
RULEBENDER: INTEGRATED MODELING,

SIMULATION, AND VISUALIZATION FOR

RULE-BASED INTRACELLULAR BIOCHEMISTRY

by

Adam M. Smith

B.S. in Computer Science Allegheny College, 2008

Submitted to the Graduate Faculty of

the Computer Science Department in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2012

UNIVERSITY OF PITTSBURGH

COMPUTER SCIENCE DEPARTMENT

This thesis was presented

by

Adam M. Smith

It was defended on

March 28th, 2012

and approved by

G. Elisabeta Marai, Ph. D., Professor

James R. Faeder, Ph. D., Professor

Jingtao Wang, Ph. D., Professor

Thesis Advisor: G. Elisabeta Marai, Ph. D., Professor

ii

RULEBENDER: INTEGRATED MODELING, SIMULATION, AND

VISUALIZATION FOR RULE-BASED INTRACELLULAR BIOCHEMISTRY

Adam M. Smith, M.S.

University of Pittsburgh, 2012

Rule-based modeling (RBM) is a powerful and increasingly popular approach to modeling cell

signaling networks. However, novel visual tools are needed in order to make RBM accessible

to a broad range of users, to make specification of models less error prone, and to improve

workflows. We introduce RuleBender, a novel visualization system for the integrated visu-

alization, modeling and simulation of rule-based intracellular biochemistry. We present the

user requirements, visual paradigms, algorithms and design decisions behind RuleBender,

with emphasis on visual global/local model exploration and integrated execution of simula-

tions. The support of RBM creation, debugging, and interactive visualization expedites the

RBM learning process and reduces model construction time; while built-in model simulation

and results with multiple linked views streamline the execution and analysis of newly created

models and generated networks. RuleBender has been adopted as both an educational and

a research tool and is available as a free open source tool at http://www.rulebender.org. A

development cycle that includes close interaction with expert users allows RuleBender to

better serve the needs of the systems biology community.

iii

TABLE OF CONTENTS

1.0 INTRODUCTION . 1

2.0 BACKGROUND . 4

2.1 Molecular Processes and Computational Complexity 4

2.2 Rule-Based Modeling of Molecular Processes 5

3.0 RELATED WORK . 6

4.0 WORKFLOW AND TASK ANALYSIS . 8

5.0 RULEBENDER . 11

5.1 Model Editor . 12

5.2 Interactive Contact Map . 13

5.2.1 Data Abstraction and Representation 14

5.2.2 Layout . 15

5.3 Influence Graph . 17

5.3.1 Data Abstraction and Representation. 17

5.3.2 Layout . 19

5.4 Simulation and Simulation Journaling . 20

5.5 Simulation Results and Species Browser . 21

5.5.1 Results Viewer . 21

5.5.2 Species Browser . 22

5.6 Linked-Views for Visual Debugging . 23

5.6.1 Detail View . 24

6.0 VALIDATION AND RESULTS . 25

6.1 Case Studies . 25

iv

6.1.1 EGFR . 25

6.1.2 Lyn-Binding . 26

6.2 Qualitative Evaluation . 29

6.3 Educational Use . 30

7.0 DISCUSSION AND CONCLUSION . 31

8.0 ACKNOWLEDGEMENTS . 34

9.0 AUTHOR’S CONTRIBUTIONS . 35

BIBLIOGRAPHY . 36

v

LIST OF TABLES

1 RBM Tasks and RuleBender Scores . 9

2 Lyn-Binding Rule Text . 28

vi

LIST OF FIGURES

1 The RuleBender Interface . 2

2 Contact Map Visualization of Rule-Based Models 14

3 Compartmental Contact Map . 16

4 Influence Graph Visualization of Rule Interaction 17

5 Influence Graph Definition Example . 18

6 The Simulation Results Viewer . 21

7 The Species Graph Visualization . 22

8 Contact Map Visualization for the Lyn-Binding Model 26

9 Lyn-Binding Debugging . 27

vii

1.0 INTRODUCTION

Systems Biology researchers study the mechanisms and effects of intracellular chemical in-

teractions. Molecules in an organism act as catalysts for long chains of reactions that lead

to an observable response such as gene expression or production of a protein. The field of

study that focuses on paths along these reaction networks is known as cell signaling. Better

understanding of cell signaling can lead to advances in drug discovery and the treatment of

diseases like cancer, Parkinson’s, and Alzheimer’s.

Traditional studies of cell signaling involve chemical experimentation wherein the re-

searchers measure the concentrations of molecules throughout the course of a reaction via

microscopy or biochemical methods. This molecular concentration data from laboratory ex-

periments can also be used to construct ordinary differential equations that represent the cell

signaling network over the time course of a series of reactions. Such mathematical models

can then be simulated in order to make predictions that the data alone cannot generate.

Rule-based modeling (RBM) allows for the construction of an executable model that

contains a starting set of molecules with possible interaction behaviors. These models are

then simulated in order to produce a complete reaction network. If the network matches

known cell signaling data, then the model is assumed to be correct and can be used to

construct hypotheses about the biological system in question. Thanks to the relatively low

cost of model alteration and simulation compared to laboratory experimentation, the RBM

approach can be used to gain insight about a reaction network, and can help speed up the

discovery of new drugs and therapies.

While the potential benefits of RBM to biology are outstanding, the process of building an

RBM from experimental data and detecting and correcting modeling errors (i.e., debugging)

can be tedious and frustrating. RBMs are typically defined by the user via a text file. The

1

Figure 1: The RuleBender interface. Shown are the Model Editor pane including console

for text output (left) and the Visualization Viewer pane (right). The Visualization Viewer

shows two complementary visual encodings corresponding to the text model in the Editor:

the interactive contact map (top), and part of the influence graph for this model (bottom).

RuleBender’s main features include syntax checking, syntax highlighting, visual global model

exploration with linked views, integrated execution, support for multiple simulation modules,

simulation journaling, interactive plotting including comparison of multiple datasets, and

parameter scanning.

2

user defines a set of molecules and proceeds to write rules governing their interaction that

are derived from specific biomedical literature knowledge of the biological system. Although

individual rules are easy to write, it is often difficult to fully grasp the implications of a set of

rules. The challenge in grasping the global perspective is particularly acute when trying to

understand models written by different researchers. This problem complicates debugging and

reduces the accessibility of RBM, especially for users with limited programming experience.

We hypothesize that visual global/local model exploration can help with these tasks. Beyond

modeling difficulties, simulating and analyzing RBMs pose additional challenges.

The goal of this collaborative project was to facilitate RBM construction, simulation, and

analysis in an integrated system. Given the combination of spatial and abstract information

typical to RBM, and the challenges briefly outlined above, we pursue a visual backbone

for such a system. Our first contribution is a description of the typical RBM workflow,

followed by an analysis of the tasks and potential sources of error in model construction and

analysis. This information was collected through close interaction with systems biologists.

Secondly, we propose a set of complementary visual encodings and visualization strategies

to be used during the model construction and analysis process. Our third contribution

is the implementation and description of the discussed features in the open source system

RuleBender. Next, we evaluate this system on two case studies and report feedback both

from expert users and from classroom usage. Finally, we contribute a discussion of the design

decisions behind the system and of the lessons learned through our collaboration with biology

researchers.

3

2.0 BACKGROUND

2.1 MOLECULAR PROCESSES AND COMPUTATIONAL COMPLEXITY

Bioinformatics researchers are concerned with discovering the structure and interactions of

molecules, DNA, and proteins. In this paper we refer to all major structures analyzed by

researchers as molecules. Each molecule is composed of specific substructures that are called

domains. The interactions between molecules are caused in fact by interactions among the

domains of those molecules.

Cell-signaling systems involve an intricate network of protein-protein interactions. These

interactions can have a number of consequences, including the post-translational modifica-

tion of proteins, the formation of heterogeneous protein complexes in which enzymes and

substrates are co-localized, and the targeted degradation of proteins. For understanding

the system dynamics, the details that are most relevant are typically found at the level of

protein sites or domains that are responsible for protein-protein interactions. Despite the

high relevance of the site-specific details of protein-protein interactions for understanding

system behavior, models incorporating these details are uncommon. Models that incorpo-

rate protein-site details are generally difficult or impossible to specify and analyze using

conventional methods, largely because of the combinatorial number of protein modifications

and protein complexes that can be generated through protein-protein interactions (i.e., com-

binatorial complexity) [23].

4

2.2 RULE-BASED MODELING OF MOLECULAR PROCESSES

The limitations of conventional approaches to model specification have prompted the devel-

opment of formal languages specially designed for representing proteins and protein-protein

interactions [8]. BioNetGen is a language and software framework that uses graphs to rep-

resent protein-protein interactions [18]. BioNetGen allows site-specific details and dynamics

of protein-protein interactions in a systematic fashion. New algorithms permit efficient sim-

ulation of rule-based networks of virtually any size and complexity [10, 14].

A BioNetGen input file contains definitions of molecules, reaction rules, chemical and

mathematical constants, initial molecule populations, and simulation instructions. The mod-

els include definitions for the molecule itself, and also its domains and any associated bonds.

Domains may also have associated states, e.g. phosphorylated or unphosphorylated. Each

rule is defined by a set of reactants that are composed of molecules, domains, and states; fol-

lowed by the post-reaction product which may include new bonds, broken bonds, or changed

states of domains. In these rules, the molecules, domains with states, and bonds that are

required for the reaction but are not changed by it are called the reaction context. Conversely

items that are changed by the reaction are termed the reaction center.

In BioNetGen rules are applied iteratively to species to generate the partial or full set of

reachable species and reactions. The resulting reaction network, composed of these species

and reactions, is then simulated to obtain the population of each species as a function of

time using for example numerical integration of ODE’s or stochastic simulation methods.

An alternative approach is the so-called network-free method that performs a discrete event

simulation on an instantiated set of molecules [10].

5

3.0 RELATED WORK

Graphical representations of molecular processes — primarily state-transition diagrams —

have been in use in biology textbooks as early as 1949 [21], and later on transitioned in the

same diagram form into database systems such as KEGG, EMP, and EcoCyc [5, 33, 24].

Software systems for pathway design such as NetBuilder, Patika, JDesigner, or CellDe-

signer [7, 16, 32, 20] have introduced additional notations for the same basic graph struc-

ture, while with the development of genomics new notations — such as arcs, edges, and

glyphs — have been proposed for signaling pathways, and for incomplete or indirect infor-

mation [12, 28].

Kohn added a formal syntax to the set of symbols above that describes interactions

and relationships of molecules in a rigidly defined schema known as Molecular Interaction

Maps (MIM’s) [27]; MIM’s provide guidelines and approaches to drawing static, schematic

representations of signaling pathways. Kohn’s MIM notation was followed by additional pro-

posals [15, 26] describing process diagrams with both standard symbols and defined gram-

mars. In a recent effort, the Systems Biology Graphical Notation (SBGN) proposal [30] is

attempting to establish a community standard for biological notation.

The important observation here is that, while many graphical representations of molecu-

lar processes have been proposed, the construction of these representations is not automated,

and the diagrammatic representations themselves are either non-computable or have limited

computability due to combinatorial complexity. In other words, novel software tools are

needed that can convert a graphically represented model into mathematical formulas for

analysis and simulation.

A large number of systems have been developed to facilitate pathway construction and

analysis, most notable among them GenMAPP [13], Cytoscape [34] and its recent exten-

6

sions [4], PathwayAssist [3], Patika [16], GScope [37], GeneShelf [25] and GeneSpring [2].

For an extensive review of many of these systems, see Saraiya et al. [31]. While many of

these systems have complementary strengths in terms of the user requirements identified

by Saraiya et al. [31], such as collaboration, context overlay, assistance for pathway con-

struction, highlighting temporal information, etc., they are generally designed to facilitate

integration of experimental data into the analysis process, with no emphasis on computa-

tional simulation. Recent commercial attempts at combining visualization with simulation

and modeling [1] have employed rule-based languages, although the resulting visual repre-

sentations are minimalistic and, to the best of our knowledge, not formally specified.

Novel techniques are needed to integrate modeling, computational simulation, and visual

analysis of biochemical systems in order to construct models of signaling pathways that are

accurate, visually understandable, computable, and multi-scale.

7

4.0 WORKFLOW AND TASK ANALYSIS

Our first contribution is an analysis of the typical RBM workflow; of the tasks associated

with this type of modeling, simulation and analysis; and finally an analysis of the potential

modeling error sources. These analyses are based on on-site interviews conducted with RBM

researchers including a senior research and 1-2 junior researchers. Interviews ordinarily

occurred weekly or bi-weekly for 1-2 hours and incorporated both structured questions and

open discussion of workflows and features.

The typical RBM workflow starts when a modeler is assigned a particular biological sys-

tem and is asked to investigate certain properties of the system (e.g., the effect of different

parameters on the model output; or finding what assumptions about the model are critical).

The modeler begins by performing a literature search for the model; the required inputs

are a set of molecules, their interactions, and parameters that quantify the concentration

and strength of the interactions (in the form of rate constants). Biological databases, such

as UniProt [11] or KEGG [5], have considerable information about biomolecules and their

interactions but contain little information about parameters, which must be obtained from

manual searching of the literature. The modeler then proceeds to write the system compo-

nents and the set of rules describing the behavior of the system. Once a working model has

been defined, an RBM can be simulated using a number of different approaches including

ordinary differential equations, stochastic simulations, or particle-based stochastic simula-

tions. The output must be then analyzed and compared against other results. The typical

workflow relies on an external plain text editor, command console, and external plotting

tools for displaying simulation results, which is inconvenient because it requires modelers to

switch between different tools over repeated cycles of model editing and simulation. The

process gets further complicated when exploring alternative simulations and models.

8

Index Task Score (1 to 5)
T1 Compose a model from scratch. 4.2
T2 Find and correct an error in a model. 4.8
T3 Understand relationships between rules in the model - overlapping reactants, products, etc.? 4.4
T4 Modify an existing model and run simulations to compare results with those of the original. 4.2
T5 Generate a network; examine species and reactions. 4.4
T6 Run a parameter scan. Examine overall results and look at results for individual trajectories. 4.8
T7 Compare results of scanning a parameter in two different models. 4.4
T8 Find a set of parameters that makes the model behave in a specific way. 3.4

Table 1: RBM Tasks and RuleBender Scores

To design our system, we extracted the list of eight most frequently performed RBM tasks

from the biologist researcher interviews (shown in Table 1 along with the scores attained by

RuleBender after the release of the tool). This set of tasks informed our system specification:

at a minimum, the system needs to provide debugging capabilities, it needs to bridge model

construction, simulation, and analysis, and needs to provide parameter scanning capabilities.

Next, prototyping revealed the necessity for clear yet concise visual abstractions that scale

well with the possible sizes of the data sets to be visualized. Finally, the interviews revealed

additional system requirements such as an efficient workflow; a stand-alone system as op-

posed to a web-based one, on account of latency concerns; a system that is cross-platform

and easy to install; and a tool that is usable with minimal training.

In attempting to provide debugging capabilities for such a system, we next discussed

potential modeling pitfalls with our systems biology collaborators. Three types of errors

became apparent: syntactic, semantic, and biological errors. Syntax errors are typos or in-

correct usage of the modeling language. These syntax errors are the easiest to detect and

repair, by using an appropriate editor with syntax checking, syntax highlighting and valid

parameter name recognition. The second class of errors, semantic errors, occurs when a mod-

eler produces code that is syntactically correct but is not the intended structure regardless of

whether the intended model is biologically correct. For example, the model syntax is correct,

but one rule introduces an unwanted complex; multiple rules interact, creating an unwanted

effect; or the modeler simply misunderstood the model syntax/semantics. According to our

end users, almost all interesting errors were of this second, semantic type. Finally, biolog-

ical errors occur when a user misinterprets the literature and aims to create a model that

9

is incorrect with respect to known network structure; alternatively, the user may create a

correct model but does not include the correct initial concentrations or reactions rates. Due

to the size and complexity of some models it may be impossible to detect such biological

based errors without expert knowledge. However, the difficulties of detecting semantic and

biological errors can be alleviated with visual representations of the model that focus on the

molecule structure and interactions.

10

5.0 RULEBENDER

To address the current difficulties of model creation and repair, simulation, and analysis we

pursue an integrated design that includes (i) an editing environment, (ii) built-in simulation

execution, (iii) complementary visual representations of models, and (iv) simulation analysis

capabilities in a multi-pane visual framework that collects the entire RBM workflow. Given

the complementary nature of the information involved in RBM, our design uses a linked

multi-view approach. The views are organized according to the workflow we identified earlier.

The visual interface incorporates text editing, visualization, and simulation execution

in order to facilitate a faster and more productive RBM workflow. Three main vertical

panes are used. The first pane (Figure 1) provides a text-based Model Editor and a console

window. In addition to standard text editor capabilities, the Model Editor provides a number

of useful features for creating and editing RBMs in BioNetGen Language (BNGL) format

[19]. The editor window assists with completing tasks 1, 2, 4, and 6 identified in Table 1

and also with detecting syntax errors.

The second main pane, the Visualization Viewer, is reserved for global and local visual

representations of the RBM; its purpose is to assist the modeler in the process of debugging

the RBM as described for task 2. These interactive visual representations help modelers

form complex model structures and internal interactions progressively, rather than trying to

build and keep track of a complete mental model from the start. The visual representations

are generated automatically from the text-based representation (as later described), and

updates in the Model Editor are reflected in the Visualization Viewer. Logic errors in the

RBM that cause parsing errors in the Visualization Viewer are reported in the console window

of Model Editor (Figure 1). The human closes the loop, by repairing in the Model Editor

the errors reported in the console, as well as any semantic errors detected via visual analysis.

11

Model exploration and comprehension, such as needed for task 3, is supported in addition

to debugging support. The visualizations help minimize semantic errors in the model while

links to external data sources based on model element selection help address biological errors.

After the first iteration of model construction the modeler can generate an explicit net-

work of the modeled system and then run multiple simulations based on the generated net-

work. The Model Editor provides integrated execution of BioNetGen simulator commands

through menus and toolbar buttons (tasks 4, 5, and 6); these actions include parameter

scanning operations that allow the interactive study of the effects of varying the value of

a single model parameter. At this point, the Visualization Viewer pane is replaced by the

third pane, the Simulation Results Viewer. The two Viewers can also be laid side-by-side.

Based on the analysis, the modeler could start a new iteration of modeling and simulation

in order to revise the model or explore the effects of small model changes as needed for tasks

4, 7, and 8.

Below we detail the data abstractions and algorithms specific to the Model Editor, Visu-

alization Viewer, and the Simulation Results Viewer. Design decisions and revisions of these

abstractions and algorithms were made in close collaboration with our expert end-users.

5.1 MODEL EDITOR

The Model Editor window provides an environment for creating and editing RBMs in text-

mode – the traditional approach to specifying biochemistry rule-based systems. The window

is composed of a fully featured text editor and a console for reporting model syntax errors

and simulation logs to the user. To facilitate comparative model exploration the Model

Editor supports simultaneous editing of files through tabbing.

In order to expedite model construction, the Model Editor includes a BNGL model

template for creating new files. Following the current specification of the BNGL language,

each BNGL file must define a text block for parameters, molecule types, seed species, reaction

rules, observables, and simulation actions. The parameters block holds numerical constants

or equations that define concentrations of chemicals or rates of reaction rule occurrence.

12

The molecule types block allows the user to declare the basic molecules that will appear in

the model. In contrast, the seed species block states the starting collection of molecules for

simulation and network generation. The reaction rules block is a collection of all of the

possible chemical behaviors of the system. The observables block provides the user with the

ability to mark certain molecules or collections of molecules for observation in the results of

a simulation. Finally, the simulation actions block comprises a list of instructions for how

to execute a model. BNGL simulation instructions support generating and simulating a

network, managing molecule concentrations and parameter values, and saving models. Code

folding hides details of completed text blocks so that the unfinished features become more

visually salient. Syntax highlighting of keywords and language features – one of the earliest

user-requests – also assists with understanding and debugging the syntax of the model. Text

selection results in an automatic search for the selected text and all found occurrences are

highlighted.

In the process of incremental model construction modelers make syntax errors that are

easily detected by a parser and reported through the console. However, semantic and bi-

ological errors are difficult to detect based on the textual representation only. To further

support model exploration and debugging the Visualization Viewer provides both global and

local views of the model currently loaded in the Model Editor: interactive contact maps and

influence graphs.

5.2 INTERACTIVE CONTACT MAP

The first visual encoding we propose is the Interactive Contact Map (Figure 2), a concise,

scalable representation that provides a global view of the RBM. This encoding is an inter-

active graph representation of the molecules and the reaction rules governing the system.

Recall that in RBM, molecules are described as structured objects that are comprised of do-

mains that can have states and can bind to each other, both within a molecule and between

molecules. Also, reaction rules are the generators of species and reactions, which define all

the interactions. Given that reaction rules are an essential part of the model, the Contact

13

Figure 2: Contact Maps without (left) and with (right) hub nodes.

Map needs to show not only the involved molecules, but also an overview and details of the

various reaction rules.

5.2.1 Data Abstraction and Representation

To keep the Contact Map concise and scalable, the molecules and internal domains defined

in the model are displayed only once in the graph.

Molecules are represented as larger nodes (light gray) while domains and domain states

(yellow, orange and purple) are represented as smaller sub-nodes in the molecules. Domain

states (such as unphosphorylated Y and phosphorylated pY), may be specifically required in

certain reaction rules, and so are also displayed as green or dark gray nodes cascading from

the domain sites to which they apply (Figure 2).

To add rule information to this representation, we next analyze the various reaction

rules and find they fall into three categories. The most common and simple type of reaction

rule defines bond creation or destruction between domains. A bond can only exist between

two domains. For this type of rule, an edge connecting two domain nodes is created in the

Contact Map. Reaction rules that involve the same bond will be mapped to the same edge

in the graph. Selecting an edge lists all rules that create or destroy bonds between the linked

domains. Selecting one rule from such a list marks the reaction context in blue and the

reaction center in pink.

14

The second type of reaction rule defines state changes of domains. A domain can only

have one state at a time, and the state can be changed based on reaction rules. Adding an

edge between two state nodes is not a good solution, because mapping two types of rules in

the same way would cause confusion and adding more edges will increase clutter since the

state nodes of one domain are positioned very close to each other in the graph. Given these

limitations and the importance of the state information, this type of rule is mapped to the

target state node via color: domains that have their states changed via a rule are shown in

purple as shown in Figure 2. Selecting a state-node (Figure 2 on the left) lists all rules that

indicate that state change.

The last type of rule defines molecular level interactions without domains involved, such

as the degradation of proteins. In this situation, a hub node and several edges will be created

to connect each reactant and product molecule in the rule (Figure 2 right). Selecting a hub

node lists all rules involving the linked molecules as shown on the right.

Next, we note that each rule has its own reaction center (the domains being modified by

the rule) and reaction context (the domains are required for the rule to be applied but are

not being modified). We use Bubble Sets [9] to display this information. The bubble sets

algorithm draws an isocontour around all of the items in a particular set in order to more

easily see set membership (light blue and pink in Figure 2).

Finally, feedback from more recent end-users revealed the need for a visual representation

of the various molecule compartments (extracellular, cytoplasmic etc.) shown in Figure 3.

The saturation of the convex hull encompassing a compartment indicates the hierarchical

structure of the compartments; the outermost compartment is colored the lightest blue. All

the members of a compartment can be moved as a whole unit to get a clear view of the

hierarchical structure. The compartmental localization of model domains can be displayed

when this information is provided by the modeler.

5.2.2 Layout

We use force-directed layout algorithms [22] to draw the Contact Map in an aesthetically

pleasing way while minimizing edge crossings. A small overview window of the Contact Map

15

Figure 3: Contact Map with molecule compartment hierarchy.

helps the modelers to navigate large graphs.

The different types of nodes were assigned colors using ColorBrewer [6], which in turn

follows Tufte’s principles for information encoding [38]. The primary nodes are shown in

yellow (no state information), orange (state information but no state change), or purple

(state change). Domain states are shown in green (state node with state change), or gray

(state node without state change) (Figure 2 left).

Following the basic Visual Information Seeking Mantra [35], the Contact Map first gives

an overview of the model. Pop-up menus provide filtering options such as showing or hiding

state nodes in which case the endpoints of edges switch between domain node or state node

accordingly. Details of molecules and reaction rules are shown on demand. Selecting an

edge, a state node, or a hub node brings up a list of reaction rules, and selecting one of

these rules brings up the bubble sets overlay highlighting the reaction context in blue and

the reaction center in pink. Selecting a molecule brings up a list of external links of available

online resources in an annotation panel (Figure 1).

16

Figure 4: The Influence Graph nodes represent reaction rules while arcs represent influence

between rules.

5.3 INFLUENCE GRAPH

While the Interactive Contact Map shows in a compact manner the connectivity between the

molecules within a model, the relations among the reaction rules may provide further insight

into the model behavior. An influence graph (Figure 4) is an abstraction of complex reaction

networks; influence graphs were originally introduced for the analysis of gene expression in

the setting of gene regulatory networks. We extend this concept to rule-based modeling.

Rule-based influence graphs give an overall view of the activation/inhibition relation between

the reaction rules that describe the behavior of a system.

5.3.1 Data Abstraction and Representation.

We identify four types of relations between reaction rules: full activation, full inhibition,

partial activation and partial inhibition. The difference between the full and partial is that

full means the firing of the influencing rule will definitely affect the rate at which the second

rule fires, whereas partial means the firing of the influencing rule may or may not affect

the rate at which the second rule fires depending on which specific species or agents are

transformed by the influencing rule.

There are generally two steps to get the relation between two rules. The following

description refers to the relation from Rule 1 to Rule 2. Recall that rules are composed of

required reactants and post-reaction products. We use patterns to describe a component of

17

Figure 5: Prototype pattern relations (P) and rule relations (R) used to determine influence

graphs: an intermediate graph (Left) is ultimately reduced to the simplified, final influence

graph (Right). An arrow from P to R means that P is a reactant pattern of the R; for the

reverse direction P is a product pattern of R.

the reactants or products that may overlap with another rule. Figure 5 shows an example

of pattern relations and rule relations that can be used to construct an influence graph:

Step 1: Attempt to match all of the reactant patterns of Rule 2 onto the reactant patterns

of Rule 1. If there is a full match, for example, from Pattern 2 of Rule 2 onto Pattern 2

of Rule 1 (as in Figure 5), then there is a full inhibition, as indicated by the red arrow in

the left hand panel of Figure 5. A partial match indicates a partial inhibition. If there is

no match of a reaction center element or conflict between any elements of the two patterns,

then there is no inhibition. Similarly, pattern matching from product patterns of Rule 1 to

reactant patterns of Rule 2 can be performed to obtain the activation information.

Step 2 : With the relation information between the patterns of the 2 rules acquired in

the previous step, we can summarize the information to get relations between the two rules.

In the reduction a full influence should have higher priority than a partial influence.

Through iteration of the above two steps between all pairs of reaction rules within the

model, the influence graph information is algorithmically constructed. Then we display the

Influence Graph as a directed graph with nodes representing rules and edges representing

relations between rules.

18

5.3.2 Layout

Similar to the Contact Map, we use colors, filtering, zoom in/out, focus plus context, and

details on demand to design the visualization. Different colors [6] and shapes are applied to

the edges to distinguish the types of relations: green was chosen for activation and magenta

was chosen for inhibition. Dashed lines represent partial inhibition/activation and solid lines

represent full inhibition/activation. Decorated edges were preferred to styled arrow heads

to make the edge characteristics more easily visible at lower zoom levels. Activation and

inhibition filtering operations are also provided. Selecting a rule node displays the rule text

and filters the influence arcs related to this node (Figure 1).

We note that there are no certain patterns or obvious hierarchical structure among the

relations. Therefore we chose a linear arc diagram design. All the nodes are arranged

in a horizontal line, with nodes sorted according to their connectedness, and arcs connect

nodes representing relations symmetrically. The length and height of an arc depends on

the horizontal distance between two nodes. The direction of an arc becomes very clear in

this layout. The arcs above the horizontal line point to the right while the arcs below the

horizontal line point to the left. A small overview window of the Influence Graph is also

provided in the Visualization Viewer to help the modelers to navigate large graphs.

Several graph-drawing approaches were attempted (and discarded after feedback) for

rendering the influence graph – including circular layouts, force-directed layouts, and several

variations of the linear display. Many of these attempts suffered from scalability problems.

In the end, traits of the winning design were the linear, bilayered output (forward rules on the

upper side, backward rules on the lower side), interactive filtering, providing the appropriate

amount of detail (e.g., rule mnemonics as opposed to numbers), and the ability to link

back to the textual representation. As seen in Figure 4 the influence supports detection of

independent rule sets (group1: the first four nodes, group2: the rest of the nodes), which

can indicate that the model is not complete..

19

5.4 SIMULATION AND SIMULATION JOURNALING

RuleBender provides flexible support for multiple simulation modules, including parameter

scanning, and for simulation journaling. A Results Viewer and a Species Browser further

allow interactive plotting of simulation results, including comparisons of multiple datasets,

and visual exploration of the resulting species.

Simulation can be initiated after an RBM model has been constructed or loaded in the

Text Editor. Certain RBM simulation techniques require that the full reaction network for

the model be first generated. During network generation, the rules defined in the model are

applied to the initial species until a user-defined maximum number of iterations is reached or

until no new chemical species are produced. After a network has been generated, simulation

of the network can be carried out by either numerical integration of ODE’s or through a

stochastic simulation of the model.

In contrast, on-the-fly simulation does not require a pre-existing network and generates

the full network using the model rules as the simulation takes place. RuleBender supports

network-free simulation through the NFSim package[36] which works entirely without net-

work generation by using discrete-event particle-based techniques.

Simulation actions can be listed and executed in order. Intermediate versions of models

that have been partially simulated or that are at equilibrium can also be saved for later use.

Notably, RuleBender allows model-changing commands to be introduced in between these

simulation actions. Examples of model-changing actions include altering the concentrations

of species or setting new parameter values for the rates at which rules occur. For example,

a network can be generated, simulated to equilibrium with a subset of its species, and then

simulated again after introducing a predetermined concentration of another species.

RuleBender also supports a simulation technique called parameter scanning. In a pa-

rameter scan, the starting value of a single parameter is varied over many simulations in

order to measure the effect of changing that parameter. Visually mining the relationships

between parameter values and outcomes is a direction of future work.

To support simulation journaling, simulation run results are stored in individual direc-

tories. Each results directory is labeled with the model name and the time of the execution;

20

Figure 6: The Simulation Results Viewer. The example in the snapshot compares the results

of two simulations (points and lines) with three observables selected individually.

the collection of results directories forms the model simulation journal. Each directory in-

cludes log files, a copy of the exact model and parameters that were executed, the generated

network, and the results of the simulation. Time-series data resulting from simulations are

stored in two files: CDAT files contain concentration data over time for all of the generated

species individually, and GDAT files contain concentration data over time for the modeler-

defined observables. An additional NET file contains supplemental information about the

fully generated network.

5.5 SIMULATION RESULTS AND SPECIES BROWSER

5.5.1 Results Viewer

The Simulation Results Viewer (Figure 6) provides support for exploring simulation journals,

for interactive plotting including comparisons of multiple datasets, and for visual exploration

of the resulting species.

21

Figure 7: Species Graph. Shown is an example of a complex species containing thirteen

molecules which is difficult to grasp from the text representation only.

The upper left pane of the of the Simulation Results Viewer contains a tree-based struc-

ture corresponding to the journal of the simulation results. Each node in the first level of the

tree represents a single run of a simulation that is labeled automatically with a time-stamp

from when the user ran the simulation. When the user selects either of the simulation result

files, the time series concentration data for the simulation are displayed in an interactive

chart in the large right pane. The modeler can analyze and compare the results of multiple

simulation runs using text, charts, and graphs. Following the end-user requirements, the

charts support both line and point representations of the data and can be rendered with

linear or log scale on both axes. Mouse brushing is used in order to zoom in and out on

the chart. Below the results file tree viewer, the list of generated species or observables is

displayed with a check box next to each element. Only the selected elements are shown in

the chart. In the case of a comparison, two tables allow for selection of compared species.

5.5.2 Species Browser

The Simulation Results Viewer is linked to a Species Browser (Figure 7) in the Visualization

Viewer in order to further help examine the resulting species. The Species Graph abstraction

is constructed similarly to the Interactive Contact Map and alleviates the task of analyzing

22

resulting species. Specifically, the full network generation of a model creates many new

chemical species. When a CDAT file is opened in the Simulation Results Viewer, the list of

all of these species is displayed below the results file tree viewer. Species from the list can

be selected and visually represented in the Species Browser. Similarly, when viewing the

list of observables associated with a specific GDAT file, nodes associated with an observable

can be expanded to see all the species that contain the chemical species used to define that

observable. Selecting any of these species will also cause them to be displayed in the Species

Browser. Finally, right click context menus can be used to select text in the NET files and

then to display the selected species.

5.6 LINKED-VIEWS FOR VISUAL DEBUGGING

Based on our on-site workflow analysis, RuleBender was designed to assist in the 3 phases of

Rule-Based Modeling (model, simulate, analyze results) using at most two panes at once: the

Model Editor and the Visualization Viewer for model construction, or the Simulation Results

Viewer plus the Visualization Viewer for results analysis. During modeling, the complemen-

tary views interact in order to assist with model exploration and debugging, whereas in the

results analysis phase the Species Browser is used to visually show the chemical compounds

that are being observed and the species that are created during network generation.

During the modeling phase the Model Editor is used in conjunction with the Visualization

Pane. The user edits the text model in the Model Editor while the Visualization Pane

displays the Contact Map and Influence Graph visual representations of the model. In

addition to concurrent viewing of representations, interactions with the visualizations are

propagated to the other views in order to visually link the model elements. Selections of

model elements in the Contact Map, including compartments, molecules, domains, domain

states, rules, and multiple rules (graph edges), result in Model Editor selections of the text

that define the selected element (Figure 1). Simultaneously, the Contact Map selections of

rules result in the selection of the nodes and associated edges that represent those rules in

the Influence Graph. Similarly, selecting rule nodes in the Influence Graph causes Model

23

Editor text highlighting of the rule text and the displaying of the bubble sets overlay that

represents the rule in the contact map.

5.6.1 Detail View

While the visualization of the textual model helps with global knowledge of the system being

created, the specific details of model elements are important during debugging and explo-

ration. For this reason, the Detail Pane, shown in the upper right of Figure 1, displays

relevant textual data in a table format for the currently selected visual element. The selec-

tion of any visual element displays the name, BNGL text definition for that element, and

containing element where appropriate. The details table for molecule selection also shows

a list of external links to online databases, such as Uniprot and Pathway Commons, which

have more information about that element. Domain site selection also gives information

about existing states, and state selection shows a list of rules that can affect the states. Rule

information is also shown in the details view, such as the rule identifier and rates.

Linking the Model Editor, the Contact Map, the Influence Graph, the Species Browser,

the Detail View, and the Results View assists the modelers in creating and debugging rule-

based models. The multiple representations have complementary strengths in debugging

model construction, as shown in our next section. Additionally, both the Contact Map

and Influence Graph visualizations enable quick identification of orphan molecules or rules

that do not interact with other molecules/rules, thus further supporting understanding and

debugging of the models.

24

6.0 VALIDATION AND RESULTS

Our next contribution is an evaluation of the utility and usability of RuleBender, with the fol-

lowing three components: (i) a demonstration of RuleBender’s debugging capabilities on two

case study models from our target user collaborators, who are systems biology researchers;

(ii) a qualitative evaluation of the system at a biology research lab, gathered through surveys

and interviews; and (iii) feedback from usage of the system as an educational tool.

6.1 CASE STUDIES

6.1.1 EGFR

This model describes early events in biochemical signaling through the epidermal growth

factor receptor (EGFR) which leads to differentiation and growth signals in cells [29]. Dys-

regulation of signaling pathways activated by EGFR occurs in nearly all forms of cancer and

mutations of EGFR and molecules activated downstream of EGFR are found in cancer cells

at high frequency.

A senior systems biology researcher, who was also our primary collaborator, constructed

an RBM model that is capable of predicting the dynamics of 356 molecular species, which are

connected through 3749 unidirectional reactions. The researcher commented on the useful-

ness of the compact contact map visualization for showing what molecules can be connected

in a complex, while still capturing the complexity of the system. He then noted that the vi-

sualizations highlighted the importance of the Shc aggregate (Figure 2) for recruitment: the

key molecule Sos can be recruited to receptor in two different ways, through EGF-induced

25

Figure 8: Contact Map visualization for the Lyn-Binding model.

formation of EGFR-Grb2-Sos and EGFR-Shc-Grb2-Sos assemblies at the plasma membrane

(note the corresponding paths in Figure 2). The highlighted rule also indicates that EGFR

dimerization (formation of the compound through the joining of two molecules) is a necessary

condition for this recruitment to take place. According to the researcher, these observations

were tricky to see from the text-based representation, and easily missed without RuleBender.

The researcher has adopted RuleBender as a research tool and is using it as their primary

interface to RBM.

6.1.2 Lyn-Binding

The Lyn-Binding represents early events in the antibody biochemical signaling process and

is typically introduced as an exercise to junior researchers. The processes in the model are

characteristic to allergic reactions, as well as to a system’s response to injury or inflammation.

RBM researchers have built a detailed mathematical model of reactions involving the receptor

FcεRI (Rec), the enzyme Lyn, Syk, and a bivalent ligand (Lig) that aggregates FcεRI [17],

all shown in Figure 8. The model makes it possible to test the consistency of mechanistic

assumptions with data that alone provide limited mechanistic insight. The signaling network

triggered by FcεRI plays a critical role in allergic responses and contains several targets for

existing and proposed therapies for allergies.

26

(a) (b) (c)

Figure 9: Lyn-Binding Debugging (reduced view: Ligand notation shortened to L and Rec

shortened to R). If the user programs the rule that binds Lyn to Rec incorrectly (see Ta-

ble 2), the corresponding contact map in (a) is missing the rule context information. The

correct binding leads instead to the visualization in (b); the presence of the blue bubble set

alerted the researcher to the difference and allowed them to debug their RBM. The incorrect

formulation would allow for the creation of the infinitely binding chain shown in (c).

In the model, signaling is initiated by the binding of ligand Lig to the receptor Rec,

which leads to the formation of an aggregate containing two receptors. Lyn is recruited to

these aggregates through binding to one of the receptors. There are two modes by which

Lyn can associate with the receptor, one weak and one strong, depending on whether the

receptor is already phosphorylated or not. Several novice researchers were given a partial

model of this network in a classroom setting as part of their systems biology coursework,

and asked to add the correct rule for the low-affinity binding of Lyn to the unphosphorylated

b subunit via its U (unique) domain. To prevent a single Lyn molecule from bridging two

separate receptors, they need to prevent the Lyn-receptor binding from occurring if the Lyn

SH2 domain is already bound.

The researchers used RuleBender to debug their construction and simulation of this

process. The contextual information, as well as the state information, turned out to be

essential in constructing the Lyn-binding rule. Without making sure that the rules require

that the other site be unbound, it would be possible for Lyn to bridge two separate receptors,

thus potentially forming an infinitely binding chain (Figure 9 a and c). This small error was

not readily visible in the text-based model without careful review, and was thus a major

source of frustration. Although the researchers routinely praise the benefits of RuleBender

27

Rule Text

Correct Rec(b) + Lyn(SH2,U) < − > Rec(b!1).Lyn(SH2!1,U)

Rec(b) + Lyn(U,SH2) < − > Rec(b!1).Lyn(SH2, U !1)

Incorrect Rec(b) + Lyn(SH2) < − > Rec(b!1).Lyn(SH2!1)

Rec(b) + Lyn(U) < − > Rec(b!1).Lyn(U !1)

Table 2: Lyn-Binding correct and incorrect rule formulation. The bold domains are omitted

in the incorrect rules.

syntax highlighting, integrated execution of simulations and result viewing, in this instance

they were only able to track down the error-source through the bubble-set reaction center and

context visualization. Table 2 shows the correct and incorrect rule formulation, while Figure

9 a and b show a reduced view of the resulting contact map for both the correct and incorrect

formulation (no distinction evident). However, by using the bubble sets representation to

explore the context and center of each reaction rule, the researchers noticed the missing

context information in the incorrect rule formulation (highlighted with a blue bubble in the

correct formulation).

Junior researchers in the lab found the contact map and species browser visualizers “most

useful.” At the time, they commented that the influence graph had a nice look as well, but

its main limitation were that the rules were difficult to track. The feedback led to several new

iterations through the prototype, in particular, to the current influence graph visualization,

in which nodes are labeled with rule mnemonics, as well as to the current design of linked

views, where interacting with a graph node highlights the corresponding rule information in

the text editor view.

28

6.2 QUALITATIVE EVALUATION

A series of interviews as well as a pilot survey were conducted among four expert rule-based

modelers from the Department of Computational Biology after the initial release of the tool

in order to evaluate the relative merits of the various RuleBender components. Three of

the expert users had already adopted RuleBender as their primary tool for research, while

the last one had used the system for less than one month. The responses were anonymous

and possibly included users who had participated in at least one feedback session prior to

the release survey. Based on our analysis of the tasks typically performed in RBM, as

well as on our analysis of error sources, the users were asked to rate on a scale of 1 to 5

(much harder to much easier) the usefulness of RuleBender compared to command-line RBM

with respect to the tasks listed in Table 1. The feedback shows that all the expert users

found RuleBender significantly easier to use compared to BioNetGen command-line mode

without visual interface, especially for tasks that require integration of the RBM workflow.

The expert users were also asked to rate the relative usefulness of the various components of

RuleBender, also on a scale of 1 to 5 (not helpful to essential). The visual representations and

linked views were rated as useful, while syntax highlighting/checking, journaling of results,

integrated execution of simulations, displaying the reaction center/context via bubble sets

and interactive plotting in the result viewer were uniformly rated as very helpful or even

essential. In particular, we note that adding the bubble sets capability increased the rating of

the contact map from useful to very useful. In addition, the expert users highly recommended

RuleBender as a teaching aid as opposed to BioNetGen in command-line mode.

Interview feedback remarked that RuleBender was easy to use, it was lightweight and

cross-platform, and required minimal installation. Researchers commented that, based on

their 10 year-long experience, tools lacking the above characteristics would just not be used.

They also insisted on the benefits of a standalone system as opposed to a web-based applica-

tion on account of latency; they explained that, unlike bioinformatics applications, systems

modeling is typically CPU-bound.

29

6.3 EDUCATIONAL USE

RuleBender has been successfully deployed and used as a RBM educational tool in under-

graduate/graduate classrooms at PITT, CMU, and Yale, as well as in a number of RBM

workshops. Feedback from the instructors regarding the value of RuleBender was extremely

positive (“RBM without RuleBender was a no starter for the students”, and “The difference

between teaching RBM without and with RuleBender is like the difference between night and

day”). RuleBender had “a nice feel and interface”, and was “incredibly easy [...] to download

and use”. The system was “definitely simpler than running simulations through the other

[Matlab] interface, and could do just about everything we needed for the class assignments.”

Finally, comments delivered the instructors’ and students’ excitement about RuleBender (“a

great start”, “excited to see its future development!”), as well as wish-lists for future features.

We note that in the 10 months following the open source release of RuleBender to the

biology community, the system has been downloaded by 299 unique page visitors. The

number of downloads comprises both research and educational use, however 94 downloads

originate from outside of the United States and typically the temporal access patterns do

not tightly coincide with classroom use.

30

7.0 DISCUSSION AND CONCLUSION

The user feedback (both at the expert and novice level) emphasizes that any tool that

supports RBM must allow the user to build, simulate, and analyze models in an efficient

workflow. We found that our visual framework efficiently creates such an RBM workflow

by integrating model creation, simulation and analysis. As a measure of success, our users

quickly adopted the tool as their main interface to RBM. Further feedback from the survey

and interviews emphasizes that RuleBender is a user-friendly research and educational tool.

The results shown in the EGFR and Lyn-binding case studies demonstrate the benefits

of visualization in exploring and explaining modeling errors. In these instances, RuleBender

helped the researchers correctly and accurately gather observations and insights that were

difficult to make otherwise.

The contact map visual representation helped the users see the model that they had

written in a way that clarified its physical structures. Bubble sets made a major difference

in how useful the users found this representation. The influence graph, in turn, was praised

for its ability to identify orphan nodes and subsets of rules, and give insight into the signal

firing process. The combined representations thus have complementary strengths. Although

the local and global views of the models and their results are fragmented across multiple

views, when combined in linked views and with details on demand, these views allowed the

users to overcome several modeling pitfalls.

The contact map and influence graph representations were regarded as helpful additions

to the tool, however, these visualizations may be further improved with biologically moti-

vated or feature emphasizing layouts. In terms of scalability, models range in size from a

few molecules and rules to dozens of molecules and hundreds of rules. Contact maps are

reasonably scalable, but for large models the global influence graphs can become overwhelm-

31

ing despite zooming and drill-in capabilities. Furthermore, some biologists prefer symbolic

forms to diagrammatic representations. Future work will focus on these areas with particular

emphasis on scalability.

In terms of limitations, although our task analysis identified several types of errors in

model construction, from the syntactic level to the biological level, RuleBender focuses pri-

marily on detection of syntactic and semantic errors, with support for parameter scanning.

Detection of biological errors is a far more difficult task, and may require the development

of expert systems.

Furthermore, we note that RuleBender responds satisfactorily to all the tasks identified

through our RBM task analysis, with the exception of T8 “Parameter estimation”. Although

journaling (keeping track of multiple simulations) and the species and results browsers are

(according to the feedback) correct steps into alleviating this task, seamless integration with

parameter estimation scripts appear to be important here and a direction of future work.

A step further, and beyond the current scope of this work, is using the visual interface to

create models, not only to debug them.

In terms of lessons learned from this collaboration, we found that a tight iterative proto-

typing loop was essential. The end users of RuleBender (both expert and novice) were also

enthusiastic testers, and the cross-pollination of ideas led to further extensions of both the

modeling language and the visual tools. Furthermore, we emphasize that essential traits of

such tools include engineering characteristics such as cross-platform, stand-alone, and easy

installation. In introducing RuleBender to novice users, recording the steps taken to perform

various designed exercises may be a valuable way to identify potential recurring user issues.

Rule-based modeling of systems arises in other domains outside of biology, for exam-

ple state-machine specification, process calculi, or semantic-web applications. Solutions to

scalability issues such as modularization or the development of typed systems transcend the

specific domain boundaries, and are complementary to our visualization approach. We ex-

pect, however, that because of the complexity of biological networks (one complication here

is that the network biochemistry of these systems does not have easily recognizable modular

decompositions) effective visualization will be an integral element of rule-based modeling

frameworks.

32

In conclusion, we introduced a novel, powerful tool for the development of RBMs. The

tool makes RBM accessible to users with a wide range of computational experience, while

providing a uniform interface across computing platforms. The support of RBM creation,

debugging, and interactive visualization expedites the RBM learning process and reduces

model construction time; while built-in model simulation and analysis with multiple linked

views streamline the execution and analysis of newly created models and generated networks.

A development cycle that includes close interaction with expert users allows RuleBender to

better serve the needs of the systems biology community.

33

8.0 ACKNOWLEDGEMENTS

Work supported by NSF-IIS-0952720, NSF-CCF-0829788, NIH-GM-076570, and NIH-UL1-

RR024153. We thank the Pitt Visualization Lab, the Faeder Lab and the Emonet Lab for

their helpful feedback.

Thanks to Yao Sun for work on the initial BNGL editor and contact map prototype;

Wen Xu for implementation of the interactive influence graph, results analysis capabilities,

and the original details view; Wen Xu, James R. Faeder, and G. Elisabeta Marai for work

on paper manuscripts; and a big thanks to G. Elisabeta Marai and James R. Faeder for

advising the project and providing design help and feedback.

This thesis is a derivative work of the BMC BioInformatics Journal Paper by the same

name originally published by Adam M. Smith, Wen Xu, Yao Sun, James R. Faeder, and

G. Elisabeta Marai. It is protected under the BMC open access copyright, which can be

accessed at http://www.biomedcentral.com/about/license.

34

9.0 AUTHOR’S CONTRIBUTIONS

Adam M. Smith performed background visualization research; interacted with biologist col-

laborators in order to illicit program requirements and eventually feedback; participated

in studies of biology domain in order to design visual representations of domain issues;

co-designed and implemented the user interface layout, including a complete rewrite in the

Eclipse RCP framework; co-designed and implemented the interactive contact map; designed

and implemented software frameworks for GUI programming including support for linked

views and interfaces to backend simulation; managed the source code repositories; designed

and constructed the rulebender.org website; and performed general software maintenance on

all aspects of the tool.

35

BIBLIOGRAPHY

[1] Cellucidate. www.cellucidate.com.

[2] Genespring. http://www.silicongenetics.com.

[3] Pathwayassist. http://www.ariadnegenomics.com/products/pathway.html.

[4] A. Barsky, J.L. Gardy, R.E.W. Hancock, and T. Munzner. Cerebral: a cytoscape plu-
gin for layout of and interaction with biological networks using subcellular localization
annotation. Bioinformatics, 23(8):1040–1042, 2007.

[5] Goto Bono, S. Goto, H. Bono, H. Ogata, W. Fujibuchi, T. Nishioka, K. Sato, and
M. Kanehisa. Organizing and computing metabolic pathway data in terms of binary
relations. Pac. Symp. Biocomput., PSB97:175–186, 1997.

[6] C. Brewer. Colorbrewer. http://colorbrewer.org, 2009.

[7] C. Titus Brown, Alistair G. Rust, Peter J. C. Clarke, Zhengjun Pan, Maria J. Schilstra,
Tristan De Buysscher, Gareth Griffin, Barbara J. Wold, R. Andrew Cameron, Eric H.
Davidson, and Hamid Bolouri. New computational approaches for analysis of cis-
regulatory networks. Dev. Biol., 246:86–102, June 2002.

[8] Nathalie Chabrier, Marc Chiaverini, Vincent Danos, Franois Fages, and Vincent
Schchter. Modeling and querying molecular interaction networks, 2004.

[9] Christopher Collins, Gerald Penn, and Sheelagh Carpendale. Bubble sets: Revealing
set relations with isocontours over existing visualizations. IEEE Transactions on Visu-
alization and Computer Graphics, pages 1009–1016, 2009.

[10] J. Colvin, M. I. Monine, J. R. Faeder, W. S. Hlavacek, D. D. Von Hoff, and R. G.
Posner. Simulation of large-scale rule-based models. Bioinformatics, 25:910–917, 2009.

[11] The UniProt Consortium. Reorganizing the protein space at the universal protein re-
source (uniprot). Nucleic Acids Research, 40:D71–D75, 2011.

[12] D. L. Cook, J. F. Farley, and S. J. Tapscott. A basis for a visual language for describ-
ing, archiving and analyzing functional models of complex biological systems. Genome
Biology, 2(4):12.1–12.10, 2001.

36

www.cellucidate.com
http://www.silicongenetics.com
http://www.ariadnegenomics.com/products/pathway.html
http://colorbrewer.org

[13] K. Dahlquist, N. Salomonis, K. Vranizan, S. Lawlor, and B. Conklin. Genmapp, a new
tool for viewing and analyzing microarray data on biological pathways. Nature Genetics,
31:19–20, 2002.

[14] Vincent Danos, Jerome Feret, Walter Fontana, and Jean Krivine. Scalable simulation
of cellular signaling networks. In In Proceedings of APLAS 2007, pages 139–157, 2007.

[15] E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, A. Ayaz, G. Güleşir, G. Nisanci, and
R. Cetin-Atalay. An ontology for collaborative construction and analysis of cellular
pathways. Bioinformatics, 20:349–356, 2004.

[16] E. Demir, O. Babur, U. Dogrusoz, A. Gursoy, G. Nisanci, R. Cetin-Atalay, and M. Oz-
turk. Patika: an integrated visual environment for collaborative construction and anal-
ysis of cellular pathways. Bioinformatics, 18:996–1003, 2002.

[17] J. R. Faeder, W. S. Hlavacek, I. Reischl, M. L. Blinov, H. Metzger, A. Redondo,
C. Wofsy, and B. Goldstein. Investigation of early events in fceri-mediated signaling
using a detailed mathematical model. The Journal of Immunology, 170:3769–3781,
2003.

[18] James R. Faeder, Michael L. Blinov, and William S. Hlavacek. Graphical rule-based
representation of signal-transduction networks. In Proceedings of the 2005 ACM sym-
posium on Applied computing, SAC ’05, pages 133–140, New York, NY, USA, 2005.
ACM.

[19] J.R. Faeder, M.L. Blinov, and W.S. Hlavacek. Rule-based modeling of biochemical
systems with bionetgen. Methods in Molecular Biology: Systems Biology, 500:113–167,
2009.

[20] A Funahashi, M Morohashi, H Kitano, and N Tanimura. Celldesigner: a process diagram
editor for gene-regulatory and biochemical networks. Biosilico, 1(5):159–162, 2003.

[21] R. A. Gortner. Outlines of Biochemistry. John Wiley and Sons, Inc., 1949.

[22] Jeffrey Heer, Stuart K. Card, and James A. Landay. prefuse: a toolkit for interactive
information visualization. In Proceedings of the SIGCHI conference on Human factors
in computing systems, CHI ’05, pages 421–430. ACM, 2005.

[23] William S. Hlavacek, James R. Faeder, Michael L. Blinov, Richard G. Posner, Michael
Hucka, and Walter Fontana. Rules for modeling signal-transduction systems. Science,
STKE, 2006(344):re6, 2006.

[24] Peter D. Karp and Suzanne M. Paley. Representations of metabolic knowledge: Path-
ways. In Proceedings of the Second International Conference on Intelligent Systems for
Molecular Biology, pages 203–211, 1994.

37

[25] B. Kim, B. Lee, S. Knoblach, E. Hoffman, and J. Seo. Geneshelf: A web-based visual
interface for large gene expression time-series data repositories. IEEE Transactions on
Visualization and Computer Graphics, 15:905–912, 2009.

[26] H. Kitano, A. Funahashi, Y. Matsuoka, and K. Oda. Using process diagrams for the
graphical representation of biological networks. Nature Biotechnology, 23(Aug):961–966,
2005.

[27] K. W. Kohn, M. I. Aladjem, J. N. Weinstein, and Y. Pommier. Molecular interaction
maps of bioregulatory networks: a general rubric for systems biology. Mol. Biol. Cell,
17:1–13, 2006.

[28] W. J. R. Longabaugh, E. H. Davidson, and H. Bolouri. Visualization, documentation,
analysis, and communication of large-scale gene regulatory networks. Biochim. Biophys.
Acta, 1789:363–374, 2009.

[29] Blinov M.L., Faeder J.R., Goldstein B., and Hlavacek W.S. A network model of early
events in epidermal growth factor receptor signaling that accounts for combinatorial
complexity. Bio Systems, 83:136–151, 2006.

[30] N. Le Novere, M. Hucka, S. Moodie H. Mi, F. Schreiber, and A. Sorokin et al. The
systems biology graphical notation. Nat Biotechnol, 27(8):735–741, 2009.

[31] P. Saraiya, C. North, V. Lam, and K. Duca. Visualizing biological pathways: require-
ments analysis, systems evaluation and research agenda. Information Visualization,
4(3):191–205, 2005.

[32] Herbert M. Sauro, Michael Hucka, Andrew Finney, Cameron Wellock, Hamid Bolouri,
John Doyle, and Hiroaki Kitano. Next generation simulation tools: the systems biology
workbench and biospice integration. OMICS, 7:355–372, 2003.

[33] E. E. Selkov, I. I. Goryanin, N. P. Kaimatchnikov, E. L. Shevelev, and I. A. Yunus. Facto-
graphic data bank on enzymes and metabolic pathways. Studia Biophysica, 129:155–164,
1989.

[34] P. Shannon, A. Markiel, and O. Ozier et al. Cytoscape: A software environment for
integrated models of biomolecular interaction networks. Genome Research, 13:2498–
2504, 2003.

[35] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information visu-
alizations. In 1996 IEEE Symposium on Visual Languages, pages 336–. IEEE Computer
Society, 1996.

[36] Michael W. Sneddon, James R. Faeder, and Thierry Emonet. Efficient modeling, simula-
tion and coarse-graining of biological complexity with nfsim. Nature Methods, 8:177–183,
2011.

38

[37] T. Toyoda, Y. Mochizuki, and A. Konagaya. Gscope: a clipped fisheye viewer effective
for highly complicated biomolecular network graphs. Bioinformatics, 19:437–438, 2003.

[38] Edward R. Tufte. Envisioning Information. Graphics Press, Cheshire, CT, 1990.

39

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. RBM Tasks and RuleBender Scores
	2. Lyn-Binding Rule Text

	LIST OF FIGURES
	1. The RuleBender Interface
	2. Contact Map Visualization of Rule-Based Models
	3. Compartmental Contact Map
	4. Influence Graph Visualization of Rule Interaction
	5. Influence Graph Definition Example
	6. The Simulation Results Viewer
	7. The Species Graph Visualization
	8. Contact Map Visualization for the Lyn-Binding Model
	9. Lyn-Binding Debugging

	1.0 INTRODUCTION
	2.0 BACKGROUND
	2.1 Molecular Processes and Computational Complexity
	2.2 Rule-Based Modeling of Molecular Processes

	3.0 RELATED WORK
	4.0 WORKFLOW AND TASK ANALYSIS
	5.0 RULEBENDER
	5.1 Model Editor
	5.2 Interactive Contact Map
	5.2.1 Data Abstraction and Representation
	5.2.2 Layout

	5.3 Influence Graph
	5.3.1 Data Abstraction and Representation.
	5.3.2 Layout

	5.4 Simulation and Simulation Journaling
	5.5 Simulation Results and Species Browser
	5.5.1 Results Viewer
	5.5.2 Species Browser

	5.6 Linked-Views for Visual Debugging
	5.6.1 Detail View

	6.0 VALIDATION AND RESULTS
	6.1 Case Studies
	6.1.1 EGFR
	6.1.2 Lyn-Binding

	6.2 Qualitative Evaluation
	6.3 Educational Use

	7.0 DISCUSSION AND CONCLUSION
	8.0 ACKNOWLEDGEMENTS
	9.0 AUTHOR'S CONTRIBUTIONS
	BIBLIOGRAPHY

