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ENHANCEMENTS OF SPARSE CLUSTERING WITH RESAMPLING AND

CONSIDERATIONS ON TUNING PARAMETER

Wenzhu Bi, PhD

University of Pittsburgh, 2012

Clustering methods are widely used to explore subgroupings in data when the true group

membership is unknown. These techniques are very useful when identifying potential sub-

populations of interest in the medical and public health setting. Examples of these types of

subpopulations include subjects who have certain gene expression profiles related to a cancer

subtype, and subjects who are in the very early, asymptomatic phase, of a chronic illness.

All of these examples are of great public health relevance.

Many of the datasets of interest arise from the development of new technologies and are

subject to the common problem where p, the number of variables, is significantly larger than

the sample size, n. The relatively small sample size, n, may result from the difficulties of

subject recruitment and/or the financial burden of the actual data collection in fields such as

imaging and genetic analysis. The earlier approaches to clustering treat all of the variables

equally, which may not work well when not all of them are relevant to the subgroupings.

Clustering methods with variable selection, also called sparse clustering, have been recently

developed to deal with this problem. We propose a method to add resampling onto sparse

clustering to improve upon the current clustering methodology. The addition of resampling

methods to sparse clustering results in variable selection that is more accurate. The method

is also used to assign an“observed proportion of cluster membership” to each observation,

providing a new metric by which to measure membership certainty. The performance of the

method is studied via simulation and illustrated in the motivating data example.

We also propose an alternative approach for the choice of tuning parameter based on
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an adjusted Bayesian Information Criterion (BIC). Variable selection in sparse clustering is

realized by applying Lasso or related penalties and the tuning parameter for these penalties

has to be determined beforehand. The gap statistic, a distance-based approach, is used to

choose the tuning parameter through permutation and it may behave poorly at times. The

proposed BIC approach is an alternative developed under the more sophisticated model-

based likelihood framework. Its performance is evaluated with simulations.
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1.0 INTRODUCTION

Large datasets have been easily generated by the advancement in computation in the last

twenty years. They exist in the fields of genetics, imaging, chemometrics and many others.

Many of these datasets have the property of “high-dimension, low sample size” (p � n),

which means that the number of variables, p, is much larger than the number of observations,

n. For example in DNA microarray data, the expression levels for tens of thousands genes

can be observed while there are usually dozens or hundreds of subjects in a study. In

neuroimaging, there could be hundreds of thousands of voxels per brain scan with only a few

dozen subjects in a study. The challenge is to extract useful information from this abundance

of data and statistical learning methods have evolved to address these issues.

Statistical learning can be roughly categorized into supervised learning and unsupervised

learning depending on whether the true group membership is known or not. If the true

membership is known, it can serve as a guide for the construction of the statistical learning

method, hence it is named supervised learning. Classification is a classic example. When

the true group membership is unknown, we lose this crucial information for guidance; hence

it is called unsupervised learning. Clustering is a classic example of unsupervised learning

and it is also the focus of this dissertation work.

Clustering analysis usually aims to group a collection of objects into clusters “such that

those within each cluster are more closely related to one another than objects assigned to

different clusters” as defined by Hastie, Tibshirani and Friedman[15]. Correspondingly, the

algorithms try to maximize the between-cluster difference while minimizing the within-cluster

difference. The difference is called dissimilarity, which can be Euclidean distance (i.e.,

squared difference), Manhattan distance (i.e., absolute difference) or other metrics depending

on the problem. Euclidean distance is most commonly used for the dissimilarity measure.
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Typical clustering methods include k-means clustering, k-medoids clustering, hierarchical

clustering and model-based clustering.

K-means clustering is one of the most popular clustering methods[15]. It and its variants

have been widely applied in various fields such as computer science, engineering, business,

economics, biology, chemistry, psychology, neurology, medical imaging, pharmacology and

psychiatry as shown in Figure ??. It can be traced back to work done by Lloyd in 1957[20],

by Forgy in 1965[6], by MacQueen in 1967[21] and by Hartigan and Wong in 1979[13]. The

algorithm was significantly improved by Hartigan and Wong(1979)[13]. K-medoids clustering

is very similar to k-means. The only difference is that the cluster center is the object closest

to the cluster mean while in k-means the cluster center is the cluster mean; in other words,

the cluster centers are medoids rather than centroids. K-medoids clustering is more robust to

outliers for this reason[18]. K-means and k-medoids require the user to specify the number of

clusters while hierarchical clustering does not require so. Hierarchical clustering[16] provides

a dendrogram as the results, which shows a summary of the data. The dendrogram can

be built with either an agglomerative(bottom-up) or a divisive(top-down) approach. The

distance between clusters can be defined in various ways such as defined by the closest pair

of objects between two clusters, or the furtherest pair, or as the average of all the pairs.

K-means, k-medoids and hierarchical clustering methods are considered to be heuristic

distance-based clustering methods. Parametric models have also been developed for cluster-

ing, resulting in model-based clustering techniques. The advantage of model-based clustering

is the ability to draw statistical inference. A very successful model is the finite mixture model

such as work done by McLachlan and Basford in 1988[25], Banfield and Raftery in 1993[1],

and Fraley and Raftery in 1998[7] and 2002[8]. The last two papers discussed different co-

variance structures. The estimation was realized by EM algorithm and the model selection

by Bayesian Information Criterion (BIC).

For a dataset, Xn×p, with n observations and p variables per observation, earlier ap-

proaches to clustering tend to treat all of the variables equally. It may not work well when

not all of them are relevant to the subgroupings, which is especially true in the case of the

“high-dimension, low sample size” (p � n) problem. Clustering methods with variable se-

lection, also called sparse clustering methods, have been recently developed to deal with this

2



Figure 1: The number of journal articles between 1979 and 2010 with k-means clustering

categorized by subject area. Shown above is a sample of the subject areas. Citation data is

obtained from web of knowledge (http://wokinfo.com/).
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problem. Many of the sparse clustering methods make use of an L1/Lasso penalty or related

penalties to realize variable selection. A general framework for clustering was proposed by

Witten and Tibshirani in 2010 [35]. It applied both an L1 and an L2 restraint to realize vari-

able selection. It was demonstrated with sparse k-means and sparse hierarchical clustering.

These penalties were also applied to the model-based clustering framework. Pan and Shen

in 2007[27] proposed a penalized model-based clustering method, in which BIC was used for

model selection. The penalized mixture model assumes independence between variables and

the same diagonal covariance matrix across clusters. The development of sparse clustering

analysis is moving clustering into a new era and allowing us to sift the data more closely

than we have ever been able to.

In this dissertation work we develop two new methods under the scope of sparse clus-

tering. The first method is motivated by the problem of small sample size. For example,

a neuroimaging dataset with a few dozens of subjects is common due to the challenges in

subject recruitment and the cost of scans. Clustering of such data is important in exploring

the patterns associated with different underlying biological characteristics and in searching

for a disease detection threshold. Often times, due to the limitations of the sample size,

one would consider issues such as “How representative is the sample of the population?” or

“If we were going to construct clusters, how much confidence can we have in the clustering

results?” We propose a method to add resampling onto sparse clustering to address these

concerns. This method will alleviate the effects of noise and outliers on the variable selection

and clustering results and generate confidence levels for the clustering results.

The second method is about the choice of the tuning parameter. The results of the Lasso-

related penalties depend on the tuning/penalization parameter choice. The magnitude of

the tuning parameter relates to the number of variables selected for clustering. The choice of

the tuning parameter has been studied in regression and classification with cross-validation

being the main approach. This method can not be easily applied to clustering methods due

to the lack of information on the true group membership. Pan and Shen in 2007[27] used a

modified BIC to determine both the number of clusters and the tuning parameter. Witten

and Tibshirani in 2010[35] proposed using the gap statistic. Yet both of these methods rely

on the correct specification of the tuning parameter pool. We have observed that given

4



a suboptimal pool the gap statistic method could choose a tuning parameter which yields

poor performance when clustering, i.e. a high Classification Error Rate (CER). When this

happens it usually chooses a tuning parameter that is either too small or too large, hence

too few, or too many, variables are chosen for clustering. This is more likely to occur when

the overlap between the clusters is more substantial. In this work, we would like to draw

attention to this phenomenon and also to propose using the BIC for the choice of the tuning

parameter for the sparse k-means method proposed by Witten and Tibshirani in 2010 [35].

The two methods will be described separately in the next two chapters. Chapter 2

includes an introduction to the background, the methods section, simulation study results

and an application to the motivating imaging dataset. In chapter 3, we give an introduction

to the background, the existing methods, scenarios where gap statistic has failed, and the

proposed method to address the issue. The method is demonstrated via a real example and

simulation studies. The last chapter summarizes the conclusions of this work.
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2.0 SPARSE CLUSTERING WITH RESAMPLING

2.1 INTRODUCTION

Large datasets have become commonplace due to the advancement in computation and other

technologies in the last twenty years. They exist in the fields of genetics, imaging, chemomet-

rics and many others. Many of these datasets have the property of “high-dimension, small

sample size” (p � n), where the number of variables, p, is much larger than the number

of observations, n. For example in DNA microarray data, the expression levels for tens of

thousands of genes can be observed while there are usually dozens or hundreds of subjects in

a study. In neuroimaging, there could be hundreds of thousands of voxels per brain scan with

only a few dozen subjects in a study. The challenge is to extract useful information from

this abundance of data and statistical learning methods, including clustering, have evolved

to address these issues.

Clustering aims to group a collection of observations into clusters “such that those within

each cluster are more closely related to one another than objects assigned to different clus-

ters” as defined by Hastie, Tibshirani and Friedman [15]. It can be used to discover and

identify biologically distinct subgroups from an n× p dataset without knowledge of the true

group membership and plays an important role in the earlier stage of scientific studies when

no definite group membership can be assigned to the observations. Clustering can also be

used to establish rules for predicting memberships for additional observations, where par-

simonious rules are desirable for prediction accuracy. As the definition implies, clustering

algorithms are designed to maximize the between-cluster difference while minimizing the

within-cluster difference. This difference, referred to as dissimilarity, can be measured

using Euclidean distance (i.e., squared difference), Manhattan distance (i.e.,absolute dif-
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ference) or other metrics depending on the problem. Typical clustering methods include

k-means clustering, k-medoids clustering, hierarchical clustering and model-based cluster-

ing, with k-means clustering being one of the most popular clustering methods. It and its

variants have been widely applied in various fields such as computer science, engineering,

business, economics, biology, chemistry, psychology, neurology, medical imaging, pharmacol-

ogy and psychiatry. It can be traced back to work done by Lloyd in 1957 [20], by Forgy in

1965 [6], by MacQueen in 1967 [21] and by Hartigan and Wong in 1979 [13], with Hartigan

and Wong significantly improving the algorithm for identifying clusters. Resampling was

used as an approach in “tight clustering” by Tseng and Wong in 2005 [34] to deal with

noisy observations and to construct reliable tight clusters. Compared to regular clustering

analysis which tends to group all n observations into clusters, tight clustering will leave out

those scattered noisy samples to construct stable and reliable clusters. This was motivated

by microarray studies where the goal was to find robust patterns reflecting the underlying

biological process.

For a dataset, Xn×p, with n observations and p variables per observation, earlier ap-

proaches to clustering tend to treat all of the variables equally. This may not work well

when not all of the variables are equally relevant to the subgroupings, which is especially

true in the case of the “high-dimension, small sample size” (p � n) problem. Clustering

methods with variable selection, also called sparse clustering methods, have been recently

developed to deal with this problem. Many of the sparse clustering methods make use of an

L1/Lasso penalty or related penalties to realize variable selection with Witten and Tibshi-

rani in 2010 [35] applying both an L1 and an L2 restraint to implement variable selection.

These penalties were also applied to the model-based clustering framework. Pan and Shen

in 2007 [27] proposed a penalized model-based clustering method, in which BIC was used for

model selection. The penalized mixture model assumes independence between variables and

the same diagonal covariance matrix across clusters. Sparse clustering methods choose the

variables that more accurately reflect the variability in the original dataset while diminishing

or eliminating the effects of less relevant variables on the clustering. The resulting clustering

rules are more parsimonious, easier to interpret, and could yield a more desirable prediction

accuracy. This is true when p < n but it is more evident when p� n.
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In this work our goal is to deal with the problem of small sample size. It is motivated

by an example arising from the identification of potentially “positive” subjects for amyloid

deposition, a protein that is believed to be key in identifying subjects that will go on to

develop Alzheimer’s disease. The goal is to identify these subjects before they develop any

of the symptoms of the disease with the hope of potential treatments to prevent the onset

of symptoms. Clustering of such data is important in exploring the patterns associated

with different underlying biological characteristics and in searching for a disease detection

threshold. We propose a method to add resampling onto sparse clustering in order to provide

a “certainty measure” for group membership.

This method combines sparse k-means and resampling, so that one can achieve variable

selection and tight clusters at the same time. By resampling we will be able to more reli-

ably select the variables and to compute a confidence level for the clustering results. This

confidence level will be described in more detail in later sections. With this metric we could

also construct tight clusters while leaving the outlier or noisy observations outside of these

reliable clusters. We could also potentially identify the degree of the overlap between clus-

ters. The methodology is described in Section 2. Simulation studies are shown in Section 3

to demonstrate how the proposed method works and to compare its performance to those

of k-means and sparse k-means. The application of the proposed method in a neuroimaging

dataset is shown in Section 4. In Section 5 we discuss the strength and limitations of the

method and some problems we encountered during this work.

2.2 METHODS

2.2.1 K-means Clustering

Let Xij denote a dataset of size n by p, where n is the number of observations in the dataset,

p is the number of variables observed for each observation, i = 1, ..., n and j = 1, ..., p. K-

means clustering aims to group n observations into K clusters such that the within cluster

dissimilarity across all clusters is minimized. The squared Euclidean distance is used as the

8



dissimilarity measure. The algorithm aims to minimize the within-cluster sum of squares

(WCSS), so the target function is defined as

minimizeC1,C2,...CK

{
K∑
k=1

1

nk

∑
i∈Ck

p∑
j=1

(xij − µkj)2
}
, (2.1)

where the clusters are denoted as C1, C2, . . . , CK , with nk being the number of observations

in each cluster. µk. is the cluster center for the kth cluster, also called centroid, which is

computed as the arithmetic average of all the observations in that cluster. µkj is the average

on the jth dimension.

The most widely used algorithm for k-means is the one that was developed by Hartigan

and Wong in 1979. The main idea is an iterative algorithm with the following steps:

1. Set random cluster centers.

2. Assign each observation to the appropriate cluster based on the squared Euclidean dis-

tance from each cluster center.

3. Given the cluster membership, compute the new cluster centers.

4. Iterate between Step 2 and Step 3 until the cluster membership does not change any

more.

It is best to use more than one set of random cluster centers in Step 1 because of the

potential problem of local maxima. We assume that the number of clusters, K, can be

pre-specified. If the number of clusters is in question, it can be potentially determined by

gap statistic [33] or many other methods.

Equation (2.1) is mathematically equivalent to maximizing the between-cluster sum of

squares (BCSS), that is,

maximizeC1,C2,...CK

{
1

n

n∑
i=1

(xi − µ..)2 −
K∑
k=1

1

nk

∑
i∈Ck

(xi − µk.)2
}
, (2.2)

where µ.. is the cluster center if K = 1, which is the average of all n observations. The average

distance of all observations from this single cluster center is 1
n

∑n
i=1 (xi − µ..)2, which is also

called total sum of squares (TSS).
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If we calculate the values of TSS and BCSS on each dimension first and then sum across

the variables, Equation (2.2) becomes:

maximizeC1,C2,...CK

p∑
j=1

{
1

n

n∑
i=1

(xij − µ.j)2 −
K∑
k=1

1

nk

∑
i∈Ck

(xij − µkj)2
}
, (2.3)

where µ.j is the value of µ.. on the jth dimension. Equations (2.2) and (2.3) form the basis

for understanding the equations for sparse k-means.

2.2.2 Sparse K-means Clustering

Sparse k-means clustering was proposed by Witten and Tibshirani in 2010 [35]. This ap-

proach minimizes the target function of the weighted BCSS with the variable weights subject

to an L1/Lasso condition and an L2 condition. An EM algorithm is used for obtaining the

solutions and it alternates between the weighted k-means and convex optimization with a

soft-thresholding operator until convergence is reached. The results are the variable weights

and cluster membership. The variable weights are assigned to the variables so that greater

weight is given to the variables of greatest importance. Note that some variables have zero

weights meaning that they are not used in the final clustering results. The sparse k-means

clustering criteria is parsimonious for prediction and most useful when p� n but also works

well when p < n.

Instead of treating all variables equally as in k-means clustering, sparse k-means clus-

tering will assign weights wj to variables. The target function and its constraints are the

following:

maximizeC1,C2,...CK ,w

{
p∑
j=1

wj

(
1

n

n∑
i=1

(xij − µ.j)2 −
K∑
k=1

1

nk

∑
i∈Ck

(xij − µkj)2
)}

(2.4)

subject to

∀j, wj ≥ 0, ‖w‖2 ≤ 1, ‖w‖1 ≤ s,

where
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• w is a vector with length p. Each element wj serves as a weight for each variable. All

weights are nonnegative values.

• ‖w‖1 ≤ s is the L1/Lasso condition, meaning that the sum of the absolute values of the

weights is less than s, the tuning parameter.

• ‖w‖2 ≤ 1 is the L2 condition, meaning that the square root of the summation of the

squared values of the weights is less than or equal to 1.

To solve for the weights and the cluster membership, Witten and Tibshirani [35] proposed

the following iterative method:

1. Assume that all variables have the same weight 1√
p
.

2. Given the weights, find the cluster membership using the k-means algorithm. K-means

is applied to the data after the variables are scaled appropriately by the squared root of

the corresponding weights, which can be regarded as weighted k-means.

3. Given the cluster membership, solving for the weights can be regarded as a convex

problem. To optimize the convex problem, one can apply soft-thresholding as described

in Witten and Tibshirani [35].

4. Iterate between Step 2 and Step 3 until the weights converge.

The results of the sparse k-means clustering are the weights for all of the variables and the

cluster membership of the individual observations. The variable weights were divided by

the tuning parameter for standardization in this work. These standardized variable weights

can be used for comparison between clustering results with different tuning parameters.

2.2.3 The Proposed Method

For the datasets with the property of “high-dimension, small sample size” (p � n), we

propose this method that combines sparse k-means and resampling, so that one can select

the variables important to clustering and construct tight clusters at the same time. At each

resampling of the dataset, the variable weights and the cluster membership are obtained.

These results are then summarized across all of the resampling runs.
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The main idea of the proposed method is to resample the original dataset Xn×p for

a number of times, B, and to apply sparse k-means clustering to each sample. For each

resampling run, we randomly sample 70% of the observations without replacement and

predict the cluster membership for the remaining 30% of the observations based on the

sample results, similar as the method proposed in [34].

The algorithm is described as follows:

1. Randomly choose a sample with 70% of observations (or rows) without replacement from

the original dataset Xn×p. Let us denote this subset of the dataset X ′.

2. Apply sparse k-means on X ′. The number of clusters, K, should be pre-specified and

remains the same for all resampling runs.

3. Apply the clustering criterion obtained from Step (2) and predict the cluster membership

for the remaining 30% of the original dataset X.

4. Repeat steps (1)-(3) for a number of B times. Each variable is assigned a weight for each

of the B times and the cluster membership for all n observations are obtained B times.

5. Select variables and construct tight clusters with information from Step (4). Since the

tuning parameters may be different across the resampling runs, the variable weights were

divided by the tuning parameter in that resampling run for standardization. The final

weight for each variable can be simply computed as the average across its standardized

weights from all B random samples.

The confidence level is defined to be the proportion of times for an observation to appear

in a cluster. For example, if the observation xi appears in the cluster Ck for a number

of bk times out of the B resampling runs, the confidence level CLik is computed as bk/B

and
∑

K
k=1CLik = 1. Confidence levels for all observations are computed.

To construct tight clusters, a threshold for the confidence level, denoted as t, should be

specified. For example, t = 95% or t = 90%. The observations with a confidence level ≥ t

will be included in the tight clusters and the remaining observations will be left outside

of the tight clusters. If the true underlying groups overlap with each other, the proposed

method can potentially identify the degree of this overlap through the construction of

the tight clusters.
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2.3 SIMULATION STUDY

2.3.1 Simulation 1

We simulated data as described in Witten and Tibshirani (2010) [35]. The simulated dataset,

Xn×p, had n = 60 observations and p variables per observation. The sixty observations form

three groups with twenty observations per group Gk, where k = 1, 2, and 3. These groups

were generated to have different means across the three groups for the first q = 50 variables

but not for the remaining p-q variables. That is:

• For j = 1, 2, · · · , q, Xi ∈ Gk ⇔ Xij ∼ N(µk, 1), where µ1 = −µ, µ2 = 0, µ3 = µ. For

the first q = 50 variables, the data were generated from three normal distributions with

different mean values but the same variance 1.

• For j = q + 1, · · · , p, Xij ∼ N(0, 1). For the remaining p-q variables, the data were

generated from the same standard normal distribution.

Figure 2: Group average within each variable in an example of the simulated dataset.

We chose a scenario with p = 500 and µ = 0.7 to demonstrate how the proposed method

works. We generated 250 simulated datasets and resampled each dataset B = 20 times.

The variable weight for the proposed method was computed as the average across the

B = 20 resampling runs. The variable weights were then summarized over the 250 simulated
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datasets. On average the first 50 variables have weights in the range of 0.012-0.016 (stan-

dard error: 0.0006-0.0018) and the remaining 450 variables have weights in 0.0005-0.0009

(standard error: 3.3×10−5-0.0002). The weights for the first 50 variables were 13 to 32 times

greater than those associated with the remaining uninformative 450 variables, indicating that

the proposed method was able to identify the variables of greatest importance in determining

cluster membership.

Table 1 shows the results for the tight clusters. The results for one example simulated

dataset are presented in the top part of the table. The dataset was resampled 20 times.

The confidence level is the observed proportion of times that an observation falls in a given

cluster over the 20 resampling runs. For example, 100% indicates that 20 out of 20 times

the observation was chosen to be in a specified cluster, 90% indicates that 18 out of 20

times the observation appeared in a cluster and 70% indicates that 14 out of 20 times.

The confidence levels were computed for each observation for all of the clusters. With a

confidence level ≥ 90%, there were 14 observations in cluster 1, 9 observations in cluster

2, and 8 observations in cluster 3 with one observation missclassified into cluster 1. The

remaining 29 observations were left outside of these tight clusters. The three groups in

the simulated dataset were overlapping because of µ = 0.7. These results were consistent

with this overlap. If the groups were well separated, there should be fewer observations

left outside of the tight clusters. At the confidence level ≥ 70% and < 90%, there were 7

addtional observations classified into cluster 1, 8 additional observations in cluster 2 and 11

additional observations in cluster 3 including one observation missclassified into cluster 2.

If we relaxed the confidence level threhold to be ≥ 70% for the tight clusters, there were

21 observations in cluster 1, 17 observations in cluster 2, and 19 observations in cluster 3.

Among these observations one observation in cluster 1 and another one in cluster 2 were

misclassified. The remaining 3 observations were not included in any of these tight clusters.

The results for 250 simulated datasets are shown in the bottom part of Table 1. With a

confidence level ≥ 90%, on average there were 12 observations in cluster 1, 4 observations in

cluster 2, and 10 observations in cluster 3. The remaining 34 observations were left outside

of these tight clusters. When the confidence level threshold was relaxed to be ≥ 70%, on
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Table 1: Tight clusters for the scenario with µ = 0.7 and p = 500. Top Panel: The number of

observations in a cluster for one example simulated dataset. Bottom Panel: Average number

of observations in tight clusters across 250 simulated datasets. Each dataset was resampled

B = 20 times. The numbers of misclassified observations are given in the parentheses.

One example simulation run

confidence level cluster 1 cluster 2 cluster 3 Remaining

[90%− 100%] 14(1) 9(0) 8(0) 29

[70%− 90%) 7(0) 8(1) 11(0)

250 simulation runs

confidence level cluster 1 cluster 2 cluster 3 Remaining

[90%− 100%] 12(0) 4(0) 10(0) 34

[70%− 90%) 6(0) 8(0) 6(0)

average there were 6 additional observations classified into cluster 1, 8 additional observations

in cluster 2, and 6 additional observations in cluster 3. The remaining 14 observations were

left outside of the tight clusters. These results were also consistent with the group overlap

in the simulated datasets.

Simulation 1 demonstrated how the proposed method achieves variable selection, com-

putes the clustering confidence level, and constructs tight clusters. It was able to identify

the variables which were more important to clustering and to indicate the overlap in the

simulated datasets.

2.3.2 Simulation 2

This simulation is similar to Simulation 1 except that more scenarios are considered. There

was one scenario with p = 500 and µ = 0.7 in Simulation 1; In this simulation, p = 50,

200, 500 & 1000 and µ = 0.6, 0.7, 0.8, 0.9 & 1.0, so that there were a total of 20 scenarios.
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Out of the p variables, the three groups were different in the first q = 50 variables while not

distinguishable in the remaining p-q variables. The first q = 50 variables were different in

a way that the first group was sampled from the normal distribution N(−µ, 1), the second

group from N(0, 1), and the third group from N(µ, 1). The remaining p-q variables were

sampled from the same standard normal distribution. The value of µ is an indicator of the

overlap between the groups in the q variables. The overlap is most substantial when µ = 0.6

and decreases as µ gets bigger. The groups were best separated when µ = 1.0. There were

25 simulated datasets for each scenario and each dataset was resampled B = 100 times.

Table 2 presents the simulation results for 20 scenarios where p = 50, 200, 500 & 1000

and µ = 0.6, 0.7, 0.8, 0.9 & 1.0. Tight clusters were constructed to include the observations

with a confidence level ≥ 90%, which indicates that the observation appeared in the cluster

at least 90 times out of B = 100 times. The average values were computed across the 25

simulated datasets for the number of correctly classified observations in each cluster and

the number of remaining observations. They are listed as (cluster 1, cluster 2, cluster 3 |

remaining) in Table 2. For example, for the scenario with p = 500 and µ = 0.7, on average

there were 12 observations in cluster 1, 4 observations in cluster 2 and 11 in cluster 3 and

the number of remaining observations was 33.

We noticed that the method was able to identify the degree of the overlap between the

groups indicating by the increasing number of remaining observations as µ gets smaller.

When µ = 1.0, the groups were best separated and the method was able to correctly place

at least 19 observations out of 20 observations in each tight cluster with a confidence level

≥ 90%. As µ decreases, there were fewer observations included in the tight clusters. The

smallest tight cluster was the middle group since it overlapped with the other two groups

on both sides. As the number of variables, p, gets larger and µ is closer to 0, the method

struggles to identify the clusters, while it performs well in settings where there is some

separation.
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Table 2: The average number of correctly classified observations in each cluster and the

average number of remaining observations (cluster 1, cluster 2, cluster 3 | remaining) with

a confidence level ≥ 90%. The average was computed over 25 simulated datasets in each

scenario. Each dataset was resampled B = 100 times. The number of the truly different

variables was q = 50.

p = 50 p = 200 p = 500 p = 1000

µ = 0.6 13,11,15|21 12,2,10|36 7,0,6|47 4,0,6|50

µ = 0.7 16,15,16|13 17,13,17|13 12,4,11|33 9,1,10|40

µ = 0.8 17,18,18|7 19,18,19|4 18,15,18|9 16,10,14|20

µ = 0.9 19,19,18|4 20,19,19|2 20,20,20|0 19,18,19|4

µ = 1.0 19,19,19|3 20,19,20|1 20,19,20|1 20,20,20|0

2.3.3 Methods Comparison

The goal of this simulation study was to compare three clustering methods: k-means, sparse

k-means and the proposed method “sparse k-means and resampling”. We use all of the

datasets generated in Simulation 2 for all 20 scenarios. K-means, sparse k-means and the

proposed method were applied to these datasets with K = 3. The clustering results are

summarized in Tables 3 and 4. For sparse k-means and the proposed method, the tuning

parameter pool was the same in each scenario, which is a vector of 15 values within the range

(3.5, 0.7×√p).

The performance of clustering was measured by the classification error rate or CER

[35]. In this simulation study, it is a measure of disagreement between the true group mem-

bership and the cluster membership. The CER value can range from 0 to 1. A classification

error rate with value 0 indicates a perfect agreement, or no disagreement, between the group

membership and the cluster membership. The bigger the CER value, the less accurate the

clustering recovered the true group membership.
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Table 3 lists the average classification error rate (CER) values along with their standard

errors across the 25 simulated datasets in each scenario. The results for each of the three

methods were given. For the proposed method, this CER value was calculated for the

subset of those observations in the tight clusters with confidence level ≥ 90%. We used the

classification error rate for the comparison of these methods so that others can relate our

results with those in Witten and Tibshirani (2010) [35], but we were aware of the limitations

of this measure. In the simulation study the true group membership were assigned when the

data were generated. If there was overlap between groups, the observations mixed in the

overlap were given different group membership; When clustering was applied, it was blind

to the true group memberhsip and could hardly disentangle this mixed overlap back into

the correct clusters, so it was almost impossible to achieve clustering results which perfectly

agrees to the true group memberhsip. With the tight clusters constructed by the proposed

method, we were able to achieve smaller classification error rates because of the fact that it

was calculated for the observations in the tight clusters only, which were usually not part of

the overlap.

When p = q = 50 in Table 3, since all of the 50 variables were different and they

were different in the same way between the groups, k-means achieved smaller CER values

than sparse k-means. Sparse k-means might have tried to assign different weights to the

variables, which could be the reason for the smaller CER values. It is worthwhile to point

out, although it is not the case here, that if the group difference varies across the variables,

sparse k-means may be a better method than k-means. When q = 50 and p = 200, 500 and

1000, there were only a subset of q variables that were different across groups. The CER

values for sparse k-means were smaller than those from k-means. This was because under

these scenarios while k-means treated all of the variables the same way, sparse k-means

was able to discover the variables important to clustering and to leave out the irrelevant

variables. For all twenty scenarios the proposed method achieved even smaller CER values

than the other two methods, this was because the CER value was computed for the subset of

those observations in the tight clusters. These very small CER values (range: 0.000-0.032)

indicates that the observations in the tight clusters were recovered from the corresponding

true groups with a very high accuracy.
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Table 3: The average classification error rate (standard error) over 25 simulated datasets

for each scenario. For our proposed method “sparse k-means and resampling”, each dataset

was resampled B = 100 times and the classification error rates were calculated for those

observations with a confidence level ≥ 90%.

k-means

p = 50 p = 200 p = 500 p = 1000

µ = 0.6 0.067(0.008) 0.165(0.013) 0.234(0.011) 0.283(0.006)

µ = 0.7 0.027(0.006) 0.080(0.007) 0.190(0.012) 0.225(0.008)

µ = 0.8 0.005(0.002) 0.031(0.005) 0.099(0.011) 0.189(0.012)

µ = 0.9 0.002(0.001) 0.013(0.005) 0.038(0.006) 0.101(0.010)

µ = 1.0 0.001(0.001) 0.002(0.001) 0.009(0.003) 0.044(0.006)

sparse k-means

p = 50 p = 200 p = 500 p = 1000

µ = 0.6 0.133(0.011) 0.137(0.014) 0.197(0.013) 0.252(0.011)

µ = 0.7 0.067(0.008) 0.056(0.006) 0.087(0.016) 0.136(0.017)

µ = 0.8 0.040(0.005) 0.017(0,005) 0.025(0.006) 0.045(0.011)

µ = 0.9 0.015(0.004) 0.009(0.004) 0.006(0.002) 0.008(0.002)

µ = 1.0 0.008(0.003) 0.001(0.001) 0.001(0.001) 0.002(0.001)

sparse k-means and resampling

p = 50 p = 200 p = 500 p = 1000

µ = 0.6 0.032(0.007) 0.016(0.006) 0.008(0.005) 0.004(0.004)

µ = 0.7 0.009(0.003) 0.006(0.002) 0.003(0.002) 0.015(0.007)

µ = 0.8 0.003(0.002) 0.000(0.000) 0.001(0.001) 0.002(0.001)

µ = 0.9 0.001(0.001) 0.003(0.002) 0.002(0.001) 0.002(0.001)

µ = 1.0 0.000(0.000) 0.000(0.000) 0.000(0.000) 0.000(0.000)
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Table 4: The average number (standard error) of variables with weights > 1/p. The average

was computed over 25 simulated datasets for each scenario. For our proposed method “sparse

k-means and resampling”, each dataset was resampled B = 100 times. The number of

variables truly different between groups was q = 50.

sparse k-means

p = 50 p = 200 p = 500 p = 1000

µ = 0.6 20.12(0.31) 57.88(0.58) 79.20(5.38) 54.80(5.18)

µ = 0.7 20.44(0.41) 53.24(0.40) 80.28(3.18) 66.80(3.63)

µ = 0.8 20.96(0.24) 51.84(0.44) 67.68(1.49) 58.52(3.06)

µ = 0.9 21.32(0.34) 50.76(0.28) 64.48(1.20) 73.92(4.51)

µ = 1.0 20.60(0.28) 50.00(0.08) 60.84(1.33) 83.44(3.18)

sparse k-means and resampling

p = 50 p = 200 p = 500 p = 1000

µ = 0.6 20.76(0.40) 50.96(0.46) 63.92(2.13) 102.00(4.25)

µ = 0.7 21.20(0.42) 52.44(0.42) 59.00(1.12) 62.72(1.16)

µ = 0.8 20.76(0.30) 51.48(0.37) 55.52(0.73) 56.80(0.65)

µ = 0.9 21.04(0.35) 50.64(0.25) 55.80(0.51) 55.60(0.53)

µ = 1.0 20.92(0.30) 50.04(0.09) 54.84(0.42) 51.76(0.35)
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Table 4 lists the average number (and its standard error) of variables with the final

standardized weights > 1/p. It was summarized from results with sparse k-means and the

proposed method “sparse k-means and resampling”. Recall from the methods section, for

sparse k-means the final variable weight was the standardized weight, which was the original

variable weight divided by tuning parameter; for the proposed method the final variable

weight was the average standardized weight over B = 100 resampling runs. Because of the

standardization, the final weights were comparable between clustering results with different

tuning parameters. If all of the variables were equally important to the clustering, each

variable would have been assigned the same weight 1/p. We counted the number of the

variables with final weights > 1/p, which were also the variables that affect clustering more

than they would have if all of the p variables were treated equally.

Recall that the number of variables that were truly different between groups was q = 50

while the number of variables p = 50, 200, 500, and 1000. When p = 50, both of the sparse

k-means and the proposed method assigned weights > 1/p to about 20 variables and weights

≤ 1/p to the remaining variables. These methods were not a good choice here since all of

the q = 50 variables were generated to be similarly different between groups. When p = 200,

500, and 100, the proposed method were able to more closely identify important variables

in that the number of variables with weights > 1/p was closer to the number q = 50 than

that of sparse k-means in most of scenarios. An acceptable exception was the scenario with

µ = 0.6 and p = 1000 because the aforementioned problem with this scenario. Overall the

proposed method was able to identify the variables with greatest importance to clustering

and its performance was better than that of sparse k-means in scenarios where p gets larger.

2.4 APPLICATION IN NEUROIMAGING DATA

We apply the proposed method to a brain imaging dataset. At first we will describe the

background for this application. According to the Alzheimer’s Association 2011 Alzheimer’s

Disease Facts and Figures, the neurological degenerative disease, Alzheimer’s Disease (AD),

counts for about 60-80% cases of dementia. It is estimated that “5.4 million Americans
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are living with” the disease. It is “the 6th leading cause of death” in the country and

“the only cause of death among the top 10 that cannot be prevented, cured or even slowed”

(http://www.alz.org/). Amyloid-β(Aβ) plaque deposition is a hallmark for AD neuropathol-

ogy. Studies have shown that the amyloid deposition could have started more than a decade

before the onset of any memory symptoms. It is of great interest to detect those people who

are at risk of developing AD. Early detection of these individuals may allow a slowing or

stoppage of the progress of the disease long before its onset.

The definitive diagnosis of AD can only be given by pathological tests after the patient has

deceased; the ante-mortem diagnosis is “Probable AD”. The development of [11C] Pittsburgh

compound-B (PiB) PET imaging agent allowed imaging of Amyloid-β(Aβ) deposition in

living humans in 2003 [19, 22]. PiB has been widely studied by many institutions and large-

scale studies are under way in the United States, Japan and Australia. It can potentially

serve as an in-vivo test to monitor the progress of amyloid deposition and a surrogate

measure for treatment effectiveness. Developing thresholds for detecting those cognitively

normal people who are at risk of developing AD based on the data from the PiB PET scans

has been an ongoing research focus among the Pittsburgh Amyloid Imaging group, whom

we collaborate closely with.

Establishing the AD early detection diagnostic criteria is facing crucial challenges due to

the lack of information for a reference standard. To avoid confusion, it is worthwhile pointing

out again that this threshold is going to be established and used for cognitively normal

subjects only; this is different than the threshold used to differentiate controls and AD

patients. Then the PiB early detection threshold should also be validated by the post-mortem

pathological tests. But technical challenges remain in the area of combining and correlating

the ante- and post-mortem data. Even if these technical challenges were solved, there are

only a very small subset of subjects with both ante- and post-mortem data. Longitudinal

follow-up may also serve as a validation of the threshold. But not enough longitudinal scans

have been collected to date to make this approach feasible. Multiple studies are ongoing to

collect all these data but due to the fact that amyloid accumulation is very slow, acquiring

sufficient data will still take a while. With these challenges in mind, efforts have been made

to establish the AD early detection diagnostic criteria based on baseline brain imaging data.
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The goal of this example was to identify cognitively normal elderly people who were

amyloid positive based on their brain imaging data. The dataset consisted of 64 normal

control elderly subjects (43 female, 21 male) with an average age of 74 (standard deviation

= 5.4; range: 65-89). A brain image was acquired for each subject with the value of each

voxel reflecting the amount of amyloid deposition in the brain. There are 343, 147 voxels in

each image after the non-brain voxels were masked out. The input for the clustering analysis

was a dataset with n = 64 subjects and p = 343, 147 voxels per image for the analysis.

We intended to classify the dataset into two clusters, so K is equal to 2. We applied the

proposed method and the dataset were resampled 50 times.

A brain map of voxel (or variable) weights, which indicates their importance in distin-

guishing clusters, was computed for each of these samples during the resampling. These

weights were standardized for the different tuning parameters, which ranged from 305.56 to

383.89. A total of 50 brain maps were generated with one for each resampling run. As de-

scribed in the methods section, the final weight for each voxel was computed as the average

of the standardized weights across the 50 resampling runs. The image with the final voxel

weights is shown as the right half in Figure ??, in which a brighter color means a bigger

weight while a darker color means a smaller weight. On the left a high resolution Magnetic

Resonance (MR) Image showed the corresponding brain anatomy. The slices shown here

were representative of typical regions with amyloid deposition.

The range of the weights is from 0 to 9.86 fold of 1/p, where p = 343, 147 and 1/p =

2.88×10−6. The voxel weights were bigger in the prefrontal, the precuneus, and the parietal

cortex regions indicating that these regions were important for subgroupings while the voxel

weights in the sensorimotor and cerebellar cortex were much smaller indicating they were not

that important for the subgroupings. These findings were consistent with the distribution

of amyloid deposition in the human brain across a spectrum of subjects and biologically

meaningful.

Among all 64 subjects, there were 7 subjects identified as amyloid positive and 37 subjects

identified as amyloid negative at the confidence level 100%. Another subject was identified as

positive at a confidence level 84%. The remaining 19 subjects were negative at the confidence

levels 98% (for four subjects), 96%(for one subject), 94% (for two subjects), 90% (for three
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9.86/p

0.00/p

Figure 3: Voxel/Variable weights. (Left) Magnetic Resonance Image which shows the brain

anatomy; (Right) The image with the final weights for each voxel (or each variable). The

range of weights is 0 to 9.86 fold of 1/p, where p = 343, 147 and 1/p = 2.88 × 10−6. The

image dataset was resampled 50 times.
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subjects), 88% (for four subjects), 84% (for one subject), 78% (for one subject), and 76% (for

three subjects). These results indicates that there were 7 subjects who were always amyloid

positive and 1 subject somewhat positive, and there were 37 subjects who were always

amyloid negative, 5 who were very negative with confidence levels > 95%, and 14 who were

somewhat negative with a confidence level in the range of 76%−94%. In spite of the fact that

the amyloid groups were not clearly separated because of these somewhat positive/negative

subjects, all of the subjects were classified into a group with strong confidence with the

confidence levels being ≥ 76% for the negative subjects and ≥ 84% for the positive ones.

This may serve as evidence against the idea of a third cluster for these intermediate subjects.

To further understand a potential classification of “amyloid positive”, we could examine the

characteristics of the dataset with the information provided by the clustering results. For

example, we could assess the difference between the somewhat positive subject against the

group with seven always positive subjects or against the group with the fourteen somewhat

negative subjects. We could also choose to compute cluster centers from the tight clusters

with a confidence level threshold ≥ 95% and use these reliable cluster centers to predict

membership for any additional PiB scans.

2.5 CONCLUSIONS AND DISCUSSION

The proposed method, “sparse k-means and resampling”, can achieve both variable selection

and tight clusters for datasets with the property of “high-dimension, small sample size” (p�

n). The final standardized variable weights can serve as a more reliable metric to exclude

the irrelevant variables and yield parsimonious clustering results. The confidence levels for

the clustering results provided more information than the usual approach of dichotomizing

results from clustering methods without resampling. These confidence levels can be used

to construct tight clusters with different degrees of tightness and to potentially identify

the degree of the overlap between the clusters. To date, this work is the first method to

combine resampling with sparse clustering. This method is especially useful for neuroimaging

datasets, where the small sample size is usually a concern.
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The proposed method provides additional information on variable weights and clustering

results through resampling. Bootstrapping was not used because bootstrapping resamples

the data with replacement, which makes it very complicated to summarize the results across

resampling runs. We illustrated the use of metrics such as the final standardized variable

weight and the confidence level for the cluster results. Depending on the goal of the scientific

question, other metrics may be more appropriate for summarizing the resampling results.

For example, in the case of constructing rules for diagnostic tests, it may be of interest to

find more reliable cluster centers and to use them for cluster membership prediction. In this

case, the focus will be summarizing the cluster centers from the resampling results. Like

sparse k-means, this method is most useful when p� n, but also works in the case of p < n.

One major limitation of this method is that resampling tends to be time-consuming. It

is an inevitable trade off that we have to make to gain more confidence in the clustering

results. The method does not perform as well when the underlying groups significantly

overlap with each other and the number of variables, p, is much larger than the number of

truly different variables, q. Prescreening of variables may be useful to decrease the number

p before clustering is applied, and is a topic for future research. We have showed that the

proposed method works well when the number of clusters is 2 or 3. We anticipate that its

performance may be compromised when the number of clusters gets larger. For example,

it may become very challenging to properly align the cluster centers from the different

resampling runs.

We have also encountered the problems related to the tuning parameter choice based on

gap statistic. The Witten and Tibshirani (2010) [35] paper pointed out that the performance

of the gap statistic for selecting the tuning parameter was not always great. In our experience

the gap statistic has worked well in choosing the tuning parameters in neuroimaging appli-

cations. But when the default tuning parameter pool
(
1.2, 0.9

√
p
)

was used in Simulations

1 and 2, the tuning parameters that were either too small, or too large, yielded clustering

results with unusually higher classification error rates. This was why we chose to use an

adjusted tuning parameter pool in this paper. We have also been searching for methods that

could potentially address this issue.
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In summary, the proposed method of combining sparse clustering with resampling pro-

vides an improvement over currently existing techniques. The use of a confidence metric,

based on the observed proportion of times that an observation falls in a given cluster is

extremely useful for assessing the potential classification of normal control subjects into

“amyloid positive” and “amyloid negative” groups. These groupings are key for targeting

future prevention strategies in Alzheimer’s disease.
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3.0 TUNING PARAMETER CHOICE FOR SPARSE K-MEANS

CLUSTERING

3.1 INTRODUCTION

Clustering is important in exploring and discovering distinct biological groups in the ear-

lier stage of scientific studies when no definite group membership could be assigned to the

observations. It can be used to establish rules for predicting memberships for additional ob-

servations. Clustering methods with variable selection, also called sparse clustering, choose

the variables that more accurately reflect the variability in the original dataset while dimin-

ishing or eliminating the effects of less relevant variables on the clustering. The resulting

clustering rules are more parsimonious, easier to interpret, and could yield a more desir-

able prediction accuracy. This is true when p < n but it is more evident in the case of

“high-dimension, low sample size” (p� n).

Variable selection realized by penalties was first developed in linear regression. A very

influential approach was Lasso [29], which stands for “Least absolute shrinkage and selection

operator”. It was proposed by Tibshirani in 1996 and has been widely applied since then.

For linear regression, an L1/Lasso penalty imposes an upper bound s to the summation

of absolute values of the regression coefficients βi’s, i.e.
∑p

i=1 |βi| ≤ s, where p is the

number of independent variables in the model. The algorithm minimizes the target function

of the sum of squares with restrictions of this penalty. The resulting coefficients are then

subject to shrinkage in absolute value (absolute shrinkage) or have a value of 0 (selection).

When the coefficient is 0, the variable is not selected in the model. Solving for the problem

can be regarded as convex optimization and solutions are obtained by applying the soft-

thresholding operator because it satisfies the Karush-Kuhn-Tucker conditions [2, 29]. Least
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Angle Regression (LARS) was developed by Efron, Hastie, Johnstone and Tibshirani in 2002

to solve the Lasso in a much faster manner [5]. A further significant improvement in solving

Lasso was coordinate descent algorithm [11, 9, 10, 37, 12]. These algorithms have evolved

to be so efficient that the computing time is no longer a concern.

Lasso and related penalties have been applied to a wide range of traditional statisti-

cal methods to realize variable selection. The resulting methods are called regularization

methods. They have been applied to linear regression [29], generalized linear models [29],

survival analysis [30], clustering [35, 27] and support-vector machine [14]. They have also

been applied to dimension reduction methods such as principal component analysis [17, 36],

canonical correlation analysis [36] and partial least squares [4]. Variants of penalties include

the Grouped Lasso [38, 26], Elastic Net [41], Adaptive Lasso [40], Graphical Lasso [39, 9],

Dantzig Selector [3] and others. A discussion of these penalties was given in [10, 31]. In

this work we will focus on the application of these penalties in clustering and the tuning

parameter choice.

Most of the clustering methods with variable selection are implemented with an L1 or

Lasso penalty. A general framework for clustering was proposed by Witten and Tibshirani

in 2010 [35]. It applied an L1 and an L2 restraint on k-means to realize variable selection,

i.e. sparse clustering. The algorithm was implemented by an EM algorithm alternating

between weighted k-means and convex optimization. The authors showed that it also works

for hierarchical clustering and k-mediods clustering. These penalties were also applied in the

model-based clustering framework. Pan and Shen in 2007 [27] proposed a penalized model-

based clustering method, in which a Lasso penalty and a modified BIC were used to realize

model selection. The penalized mixture model assumes independence between variables and

the same diagonal covariance matrix across clusters.

The sparse clustering method results depend on the choice of the tuning parameter

[35] or the penalization parameter [27] (For simplicity reasons, we will only use the term

“tuning parameter” from here on). For example in the Witten and Tibshirani paper [35] a

larger tuning parameter usually allows for more of the variables to be selected for clustering

and vice versa. The choice of the tuning parameter has been studied in regression and

classification with cross-validation being the main approach. This method can not be easily
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applied to clustering due to the lack of the true membership. Pan and Shen in 2007 [27] used

a modified BIC to determine both the number of clusters and the tuning parameter. Witten

and Tibshirani in 2010 [35] proposed using the gap statistic. Yet both of these methods rely

on the correct specification of the tuning parameter pool.

We have observed that given a suboptimal pool the gap statistic method could choose a

tuning parameter which yields poor performance when clustering, i.e. a high Classification

Error Rate (CER). When this happens it usually chooses a tuning parameter that is too

small or too large, hence too few, or too many, variables are chosen for clustering. This

is more likely to occur when the overlap between the clusters is more substantial. In this

work, we would like to draw attention to this phenomenon and also to propose using BIC

for the choice of tuning parameter for the sparse k-means method proposed by Witten and

Tibshirani in 2010.

3.2 GAP STATISTIC FOR TUNING PARAMETER CHOICE

The gap statistic was originally proposed by Tibshirani in 2001 [33] for the purpose of

choosing the number of clusters when clustering is applied to a dataset and the number of

clusters is unknown. The Witten and Tibshirani[2010] paper adopted it for the purpose

of choosing the tuning parameter [35]. The definitions and notations in these two papers

are different although the essence of it is the same. The gap statistic is defined to be the

difference, i.e. gap, between the observed value and the expected value of the target function

on the logarithm scale. In the Witten and Tibshirani[2010] paper, the target function in

sparse k-means is to maximize the weighted Between-Cluster Sum of Squares (BCSS), which

is defined as

O(s) =

p∑
j=1

wj

(
1

n

n∑
i=1

n∑
i′=1

di,i′,j −
K∑
k=1

1

nk

∑
i,i′∈Ck

di,i′,j

)
. (3.1)

The corresponding gap statistic is defined as

gap(s) = log(O(s))− E [log(Ob(s))] , (3.2)
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where E [log(Ob(s)] is the expected value of the target function on the logarithm scale. The

expected target function value is obtained by permutation and will be discussed in detail

next.

The permuted dataset is generated in a way such that the values in each column are

randomly chosen from the corresponding column in the original dataset. There are B per-

muted datasets. These permuted datasets are supposed to reflect the reference, or the null,

distribution. For a given tuning parameter, sparse clustering will be applied to each of

these datasets and a value of the target function can be calculated. The average of them

1
B

∑B
b=1 log(Ob(s)) is the expected value of the target function. Simply put, it is the average

of the weighted BCSS for the B permuted dataset. Thus the gap statistic is

gap(s) = log(O(s))− 1

B

B∑
b=1

log(Ob(s)). (3.3)

We will compute the gap statistic for every choice in the tuning parameter pool. Intu-

itively, the tuning parameter s∗ for which the clustering achieves the largest gap statistics is

chosen for sparse clustering. The default pool for tuning parameter choice is
(
1.2, 0.9

√
p
)
.

3.3 TUNING PARAMETER CHOICE IN PENALIZED MODEL-BASED

CLUSTERING

3.3.1 Model-based Clustering

For a dataset, Xn×p, with n observations and p variables observed for each observation, sup-

pose that the number of clusters is K. Model-based clustering assumes that each observation

of the dataset is drawn from a finite mixture distribution. Assume that each underlying clus-

ter Ck follows a multivariate distribution fk(x; θk), where θk is a vector of the parameters

specifying the distribution. The K clusters form a mixture of these multivariate distribu-

tions, which is a finite mixture distribution and can be denoted as f(x; θ) =
∑K

k=1 πkfk(x; θk).

Here πk is the probability of one observation belongs to the kth cluster and
∑K

k=1 πk = 1.

The clustering algorithm is to find the cluster memberships and the distribution parameters,
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θk, which maximize the likelihood of observing the dataset. The log-likelihood can be written

as

logL(θ) =
n∑
i=1

log[
K∑
k=1

πkfk(xi; θk)], (3.4)

where xi, i = 1, 2, . . . , n, is the ith observation in the dataset, Xn×p.

EM algorithms are used to obtain the solutions as described in McLachlan and Peel[2002]

[23, 24] and Fraley and Raftery[2002] [8].

3.3.2 Penalized Model-based Clustering

Under the model-based clustering framework and assuming a multivariate normal distribu-

tion the Pan and Shen [2007] paper proposed a penalized model-based clustering approach

[27]. It assumes that the dataset is sampled from a finite mixture of multivariate normal

distributions. The method further assumes that the covariance for each component is a di-

agonal matrix and they hold the same across all components. Recall that the p-dimensional

multivariate normal distribution density with mean µ and covariance Σ is

f(x;µ,Σ) =
1

(2π)p/2 |Σ|
1
2

exp

[
−1

2
(x− µ)′Σ−1(x− µ)

]
. (3.5)

Hence, each component of the mixture distribution can be denoted as

fk(x;µk, V ) =
1

(2π)p/2 |V |
1
2

exp

[
−1

2
(x− µk)′V −1(x− µk)

]
, (3.6)

where µk is the mean for the kth component; the covariance matrix is the same for each

component, it is V = diag(σ2
1, σ

2
2, . . . , σ

2
p) and |V |

1
2 =

∏p
j=1 σj.

The penalized log-likelihood is

logL(θ) =
n∑
i=1

log[
K∑
k=1

πkfk(xi; θk)]− hλ(θ), (3.7)

where hλ(θ) = λ
∑K

k=1

∑p
j=1 |µkj|. This L1-penalty term is imposed so that the mean values

µkj for the finite mixture distribution are subject to shrinkage. Similarly an EM algorithm

is used to solve for the clustering memberships and the distribution parameters. Details are

described in [27]. When all the µkj values for the same j are estimated to be zeroes, the jth

parameter has no effect on clustering, i.e. it is not selected in the final clustering model.
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3.3.3 BIC for Tuning Parameter Choice

The Fraley and Raftery [1998] paper [7] proposed to use Bayesian Information Criterion

(BIC) [28] for model selection in the framework of model-based clustering, where

BIC = −2 logL(Θ̂) + d log(n), (3.8)

in which Θ̂ is the Maximum Likelihood Estimator (MLE) and d is the number of

parameters to estimate.

For penalized model-based clustering since the models being compared may have dif-

ferent numbers of parameters due to the degree of regularization, i.e. the value of the

tuning/penalization parameter, a modified BIC is used for model selection. The modified

BIC is defined as

BICe = −2 logL(Θ̃) + de log(n), (3.9)

where Θ̃ is the Maximum Penalized Likelihood Estimator (MPLE) and de is the number of

parameters to estimate in the regularized model. Since the parameters to estimate without

regularization are πk’s, σj’s, and µkj’s and
∑K

k=1 πk = 1, the number of parameters is

K + p+Kp− 1. The number of free parameters is de = K + p+Kp− 1− q where q is the

number of zero µkj’s.

The modified BIC BICe was used to determine both the number of clusters and the

tuning parameter. A tuning parameter pool will be specified as a vector with Nλ possible

tuning parameter values and a small possible number of K’s, say NK , will also be pre-

specified. Then penalized model-based clustering will be fitted to the dataset with every of

the Nλ×NK scenarios. The model with the best BIC will be chosen from all these Nλ×NK

models.
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3.4 PROBLEMATIC RESULTS USING GAP STATISTIC

The Witten and Tibshirani[2010] paper pointed out that “the performance of the gap statis-

tic” “for selecting the tuning parameter is mixed” [35]. In our experience the gap statistic

has worked well in choosing the tuning parameters in neuroimaging applications either when

p < n for a dataset with regional outcome measures or when p� n with voxel-wise outcome

measures. But when the default tuning parameter pool
(
1.2, 0.9

√
p
)

was used in the first

simulation in the Witten and Tibshirani[2010] paper, the tuning parameters were chosen to

be too small or too large in certain scenarios that yielded clustering results with higher CER

values. We will dissect the problem in more detail next.

This simulation set up is similar to that outlined in section 2.3.2. The simulation was

originally chosen [35] to compare sparse k-means and k-means. There are three groups in

the original dataset with 20 observations in each group. The groups were different in the

first q = 50 variables while not distinguishable in the remaining p − q variables, where p =

50, 200, 500 and 1000. The first q = 50 variables were different in a way that the first group

was sampled from the normal distribution N(−µ, 1), the second group from N(0, 1), and the

third group from N(µ, 1), where µ = 0.6, 0.7, 0.8, 0.9 and 1.0. The value µ is an indicator

of the overlap between the groups in the q variables. The overlap is most substantial when

µ = 0.6 and decreases as µ gets bigger. The groups were best separated when µ = 1.0.

Table 5: Tuning parameter choice for µ = 0.6 and p = 500

Simulation run 1 2 3 4 5 6 7 8 9 10
Tuning parameter 14.71 7.86 5.75 14.71 10.75 10.75 14.71 10.75 7.86 1.2

# of nonzero weights 500 150 89 500 321 306 500 339 155 4
CER 0.23 0.25 0.27 0.29 0.18 0.29 0.27 0.16 0.30 0.38

Simulation run 11 12 13 14 15 16 17 18 19 20
Tuning parameter 10.75 14.71 1.2 10.75 1.2 7.86 14.71 14.71 1.2 7.86

# of nonzero weights 369 500 7 336 5 145 500 500 5 155
CER 0.28 0.28 0.38 0.25 0.37 0.23 0.30 0.26 0.38 0.12

The sparse k-means method proposed by Witten and Tibshirani requires that the tuning

parameter is in the range
[
1,
√
p
]

[35]. The default tuning parameter pool is specified as(
1.2, 0.9

√
p
)

for the sparse k-means R routine implemented by the authors with the default

number of tuning parameters in the pool being 10. The tuning parameters were chosen
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Table 6: Tuning parameter choice for µ = 0.6 and p = 1000

Simulation run 1 2 3 4 5 6 7 8 9 10
Tuning parameter 2.43 9.91 4.90 9.91 14.08 1.2 6.97 1.2 3.45 1.20

# of nonzero weights 13 288 59 250 537 2 118 7 27 5
CER 0.32 0.21 021 0.28 0.26 0.39 0.14 0.38 0.25 0.41

Simulation run 11 12 13 14 15 16 17 18 19 20
Tuning parameter 9.91 1.20 1.20 9.91 6.97 6.97 1.20 6.97 6.97 1.20

# of nonzero weights 242 6 4 256 142 109 7 133 127 6
CER 0.27 0.44 0.39 0.28 0.27 0.10 0.36 0.27 0.26 0.42

in a way such that they were equally spaced in the log-scale and the numbers were then

transformed back by applying an exponential function, so the tuning parameters in the

default pool are 1.20, 1.64, 2.25, 3.07, 4.20, 5.75, 7.86, 10.75, 14.71 and 20.12 when p = 500.

When p = 1000 the tuning parameters in the default pool are 1.20, 1.71, 2.43, 3.45, 4.90,

6.97, 9.91, 14.08, 20.02 and 28.46.

Using this default pool, we found that when the overlap between groups was more sub-

stantial such as scenarios “µ = 0.6 & p = 500” and “µ = 0.6 & p = 1000” the gap statistic

could choose tuning parameters that were either too small such as 1.2 or 2.43 , or too large

such as 14.71 or 20.12. This also happened in the scenarios µ = 0.7 and p = 500 but it

happened much less often at a probability of ≤ 0.05.

Table 5 shows the tuning parameters, the number of variables with nonzero weights and

CER values for 20 simulation runs. When the tuning parameter was chosen to be a large

value, 14.71, in simulation runs No. 1, 4, 7, 12, 17 and 18, the number of variables with

nonzero weights was 500 for all these simulation runs and the CER values had an average

of 0.27 and ranged 0.23− 0.30. When the tuning parameter was chosen to be small, 1.2, in

simulation runs No. 10, 13, 15 and 19, the number of variables with nonzero weights ranged

4 − 7 and CER values were obviously higher with an average of 0.378 with the individual

values ranging 0.37− 0.38. For the tuning parameters in the middle range in the remaining

ten simulation runs, the number of variable with nonzero weights ranged 89 − 369 and the

CER values had an average of 0.23 and ranged 0.12 − 0.30. Further examination of the

variable weights in Figure ?? showed that when the tuning parameter 1.2 was chosen at
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Figure 4: Variable weights in a problematic scenario with the gap statistics. Weights for 500

variables when where µ = 0.6 are plotted for 20 simulation runs.

least one of the nonzero variables was assigned a very large weight of ≥ 0.8. In contrast the

remaining variables in these simulation runs and all variables in other simulation runs were

assigned with weights much smaller and they were around or less than 0.2. These extra large

nonzero weights skewed the clustering rules by casting too much weight on these variables

and caused high CER values. When the tuning parameter 14.71 was chosen, all 500 variables

were chosen for clustering and it may be that the irrelevant variables caused the CER values

to be higher than those obtained with moderate tuning parameters.

Table 6 shows the tuning parameters and the number of variables with nonzero weights

for 20 simulation runs. When the tuning parameter was chosen be to large, 14.08, in the 5th

simulation run, the number of variables with nonzero weights was 537 and the CER value
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was 0.26. When the tuning parameter was chosen to be small (1.2 or 2.43) in simulation

runs No. 1, 6, 8, 10, 12, 13, 17, and 20, the number of variables with nonzero weights ranged

2 − 13 and CER values were obviously higher with an average of 0.389 with the individual

values ranging 0.32− 0.44. For the tuning parameters in the middle range in the remaining

eleven simulation runs, the number of variable with nonzero weights ranged 27−288 and the

average CER value was 0.23 and ranged 0.10 − 0.28. The variable weights showed similar

pattern for tuning parameters 1.2 and 2.43 as exhibited in Figure ??.

In summary these results show that for these scenarios µ = 0.6 and p = 500 or 1000, the

small tuning parameters (1.2 or 2.43) may need to be avoided given that the variable selec-

tion was inaccurate which resulting the clustering results with obviously larger classification

errors. The large tuning parameter allowed for too many variables chosen in clustering which

resulting bigger CER values because of the subgrouping-irrelevant variables in the model.

This shows that we should consider restricting the tuning parameter pool from both ends

although justifications should be made while doing so. It also seemed that the lower bound

of tuning parameter pool should be chosen to be proportional to the number of variables p

rather than a fixed number 1 or 1.2. The reason is that when the number of variables p is

very large, even though the variable weights could be very small, the summation of these

values could easily bigger than 1 or 1.2.

The first simulation in the Witten and Tibshirani[2010][35] paper did not utilize the

default tuning parameter pool
[
1.2, 0.9

√
p
]
. Instead an adjusted tuning parameter pool[

2, 0.7
√
p
]

with 15 values was used. The pool included the following numbers: 2.00, 2.32,

2.68, 3.11, 3.60, 4.17, 4.83, 5.60, 6.48, 7.51, 8.70, 10.07, 11.67, 13.51, and 15.65 for p = 500.

The selected tuning parameters in the 20 simulation runs ranged 4.17−13.51, which fell into

the middle range of tuning parameter pool and did not cause concern in terms of variable

selection or clustering performance. For p = 1000 the pool included numbers 2.00, 2.37, 2.82,

3.35, 3.97, 4.72, 5.60, 6.65, 7.90, 9.38, 11.14, 13.22, 15.70, 18.64, and 22.14. The selected

tuning parameters in the 20 simulation runs ranged 2−15.70. Some of these selected tuning

parameters were too small: The tuning parameter 2 was chosen in four runs; 2.37 in two

runs and 2.82 in one run. For these seven runs, the number of variables with nonzero weights

ranged 10−19 and the CER values had an average of 0.32 and ranged 0.27−0.40. The tuning
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parameter 15.70 was chosen in two simulation runs. The numbers of nonzero weights were

646 and 640 and the CER values were 0.30 and 0.26. For the remaining 11 runs with tuning

parameter in the range of 3.97− 7.90, the number of variables with nonzero weights ranged

35 − 177 and the CER values had an average of 0.19 and ranged 0.12 − 0.30. In summary

the adjusted tuning parameter pool worked fine for the scenario “µ = 0.6 & p = 500” by

shrinking the range of tuning parameter pool on both ends; But it did not work well for

the scenario “µ = 0.6 & p = 1000”, where tuning parameters too small, or too large, were

chosen.

3.5 THE PROPOSED METHOD: USING AN ADJUSTED BIC FOR

TUNING PARAMETER CHOICE IN SPARSE K-MEANS

CLUSTERING

3.5.1 The Proposed Method

We propose to use an adjusted BIC for the tuning parameter choice in the sparse k-means

method [35]. It is proposed for the following reasons:

• Instead of using the distance-based approach, the model-based approach under the like-

lihood framework should be more sophisticated.

• The permuted datasets used for calculating the gap statistic may not represent the null

distribution that it is supposed to be, because the columns with more variability will still

retain that higher variability.

• The gap statistic does not account for the correlation of the variables, which we may try

to incorporate by the likelihood approach.

The proposed method has the following steps:

1. Specify a tuning parameter pool with m tuning parameters.

2. For each of the tuning parameter choice si, where i = 1, 2, . . . ,m,

a. Sparse k-means is applied to the dataset with this the tuning parameter si. The

number of clusters K is pre-specified and stays the same.
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b. Estimate the mixture distribution of K multivariate normal distributions. Each

cluster is a distribution component. First, the number of variables with nonzero

weight is q and the mixture distribution is described by this subset of q variables.

For each cluster Ck (k = 1, 2, . . . , K), the means, µk, are the cluster center values and

the covariance, Σk, are the covariance taken for that cluster. Here, πk = nk/n with

nk being the number of observations in that cluster and n being the total number of

observations in the dataset.

c. Compute the likelihood of datasets with the distribution parameters from last step,

that is:

logL =
n∑
i=1

log[
K∑
k=1

πkfk(xi;µk,Σk)], (3.10)

where

fk(x;µk,Σk) =
1

(2π)q/2 |Σk|
1
2

exp

[
−1

2
(xq − µk)′Σ−1k (xq − µk)

]
, (3.11)

where xq is the subset of the q variables.

d. Calculate the modified BIC adBIC by adjusting for the different number of variables

selected for clustering as the following:

adBIC = −2 logL+ d log(n), (3.12)

where d = K − 1 +Kq +Kq(q + 1)/2

3. Choose the tuning parameter with the smallest BIC for the final sparse k-means cluster-

ing.

3.5.2 A Simple Example

We use a simple imaging dataset to illustrate this method. There are n = 62 subjects in

the dataset and p = 13 regions-of-interest observed for each subject. We group the dataset

into K = 2 groups. Table 7 shows that when the tuning parameter is 2.798409, the adjusted

BIC reaches the minimum value at the first time, hence we will choose this tuning parameter

for the final sparse k-means clustering. The gap statistic method also has chosen the same

tuning parameter 2.798409.
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Table 7: The likelihood and BIC values from an imaging dataset with regional measures

with p = 13 regions.

Index Tuning Parameter Log likelihood q d ad BIC

1 1.100000 44.09473 2 11 -42.79097

2 1.197452 44.09473 2 11 -42.79097

3 1.303537 43.10259 2 11 -40.80669

4 1.419020 121.83404 3 19 -165.25253

5 1.544735 121.83404 3 19 -165.25253

6 1.681587 273.32955 5 41 -377.44658

7 1.830563 351.46995 6 55 -475.94752

8 1.992737 351.46995 6 55 -475.94752

9 2.169278 351.46995 6 55 -475.94752

10 2.361460 590.90537 9 109 -731.95309

11 2.570668 807.67813 12 181 -868.34493

12 2.798409 1041.36069 13 209 -1220.15030

13 3.046327 1041.36069 13 209 -1220.15030

14 3.316209 1041.36069 13 209 -1220.15030

15 3.610000 1041.36069 13 209 -1220.15030
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3.5.3 Simulation Results

We are applying the proposed method to the simulation scenarios where the gap statistic has

failed. We are experiencing some issues and in the middle of resolving them. The following

problems can occur when calculating the multivariate normal distribution density:

• Sometimes the covariance matrix is singular and we cannot calculate its inverse. To get

around this problem, we make the covariance matrix positive definite.

• The determinant for the covariance matrix is nearly zero, which in turn gave an infinite

density value and hence an infinite likelihood value.

These problems exist not only for cases where p = 1000 and p = 500, but also when p = 200

where the gap statistic worked well.

3.6 CONCLUSIONS AND DISCUSSIONS

The tuning parameter choice for sparse clustering is inherently difficult and challenging be-

cause of the lack of information on the truth. However, it is also very important given that

sparse clustering is becoming widely applied in the high dimensional setting. The imple-

mentation of our proposed method is difficult because of the problems with the covariance

matrix. Looking closely to work done by the Pan and Shen[2007] paper, we can see that

they assume a diagonal covariance matrix and that the density of the multivariate distri-

bution is calculated as the product of the individual one-dimensional normal distribution

densities to get around the problems that we are experiencing. Another challenge using this

proposed method is that the estimated parameters, such as the covariance matrix, may be

biased from the true values in the high-dimensional setting. There are shrinkage methods

in the literature where shrinking the estimated covariance is desired to get close to the true

variance.

Another idea is to use the prediction strength for tuning parameter choice as in [32]. This

idea is similar to cross-validation. A simple approach is to split the data into two datasets.

Sparse clustering will be fitted to one dataset with each tuning parameter choice. We will
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then check the prediction strength of the cluster criteria in the other half of the data by

using the metric Classification Error Rate (CER), which is equal to “1 - Rand index”. The

tuning parameter with maximum prediction strength will be chosen to be the final clustering

model. We had reservations about exploring this approach for two reasons: one reason is

that when the sample size is limited, cross-validation is less valid; Another reason is that the

prediction strength of the clustering again is difficult to estimate because of the lack of the

information on the true group membership.

In summary, the problems that we experienced with the gap statistic alerted us that one

should exercise caution when applying the method. More work should be done to improve

the situation.
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4.0 OTHER WORK

Besides the work described in previous chapters, the resampling method described in Chapter

2 has also been extensively applied in imaging datasets with regional values (p = 13). The

results were included in a paper where the goal was to find the amyloid positivity threshold

for Alzheimer’s disease early detection. In this work, we resampled each dataset for 1000

times, defined the robust cluster centers as the 95% tight cluster centers and then we use

these robust cluster centers to further define robust clustering rules and amyloid positivity

threshold. This paper has been submitted to Journal of Nuclear Medicine for peer review.
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