-brain segmentation was applied to the MR data to create a 

brain tissue mask for sampling the PET data for the purpose of whole brain normalization of 

regional metabolic rate of deoxyglucose (MRDglc).  A bsolute brain glucose metabolism was 

estimated based on s ix venous plasma samples collected every 8 m inutes starting 45 m inutes 

after [18F]-FDG injection.  This was used to correct for between subject variability.  The relative 

regional cerebral metabolic rate of glucose (rCMRglc) value served as the primary measure of 

neuronal activity level.  PET images were reconstructed using standard commercial software as 
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63 transaxial slices (center to center 2.4 mm) with approximate  6mm full-width, half-maximum 

resolution.  Automatic Image Restoration software was used to co-register PET and MR image 

sets.  MR and PET images were then translated in Montreal Neurological Institute (MNI) space 

according to standard equations to allow for between subject comparisons. 

2.5 STATISTICAL ANALYSES 

Demographic and clinical variables were summarized and compared using SPSS 19 software. 

Independent sample t-tests and chi-square tests were used to compare PTSD with non-PTSD 

patients, nicotine with non-nicotine users, and males with females within both samples.  

Correlations among continuous variables were computed using Pearson correlations.  Statistical 

Parametric Mapping version 8 (SPM8) (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/) was 

used to conduct negative and positive correlational analyses between relative rCMRglc and 

emotional numbing and daily average nicotine use within the wake and REM samples.  The 

emotional numbing correlations were also repeated using non-emotional numbing as a covariate. 

Region of interest analyses (ROIs) were conducted for the striatum, defined as the bilateral 

caudate, putamen and nucleus accumbens. ROIs were also conducted for the bilateral amygdala.  

If a statistically significant cluster of contiguous voxels was found within these structures, ROIs 

were conducted for the individual structures within the larger ROI structure (e.g. right/left 

striatum, right/left caudate, right/left putamen, right/left nucleus accumbens, right/left amygdala) 

in order to further localize the cluster.  Given the a priori nature of the hypotheses under scrutiny, 

statistical significance of clusters within the ROIs was assessed using the uncorrected p value 
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(puncorr) of the maximum voxel of significance.  A maximum of puncorr=0.01 was used as a cut off 

for significance.   

Exploratory whole brain correlational analyses were also conducted. The results of these 

analyses are presented in Appendix A as supplementary material.  A  maximum cluster-level 

uncorrected p value of puncorr=0.05 was permitted in order to include a cluster in the results, but 

the more stringent cluster-level family-wise corrected p value (pfwe-corr) was also reported.  These 

clusters received alphabetic labels for ease of identification.   
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3.0  RESULTS 

3.1 SAMPLE CHARACTERISTICS 

Thirty six participants met inclusion criteria and completed at least one valid [18F]-FDG PET 

scan.  T wenty five participants completed valid wake and REM scans, nine participants only 

completed a valid wake scan, and two participants only completed a valid REM scan.  

Participants who completed a valid wake scan comprised the wake sample (n=34) and 

participants who completed a valid REM scan comprised the REM sample (n=27). 

3.1.1 Demographics 

3.1.1.1 Wake Sample 

Thirty four participants met inclusion criteria and completed a valid [18F]-FDG PET scan during 

wakefulness.  The demographic and clinical characteristics of this sample are summarized in 

Table 2. Participants were 22 to 45 years old and Caucasian males comprised the majority of the 

sample.  Combat exposure ranged from light to heavy combat, with an average combat exposure 

of light-moderate (Mean=15.47, SD=10.60).  A verage emotional numbing and non-emotional 

numbing were moderate for the PTSD sample (Mean=13.38, SD=6.10; and Mean=44.69, 

SD=11.03) and low for the non-PTSD sample (Mean=2.83, SD=3.97; and Mean=12.39, 

SD=8.13).  Emotional numbing scores ranged from 0-25 in the PTSD sample and 0-13 in the 
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non-PTSD sample.  The distribution of emotional numbing scores for each sample is displayed 

in Figure 2. There were non-significant trends for females to have higher emotional numbing and 

non-emotional numbing scores than males.  Within the entire wake sample, average symptoms of 

depression were mild, with a mean BDI score of 5.32 (SD= 4.98) well below the clinical cut off 

of 13.  Sleep difficulties were mild to moderate within the wake sample, with a mean PSQI score 

of 5.74 (SD=3.65) slightly above the clinical threshold score for good sleep.  PTSD patients had 

moderately poor sleep with a mean PSQI score of 8.13 ( SD=3.50) versus non-PTSD patients 

who had relatively good sleep with a mean PSQI score of 3.61 ( SD = 2.20). Average daily 

nicotine, alcohol and caffeine use were low within the entire wake sample.  A verage daily 

nicotine use for the nicotine user sample was moderate with a mean of 7.75 dos es per day 

(SD=5.23).  Because there were only five females and five non-Caucasians in the wake sample, 

gender and race differences could not be explored.   

Table 2. Wake sample demographic and clinical characteristics 
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Figure 2. Wake sample emotional numbing scores 

3.1.1.2 REM Sample 

Twenty seven participants met inclusion criteria and completed a valid [18F]-FDG PET scan 

during REM.  The demographic and clinical characteristics of this sample are summarized in 

Table 3. Participants were 22 to 40 years old and Caucasian males comprised the majority of the 

sample.  Combat exposure ranged from light to heavy combat, with an average combat exposure 

of light-moderate (Mean=15.56, SD=10.12).  Av erage emotional numbing and non-emotional 

numbing were moderate for the PTSD sample (Mean=13.33, SD=6.28; and Mean=42.87, 

SD=11.67) and low for the non-PTSD sample (Mean=3.42, SD=4.60; and Mean=13.83, 

SD=9.38).  Emotional numbing scores ranged from 0-25 in the PTSD sample and 0-13 in the 

non-PTSD sample.  The distribution of emotional numbing scores for each sample is displayed 

in Figure 3. There were non-significant trends for females to have higher emotional numbing and 

non-emotional numbing scores than males, and females were significantly more likely than 

males to receive a diagnosis of PTSD.  Within the entire REM sample, average symptoms of 

depression were mild, with a mean BDI score of 6.04 (SD= 5.06) well below the clinical cut off 

of 13.  Sleep difficulties were mild to moderate within the REM sample, with a mean PSQI score 



  

 23 

of 6.37 (SD=3.75) slightly above the clinical threshold score for good sleep.  PTSD patients had 

moderately poor sleep with a mean PSQI score of 8.07 ( SD=3.63) versus non-PTSD patients 

who had relatively good sleep with a mean PSQI score of 4.25 ( SD = 2.77). Average daily 

nicotine, alcohol and caffeine use were low within the entire REM sample.  A verage daily 

nicotine use for the nicotine user sample was moderate with a mean of 9.85 doses per day 

(SD=8.76).  Because there were only five females and three non-Caucasians in the REM sample, 

gender and race differences could not be explored.   

Table 3. REM sample demographic and clinical characteristics 
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Figure 3. REM sample emotional numbing scores 

       

3.1.2 Correlations Among Variables 

Correlations among demographic and clinical variables are summarized in Table 4 for the wake 

sample and Table 5 for the REM sample.  There were significant, moderately strong, positive 

correlations among emotional numbing, non-emotional numbing, depressive symptoms and poor 

sleep quality in both samples. There was a significant, moderate, positive correlation between 

daily average nicotine and caffeine use in the wake sample.  This relationship also appeared as a 

non-significant trend in the REM sample (p=0.087).  D aily average nicotine and caffeine use 

were not significantly correlated with emotional numbing, non-emotional numbing, depressive 

symptoms, or sleep quality in either sample.  There was a significant, moderate, negative 

correlation between daily average alcohol use and non-emotional numbing in the REM sample.  

This relationship also appeared as a non-significant trend in the wake sample (p=0.064). There 

was also a n on-significant trend in both samples of a moderate, negative correlation between 

daily average alcohol use and emotional numbing (p=0.082 in wake, and p=0.058 in REM).     
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Table 4. Correlations among variables in wake sample 

 

Table 5. Correlations among variables in REM sample 
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3.2 REGION OF INTEREST ANALYSES    

Results of the ROI analyses are summarized in Table 6.  A ll of the reported clusters were 

significant at the maximum voxel of significance puncorr=0.01 level, but none of the clusters were 

significant at the cluster-level puncorr=0.05 or pfwe-corr=0.05 levels.      

Table 6. Summary of significant clusters in ROI analyses 

  

3.2.1 Negative Correlations 

During wakefulness, increased emotional numbing was associated with decreased relative 

rCMRglc in three clusters of continuous voxels located in the right striatum, left putamen, and 

left amygdala (Figure 4).  During REM, increased emotional numbing was only associated with 

EN = Emotional numbing without covariates; ENCovNonEN = Emotional numbing controlling for non-emotional numbing; NicAve = Daily average nicotine use; k 
= number of voxels included in cluster; Z = test of significance of the maximum voxel of significance within the cluster; x,y,z = MNI coordinates of the maximum 
voxel of significance 
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decreased relative rCMRglc in a s ingle cluster located in the right putamen (Figure 5).  A fter 

controlling for non-emotional numbing, however, increased emotional numbing was not 

associated with decreased relative rCMRglc during wakefulness or REM.   

During wakefulness, increased daily average nicotine use was associated with decreased 

relative rCMRglc in a single cluster of continuous voxels located in the left striatum (Figure 6).  

During REM, however, increased daily average nicotine use was not associated with decreased 

relative rCMRglc. 

 

 

Figure 4. Decreased relative rCMRglc in wake with increased emotional numbing without covariates 
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Figure 5. Decreased relative rCMRglc in REM with increased emotional numbing without covariates 

 

 

Figure 6. Decreased relative rCMRglc in wake with increased nicotine use 

3.2.2 Positive Correlations 

During wakefulness, increased emotional numbing was not associated with increased relative 

rCMRglc.  After controlling for non-emotional numbing, however, increased emotional numbing 



  

 29 

was associated with increased relative rCMRglc during wakefulness in one cluster located in the 

right amygdala (Figure 7).  D uring REM, increased emotional numbing was associated with 

increased relative rCMRglc in two clusters of continuous voxels located in the bilateral caudate 

(Figure 8).  A fter controlling for non-emotional numbing, increased emotional numbing was 

associated with increased relative rCMRglc during REM in three clusters located in the right 

caudate and bilateral amygdala (Figure 9).   

During wakefulness, increased daily average nicotine use was associated with increased 

relative rCMRglc in three clusters located in the right putamen, left caudate, and right amygdala 

(Figure 10).  D uring REM, however, increased daily average nicotine use was not associated 

with increased relative rCMRglc.  

 

 

Figure 7. Increased relative rCMRglc in wake with increased emotional numbing controlling for non-emotional 

numbing 
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Figure 8. Increased relative rCMRglc in REM with increased emotional numbing without covariates 

 

 

Figure 9. Increased relative rCMRglc in REM with increased emotional numbing controlling for non-emotional 

numbing 
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Figure 10. Increased relative rCMRglc in wake with increased nicotine use 
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4.0  DISCUSSION 

This study used [18F]-FDG PET imaging and PSG to examine the neural correlates of emotional 

numbing and daily average nicotine use during wakefulness and REM in OEF/OIF veterans.  

Consistent with the a priori hypotheses, ROI analyses revealed that decreased relative rCMRglc 

was associated with increased emotional numbing in the striatum, particularly during 

wakefulness in the right striatum and left putamen.  Lower baseline activity in these areas of the 

reward system during wakefulness may indicate a higher threshold for stimulating positive 

emotion and reward processes, consistent with the finding of less activation in response to 

reward in patients with PTSD (Sailer et al., 2008; Elman et al., 2009).  However, this relationship 

did not appear to be unique to emotional numbing, as controlling for non-emotional numbing 

removed the associations between decreased relative rCMRglc and increased emotional 

numbing.  Thus the striatum may also be relevant to symptoms of PTSD other than emotional 

numbing.  This study did not control for the other symptom clusters individually, however, so 

this study cannot provide definitive evidence regarding which other symptoms of PTSD may 

also be negatively associated with relative rCMRglc in the striatum.  Previous research has 

shown this area may be involved in sleep-wake regulation, and thus potentially also related to the 

sleep disturbances in PTSD.  S imilarly, symptoms of hyperarousal and re-experiencing are 

thought to be closely associated with both emotional numbing and brain structures related to the 

reward system, which may include the striatum.     
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Contrary to expectations, ROI analyses also revealed that increased relative rCMRglc in 

the striatum was associated with increased emotional numbing during REM, specifically in the 

bilateral caudate.  Relative rCMRglc in a small cluster in the right putamen was negatively 

associated with emotional numbing, but this relationship was much smaller than the positive 

association and did not survive controlling for non-emotional numbing.  The positive 

relationship appeared to be unique to emotional numbing in the right caudate, as it survived 

controlling for non-emotional numbing, although as a smaller cluster of continuous voxels. This 

may be consistent with phasic theories of PTSD symptomology if trauma survivors are 

potentially more vulnerable to trauma-related cues and re-experiencing symptoms in REM, 

leading to subsequent daytime emotional numbing.  Exposure to trauma-related cues may come 

from nightmares present in REM, which cannot be actively avoided except by avoiding sleep 

entirely or awakening at the onset of a nightmare.  The natural increase in reward system activity 

during REM may also trigger a reversal of dysregulation within the reward system, so that 

activity is more underactivated in wakefulness and more overactivated in REM as emotional 

numbing and overall PTSD symptoms increase.       

Contrary to expectations and previous findings (Kirby et al., 2008; Cook et al., 2009; 

Greenberg et al., 2012), emotional numbing was not associated with nicotine use in the present 

sample, which may be due to the relatively low nicotine use among nicotine users.  Only two 

participants consumed the nicotine equivalent of 20 or more cigarettes per day, which was the 

cut off for the category of heavy smokers previously associated with emotional numbing severity 

(Cook et al., 2009).  The results of the nicotine use analyses should thus be treated with some 

caution, as they may not be representative of the heaviest smokers.  Nonetheless, ROI analyses 

revealed that decreased relative rCMRglc in wakefulness was associated with increased daily 
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average nicotine use in the striatum, specifically the left striatum, which was consistent with the 

hypothesis that patients may try to stimulate an underactive reward system.  This also paralleled 

the finding of a cluster in the left putamen with a negative association between rCMRglc and 

emotional numbing without covariates, suggesting that underactivity in the left striatum may be 

involved in both (non-specific) emotional numbing and nicotine use.  However, this negative 

relationship was not present in REM as expected, nor was nicotine use positively associated with 

rCMRglc in the striatum as was emotional numbing.  Furthermore, clusters of increased relative 

rCMRglc in the striatum, specifically the right putamen and left caudate, and in the right 

amygdala were also associated with increased daily average nicotine use during wakefulness.  

However, these clusters were much smaller than the cluster found in the negative correlation, and 

were on t he threshold for significance.  T here is thus more evidence to support a negative 

correlation between daily average nicotine use and relative rCMRglc in the striatum than a 

positive correlation.  This evidence tentatively suggests that there may be a relationship between 

the striatum and nicotine use and emotional numbing, but these results should be treated with 

caution given the potentially skewed sample of nicotine users and lack of direct correlation 

between emotional numbing and nicotine use, as well as the lack of parallel findings in REM. 

Finally, ROI analyses revealed relatively small but significant clusters within the 

amygdala that were generally consistent with striatal activity, indicating that the amygdala, 

which regulates the salience of emotions, may also be related to emotional numbing.  I n 

wakefulness, relative rCMRglc in the left amygdala was negatively associated with emotional 

numbing without covariates, as was the left putamen.  In contrast, relative rCMRglc in the right 

amygdala in wakefulness and the bilateral amygdala in REM was positively associated with 

emotional numbing after controlling for non-emotional numbing.  This finding provides evidence 
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that the amygdala may be involved in emotional numbing beyond its established role in fear- and 

anxiety-related symptoms in PTSD.       

Results thus indicate that the striatum is an important structure in PTSD pathology, both 

for emotional numbing and other symptoms of PTSD, and that patterns of underactivity in 

wakefulness may be reversed as patterns of overactivity in REM as symptoms of emotional 

numbing increase.  A lthough daily average nicotine use was not associated with emotional 

numbing, it was associated with decreased relative rCMRglc in the striatum, which is consistent 

the hypothesis that nicotine users may be trying to stimulate positive experiences in an 

underactive reward system.  Finally, these results indicate that the amygdala, which is associated 

with the salience of emotional experiences, may play a role in emotional numbing as well as 

fear- and anxiety-related symptoms in PTSD.       

One limitation in the literature on e motional numbing is the heterogeneity in the 

definitions of emotional numbing that have been used across studies, and the difficulty that this 

presents for comparing the current results to previous studies.  This heterogeneity can be seen, 

for instance, in the literature on emotional numbing and nicotine use.  On the basis of King et 

al.’s (1998) four-factor model of PTSD, Cook et al. (2009) and Kirby et al. (2008) used the same 

five symptoms as the current study to define emotional numbing, although Cook et al. (2009) 

obtained their data from the PTSD Checklist-Military Version and Kirby et al. (2008) obtained 

their data from the Davidson Trauma Scale.  G reenberg et al. (2012) performed their own 

confirmatory factor analyses on data obtained from the Alcohol Use Disorder and Associated 

Disabilities Interview Schedule-IV, and produced a four-symptom factor for emotional numbing 

with excluded the amnesia item (which was placed instead with the avoidance symptoms).  Other 

studies examining emotional numbing have used only diminished interest, detachment, and 



  

 36 

restricted affect, and either excluded the amnesia and foreshortened future items entirely (e.g. 

Maguen et al., 2009) or included them in other symptom clusters (e.g. Nunnink et al. (2010), 

who included amnesia and a sense of foreshortened future in the avoidance cluster).  This study 

chose to define emotional numbing based on the empirical evidence of King et al.’s (1998) four 

factor model of PTSD, which is also most consistent with the proposed revisions for the creation 

of a fourth factor of PTSD symptoms in the DSM 5 (www.dsm5.org).  The creation of a fourth 

sypmtom cluster which closely resembles King et al.’s (1998) emotional numbing cluster will 

hopefully spur research on the validity of this new symptom cluster, providing a basis for more 

homogenous definition of emotional numbing in future research, and enabling more valid 

comparisons across studies of emotional numbing in PTSD.  One disadvantage of an emotional 

numbing definition based on confirmatory factor analysis of PTSD measures, however, is that it 

may reduce the applicability of the construct to other disorders with are thought to contain an 

element of emotional numbing, such as major depression and depersonalization disorder.   

Future research is needed to verify and expand the results of the current study.  T his 

study lacked sufficient power to examine potential gender and race differences, and although 

smoking was not restricted except during lab stays, heavy smokers were underrepresented, which 

may have skewed the findings related to nicotine use.  T his study chose to focus on m ilitary 

veterans due to the current demands for their care, but results should also be replicated in civilian 

samples.  The results do support the hypothesis that increased emotional numbing is associated 

with dysregulation within the reward system, but future research will need to further elucidate 

the nature of this dysregulation, particularly the finding that there may be overactivity in the 

reward system in REM. This may reflect phasic presentation of PTSD symptoms, and the 

relationships between emotional numbing, the reward system, and the other symptoms of PTSD 

www.dsm5.org
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ought to be explored, including the potential role of nightmares during REM influencing 

subsequent daytime emotional numbing.  Research should also explore the possibility of other 

mechanisms contributing to a general dysregulation within the reward system that exaggerates 

the natural increases and decreases in reward system activity across the sleep-wake cycle.  This 

mechanism may also be related to the mechanisms that contribute to insomnia and other sleep-

related difficulties in PTSD.  The reward system is thus a promising area of focus for future 

neurobiological research on PTSD.                  
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Appendix A 

EXPLORATORY WHOLE BRAIN ANALYSES 

Supplementary findings from the exploratory whole brain correlational analyses are presented 

individually and summarized in Figure 28.  

A.1 RELATIVE RCMRGLC AND EMOTIONAL NUMBING 

A.1.1 Negative Correlation 

Wakefulness 

Decreased relative rCMRglc during wakefulness was associated with increased emotional 

numbing in one cluster (A) of 5119 continuous voxels (MNI coordinates of maximum voxel of 

significance: -32, 52, 4;  Z = 4.26, puncorr<0.000). Cluster A was significant without correction 

(puncorr= 0.004) but not when corrected (pfwe-corr=0.152) and is presented in Figure 11.  Cluster A 

was located in the left hemisphere and included regions of the frontal and temporal lobes, 

including the middle frontal gyrus; frontal inferior, superior and middle orbital gyri; frontal 

superior gyrus; frontal inferior triangularis; and the temporal inferior, superior and middle gyri. 
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Cluster A extended medially into the insula, putamen, hippocampus, pallidum, and amygdala.  

Cluster A also extended slightly into the parietal inferior gyrus, the occipital inferior and middle 

gyri, fusiform and the rolandic operculum.   

 

Figure 11. Maximum voxel of significance Cluster A 

After controlling for non-emotional numbing, decreased relative rCMRglc during 

wakefulness was associated with increased emotional numbing in one, smaller cluster (B) of 

3526 continuous voxels (MNI coordinates of maximum voxel of significance: -32, 52, 2;  Z = 

3.91, puncorr<0.000).  Cluster B was significant without correction (puncorr= 0.014) but not when 

corrected (pfwe-corr=0.423) and is presented in Figure 12.  S imilarly to Cluster A, Cluster B was 

predominantly in the left hemisphere.  Cluster B was located primarily in the left frontal cortex, 

including regions of the frontal superior medial gyrus; frontal middle and superior gyri; frontal 

inferior, middle, and superior orbital gyri; and the frontal inferior triangularis. Cluster B also 

extended slightly into the left insula and midline anterior cingulate cortex. 
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Figure 12. Maximum voxel of significance Cluster B 

REM 

Decreased relative rCMRglc during REM was associated with increased emotional numbing in 

one large cluster (C) of 18,578 c ontinuous voxels (MNI coordinates of maximum voxel of 

significance: 22, 38, -12; Z = 3.77; puncorr<0.000).  C luster C was significant after correction 

(pfwe-corr<0.000), and is presented in Figure 13.  O pposite Clusters A and B, Cluster C was 

predominately located in the right hemisphere.  Cluster C was centered in the right temporal 

lobe, including the right temporal middle, inferior, and superior gyri.  Cluster C also included a 

smaller section of the left temporal superior gyrus; and bilateral Heschl’s gyri and fusiform.  

Cluster C extended anteriorly to the right postcentral, supramarginal, angular and parietal inferior 

gyri; the right frontal inferior triangularis; right frontal inferior orbital gyrus; right frontal inferior 

operculum; right precentral gyrus; bilateral frontal middle and superior gyri; bilateral frontal 

superior medial gyri; bilateral frontal superior, middle and medial orbital gyri; bilateral rolandic 

operculum and left gyrus rectus.  Cluster C extended posteriorly to the right cuneus; bilateral 

precuneus  and lingual gyri;  bilateral occipital middle, superior, and inferior gyri; and bilateral 
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cerebellum.  Cluster C also extended to the right putamen; left caudate; and bilateral calcarine; 

insula; hippocampus; and parahippocampal gyri.              

 

Figure 13. Maximum voxel of significance Cluster C 

After controlling for non-emotional numbing, decreased relative rCMRglc during REM 

was associated with increased emotional numbing in one, smaller cluster (D) of 4727 continuous 

voxels (MNI coordinates of maximum voxel of significance: 26, 50, 14; Z = 3.27, puncorr=0.001). 

Cluster D was significant without correction (puncorr=0.007) but not when corrected (pfwe-

corr=0.218), and is presented in Figure 14.  S imilarly to Cluster C, Cluster D was predominantly 

located in the right hemisphere.  C luster D included right and midline regions of the frontal 

cortex, including the right frontal middle and superior gyri; right and midline frontal superior 

medial gyri; right frontal inferior triangularis; right frontal inferior, middle, and superior orbital 

gyri; midline frontal medial orbital gyri; and right precentral gyrus.  Cluster D extended 

posteriorly to the right postcentral gyrus and ventrally to the right rolandic operculum.  Cluster D 

also extended ventromedially to the right insula and putamen.    
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Figure 14. Maximum voxel of significance Cluster D 

A.1.2 Positive Correlation 

Wakefulness 

Increased relative rCMRglc during wakefulness was associated with increased emotional 

numbing in two separate clusters of continuous voxels, with 3874 voxels in Cluster E and 2092 

voxels in Cluster F (MNI coordinates of maximum voxel of significance: -8, -26, 76; Z = 3.70, 

puncorr<0.000; and 0, 28 , 10; Z = 3.97, puncorr<0.000, respectively). Clusters E and F were 

significant without correction (puncorr=0.011; and puncorr=0.050, respectively) but not when 

corrected (pfwe-corr=0.342; and pfwe-corr=0.853, respectively) and are presented in Figures 15 and 

16.  C luster E was centered on t he midline region of the central sulcus. Cluster E included 

bilateral regions of the postcentral and precentral gyri; paracentral lobule; and superior motor 

area.  Cluster E also extended laterally into the left hemisphere, including regions of the frontal 

middle and superior gyri; and parietal inferior gyrus. Cluster F was located primarily in the 
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bilateral anterior and middle cingulate cortices, and extended to the midline caudate, and the 

right frontal superior and frontal superior medial gyri.  

 

Figure 15. Maximum voxel of significance Cluster E 

 

Figure 16. Maximum voxel of significance Cluster F 

After controlling for non-emotional numbing, increased relative rCMRglc during 

wakefulness was associated with increased emotional numbing in two separate clusters (G and 

H) of continuous voxels, with 3454 and 2939 voxels respectively (MNI coordinates of maximum 
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voxel of significance: -8, -26, 78; Z = 4.70, puncorr<0.000; 50, -82, 14, Z = 2.96, puncorr=0.002, 

respectively). Clusters G and H were significant without correction (puncorr=0.015; and 

puncorr=0.023, respectively) but not when corrected (pfwe-corr=0.442; and pfwe-corr=0.594, 

respectively), and are presented in Figures 17 and 18.  Similarly to Cluster E, Cluster G included 

regions of the left and midline postcentral gyrus; bilateral precentral gyri and paracentral lobule; 

midline frontal superior gyri; and right superior motor area; and extended slightly into the left 

parietal superior and inferior gyri and supramarginal gyri.  Cluster H was located primarily in the 

midline occipital lobe, for which there was no equivalent in the uncontrolled analysis.  Cluster H 

included regions of the bilateral calcarine sulci and lingual gyrus; midline occipital middle and 

inferior gyri with very slight extension into the occipital superior gyri; and midline fusiform and 

cuneus, with a slight extension to the temporal middle gyrus.  There was no equivalent to Cluster 

F found in the controlled analysis. 

 

Figure 17. Maximum voxel of significance Cluster G 
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Figure 18. Maximum voxel of significance Cluster H 

REM 

Increased relative rCMRglc during REM was associated with increased emotional numbing in 

one cluster (I) of 3231 continuous voxels (MNI coordinates of maximum voxel of significance: -

2, 24, 12; Z = 3.07, puncorr=0.001). Cluster I was significant without correction (puncorr=0.021) but 

not when corrected (pfwe-corr=0.534) and is presented in Figure 19. Similar to Cluster F in 

wakefulness, Cluster I was located primarily in the limbic system.  C luster I included midline 

regions of the anterior and middle cingulate cortices; caudate; and superior motor area.  It also 

extended slightly to the right thalamus.  
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Figure 19. Maximum voxel of significance Cluster I 

After controlling for non-emotional numbing, increased relative rCMRglc during REM 

was associated with increased emotional numbing in three separate clusters (J, K and L) of 

continuous voxels, with 2893, 2716, and 2375 voxels respectively (MNI coordinates of 

maximum voxel of significance: 10, -2, 34; Z = 3.16, puncorr=0.001; -14, -36,-10, Z = 3.77, 

puncorr=0.031; and 8, -32, 72, Z  = 3.03, puncorr=0.001, respectively). Clusters J, K and L were 

significant without correction (puncorr=0.027; puncorr=0.031; and puncorr=0.042, respectively) but 

not when corrected (pfwe-corr=0.631; pfwe-corr=0.685; and pfwe-corr=0.789, respectively), and are 

presented in Figures 20, 21 and 22.  Similar to Clusters F and I, Cluster J was located primarily 

in the midline limbic system and included regions of the midline anterior and middle cingulate 

cortices; midline superior motor area; and left caudate, parahippocampal gyrus, hippocampus, 

and amygdala; with slight extension to the bilateral olfactory bulbs and right thalamus.  Cluster 

K was located primarily in the left and midline anterior cerebellum and extended into the limbic 

system. Cluster K included regions of the left and midline anterior cerebellum; midline 

hippocampus and parahippocampal gyrus; and left fusiform and lingual gyrus.  S imilar to 



  

 47 

Clusters E and G, Cluster L included regions of the left and midline precentral and postcentral 

gyri; midline paracentral lobule and precuneus; left parietal inferior and superior gyri; and left 

supramarginal gyrus.   

 

Figure 20. Maximum voxel of significance Cluster J 

 

Figure 21. Maximum voxel of significance Cluster K 
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Figure 22. Maximum voxel of significance Cluster L 

        

A.2 RELATIVE RCMRGLC AND NICOTINE USE 

A.2.1 Negative Correlation 

Wakefulness and REM 

Increased daily average nicotine use was not significantly associated with decreased relative 

rCMRglc during wakefulness or REM.   

A.2.2 Positive Correlation 

Wakefulness 
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Increased relative rCMRglc during wakefulness was associated with increased daily average 

nicotine in three separate clusters (M, N, and O) of continuous voxels, with 5221, 2189,  and 

2143 voxels respectively (MNI coordinates of maximum voxel of significance: 22, -62, 58; Z = 

3.25, puncorr=0.001; -12, -28,52, Z = 3.23, puncorr=0.001; and 22, 6, 36, Z = 3.05, puncorr=0.001, 

respectively). Clusters M, N, and O were significant without correction (puncorr=0.004; 

puncorr=0.045; and puncorr=0.047, respectively) but not when corrected (pfwe-corr=0.142; pfwe-

corr=0.825; and pfwe-corr=0.838, respectively), and are presented in Figures 23, 24 and 25.  Cluster 

M was located in the right hemisphere and included regions of the parietal, temporal, and 

occipital lobes, including the parietal superior and inferior gyri; precentral and postcentral gyri; 

supramarginal gyrus; angular gyrus, temporal superior and middle gyrus; precuneus; occipital 

middle and superior gyri. Cluster M also extended slightly to the rolandic operculum and the 

hippocampus. Cluster N was located laterally from Cluster M in the left hemisphere and included 

regions of the parietal superior and inferior gyri; postcental gyrus; precuneus, paracentral lobule, 

and superior motor area. Cluster N also extended middle cingulate cortex.  Cluster O was located 

bilaterally in the cingulate cortex and frontal lobe and included bilateral regions of the middle 

and anterior cingulate cortices; superior motor area; and frontal superior medial gyri. Cluster O 

also extended slightly to the right frontal inferior operculum and frontal superior gyrus.   
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Figure 23. Maximum voxel of significance Cluster M 

 

Figure 24. Maximum voxel of significance Cluster N 
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Figure 25. Maximum voxel of significance Cluster O 

REM 

Increased relative rCMRglc during REM was associated with increased daily average nicotine 

use in two separate clusters (P and Q) of continuous voxels, with 6519 and 2339 vox els 

respectively (MNI coordinates of maximum voxel of significance: 20, -38, -32; Z = 4.62, 

puncorr=0.000; and -10, -24,56, Z = 3.84, puncorr=0.000, respectively). Clusters P and Q were 

significant without correction (puncorr=0.002; and puncorr=0.045, respectively) but not when 

corrected (pfwe-corr=0.076; and pfwe-corr=0.806, respectively), and are presented in Figures 26 and 

27.  Cluster P was located primarily in the right cerebellum and extended to the left cerebellum, 

bilateral fusiform, and brainstem.  Cluster P also extended slightly to the left parahippocampal 

gyrus; right lingual gyrus; and right temporal inferior gyrus.  S imilarly to Cluster O in 

wakefulness, Cluster Q was located primarily in the left and midline cingulate cortex and frontal 

lobes and included regions of the left and midline middle and anterior cingulate cortices; and 

superior motor area. Cluster Q also extended to the left paracentral lobule and precuneus; and 

right frontal superior gyrus.   
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Figure 26. Maximum voxel of significance Cluster P 

 

Figure 27. Maximum voxel of significance Cluster Q 
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Figure 28. Summary of whole brain analyses 
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