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HYPOTHESIS SETTINGS AND METHODS FOR GENE EXPRESSION

META-ANALYSIS

Chi Song, PhD

University of Pittsburgh, 2012

With the advent of high-throughput technologies, biomedical research has been dramatically

reshaped in the past two decades. Technologies such as microarrays are broadly utilized to

study the relationship between genomic alterations and disease outcomes. However, ge-

nomic analyses are criticized for their low reproducibility and generalizability. Large-scale

meta-analysis of multiple studies is a timely and important issue with great public health

significance, because robust biomarkers can be found for complex human diseases such as

major depression disorder using meta-analysis techniques. Accurate marker detection will

improve the disease diagnosis, treatment selection and prognosis prediction.

In this dissertation, I first illustrate different hypothesis settings for two different types of

biomarkers: biomarkers that are differentially expressed (DE) “in all” studies and biomark-

ers that are DE “in any” studies. Then I propose a robust setting HSr to detect genes

differentially expressed (DE) “in majority of” studies. For HSr, I propose an order statistic

of p-values (rth order p-value, rOP) across combined studies as the test statistic. I also

explore statistical properties such as power and asymptotic behavior of rOP. The method

is applied to three examples to demonstrate its robustness and sensitivity. I develop two

methods to guide the selection of r.

The non-complementary property of HSr causes anti-conservative inferences. To over-

come this, I propose HS′r as a complementary form of HSr. For HS′r, the major obstacle

comes from the mixture nature of the null distribution. From a Bayesian point of view,

I propose a semiparametric mixture model for the observed p-values in combined studies.
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A Bayes factor is calculated based on the posterior distribution to substitute traditional

hypothesis testing for HS′r. I also develop an expectation-maximization (EM) algorithm

to fit this model. Simulation results and real data analysis show improved specificity and

sensitivity of this novel approach compared to traditional methods.

Beyond meta-analysis of single genes, I also propose a framework to integrate multiple

biological networks. A conservative subnetwork in a subset of datasets can be identified

using my approach.

In conclusion, I discuss various interesting questions in genomic meta-analysis in this

dissertation. And I provide a series of statistical tools to address them.
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1.0 INTRODUCTION

With the advances in high-throughput experimental technology in the past decade, the pro-

duction of genomic data has become affordable and thus prevalent in biomedical research.

Accumulation of experimental data in the public domain has grown rapidly, particularly

of microarray data for gene expression analysis and single nucleotide polymorphism (SNP)

genotyping data for genome-wide association studies (GWAS). For example, the Gene Ex-

pression Omnibus (GEO; http://www.ncbi.nlm.nih.gov/geo/) from the National Center

for Biotechnology Information (NCBI) and the Gene Expression Atlas (http://www.ebi.ac.

uk/gxa/) from the European Bioinformatics Institute (EBI) are the two largest public depos-

itory websites for gene expression data and dbGaP (http://www.ncbi.nlm.nih.gov/gap)

has the largest collection of genotype data.

Because individual studies usually contain a limited number of samples, and the re-

producibility of genomic studies is relatively low, the generalizability of their conclusions

is widely criticized. Therefore combining multiple studies to improve statistical power and

provide validated conclusions has emerged as a common practice (see recent review papers

Tseng et al., 2012; Begum et al., 2012). Such genomic meta-analysis is particularly useful

in microarray analysis and GWAS.

In this dissertation, I will focus on the meta-analysis of microarray data. However,

the methods developed could also be applied in other types of genomic data. In section

1.1, I briefly introduce microarray technology. And in section 1.2, traditional meta-analysis

methods which have been extended to microarray data are introduced. Network analysis

methods are discussed in section 1.3.

In chapter 2, existing meta-analysis methods that are commonly seen in genomics re-

search are compared and categorized into two groups: those that pursue DE genes in “one or
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more” studies or “all” studies respectively. I further explore the underlying hypothesis set-

tings (HSA and HSB) for these two groups of methods. Based on this observation, I propose

a robust hypothesis setting which targets differentially expressed (DE) genes in the “major-

ity of” studies (HSr). To detect HSr, I suggest the usage of the rth order p-value (rOP)

as the test statistic and develop two methods to select parameter r. Statistical properties

like power function and asymptotic behavior of rOP are investigated. This method is then

applied to three real data examples and compared to other meta-analysis methods.

In chapter 3, I extend HSr to a more realistic hypothesis setting, HS′r. In HS′r, the

null hypothesis becomes a composite hypothesis which is the complementary event of the

alternative hypothesis. However, because of the complexity of the null hypothesis, it is

intractable to find an appropriate test statistic with a well-defined null distribution. Instead,

to bypass the null hypothesis issue, I propose a Bayesian approach to address the meta-

analysis problem from another angle. I infer the posterior probability of the alternative

hypothesis being true. In this approach, I model the p-values for all the genes in all the

studies using a semiparametric two-component mixture model. Gene effects and study effects

are also taken into account. Both simulation and real data analysis show the advantage of

this approach.

In chapter 4, meta-analysis of multiple network construction results is discussed. I pro-

pose a brand new framework to identify conservative subnetworks in combined studies. The

method is also evaluated using simulation and real data analysis.

In chapter 5, the works in this dissertation are summarized.

1.1 GENE EXPRESSION TECHNOLOGY

Microarray technologies assay monitor the mRNA expression levels of tens of thousands of

genes in each sample simultaneously. By analyzing the gene expression levels from a set

of tissue samples, biomarkers that are related to the phenotype of interest or differentially

expressed between specific groups of samples can be detected. The gene expression levels

can also be used to detect important biological pathways using the correlations between the
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genes. In biomedical applications, microarrays can be an important diagnosis or prognosis

tool for complex human diseases as well.

In most microarrays platforms, each sample is measured on a single array. First, the

mRNAs are extracted from the sample tissue. Then polymerase chain reaction (PCR) tech-

nology is applied to retro-transcribe and amplify the mRNAs into cDNA libraries. The

cDNAs are marked by fluorescent dyes. Then the cDNA libraries are incubated with the

microarray. Since on the array, there are oligonucleotide probes designed to hybridize with

the cDNA segments of each gene of interest, the cDNAs will be retained on the probes with

matched sequences. Therefore, the fluorescent amount detected on each probe may reflect

the expression level of the corresponding gene. For redundancy, generally multiple probes

are designed for the same gene.

Currently, a number of commercial microarray platforms are provided by companies

including Affymetrix, Agilent and Illumina. However, because every platform uses its own

probe design and detailed technology, the signals detected by different platforms could be

dramatically different. Even within the same platform, there are biases for a number of

reasons including sample preparation, experimental protocol and batch effects. As a result,

direct combination of multiple microarray studies requires careful normalization and tends

to be error-prone.

To understand the mechanisms of certain diseases, it is particularly important to identify

the set of genes that are DE between the diseased and normal tissues (or between the severe

and non-severe patients). For DE gene detection, hypothesis testing is repeatedly applied

to each of the genes. And because multiple hypothesis tests are performed, the problem

of multiple comparisons should be addressed. False discovery rate (FDR) are generally

controlled for microarray analysis by permutation test or by the procedure proposed by

Benjamini and Hochberg [1995].

3



1.2 TRADITIONAL META-ANALYSIS METHODS

As microarray analysis becomes prevalent, the meta-analysis of multiple studies becomes

commonplace and important. Many traditional methods have been extended and applied

for microarray meta-analysis. Two major types of statistical procedures have been used:

combining effect sizes and combining p-values. Generally, no method uniformly performs

better than the others in all datasets for all biological goals, both from a theoretical point

of view [Littell and Folks, 1971, 1973] and from empirical experiences.

In the methods combining effect sizes, the fixed effects model and random effects model

are the most popular [Cooper et al., 2009]. These methods are usually more straightforward

and powerful to directly synthesize information of the effect size estimates. However, they

are only applicable to samples with two conditions so the effect sizes can be well-defined and

combined.

Methods combining p-values provide better flexibility for various outcome conditions as

long as p-values can be assessed for integration. Fisher’s method is among the earliest p-value

methods applied to microarray meta-analysis [Rhodes et al., 2002]. It adopts a sum score of

log-transformed p-values to aggregate statistical significance across studies. Under the null

hypothesis and assuming that studies are independent and the hypothesis testing procedure

correctly fits the observed data, Fisher’s statistic follows a chi-squared distribution. Other

methods such as Stouffer’s method [Stouffer et al., 1949], minP method [Tippett, 1931] and

maxP method [Wilkinson, 1951] have also been widely used in microarray meta-analysis. It

can be shown that these test statistics have simple analytical forms of null distributions and

thus they are easy to apply to the genomic setting.

1.2.1 Fisher’s method

For combining K p-values (p1, p2, . . . , pK), the Fisher’s statistic is

SFisher = −2
K∑
k=1

log pk.
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Under the null hypothesis that the effect size in all K studies equals zero (θ1 = θ2 = · · · =

θK = 0), the K combined p-values independently follow U(0, 1). Therefore, it is easy to show

that − log pk ∼ EXP(1). Accordingly, SFisher ∼ χ2(2K). It has been proven that Fisher’s

method is asymptotic Bahadur optimal (ABO) when it is assumed that the effect sizes are

all the same in the alternative hypothesis [Littell and Folks, 1971, 1973].

1.2.2 Stouffer’s method

Similar to Fisher’s method, Stouffer’s statistic is the summation of inverse Gaussian trans-

formation of combined p-values.

SStouffer =
K∑
k=1

Φ−1(pk)

It is easy to show that under null hypothesis, SStouffer ∼ N(0, k). The p-value of Stouffer’s

statistic can be calculated accordingly. Comparing to Fisher’s method, Stouffer’s method

is more robust to outlying p-values. Thus it is increasingly used in biomedical researches

where outliers are expected.

1.2.3 Minimum P-value

In the minimum p-value (minP) method, the test statistic is the smallest p-value of combined

studies:

SminP = min{pk}.

Under the null hypothesis, SminP ∼ Beta(1, K). Because only the smallest p-value is con-

sidered in the test statistic, the minP method is sensitive to a single extreme p-value. Thus

minP is used to detect genes that are differentially expressed in “one or more” studies. Simi-

larly, in Fisher’s method and Stouffer’s method, only one extremely small p-value may result

in a large test statistic and a significant result. Collectively, Fisher’s method, Stouffer’s

method and the minP method are all designed to detect differential biomarkers in “any” of

a set of studies.
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1.2.4 Maximum P-value

Maximum P-value (maxP) uses a statistic that is the largest p-value of the combined studies:

SmaxP = max{pk}.

Under the null hypothesis, SmaxP ∼ Beta(K, 1). Although maxP looks similar to minP, the

performance is very different. In maxP, because the test statistic is the largest p-value, it

is robust to single small p-values. However, since maxP requires that all combined p-values

are small to generate a significant result, it is sometimes too stringent to detect important

biomarkers. Therefore, maxP is not commonly used in biomedical research because of its

low statistical power.

1.3 NETWORK ANALYSIS

Understanding the roles of single genes is fundamental to investigating the mechanism of

complex biological process. However, in biological systems, genes do not function indepen-

dently. Different genes work together to carry out certain biological procedures. To address

this question, networks are usually constructed for biological systems. The networks can be

presented by graphs which are comprised of vertices and edges connecting them. The edges

can be either directed or undirected in biological networks.

The networks that represent the interactions among molecules such as DNA, RNA and

proteins are called molecular networks. Currently, multiple types of molecular networks are

used to describe the interactions among genes and other components. The most commonly

used networks include protein-protein interaction networks, metabolic networks, regulatory

networks and RNA networks [Barabási et al., 2011]. Networks can be inferred by either ex-

perimental or computational methods. Among the available networks, regulatory networks

are particularly interesting because genes involved in the same biological pathway are often

co-regulated. It is known that genes are regulated by many molecular mechanisms includ-

ing copy number variation, methylation, transcription factors and microRNAs. Complex
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diseases are sometimes found to be related to alteration of gene regulation networks. For

example, in cancers, it is known that genes related to cell cycle and proliferation are of-

ten dysregulated. Therefore, constructing regulatory networks from gene expression data is

important to understand the mechanisms of the disease.

Because in co-regulation networks, expression of co-regulated genes is also highly cor-

related, correlations between genes can be used to infer the co-regulation network. For

example, in gene expression data, correlations between different genes can be calculated.

The gene coexpression network can be constructed by thresholding the absolute correlations

[Guilloux et al., 2010]. The expression levels of multiple genes can also be deemed as sam-

pled from a Markov random field (MRF). Then methods such as graphical lasso [Friedman

et al., 2008] can be applied to recover the MRF. Besides methods that use only the ex-

pression levels of mRNAs and their covariance structure, methods that accommodate other

data types and prior informations have been proposed. For example, Huang et al. [2011]

proposed mirConnX to incorporate both microRNA expression levels and prior knowledge

of experimentally confirmed biological pathways to construct the gene regulation network.

In network construction, especially for ab initio methods, edges should be inferred be-

tween each pair of genes. The number of inferences increases dramatically as the number

of genes increases. Therefore, large sample sizes are required to construct a stable network.

However, in single studies, the sample sizes are usually limited. So the networks constructed

are not satisfactory in terms of sensitivity and specificity. Meta-analysis methods can be

generated to combine multiple studies to construct robust subnetworks.
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2.0 RTH ORDER P-VALUE FOR ROBUST GENOMIC META-ANALYSIS

2.1 BACKGROUND

In microarray analysis, One commonly seen analysis is to detect differentially expressed (DE)

genes when samples are collected with labels of two conditions (e.g. tumor recurrence versus

non-recurrence), multiple conditions (e.g. multiple tumor subtypes), survival information or

time series. In the literature, microarray meta-analysis usually refers to combining multiple

studies of related hypothesis or conditions to better detect DE genes (also called candidate

biomarkers).

According to section 1.2, many traditional meta-analysis methods have been applied to

microarray meta-analysis. And there are two major categories of procedures: combining

effect sizes and combining p-values. Because of the limitation of the combining effect sizes

methods, they are not the focus of this dissertation. The null distributions and properties

of commonly used methods that combine p-values are discussed in section 1.2. The assump-

tions and hypothesis settings behind these methods are, however, very different and have not

been carefully considered in most microarray meta-analysis applications so far. In this chap-

ter, I begin in Section 2.2.1 to elucidate the hypothesis settings and biological implications

behind these methods. In many meta-analysis applications, detecting markers differentially

expressed in all studies is more appealing. The requirement of DE in “all” studies, however,

is too stringent when K is large and in light of the fact that experimental data are peppered

with noisy measurements from probe design, sample collection, data generation and analy-

sis. Thus, I describe in Section 2.2.1 a robust setting (called HSr) that detects biomarkers

differentially expressed in “majority of” studies (e.g. > 60% of the studies) and propose a

robust order statistic, rth order p-value (rOP), for this hypothesis setting.
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The remainder of this chapter is structured as follows. In Section 2.2.2, the rationale

and algorithm of rOP is outlined, and methods for parameter estimation are described in

section 2.2.3. Section 2.2.4 extends rOP with a one-sided test correction to avoid detection

of DE genes with discordant fold change directions across studies. Section 2.3 demonstrates

application of rOP to three examples in brain cancer, major depressive disorder (MDD) and

diabetes and compares the result with other classical meta-analysis methods. I then further

explore power calculation and asymptotic properties of rOP in section 2.4.1, and establish an

unexpected but insightful connection of rOP with the traditionally undesirable vote counting

method in section 2.4.2. Section 2.5 contains final conclusions and discussions.

2.2 RTH ORDER P-VALUE (ROP)

2.2.1 Hypothesis settings and motivation

I consider the situation when K transcriptomic studies are combined for meta-analysis and

each study contains G genes for information integration. Denote by θgk the underlying true

effect size of gene g and study k (1 ≤ g ≤ G, 1 ≤ k ≤ K). For a given gene g, I follow

the convention of Birnbaum [1954] and Li and Tseng [2011] to consider two complementary

hypothesis settings, depending on the pursue of different types of target markers:

HSA :

{
H0 :

⋂
k

{θgk = 0} versus H(A)
a :

⋂
k

{θgk 6= 0}

}

HSB :

{
H0 :

⋂
k

{θgk = 0} versus H(B)
a :

⋃
k

{θgk 6= 0}

}

In HSA, the targeted biomarkers are those differentially expressed in all studies (i.e. the

alternative hypothesis is the intersection event that effect sizes of all K studies are non-zero),

while HSB pursues biomarkers differentially expressed in one or more studies (the alternative

hypothesis is the union event instead of intersection in HSA). Biologically speaking, HSA is

more stringent and more desirable to identify consistent biomarkers across all studies if the

combined studies are homogeneous. HSB, however, is useful when heterogeneity is expected.
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For example, if studies analyzing different tissues are combined (e.g. study 1 uses epithelial

tissues and study 2 uses blood samples), it is reasonable to identify tissue-specific biomarkers

detected by HSB. I note that HSB is identical to the classical union-intersection test (UIT)

[Roy, 1953] but HSA is different from intersection-union test (IUT) [Berger, 1982, Berger

and Hsu, 1996]. In IUT, the statistical hypothesis is in complementary form between null

and alternative hypothesis {H0 :
⋃
k{θgk = 0} versus Ha :

⋂
k{θgk 6= 0}}. Solutions for IUT

require more sophisticated mixture or Bayesian modeling to accommodate the composite

null hypothesis and will be explored in chapter 3.

As discussed in [Tseng et al., 2012], most existing genomic meta-analysis methods target

HSB. Popular methods include classical Fisher’s method [sum of minus log-transformed p-

values; Fisher, 1925], Stouffer’s method [sum of inverse-normal-transformed p-values; Stouffer

et al., 1949], minP [minimum of combined p-values; Tippett, 1931] and a recently proposed

adaptively weighted (AW) Fisher’s method [Li and Tseng, 2011]. The random effects model

targets a slight variation of HSA, where the effect sizes in the alternative hypothesis are

random effects drawn from a Gaussian distribution centered away from zero (but do not

guarantee to be all non-zero). The maximum p-value method (maxP) is probably the only

method available to specifically target on HSA so far. By taking the maximum of p-values

from combined studies as the test statistic, the method requires that all p-values to be small

for a gene to be detected. Assuming independence across studies and that the inferences to

generate p-values in single studies are correctly specified, p-values (pk as p-value of study

k) are i.i.d. uniformly distributed in [0, 1]. Fisher’s statistic (SFisher = −2
∑

log pk) follows

a chi-square distribution with degree of freedom 2K (i.e. SFisher ∼ χ2(2K)) under null

hypothesis H0; Stouffer’s statistic (SStouffer =
∑

Φ−1(pk), where Φ−1(·) is the quantile of

standard normal distribution) follows a normal distribution with variance K (i.e. SStouffer ∼

N(0, K)); minP statistic (SminP = min{pk}) follows Beta distribution with parameters 1

and K (i.e. SminP ∼ Beta(1, K)); and maxP statistic (SmaxP = max{pk}) follows Beta

distribution with parameters K and 1 (i.e SmaxP ∼ Beta(K, 1)).

The HSA hypothesis setting and maxP method is obviously too stringent in light of the

generally noisy nature of microarray experiments. When K is large, HSA is not robust and

inevitably detects too few genes. Instead of requiring differential expression in all studies, bi-
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ologists may be more interested in, for example, “biomarkers that are differentially expressed

in more than 70% of the combined studies.” Denote by Θh =
{∑K

k=1 I(θgk 6= 0) = h
}

the

situation that exactly h out of K studies are differentially expressed. The new robust hy-

pothesis setting becomes:

HSr :

{
H0 :

⋂
k

{θgk = 0} versus H(r)
a :

K⋃
h=r

Θh

}
,

where r = dp ·Ke, dxe is the smallest integer no less than x and p (0 < p ≤ 1) is the minimal

percentage of studies required to be differentially expressed (e.g. p = 50% or 70%). I note

that HSA and HSB are both special cases of the extended HSr class (i.e. HSA = HSK and

HSB = HS1), but I will focus on large r (e.g. p > 50%) in this chapter and view HSr as a

relaxed or robust form of HSA.

In the literature, maxP has been used for HSA and minP has been used for HSB. An

intuitive extension of these two methods for HSr is to use the rth order p-value (rOP). Before

I introduce the algorithm and properties of rOP, I consider below four hypothetical genes to

compare Fisher, Stouffer, minP, maxP and rOP to illustrate the motivation of rOP. In the

four example genes, gene A has marginally significant p-values (p = 0.1) in all five studies;

gene B has strong p-value in study 1 (p = 1e − 20) but p = 0.9 in the other four studies;

gene C is similar to Gene A but with much weaker statistical significance (p = 0.25 in all

five studies); gene D differs from gene C in that studies 1-4 have small p-value (p = 0.15)

but study 5 has large p-value (p = 0.9). Table 1 shows the resulting p-values from five

meta-analysis methods that are derived from classical parametric inference in section 2.1.

Comparing Fisher and minP in HSB, minP is sensitive to a study that has very small p-

value (e.g. gene B) while Fisher, as an evidence aggregation method, is more sensitive when

all or most studies are marginally statistically significant (e.g. gene A). Stouffer behaves

similarly to Fisher except that it is less sensitive to the extremely small p-value in gene B.

When we turn our attention to HSA, gene C and gene D cannot be detected by all three

of Fisher, Stouffer and minP methods. Gene C can be detected by both maxP and rOP

as expected (p = 0.001 and 0.015, respectively). For gene D, it cannot be identified by

maxP method (p = 0.59) but can be detected by rOP at r = 4 (p = 0.002). Gene D

gives a good motivating example that maxP may be too stringent when many studies are
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combined and rOP provides additional robustness when one or a small portion of studies are

not significant. In genomic meta-analysis, genes similar to gene D are common due to noisy

nature of high-throughput genomic experiments or when a low quality study is accidentally

included in the meta-analysis. Although the types of desired markers (under HSA, HSB or

HSr) depend on the biological goal of a specific application, gene A, C and D are normally

desirable marker candidates that researchers wish to detect in most situations while gene B

is not (unless study specific markers are expected as mentioned in Section 2.1). This toy

example motivates the development of a robust order statistic of rOP below.

Table 1: Four hypothetical genes to compare different mea-analysis methods and to illustrate

the motivation of rOP (*: p-values smaller than 0.05)

gene A gene B gene C gene D

Study 1 0.1 1E-20 0.25 0.15

Study 2 0.1 0.9 0.25 0.15

Study 3 0.1 0.9 0.25 0.15

Study 4 0.1 0.9 0.25 0.15

Study 5 0.1 0.9 0.25 0.9

Fisher (HSB) 0.01* 1E-15* 0.18 0.12

Stouffer (HSB) 0.002* 0.03* 0.07 0.10

minP (HSB) 0.41 5E-20* 0.76 0.56

maxP (HSA) 1E-5* 0.59 0.001* 0.59

rOP (r = 4) (HSr) 5E-4* 0.92 0.015* 0.002*

2.2.2 The rOP method

Below is the algorithm for rOP when the parameter r is fixed. For a given gene g, denote

by Sg,r = pg(r) where pg(r) is the rth order statistic of p-values {pg1, pg2, . . . , pgK}. Under the

null hypothesis H0, Sg,r follows a Beta distribution with shape parameters r and K − r+ 1,

assuming the model to generate p-value under the null is correctly specified and all studies are
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independent. To implement rOP, one may apply this null distribution to calculate p-values

for all genes and perform a Benjamini-Hochberg correction [Benjamini and Hochberg, 1995]

to control the false discovery rate. A more robust alternative to avoid the aforementioned

assumptions is to perform permutation analysis as follows.

Step I. Study-wise p-value calculation before meta-analysis:

1. Considering two-group comparison in each study, compute the moderated t-statistics,

tgk, for gene g and study k [Efron et al., 2001, Tusher et al., 2001].

2. Randomly permute group labels in each study B times, and similarly calculate the per-

muted statistics, t
(b)
gk , where 1 ≤ g ≤ G, 1 ≤ k ≤ K, 1 ≤ b ≤ B.

3. Estimate the p-value of tgk as

pgk =
(∑B

b=1

∑G
g′=1 I

(
t
(b)
g′k ∈ R(tgk)

))
/(B ·G), where R(tgk) is the rejection region given

the threshold tgk. Similarly, given t
(b)
gk , compute its p-value as

p
(b)
gk =

(∑B
b′=1

∑G
g′=1 I

(
t
(b′)
g′k ∈ R(t

(b)
gk )
))

/(B ·G)

Step II. Calculate rOP statistic:

Compute the rOP statistics: Sg,r = pg(r), where pg(r) is the rth order statistic of p-

values {pg1, pg2, . . . , pgK}. Similarly, S
(b)
g,r = p

(b)
g(r) is calculated as the rth order statistic of

{p(b)g1 , p
(b)
g2 , . . . , p

(b)
gK}.

Step III. Assess p-values and q-values:

1. The p-value of Sg,r is calculated as

p(Sg,r) =
(∑B

b=1

∑G
g′=1 I

(
S
(b)
g′,r ≤ Sg,r

))
/(B ·G).

2. Estimate π0, the proportion of null genes, as

π̂0 =
(∑G

g=1 I (p(Sg,r) ∈ A)
)
/ (G · l(A)) [Storey, 2002]. Normally I choose A = [0.5, 1]

and l(A) = 0.5.

3. Estimate the q-value for each gene as q(Sg,r) =
π̂0
∑B

b=1

∑G
g′=1 I

(
S
(b)

g′,r≤Sg,r

)
B·
∑G

g′=1 I(Sg′,r≤Sg,r)
. The concluded

DE gene list is GrOP = {g : q(Sg,r) ≤ 0.05}.

Remark 1. In step I, both statistics tgk and rejection region R(tgk) can be replaced, depending

on the experimental design and hypothesis. For example, the F-statistic or Cox proportional

hazard model can be used for multi-class or censored data design in each study.
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Remark 2. Several forms of penalized or moderated t-statistics have been proposed and

shown to outperform traditional t-statistics [Efron et al., 2001, Tusher et al., 2001, Smyth,

2004]. For my algorithm I recommend the penalized t-statistics used in Efron et al. [2001]

and Tusher et al. [2001] because it is more robust to small variance estimations.

I note that both minP and maxP are special cases of rOP, but in this chapter I mainly

consider properties of rOP as a robust form of maxP (specifically K/2 ≤ r ≤ K).

2.2.3 Selection of r in an application

The selection of r for rOP is obviously data-dependent. The purpose of selecting r < K is

to tolerate potentially outlying studies and noise in the data. This noise may come from

experimental limitations (e.g. failure of probe design in certain studies, erroneous gene

annotation or bias from experimental protocol) or heterogeneous patient cohorts in different

studies. Another extreme case may come from inadequate inclusion of a low-quality study

into the genomic meta-analysis. In this chapter, I use the empirical data across the entire

genome to estimate the best r for a given application. I introduce two approaches for selecting

r for rOP. The first is from the number of detected DE genes and the second is based on

pathway analysis (a.k.a. gene set analysis) incorporating external biological knowledge.

2.2.3.1 Evaluation based on number of detected DE genes Under a reasonable

wild guess, the number of detected DE genes should be maximized when the correct r is

chosen in a genomic meta-analysis. Direct application of this intuition is, however, prob-

lematic and correction of bias is needed. When the studies combined have many DE genes,

meta-analysis through rOP will detect genes when K is small even if the studies combined

are totally irrelevant. For example, when K = r = 2 and 50% of genes in each study are DE

genes, roughly 25% of the genes are DE genes from the meta-analysis, simply by chance. To

eliminate this artificial trend, I apply a de-trend method by permutation similar to the GAP

statistic [Tibshirani et al., 2001]. Using the original K studies, the number of DE genes

detected by rOP using different r (1 ≤ r ≤ K) is first calculated as Nr (under certain false

discovery rate threshold, e.g. FDR = 5%). I then randomly permute p-values in each study
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independently and re-calculate the number of DE genes as N
(b)
r in the bth permutation. The

permutation is repeated B times and the adjusted number of detected DE genes is defined

as N ′r = Nr −
∑B

b=1N
(b)
r /B. In other words, the adjusted number of DE genes is de-trended

so that it is purely contributed by the consistent information among studies. The parameter

r is selected so that N ′r is maximized or among the largest. I use B = 100 in this chapter.

Remark 3. Note that sometimes N ′r could be negative. This often happens when the signal

in single study is strong and r is small. However, since I apply rOP for large K and r, the

negative value is usually not an issue.

2.2.3.2 Evaluation based on gene set analysis Pathway analysis (a.k.a. gene set

analysis) is a statistical tool to infer correlation of differential expression evidence in the

data with pathway knowledge (usually sets of genes with known common biological function

or interactions) from established databases. In this approach, I hypothesize that the best

selection of r will produce a DE analysis result that generates the strongest statistical asso-

ciation in “important” (i.e. disease related) pathways. Normally, the “important” pathways

related to a given application are not known. Instead, I adopt a novel selection procedure

below. I perform pathway analysis using a large pathway database (e.g. GO, KEGG or

BioCarta) and select pathways that are top ranking by aggregated committee decision of

different r from rOP. The detailed algorithm is as follows:

Step I. Identification of related pathways: (committee decision by [K/2] + 1 ≤ r ≤ K)

1. Apply rOP method to combine studies and generate p-values for each gene. Run through

different r, [K/2] + 1 ≤ r ≤ K.

2. For a given pathway m, apply Kolmogorov-Smirnov test to compare the p-values of genes

in the pathway and those outside the pathway. The pathway enrichment p-values are

generated as pr,m. Its rank among all pathways in a given r is calculated as Rr,m =

rankm(pr,m). Small ranks represent strong pathway enrichment for pathway m.

3. The sums of ranks of different r are calculated as Sm =
∑K

r=[K/2]+1Rr,m. The top U = 100

pathways with the smallest Sm scores are selected and denoted as M . I treat M as the

gold-standard disease-related pathway set.
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Step II. Sequential testing of improved pathway enrichment significance:

1. I perform sequential hypothesis testing that starts from r′ = K since conceptually I

would like to pick r as large as possible. I first perform Wilcoxon signed rank test to test

difference of pathway enrichment significance for r′ = K and r′ = K−1. In other words,

I perform two-sample test on paired vectors of (pK,m;m ∈M) and (pK−1,m;m ∈M) and

record the p-value as p̃K,K−1.

2. If the test is rejected (using conventional type I error 0.05), that means reducing from

r = K to r = K − 1 can generate DE gene list that produce more significant pathway

enrichment in M . I will continue to reduce r′ by one (i.e. r′ = K − 1) and repeat the

test between (pr′,m;m ∈ M) and (pr′−1,m;m ∈ M). Similarly, the resulting p-values are

recorded as p̃r′,r′−1. The procedure is repeated until the test from r′ is not rejected. The

final r′ is selected for rOP. Note that for simplicity, I did not perform p-value correction

for multiple comparison or sequentially dependent hypothesis testing here.

2.2.4 One-sided test correction to avoid discordant effect sizes

Methods combining effect sizes (e.g. random or fixed effects models) are suitable to com-

bine studies with binary outcome, in which case the effect sizes are well-defined as the

standardized mean difference or odds ratio. Methods combining p-values, however, have

advantages to combine studies with non-binary outcomes (e.g. multi-class, continuous or

censored data), in which case F-test, simple linear regression or Cox proportional hazard

model can be used to generate p-values for integration. On the other hand, p-value com-

bination methods usually combine two-sided p-values in binary outcome data. A gene may

be found statistically significant with up-regulation in one study and down-regulation in

another study. Such a confusing discordance although sometimes is reflection of biological

truth, is often undesirable in most applications. Owen [2009] and Pearson [1934] applied a

one-sided test form of Fisher’s method to address the possible discordance issue. Two Fisher

scores are first obtained from left and right one-sided p-values: SFisher;L = −2
∑K

k=1 log(p̃k)

and SFisher;R = −2
∑K

k=1 log(1 − p̃k), where p̃k is the left-sided p-value of study k. The

one-sided corrected Fisher score is defined as SFisher;C = max
(
SFisher;L, SFisher;R

)
. Below I
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similarly modify the rOP method for a one-sided corrected form. Denote by SrOP ;L = p̃(r),

where p̃(r) is the rth order statistic of left one-sided p-values {p̃1, p̃2, . . . , p̃K} from K stud-

ies. Similarly, SrOP ;R = q̃(r), where q̃(r) is the rth order statistic of right one-sided p-values

{q̃1, q̃2, . . . , q̃K} = {1 − p̃1, 1 − p̃2, . . . , 1 − p̃K} from K studies. The test statistic is defined

as SrOP ;C = min
(
SrOP ;L, SrOP ;R

)
. Under the null hypothesis that the one-sided p-values

{p̃1, p̃2, . . . , p̃K} are independently and uniformly distributed in [0, 1]. The null distribution

of SrOP ;C can be derived using integration by part. Equivalently, the null distribution could

also be derived using the following property.

Pr
(
SrOP ;C ≤ p|H0

)
= Pr

(
SrOP ;L ≤ p or SrOP ;R ≤ p|H0

)
= Pr

(
K∑
k=1

I(p̃k ≤ p) ≥ r or
K∑
k=1

I(p̃k ≥ 1− p) ≥ r
∣∣∣H0

)

Because
∑K

k=1 I(p̃k ≤ p) ≥ r and
∑K

k=1 I(p̃k ≥ 1− p) ≥ r are not mutually exclusive (except

when r ≥ [K/2] + 1 and p ≤ 0.5), the above probability should be calculated differently as

follows.

1. For r ≥ [K/2] + 1

a. If p ≤ 0.5,

Pr
(
SrOP ;C ≤ p|H0

)
= 2F (K−r;K, 1−p), where F (K−r;K, 1−p) =

∑K−r
i=0

(
K
i

)
(1−

p)ipK−i is the Binomial CDF for having K − r successes in K Bernoulli trails with

success probability 1− p.

b. If p > 0.5,

Pr
(
SrOP ;C ≤ p|H0

)
= 1−

∑r−1
i=K−r+1

∑K−i
j=K−r+1

K!
i!j!(K−i−j)!(1− p)

i+j(2p− 1)K−i−j.

2. For r ≤ [K/2]

a. If p ≤ 0.5,

Pr
(
SrOP ;C ≤ p|H0

)
= 1−

∑r−1
i=0

∑r−1
j=0

K!
i!j!(K−i−j)!p

i+j(1− 2p)K−i−j.

b. If p > 0.5,

Pr
(
SrOP ;C ≤ p|H0

)
= 1.
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2.3 APPLICATIONS

In this section, I apply rOP as well as other meta-analysis methods to three microarray

meta-analysis applications with different strengths of signal and different degrees of hetero-

geneity. Appendix table 4-6 lists detailed information on seven brain cancer studies, nine

major depressive disorder (MDD) studies, and 16 diabetes studies for meta-analysis. I pre-

process and normalize the data by standard procedures in each array platform. Probes are

matched to the same gene symbols. When multiple probes (or probe sets) match to one

gene symbol, the probe that contained the largest variability (i.e. inter-quartile range) was

used to represent the gene. After gene matching and filtering, 6,005, 7,577 and 6,645 genes

were remained in brain cancer, MDD and diabetes datasets, respectively. The brain cancer

studies are collected from GEO database. The major depressive discarder (MDD) studies

are obtained from Dr. Etienne Sibille’s lab. A random intercept model is applied to each

of the studies to get the p-values of single genes adjusted for potential confounders [Wang

et al., 2012]. Preprocessed data of 16 diabetes studies described by Park et al. [2009] are

obtained from the authors. For studies with multiple groups, I followed the procedure of

Park et al. by taking the minimum p-value of all the pairwise comparisons and adjusted for

multiple tests.

2.3.1 Application of rOP

I demonstrate the estimation of r for rOP using the two evaluation criteria based on the ad-

justed number of detected DE gene and gene set analysis in section 2.2.3. In the first dataset,

two important subtypes of brain tumors - anaplastic astrocytoma (AA) and glioblastoma

multiforme (GBM) - are compared in seven microarray studies. To estimate an adequate r

for rOP application, I calculated the unadjusted number, baseline number from permutation

and adjusted number of detected DE genes using 1 ≤ r ≤ 7 under FDR=5% (Figure 1(a)).

The result showed a peak at r = 5. For the second estimation method by pathway analysis,

boxplots of − log10(p) (p-values calculated from association of DE gene list with top path-

ways) versus r are plotted (Figure 1(b)). The sequential Wilcoxon signed rank tests showed
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that result from r = 6 is significantly more associated with pathways than that from r = 7

(p = 6.4e− 12) and similarly for r = 5 versus r = 6 (p = 4.2e− 10) and r = 4 versus r = 5

(p = 0.048). Combining results from Figures 1(a) and 1(b), I decided to choose r = 5 since

I wanted to choose r as large as possible and the pathway analysis result of r = 4 in Figure

1(b) (although statistically significant) does not greatly improve over the result of r = 5.

Figure 1(c) shows a heatmap of studies effective in rOP (when r = 5) for each detected

DE gene (a total of 1,552 DE genes on the rows and seven studies on the columns). For

example, if p-values for the seven studies are (0.13, 0.11, 0.03, 0.001, 0.4, 0.7, 0.15), the test

statistic for rOP is SrOP = 0.15 and the five effective studies that contribute to rOP are

indicated as (1, 1, 1, 1, 0, 0, 1). In the heatmap, effective studies are indicated by black color

and non-effective studies are in light gray. As shown in Figure 1(c), Paugh and Yamanaka

are non-effective studies in almost all detected DE genes, suggesting that the two studies do

not contribute to the meta-analysis and may potentially be problematic studies. This finding

agrees with a recent quality control assessment result using the same seven studies [Kang

et al., 2012]. In my application, AA and GBM patients are compared in all seven studies.

I expect to detect biomarkers that have consistent fold change direction across studies and

one-sided corrected rOP method is more preferable. Figure 2 shows plots similar to Figure

1 for one-sided corrected rOP. The result similarly concludes that r = 5 for the one-sided

corrected rOP is the most suitable for this application.

For the second application, nine microarray studies used different areas of post-mortem

brain tissues from major depressive disorder patients and control samples (Appendix table

5). Major depressive disorder is a complex genetic disease with largely unknown disease

mechanism and regulatory networks. The post-mortem brain tissues usually result in weak

signals which make meta-analysis an appealing approach. Figure 3 shows diagnostic plots to

estimate r. In Figure 3(a), the maximizer of adjusted DE gene detection is at r = 7 (r = 6

or 8 are also good choices). For Figure 3(b), the statistical significance improved “from r = 9

to r = 8” (p = 5.6e− 14), “from r = 8 to r = 7” (p = 8.7e− 7) and “from r = 7 to r = 6”

(p = 0.045). Combining the two results, I decided to choose r = 7 for the rOP method

in this application. Figure 3(c) shows the heatmap of effective studies in rOP. No obvious

problematic study is observed. The one-sided rOP is also applied (result not shown), good
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Figure 1: Results of brain cancer dataset
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Figure 2: A same figure of Figure 1 showing results of brain cancer dataset, except that

one-sided corrected rOP method is used to focus on concordant fold change direction across

studies.
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selection of r appears between 5 and 7. r = 7 is chosen to make it comparable to two-sided

rOP result.
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Figure 3: Results of MDD dataset

In the last application, 16 diabetes microarray studies are combined. These 16 studies

are very heterogeneous in terms of the organisms, tissues and experimental design (Appendix

table 6). Figure 4 shows diagnostic plots to estimate r. Although the number of studies

and heterogeneity across datasets are relatively larger than previous two examples, I could

still observe similar trends in Figure 4. Specifically, for Figure 4(a), it was shown that

r = 7 ∼ 12 detected higher adjusted number of DE genes. For pathway analysis, results

from r = 11 ∼ 12 are more associated with top pathways. As a result, I decided to use

r = 12 in this application. It is noticeable that the r selection in these diabetes studies

is relatively vague, compared to the other two examples. Figure 4(c) shows the heatmap

of effective studies in rOP. Two to four studies appear to be problematic studies but the

evidence is not as clear as the brain cancer example in figure 1(c).

I next explored the robustness of rOP by mixing a randomly chosen MDD study into

seven brain cancer studies as an outlier and sensitivity analysis. The results in Figure 5

showed that r = 5 or 6 may be a good choice (Figure 5(a) and 5(b)). I used r = 6 in rOP for

this application. Figure 5(c) interestingly shows that the mixed MDD study, together with

Paugh and Yamanaka studies, are potentially problematic studies in the rOP meta-analysis.

21



5 10 15

0
2
0
0

4
0
0

6
0
0

8
0
0

1
0
0
0

r

n
u
m

b
e
r

adjusted

unadjusted

baseline

(a) Adjusted and unadjusted number of detected
DE genes using different r

0 5 10 15

0
5

1
0

1
5

2
0

r

−
lo

g
1
0
 p

−
v
a
lu

e

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0
5

1
0

1
5

2
0

p = 1.000 0.994 0.940 0.949 0.528 0.988 0.934 0.351 0.064 0.911 0.634 0.038 0.048 7e−09 6e−07

(b) Boxplot of − log(p) for the top 100 pathways
using different r

s
0
1

s
0
2

s
0
3

s
0
4

s
0
5

s
0
6

s
0
7

s
0
8

s
0
9

s
1
0

s
1
1

s
1
2

s
1
3

s
1
4

s
1
5

s
1
6

(c) Heatmap shown effective studies of
rOP in each genes

Figure 4: Results of diabetes dataset

This result verifies my intuition that rOP is robust to an outlying study and the p-values of

the outlying study minimally contribute to rOP statistic.

2.3.2 Comparison of rOP with other methods

I performed rOP using r’s determined from section 2.3.1 in four applications (brain cancer,

MDD, diabetes, and brain cancer + 1 random MDD) and compared to Fisher’s method,

Stouffer’s method, minP and maxP. Two quantitative measures were used to compare the

methods. The first measure compared the number of detected DE genes from each method

as a surrogate of sensitivity (although the true list of DE genes is unknown and sensitivity
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Figure 5: Results of Brain Cancer and 1 random MDD dataset

cannot be calculated). The second approach was by pathway analysis; very similar to the

method I introduced to select parameter r. However, in order to avoid bias in top pathway

selection, single study analysis results were used as the committee to select disease related

pathways. KEGG, BioCarta, Reactome and GO pathways were used in the pathway analysis.

Wilcoxon signed rank test was then used to test if two methods performed similarly in

detecting disease related pathways.

Table 2 shows the number of detected DE genes under FDR=5%. I can immediately

observe that Fisher and Stouffer generally detect many more biomarkers because they target

HSB (genes differentially expressed in one or more studies). While minP sometimes has

extremely low statistical power (in MDD and diabetes examples) because it requires at

least one study with extremely small p-value to be detected. The stringent maxP method

detected few numbers of DE genes. rOP detects many more genes than maxP. It identifies

about 50 ∼ 65% fewer DE genes than the Fisher’s and Stouffer’s methods but guarantees

that the gene list is differentially expressed in majority of studies. I also performed one-

sided corrected rOP for comparison. The method detected similar number of DE genes from

two-sided rOP, and majority of detected DE genes in two-sided and one-sided rOP were

overlapped in the brain cancer example. The result shows that almost all DE genes detected
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by two-sided rOP had consistent fold change direction across studies. In MDD, one-sided

rOP detected much fewer genes than two-sided methods. This implied that many genes

related to MDD acted differently in different brain regions and in different cohorts.

Figure 6 shows results of biological association from pathway analysis that were similarly

shown in 1(b). The result shows that Fisher and Stouffer seem to generate DE gene list more

associated with biological pathways. The rOP method generally performs better than maxP

and minP.
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Table 2: Number of DE gene detected by different methods under FDR=5%

rOP
Fisher Stouffer minP maxP

Two-sided One-sided

Brain Cancer
1552 (r = 5) 1755 (r = 5)

3269 2774 2735 305
overlap=1232

MDD
633 (r = 7) 86 (r = 7)

1169 1463 0 314
overlap=48

Diabetes 636 (r = 12) 1698 1492 1 85

Brain + 1 MDD 830 (r = 6) 2359 2008 1943 161

2.4 STATISTICAL PROPERTIES OF ROP

2.4.1 Power calculation of rOP and asymptotic properties

When K studies are combined, suppose r0 of the K studies have equal non-zero effect sizes

and the rest of the (K − r0) studies have zero effect sizes. That is,

H0 : θ1 = · · · = θK = 0

H1 : θ1 = · · · = θr0 = θ 6= 0, θr0+1 = · · · = θK = 0

Assume for single study, the power function given effect size θ is known as Pr(pi ≤ α0|θ).

I will derive the statistical power of rOP under this simplified hypothesis setting when r0

is given. Under H0, the rejection threshold for rOP statistic is β = Bα(r,K − r + 1)

(the α quantile of a beta distribution with shape parameters r and K − r + 1), where the

significance level of the meta-analysis is set at α. The power of rejection threshold β under

H1 is Pr
(
p(r) ≤ β|H1

)
= Pr

(∑K
i=1 I(pi ≤ β) ≥ r|H1

)
. By definition Pr(pi ≤ β|θi = 0) = β

and I further denote β′ = Pr(pi ≤ β|θi = θ). The power calculation of interest is equivalent
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to finding the probabilities of having at least r successes in K independent Bernoulli trials,

among which r0 have success probabilities β′ and K − r0 have success probabilities β:

Pr
(
p(r) ≤ β|H1

)
=

K∑
i=r

min(i,r0)∑
j=max(0,i−K+r0)

(
r0
j

)
β′j(1− β′)r0−j(

K − r0
i− j

)
βi−j(1− β)K−r0−i+j

Below I demonstrate some asymptotic properties of rOP.

Theorem 2.4.1. Assume r0 is fixed. When effect size θ and K are fixed and the sample

size of study k Nk →∞, Pr
(
p(r) ≤ β|H1

)
→ 1 if r ≤ r0. When r > r0, Pr

(
p(r) ≤ β|H1

)
→

c(r) < 1 and c(r) is a decreasing function in r.

Proof. When Nk → ∞, β′ → 1. The theorem easily follows from the power calculation

formulae.

Theorem 2.4.1 states that asymptotically if the parameter r in rOP is specified less or

equal to r0, the statistical power converges to 1 as intuitively expected. When specifying

r greater than r0, the statistical power is weakened with increasing r. Particularly, maxP

will have weak power. In contrast to Theorem 2.4.1, for methods designed for HSB (e.g.

Fisher’s method, Stouffer’s method and minP), the power always converges to 1 if Nk →∞

and r0 > 0. Figure 7(a) shows the power curve of rOP when K = 10, r0 = 6 and Nk →∞.

Lemma 2.4.1. Assume parameter r used in rOP is fixed. When effect size θ and K are

fixed and the sample sizes Nk → ∞, Pr
(
p(r) ≤ β|H1

)
→ 1 if r0 ≥ r. When r0 < r,

Pr
(
p(r) ≤ β|H1

)
→ c(r0) < 1 and c(r0) is a increasing function in r0.

Lemma 2.4.1 takes a different angle from Theorem 2.4.1. When the parameter r used in

rOP is fixed, it asymptotically has perfect power to detect all genes that are differentially

expressed in r or more studies. It then does not have strong power to detect genes that

are differentially expressed in less than r studies. Figure 7(b) shows a power curve of rOP

for K = 10, r = 6 and Nk → ∞ (solid line). I note that the dashed line (f(r) = 0 when

0 ≤ r0 < 6 and f(r) = 1 when 6 ≤ r0 ≤ 10) is the hypothetical perfect method for HSr

(i.e. it detects all genes that are differentially expressed in r or more studies but does not
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detect any gene that are differentially expressed in less than r studies). Methods like Fisher,

Stouffer and minP target on HSB and their power is always 1 asymptotically when r0 > 0.

The maxP method has perfect asymptotic power when r0 = K = 10 but has weak power

when r0 < K.
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Figure 7: Power of rOP method when Nk →∞, K = 10

2.4.2 Connection with vote counting

Vote counting has been used in many meta-analysis applications due to its simplicity while

it has been criticized as being problematic and statistically inefficient. Hedges and Olkin

[1980] showed that the power of vote counting converges to 0 when many studies of moderate

effect sizes are combined (see Theorem 2.4.2). We, however, surprisingly found that rOP has

a close connection with vote counting and rOP can be viewed as a generalized vote counting

with better statistical properties. There are many vote counting variations in the literature.

One popular approach is to count the number of studies that have p-values smaller than α.

I define this quantity as

r = f(α) =
K∑
k=1

I {pk < α} (2.1)

and define its related proportion as π = E(r)/K. The hypothesis testing used is H0 : π = π0

HA : π > π0
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where π0 = 0.5 is often used in applications. Under null hypothesis, r ∼ BIN(α,K) and

π = α. The rejection region can be established. In the vote counting procedure, α and π0

are two preset parameters and the inference is made on the test statistic r.

In the rOP method, I view equation (2.1) from another direction. I can easily show that

if I solve equation (2.1) to obtain α = f−1(r), the solution will be α ∈
[
p(r), p(r+1)

)
and one

may choose α = p(r) as the solution. In other words, rOP presets r as a given parameter and

the inference is based on the test statistic α = p(r).

The two theorems below show the criticized property of vote counting and show rOP

does not have this issue.

Theorem 2.4.2. When all K studies have equal effect sizes (θ1 = · · · = θK = θ 6= 0) and

the effect sizes are moderate (so that the single study power Pr(pk < α|θk = θ) < π0), the

power of vote counting converges to 0 when K →∞.

Proof. Denote by π = Pr(pk < α|θk = θ). Under the alternative hypothesis θ1 = · · · = θK =

θ, r ∼ BIN(π,K) and r/K → π as K →∞. Since π < π0, Pr (reject H0|HA)→ 0.

Theorem 2.4.3. When all K studies have equal effect sizes (θ1 = · · · = θK = θ 6= 0)

and the effect sizes are moderate but informative (so that the single study power satisfies

Pr(pk < α|θk = θ) > α, the power of rOP for r under significance level α converges to 1

when K →∞ and r/K = c < 1.

Proof. Denote α0 = Bα(r,K− r+ 1) (quantile of Beta(r,K− r+ 1)). α0 is the critical value

for a single study. When K → ∞, Beta(r,K − r + 1) has mean converges to r/K = c and

variance converges to 0. As a result, α0 → c as K →∞. Assume Pr(pk < α0|θk = θ) = α0+ε,

and ε > 0. Denote m =
∑K

k=1 I(pk < α0|θk = θ). For K →∞, by the law of large numbers,

(m − r)/K = m/K − r/K
p→ α0 + ε − c

p→ ε > 0. Therefore Pr(m ≥ r) → 1 and the

power of rOP = Pr(reject H0|HA)→ 1.
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2.5 DISCUSSION

In this chapter, I proposed a general class of order statistics of p-values, called rth order

p-value (rOP), for genomic meta-analysis. The family of statistics includes traditional max-

imum p-value (maxP) and minimum p-value (minP) statistics that target on DE genes in

“all studies” (HSA) or “one or more studies” (HSB). I extended HSA to a robust form that

detects DE genes in “majority of studies” (HSr) and developed the rOP method for this

purpose. The new robust hypothesis setting has an intuitive interpretation and is more

adequate in genomic applications where unexpected noise is common in data. I developed

the algorithm of rOP for microarray meta-analysis and proposed two methods to estimate r

in applications. Under “two-class” comparisons, I proposed a one-sided-test corrected form

of rOP to avoid detection of discordant expression change across studies (i.e. significant

up-regulation in some studies but down-regulation in other studies). Finally, I performed

power analysis and examined asymptotic properties of rOP to demonstrate appropriateness

of rOP for HSr over existing methods such as Fisher, Stouffer, minP and maxP. I further

showed a surprising connection between vote counting and rOP and that rOP can be viewed

as a generalized vote counting with better statistical property. Applications of rOP to three

examples in brain cancer, major depressive disorder (MDD) and diabetes showed better per-

formance of rOP over maxP in terms of detection power (number of detected markers) and

biological association by pathway analysis.

There are two major limitations of rOP. Firstly, rOP is for HSr but not the intersection-

union test (IUT) setting (i.e. composite null hypothesis; see Section 2.2.1). Thus, it has

weaker power to exclude markers that are differentially expressed in minor number (smaller

than r) of studies since the null of HSr is “differential expression in zero studies”. One

solution to improve it (which is addressed in chapter 3) is by Bayesian modeling of p-values

with a family of beta distributions [Erickson et al., 2009]. Secondly, selection of r may not

be conclusive from the two methods I proposed; especially the external pathway information

may be prone to errors and may not be informative to the data. But since choosing slightly

different r usually gives similar results, the problem is alleviated. I have tested a different

approach by adaptively choosing the best gene-specific r that generates the best p-value.
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The result is, however, not stable and the gene-specific parameter r is hard to interpret in

applications.

Although many meta-analysis methods have been proposed and applied to microarray

applications, it is still not clear which method enjoys better performance under what condi-

tion. Selection of an adequate (or best) method heavily depends on the biological goal (as

the hypothesis settings illustrated in this chapter) and the data structure. In this chapter, I

stated a robust hypothesis setting (HSr) that is commonly targeted in biological applications

(i.e. identify markers statistically significant in majority of studies) and developed an order

statistic method (rOP) for the problem. The three applications covered “cleaner” data (brain

cancer) to “noisier” data (complex genetics in the two diseases MDD and diabetes) and rOP

performed well in all three examples. I expect that this order statistic methodology will find

many future applications in genomic research and traditional univariate meta-analysis.
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3.0 A SEMIPARAMETRIC MIXTURE MODEL APPROACH FOR

GENOMIC META-ANALYSIS

3.1 BACKGROUND

In chapter 2, I proposed HSr as a robust form of HSA. HSr targets detecting genes that are

DE in “majority of” combined studies. And I proposed rOP to test HSr. However in HSr

the null hypothesis and alternative hypothesis are not complementary. I can extend the HSr

to a robust form of intersection-union test (IUT, H0 :
⋃
k{θgk = 0} versus Ha :

⋂
k{θgk 6= 0},

where θgk denotes the effect size of gene g in study k) with complementary null and alternative

hypotheses.

As discussed in section 2.2.1, IUT involves dealing with a composite null hypothesis

and requires more sophisticated Bayesian modeling. Similarly, I can extend HSr and use a

Bayesian modeling strategy to test it.

In the rest of this chapter, I first propose the new hypothesis setting in section 3.2. Then

a novel semiparametric mixture model approach is proposed in section 3.3. The Bayesian

interpretation of the model is explored. And an expectation-maximization algorithm (EM

algorithm) is proposed to iteratively estimate the parameters of interest. Compared to the

hypothesis testing framework of frequentist methods, a Bayes factor statistic is proposed

based on the posterior distribution. In section 3.4 my model is evaluated by both simulation

and real data analysis. The results are summarized, and potential advantages and limitations

of this method are discussed in section 3.5.
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3.2 MOTIVATION

In chapter 2, I introduced a robust meta-analysis hypothesis setting HSr. It is easy to show

that H0 and H
(r)
a are not complementary in HSr - situations in which gene g is DE in fewer

than r but more than 0 studies are in neither H0 nor H
(r)
a . This is sometimes unfavorable

because in reality, I could not conclude whether H
(r)
a is true even though H0 is rejected. To

address this problem, I further extend HSr to HS′r as

HS′r :

{
H

(r)
0 :

r−1⋃
h=0

Θh versus H(r)
a :

K⋃
h=r

Θh

}

Notice that this hypothesis setting degenerates to IUT when r = K. However, HS′r is a

much more complicated problem than traditional hypothesis tests since the null distribution

is contributed by both DE and non-DE genes. Traditional methods which combine p-values

are anti-conservative for HS′r because their null distributions are derived by assuming no

DE gene exists. Although people realized that this problem could potentially be addressed

by Bayesian approaches [Erickson et al., 2009] which borrow information from other genes

within the same study, no established method has been proposed.

Within a single study k, the observed p-value xgk for gene g could be thought of as

sampled from two different distributions: the null distribution f0k if gene g is not DE and

another distribution f1k if gene g is DE. Assuming the test scheme used in study k is per-

formed correctly, f0k would be exactly U(0, 1). Because f1k is a distribution on [0, 1], it

looks natural to model the p-value distribution as a mixture model of one uniform distribu-

tion and several beta distributions. Allison et al. [2002] used this mixture model to model

the distribution of p-values in single studies. Pounds and Morris [2003] also applied a beta

uniform mixture (BUM) model to model the p-value distribution and control the false dis-

covery rate for a single study. However, these approaches have a drawback that the mixture

proportion of the beta component can not be directly interpreted as the prior probability

of a gene being DE because the distribution of DE genes is unknown and usually different

from a beta distribution mixture even though the overall mixture may fit pretty well to the

mixed distribution of both DE and non-DE genes. To extend this mixture model approach

to the meta-analysis setting, I should also consider the correlations and differences between
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studies. Hereby, I propose a novel hierarchical Bayesian mixture model approach that can

address all those issues mentioned.

3.3 HIERARCHICAL BAYESIAN MIXTURE MODEL

Similar to the mixture model approaches used in single studies, I can also assume that the

observed p-values in each study k are from two distributions - f0k and f1k. By further

assuming the statistical tests performed in single studies are correct, we know that f0k are

the same to uniform distribution (U(0, 1)) for any k. However, as stated in section 3.1, f1k

can not be easily modeled using a mixture of beta distributions. Other parametric forms (e.g.

polynomial) of f1k are also difficult to pursue. And no parametric assumption is guaranteed

to work without knowing the real distribution of the underlying effect sizes for all the genes

and the particular experimental design for every study k. Therefore, I will model f1k using

non-parametric methods.

In order to calculate the posterior probability of H0 being false, I need to assume the

prior as well. Here I assume that the prior probability that gene g is DE in study k is

pgk. Intuitively, pgk should depends on the study that it is from, and also the gene being

tested. To account for the dependencies within the same genes and same studies, I assume

that pgk is determined by a logistic model with parameters βg and wk. Further distribution

assumptions could be made on βg and wk. In this model, I assume that βg and wk are from

two normal distributions.

Collectively, the observed p-values xgk could be assumed to be generated from the fol-

lowing procedure, where ygk denotes the underlying truth whether gene g is DE in study

k.

Step I. Generate βg and wk from normal distributions:

βg ∼ N(0, σ2)

wk ∼ N(0, τ 2)
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Step II. Generate ygk based on βg and wk:

ygk ∼ Bin(1, pgk)

logit(pgk) = βg + wk + c

Step III. Generate xgk given ygk and f0k, f1k:

xgk ∼ f0k, if ygk = 0

xgk ∼ f1k, if ygk = 1

This generative process could also be represented in graph (figure 8).

σ2 τ2

βg wk c

ygk

f1k

f0k xgk

Figure 8: Bayesian generative model for xgk
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3.3.1 Mixture model with nonparamertic density estimation

Because of the difficulties of making parametric assumptions on f1k, non-parametric ap-

proaches appear to be a more appealing method. Efron and Tibshirani [2002] used a spline

smoother to model the empirical distribution of Wilcoxon rank sum statistics observed in a

microarray study and utilized the known null distribution to estimate the mixing probability

of DE and non-DE genes. The distribution of Wilcoxon rank sum statistic could be easily

estimated because it is discrete. To estimate the continuous distribution of p-values, I can

use the very similar approach but kernel density estimator instead of the spline smoother.

Given a kernel function K(·) and the observed values x1, x2, . . . , xn, the kernel density using

fixed bandwidth h could be estimated as

f̂h(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(3.1)

When applied to the p-value distribution, the density should be bounded in range [0, 1]. The

kernel functions can be modified to reflect back into the range at the boundaries. In equa-

tion 3.1, K
(
x−xi
h

)
should be replaced by

{
K
(
x−xi
h

)
+K

(
x+xi
h

)
+K

(
2−x−xi

h

)}
accordingly

[Silverman, 1986]. In practice, it is also desirable to make the bandwidth h variable when the

distribution is too sharp. Usually h is adjusted adaptively such that 1/h is proportional to

the local density [Terrell and Scott, 1992, Ghosh and Bandyopadhyay, 2006]. This variable

kernel density estimation could be performed using R package locfit [Loader, 1999]. Ker-

nel density can also be thought as an approximate maximum likelihood estimation (MLE),

because it is the continuous approximation of histogram which is MLE for the multinomial

distribution probabilities that the variable of interest falls into each bin.

3.3.2 Logistic model with ridge panelty

Based on the model specification, the distribution of ygk can be modeled using the following

model:

ygk ∼ Bin(1, pgk)

logit(pgk) = βg + wk + c
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where βg is the main effect of gene g, wk is the main effect of study k and c is the intercept

term which reflects the overall probability for a gene being DE. However, since in general

high-throughput genomic analysis there are usually thousands of genes analyzed, the total

number of parameters (mainly βg) will be too large, and the estimation of the parameters

will be unstable. Also, though this parameterization makes good interpretability for the

parameters, the design matrix is singular and has identifiable problem. So ridge penalty

is introduced to regularize the likelihood function and stabilize the parameter estimations

[Hoerl and Kennard, 1970, Le Cessie and Van Houwelingen, 1992]. The regularized loss

function can be written as:

J(β,w, c) = − logL(β,w, c|y) + λ1‖β‖22 + λ2‖w‖22 (3.2)

where λ1 and λ2 are the penalty parameters for gene and study effects respectively. And the

parameters can be estimated by

(β̂, ŵ, ĉ) = arg min J(β,w, c) (3.3)

Remark 4. The ridge regression model can also be interpreted as the maximum a posteriori

(MAP) estimation assuming that both βg and wk have normal prior distributions as

βg ∼ N(0, σ2)

wk ∼ N(0, τ 2)

where σ2 = 1/(2λ1) and τ 2 = 1/(2λ2).
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3.3.3 Model fitting using expectation-maximization algorithm

The full model can be fitted using iterative expectation-maximization (EM) algorithm. It is

worth to mention that Dempster et al. [1977] had already extended EM-algorithm to MAP

estimations in their original paper, although traditional EM-algorithm is mostly used on

MLE estimations.

• E-step:

Calculate the expectation of ygk given β(s), w(s), c(s) and f
(s)
1k - the parameters estimated

at round s:

E(ygk) =

exp(β
(s)
g +w

(s)
k +c(s))

1+exp(β
(s)
g +w

(s)
k +c(s))

f
(s)
1k (xgk)

1

1+exp(β
(s)
g +w

(s)
k +c(s))

+
exp(β

(s)
g +w

(s)
k +c(s))

1+exp(β
(s)
g +w

(s)
k +c(s))

f
(s)
1k (xgk)

(3.4)

• M-step:

Update the parameter estimation given E(ygk).

– Update β(s+1), w(s+1) and c(s+1): the MAP point estimations of these parameters

can be obtained from equation 3.3 by replacing ygk with E(ygk). Optimization can

be done using Newton-Raphson’s method.

– Update f
(s+1)
1k :

f
(s+1)
1k (x) =

∑G
g=1E(ygk)

{
K
(
x−xg
hg(x)

)
+K

(
x+xg
hg(x)

)
+K

(
2−x−xg
hg(x)

)}
∑G

g=1E(ygk)hg(x)

We can see that ygk’s are sufficient statistics for both the logistic regression part and the

mixture model part of the model. And in the M-step, all the parameter estimation used are

either MAP or MLE (approximate). Therefore the EM algorithm will always converge in

general.
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3.3.4 Posterior inference

After model fitting, I can calculate the posterior distribution of ygk using the same formula

shown in equation 3.4 because Pr(ygk = 1|x, β̂, ŵ, ĉ, f̂1) = E(ygk|x, β̂, ŵ, ĉ, f̂1). To test HS′r,

I define rg =
∑K

k=1 ygk. The hypothesis testing then becomes deciding whether rg ≥ r. This

question can be addressed by examining the posterior distribution of rg. Pr(rg|x, β̂, ŵ, ĉ, f̂1)

can be calculated from the posterior distribution of ygk using dynamic programming. Define

γg(i, j) = Pr(
∑

1≤k≤j ygk = i|x, β̂, ŵ, ĉ, f̂1), where 0 ≤ j ≤ K. The probability of interest

becomes Pr(rg = r0|x, β̂, ŵ, ĉ, f̂1) = γg(r0, K). The dynamic programming can be performed

as following:

Step I. Initialization: set γg(0, 0) = 1, γg(i, 0) = 0 and γg(0, j) =
∏j

k=1[1 − Pr(ygk =

1|x, β̂, ŵ, ĉ, f̂1)], for all 1 ≤ i ≤ K and 1 ≤ j ≤ K.

Step II. Extension: calculate γg(i, j) = γg(i− 1, j− 1) Pr(ygj = 1|x, β̂, ŵ, ĉ, f̂1) + γg(i, j−

1)[1− Pr(ygj = 1|x, β̂, ŵ, ĉ, f̂1)], for all for all 1 ≤ i ≤ K and 1 ≤ j ≤ K.

To make a Bayesian decision on accepting H
(r)
0 or H

(r)
a , I further define the loss of making

a type I error as l1 and the loss of making a type II error as l2. Then the decision should be

made such that the posterior expected loss is minimized. The expected loss can be calculated

using the following equations:

ρg(H
(r)
0 ) = l2

K∑
i=r

γg(i,K)

ρg(H
(r)
a ) = l1

r−1∑
i=0

γg(i,K)

I will accept H
(r)
0 if ρg(H

(r)
0 ) < ρg(H

(r)
a ), and accept H

(r)
a otherwise. This is equiva-

lent to accepting H
(a)
0 if

∑K
i=r γg(i,K)/

∑r−1
i=0 γg(i,K) < l1/l2. I can further denote φg =∑K

i=r γg(i,K)/
∑r−1

i=0 γg(i,K) and η = l1/l2. The decision rule becomes comparing φg to η.

It can be shown easily that φg is the Bayes factor comparing these two hypothesis. And eta

reflects the preference toward H
(r)
0 : the larger η is, the more conservative the decision is.

Generally, without particular preference toward any of the two competing hypotheses, I can

choose η = 1 for convenience.
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3.4 APPLICATIONS

3.4.1 Simulations

To evaluate this method, we simulated a dataset in the following way, such that there are

300 genes that are DE in r studies, for each r between 1 and K.

Step I. Set G = 5000 and K = 10.

Step II. Given 1 ≤ r ≤ K, for every vector (yg1, . . . , ygK), where 300(r−1)+1 ≤ g ≤ 300r,

randomly sample r elements and set them to 1, and set others to 0.

Step III. Sample θgk ∼ U(1, 5). If ygk = 1, sample tgk ∼ Tdf=20(θgk) and calculate xgk =

1− FT,df=20(tgk); otherwise, sample xgk ∼ U(0, 1).

Remark 5. Here I directly sampled the t-statistics and calculated their p-values instead of

sampling from the raw microarray data. These two methods are equivalent and should give

the same results. Note θgk is the noncentral parameter for the noncentral t-distribution and

FT is the CDF of the standard t-distribution.

In my analysis, I fixed the parameter at λ1 = 1 and λ2 = 1. This parameter setting

roughly indicates that the odds ratio between the top 5% genes (studies) and bottom 5%

genes (studies) is 10. The EM algorithm converges in 20 iterations (relative change of log-

likelihood smaller than 1e-3).

Figure 9 shows the simulation results using heatmaps. Figure 9(a) is the underlying

truth of ygk (black indicates DE). Figure 9(b) shows the posterior distribution of ygk given

the parameters estimated using this model and the observation xgk. Though not perfect,

this looks similar to the patterns shown in figure 9(a). The total absolute loss is
∑

g,k ‖ygk−

E(ygk|xgk, β̂, ŵ, ĉ, f̂1)‖ = 7528 (histograms shown in figure 10). Figure 9(c) demonstrates, if

xgk is missing, the prior distribution of ygk using the parameters estimated. I can see that

the estimated prior distribution of ygk is not too different from the true value, it is possible

to use this prior to estimate the distribution of rg, which can make the algorithm tolerant

to missing values.
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Figure 9: Heatmap results of simulation: each column is a study and each row is a gene.

After fitting the model using EM algorithm. For each r ∈ {1, . . . , K}, I calculated φg

for hypothesis setting HS′r. For each gene g, the null hypothesis H
(r)
0 is accepted if φg < η.

The number of genes detected for each r and the corresponding FDR is shown in table 3 by

setting η = 1. From the results, I can see that traditional combining p-value methods all lost

control of FDR as r increases. Even the most conservative maxP method has FDR=62%

when r = 10. However, my mixture model method has the FDR well-controlled except for
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Figure 10: Histogram of residues of simulation data

r = 1 (FDR=28.6%). Since η = 1 is just an arbitrary cutoff, increasing η will give us better

control of FDR.

Then I change η and plotted the ROC curve using the known ygk for different HS′r as

r ∈ {1, . . . , K}. The results are compared to Fisher’s method, Stouffer’s method, minP,

maxP and rOP using ROC curves. Results for r = 2, 4, 6, 8 are shown in figure 11. In the

ROC curves, my method is always among the best methods compared. Fisher’s method and

Stouffer’s method perform well in the ROC curves. However, it is not easy to find appropriate

cutoffs for these methods according to different HS′r. Although anti-conservative, rOP is not

a bad method because it performs well in the ROC curve and we can change r for different

target hypothesis settings. As expected, minP performs well for HS′r with small r and maxP

performs in the opposite way. No matter how the ROC curves look, traditional methods all

suffer from the difficulty of finding cutoffs because of the composite null hypothesis.
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Table 3: Number of genes detected and FDR

Hypothesis Setting Mixture Model rOP Fisher Stouffer minP maxP

r = 1 4167 2752 2733 2479 2752 690

FDR(%) 28.6 2.2 2.1 2.3 2.2 1.9

r = 2 2927 2578 2733 2479 2752 690

FDR(%) 12.4 3.2 5.6 4.0 7.6 2.6

r = 3 2372 2456 2733 2479 2752 690

FDR(%) 6.7 7.5 13.4 8.6 15.9 3.0

r = 4 1957 2294 2733 2479 2752 690

FDR(%) 5.3 12.6 23.5 17.1 25.3 4.5

r = 5 1592 2090 2733 2479 2752 690

FDR(%) 5.0 17.3 34.2 27.9 35.3 7.0

r = 6 1225 1889 2733 2479 2752 690

FDR(%) 4.3 23.8 45.1 39.7 45.8 10.6

r = 7 876 1680 2733 2479 2752 690

FDR(%) 4.5 30.8 56.1 51.6 56.6 15.9

r = 8 557 1440 2733 2479 2752 690

FDR(%) 6.1 40.8 67.1 63.7 67.4 26.2

r = 9 260 1107 2733 2479 2752 690

FDR(%) 4.6 49.1 78.0 75.8 78.2 38.7

r = 10 77 690 2733 2479 2752 690

FDR(%) 10.4 62.0 89.0 87.9 89.1 62.0
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Figure 11: ROC curves of meta-analysis methods for HS′r with different r’s

3.4.2 Real data analysis

I applied my method to the brain cancer datasets analyzed in chapter 2. I followed the same

data preprocessing and analysis procedures described in the previous chapter to obtain the

single study p-values. The result is shown in Figure 12. Figure 12(a) shows the heatmap of

the posterior distribution of ygk based on the fitted parameters and the observed p-values.
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The genes are sorted to place the similar ones together. We can easily observe that the

posterior distribution of ygk is very different for the Paugh study and the Yamanaka study.

By plotting the f̂1 of these two studies, I can confirm that these two studies have bad qualities.

This is consistent with the findings of Kang et al. [2012] and chapter 2. Fixing r = 4, 2181

DE genes are detected using φg based on cutoff η = 1. Figure 13 shows the result using only

the 5 studies with good quality. Figure 13(b) shows the histogram of E(ygk|xgk, β̂, ŵ, ĉ, f̂1).

Most of the posterior probabilities are distributed close to either 0 or 1. This indicates that

there are very limited ambiguities remained in the analysis result. 2710 genes are detected

by setting r = 3.

3.5 DISCUSSION

In this chapter, I extended HSr to a new hypothesis setting HS′r with complementary null

and alternative hypotheses. To model the p-value distribution, I proposed a semiparametric

mixture model approach. I also proposed a EM algorithm to fit the model, and defined a

Bayes factor test statistic φg to test HS′r.

From the simulation result we can see that all of the traditional methods failed in FDR

control when HS′r is tested, because none of them is designed to work for the composite null

hypothesis. My approach is the first meta-analysis method that address the composite null

hypothesis problem in a genomic setting. Using my mixture model approach, even though

an arbitrary cutoff η = 1 is used, the FDR is well controlled. Moreover, η could be chosen

according to the cost of making type I and type II error, which would be helpful in making

decisions in real life. Another advantage of my method is that I did not make any assumption

for the p-value distribution for DE genes in single studies. Instead, kernel density estimation

is applied to estimate the p-value distribution for DE genes from the data. In real data

analysis, I also showed that f̂1 could be used for quality control purposes. Studies with noisy

f̂1 are potentially identifiable as low quality and could be excluded from the analysis.

However, there are two limitations of this method. First, the selection of the ridge

penalty parameters λ1 and λ2 is arbitrary. Although this could be addressed by setting hyper-
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(d) f̂1 for Yamanaka

Figure 12: Brain cancer result using all studies

parameters for σ2 and τ 2 and using Markov Chain Monte Carlo (MCMC) to fit the model, the

computation would be much more expensive than the EM-algorithm. And because λ1 and λ2

are corresponding to the variability of the log-odds in prior probabilities pgk, it is appropriate

to set them according to the assumptions. The larger the λ’s, the more independent the genes

(studies) are assumed. The second limitation is that this method could not be applied to

single studies whose null distribution of p-values are unknown. For example, for studies
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Figure 13: Brain cancer result using only 5 studies

using one-sided test, the null hypothesis is composite and the null distribution is no longer

U(0, 1). To address this problem, parametric distribution of p-values could be used instead.

And more than two mixing components could be assumed as well.

Extensions could be made to this model. As illustrated in section 3.4.1, using the es-

timated prior distribution of ygk, I can allow missing values in the meta-analysis. Also, I

can allow the prior distribution of βg and wk be correlated. For example, I can extend this

method to the meta-analysis of continuous regions (e.g. SNP or copy number data), by

assuming an auto-regression correlation structure for βg. This is equivalent to replacing the

penalty term in equation 3.2 by β′Λ1β+w′Λ2w. Here Λ1 and Λ2 are the precision matrices

for the prior distributions of β and w. Because I can assume simple conditional dependency

structures (e.g. AR(1)) among β andw, the precision matrix and the second-order derivative

matrix for J(·) would both be sparse, thus the computation should still be affordable.
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4.0 META-NETWORK ANALYSIS

4.1 BACKGROUND

In chapter 2 and chapter 3, I developed two meta-analysis methods for genomic studies.

Both these methods target differentially expressed genes by combining multiple studies. As

stated in section 1.3, however, genes in biological systems do not function independently.

Coregulation networks help regulate the expression levels of the genes that are involved in

the same biological process. In systems biology, it is particularly important to discover the

networks among the genes, in order to understand how the genes cooperate with each other

to carry out certain biological functions.

Various methods have been developed to construct the network. For example, the pair-

wise correlations between single genes can be used to infer the coregulation network [Guilloux

et al., 2010]. By assuming the gene expression levels are sampled from a Markov random

field, graphical lasso can be applied to infer the sparse inverse of the covariance matrix, which

is equivalent to the structure of the Markov network [Friedman et al., 2008]. And Huang

et al. [2011] developed a tool named mirConnX by integrating both prior knowledge from

experiments and microRNA data. In this chapter, I propose a meta-analysis framework to

integrate network results from single studies to construct robust subnetworks in subsets of

the combined studies.

In the remainder of this chapter, I introduce the idea of detecting conservative subnet-

works in a subset of studies in section 4.2. In section 4.3 I define a likelihood based target

function and propose a search algorithm to optimize it. My algorithm is applied in both

simulated datasets and real data in section 4.4. The advantages and potential pitfalls of this

algorithm are summarized, and possible future work is discussed in section 4.5.
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Figure 14: An example of gene coregulation network

4.2 MOTIVATION

Structure learning is a difficult problem in machine learning. Because in genomic studies

usually thousands of genes are involved, which yield numerous possible connections in a

network structure. Learning of this structure will suffer from issues of false positives and

false negatives. Especially when the sample size of a single study is relatively small, the

sensitivity and specificity of the result will be fairly low. Therefore, meta-analysis methods

can be applied to the results of networks generated from multiple single studies in order to

improve the network construction.

Biologically, networks of important biological functions are usually stably conserved

across studies. By identification of subnetworks that are conservative in a majority of single

studies, we expect to discover networks that are important for certain phenotypes. However,

there is no statistically rigorous method available to combine network results across studies.

I propose a brand new likelihood based framework to construct subnetworks from multiple

studies.

48



4.3 METHODS

Suppose that we have obtained network results in |K| studies, and each of the studies has

|G| genes involved. For each single study k, denote t
(k)
ij as the edge between gene i and j in

study k: if t
(k)
ij = 1, then i and j are connected in study k; otherwise, i and j are not connect

in k. The goal of my method is to find a subnetwork H ⊆ G that is conserved in a subset of

studies L ⊆ K. In this chapter, we only consider networks that are undirected graphs.

4.3.1 Likelihood based score

The identification of H and L is nontrivial. I assume that given H, t
(k)
ij is sampled from a

Bernoulli trial with success probability pij if k ∈ L, otherwise t
(k)
ij is sample from a Bernoulli

trial with success probability pnull. Then I can calculate the likelihood of PL(H) = {pij; i, j ∈

H}, pnull and L given H and the subnetwork T (H) defined on H.

l(PL(H), pnull, L;T (H), H) =
∑
k∈L

[∑
i,j∈H

(
t
(k)
ij log pij + (1− t(k)ij ) log(1− pij)

)]

+
∑
k∈K\L

[(∑
i,j∈H

t
(k)
ij

)
log pnull +

((
|H|
2

)
−
∑
i,j∈H

t
(k)
ij

)
log(1− pnull)

] (4.1)

Suppose that the subset of studies that are conserved are known as L = L0. The MLE

of PL(H) and pnull can be obtained:

p̂ij =

∑
k∈L0

t
(k)
ij

|L0|
(4.2)

p̂null =

∑
k∈K\L0

∑
i,j∈H t

(k)
ij(|H|

2

)
|K\L0|

(4.3)

The likelihood function 4.1 can be maximized by plugging in the MLE of pij and pnull in

4.2 and 4.3. Then the best selection of L is obtained by optimizing the likelihood function

l(P̂ (L), ̂pnull(L), L;T (H), H). In order to capture well connected networks instead of sparse

ones, I introduce a penalty term into the likelihood function. The resulting score function is

G(L) = l(P̂ (L), ̂pnull(L), L;T (H), H) + λL
∑
i,j∈H

p̂ij
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Then the best selection of L with given network structure H is

L∗ = arg max
L⊆K

G(L)

4.3.2 Decomposition of the target function

Notice that the target function can be decomposed into a summation of sub-scores on each

of the edges that belong to H.

G(L) =l(P̂ (L), ̂pnull(L), L;T (H), H) + λL
∑
i,j∈H

p̂ij

=
∑
i,j∈H

[∑
k∈L

t
(k)
ij log p̂ij +

(
|L| −

∑
k∈L

t
(k)
ij

)
log(1− p̂ij)

]

+
∑
i,j∈H

 ∑
k∈K\L

t
(k)
ij log p̂null +

|K\L| − ∑
k∈K\L

t
(k)
ij

 log(1− p̂null)


+
∑
i,j∈H

λLp̂ij

=
∑
i,j∈H

Eij

Then the target function could be decomposed into scores on each edge. And we can

select λL such that around 0.1% of the edges have positive scores.

4.3.3 Search algorithm

Given L = L0, I define a subnetwork as optimal if and only if adding one more edge will

not improve the score of the target function. Because in section 4.3.2, I have proven that

the target function can be decomposed into the summation of edge-specific scores, I can

easily see that the optimal subnetwork can be found by searching through all the connected

components which are connected only by edges with positive Eij’s. The connected component

with largest the
∑

i,j∈H Eij would be selected as the optimal subnetwork given L0. In order

to find subnetworks that are conservative in majority of the studies, I use the restriction

|L| ≥ |K|/2. The searching algorithm is shown as below.
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Step I. For each L ⊆ K and |L| ≥ |K|/2, find λL such that around 0.1% of the Eij’s are

positive. Calculated all the Eij’s.

Step II. Find all connected components that are connected by only edges with positive

Eij’s.

Step III. Record the connected component H with the largest
∑

i,j∈H Eij and its corre-

sponding L. H is a conservative subnetwork in studies L.

Step IV. Remove H from G and repeat from Step I, till no more significant subnetwork

can be identified.

4.4 APPLICATION

4.4.1 Simulation

In order to evaluate my algorithm, I simulated data using the following procedure.

Step I. Sample ttrueij ∼ Bern(pnet) for any i, j ∈ H. ttrueij indicates whether gene i and j

are connected in the true network.

Step II. For i, j ∈ H, sample pij ∼ Beta(s1, 1) if ttrueij = 1, and sample pij ∼ Beta(1, s2) if

ttrueij = 0.

Step III. For k ∈ L and i, j ∈ H sample t
(k)
ij ∼ Bern(pij). Otherwise, sample t

(k)
ij ∼ pnull

if k 6∈ L or i, j 6∈ H.

In my simulation, I used parameters |G| = 1000, |H| = 150, K = {1, 2, 3, 4, 5, 6, 7, 8},

L = {1, 2, 3, 4, 5, 6}, pnet = 0.2, pnull = 0.002, s1 = 5 and s2 = 9. Figure 15 shows my

simulated true network and the networks in the 8 single studies for the 150 genes (genes in

H). The 150 genes fall into 4 disconnected components in the true network. And in each

single study, there are numbers of false positive and false negative edges.

Figure 16 compares the true network and the meta-network identified by my algorithm.

We can see that the meta-network is closer to the true network comparing to any other single
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study networks, which shows better performance of the meta-networks compared to single

studies.

In figure 17, the top 4 subnetworks (modules) identified by my meta-network algorithm

are compared to the true subnetworks. The edge sensitivity and specificity are calculated for

each module. For module 1, the sensitivity is 98.0% and the specificity is 98.7%. For module

2, the sensitivity is 90.6% and the specificity is 99.7%. For module 3, the sensitivity is 93.5%

and the specificity is 99.7%. For module 4, the sensitivity is 91.7% and the specificity is

99.7%. For all these 4 modules, the true L is recovered with high accuracy. This result

Figure 15: Simulated network
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Figure 16: True and identified meta-network

indicates that my meta-network algorithm has good sensitivity and specificity for meta-

network detection.

4.4.2 Real data analysis

I applied my method to the MDD dataset described in chapter 2 and obtained 520 DE

genes detected by Wang et al. [2012]. Correlation between each pair of genes i and j is

calculated in every single study. The single study networks are constructed by thresholding

the correlations such that only 1% of the edges with the highest absolute correlations are

kept.

After applying my algorithm, I have identified 3 large modules. The meta-network and

the corresponding subnetwork structures in the 8 MDD studies for the 3 modules are shown

in figure 18, 19 and 20. Comparing to the simulation result, the real data result is noisier.

But I can still observe conserved substructures in each of the modules.
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4.5 DISCUSSION

As the development of system biology, network analysis becomes a fundamental tool to

understand how different genes cooperates with each other to carry out certain biological

functions. However, because single studies often contain limited number of samples and the

structure learning problem is very complex, meta-analysis methods that combines network

results are demanding. Generally, in network analysis, the substructures are more important

than pairwise relationship between genes. Therefore, traditional univariate meta-analysis

methods are difficult to be generalized to network analysis. Existing studies that combine

multiple network results are all relatively ad hoc.

In this chapter, I proposed a likelihood based method and defined a target function. Then

the meta-analysis could be converted to an optimization problem. My framework provides

the first systematic solution to the problem of network meta-analysis. In simulation analysis,

I have shown that my method could recover the true network efficiently. Both the sensitivity

and specificity are very impressive. In real data analysis, my method could still be used

to find some conservative subnetworks, although the networks found are less conservative

comparing to simulation. The results demonstrate that my algorithm provides a robust

framework to combine multiple network analysis results.

However, there are potential pitfalls for my method. First, in this method, I treat the

connections between genes as independent. In reality, however, some connections may tend

to be correlated with others. For example, suppose gene A regulates gene B and C through

a mediator D. When D is missing, A is connected to neither B or C; when D is present,

A tend to be correlated with both B and C. Then the connections A-B and A-C are

positively correlated. Second, scores of the target function may not be comparable between

subnetworks of different sizes. Subnetworks with more edges may have larger scores. Third,

I select subnetworks until no more significant ones could be found. The termination rule

for the searching algorithm now depends on the size of the discovered subnetwork, which

is ad hoc. And currently no formal statistical test is performed for the selected modules.

Fourth, the performance of my algorithm depends on the network construction method used

for single studies. Using a reliable method in single studies is important for the framework.
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In the future, several modifications and extensions can be applied. First, I can use a

permutation test to assign p-values for the subnetworks detected. Because the computation

is expensive for my algorithm, I will also try to make the algorithm more efficient and use

parallel computing techniques. Second, I will further investigate into the parameter selection

issue for λL. If necessary, the target function will also be modified to make the scores compa-

rable between subnetworks of different sizes. Third, different network construction methods

for single studies will be evaluated. By applying different network construction methods, I

can understand how the method selection affects the performance of the framework.
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(a) Module 1

(b) Module 2

(c) Module 3

(d) Module 4

Figure 17: Identified modules
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Figure 18: Module 1 in MDD data
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Figure 19: Module 2 in MDD data
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Figure 20: Module 3 in MDD data
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5.0 CONCLUSION AND FUTURE WORKS

5.1 CONCLUSION

As high-throughput technology thrives in biomedical research, meta-analysis methods that

combine multiple genomic studies to generate statistically powerful and robust conclusions

become timely and demanding. In this dissertation, I developed a series of tools for gene

expression meta-analysis.

In chapter 2, I compared two hypothesis settings defined by Li and Tseng [2011]. Genes

detected by these two hypothesis setting would be either DE “in all” studies or “in one

or more” studies. Then current meta-analysis methods were compared and categorized

based on their target hypotheses. However, the two complimentary settings are either too

sensitive or too stringent. Therefore following the discussion of Li and Tseng, I proposed

a robust hypothesis setting HSr that pursues biomarkers DE “in majority” of combined

studies. Biologically, genes that are DE in most of the combined studies are usually more

meaningful because they may play important roles in disease development or could serve as

potential drug targets. To test HSr, I proposed to use the rth order p-value (rOP) as the

test statistic to combine multiple studies. Two methods were proposed for the selection of r:

one is based on the adjusted number of detected DE genes; the other is based on available

pathway information. The statistical power of rOP was calculated analytically. I also found

that rOP is closely related to the vote counting method, but does not share its asymptotically

powerless property. I evaluated rOP by real data analysis. The results demonstrated that

my selection of r is reliable, since the two methods agreed and suggested r’s that are greater

than half of the combined studies in all of the applications. Moreover, by adding one MDD

dataset into the brain cancer studies, I showed that rOP is robust to outliers: even though
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a few studies might be mistakenly included in the meta-analysis, rOP method is still able to

get the similar conclusion.

However, despite the advantages of rOP, there is an intrinsic limitation associated with

hypothesis settings HSA and HSr. In HSA and HSr, the null and alternative hypotheses

are not complementary. Therefore, the alternative hypothesis is not automatically accepted

when the null hypothesis is rejected. To address this issue, in chapter 3 I proposed HS′r

as the complementary form of HSr. Because in HS′r, the null hypothesis is modified to a

composite hypothesis with no known null distribution, hypothesis testing based methods

no longer work. And traditional hypothesis testing based methods such as Fisher’s method

and Stouffer’s method would be anti-conservative under HS′r. To overcome this problem,

I proposed a semiparametric mixture model approach to model the generation process of

p-values in all the combined studies. In the generative model, a logistic prior is used to

account for the effects of different genes and different studies. Then the p-values are assumed

to be generated from either U(0, 1) or an unknown distribution depending on whether the

gene is DE or not. Instead of assuming any parametric form, I used kernel density for

the unknown distribution to make the model flexible. An EM algorithm is proposed for

the model fitting, such that the computation is affordable in large genomic settings. I also

proposed a Bayes factor to substitute the traditional hypothesis testing procedure. My new

method is compared to others by simulation. The result indicates that my new approach

performs as well as methods like Stouffer’s method and Fisher’s method in terms of ROC

curves, while my method is much better than any existing methods in terms of FDR control

since all other methods failed to control FDR under HS′r. Then I applied my method in

real data analysis. From the results, we saw that my method could also be used for quality

control purposes. Additionally, this method could be easily extended. For example, the

model could be generalized for datasets with missing p-values. Moreover, different logistic

priors could be assumed to account for different types of data.

In addition to meta-analysis methods for single biomarker detection, I discussed the meta-

analysis of biological networks in chapter 4. I proposed a likelihood based score function to

evaluate the conservative subnetworks in a subset of the combined studies. Thus the meta-

analysis of multiple network results is converted to an optimization problem. To further
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simplify the computation, I decomposed the target function into summation of edge specific

scores. I evaluated my algorithm in both simulation and real data analysis. From simulation,

I demonstrated that my method could successfully identify the true conserved network with

high sensitivity and specificity. Conserved subnetworks could also be identified in real data

analysis, although the result was noisier than in the simulation. This is the first method that

provides a systematic framework to combine multiple network results. And this method will

be further developed and extended in the future. For example, I will try to assign p-values for

each identified subnetworks by permutation testing. Different network construction methods

will be applied for single studies. If necessary, the target function could also be modified in

the future. Moreover, I would like to extend this method to identify differential subnetworks

between two cohorts (such as male vs female or white vs black).

In summary, I have developed a series of tools for genomic meta-analysis. My works

attempt to provide robust meta-analysis solutions for different questions raised in genomic

studies.

5.2 FUTURE WORK

In the future, I intend to further extend my current work in several ways, including method-

ology, software and application.

First, I will extend my methodologies into the vertical integration of multiple data types.

Currently, the studies I combined have only a single data type. As high-throughput tech-

nologies improve, it becomes affordable to measure multiple types of data on the same set

of samples or individuals. For example, the cancer genome atlas (TCGA) project measures

gene expression, copy number, methylation, micro RNA expression, SNP and other kinds of

data on hundreds of cancer patients with different types of cancer. Therefore, it is important

for us to extend my methods to accommodate multiple data types. Especially, I will attempt

to extend the mixture model approach to jointly model multiple data types simultaneously.

Second, I will polish my R code and make it easy to use. R packages will be developed

for the methods discussed in this dissertation. And the packages will be submitted to the
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comprehensive R archive network (CRAN, http://cran.r-project.org). To facilitate bi-

ologists who may not be R users, I will develop Java based softwares with graphical user

interfaces (GUI), such that the methods could be easily applied in real data analysis.

Third, the methods developed could be applied to different datasets to draw interesting

biological conclusions. For example, I will apply my method in the major depression disorder

studies to find interesting biomarkers that affects the disease. I can also apply my method

in TCGA datasets to find important genes that could be potential drug targets for cancer

treatment.
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APPENDIX

DATA DESCRIPTION

Table 4: Seven brain cancer studies

Tissue Author Year Platform Sample size Comparison Source

Brain Petalidis 2008 HG-U133A 65 AA vs GBM GSE1993

Brain Freije 2006 HG-U133A,B 85 AA vs GBM GSE4412

Brain Phillips 2006 HG-U133A,B 100 AA vs GBM GSE4271

Brain Sun 2006 HG-U133 Plus 2 180 AA vs GBM GSE4290

Brain Paugh 2010 HG-U133 Plus 2 53 AA vs GBM GSE19578

Brain Yamanaka 2006 Agilent 29 AA vs GBM GSE4381

Brain Gravendeel 2009 HG-U133 Plus 2 284 AA vs GBM GSE16011

6,005 genes remained in the combined dataset after gene matching (AA: Grade 3

Anaplastic astrocytoma; GBM: Grade 4 Glioblastoma multiforme)
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Table 5: Nine MDD studies

Study name Gender Brain region Sample size Platform

MD1 ACC Male ACC 32 (16 pairs) Affymetrix

MD3 ACC Female ACC 44 (22 pairs) Illumina

C MD2 ACC F Female ACC 18 (9 pairs) Affymetrix

C MD2 ACC M Male ACC 26 (13 pairs) Affymetrix

MD1 AMY Male AMY 28 (14 pairs) Affymetrix

MD3 AMY Female AMY 42 (21 pairs) Illumina

C MD2 DLPFC F Female DLPFC 28 (14 pairs) Affymetrix

C MD2 DLPFC M Male DLPFC 32 (16 pairs) Affymetrix

NY DLPFC M Male DLPFC 26 (13 pairs) Affymetrix

7,577 genes remained in the combined dataset after gene matching.
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Table 6: 16 diabetes studies

Study Organism Platform Description
1 Mouse MG-U74Av2 Brown preadipocyte IRS knockout profiling
2 Mouse MG-U74Av2 Comparison of Low Fat and High Fat Diet on Mice

of Two Genetic Backgrounds (B6 vs. 129) - Fat
3 Mouse MG-U74Av2 Comparison of Low Fat and High Fat Diet on Mice

of Two Genetic Backgrounds (B6 vs. 129) - Liver
4 Mouse MG-U74Av2 Comparison of Low Fat and High Fat Diet on Mice

of Two Genetic Backgrounds (B6 vs. 129) - Skeletal
Muscle

5 Mouse MG-U74Av2 Isolated adipocytes from normal and fat insulin re-
ceptor knockout (FIRKO) mice sorted into small and
large cells

6 Mouse MG-U74Av2 Liver - ob/ob mice
7 Mouse MG-U74Av2 Mouse skeletal muscle - controls, streptozotocin dia-

betes and insulin treated
8 Human HG-U133A,B Human pancreatic islets from normal and Type 2

diabetic subjects
9 Mouse MG-U74Av2 Transcription profiling of wild type and PGC-1alpha

KO liver and skeletal muscle
10 Mouse MG-U74Av2 Effect of PGC-1alpha and PGC-1beta on gene ex-

pression in myocytes and hepatocytes
11 Mouse MG-U74Av2 Control Insulin Receptor (IR) and IRS-1 Single and

Double Heterozygous (DH) Knockouts - Comparison
of Age (6 weeks vs 6 months) and Genetic Back-
ground (B6 vs. 129) - Epididymal White Fat

12 Mouse MG-U74Av2 Control Insulin Receptor (IR) and IRS-1 Single and
Double Heterozygous (DH) Knockouts - Comparison
of Age (6 weeks vs 6 months) and Genetic Back-
ground (B6 vs. 129) - Liver

13 Mouse MG-U74Av2 Control Insulin Receptor (IR) and IRS-1 Single and
Double Heterozygous (DH) Knockouts - Comparison
of Age (6 weeks vs 6 months) and Genetic Back-
ground (B6 vs. 129) - Skeletal Muscle

14 Mouse MG-U74Av2 Effect of insulin infusion on skeletal muscle
15 Mouse MG-U74Av2 Skeletal Muscle - Muscle Insulin Receptor Knockout

and Control Mice - Control, Streptozotocin Diabetic
and Insulin Treated

16 Human HG-U133A Human skeletal muscle - type 2 diabetes - Swedish
males

6,645 genes remained in the combined dataset after gene matching.
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