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Tuba Altindal, PhD
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A two-lobe response function is considered as a manifestation of temporal signal comparison

in bacterial chemosensing. The second lobe in the response function appears as a result of

adaptive behavior of the underlying signaling network, which allows bacteria to stay sensi-

tive over a wide range of background signal levels. It has been argued that this two-lobe

response reflects the dual requirements of the bacteria to taxis along a chemical gradient and

to localize once the top of the gradient is reached. Calculations based on the run-tumble

motility pattern of Escherichia coli showed that the second lobe improved the bacterium’s

localization capability. Intrigued by a recently observed run-reverse-flick motility cycle of a

marine bacterium Vibrio alginolyticus, we investigate the motility-response relationship in

this bacterium. Using a novel optical trapping technique, we measure the response of V.

alginolyticus to an impulsive stimulus of chemoattractant serine. By exploiting an asymme-

try in the rotation of the polar flagellum, we are able to determine for the first time how

the bacterium responds to chemical stimuli while swimming forward or backward. Our mea-

surements suggest that this marine bacterium regulates its forward and backward swimming

intervals differently, exhibiting behaviors that is consistent with an exploration-exploitation

strategy.

In our measurements, we also find that the cell-body Ω(t) and the flagellar ω(t) rotational

angular frequencies oscillate in time and are in synchrony with the forward and backward

swimming intervals. Unexpectedly, Ω(t) and ω(t) are found to be anticorrelated in that the

cell body rotates slower in the forward direction than in the backward direction, Ωf < Ωb,
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but the flagellum rotates faster in the the forward direction than in the backward direction.

The change in the rotational load (∼ 25%) is significantly greater than that predicted by

flagellum deformation but can be accounted for by the precession of the flagellum about

the body axis during the backward swimming interval. We postulate that as a result of the

precession, a kink is generated at the base of the flagellum that is subsequently amplified

when the flagellum motor reverses direction, leading to the flick, the direction randomization

step in V. alginolyticus’ motility pattern.
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1.0 INTRODUCTION

Microorganisms face many challenges in their natural habitats, and they develop different

strategies to adapt to the environment they live in. One of the challenges for these microor-

ganisms is to identify what is good or bad for them and to respond appropriately. Thus

far the best studied case is the chemotactic behavior of enteric bacterium Escherichia coli

[53, 64, 15, 18, 74]. This bacterium uses the run-tumble swimming pattern to navigate in

an environment, i.e., when the temporal signal is favorable to the bacterium the run in-

terval is lengthened, but when the signal is unfavorable the run interval is shortened [13].

By regulating the length of the swimming intervals, the bacterium executes a biased ran-

dom walk, directing towards the source of attractant or away from a repellent. However,

not all bacteria live in conditions similar to E. coli, and it is of great scientific interest to

learn and understand how other diverse bacterial species handle challenges in a variety of

environments.

This thesis is about our investigation of chemotactic behaviors of Vibrio alginolyticus.

This bacterium lives in ocean, but it has much in common with E. coli such as its physical

size, its metabolic needs, and its motility being also powered by rotary motors that rotate

either in the counterclockwise (CCW) or clockwise (CW) direction. Unlike E. coli, however,

the flagellar motor of V. alginolyticus is more powerful, which can rotate at an angular

frequency of a few kilohertz, pushing the cell body at a speed ∼ 200µm/s [58]. These

values are nearly ten times of those typically seen in E. coli [25, 23], perhaps reflecting

different physiological requirements for the two bacteria to inhabit different environments.

Another significant difference between the two bacteria is that V. alginolyticus possesses only

a single polar flagellum when it is grown in a liquid medium [2]. For the two-state motor, this

suggests that the forward (CCW) and the backward (CW) swimming paths are time-reversal
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symmetric when the motor reverses its direction [69]. Our recent observations, however,

show that V. alginolyticus incorporate an additional movement, which we call a flick, that

randomizes cells’ swimming trajectories [92]. In the light of these physiological differences

(polar vs. peritrichous flagellation) and their varied motility patterns, one wonders if there

are also differences in the way the flagellar motors are regulated by the internal chemotaxis

networks of these two bacteria.

We developed an optical trapping technique to investigate the chemotactic behavior of

V. alginolyticus [4]. The technique takes advantage of the fact that the bacterium has

only a single polar flagellum, and the two rotation states of the motor can be readily and

instantaneously resolved in the optical trap. This allows the flagellar motor switching rate

S(t) and the CCW bias Φ(t) to be measured under different chemical stimulations.

1.1 BACTERIAL SWIMMING PATTERNS: RUN-REVERSE-FLICK VS.

RUN-TUMBLE

A typical bacterium has a dimension L of a few microns and swims at a speed V of tens

to hundreds of microns per second, which make them low Reynolds number (Re) swimmers

with Re(= V L/ν) ≃ 10−5 − 10−4, where ν ≃ 10−2 cm2/s is the kinematic viscosity of water.

The bacterial swimming is therefore governed by the Stokes equation that is time-reversal

invariant. Thus, a bacterium that tries to swim by a “reciprocal motion”, i.e., by undergoing

a deformation and recovering its original shape through the same sequence in reverse, cannot

go anywhere. However, a helical flagellum lets bacteria bypass such a reciprocal motion

and enables swimming at low Re [69]. Due to its handedness, the rotation of the helix is

intrinsically coupled to its translation, i.e., it can function as a propeller. The thrust force

generated by the flagellum can push or pull the cell body, enabling the cell to move about in

a fluid. Because it is free-body swimming (free of external forces) the net force and torque on

the bacterium must be zero, suggesting that (a) the thrust force produced by the flagellum

must be balanced by viscous drag on the cell body and on the flagellum, and (b) the flagellum

and the cell body must rotate in opposite directions.

2



The flagellum is driven by a rotary motor embedded in the bacterial membrane. The mo-

tor transduces electrochemical energy (membrane potential and ion concentration gradient)

into mechanical energy by means of ions flowing through the motor. The flagellar motors of

E. coli and V. alginolyticus are bidirectional, and the sense of motor rotation is determined

by the internal chemotaxis network, which will be discussed below.

Different species of bacteria have different numbers and arrangements of flagella. Enteric

bacterium E. coli is peritrichously flagellated, i.e., it has multiple flagella that are randomly

distributed over its body. Since E. coli ’s flagella are left-handed, when the flagellar motors

all rotate in the CCW direction, the flagella form a bundle and push the bacterium forward

[12]. The bundle falls apart when one or more motors rotate in the CW direction, and the

bacterium tumbles, producing no net displacement [54]. When the flagella rebundle, the cell

swims in a new direction. Hence, the motion of E. coli can be abstracted as a random walk.

By modulating the CCW and CW durations according to extracellular chemical cues, the

cells bias their random walk so as to move toward attractants and away from repellents [13].

V. alginolyticus has two distinct flagellar systems, the polar and the lateral ones. When

grown in a low-viscosity medium, such as in a liquid, the bacterium produces only a single

polar flagellum as illustrated in Figure 1.1. If the viscosity of the environment increases, the

polar flagellar motor senses this change and triggers the expression of the lateral flagellar

system [42]. Although the underlying mechanism for mechanosensing is unknown, it is

established that the polar flagellum has an essential role in the transition from the swimmer

phenotype to swarmer phenotype [42]. This thesis only deals with the swimmer phenotype.

Being single polarly flagellated, low Re hydrodynamics dictates that aside from randomness

introduced by thermal fluctuations the bacterium can only backtrack its trajectory when

the motor reverses. This raises an interesting question concerning how this polar flagellated

bacterium performs chemotaxis.

We found that V. alginolyticus employ a unique cyclic three-step (run-reverse-flick) swim-

ming pattern. The time-reversal symmetric trajectories in the consecutive forward and the

backward swimming intervals are randomized by the last step, where the flick “steers” the

cell to a new direction. Figure 1.1 displays a cell that is labeled with a reagent (NanoOrange)

that fluoresces upon interacting with proteins. The technique enables visualization of the

3



Figure 1.1: Visualization of flicking
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flagellum. However, because of its rapid rotation, the fine helical structure is blurred on

these images. These fluorescent images demonstrate that upon switching from backward to

forward swimming, the flagellum and the cell body are not coaxial, and a small kink forms

between them as depicted in (A). This small kink is rapidly amplified by the CCW rotation

of the flagellar motor that pushes the cell body at an angle. As shown in (B) and (C), the

angular amplification is rapid and efficient; i.e., the cell rotates by ∼ 90o in less than 0.1 s

while its center of mass translates only approximately one-half of its body length. After the

new direction is selected, the flagellum aligns with the cell body axis via a large swing with

its tip tracing out a hyperbolic spiral. As this swinging motion throws the flagellum out of

the focal plane, it fades out of view as is evident in (C). This last step in the flicking process

is depicted schematically in (F). The entire flicking process includes initiation, amplification,

and flagellum alignment. In Chapter 6, a possible mechanism for the kink formation will

be discussed, which is motivated by interesting observations made when V. alginolyticus are

trapped in optical tweezers.

1.2 BACTERIAL CHEMOTAXIS

The sensory kinases and their associated response regulators constitute the core of most

signal-transducing pathways and are called the two-component signal transduction. A se-

quence of phosphorylation reactions enables the flow of information from an environment to

response-producing components, such as the flagellar motor or a promotor of a gene [90, 83].

By transferring its phosphoryl group to the response regulator, the phosphorylated kinase

regulates the interaction between the response regulator and the response-producing com-

ponents. Bacterial chemotaxis signaling pathways are likewise built on the two-component

system. Bacteria sense environmental changes through their receptors that are located at

the poles of their rod-like body [1, 55]. These receptors are also called the methyl-accepting

chemotaxis proteins (MCPs) for a reason that will become clear below. The periplasmic

domain of the chemotaxis receptors bind to signaling molecules such as oxygen, amino acids,

peptides, and sugars. The MCPs are linked to the autokinase CheA via a structural protein

5



CheW. The activity of CheA is modulated by the binding-unbinding of signaling molecules.

In particular, the binding (unbinding) of chemoattractants (chemorepellents) suppresses the

autokinase activity while the binding (unbinding) of chemorepellents (chemoattractants) en-

hances it. The autophosphorylated CheA transfers its phosphoryl group to the response

regulator CheY. The existing experimental evidence shows that only the phosphorylated

form of CheY is able to bind to the flagellar motor, but its effect on the motor is different

between species and sometimes even between different flagellar systems of the same species

[47]. In E. coli, the binding of CheY-P to the flagellar motor biases its CW rotation, forcing

the bacterium to change direction when moving down the chemoattractant gradient [90].

For a two-component system, the termination of the signal (dephosphorylation) is just as

important as the activation (phorphorylation) of the response regulator. Otherwise, over

time the concentration of the response regulator (CheY-P) would increase and would not be

able to respond coherently to changes in the external environment. In bacterial chemotaxis,

the phosphodiesterase CheZ is responsible for signal termination; it inactivates the response

regulator by removing its phosphoryl group [21].

Even though the two-component system described above is sufficient to produce coherent

responses to extracellular environments, the bacterial chemotaxis networks can do better by

incorporating additional features. For a bacterium that is searching for good places what

matters is the temporal change in the chemical level rather than its absolute value. Systems

without memory cannot make comparisons. In bacterial chemotaxis the information acquired

in the past is registered by the methylation level on the receptors [80]. Two counteracting

enzymes are responsible for this memory process: The methyltransferase CheR adds methyl

groups to the methyl accepting domains of the receptors (called a methylation process),

whereas the methylesterase CheB removes them (called a demethylation process). In E.

coli, CheB needs to be phosphorylated to become active and therefore it competes with

CheY for phosphorylation by CheA. The activity of the MCPs is determined by both the

methylation level m, i.e. the number of methyl groups on them, and the extracellular signal

[L], the chemoeffector concentration. In particular, the receptor activity a increases with m.

If one assumes that CheR only methylates inactive receptors and CheB only demethylates

active receptors and the rate of (de)methylation depends on a but not on m or [L] [9], the

6



Figure 1.2: E. coli ’s chemotactic signaling pathway. From Parkinson Lab website.
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Michaelis-Menten kinetics leads to the net methylation rate,

dm

dt
= F (a)

=
VR(1− a)

KR + (1− a)
− VB(a) a

KB + a
, (1.1)

where a can be thought of as the fraction of active receptors in a bacterium, VR(B) are

the (de)methylation rate constants and KR(B) are the Michaelis-Menten constants for the

(de)methylation reactions. For moderate values of VR(B) and KR(B), F (a) would have a

functional form similar to the one depicted in Figure 1.3(A). Perfect adaptation appears as a

natural consequence of the fact that F (a) has a global fixed point at a = a0 where F (a0) = 0,

and since F (a) is a monotonically decreasing function of a (i.e. F ′(a) < 0) and a increases

with m (i.e. da/dm > 0), this fixed point is globally stable. Hence, over a long time the

system always recovers its steady state activity with a = a0 as delineated in Figure 1.3(B).

Adaptation is an indispensable feature of the bacterial chemotaxis network as is for other

sensory systems. It allows the system to stay sensitive over a wide range of background

chemoeffector concentrations.

In the adaptive network described above, upon a brief stimulation with a chemoattrac-

tant, the response regulator concentration initially drops down and then gradually recovers

its steady-state level. However, it overshoots before relaxing back to the steady-state level

giving rise to a positive lobe in the response function R(t) as depicted in Figure 4.1(C) of

Chapter 4. Interestingly, the positive and the negative lobes of the response function have

equal area, that is, R(t) integrates to zero over time [86]. This two-lobe response function

was recognized by Block, Segall and Berg, the original investigators of the phenomenon, as

the bacterium’s means of sensing [18]. The presence of the two lobes indicates that the bac-

terium compares the information received in the recent past to that received earlier. Besides,

the null integral shows that an efficient sensing of the gradients is achieved by filtering out

the low-frequency variations in the chemical concentration.
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Figure 1.3: Perfect adaptation. In (A), the net methylation rate F (a) is plotted as a function
of the receptor activity a. For the chosen parameters VR = VB = 1 and KR = KB = 0.5,
the globally stable fixed point occurs at a0 = 0.5. (B) delineates how a(t) (the black curves)
relaxes back to a steady-state level after a step stimulation with chemoattractant (the red
broken line).
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1.3 EXPLORATION AND EXPLOITATION

Motility and signal transduction in bacteria are delineated above in Sections 1.1 and 1.2.

The swimming pattern and its regulation determine the bacterial chemotactic search strategy.

Of these two aspects of the bacterial chemotaxis, the former can be thought of as the cell’s

“hardware” and the latter as its “software”. Here, the critical question is how the distinctive

features of the hardware influence the wiring of the software, if it does at all. Such hardware-

software relationships deserve studying because it enables us to learn how microorganisms

diversify their behaviors by developing niches in different environments, and how laws of

physics constrain their evolution.

The main difference between E. coli ’s and V. alginolyticus ’ motility is that the CW

rotation of the flagellar motor produces no motility for E. coli but it does for V. alginolyti-

cus. The net effect is that the CW motor rotation causes V. alginolyticus to backtrack its

previous path but E. coli cannot. This seemingly small difference is physiologically signif-

icant because E. coli ’s run-tumble motility pattern determines that it is heavily weighted

on exploration. Like a reckless gambler, E. coli makes a bet on each tumbling interval, and

information attained during the previous run interval cannot be used in subsequent runs.

On the other hand, V. alginolyticus’ motility pattern appears to be more purposeful; it

explores its environment while swimming forward, and then uses the backward interval to

reap what it has found. In this sense, we may consider V. alginolyticus ’ forward run as the

“exploration” and its backward run as the “exploitation”. The direction randomization by

a flick, which is functionally equivalent to a tumble in E. coli, is implemented only after the

exploration and exploitation phases are completed. The different search strategies of E. coli

and V. alginolyticus are illustrated schematically in Figure 1.4.

In an aqueous habitat, two extreme cases of nutrient distributions exist. In one, the

fluid is quiescent and nutrients are sporadically distributed in small patches. In the other,

turbulence stirs up the fluid, giving rise to striated distribution of nutrients as depicted in

Figure 1.4. We believe that the run-reverse-flick cycle, commonly seen in marine bacterial

species, allows them to deal with both of these cases better than the run-tumble cycle.

Particularly, backtracking appears to be beneficial as it enhances nutrient uptake by allowing
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Figure 1.4: Exploration and exploitation phases of bacterial foraging

the cells to exploit the resources they have recently found in the forward swimming (see

Figure 1.4). The work presented here is inspired by the new features of V. alginolyticus’

swimming cycle [92]. In Chapter 5, we report an experiment designed to directly measure

the response function of V. alginolyticus when the bacterium is either in the forward and

backward swimming intervals. Indeed, our finding suggests that this exploration-exploitation

strategy is hardwired in V. alginolyticus ’ chemotaxis network.

This thesis is organized as follows. In Chapter 2, we describe measurements of the re-

sponse of V. alginolyticus to an impulse stimulation with chemoattractant serine. These

measurements require establishment of a well-defined stable concentration profile. We de-

scribe how we created the concentration profile and characterize it using an injection-diffusion

model. We discuss how the bacterial motion is detected in the optical trap. The tools used

in data analysis are also described in this chapter. In Chapter 3, we describe the response

measurements of V. alginolyticus to extended exposure to serine, allowing us to determine

how cells adapt to a prolonged signal. In Chapter 4, we present a calculation of the mi-
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gration speed of a cell executing the 3-step pattern in a linear chemical gradient. We also

calculate the optimal responses in the forward and the backward intervals that maximize the

drift velocity in a linear gradient. Here, independent and shared chemosensing are proposed

as two distinct scenarios for bacterial chemosensing in V. alginolyticus. In Chapter 5, we

report our effort to identify the motor rotation state in the optical trap. This allows us to

determine bacterial response to an impulsive stimulus conditioned on their motor state. The

measurements reveal for the first time that V. alginolyticus uses independent chemosensing

to regulate the forward and the backward intervals. We also discuss the implications of the

observed responses on the search strategy of V. alginolyticus. Finally in Chapter 6, we pro-

vide an explanation for the asymmetric changes in the cell-body and the flagellar rotation

frequencies observed in the optical trap and the erratic movements of stuck cells captured

by video imaging. Their possible connection to the kink formation, which leads to a flick at

the end of the CW interval, is also discussed.
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2.0 BACTERIAL CHEMOTAXIS IN AN OPTICAL TRAP

2.1 INTRODUCTION

A major difficulty in studying chemotactic behavior of V. alginolyticus is that the classical

rotation assay [75, 15] that has been used successfully for E. coli cannot be reliably applied to

this marine bacterium. This perhaps is due to the membrane sheath that covers the flagellum,

making it difficult to tether to a substrate [33]. We overcame this difficulty by developing an

optical trapping technique to monitor the rotation of the flagellar motor [23]. The optical

trap can hold the bacterium in place without restricting its rotational motion. As illustrated

in Figures 2.1(A-C), the trapped bacterium can be forced to move in a homogeneous medium

(A), towards a chemical source (B), or away from it (C), while the state of motor rotation is

monitored continuously at a high rate by a photo-diode. The measurements can achieve a

high signal-to-noise ratio owing to the fact that V. alginolyticus has a single polar flagellum

such that rotation of the cell body reacts instantaneously to the flagellum rotation. By way

of introduction, Figures 2.1(D, E) display the response of a bacterium when subjected to the

manipulations as described in Figures 2.1(A-C). The chemical source in this case is created

by a micropipette filled with 1mM of serine, which is an attractant to V. alginolyticus, and

the flagellar angular displacement (or the winding angle) ϕ =
∫ t

ω(t′)dt′ is recorded as a

function of time t, where ω is the angular velocity of the flagellum. As shown, when the

bacterium is in a homogeneous medium, which can be called a steady state, the winding

angle ϕ fluctuates in time, giving rise to a saw-tooth functional form as displayed by the

blue curve in (D). When the cell is moved towards the source, ϕ increases steadily, indicating

no motor switching as displayed by the green line in (E). In contrast, when the cell is moved

away from the source, ϕ fluctuates wildly as illustrated by the red curve in (E). The motor
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reversal is almost instantaneous, i.e., within the resolution of our measurement, no obvious

delays or pauses can be detected during a reversal. The above measurements can be repeated

for a large number of bacteria, which allow the time-dependent switching rate S(t) to be

determined after an ensemble average.

A nice feature of our technique is that it permits experimenters to design paths for a cell

so that the chemical signal c(t) it receives can be predetermined. This potentially enables

detailed studies of bacterial chemotactic response to a variety of stimulation patterns that

have only been achieved in tethered E. coli cells with the help of a programmable mixing

apparatus [18]. Our optical trapping technique is general, since it does not rely on cell

tethering, and therefore should be applicable to different bacterial species.

Here, we investigated the simplest stimulation, where c(t) is approximately δ in time

and its amplitude was varied systematically. We found that the response of the bacterium

is biphasic in a manner similar to E. coli. However, the excitation time τe and the adaption

time τa are both very short with τe ≃ τa ≃ 0.5 s. Biologically, these time scales may

be associated with the dephosphorylation time τz of response regulators CheY-P and the

methylation time τm of chemoreceptors (or MCPs), similar to E. coli. Thus, an important

finding of this experiment is that upon a brief stimulation, the chemotaxis network of V.

alginolyticus appears to employ only a single time scale for chemosensing.

2.2 RESULTS

2.2.1 Bacterial motion in the optical trap

Our measurements were carried out in a home-built optical tweezers (see Figure 2.2(A)),

which has been described in detail in Ref. [23]. A brief description of the setup is also

provided in Appendix A.2. Using radiation pressure from a tightly focused infrared laser, a

bacterium can be held in place or be moved about without restricting its rotational degrees

of freedom. The cylindrical shape of the bacterium ensures that once trapped, its cell body

is aligned with the optical axis of the trap as illustrated in Figures 2.2(C-F). Waves due to
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Figure 2.1: Probing bacterial chemotactic response with an optical tweezers. To investigate
cell’s response to a chemoattractant gradient, a micropipette filled with 1mM of serine was
used. The concentration profile is determined by molecular diffusion [34]. (A) is a control
experiment in which a V. alginolyticus cell was dragged at a speed v = 30µm/s in a uniform
TMN buffer to obtain its steady-state switching rate. In (B), the cell was trapped ∼ 120µm
away from the tip and then dragged towards it for 4 s at the same speed. In (C), a cell was
initially trapped at a distance 5µm from the tip and was then dragged away from it for 4 s
at the same speed. In (D), the flagellar motor rotation angle (or the winding angle) as a
function of time ϕ(t) is measured in the optical trap when the trapped cell was moved in the
motility buffer without chemoattractant. In (E), the bacterium was moved towards (green)
and away from (red curve) the source of attractant. In the homogeneous medium (D), the
motor reverses its direction roughly once every 0.5 s. However, when the cell is moving up the
gradient (green in (E)) the motor reversal is completely suppressed. When the same cell was
moved down the gradient, frequent motor reversals from CW⇔CCW were again observed.
In (F), the average switching rates S̄ for the three different stimuli are displayed. The blue
bar is for the steady-state case, while the green and the red bars are for cells moving up and
down the gradient, respectively. We noticed that there was only a small difference when the
cell was forced to move away from the source compared to the steady-state case. The error
bars are standard errors of the mean calculated based on the cell numbers indicated above
the bars.
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flagellar rotation propagate along the cell body, causing its center of mass position (x(t), y(t))

to fluctuate, which can be interrogated using a two-dimensional position sensitive detector

(PSD). Figure 2.3(A) displays a typical time trace (x(t), y(t)) for a trapped bacterium. The

bacterial trajectory in the optical trap is concentrated in two lobes, which correspond to

the rotational states of the motor (see more discussions below). A short segment in one of

the lobes is plotted against time as displayed in (B) for x(t) and y(t), corresponding to the

black and red curves, respectively. The power spectra Ex(f) and Ey(f), corresponding to

fluctuations in x(t) and y(t), are given in (C). Here, one observes two sharp peaks located

at fL ≃ 80Hz and fH ≃ 520Hz. These frequencies are due to the rotation of the cell body

Ω = 2πfL and the flagellum ω = 2πfH , respectively. One can apply band-pass filters (see

dotted green curves) to extract the slow and the fast rotations of the cell body as depicted

in Figure 2.3(C). We applied Gaussian filters that are centered at the peaks and with a

width of 15% of the peak frequency. One observes in Figure 2.3(D) that after filtering the

slow cell-body rotation and the fast flagellum rotation are rather regular. Moreover, there

is a phase difference between x(t) and y(t) traces, and this phase difference is opposite for

the fast and slow rotations, indicating that the cell body and the flagellum rotate in the

opposite directions. The filtered data for the x(t) and y(t) displacements can be recombined

to produce Lissajous figures, which are displayed in Figure 2.4. Here, the left column (A

and D) is for the high-frequency (flagellum) rotation, the middle column (B and E) is for

the low-frequency (cell body) rotation, and the right column (C and F) is for the linearly

superimposed rotations of both fast and slow components. The time is color coded with red

being the beginning and blue the end of the trajectory. A convenient way to characterize the

state of the flagellar motor is to use the winding angle ϕ(t), which as delineated in Figure

2.1 allows the motor reversals to be characterized.

It must be pointed out that while the ϕ(t) measurement is straightforward, it works

best for cells that display wobbly swimming patterns, i.e., the cell body spirals about the

swimming direction. For cells that are not wobbly, such as those with high axial symmetry,

the signal in the PSD is small and it sometimes becomes difficult to determine a motor

reversal unambiguously. A simple solution to this problem is to tilt the laser trap slightly

so that the z movement is coupled to the x movement, which can be detected by the PSD.
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Figure 2.2: Experimental setup. (A) The trapping beam (red) from an IR laser was focused
into the sample chamber by a high N.A. objective (O). The scattered light was refocused
onto a position-sensitive detector (PSD) using a high N.A. condenser (C). An infrared filter
(F) was placed before the PSD to cut off ambient light. The focal plane was illuminated by a
LED and imaged by a CCD camera via dichroic mirrors (DMs). To eliminate the laser light,
a visible band-pass filter (F) was used in front of the CCD. To stimulate a trapped cell, a
micropipette (P) was mounted onto the stage that held the sample chamber. The x-y stage
movements were controlled by DC actuators whereas the z movement was controlled by a
piezo-actuator. A small hydrostatic pressure was applied to the micropipette via a plastic
tubing by a water column of height H, where the plastic tubing was filled with air. (B) When
the bacterium was outside the optical trap, the optical signal ∆Ix(t) was quiescent. However,
when the bacterium swims into the optical trap, it first produces a large spike in ∆Ix(t) and
then the signal fluctuates with a large amplitude. The red line in the figure indicate the
moment just before the bacterium falls into the optical trap. We used the change in the rms
value of ∆Ix(t) to trigger the movement of the x-y stage, causing a relative motion between
the trapped cell and the micropipette tip. A trapped bacterium can assume one of the four
configurations (C to F) and its swimming direction cannot be resolved. (G) In a slightly
tilted optical trap, the z position is coupled to the x position and thus the CCW and CW
rotation of the motor can be readily measured by the PSD. As discussed in Appendix A.2,
this tilted optical trap significantly improves the detection of a motor reversal, but it still
does not resolve degeneracies in the cell orientation as displayed in (C to F).
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Figure 2.3: Bacterial positions in the optical trap. The bacterial position (x(t), y(t)) in the
optical trap is recorded by the PSD, and a trace of 2 s is given in (A). A stretch of the
data for the x- (black) and y-channel (red) is given in (B), and the corresponding power
spectra are presented in (C). The peaks in the power spectra are due to cell-body and
flagellar rotations. We applied Gaussian band-pass filters (green lines) to Ex(f) and Ey(f)
to separate rotational motions of the cell body and the flagellum. The filtered data can be
used to perform an inverse Fourier transformation, yielding the results for the cell-body (top)
and the flagellum rotations (bottom) in (D). Note that after band-pass filtering the phase
differences between red and black curves for the cell body (top) and the flagellum (bottom)
are opposite to each other, indicating that the cell body and the flagellum are rotating in
opposite directions. When a polar angle is used, the angular displacements (or the winding
angle) ϕL(t) of the cell body and the flagellum ϕH(t) can be calculated. In this thesis, we
exclusively use ϕ(t) = ϕH(t).
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Figure 2.4: Lissajous figures of bacterial trajectories in the optical trap. For illustration
purpose, the top and bottom rows depict two bacterial trajectories (x(t), y(t)) in the optical
trap, lasting for 300ms and 180ms each. Here, (A) and (D) correspond to the high frequency
fH components of rotation; (B) and (E) correspond to the low frequency fL components of
rotation; and (C) and (F) are the linear superposition of (A) and (B), and (D) and (E),
respectively. In all of these figures, the flow of time is designated by colors, starting with red
and ending with blue. We note that the sense of rotation is opposite for the high and the
low frequency components, which is expected for the torque balance between the bacterial
cell body and flagellum. For the Lissajous figures in the lower row, a switching event occurs
at the location (see arrows) where the color turns from green to blue.
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Figure 2.2(G) depicts the optical tweezers setup where a bacterium is assumed to be trapped

in the tail-up position. The CCW (CW) rotation of the flagellum will push (pull) the cell

body so that it gives a small displacement in the positive (negative) x direction (see more

details in Appendix A.2). Figure 2.5(A) displays the switching events using this technique.

As can be seen, the correlation between the ϕ(t) and the x(t) measurements is nearly perfect.

Our current experimental setup would not allow us to distinguish the rotation directions of

a flagellar motor (see more discussions in Appendix A.2); therefore, only measurements

concerning the motor switching rate S(t) will be reported. For a bacterium performing 3-

step motility pattern with the mean forward and backward swimming times being about the

same [92], S(t) is a relevant quantity for characterizing its chemotactic behavior.

2.2.2 Characterization of the chemoattractant concentration profile

A stable serine concentration gradient was established following the procedure described in

Appendix A.3. Figure 2.6(A) displays a background corrected fluorescence intensity profile

of fluorescein, which mimics serine. We can model the concentration profile c(r⃗, t) using the

diffusion equation,
∂

∂t
c(r⃗, t) + ∇⃗ · J⃗(r⃗, t) = 0, (2.1)

where J⃗(r⃗, t) is the flux. Phenomenologically, we write the flux as J⃗ = J⃗0δ(r⃗)−D∇⃗c, which

consists of a deterministic injection term and a term due to thermal diffusion. For simplicity

of calculation, the injection term is approximated by a δ function because the mouth of the

capillary is very small. In the above, D (= 6 × 10−6 cm2/s) is the diffusion constant of the

dye (or D = 9 × 10−6 cm2/s for serine) and J⃗0 ∝ c0v⃗0 with v⃗0 being the injection velocity.

The proportionality constant between J⃗0 and c0v⃗0 has a dimension of length to the cubic

power. We seek the steady-state solution, which is given by

∇⃗2c = ∇⃗ ·

(
J⃗0
D
δ(r⃗)

)
. (2.2)

Using the mathematical identity δ(r⃗) = −∇2(4πr)−1, Eq. 2.2 can be solved with the result,

c(r⃗) =
J⃗0 · r̂
4πDr2

=
J0 cos θ

4πDr2
. (2.3)
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Figure 2.5: Two rotation states of bacterial flagellar motor in the optical trap. In (A),
the correlation between ϕ(t) and x(t) is demonstrated. The x-channel, x(t), from the PSD
exhibits a two-state behavior as displayed by the black curve. For a given state, the thick
dark band corresponds to rapid oscillations due to cell-body and flagellum rotations as
delineated in Figure 2.3. The transition from one state to the other is due to motor reversals.
These transitions are strongly correlated with the turning points in the angular displacement
ϕ(t) depicted by the red curve. In (B), the switching events occurring at different times
are identified in a typical run. The smoothed time derivative ∆x(t) (red) is obtained by
convolving x(t) (black) with the derivative of a Gaussian function. The width of the Gaussian
is adjusted such that it captures the changes occurring over times greater than 50ms. Only
those events for which the derivative exceeds the threshold (green lines) are registered as
switching events. The threshold is determined individually for each cell.
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We note that this concentration profile is different from when J0 = 0. In that case, the

quasi-steady-state profile is determined by thermal diffusion alone, and the profile at large

distances decays as r−1 [11]. A computer generated dye distribution according to Eq. 2.3 is

given as an inset in Figure 2.6(B). The video images acquired using the CCD camera are two

dimensional, and thus the above calculated three-dimensional concentration profile needs to

be integrated over the depth of the visual field in order to compare with the measurement.

For simplicity, we assumed that c(r⃗) is viewed along the z-axis (see Figure 2.6(B)), and our

measured intensity profile I(ρ) with ρ =
√
x2 + y2 is proportional to the two-dimensional

projection of c(r⃗) onto the x− y plane according to,

I(ρ) ∝
∞∫
0

J0
4πD

z

(ρ2 + z2)3/2
dz, (2.4)

where r2 = ρ2+z2 and cos θ = z/r defined in the inset of Figure 2.6(B). The above integration

yields,

I(ρ) = c′
J0

4πDρ
, (2.5)

where c′ is a constant that can be determined by calibration. However, in this work this

is not important since we are only interested in the width of the concentration profile. As

depicted in Figure 2.6(B), where I(ρ) vs. ρ−1 is plotted, our theoretical result (dashed line)

agrees well with the measurement (solid circles) over a broad range of ρ; the graph displays

a quasi linear region for small ρ−1 that is expected from Eq. 2.5. The strong deviation from

the linear behavior occurs when ρ−1 > 0.2µm−1, which is also expected because near the

mouth of the micropipette the flux J0 cannot be simply described by the δ function. To

remove the singularity at r = 0 in Eq. 2.3, one can replace r by (r2 + ρ20)
1/2, which leads to

I(ρ) = c′
J0

4πD(ρ2 + ρ20)
1/2

, (2.6)

after the z integration. This equation is used to fit the measured intensity profile in Figure

2.6(B) as displayed by the solid red line. The fitting procedure yields ρ0 ≈ 5.6µm, which can

be considered as the width of the concentration profile in our experiment. Measurements

using different hydrostatic pressures ∆P show that the intensity maximum Imax at the center
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of the concentration profile is a linear function of ∆P , which is displayed in Figure 2.6(C)

along with the fitting line. This linear dependence is expected from Eq. 2.5 since the

injection velocity v0 or the rate J0 is proportional to ∆P according to the Stokes law [50].

In the experiment, ∆P is controlled by a water column of height H, as delineated in Figure

2.2. In Figure 2.6(D), we also plotted the half-width ρ1/2(≡
√
3ρ0) at half-height Imax/2

as a function of H. Here again ρ1/2 is approximately linear in H. For the measurement

presented below we set the water column height at H ∼ 22mm, which yields ρ1/2 ≈ 9.7µm

(or ρ0 ≃ 5.6µm).

Although the concentration profile c(r) is established by injection, the attractant flux is so

small that the background serine concentration increases negligibly during the measurement,

which lasts less than an hour. A control experiment was conducted in the same sample

chamber with 0.3ml of TMN motility buffer (see Appendix A.1), and the micropipette was

filled with c0 = 100mM of fluorescein. A small volume of fluid inside the chamber was

sampled periodically after thorough mixing, and its fluorescence intensity was determined

by a fluorescent spectrometer (Perkin Elmer, LS-3B). This measurement, which is presented

in Figure 2.6(E), yields 1
c0

∆c∞
∆t

= 1.5 × 10−8 s−1, where c∞ is the background fluorescein

concentration in the chamber after mixing. In our stimulation experiment, the highest serine

concentration used was c0 = 10µM, which corresponds to a total flux of ∆c∞
∆t

≃ 0.15 pM/s.

For ∆t ≃ 3 × 103 s, ∆c∞ ≃ 0.45 nM. This change is significantly less than the stimulation

level c0, or the sensitivity of V. alginolyticus to serine, which we show below to be ∼ 0.2µM.

2.2.3 The average switching rate

As a demonstration of our technique, Figure 2.1(B) displays a simple measurement where

individual bacteria were trapped at a distance ∼ 120µm from the tip of the capillary filled

with 1mM of serine. The cells were then moved towards the tip or up the gradient direction

(+∇⃗c) at a speed of v = 30µm/s. The average switching rate among 60 cells were deter-

mined. Likewise, a similar number of bacteria were also trapped at 5µm from the capillary

tip (see Figure 2.1(C)) and moved away from the tip (−∇⃗c) at the same speed. These two

sets of measurements were presented in Figure 2.1(F) by the green and the red bars, respec-
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Figure 2.6: The chemoattractant concentration profile. (A) To visualize the concentration
profile of serine, a micropipette was filled with 10mM fluorescein and a small hydrostatic
pressure was applied by a water column to maintain a continuous flow of dye into the sample
chamber. The height of the water column was set to H = 22mm and kept fixed in all
measurements. The fluorescence intensity distribution after the background subtraction is
displayed in (A) and in the inset. In (B), the measured intensity I(ρ) is plotted against 1/ρ,
where ρ is along the radial direction as delineated in (A). In the far field, I(ρ) is proportional
to 1/ρ as displayed by the dashed green line, which is expected from the calculation. The
solid line is the fit to Eq. 2.6, which captures both the near- and far-field behaviors. The
inset is a computer generated plot of the dye distribution according to Eq. 2.3, where
J0/4πD = 1 and the same coordinate system is used as in the calculation. In (C and D), the
fluorescence peak intensity (Imax) and the half-width at half-height (ρ1/2) were measured as
a function of the water column height H. In (E), the micropipette was filled with 100mM
of fluorescein, and the mean fluorescein concentration in the sample chamber (with a total
volume of 0.3ml) was measured as a function of time t.
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tively. As a comparison, we also trapped a group of 70 bacteria individually and moved them

in a homogeneous TMN background (see Figure 2.1(A)). This measurement is displayed by

the blue bar in the same figure. The data showed that upon moving away from the source

of attractant, the average switching rate S̄ increases compared to that in the homogeneous

TMN. A striking feature of Figure 2.1(F) is that when the cells were moved towards the

source of attractant, S̄ is suppressed to such an extent that it is barely measurable. For

instance, among the 60 cells tested, only 5 showed a motor reversal when moved up the gra-

dient. These results are consistent with that displayed in Figure 2.1(E) (see the green line).

Our measurements indicate that (i) the response of V. alginolyticus to a deteriorated and

an improved environment is not symmetrical; it appears that cells can more readily suppress

the motor switching rate than enhance it. (ii) Since the cell orientation in the optical trap is

random when the motion of the trap is initiated, it can be concluded that this suppression

must take place in either cell orientation. Hence, the cells of V. alginolyticus must perform

chemical sensing all the time with a 100% duty cycle. It also implies that the switching logic

of V. alginolyticus is different from E. coli in that the former lengthens both of its CCW

and CW intervals but the latter only lengthens its CCW interval when stimulated by an

attractant.

2.2.4 The time-dependent switching rate

2.2.4.1 Chemotactic response measurements A more revealing quantity to measure

is the time dependent switching rate S(t) when the cells are exposed to a short pulse of

stimulus at t = 0. In order to measure this quantity reliably, it is crucial to have precise

timing. As discussed in Appendix A.2, there is a considerable change in the optical signal

when a bacterium becomes trapped. This signal provides a convenient means for us to define

t = 0 and to synchronize all the subsequent steps, which include the movement of an x-y

stage, monitoring the position of the cell in the optical trap using PSD, and termination

of the run. Specifically, once a bacterium falls into the optical trap that is located 3µm

from a serine-filled micropipette tip, it is forced to move away from the tip with a speed

v = 30µm/s that is comparable to the swimming speed vsw of the bacterium. Since the

25



width of the serine profile is 2ρ0, the characteristic time of a cell’s exposure to the chemical

is τ0 = 2ρ0/v ≃ 0.4 s. To obtain S(t), we first identified, for each bacterium trapped, the

times when individual switches took place. This was accomplished by accentuating the

switching events using a smoothed time derivative of x(t) and a threshold was then applied

as shown in Figure 2.5(B). The smoothed time derivative was performed by convolving x(t)

with the derivative of a Gaussian function,

∆x(t) =

∞∫
−∞

D(t− t′)x(t′)dt′, (2.7)

where D(x) = d
dx

[
1√
2πσ

exp
(
− x2

2σ2

)]
. The distance between the positive and negative peaks

of the kernel was set to 2σ ∼ 50ms so that the convolution is equivalent to a finite-time

difference (∆t ∼ 50ms) with low-pass filtering to get rid of high frequency oscillations of the

cell body. Figure 2.5(B) displays the original time series x(t) (black) of a typical cell along

with its smoothed time derivative ∆x(t) (red). We chose a threshold manually for each cell

so that all the major abrupt changes in the derivative were accounted for. This is illustrated

by the two green lines in the figure.

As a control, we filled the micropipette with the motility buffer (TMN) without serine.

The total number of bacteria in this data set was 254, resulting in 3404 switching events.

These events were used to construct the cumulative distribution function, which after nor-

malizing by the cell number is designated as Ψ(t). As shown in the inset of Figure 2.7, for

a short time t ≤ t0 ≃ 2 s, Ψ(t) increases linearly with time t, but for t > t0, Ψ(t) starts to

level off in long times. The slope of the initial increase yields the steady-state switching rate

S0 = dΨ/dt = 3.13 s−1, which is consistent with the observation of the free-swimming bacte-

ria (3.25±0.03 s−1) in the steady state (see Appendix A.4). The leveling off of Ψ(t) indicates

that the bacteria switch less frequently in long times. This is likely due to photodamage,

even though most of the cells released after the measurement did not lose their ability to

swim. Taking into account this effect, we found that Ψ(t) can be adequately described by

the following functional form,

Ψ(t) =

S0t 0 ≤ t < t0

S0t0 + S0τp

[
1− exp

(
− t−t0

τp

)]
t0 ≤ t < ∞

, (2.8)
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where the characteristic decay time τp ≃ 5.2 s. In the inset of Figure 2.7, the measured Ψ(t)

(black curve) is plotted alongside with Eq. 2.8 (red curve). In the same inset, we also plotted

the ideal case (green line), when the bacterial switching rate remains constant at all times.

This demands a correction (blue curve) of the form,

δΨ(t) =

0 0 ≤ t < t0

S0(t− t0)− S0τp

[
1− exp

(
− t−t0

τp

)]
. t0 ≤ t < ∞

(2.9)

This correction factor δΨ is applied to all of our subsequent measurements with different

serine concentrations. An example with c0 = 10µM of serine is displayed in Figure 2.7, where

the measured (black curve) and the corrected Ψ(t) (green curve) are displayed. By definition,

the time-dependent switching rate is given by S(t) = d
dt
Ψ(t). To reduce noises, the data was

first binned over the time interval of 50ms and then a finite difference S(t) = ∆Ψ/∆t was

taken.

The time-dependent responses to different levels of chemical stimulations are displayed

in Figures 2.8(A-C), where the micropipette was filled with c0 = 1 , 5 , and 10µM of serine.

The number of bacteria in each set was 314, 384, and 513 with the corresponding number of

switching events being 4329, 5507, and 5849, respectively. We noticed that as c0 increases,

the initial switching rate can be significantly reduced, and in the case of c0 = 10µM, S(t)

is only ∼ 0.3 s−1 in short times or about a factor of ten less than the steady-state value S0.

We also noticed that S(t) recovers rapidly over time, and the process is biphasic, i.e., S(t)

overshoots beyond S0 and then relaxes towards S0 over a long time. Qualitatively, therefore,

V. alginolyticus ’ chemotactic response is surprisingly similar to E. coli, consisting of a short

initial excitation followed by a long adaptive process.

2.2.4.2 Theoretical modeling The biphasic response was first discovered in E. coli

[74], and we are surprised to see that V. alginolyticus has a similar response. Considerable

progress has been made over the past several years in terms of a quantitative understanding

of this fascinating behavior in E. coli [9, 20, 77, 78, 63, 43, 86]. The progress was made

because of extensive knowledge of biochemistry of several che gene products and their inter-

actions with chemoreceptors and the motor complex. Although much less is known about

27



Figure 2.7: Normalized cumulative distribution functions (CDFs). The measured CDF
(black) can be mimicked by the function Ψ(t) (red), which is given in short times (t < t0 =

2 s) by S0t and in long times (t > 2 s) by S0

[
t0 + τp

(
1− exp(− t−t0

τp
)
)]

, where S0 = 3.13 s−1

is the initial switching rate, and τp = 5.2 s. The experimental data after the photodamage
correction δΨ(t), which is represented by the blue line, yields the green line. In the main
figure, the same correction function δΨ(t) is applied to the measurement (black) when 10µM
of serine is present. The resulting curve is presented in green.
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Figure 2.8: The time-dependent switching rate of V. alginolyticus. The measured switching
rates for c0 =1, 5 and 10 µM of serine are plotted as dots in (A to C), respectively. The
stimulation occurs at t = 0. In all the cases, an initial suppression in S(t) was followed by
an overshoot beyond the steady-state switching rate S0. It is only in long times that S0 is
recovered. The red curves in each plot are the fits using Eq. 2.15. The fitting procedure
yields the following parameters: S0 = 3.17 s, R′

o = 0.83, and τ = 0.44 s for (A); S0 = 3.27 s,
R′

0 = 1.19, and τ = 0.60 s for (B); and S0 = 2.75 s, R′
0 = 1.85, and τ = 0.56 s for (C). Here,

we treated S0 as an adjustable parameter; as can be seen, its value does not change much
from run to run.
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V. alginolyticus’ chemotaxis regulation [47, 61], the similarity in the response seen in our

experiment suggests that the regulation mechanism in V. alginolyticus may be similar. One

of the successful models in explaining the biphasic response is the Monod-Wyman-Changeux

(MWC) model proposed by Tu et al. [86]. This mean-field model integrates out fast kinet-

ics of binding and unbinding of chemoeffectors to receptors, and leaves comparatively slow

processes of dephosphorylation and methylation as independent variables. The model has

been successfully applied to explain the response data acquired in E. coli using a variety

of stimulation protocols [18, 74]. In the following we will focus on the impulse stimulation

when the serine concentration is low so that the bacterial response may be considered linear.

We assume that the switching rate is determined by the phosphorylated form of response

regulator CheY-P whose concentration [Y ] varies with time t according to,

∆[Y ](t)/[Y ](0) ≡ [Y ](t)/[Y ](0)− 1 =

t∫
0

R(t− t′)∆fL(t
′)dt′, (2.10)

where [Y ](0) is the CheY-P concentration at the steady state, ∆fL(t) is the change in the

free energy (in terms of thermal energy kBT ) when the ligand concentration varies from its

pre-stimulation level [L](0) to [L](t), and R(t) is the linear response (or Green’s) function.

This assumption is consistent with Kojima et al.’s observation that phosphorylation of CheY

is necessary for motor reversals similar to E. coli cells [47]. For convenience, we will use E.

coli ’s response function to mimic that of V. alginolyticus [86],

R(t > 0) = R0[τz exp(−
t

τm
)− τm exp(− t

τz
)]/(τm − τz), (2.11)

where τz and τm are respectively the dephosphorylation and methylation times, and R0 is the

amplitude of the response. R0 is a measure of the sensitivity of the chemotactic network and

is given by R0 = Na0(1 − a0)ka/[Y ](0), where N is the number of ligand-binding subunits

in the MWC clusters, 0 ≤ a0 ≤ 1 is the average steady-state kinase activity, and ka is the

phospho-transfer rate, which depends on the total number of MWC complexes in a cell.

The above model enables one to establish the connection between the microscopic chemical-

reaction (ligand-receptor binding) kinetics and macroscopic bacterial response. Specifically,

we are interested in the switching rate S(t) after a brief stimulation by serine. For a weak
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stimulation, it is reasonable to assume that S(t) depends linearly on CheY-P concentration

such that

S(t) = S0(1 + g∆[Y ](t)/[Y ](0)), (2.12)

i.e., an increase in CheY-P will increase the switching rate beyond the steady-state value S0.

In the above, g is the gain factor of the motor complex, which is related to the Hill coefficient

H by g = H/4. In E. coli for instance, H varies from 3 to 10 depending on whether the

measurements were carried out in an ensemble or in single cells [72, 28]. However, since

nothing is known about how the motor complex responses to a change in CheY-P in V.

alginolyticus , we will set g = 1. We note that g only affects the amplitude of the response

function but not its overall functional form. The effect of g ̸= 1 can be readily taken into

account once its value becomes available. Substituting ∆[Y ]/[Y ](0) from Eq. 2.10, we find

S(t) = S0[1 +

t∫
0

R(t− t′)∆fL(t
′)dt′]. (2.13)

This mathematical result will be compared to our measurements. We noticed that within

the linear-response approximation, Eq. 2.11 implies the adaption is precise, i.e. for a step

stimulation
∫∞
0

R(t)dt = 0, and for a sufficiently long waiting time, S(t) → S0. This

behavior appears to be consistent with our observations in Figure 2.8. As the stimulation in

our experiment is brief with an exposure time ∼ 2ρ0/v ∼ 0.4 s, ∆fL(t) will be approximated

by a δ function: (2ρ0/v) ln(1 + [L]/KI)δ(t). This leads to,

S(t) = S0

{
1 +R′

0

[
τz exp(−

t

τm
)− τm exp(− t

τz
)

]
/(τm − τz)

}
, (2.14)

where R′
0 = (2ρ0/v) ln(1 + [L]/KI)R0. This equation contains three adjustable parameters,

R′
0, τz, and τm, if S0 is assumed to be known. While analyzing the data, we found that the

best result could be attained when τz and τm were very close for all of our measurements.

In the limit τm → τz = τ , the above equation can be cast in the form,

S(t) = S0

{
1−R′

0

(
1− t

τ

)
exp

(
− t

τ

)}
, (2.15)
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and effectively only two parameters, R′
0 and τ , are necessary. As shown in Figures 2.8(A-C),

all of our data can be fit reasonably well by the above equation, which is indicated by the

red lines in the figure. For c0 = 1, 5, and 10µM, the following results are obtained:R
′
0 =

0.83, 1.19, and 1.85, and τ = 0.44, 0.60, and 0.56 s. However, considering the large noise in

the data, these fittings are not perfect particularly in long times.

The biphasic response is a hallmark of an adaptive behavior. What is unusual in our

finding is that the adaptation time is so short that it is indistinguishable from the excitation

time. Several lines of evidence showed that V. alginolyticus can adapt to serine after a

step change ∆c in the serine concentration [37]. The adaptation time becomes longer as ∆c

increases. Although a more detailed and quantitative study is needed, this adaptive behavior

appears to be similar to E. coli. Thus, the short adaptation time seen in our experiment

may correspond to either c0 is low or the stimulation is short. In any event, it suggests that

V. alginolyticus are able to adapt to a wide range of chemical stimulations, which may be

significant for bacteria to thrive in the presence of ephemeral micro-scale nutrient sources.

2.2.5 Sensitivity of V. alginolyticus to serine

A quantity of significance to bacterial chemotaxis is the dissociation constant KI . For E.

coli cells, previous measurements showed KI for serine is ∼ 14µM [51]. Our experiments

also allow us to estimate KI for V. alginolyticus . Using the definition R′
0(≡ (2ρ0/v)Na0(1−

a0)ka ln(1 + c0/KI))/[Y ](0) = A ln(1 + c0/KI), we plotted R′
0 vs. c0 in the inset of Figure

2.9, where R′
0 was obtained from the curve-fitting procedure (see Figure 2.8). The error bars

were calculated based on uncertainties in the measured switching rate S(t). The solid line

in the inset of Figure 2.9 is the theoretical prediction, where A = 0.46 and KI = 0.25µM

were used. Alternatively one can find KI via the relation R′
0 = ∆S/S0 derivable from Eq.

2.15, where ∆S = S0−S(0) can be easily found for each c0 by visual inspection without the

fitting procedure. R′
0 determined in this manner (see Figure 2.8) is plotted in Figure 2.9,

yielding A = 0.14 and KI = 0.11µM. As can be seen, there is a considerable uncertainty

in the determination of KI due to the noise in R′
0. However, it is evident that KI in V.

alginolyticus is considerably smaller than E. coli . Since at c0 ≃ KI there is only ∼ 102
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serine molecules in a cell volume and the integration time τ ≃ 0.5 s is rather short, it raises

the interesting possibility that the threshold of chemosensing in this marine strain may be

limited by thermal fluctuations [14, 16, 31].

Finally, using the average value of A, Ā ≃ 0.3, we can estimate the amplitude of the

response function R0[≡ Na0(1 − a0)ka/[Y ](0)]= Ā/(2ρ0/v), which turns out to be R0 =

0.8± 0.4 s−1. If the gain factor g is considered in Eq. 2.12, R0 will be reduced by the same

factor.

2.3 DISCUSSION

In summary, studies of bacterial chemotaxis have significantly advanced our understanding of

how a microorganism interacts with its environment and have general implications for higher

level animals that use more sophisticated sensing apparati [64, 49]. Over the last 40 years,

methods have been developed to quantitatively investigate this fascinating phenomenon in a

variety of bacteria, including E. coli , Bacillus subtilis , and Rhodobacter sphaeroides [76, 35,

67]. The most notable is Adler’s modern implementation of the capillary assay that allowed

scientists to establish for the first time the existence of specific receptors on bacterial surfaces

that play an important role in modulating cell’s motility [1]. Berg invented an impressive

tracking microscope, which elucidated how E. coli cells perform chemotaxis [10]. Silverman

et al. developed the rotation assay by tethering a flagellum on a coverslip and observing the

rotation of the cell body [75]. This seemingly simple experiment, aside from demonstrating

that the flagellum is powered by a rotary motor at its base [75, 12], paved the way for more

advanced implementation by conjugating a small bead to the flagellum using antibodies. The

rotation assay allowed scientists to study a variety of problems ranging from a torque-speed

relation [25], noises in flagellar motor [71], chemotactic responses [18, 74], and molecular

interactions between the chemotactic regulatory protein and the motor complex [72, 40].

Herein we added to this impressive arsenal a new approach that allows the cell to be localized

while its flagellum and cell-body rotations can be monitored. Similar to the rotation assay,

our method is single-cell based and permits the study of behaviors of individual cells as well
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Figure 2.9: The response amplitude R′
0 vs. serine concentration c0. The solid circles are

experimental data and the line is the theoretical expression R′
0 = A ln(1 + c0/KI), where

R′
0 are extracted from Figures 2.8(A-C). The fitting procedure yields KI = 0.11µM and

A = 0.14. The curve in the inset is generated from the best fit values R′
0 in Figure 2.8, and

the data can be explained by KI = 0.25µM and A = 0.46, which is plotted as a solid line.
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as the average behavior in a population. A distinctive advantage of our technique is that

it does not rely on cell tethering and thus generally applicable to different bacteria. The

ease by which the bacterium can be moved by the optical trap also allows one to design

“swimming” paths so that complicated memory effects may be studied. The technique when

combined with a microfluidic device would allow investigators a great deal of freedom to

explore different types of chemical stimulations [60, 41].

Using the optical trapping technique we have investigated V. alginolyticus ’ response to a

short pulse of serine. If the regulatory network is linear, the measured response function can

be used to interpret bacterial chemotactic behaviors in complicated chemical environments.

However, the extent of this linear regime has yet to be established in future experiments. We

found that the response function of V. alginolyticus is biphasic similar to E. coli, suggesting

that such a behavior may be evolutionarily conserved. Unlike E. coli, however, the putative

methylation time τm turns out to be so short that it nearly matches the dephosphorylation

time, τz ≃ τm ≃ 0.5 s. Thus, the chemotactic response of V. alginolyticus to a short pulse

of attractant essentially consists of only a single time scale. The fast adaptation seen in V.

alginolyticus is likely due to their habitat where nutrients are short-lived so that unless the

microorganisms can recover from the initial excitation quickly, the signal would be lost.
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3.0 ADAPTATION IN V. ALGINOLYTICUS

3.0.1 Response of V. alginolyticus to extended exposure to serine

Unlike the impulsive stimulation experiments described in Chapter 2, in this set of experi-

ments, the dragging was not initiated upon detection of a bacterium in the optical trap. After

the bacterium was trapped at ∼ 3µm from a serine-filled micropipette tip, it was forced to

stay there for varying amounts of time before being dragged away. The micropipettes used

in these experiments were filled with c0 = 5µM of serine, which is the highest serine con-

centration at which no saturation effects had been observed in our preliminary experiments.

The exposure time of bacteria to serine, or the waiting time tw, ranged from 0 to 3.1 s. The

cells were dragged away from the stimulation point at the same speed v = 30µm/s as in the

impulsive stimulation experiments. In Figure 3.1, the concentration profile sensed by the

bacterium is illustrated with all the relevant experimental timescales. Here, the cell experi-

ences a positive stimulation at t = 0 and a negative stimulation at t = tw. The optical trap

data were analyzed following the procedure described in Section 2.2.4.1 and the switching

rate S(t) was calculated for each tw. The results are displayed in Figure 3.2(A-F). In these

figures, the origin of the time axis corresponds to t = 0 in Figure 3.1.

We found that the extended exposure to serine has multiple effects on the switching rate

of V. alginolyticus. When tw increases, the switching rate S(t) remains depressed if tw is

not very long as in (C-E). However, for long exposure times, such as in (F), the recovery of

S(t) becomes noticeable. For the longest waiting time tw = 3.1 s, the switching rate curve in

the [0, 3.1 s] interval can be extrapolated to the steady-state switching rate S0 seen in late

times and the switching rate reaches ∼ 85% of the steady-state value S0 at the end of this

interval. This observation suggests that under our experimental conditions, V. alginolyticus
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Figure 3.1: Experimental timescales. The swimming time ts is the time it takes for a
bacterium to swim from the HWHH of the concentration profile to the the peak of the
profile where the optical trap is initially located. The computer calculates the rms value of
∆Ix(t) at intervals of ta = 100ms. An abrupt increase in the rms value indicates that a
bacterium is trapped and defines the origin of the time axis, i.e., t = 0. During the waiting
(exposure) time tw the optical trap does not move and exposes the trapped bacterium to
the peak chemoattract concentration [L]max(= c0). Subsequently, the trapped bacterium is
dragged away from the micropipette tip with the aid of the optical tweezers. The dragging
time td is defined as ρ1/2/v, where ρ1/2 is the HWHH of the concentration profile and v is
the speed at which the optical trap is moved.

37



can adapt to a stimulus precisely.

We noticed that as tw increases, the bacteria respond to the negative stimulation sooner,

which is indicated by the reduction in the time difference between the sharp rise of the

switching rate curve S(t) and the beginning of the drag (t = tw), which is marked by the

vertical lines in Figure 3.2. This effect may be explained by the fact that when the cells are

better adapted to a given ligand concentration, they become more sensitive to changes in

[L] and are able to respond faster.

Finally, we also noticed that the maximum switching rate Smax elicited by dragging the

bacteria away from the point source is not constant but increases slightly with tw as seen

in Figure 3.2. Here, as tw increases from 0.1 s to 1.5 s, Smax increases from ∼ 3.3 s−1 to

∼ 4.2 s−1, and then decreases to Smax ≃ 3.5 s−1 for the longest waiting time tw = 3.1 s. The

increased switching rate indicates that chemotactic response is history dependent and for

certain ligand exposure times, it can elicite a larger response than other time scales.

Another point that attracts our attention is the fine structures (see the red arrows in

Figure 3.2) which become more prominent as tw increases from 0.3 s to 1.5 s and weakens

when tw = 3.1 s. When the cells are given sufficient time, ∼ 0.3 s for c0 = 5µM serine

stimulation, they produce a more coherent response represented by a very sharp increase

in the switching rate. This burst of switching events usually followed by a relatively silent

period which lasts ∼ 0.4 s.

3.0.2 Analysis

Assuming KA ≫ [L] & KI in these experiments, we approximate the ligand-dependent free

energy change as a square pulse, ∆fL(t) [≡ fL([L](t))− fL([L]0)] ≃ ln(1 + [L]max/KI)Θ(t−

t0)Θ(t1 − t), where the background ligand concentration [L]0 is assumed to be zero in our

square-pulse stimulation experiments. This approximation is illustrated in Figure 3.1 where

t0 and t1 are clearly identified. To fit our data, we substitute the linear response function

given in Eq. 2.11 and the square-pulse ∆fL(t) in Eq. 2.13. This leads to
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Figure 3.2: Response of V. alginolyticus to the extended exposure to serine. The measured
switching rates for tw = 0, 0.1, 0.3, 0.7, 1.5 and 3.1 s are plotted in (A-F), respectively.
c0 = 10µM in (A) and 5µM in all the others (B-F). The dashed lines indicate the end of the
waiting period. The red curves are the fits using Eq. 3.3. The fitting parameters are tabu-
lated in Table 3.1 inside the paranthesis. We noticed that S(t) displays fine structures soon
after the bacteria are dragged out of the high serine concentration region. For convenience,
these structures are marked by red arrows.
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S(t) = S0

1 +
A0

(τm − τz)

t∫
−∞

[
τz exp

(
−(t− t′)

τm

)
− τm exp

(
−(t− t′)

τz

)]
Θ(t′ − t0)Θ(t1 − t′)dt′

 ,

(3.1)

where A0 ≡ R0 ln
(
1 + [L]max

KI

)
.

When the convolution integrals are evaluated using the experimentally determined val-

ues of S0 = 2.24 s, τz = 0.3 s, τm = 1.5 s, t0 = −0.2 s and t1 = tw + 0.2 s where tw ∈

{0, 0.1, 0.3, 0.7, 1.5, 3.1 s} and a single response amplitude A0, the resultant response curves

are seen not to belong to the same family of curves. On the other hand, the experimental

response curves look very similar. This means a single A0 cannot fit both the positive and

the negative stimulation parts of the response S(t). If it fits the positive stimulation part

well, it falls short to account for the strong response to the negative stimulation. We believe

that the methylation process during the waiting time pushes the cells to a new activity level,

which in turn determines the response strength to the subsequent stimulus. To probe how

the response strength changes with increasing waiting time we assumed that the system

had two different response strength parameters, namely A0 and A0(1− α) that are effective

during the positive and the negative stimulation, respectively. Based on this assumption,

Eq. 3.1 can be rewritten as

S(t) = S0

1 +
A0

(τm − τz)

t∫
−∞

[
τz exp

(
−(t− t′)

τm

)
− τm exp

(
−(t− t′)

τz

)]
× [Θ(t′ − t0)Θ(t1 − t′) + αΘ(t′ − t1)] dt

′} . (3.2)

A straight forward integration yields

S(t) = S0

{
1 + A0

τmτz
(τm − τz)

[
− exp

(
−(t− t0)

τm

)
+ exp

(
−(t− t0)

τz

)
+ (1− α)

(
exp

(
−(t− t1)

τm

)
− exp

(
−(t− t1)

τz

))
Θ(t− t1)

]}
. (3.3)

This function was used to fit our data. It has two adjustable parameters, A0 and α, if

S0, τz, τm, t0 and t1 are assumed to be known. Table 3.1 displays the values of the fitting

parameters of this model for each tw.
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Table 3.1: Response amplitudes

[L]max (µM) tw (s) No. of cells No. of reversals A0 α

0 - 72 599 - -

10 0.0 80 705 2.33 −0.20

5 0.1 91 870 1.96 −0.32

0.3 96 962 1.58 −0.56

0.7 92 1073 1.59 −0.84

1.5 99 1041 1.78 −0.45

3.1 103 799 1.66 0.11
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4.0 IMPLICATIONS OF RUN-REVERSE-FLICK CYCLE IN BACTERIAL

CHEMOTAXIS

4.1 INTRODUCTION

Existing observations made in E. coli have shown that sensing and motility impose different

requirements on bacterial chemotactic response [27, 22]. The debate on this interesting issue

was initiated by the observation of Block, Segall, and Berg [18] who discovered that the

experimentally measured chemotactic response function R(t) integrated over time t is zero.

In physical terms R(t) can be thought as the Green’s function of the chemotactic network

when subjected to an impulsive or a δ-in-time perturbation. The importance of this null

integrated effect goes without saying, and was immediately recognized by the investigators

as the bacterium’s means of sensing. In their words [18], “the bacterium compares the

information received in the past one second to that received over the previous three seconds.”

In effect, the double-lobe response function, which is displayed in Figure 4.1(C), allows the

bacterium to react to fast temporal variations of a chemical signal c(t) but not to its dc

component, enabling the cell to adapt to a wide range of chemical concentrations. Using a

macroscopic diffusion argument, it was suggested by Schnitzer et al. [73] that a finite memory

time is required for a bacterium to migrate in a linear chemical gradient; without the memory

effect (or R(t) ≃ δ(t)), it was concluded that the chemotactic coefficient κ = V/∇c or the

drift velocity V would be zero, where V is in the direction of the chemical gradient ∇c.

However, de Gennes pointed out that the macroscopic diffusion approach ignored important

correlations between bacterial swimming and the underlying chemical gradient [29]. By

taking into account such correlations, de Gennes showed that the optimal (or a fast) response

for migration in a linear gradient is an exponential function with a decay rate determined
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by the cell’s memory time τ . He further pointed out that the double-lobe response function

observed in E. coli could only reduce the migration speed in the gradient.

Contributing to this stimulating debate is the finding of Clark and Grant [27], who argued

that while a cell needs a fast drift speed in a concentration gradient, it is equally important

for the cell to localize once the top of the gradient is reached. They showed that the single-

lobe function proposed by de Gennes is inadequate for cell localization. By imposing the

co-requirements of being able to localize as well as to migrate, they demonstrated that the

optimal response function is biphasic, which is in remarkably good agreement with the one

measured in the experiment [18]. This observation led Clark and Grant to conclude that

the biphasic response in E. coli perhaps reflects a compromised need of the cells in different

environments. A recent study also suggested that the laboratory observed bacterial response

corresponds to the maximin strategy that ensures the highest minimum uptake of nutrient

for any profile of concentration [22].

As described in Section 1.1, the swimming pattern of the marine bacterium V. alginolyti-

cus is a cyclic 3-step process [92], where a cell swims forward for a time interval ∆f and

it then backtracks by reversing the motor direction for a time ∆b. Upon resuming forward

swimming, the bacterial flagellum flicks causing the cell body to veer in a new direction. This

type of motility pattern is very different from that of E. coli, which exhibit a run-tumble

pattern. By way of introduction a typical trajectory of V. alginolyticus and that of E. coli

are presented respectively in Figure 4.1(A) and (B). For the V. alginolyticus’ trajectory, Fig-

ure 4.1(A), the forward and the backward segments are designated by circles and squares,

respectively. The last (flicking) step is functionally equivalent to a tumble in E. coli, allowing

the bacterium to randomly select a direction, and a new cycle ensues. Despite the fact that

run and reverse intervals, ∆f and ∆b, as well as the flicking angle ∆θ are stochastic, the

3-step cycle is deterministic and has been observed in different V. alginolyticus strains and

in a swimming buffer with and without a chemical gradient [92]. In a steady state with-

out a chemical gradient, we found that the probability density functions P (∆b) and P (∆f )

are statistically independent and have long exponential tails (or a Poissonian-like behavior)

with the mean intervals τb ≃ τf ≃ 0.3 s. However, when a point source of chemoattractant

is present, the cells can quickly migrate along the gradient and form a tight pack around the
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source.

The biochemical network that regulates the activity of E. coli ’s motor is reasonably

well understood [80]. While this is not the case for V. alginolyticus , it cannot deter our

progress because we know that even for very diverse microorganisms, such as E. coli and

Bacillus subtilis that are roughly one billion years apart according to a recently constructed

phylogenetic tree [26], the fundamental mechanism of regulation is still similar, i.e. a ligand

binding to a receptor triggers a cascade of chemical reactions. The end product of the

reaction is a chemically modified protein, called the response regulator (CheY-P), that binds

to the motor, causing it either to rotate CCW (B. subtilis) or CW (E. coli). The basic aim

of different microorganisms is also the same, namely guided by chemical signals, the cell is

directed towards the source of chemoattractant and away from chemorepellent. According

to the phylogenetic tree [26], V. alginolyticus appears to be much closer to E. coli than

B. subtilis , suggesting that there is much in common between these two bacterial species.

Indeed in V. alginolyticus , one can identify chemotaxis genes that are largely homologous to

E. coli with the exception of cheV that is absent in E. coli but is present in B. subtilis . A

recent study moreover showed that the phosphorylated CheY in V. alginolyticus causes the

polar flagellar motor to reverse direction from CCW to CW, similar to E. coli [47].

It is clear that the 3-step swimming pattern is significantly different from the well-studied

2-step swimming pattern of run and tumble, and it has strong implications for bacterial

chemotaxis, which can be characterized by an effective diffusion coefficient D and a drift

velocity V in the presence or absence of a chemical gradient. The calculation below illustrates

that cells executing the 3-step swimming pattern can exhibit rich chemotactic behaviors, and

the variations can be acted on by natural selection so that a particular response emerges.

Below we will illustrate these new aspects of bacterial chemotaxis based on our findings of

the 3-step process.
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Figure 4.1: Bacterial swimming trajectories. Bacterial swimming trajectories of V. alginolyti-
cus (A) and E. coli (B). The cells have been selected amongst many because they are more or
less swimming in the focal plane, 50-100 µm above the glass coverslip. The starting points for
both trajectories are indicated by the two large solid dots. The time lapse between adjacent
squares or circles are 0.067 s and 0.13 s for (A) and (B). The segments labeled by squares and
circles in (A) designate the backward and forward swimming intervals, and transitions from
backward to forward cause flicking, randomizing the swimming direction. Unlike a transition
from forward to backward, which has a directional change ∆θ ≃ π (or backtracking), a back-
ward to forward transition is random with ∆θ uniformly distributed between 0 and 180 o.
(C) A hypothetical response function R(t) of E. coli due to an impulse stimulation (the thin

line) is plotted as the thick curve, where R(t) = R0

[
1
τm

exp
(
− t

τm

)
− 1

τz
exp

(
− t

τz

)]
. Here

we set R0 = 1 and used the typical E. coli methylation time (τm = 3 s) and phosphorylation
time (τz = 0.5 s) [86, 74].
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4.2 RESULTS

Similar to cells of E. coli, the flagellar motor of V. alginolyticus has two lifetimes for the

state of rotations: one (τf ) for the CCW interval and one (τb) for the CW interval, where

the subscripts f and b stand for forward and backward swimming, respectively. To mod-

ulate their chemotactic behaviors, these lifetimes are affected by the local concentration of

chemoeffectors and cells’ adaptation mechanism. Unlike E. coli, however, CW rotation in V.

alginolyticus causes the cell to backtrack. Both swimming intervals are expected to depend

on the ligand concentration c(t), which we assume to be chemoattractant. For small c(t),

we assume that a linear response is applicable and hence,

1

τf (t)
=

1

τf

1− t∫
−∞

dt′Rf (t− t′)c(t′)

 , (4.1)

1

τb(t)
=

1

τb

1− t∫
−∞

dt′Rb(t− t′)c(t′)

 , (4.2)

where τf and τb are the steady-state values, and Rf (t) and Rb(t) are the memory (or the

response) functions, which are not necessarily the same for the two swimming intervals. In

the above, an exposure to the ligand causes the forward lifetime to increase, and is consistent

with our observations in V. alginolyticus [92]. Linearity of Eqs. 4.1 and 4.2 suggests that

it is possible to examine one delay time θ at a time and sum up all possible delays at the

end. Following de Gennes, we write Rs(t) = αsδ(t − θ), where the strength of the response

αs (s = f, b) has the dimension of volume. Next, we consider a cell moving in a chemical

gradient as depicted in Figure 4.2. Our aim is to calculate the displacement xi along the

gradient in one cycle, ∆f +∆b, which leads to a mean drift velocity V = x̄i/(τf + τb) after

averaging over ∆f and ∆b. Because a cell randomizes its swimming direction at the end of

the backward interval by a flick, the motions in two consecutive cycles are uncorrelated. This

allows us to place the origin of time (t = 0) at the beginning of the forward run. Assuming

that the forward run time is Poisson distributed, the surviving probability of a cell swimming
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forward up to ∆f is given by,

Pf (∆f ) = exp

− ∆f∫
0

dt′
1

τf (t′)

 ≃ exp(−∆f

τf
)

1 + αf

τf

∆f−θ∫
−θ

dt′c(t′)

 , (4.3)

and the probability that it stops immediately after ∆f is −∂Pf (∆f )/∂∆f . Likewise, the

surviving probability of a cell swimming backwards from ∆f to ∆f +∆b is given by,

Pb(∆b,∆f ) = exp

− ∆f+∆b∫
∆f

dt′
1

τb(t′)

 ≃ exp(−∆b

τb
)

1 + αb

τb

∆f+∆b−θ∫
∆f−θ

dt′c(t′)

 , (4.4)

and the stopping probability at the end of the backward run is −∂Pb(∆b,∆f )/∂∆b. It follows

that the net mean displacement in one cycle is given by,

x̄i ≡ x̄fi + x̄bi =

⟨ ∞∫
0

d∆f

(
−∂Pf (∆f )

∂∆f

)
vfi∆f

⟩

+

⟨ ∞∫
0

d∆f

(
−∂Pf (∆f )

∂∆f

) ∞∫
0

d∆b

(
−∂Pb(∆b,∆f )

∂∆b

)
vbi∆b

⟩
, (4.5)

where x̄fi and x̄bi represent respectively the mean displacement during the forward (∆f ) and

the backward (∆b) swimming interval, and ⟨...⟩ designates the angular average for vfi and vbi.

For the linear gradient depicted in Figure 4.2, the concentration experienced by the cell can

be represented as c(t) = c0+∇c·vfi·t for 0 ≤ t < ∆f and c(t) = c0+∇c·vfi·∆f+∇c·vbi·(t−∆f )

for ∆f ≤ t < ∆f +∆b. Since c0 is determined by the velocity in the previous cycle, it does

not contribute to the above integrations after angular averaging. Although the calculation

of Eq. 4.5 is tedious, and is given in Appendix B, the final result is straightforward:

x̄i =

{
αfτ

2
f ⟨v2fi⟩ exp(−

θ

τf
)

+αb

[
τ 2f τ

2
b

τf − τb
⟨vfivbi⟩

(
1

τb
exp(− θ

τf
)− 1

τf
exp(− θ

τb
)

)
+ τ 2b ⟨v2bi⟩ exp(−

θ

τb
)

]}
∇c.(4.6)

The first term in the curly brackets of Eq. 4.6 is the displacement during the forward in-

terval, and the second term is the displacement during the backward interval. It is noteworthy

that during the second interval, there is a cross term proportional to
τ2f τ

2
b

τf−τb
⟨vfivbi⟩ (...), which

results from the delay, i.e., even though the cell is moving backwards, in the early episode of
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that interval, the cell still remembers the concentration sensed during the previous forward

swimming. This gives rise to anti-correlation, since ⟨vfivbi⟩ < 0, that contributes to a nega-

tive displacement. This important correlated motion adds richness to bacterial chemotaxis

and is what makes V. alginolyticus behave differently from E. coli.

We noted that in the limit of no memory, θ → 0, Eq. 4.6 yields the result x̄i =[
αfτ

2
f ⟨v2fi⟩+ αbτb (τb⟨v2bi⟩+ τf⟨vfivbi⟩)

]
∇c. It is interesting that even when there is no mem-

ory, the cross term survives because there is no direction randomization after a forward

run. Moreover, the displacement during the backward interval, can contribute positively or

negatively to the net mean displacement, depending on the response αb, the mean lifetimes

τf and τb, and the swimming velocities v⃗f and v⃗b. In particular, if the regulation in the

backward interval is independent of the regulation in the forward interval, a case that will

be further discussed below, the displacement in both swimming intervals can be positive.

In comparison, for E. coli x̄i = αfτ
2
f ⟨v2fi⟩∇c when θ → 0, where the subscript f stands

for the forward run (or CCW rotation). Because no motility is produced during the CW

interval, which takes up 20 − 50% of the swimming cycle [48, 18], one expects that E. coli

will migrate slower than V. alginolyticus in a linear gradient if everything else is equal.

Using vfi = −vbi = vi and summing up all possible delays in Eq. 4.6, we found that the

mean displacement is given by,

x̄i =

τ 2f

∞∫
0

dθRf (θ) exp(−
θ

τf
) + τ 2b

∞∫
0

dθRb(θ)

×
[
exp(− θ

τb
)−

τ 2f
τf − τb

(
1

τb
exp(− θ

τf
)− 1

τf
exp(− θ

τb
)

)]}
⟨v2i ⟩∇c. (4.7)

The average drift speed in the gradient is V (≡ κ∇c) = x̄i/(τf + τb), which allows the

chemotactic coefficient κ to be calculated. In E. coli, κ is proportional to the diffusion

coefficientD ≃ 1
3
ϕ0⟨v2⟩τf and one finds κ = D

∫∞
0

Rf (θ) exp(− θ
τf
)dθ. Based on a dimensional

argument, the “diffusivity” of the 3-step swimmer is given by:

D = ⟨v2i ⟩
(τf − τb)

2

τf + τb
=

1

3
⟨v2⟩(τf − τb)

2

τf + τb
, (4.8)
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Figure 4.2: Migration of V. alginolyticus in a linear chemical gradient. (A) In the spatial
domain, the chemical gradient is specified by the dashed line. The arrows indicate the forward
and the backward swimming segments along the gradient. ∆f and ∆b are respectively the
forward and backward swimming time intervals, and vfi and vbi are respectively the forward
and backward velocity components along the chemical gradient. Note that backtracking
means v⃗b = −v⃗f . (B) The bacterial chemotactic network processes the chemical information
in the temporal domain, and the concentration detected by the cell is depicted in (B), where
θ is the memory time of the bacterium. I and II are chemosensing in the current cycle, and
I′ is due to the previous cycle.
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and the chemotaxis coefficient can be written as

κ =
D

(τf − τb)2

τ 2f

∞∫
0

dθRf (θ) exp(−
θ

τf
)

+τ 2b

∞∫
0

dθRb(θ)

[
exp(− θ

τb
)−

τ 2f
τf − τb

(
1

τb
exp(− θ

τf
)− 1

τf
exp(− θ

τb
)

)] . (4.9)

This calculation leads to two possible scenarios (or fundamental hypotheses) for bacterial

chemotaxis: (i) independent and (ii) shared chemosensing.

4.2.1 Independent Chemosensing

In the first case, the response functions in the forward and backward intervals are indepen-

dent, i.e., Rf (θ) and Rb(θ) have different functional forms, so that the sensing system breaks

the time reversal symmetry. In order to achieve such a control, the flagellar motor cannot

only passively receive signals from the chemotaxis network but instead the status of the

motor must be made known to the chemotaxis regulatory network. This may be attained

either by the flagellar motor being a part of the regulatory network or by a feedback signal

via a protein that can reset the chemotactic response. In short, there will be a back flow

of information from the motor to the chemotaxis network in addition to the normal chemo-

taxis regulation. To optimize the drifting velocity, we applied a variational principle to Eq.

4.9, which is delineated in Appendix C. We used the constraints that Rf (θ) and Rb(θ) have

constant variances σ2
s/τs (s = f, b) [27], yielding

Rf (θ) ∝
σf

τf
exp(− θ

τf
), (4.10)

Rb(θ) ∝
σb

τb

[
exp(− θ

τb
)−

τ 2f
τf − τb

(
1

τb
exp(− θ

τf
)− 1

τf
exp(− θ

τb
)

)]
. (4.11)

It is evident from the optimization procedure that in order to attain the maximum

possible drifting speed, the forward response function Rf (θ) should be monophasic but the

backward response function Rb(θ) can be either monophasic or biphasic, depending on the

ratio of the two lifetimes, β ≡ τb/τf . Figure 4.3 displays (τf/σf )Rf (θ) and (τb/σb)Rb(θ)
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for different values of β = 0.8, 1.2, 1.5, 1.8, and 2.4. The figure shows that the biphasic

response becomes more biased towards the negative lobe as β decreases towards unity, and

it dissappears altogether for β < 1, where the response is negative for all θ. An analysis

shows that the biphasic response occurs in a narrow range of β (1 ≤ β ≤ 2), and outside

this range the response is always monophasic. This behavior is understandable since when

τb is shorter than τf , the backward interval is strongly influenced by the signal sensed in the

previous forward interval due to the memory effect. To deal with this inconsistency between

sensing and motility, the optimal strategy is a negative monophasic response as depicted by

the lowest curve (β = 0.8) in Figure 4.3. On the other hand, when τb is longer than τf ,

the cell would have consistent sensing and motility so that a monophasic positive response

is more favorable, which is shown by the top solid curve (β = 2.4) in Figure 4.3. In the

limiting case τb ≫ τf or τb ≪ τf , Eqs. 4.9, 4.10, and 4.11 make it clear that the chemotactic

coefficient κ is dominated respectively by the backward or the forward swimming interval.

The situation is formally equivalent to E. coli chemotaxis, where the monophasic response

is optimal for fast migration in a linear chemical gradient as was concluded by de Gennes

[29].

4.2.2 Shared Chemosensing

In the case of shared chemosensing, the bacterium uses a single response function R(θ), albeit

the amplitudes of the responses may be different in the two directions, Rf (θ) = Rb(θ)/γ =

R(θ). A simple reason for γ ̸= 1 could be due to different swimming speeds vf and vb,

but other possibilities may also exist. For this type of sensing, there is no breaking of time

reversal symmetry since the chemotaxis network processes the received information during

the forward and the backward interval equally, and there is no need for a back flow of

information. Using Eq. 4.9, we found:

κ =
D

(τf − τb)2

∞∫
0

dθR(θ)

{
τ 2f exp(−

θ

τf
)

+γτ 2b

[
exp(− θ

τb
)−

τ 2f
τf − τb

(
1

τb
exp(− θ

τf
)− 1

τf
exp(− θ

τb
)

)]}
. (4.12)
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Figure 4.3: Chemotactic strategy I. The bacterium uses separate response functions, Rf (θ)
and Rb(θ), for chemosensing. The figure shows the dimensionless forms of the response
functions. Here the dashed curve is for Rf (θ), and the solid curves, from bottom to top, are
for Rb(θ) with β(≡ τb/τf ) = 0.8, 1.2, 1.5, 1.8, and 2.4, respectively. The inset is the phase
diagram for chemotactic strategy II. It displays the phase boundaries between monophasic (I,
III, IV) and biphasic (II) response regimes when the chemotaxis response obeys the relation
R(θ) = Rf (θ) = Rb(θ)/γ.
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Applying the variational principle again (see Appendix C), we found that the drift velocity

is optimized by the following response function

R(θ) ∝ σ

τf + τb

{
exp(− θ

τf
)

+γ

(
τb
τf

)2 [
exp(− θ

τb
)−

τ 2f
τf − τb

(
1

τb
exp(− θ

τf
)− 1

τf
exp(− θ

τb
)

)]}
. (4.13)

As displayed in Figure 4.4, R(θ) can be monophasic or biphasic depending on γ as well

as the time ratio β ≡ τb/τf . The biphasic regime is bounded by 1−β
β

≤ γ < 1
β(1−β)

for

0 ≤ β < 1 and γ ≥ 0 for 1 < β ≤ 2, which is displayed in the inset of Figure 4.3. The

inset shows that the parameter space (γ, β) consists of four different regimes with I, III, and

IV being monophasic and II biphasic. Our theory hence predicts that if a bacterium uses a

single response function, for very short (β ≪ 1) or very long (β ≫ 1) backward swimming

intervals, the biphasic response is not a good chemotactic strategy for migration in a linear

chemical gradient. The biphasic response emerges only when τf and τb being close (or β ≃ 1),

which is the case in V. alginolyticus [92]. It is conspicuous that in the limits β → 1 and

γ → 1, R(θ) calculated using Eq. 4.13 is identical to the solution of a critically damped

harmonic oscillator, which has the interesting property of
∫∞
0
(1 − θ/τ) exp(−θ/τ)dθ = 0,

i.e., the response is “precisely” adaptive.

4.3 DISCUSSION

The above two hypotheses are testable by laboratory experiments where the bacteria are

subject to a defined chemical stimulation, and one measures the switching rate S(t) =

2/(τf (t) + τb(t)) and the forward swimming bias Φ(t) = τf (t)/(τf (t) + τb(t)) as a function of

time. For a weak stimulation, the above calculation allows us to find,

S(t) = S0

1− Φ0

t∫
−∞

Rf (t− t′)c(t′)dt′ − (1− Φ0)

t∫
−∞

Rb(t− t′)c(t′)dt′

 , (4.14)
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Figure 4.4: Chemotactic strategy II. The bacterium shares the same response function
R(θ) = Rf (θ) = Rb(θ)/γ for the forward and backward swimming intervals. In (A), β = 0.75
and from top to bottom γ = 0.1, 1.0, 2.0, and 3.0. In (B), the dashed line is for γ = 2 and
β = 2.0. The solid curves are for γ = 2 and from top to bottom β = 0.1, 0.3, 0.5, and 1.0.
As can be seen, for fixed β ≃ 0.75, the response becomes strongly biphasic as γ increases.
On the other hand, for fixed γ = 2, the response is monophasic for small β, and becomes
biphasic for intermediate values of β, and returns to monophasic for β ≥ 2.
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Φ(t) = Φ0

1 + (1− Φ0)

t∫
−∞

(Rf (t− t′)−Rb(t− t′)) c(t′)dt′

 , (4.15)

where S0 ≡ 2/(τf + τb) and Φ0 ≡ τf/(τf + τb) are the steady-state switching rate and the

forward bias, respectively. The expressions are significantly simplified if the perturbation is

δ-in-time, c(t) = c′δ(t), and they are given by,

S(t) = S0 [1− c′ (Φ0Rf (t) + (1− Φ0)Rb(t))] , (4.16)

Φ(t) = Φ0 [1 + c′(1− Φ0) (Rf (t)−Rb(t))] . (4.17)

The calculation shows that if the second scenario is true and Rf (t) ≃ Rb(t), the forward

bias will be weakly dependent on time t, and the switching rate is simply given by S(t) ≃

S0[1− c′Rf (t)]. However, if the first scenario is true, the measured S(t) and Φ(t) can be

used to find the response function Rf (t) and Rb(t) using Eqs. 4.16 and 4.17. In this case,

the following simple relations result,

Rf (t) =
1

c′

[
Φ(t)

Φ0

− S(t)

S0

]
, (4.18)

Rb(t) =
1

c′

[
1− Φ(t)

1− Φ0

− S(t)

S0

]
. (4.19)

An alternative and perhaps more direct way to find Rf (t) and Rb(t) is to perform a

conditional stimulation on individual cells. The bacterium can be either tethered to a surface,

such as in Block et al.’s experiment [18], or freely swimming, as in Khan et al.’s experiment

[44]. For tethered cells, one can apply a pulse of chemoattractant at the moment the motor

switches from CW (CCW) to CCW (CW), and record the subsequent swimming interval ∆1f

(∆1b), where the subscript 1 emphasizes the interval before the first switch. By counting the

switching events up to time t, one can construct a cumulative PDF (normalized by the total

number of cells) Ψs(t), and the time-dependent switching rate can be obtained according

to τ−1
s (t) = − d

dt
ln(1 − Ψs(t)), where s = f or b. For freely swimming cells, one can use

photo-active serine, which is an attractant to V. alginolyticus, to stimulate cells. If the first
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scenario is true, one should find that τ−1
f (t) and τ−1

b (t) have different time dependence or

equivalently Rf (t) and Rb(t) have different functional forms. However, if the second scenario

is true, there should be not much difference between τ−1
f (t) and τ−1

b (t) or Rf (t) ∝ Rb(t).

To conclude, the 3-step motility pattern of V. alginolyticus allows significant variations

in bacterial chemotactic behaviors. These variations can be acted on by natural selection

and give rise to distinct phenotypes observed in the wild. Compared to the 2-step swimming

pattern of E. coli, V. alginolyticus can engage in chemosensing and migration in both the

forward and the backward swimming intervals, and hence their “duty cycle” is ∼ 100% as

compared to ∼ 50−80% in E. coli [18, 48]. Thus, given a proper regulation in the backward

swimming interval, V. alginolyticus can migrate in a chemical gradient more efficiently than

their E. coli counterparts. An important aspect in 3-step chemotaxis is backtracking that

gives those bacteria heading down a gradient an opportunity to re-exploit what they find a

moment earlier. In our opinion, the full duty cycle, backtracking, and flicking are defining

characteristics of V. alginolyticus. These significant niches are likely selected for by the

ocean environment where a quick response to transitory signals is important. We showed

that for a swimmer executing the cyclic 3-step motility pattern, a biphasic response arises

naturally without the need to invoke cell localization as suggested for E. coli [27]. Moreover,

we showed that the biphasic response is most effective when the forward τf and the backward

τb swimming intervals are comparable. This makes biological sense since a brief forward or a

brief backward interval contributes little to motility, and consequently a monophasic response

is sufficient for migration. This also raises the interesting question why the non-motile CW

interval in E. coli is so long, taking up at least 20% of the duty cycle. If tumbling is just

to change the direction, would not it be better if CW interval is shorter? An interesting

possibility is that the ancestral cell that gave “birth” to E. coli and V. alginolyticus was a

3-step swimmer. However, when E. coli became specilized in a different environment, which

favored multiple flagella for motility, they gave up backtracking and flicking, resulting in a

tumbly movement. In this view, then, it is not surprising that E. coli ’s tumbling interval is

long and its chemotactic response is biphasic.

Based on motility alone, we propose two different mechanisms, independent and shared

chemosensing, by which cells of V. alginolyticus can optimize their migration speed in a
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linear gradient. Interestingly, the biphasic response appears in both types of chemotactic

strategies. The experiment that will be discussed in the next chapter illuminates how the

two motor states are regulated after a stimulation.
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5.0 ASYMMETRIC RESPONSES OF FORWARD AND BACKWARD

SWIMMERS

5.1 INTRODUCTION

When an E. coli cell is given a pulse of chemoattractant, its CCW bias Φ(t) increases

initially, it then decreases below its steady-state level Φ0 in 1 s, before relaxing towards Φ0

in 3−4 s (see the inset of Figure 5.1(A)). This finding, discovered nearly 30 years ago by Berg

and coworkers [18, 74], is fundamental to bacterial chemotaxis and has been successfully

explained by models that take into account cooperativity of chemoreceptors [78, 30, 86]

and robust adaption in the regulatory network of E. coli [3]. However, how general this

behavior is among different bacteria is not known, and has invited much speculations about

its biological origin and usefulness in chemotaxis. Pierre-Gilles de Gennes showed that

if the main goal of the bacterium is to reach the chemical source as rapidly as possible,

a monophasic response will do better than the experimentally observed biphasic response

[29]. However, it was subsequently shown by Clark and Grant [27] that the monophasic

response would not allow the cell to localize if needed. Paradoxically, it was shown by these

investigators that the monophasic response will cause the bacteria to accumulate in the low

chemoattractant region in long times. Clark and Grant recognized that cell localization is

just as important as directed motility and proposed that the biphasic response seen in E. coli

might reflect such dual requirements. Indeed, their theoretical analysis lends strong support

to their hypothesis and the calculated response function was in good agreement with the

measured one (see the solid line in the inset of Figure 5.1(A).

V. alginolyticus ’ ability to backtrack significantly enhances its ability to localize near a

point source as demonstrated in our recent experiment [92]. It was shown that V. alginolyti-
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cus could not only rapidly form a compact cluster near a point source of chemoattractant but

also had the cluster size five times smaller than that of E. coli despite their high swimming

speed. Heuristically, this can be explained by means of bacterial “diffusivity”D, which can be

calculated based on the observed 3-step motility pattern: D = v2sw⟨(∆f−∆b)
2⟩/6⟨(∆f+∆b)⟩,

where vsw≈50µm/s is the cell’s swimming speed, and ∆f and ∆b are the forward and the

backward intervals in a given swimming cycle [91]. For a bacterium to localize i.e. D ≈ 0, it

only requires that ∆f and ∆b are kept approximately the same near the source, which was

indeed observed in V. alginolyticus [92]. Hence, it is not clear whether the biphasic response

is necessary or even helpful for V. alginolyticus ’ localization near a source of attractant.

While de Gennes’ approach (delineated in Chapter 4) is appealing, its utility to 3-step

swimmers is questionable. In Chapter 4, we hypothesized that because of the reverse step,

V. alginolyticus can readily localize and thus the primary aim of the chemotaxis response for

this microorganism is to migrate as rapidly as possible in a chemical gradient. We derived

the response function(s) for a 3-step swimmer who senses the environment continuously using

a single response function or two separate response functions for the forward and backward

intervals, respectively (see Section 5.2). In the former case, the regulatory network does not

differentiate the swimming direction, which may be called shared sensing, and in the latter

case, the network regulates the two intervals autonomously, which may be called independent

sensing. We were surprised to find that over a broad range of parameters, such as the forward

τf (≡ ⟨∆f⟩) and the backward τb(≡ ⟨∆b⟩) swimming intervals, a biphasic response with a

positive and a negative lobe arises naturally for the 3-step swimmer [6].

The aim of this work is to check which of the above two hypotheses, shared vs. indepen-

dent sensing, is adopted by the marine bacterium. We conducted our measurement using

an optical trapping technique that allows us to determine both the switching rate S(t) and

the rotational bias Φ(t) in individual cells. Using conditional stimulations, we found that

V. alginolyticus perform chemotaxis using two separate response functions. We also found

that while the forward response is biphasic with a positive lobe followed by a negative lobe,

the backward response is monophasic. These findings have strong implications for molecular

events in the chemotaxis network and for the chemotaxis behaviors of the cells in a marine

environment.
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Figure 5.1: Response functions for independent and shared chemosensing revisited. Response
functions for independent (A) and shared (B) chemosensing. In both (A) and (B), we assume
τf = 0.5 s to be fixed. For independent sensing (A), the forward response Rf (t) (black curve)
is monophasic with a single time constant τf . The backward response Rb(t) on the other
hand is biphasic characterized by two time constants τf and τb. Depending on β ≡ τb/τf ,
Rb(t) could have either a single negative lobe (blue curve with β . 1), a single positive lobe
(red curve with β & 2), or an initial positive lobe preceding a negative lobe (green curve
with β = 1.5). In the inset, the solid dots represent the CCW bias measured by Block
et al. [18] for the E. coli stimulated impulsively at t = 0. The solid line is the fit using
Clark and Grant’s theory [27]. For shared sensing (B), there is only one response function
R(t) that is characterized by two time constants, τf and τb. Some representative response
curves are plotted using different colored lines. For β . 1, with increasing γ(≡ Rb(t)/Rf (t)),
the negative lobe becomes more prominent as shown by the red, black, and green curves
corresponding to γ = 0.5, 1.0, and 1.5, respectively. For γ = 1, while the black (β . 1)
and the purple (β = 1.5) curves have two lobes, the blue (β = 0.5) curve has only a single
positive lobe. The inset summarizes different responses for a range of parameters β and γ.
Here, in regions I and III, R(t) has a single positive lobe; in IV, it has a single negative lobe;
and in II, it has an initial positive and a long-time negative lobe. Note that the biphasic
regime (II) is broad and the 3-step swimmer V. alginolyticus is operating in this range as
indicated by the black cross.
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5.2 THEORY

The quantity we seek to determine is the bacterial chemotaxis response function R(t) to a

brief and weak stimulation. This function is biologically important because it can reveal on

the one hand the inner working of chemotaxis regulatory network, and on the other hand

how this function is shaped by environmental and evolutionary forces. Moreover, if the

regulatory system is linear, R(t) can also be used to predict bacterial behaviors in a complex

environment.

It is evident that de Gennes’ conclusion that a biphasic response is not advantageous

for the migration speed in a linear chemical gradient is valid for a microorganism executing

the run-tumble motility pattern. The same conclusion cannot be drawn for V. alginolyticus

because of its very different motility pattern. This makes one to wonder what would be the

optimal response for the cell to perform chemotaxis efficiently. To find out we generalized de

Gennes’ calculation to the case of 3-step swimmers, which is described in details in Chapter

4. Below, the key steps and the central results will be restated.

Since V. alginolyticus produce motility in both forward and backward swimming inter-

vals, it can admit two different response functions, one for the forward Rf (t) and one for the

backward Rb(t). This allows us to postulate two fundamental hypotheses for bacterial chemo-

taxis for the 3-step swimmers: (i) independent chemosensing and (ii) shared chemosensing.

In the first scenario, the bacterium uses different response functions, Rf (t) and Rb(t), for

migration in a chemical gradient. In the second scenario, Rf (t) and Rb(t) can differ only in

the amplitude, R(t) (≡ Rf (t) = Rb(t)/γ), where γ is constant. It is evident that (ii) is more

restrictive than (i) and thus given everything being equal, the independent sensing should

produce a higher drift velocity in a linear gradient. However, independent sensing is more

costly to the bacterium because for this scheme to be effective, there must be an information

back-flow from the motor to the regulatory network to inform its current status. This would

require additional chemical steps and possibly new proteins in the regulatory network.

Our calculation is based on the Poisson surviving probability defined as [29],

Ps(∆s) = exp

[
−
∫ ∆s

0

dt′ks(t
′)

]
, (5.1)
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where ∆s is the persistence time while swimming forward (s = f) or backward (s = b), and

the switching rate ks(t) is a function of the chemoeffector concentration c(t). For a weak

signal, we can assume a linear response so that,

ks(t) = ks

1− t∫
−∞

dt′Rs(t− t′)c(t′)

 , (5.2)

where ks = τ−1
s is the steady-state value and c(t) may be considered as a linear approximation

of the ligand binding free-energy fc(t) = ln
(

1+c(t)/KI

1+c(t)/KA

)
recently proposed by Tu et at. [86].

Here,KI andKA are respectively the dissociation constants of the inactive and active forms of

the chemoreceptors. KA is usually several orders of magnitude greater than KI and therefore

can be neglected for a weak stimulus, which is the case in the present experiment. Using the

above definition, a straightforward but tedious calculation yields the mean displacement x̄i

during one swimming cycle (τf + τb),

x̄i =

τ 2f

∞∫
0

dtRf (t) exp(−
t

τf
) +τ 2b

∞∫
0

dtRb(t)

[
exp(− t

τb
)− f(t)

] ⟨v2i ⟩∇c (5.3)

where the subscript i stands for the vector component along the chemical gradient direction,

the brackets ⟨. . .⟩ represent the angular average for the swimming v⃗ velocity, and

f(t) =
τ 2f

τf − τb

(
1

τb
exp(− t

τf
)− 1

τf
exp(− t

τb
)

)
. (5.4)

By requiring that the response functions Rs(t) are well behaved in long times, which can

be implemented by demanding the integral of R2
s(t) to have a finite variance given by σ2

s =

τs
∫∞
0

Rs(t)
2dt [27], we show that for scenario (i), the optimal drift velocity V (≡x̄i/(τf + τb))

is obtained if Rf (t) is monophasic and Rb(t) is biphasic with the result [6],

Rf (t) ∝
σf

τf
exp(− t

τf
), (5.5)

Rb(t) ∝
σb

τb

[
exp(− t

τb
)−

τ 2f
τf − τb

(
1

τb
exp(− t

τf
)− 1

τf
exp(− t

τb
)

)]
. (5.6)
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We note that depending on the ratio of the two swimming intervals β(= τb/τf ), Rb(t) exhibits

two different behaviors. For 1 ≤ β < 2, Rb(t) consists of a positive lobe in short times and a

negative lobe in long times, which is a characteristic of chemotaxis response with a negative

feedback. Outside the above specified β range, Rb(t) is always negative for β < 1 and positive

for β ≥ 2 [6]. Some representative response functions are plotted in Figure 5.1(A).

For scenario (ii), the response function R(t) is given by,

R(t) =
σb

τf + τb

{
exp(− t

τf
)

+γ
τ 2b
τ 2f

[
exp(− t

τb
)−

τ 2f
τf − τb

(
1

τb
exp(− t

τf
)− 1

τf
exp(− t

τb
)

)]}
. (5.7)

This function is biphasic for all values of β and γ. However, depending on their values, R(t)

can be positive (R(t) > 0), negative (R(t) < 0), or exhibit a double-lobe (positive in short

times and negative in long times) feature. The latter is characteristic of chemotaxis enabled

by adaptation. Typical response functions in different parameter regimes are displayed in

Figure 5.1(B), and the diverse behaviors of R(t) are summarized by the phase plot in the

inset of Figure 5.1(B). We noticed that for V. alginolyticus the steady-state response with

β≈1 falls inside regime II, which has the double-lobe feature.

Using the optimized response functions, the drift velocities are calculated V = x̄i/(τf +

τb). For independent sensing, we find

Vi =
⟨v2i ⟩∇c

τf + τb

τ 2f

∞∫
0

dtRf (t) exp(−
t

τf
) +τ 2b

∞∫
0

dtRb(t)

[
exp(− t

τb
)− f(t)

] , (5.8)

where Rf (t), Rb(t), and f(t) are given by Eqs. 5.4-5.6. For shared sensing, we find

Vs =
⟨v2i ⟩∇c

τf + τb


∞∫
0

dtR(t)

[
τ 2f exp(−

t

τf
) + γτ 2b

(
exp(− t

τb
)− f(t)

)] , (5.9)

where R(t) is given by Eq. 5.7. Figure 5.2 displays the ratio of the drift velocities Vi/Vs

as a function of the time ratio β = τf/τb and the amplitude ratio γ, i.e., γ≡ Rb(t)/Rf (t)

for shared and γ ≡ σb/σf for independent sensing. It is evident from this graph that the
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Figure 5.2: Drift velocity ratio for independent and shared chemosensing. The drifting
velocities, Vi and Vs, are calculated using the optimized response functions for independent
and shared chemosensing, and their ratio Vi/Vs is plotted. For both cases we define β ≡ τb/τf
and γ to be the amplitude ratio. We noted that for the biologically relevant range, γ ≃ 1 and
β . 1, Vi/Vs > 1, indicating that independent chemosensing is more efficient for migration
in a linear chemical gradient. Note that the base of the white region in the plot corresponds
to the plane where Vi/Vs = 1.

migration speed is higher for independent sensing than for shared sensing for the biologically

relevant range of parameters, γ ≃ 1 and β ≃ 1.

To determine the response functions experimentally, we measured both the mean switch-

ing rate S(t) and the CCW bias Φ(t) after a brief stimulation administrated at t = 0 (see

Figure 5.5). For a two-state motor, S(t) and Φ(t) uniquely specifies the statistical properties

of the motor switch. In particular, when the stimulation is weak, Eq. 5.2 yields

S(t) ≡ 2

τf (t) + τb(t)
≈ S0

1− Φ0

t∫
−∞

Rf (t− t′)c(t′)dt′ − (1− Φ0)

t∫
−∞

Rb(t− t′)c(t′)dt′

 ,

(5.10)

Φ(t) ≡ τf (t)

τf (t) + τb(t)
≈ Φ0

1 + (1− Φ0)

t∫
−∞

(Rf (t− t′)−Rb(t− t′)) c(t′)dt′

 , (5.11)
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where S0 = 2/(τf + τb) and Φ0 = τf/(τf + τb) are the steady-state switching rate and

the bias. These relationships are informative in that ∆S(t)(≡ S(t)− S0) is proportional

to the Φ0-weighted sum of Rf (t) and Rb(t) whereas ∆Φ(t)(≡ Φ(t)− Φ0) is proportional

to their difference. It follows that if chemosensing is shared with γ ≃ 1, the bias Φ(t)

should be weakly dependent on time and Eq. 5.10 allows the response function R(t) to be

determined. If chemosensing is independent, Rf (t) and Rb(t) can be determined by solving

Eqs. 5.10 and 5.11. For continuous stimulation −∞ < t′ < t, the convolution integrals

R̃s(t) ≡
∫ t

−∞ Rs(t− t′)c(t′)dt′, where s = (f, b), are given by,

R̃f (t) =
Φ(t)− Φ0

Φ0

+
S0 − S(t)

S0

, (5.12)

R̃b(t) =
Φ0 − Φ(t)

1− Φ0

+
S0 − S(t)

S0

. (5.13)

The response functions Rf (t) and Rb(t) can be extracted by a Fourier transformation method.

5.3 RESULTS

5.3.1 Unconditioned switching rate measurements

Although the measured quantity in our experiment (see Chapter 2 and Appendix A.2) is the

switching rate S(t), its functional form is remarkably similar to the CW bias seen in E. coli

[18]. In both cases, the responses are biphasic, i.e., as a result of a positive stimulus, E. coli

suppress their CW bias as the run interval is lengthened but V. alginolyticus suppress their

switching rate. Once the stimulus is withdrawn, E. coli cells increase their CW bias but V.

alginolyticus increase their switching rate. Biologically these responses make sense for each

bacterium and can be interpreted as its attempt to stay closer (for E. coli) or return (for

V. alginolyticus) to a “greener pasture”. However, because of the finite memory time both

bacteria eventually restore their steady-state behavior.
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Hence, our measured S(t) in V. alginolyticus displays all canonical features of bacterial

chemotaxis enabled by adaptation. Since in this experiment the stimulation is random, oc-

curring either during CCW or CW intervals for the bacteria in the population, the switching

rate S(t) is an average of the responses in both swimming intervals. Below, we attempt to an-

alyze the implication of our measured S(t) on how V. alginolyticus regulate their swimming

intervals. For instance, can S(t) say anything about whether the chemosensing/response in

V. alginolyticus is shared or independent?

If V. alginolyticus employ the independent chemosensing scheme, Eq. 5.2 yields the

mean switching rate S(t) given by,

S(t) = S0

[
1−

∫ t

−∞
R̄(t− t′)c(t′)dt′

]
, (5.14)

where R̄0(t) = Φ0Rf (t) + (1 − Φ0)Rb(t). Using the calculated response functions in Eqs.

5.5 and 5.6 and the fact that for V. alginolyticus Φ0 ≃ 0.5 (see Section 5.3.2), we found

R̄(t) ≃ (Rf (t) +Rb(t))/2 or,

R̄(t) ∝ σf

τf + τb

[(
1− γ′ τ 2f

τb(τf − τb)

)
exp

(
− t

τf

)
+ γ′

(
1 +

τf
τf − τb

)
exp

(
− t

τb

)]
. (5.15)

This function contains four parameters, the overall amplitude R0 ∼ σf/(τf + τb), the am-

plitude ratio γ′ ≡ σb/σf , and the two mean dwell times τf and τb. We noticed that in the

limits that τf ≃ τb and γ′ ≃ 1, which will be justified below (Section 5.3.3), R̄(t) attains the

following simple form,

R̄(t) = R0

[
1− t

τ
−
(
1 +

t

τ

)
∆

τ

]
exp

(
− t

τ

)
(5.16)

where τb = τ , τf = τ +∆, and ∆ is a small parameter.

On the other hand, if V. alginolyticus employ the shared chemosensing scheme, S(t) is

given by,

S(t) = S0

1− (Φ0+γ (1− Φ0))

t∫
−∞

R(t− t′)c(t′)dt′

 , (5.17)
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where R(t) is given by Eq. 5.7. Again, if we take the limit γ → 1 and assume τf − τb = ∆

is small, we found S(t) = S0

[
1−

∫ t

−∞ R(t− t′)c(t′)dt′
]
, which has the same functional form

as Eq. 5.14, but the response function is given by,

R(t) = R0

[
1− t

τ
−
(
t

τ
− 4

)
∆

τ

]
exp

(
− t

τ

)
. (5.18)

It follows from Eqs. 5.16 and 5.18 that when ∆/τ ≪ 1, the average response function R̄(t)

for independent sensing and the response function R(t) for shared sensing have essentially

the same mathematical form,

R̄(t) ≃ R(t) ≃ R0

(
1− t

τ

)
exp

(
− t

τ

)
. (5.19)

Interestingly, Eq. 5.19 is identical to the solution of the response function of a critically

damped harmonic oscillator, which is commonly used in engineering designs that provide

fast response, high fidelity, and robust system controls [7].

Assuming a δ-in-time stimulation c(t) = c′δ(t), the switching rate for both scenarios (i)

and (ii) is simply given by S(t) = S0

[
1− c′R̄(t)

]
, which is identical to Eq. 2.15 used to fit

our data in Section 2.2.4.2.

5.3.2 Conditional statistics and motor rotational bias

It is evident from the above analyses that our measured S(t) is not sufficient to answer the

question whether V. alginolyticus adopt shared or independent chemosensing. It appears

that such a question cannot be addressed without a pure ensemble in which cells’ rotation

states are well defined at the time of stimulation. To conduct such a conditional statistical

analysis we look more carefully at the time traces of individual bacteria in the optical trap.

Such inspection reveals subtle but discernible differences in the transitions from one rotation

state to another as can be seen in Figure 5.3(C). Specifically, we noticed that there is a

slight asymmetry in the transition rates between the two states. For the case displayed in

Figure 5.3(C), the transition from the lower (−x0) to the upper (+x0) state is faster than

the transition from the upper to the lower state (see Appendix A.2 for the definitions of

the ±x0 states), and they appear to be systematic. We reasoned that since the transition
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from backward to forward swimming is intervened by a flick, the slower transition should

correspond to the switch to forward swimming. We also noticed that the stability of the

two states in the optical trap are not the same. For the example given in Figure 5.3(C), the

level of the lower state is more stable than the level of the upper state. The slow decline

of the upper states suggests that the cell body is more likely to drift towards the trapping

center during these swimming intervals than the lower state. Among a few thousand trapped

bacteria, we found that a significant fraction of them behave in this fashion. For almost all

of the cells that exhibit such behavior, the slanted state precedes the slower motor reversal

event, and according to our reasoning, it is designated as the CW or the backward swimming

direction. However, the features described above in the time series are not always apparent;

for certain cells the difference between the transition rates or the inclination is too small to

be practical for differentiating the two rotational states. Using the above criteria, we were

able to assign, with confidence, the directions of motor rotations to approximately 50% of

the trapped cells.

Fortuitously we found another interesting feature in the time series that can help us

identify the sense of flagellar motor rotations. By power spectrum analysis of individual

swimming intervals in the time series (see Figure 5.3(C), and Appendix A.2), we found that

there is a consistent pattern in the rotation frequencies of the cell body Ω(t) and the flagellum

ω(t), which are displayed in Figure 5.3(D). Specifically, it was observed that both ω(t) and

Ω(t) fluctuate in synchrony with the two motor states and ω(t) and Ω(t) are out of phase with

each other; i.e., if one of the states has a higher flagellar frequency ω, the corresponding cell-

body frequency Ω will be lower than the other state. However, upon transition to the next

state, the flagellum frequency will decrease but the cell-body frequency will increase. This

pattern repeats from one swimming cycle to the next as delineated in Figure 5.3(D). Hence

our observation shows that the flagellum and the cell-body rotation frequencies in the two

swimming states are anticorrelated. While the physical mechanism for this anticorrelation

is unknown, it provides a convenient means to identify the motor rotation directions. Since

V. alginolyticus swim faster in the backward direction, by ∼ 15% based on our unpublished

result and by as much as ∼ 50% according to Ref. [85] and since the higher cell-body

rotation speed gives a higher torque, we postulate that the state with a higher (lower) cell-
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Figure 5.3: Experimental setup and signal processing. The center of the optical trap is
initially placed at a distance ∼ 3µm away from the tip of a serine-filled micropipette. Once
a bacterium falls in the trap, the computer initiates the movement of the optical tweezers
forcing the bacterium to move out (along y) of the high concentration region. A slight tilt
(∼ 3o) of the optical trap allows the forward (A) and backward (B) swimming intervals to be
recorded on the position sensitive detector (PSD). (C) The plot depicts the time trace x(t)
of the bacterial cell-body position (black line) in the optical trap. The red line is a result of
the convolution of the data x(t) with a differentiate filter (the derivative of a Gaussian with a
width of 50ms). The filtering procedure allows the individual motor reversals to be precisely
located on the time trace. We observed that there exist two quasi stable states, and the
transition from the lower to the upper state is generally faster than the upper to the lower
state. Such an asymmetry is due to the flicks that occur only during the backward to forward
transition. Thus, in this time trace, we assign the lower state as the CCW (forward) and the
upper state the CW (backward) rotation. We also noticed that the stability of the upper and
the lower states are not the same. The inclination of the upper state suggests that during
this swimming interval the cell body gradually shifts towards the trapping center. Among a
few thousands of trapped bacteria, we found that a significant fraction of them behaves this
manner. In (D), the anticorrelation between the cell-body rotation frequency Ω(t) (black
curve) and the flagellum rotation frequency ω(t) (red curve) is illustrated for the same time
series in (C).
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body (flagellum) rotation speed is the CW or backward swimming state. By a blind-fold

test, we found that this assignment of the rotation states is in very good agreement with the

first method based on the asymmetry in the state-to-state transition rates.

Since the correct assignment of the rotation state is very important in this experiment, we

sought other means to justify our method. In our previous experiment, the steady-state dwell

time distributions P (∆f ) and P (∆b) were measured in free-swimming bacteria [92]. These

distributions exhibit markedly different behaviors for large and small ∆s that can be used to

verify our designation method, where s = (f, b). In light of this, the motor rotation directions

of n = 323 unstimulated cells were identified using time series similar to Figure 5.3(C).

Ignoring the first interval, since it is typically a partial interval, we constructed the dwell

time distributions P (∆f ) and P (∆b) as displayed in Figure 5.4. We found that for the forward

intervals P (∆f ) (black circles) is peaked at a shorter time than its backward counterpart

P (∆b) (red circles). Moreover, when plotted in semi-logarithmic scales as the ones delineated

in the inset, we found that the forward intervals has a much broader tail than for the

backward intervals. These features are in good agreement with our early observations [92].

Quantitatively we found that the peak positions for the forward and the backward intervals

are given respectively by ∆fmax ≈ 0.15 s and ∆bmax ≈ 0.2 s. The measured distribution

functions also allow us to calculate the steady-state mean dwell times τf = 0.33 ± 0.01 s

and τb = 0.31 ± 0.01 s. These results are again consistent with what were observed in free-

swimming V. alginolyticus [92], and they lead to the steady-state forward bias Φ0 ≃ 0.52.

Combining these methods (asymmetrical transition rates and anticorrelation between

ω(t) and Ω(t)), we were able to assign the motor rotation states to ∼ 80% of the cells we

trapped. This allows us to separate the bacteria into two groups with the one in which

all cells swim forward and in the other all cells swim backward at the time of stimulation

(t = 0).

The first column in Figure 5.5 depicts the measurements of the conditional switching

rates, SF (t) and SB(t), for c0 = 1, 5 and 10µM, corresponding to panels (A,E), (I,M) and

(Q,U), respectively. Here the subscripts F and B stand for the ensembles in which the

bacteria swim exclusively in the forward and the backward direction at t = 0, respectively.
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Figure 5.4: Forward and backward dwell time distributions. The main figure depicts the dwell
time distributions P (∆s) for forward s = f (black circles) and backward s = b (red circles).
The black and red curves are fits to experimental data using the log-normal distribution,

P (∆s) = 1√
2π∆2

sσ
2
exp

[
− (ln∆s−µ)2

2σ2

]
, where µ and σ are the fitting parameters. Here, µ ≃

−1.54 and σ ≃ 0.48 for the forward intervals, and µ ≃ −1.33 and σ ≃ 0.44 for the backward
intervals. The insets are the semi-log plots of the same distribution functions.
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Overall, we found that SF (t) and SB(t) behave similarly for a given stimulation level c0. This

similarity explains why the measurement of the average switching rate alone is insufficient to

tell whether one or two response functions are used by cells of V. alginolyticus for chemotaxis.

One also observes in the first column of Figure 5.5 that as c0 increases, there is a significant

change in the initial suppression of the switching rates, which is indicated by ∆S in the

panels. In particular, for c0 = 10µM, the switching is nearly completely suppressed with

S = 0, indicating the onset of a nonlinear response in the chemotaxis network.

In the second column of Figure 5.5, the conditional CCW bias, ΦF (t) and ΦB(t), are

plotted in panels (B,F),(J,N),(R,V) as a function of time for c0 = 1, 5, and 10µM, re-

spectively. One observes that for the lowest concentration (c0 = 1µM), ΦF and ΦB relax

towards the steady-state Φ0(≃ 0.5) similarly with a decay time ∼ 0.2− 0.3 s that is close to

the steady-state switching rate S0 ≃ 3.3 ± 0.3 s−1 (see the first column of Figure 5.5). As

c0 increases to 5µM, while the relaxation time for ΦB remains unchanged, the time for ΦF

is nearly doubled to ∼ 0.58 s. When the serine concentration is increased further to 10µM,

we found that both ΦF (t) and ΦB(t) persist for a longer time after the stimulation, more so

for ΦF (t) than for ΦB(t). The typical time scales are ∼ 0.58 s and 0.52 s for the forward and

backward swimmers, respectively. As a result, the functional forms of ΦF (t) and ΦB(t) be-

come somewhat similar again as in the case of c0 = 1µM. The above observation shows that

the chemical sensitivity to the serine in the forward and the backward direction are quite

different. The observation also demonstrates that in V. alginolyticus both swimming inter-

vals are extended upon exposure to chemoattractant. This behavior however is at variance

with E. coli for which only the run interval is extended upon exposure to chemoattractant,

leaving the tumbling interval untouched [13] or shortened [18, 28]. A striking feature of both

sets of data (5 and 10 µM) is that while ΦB(t) relaxes toward Φ0 monotonically, ΦF (t) dips

below Φ0 at t ≃ 1 s before leveling off toward Φ0 at a longer time. For all the measurements

presented, Figures 5.5(B,F),(J,N),(R,V), we found that in general the forward response is

stronger than the backward response.
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Figure 5.5: Pure ensemble measurements. The top eight panels (A-H), the middle eight
panels (I-P), and the bottom eight panels (Q-X) correspond to measurements using serine
concentrations c0 = 1, 5, and 10µM, respectively. The first column is for the switching rates
SE(t), where the subscript E=F or B stands for the pure ensemble when at t = 0 all the cells
are swimming forward or backward and is applicable to the corresponding row of panels.
(continued on page 74)
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(continuation of the caption of Figure 5.5) Here, ∆S indicates the initial suppression of

the switching rate relative to its steady-state value S0. The second column is for the CCW

bias ΦE(t) with the same subscript designation as before. Here, the green lines are smoothed

data using the Bezier filter. Similar smoothing was also carried out for the switching rates

as presented in the first column. The third column is for the switching rates, kf (t) and

kb(t), where the solid black lines are for the directly and dotted lines are for the indirectly

stimulated cells. For example, for the pure CCW (CW) ensemble, E=F (E=B), kf (t) (kb(t))

is the switching rate for the directly stimulated cells and k′
b(t) (k

′
f (t)) is the switching rate

for the indirectly stimulated cells. The last column is for the response functions Rf (t) and

Rb(t), where again the solid lines are for the direct response and dotted lines are for the

indirect response. The switching rates and the response functions are calculated using SE(t)

(first column) and ΦE(t) (second column) and Eqs. 4.1 and 4.2. See text for more details.

Note that because of the number of switched cells shortly after the serine pulse is small,

the indirect switching rates, k′
b(t) and k′

f (t), is not very reliable as can be seen by the large

fluctuations in the dotted lines in the third column. The same can also be said about R′
f (t)

and R′
b(t), which are presented by the dotted lines in the fourth column.
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It is also instructive to evaluate the average bias ΦM(t) without sorting the cells according

to their initial (CCW or CW) states. The data for this mixed ensemble is displayed in Figure

5.6 for c0 = 1, 5, and 10µM. For all runs the graphs show that initially ΦM(t → 0) stay

high (∼ 60 − 65%) and then decay toward the steady-state value Φ0 ≃ 0.5 over time. For

the two high concentration runs (c0 = 5, and 10µM), the relaxation towards Φ0 is not

monotonic but appears to oscillate. Note in particular for small times, ΦM(t) increases

momentarily before declining rapidly. This can only happen if the forward swimmers have a

longer persistence time than the backward swimmers after the brief stimulation, indicating

that these two sub-populations must have different response times. It is also peculiar that for

this mixed ensemble, the initial forward bias is not at the steady-state level Φ0. The effect

can be understood as a result of bacterial 3-step motility pattern, which is not completely

symmetric for the forward and backward swimmers due to the flick. That is one of the

reasons that a backward swimmer is captured because it misses the trap during the forward

run. In other words, the forward swimming has the tendency to preempt the opportunity for

a cell to be captured in the backward direction. This effect is purely geometrical and can be

reproduced even when there is no chemoattractant present, namely when the micropipette

is filled only with TMN buffer. This also explains why increasing stimulation strength only

acts to increase the delay time in ΦM(t) but not the amplitude of the bias as seen in Figures

5.6(B,F,J). This observation is in sharp contrast with the switching rate SM(t) displayed in

Figures 5.6(A,E,I), where the suppression in the switching rate ∆S in early time is a strong

function of c0. In particular, we found that for a brief exposure of c0 = 10µM serine, the

switching rate is nearly completely suppressed S(t → 0) ≈ 0 in short times. The observation

is also at variant with what was found in E. coli for which the amplitude of the bias changes

rapidly with the chemoattractant concentration [46]. This suggests that the chemotactic

regulation mechanisms in V. alginolyticus and in E. coli are fundamentally different; in

the former it is the switching rate but in the latter it is the motor bias that is actively

regulated by the cells. The observation also raises interesting questions about why different

microorganisms use different regulation mechanisms, and how these different regulations are

performed by the networks.

The above observation allows us to make the following general remarks about the response
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Figure 5.6: Mixed ensemble measurements. The measurements for different stimuli, c0 =
1, 5, and 10µM, are presented in the top (A-D), the middle (E-H), and the bottom panels
(I-L), respectively. The brief stimulus is administrated at t = 0 for a mixed ensemble of cells.
One observes that shortly after the stimulation, the switching rates SM(t) of the population
decrease markedly as c0 increases, which are displayed by the figures in the first column.
Here ∆S indicates the initial suppression of the switching rate relative to its steady-state
value S0. The second column is for the CCW bias ΦM . It should be noted that at t = 0, there
is an excess of forward swimmers in the mixed population, ΦM(t → 0) > Φ0 ≃ 0.5, which
can be attributed to the trapping bias as discussed in the main text. The third column is
for the forward kf (t) (black lines) and backward kb(t) (blue lines) switching rates calculated
based on Eqs. 4.1 and 4.2. The last column is for the forward Rf (t) (black lines) and the
backward Rb(t) (blue lines) response functions.
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functions in V. alginolyticus : (i) Since Φ(t) increases momentarily shortly after the stimulus,

it strongly suggests that chemosensing/control in V. alginolyticus is not shared, requiring

two response functions to control the two swimming intervals. (ii) Since both forward and

backward swimming intervals are extended, the amplitudes of the response functions, Rf (t →

0+) and Rb(t → 0+) must be positive. (iii) Since the response in the forward direction is

stronger than in the backward direction and because τf ≃ τb [92], Eq. 5.2 suggests that

the positive lobe of Rf (t) must be greater than that of Rb(t). Below, we attempt to use the

experimentally obtained conditional statistics on SE(t) and ΦE(t) to derive the mathematical

forms of Rf (t) and Rb(t) so that the above features can be made quantitative.

5.3.3 V. alginolyticus employ independent chemosensing

Based on their initial state of rotations, we reanalyze the switching rate data. For the initially

CCW ensemble, the rate is designated as SF (t) and for the initially CW ensemble, the rate

is designated as SB(t). The data is shown in the first column of Figure 5.5 for different serine

concentrations. One observes that these conditioned switching rates are qualitatively similar

to those of the mixed ensembles (see Figure 2.8), both showing a significant suppression

of the switching rate in early times and a relaxation to S0 in long times. Moreover, the

suppression of S(t), denoted as ∆S, is a sensitive function of c0.

Eqs. 5.10 and 5.11 allow us to extract Rf (t) and Rb(t) from the measured switching rate

S(t) and bias Φ(t) for chemical stimulations c(t) that are continuous in time. However, for a

brief stimulation administrated at t = 0, c(t) = c′δ(t), these equations need to be modified in

order to extract the response functions. Imagine that we have a pure ensemble of cells and

all of them swim forward (or in the CCW state) at the time of stimulation, t = 0. If we look

at these cells at a later time t, some will still be in the forward state but the other will switch

to the backward state. The cells which remain in the forward state will have a transition

rate kf (t) that depends on time. However, for those cells who have switched, they will have

a different transition rate k′
b(t). Here the prime indicates that the transition rate in this

backward interval is influenced by the stimulation that occurred in the previous (forward)

interval. Hence, k′
b(t) characterizes what one may call the “indirect” stimulation effect or
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the cross-talk between intervals. By the same token, we can also prepare an initially pure

ensemble with all cells swimming backward (or in the CW state) at the time of stimulation,

t = 0. In this case the direct transition rate is kb(t) and the indirect transition rate is k′
f (t).

Below, we derive general expressions that allow these transition rates and their corresponding

response functions to be extracted.

For a bacterial population that consists of nf (t) forward swimming cells and nb(t) back-

ward swimming cells, the time evolution equation is given by,

dnf (t)

dt
= −kf (t)nf (t) + kb(t)nb(t), (5.20)

dnb(t)

dt
= kf (t)nf (t)− kb(t)nb(t), (5.21)

where n = nf (t) + nb(t) is a constant. It follows from the above expressions, the population

based switching rate S(t) and the forward bias Φ(t) ≡ nf (t)/n are defined as,

S(t) = kf (t)Φ(t) + kb(t) (1− Φ(t)) , (5.22)

dΦ(t)

dt
= −kf (t)Φ(t) + kb(t) (1− Φ(t)) . (5.23)

Since S(t) and Φ(t) are experimentally measured, the above equations allows us to determine

the transition rates in both swimming intervals,

kf (t) =
1

2Φ(t)

(
S(t)− dΦ(t)

dt

)
, (5.24)

kb(t) =
1

2 (1− Φ(t))

(
S(t) +

dΦ(t)

dt

)
. (5.25)

Note, the switching rate obtained in this way is model independent. If moreover the system

is linear, these transition rates can be expressed in terms of the response functions given by

Eq. 5.2.

For the pure CCW ensemble, we have ΦF (0) = 1, SF (0) = kf (0), and
dΦF (0)

dt
= −kf (0).

Eqs. 5.2, 5.24, and 5.25 allow the switching rate kf (t) and the response function Rf (t) of the

directly stimulated subpopulation, and the switching rate k′
b(t) and the response function
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R′
b(t) of the indirectly stimulated subpopulation to be calculated. Likewise, for the pure

CW ensemble, we have ΦB(0) = 0, SB(0) = kb(0), and dΦB(0)
dt

= kb(0). The same set

of equations allow the switching rate kb(t) and the response function Rb(t) of the directly

stimulated subpopulation, and the switching rate k′
f (t) and the response function R′

f (t) of

the indirectly stimulated subpopulation to be calculated. For the pure CCW ensemble, kb(t)

defined by Eq. 5.25 gives the indirect switching rate k′
b(t). On the other hand, for the pure

CW ensemble, kf (t) defined by Eq. 5.24 gives the indirect switching rate k′
f (t).The results

of these data analyses are given in the third and fourth columns in Figure 5.5. Here, the

solid black lines are for the direct (or unprimed) quantities and the dotted lines are for the

indirect (or primed) quantities.

One observes that for the low concentration of serine (see Figures 5.5(C and G)), c0 =

1µM, the group of forward swimmers responds to the serine stimulus weakly, which can

been seen by the small depression in kf (t) shortly after stimulation (t = 0) as displayed by

the solid black line in (C). On the other hand, the same stimulus produces a more acute

response in the backward swimmers in that it produces a greater depression in the switching

rate kb(t) initially but, kb(t) recovers very rapidly in less than 0.1 s as depicted by the solid

black line in (G). As the concentration increases (see Figures 5.5(K and O)), c0 = 5µM, we

found that both kf (t) and kb(t) change significantly as indicated by a large depression in

both quantities near t = 0. Interestingly, however, the manner that kf (t) and kb(t) approach

the steady state is quite different; the former is relatively slow characterized by a broad

maximum at t ≃ 1 s whereas the latter is very fast, similar to the weak-stimulation case,

and appears to oscillate on its way to recovery. As the serine concentration increases further

(see solid black lines Figures 5.5(S and W)), c0 = 10µM, the initial switching rates for both

groups of bacteria decrease more. However, most significantly we noticed that the recovery

time for the backward swimmers now become long and is almost comparable to their forward

counterparts.

Now lets turn our attention to the response functions. For a weak impulsive stimulus

c(t) = c′δ(t), Eq. 5.2 yield kf (t) = kf (1− c′Rf (t)) and k′
b(t) = kb (1− c′R′

b(t)) for the

CCW ensemble and kb(t) = kb (1− c′Rf (t)) and k′
f (t) = kf

(
1− c′R′

f (t)
)
for the CW en-

semble. Given the measured transition rates, the corresponding response functions thus can
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be calculated in this limit and the results are presented in the last column of Figure 5.5.

Here, we plotted c′Rf (t), c
′R′

b(t), c
′Rb(t), and c′R′

f (t)) as a function of time for c0 = 1µM

(D,H), 5µM (L,P), and 10µM (T,X). We noticed that while the indirect response functions

have an amplitude c′R′
s(t → 0) ≡ c′R′

s0 of unity independent of c0, which is required for

k′
s(t → 0) → 0, the corresponding quantity for the direct response functions increases with

c0. An important feature of the response functions in Figure 5.5 is that the direct response

of forward swimmers is biphasic, consisting of a short-time positive lobe and a long-time

negative lobe. The direct response for the backward swimmers, on the other hand, appears

to be more consistent with a monophasic, positive response in short times, albeit based on

our data we cannot rule out the possibility that this backward response function is oscillatory

or even biphasic when c0 becomes large enough. These remarkable features of the response

functions also appear in the indirect response functions as delineated by the dotted lines in

plots presented in the fourth column, i.e., k′
f (t) is biphasic but k

′
b(t) is monophasic. We note

that the direct response functions obtained for the pure ensembles are nearly identical to

those determined using the mixed ensemble (see Figure 5.6), indicating that our approach

is self consistent.

How does the brief stimuli administrated at t = 0 affect cells’ subsequent switching

behaviors, i.e., after they leave the current swimming state? This is characterized by k′
b(t)

for the CCW ensemble and k′
f (t) for the CW ensemble, which are plotted as the dotted lines

in (C, K and S) and (G, O and W), respectively. These indirect effects signify the inheritance

of information from one swimming interval to the next and can be important for bacterial

chemotaxis. Since transmission of information is via molecules inside the cell, the memory

time and fidelity are two important characteristics. We noticed that when the stimulation

is weak (c0 = 1µM), the indirect effect appears to be stronger than the direct effect in the

sense that changes in k′
f (t) and k′

b(t) are bigger and last longer. However, this seemingly

paradoxical effect is actually expected because as delineated earlier, V. alginolyticus have a

refractory period upon switching to a new state (see Figure 5.4). Hence, shortly after a cell

is switched, its switching rate is depressed, which is consistent with the dotted lines in (C)

and (G). Interestingly, as c0 increases we found that inheritance of memory from forward to

backward intervals is different from backward to forward intervals. Our data shows that the
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backward intervals are more strongly influenced by the stimulation in the forward direction

as indicated by a greater change in k′
b(t) than k′

f (t) as c0 increases. Biologically, this seems

to make sense because information passed from the backward interval to the forward interval

has little or no value to the cell since after the flick, it will swim in a new random direction.

However, the situation is considerably different for the information passed from the forward

to the backward swimming interval. In this case, since the backward trajectory is strongly

correlated with the forward trajectory, the information can be used by the bacterium to

perform chemotaxis more efficiently.

Figure 5.7 displays c′Rf0 and c′Rb0 as a function of c0. We found that within the mea-

surement uncertainties, Rf0 ≃ Rb0 for a given c0, and hence the condition γ = Rb0/Rf0 ≃ 1

used in our calculations in Section 5.2 is reasonable. Figure 5.7 shows that c′Rf0 and

c′Rb0 are strongly nonlinear in c0 but is consistent with the logarithmic dependence, c′ =

t0 ln(1 + c0/KIs), suggested by the Monod-Wyman-Changeux (MWC) model of Tu et al.

[86]. We fit the experimental data by adjusting the parameters KIs and Rs0t0, where the

bacterial exposure time to serine t0 = 0.37 s may be taken as given [4] and s = f, b. This

fitting procedure yields the following results: In the forward direction, KIf = 0.71±0.07µM

and Rf0t0 = 0.36 ± 0.06 and in the backward direction, KIb = 0.17 ± 0.07µM and Rb0t0 =

0.23± 0.06. Thus, for V. alginolyticus the forward swimming interval is characterized by a

somewhat larger response amplitude but a lower serine sensitivity. As can be seen by the red

and green lines in Figure 5.7, the quality of the fits is reasonably good. However, because of

the limited data and the possibility that at c0 = 10µM, the response might be already non-

linear, the uncertainties in KIf and KIb are large. The above fitted values should be viewed

as estimates of the dissociation constants of serine binding to receptors of V. alginolyticus.

A significant finding of these measurements is that Rf (t) and Rb(t) have different func-

tional forms, supporting the notion that V. alginolyticus use different responses to explore

oceanic environments. Specifically, we found that forward response function Rf (t) is biphasic

consisting of a positive lobe in short times and a negative lobe in long times. The positive

lobe is overwhelmingly greater than the negative one, suggesting that during the forward

swimming interval, the chemotaxis network is capable of signal comparison and amplifica-

tion. On the other hand, the backward response function Rb(t) is monophasic, consisting of
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Figure 5.7: Amplitudes of the non-dimensional response functions. The solid circles and
shaded triangles are for measured c′Rf0 and c′Rb0, respectively. According to the MWC
model of Ref. [86], c′ = t0 ln(1 + c0/KIs). The red and green lines are fits using respectively
(t0Rf0 and KIf ) and (t0Rb0 and KIb) as parameters. The appropriateness of the logarithmic
c0 dependence is further illustrated in the inset. Our fitting procedure yields: KIf = 0.71±
0.02µM and Rf0t0 = 0.36 ± 0.04 for the forward (red curves) interval, and KIb = 0.17 ±
0.02µM and Rb0t0 = 0.23± 0.05 for the backward (green curves) interval.
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only a positive lobe in short time. Thus, when the bacterium swims backwards, its chemo-

taxis network performs only signal amplification but no comparison. Because the short-time

lobes are positive in both forward and backward response functions, the bacterium extends

both swimming intervals when encountering a chemoattractant. However, because the posi-

tive lobe of Rf (t) integrates to a larger value than Rb(t), an identical chemical stimulus will

elicit a greater response in the forward direction than in the backward direction, which is

consistent with the CCW bias data in Figure 5.5.

Another notable achievement of this experiment is the identification and quantitation of

the indirect response functions R′
f (t) and R′

b(t). These functions has a large amplitude so

that the nascent state is inhibited from switching in a short time, which gives rise to the

non-Poissonian motor switch phenotype. The existence of these indirect responses is a man-

ifestation of the fact that a bacterium possesses a continuous memory and it is transmittable

to subsequent swimming intervals.

5.3.4 Difference between kf (t) and kb(t) persists in the case of longer exposure

to serine

In Section 3.0.1, we had mentioned the fine structures observed in the response of V. algi-

nolyticus to extended exposure to serine. These structures become more prominent when

tw increased from 0.3 s to 1.5 s but become weaker for tw ≥ 3.1 s. Our ability to resolve the

rotation degeneracy in the optical trap motivated us to reexamine these fine structures in

the response functions. The experiment was performed as described in Section 3.0.1 using an

ensemble of n ∼ 800 cells. In the experiment, the serine concentration in the micropipette

was c0 = 10µM, the bacterial exposure time was kept at tw = 1 s, and each run lasted only

3 s. The data for this mixed ensemble is displayed in Figure 5.8. The switching rates from

forward to backward and backward to forward, kf (t) and kb(t), respectively, were calculated

following the analysis scheme described in the previous section.

As seen in Figure 5.8(E), kf (t) goes through a very sharp transition at t ≃ 1.5 s, i.e., while

the switching rate of most of the forward-swimming cells is repressed with kf ≃ 0 for t < 1.2 s,

kf reaches a maximum rate 5 s−1 rapidly at t = 1.6 s. In contrast, the backward swimmers
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Figure 5.8: Mixed ensemble measurements for prolonged exposure to serine. Plotted in (A) is
the cumulative disribution function Ψ(t) of the switching events for an ensemble of n ∼ 800
cells. (C) displays the switching rate S(t) = dΨ/dt obtained from (A). In (B) and (D),
the CCW bias Φ(t) and its derivative dΦ/dt are plotted, respectively, as a function of time.
S(t) and dΦ/dt from (C) and (D), respectively, were used in Eqs. 4.1 and 4.2 to calculate
kf (t) and kb(t), which are plotted in (E) and (F). The vertical green lines indicate when the
dragging begins.
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leave their current state at a nearly constant rate as seen in Figure 5.8(F). These two different

responses to a sharp decrease in the serine concentration underlines the previously observed

differences in the response functions Rf (t) and Rb(t). Namely, the forward response function

Rf (t) consists of a positive lobe in short times and a negative lobe in long times and therefore

is biphasic. This type of response enables V. alginolyticus to make temporal comparisons,

and functionally it behaves like an edge detector. On the other hand, the backward response

is more gradual, and therefore is unable to perform temporal comparisons.

5.4 DISCUSSION

This experiment brings up a number of interesting issues that we wish to discuss below:

5.4.1 Important features of the response functions are predictable based on V.

alginolyticus motility pattern

In this work we have taken an unusual approach, i.e., based on the macroscopic motility

pattern of a bacterium, we make predictions about how the chemotaxis behavior of such

cells is regulated. This outside-in approach is in sharp contrast with the traditional inside-

out approach that brings us to the current understanding of chemotaxis response in enteric

bacteria E. coli [1, 80, 53, 77, 89]. In retrospect, the latter approach is a remarkable journey

starting from Adler’s important discovery of chemoreceptors for chemical detection [1], to the

discovery of methylation of receptors as a means of network adaptation [80], and culminating

at the identification of the phosphorylation step as the short-time excitation of the network.

The latter, known as the two-component regulatory system, turns out to be universal for

prokaryotic as well as eukaryotic cells [84]. The manifestation of this sophisticated internal

biochemical network at the behavioral level was unraveled by the response measurement

employed by Block et al. [18, 74].

Although our calculated response is not entirely identical to what we measured, the cal-

culation has captured salient features of the actual bacterial response, notably the existence
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of a biphasic response with a positive and a negative lobe for either shared or indepen-

dent chemosensing. Interestingly, our calculated response function, which by necessity is

parametrized by the macroscopic quantities, such as the mean forward τf and backward τb

dwell times, has a remarkable resemblance to what is derived for E. coli based on detailed

molecular interactions in the biochemical network [3, 30, 86]. In fact one can even borrow

the response function R(t) of E. coli cells and use it to mimic our experimental data [4]. For

E. coli, Tu et al. showed that the response function for a impulsive stimulus is given by [86],

R(t) = R0

[
1

τe
exp

(
− t

τe

)
− 1

τa
exp

(
− t

τa

)]
, (5.26)

where R0 is the amplitude of the response, and τe and τa are the excitation and the adaptation

times, corresponding to the phosphorylation and the methylation times in the cell. In the

limit of fast adaptation, τa ≃ τe, Eq. 5.26 reduces to the critically damped harmonic oscillator

response as well, similar to Eq. 5.19. For the more general case when τa ̸= τe, there is also a

one-to-one match of the internal and external time scales, i.e., τe = τb and τa = τf . This may

be a coincidence, but the fact that they have such a similar functional form suggests that

E. coli ’s response is capable of regulating 3-step motility pattern for chemotaxis. Moreover,

from an engineering point of view, the response function behaves like the response of a

critical damped harmonic oscillator is sensible as it confers a fast response and is stable over

a broad range of time or frequency scales [93].

It must be pointed out that our experimental finding is not identical to the theoretical

prediction, which suggests instead that forward (backward) should be monophasic (bipha-

sic). We believe that this discrepancy results from optimization of the drift velocity that

demands the overlapping integral in Eq. 4.5 being maximized. While this simple approach

is appealing [29, 27], its biological relevance is questionable. We think a more appropriate

way for optimization is to calculate the drift velocity to higher orders. These high-order

terms result from the coupling between diffusive motion and the deterministic drift and have

a deteriorative effect of reducing the drift velocity. The balance of the linear and the high-

order terms therefore can provide a strong motivation for optimization. This is a demanding

calculation but is currently underway.
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5.4.2 Independent sensing of 3-step swimmers enables an exploration-exploitation

behavior

We believe that by virtue of backtracking and having the dwell times τf and τb to be close to

each other (τf ≃ τb), a 3-step swimmer has the innate ability to localize near a point source

of attractant, and thus the chemo-response with a positive and a negative lobe is perhaps not

directly useful for cell localization as suggested for peritrichously flagellated bacteria [27].

Rather such a response function, in our opinion, is primarily for rapid migration of cells in

a chemical gradient with a large sensing range [18, 74].

A conspicuous feature of our measurements is that the biphasic response is primarily in

the forward (CCW) interval, which has a large positive lobe and an extended negative lobe,

whereas the response in the backward (CW) interval is more-or-less monophasic. We posit

that this regulation scheme enables the bacterium to exploit nature using an exploration-

exploitation strategy, which is common in animal kingdom [8]. Imagine that a bacterium

pursues a local source of attractant by gradient sensing. The cells can go as far as possible

(allowed by the Poisson time) in a positive gradient direction [53]. However, because of the

negative lobe, the cell will not know if it has surpassed the peak of the gradient until some

times later. For E. coli it is ∼ 3 − 4 s but for V. alginolyticus it is a fraction of second

for small signals. Overshooting the peak is undesirable for any microorganism. However,

for a 3-step swimmer executing the run-reverse-flick motility pattern this is not a problem;

a motor reversal ensures that the cell will move up the gradient and back to its previous

good territory. Hence, the way the response is implemented in V. alginolyticus appears

to be more “purposeful” in that in the forward swimming phase, the bacterium explores

the space by gradient sensing but in the backward interval, it exploits it. It is evident

that for exploration a memory (or negative lobe) is required allowing the cell to compare

chemical environments from one place to next in about one second, but for the exploitation

phase, the signal comparison is unnecessary; the cell simply takes whatever is available based

on information collected during the forward run. Mathematically, it can be shown that a

long memory time in the swimming interval preceding a flick is not desirable because the

information passes on to the next run interval cannot be used by the cell (or may even
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interfere with its chemosensing) after the direction randomization [91]. This contributes to

an unnecessarily large diffusivity of the bacterium, spoiling its ability to localize near a small

source. Thus a short memory time preceding the flick step is beneficial to the cell, and we

believe the long memory time in E. coli contributes to its inability to localize near a small

chemical source [91].

5.4.3 The measured response has strong implications for how the chemotaxis

network is wired in V. alginolyticus

Our observed responses in V. alginolyticus have interesting implications for the network

structures and protein-protein interactions in the chemotaxis network of this bacterium.

These will be discussed below:

(a) Existing experimental observation suggests that E. coli cells perform chemotaxis by

comparing receptor coverage in the recent 1 s with those taking place 3-4 s earlier. The

earlier status of receptor coverage is registered by the methylation level of the receptor

complexes. Our experimental data in Figure 5.5 also exhibit behavior that is consistent

with temporal comparison but it occurs only when the stimulation becomes strong enough.

For weak stimulation, the response in both forward and backward swimming direction is

monophasic. Without being tempered by the negative lobe in the response function, the

chemotaxis network in this weak stimulation regime behaves like an amplifier rather than

a comparator. We posit that this gives the bacterium the sensitivity it needs to perform

chemotaxis in an environment with low levels of nutrients. This is perhaps evolutionarily

advantageous because when the signal is weak and sporadic, signal amplification is more

important than signal comparison; the latter tends to reduce the sensitivity of the network.

Our experiment also shows that the negative lobe is far more prominent in the forward

response function than in the backward ones. While our current experiment implies that

the backward swimming interval is non-adaptive, it certainly cannot exclude the possibility

that this negative feedback loop would be engaged only when a stronger or more prolong

stimulation is present. The currently accepted paradigm is that the adaptive response is
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due to a negative feedback loop, which is biochemically accomplished by (de)methylation

of chemoreceptors. If V. alginolyticus use this same pathway, our measurements show that

the negative feedback becomes engaged in a different way depending on bacterial swimming

direction. This also implies that the control of the motor switch is not a “one-way street”

as in E. coli . By an unknown mechanism, the receptor complex in V. alginolyticus knows

the current state of the motor and reacts accordingly.

For E. coli cells, it is thought that the methylation step is independent of ligand binding;

i.e. the rate of methylation F only depends on activity a or ṁ = F (a) [9, 86]. Our observation

suggests that for V. alginolyticus , F not only depends on a but also the ligand concentration

c and the direction of swimming, i.e., ṁ = Fs(a, c), where s = f, b. Thus, the F function is

more sophisticated than that of E. coli and can give rise to interesting behavioral responses

that are yet to be characterized and understood in future experiments.

(b) Our measurements also suggest that the relevant time scale in the network τ may

not be constant but changes with the stimulation level. In this regard, a single response (or

Green’s) function that is capable of processing complexed chemical signals appears to be too

simplistic. This may be the case for E. coli but for V. alginolyticus , we have witnessed a

continuous change of time scales, particularly the adaption time, as c0 increases.

(c) In terrestrial bacteria, such as E. coli and B. subtilis, it is known that (de)phosphorylation

dynamics in the chemotaxis network are among the most rapid and efficient processes in the

two-component response systems [82, 19]. The processing time in E. coli is ∼ 1 s. Here, we

have witnessed that in V. alginolyticus, this important regulation step is even faster, raising

the interesting question about what is the intrinsic time limit for chemical communications

inside a bacterium. We believe that this rapid processing time is required in ocean because

such environment is characterized by low nutrient contents, where dissolved organic carbon

is in the nanomolar range [65] and is rapidly dispersed due to turbulence. To survive, there-

fore, it is crucial for V. alginolyticus to have a fast response system, which is evident not only

by its signal processing time delineated above but also in its swimming speed vsm; vsm up to

∼ 200µm/s has been reported [57]. What would be the ultimate processing time given such

a high swimming speed? Purcell postulates that for motility to be beneficial, a bacterium

must out-swim the diffusion of nutrient molecules, which corresponds to a minimal distance
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Lc ≃ D/vsm or a time tc ≃ D/v2sm, where D is the diffusion coefficient of the molecule [69].

Taking serine as an example with D ≃ 900µm2/s, if vsm ≃ 200µm/s, it implies Lc ≃ 4.5µm,

which is only about 2-3 times the length of the bacterium or tc ∼ 23ms of processing time.

While we do not know at present how V. alginolyticus achieve such a rapid signal pro-

cessing, the following considerations are relevant. First of all, the enzymes involved in phos-

phorylation and methylation in V. alginolyticus must be efficient with large rate constants.

Moreover, since many biochemical reactions are diffusion limited, spatial arrangements of

chemotaxis proteins inside the cells can also play a role. To shorten the reaction time, it

may be important to make the “sink” and “source” next to each other. In Vibrio species,

there is evident showing that receptors are clustered near cell poles where the flagellar motor

locates [59, 36]. One can perform a back-of-the-envelope calculation to see how close the

signal processing units, such as the receptor complex and the motor switching box, need to

be in order to reach the observed reaction time. Intracellular measurements showed that

the diffusion constant of CheY-P in E. coli is D ≃ 10µm2/s; the same is to be expected

in V. alginolyticus [28]. The minimum excitation time is then limited by the diffusion time

L2/2D. In our experiment with a weak stimulus, the excitation time is ∼ 0.2 s and this

demands a distance no longer than L ≃ 2µm, which is satisfied because the typical length of

our bacteria is a few microns in size. For the minimum processing time tc ∼ 40ms, however,

a much shorter distance is required, and it seems that in this case the receptor cluster and

the motor have to be on the same pole.

5.4.4 Chemotactic response is conserved in V. alginolyticus and in E. coli

It is remarkable that despite significant behavioral differences, one executing run-reverse-

flick and the other run-tumble, and the different logical controls of their flagellar motors, the

chemotaxis response functions in V. alginolyticus and in E. coli are nonetheless very similar.

We are also impressed by the fact that such similarity exists in the presence of considerable

divergence in the genes encoding the chemotaxis functions. For instance, sequence alignments

for relevant che genes in E. coli and V. alginolyticus reveal that even for the closest match,

cheY, the identity and similarity indexes are 64% and 84%, respectively. For other genes,
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such as cheA, cheB, cheR, cheW, and cheZ, these indexes are much lower with identity

inbetween 20− 30% and similarity in 40− 50%. Thus, it can be concluded that evolutionary

forces are primarily acting on the functionality of the gene network rather than on the coding

sequences. In the current study, it shows chemotaxis enabled by adaptation is remarkably

conserved in the V. alginolyticus and in E. coli, indicating its importance in the survival of

species. In future work, it will be helpful to clarify to what extent this property is preserved

in other bacterial species adapted to different habitats.

5.5 CONCLUSION

Using optical trapping and conditional stimulation, we show that marine bacterium V. algi-

nolyticus use different responses to regulate their forward and backward swimming intervals.

Our measurements indicate that Rf (t) is biphasic but Rb(t) is monophasic in the concen-

tration range used in the experiment, but the characteristics of the response functions, such

as the short excitation time and the long adaptation time are not constant but appear to

be continuous functions of the ligand (serine) concentrations. Compared to E. coli , a dis-

tinguishing feature of V. alginolyticus is its remarkably short adaption time, which, based

on our measurement, is nearly identical to the excitation or (de)phosphorylation time. Such

fast adaption may be crucial for bacterial chemotaxis in marine environment where com-

petition between cells and localization around small nutrient patches all conspire to make

the fast response favorable. Another distinguishing feature between the two species is that

while E. coli regulates its motor bias, V. alginolyticus regulates its switching rate. For polar

flagellated bacteria, controlling the switching rate makes biological sense because this type

of cells produces motility in both forward and backward directions. This symmetry therefore

determines that the motor bias in a steady state is ∼ 50% as seen in our experiment [92].

The symmetry still persists even under stimulation since a good (bad) stimulus will prolong

(shorten) the duration of either interval. This rate regulation scheme however would be ex-

tremely awkward for chemotactic regulation of peritrichously flagellated bacteria as a simple

gedanken experiment could readily demonstrate, and is therefore biologically unsound.
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We are pleased to see that salient features of the response functions can be theoreti-

cally predicted, and the issue of whether the marine bacterium uses independent or shared

chemosensing is finally clarified [6]. Remarkably, this biphasic response function was orig-

inally predicted based on the 3-step motility pattern with the sole requirement of optimal

migration speed along a linear chemical gradient. This is in sharp contrast with the case

of enteric bacteria E. coli for which motility pattern alone is insufficient to predict their

response function as first pointed by de Gennes [29] and later confirmed by Clark and Grant

[27]. We believe that the success in predicting V. alginolyticus ’ response relies on the fact

that cell localization may never be a problem for the 3-step swimmer due to its back-tracking

ability and because the ocean is a relatively simple habitat; quickly targeting the source of a

nutrient perhaps is the most important attribute for survival and high fitness. It also demon-

strates that for bacteria that inhabit more complicated environments that impose multiple

demands on the cells, this outside-in approach would have much less predictive power. This

however is commonly encountered in many ecological problems.

What we have not accomplished here is the clarification of how the switching logic and

differential adaptive steps are implemented by the molecular machinery in V. alginolyticus .

In future experiments, it would be extremely fruitful to investigate the internal chemical

network and its reaction kinetics. In this way our measured chemotactic response functions

can be built on the solid footing of molecular interactions. An inside-out approach is therefore

urgently called for.
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6.0 SYMMETRY PROPERTIES OF BACTERIAL POLAR FLAGELLAR

MOTORS

6.1 INTRODUCTION

Motility is beneficial for all bacteria whose size exceeds roughly half a micron. For bacteria

with size smaller than that the rotational diffusion of the cell body is too rapid for reliable

taxis toward a chemical source [65]. An implication of this observation is that even for sizable

bacteria, such as E. coli, their swimming paths need to be constantly corrected. Unlike

higher-level organisms who use spatial sensing and a neural network to guide their motion,

bacteria use temporal sensing and a stochastic approach to navigate in a noisy environment

[81]. In the absence of a chemical signal, bacteria execute what one may call a random walk

but in the presence of a chemical signal, this random motion is biased [13]. Evidently, random

motion might be a bacterium’s best or only choice given an environment that is completely

stochastic and unpredictable, but it is not difficult to imagine that certain habitats are more-

or-less structured. In this case, would the bacterium develop a different strategy to maximize

its nutrient uptake? If so, how is this strategy carried out by the hardware (the propulsive

apparatus) and the software (the chemotaxis network) of the bacterium? We wish that our

experimental findings reported herein will shed some light on these interesting questions.

Symmetry plays a central role in physics. There are reasons to believe that the same

holds true in biological systems. In physics symmetries imply conservation laws. In bio-

logical systems however the significance of symmetry is less clear but its manifestation at a

behavioral level may give some useful clues. Let’s take the bacterial flagellar motor as an ex-

ample. In most peritrichously and polarly flagellated bacteria, the motors are bidirectional,

capable of rotating either in the CCW or CW direction. For left-handed flagella, the CCW
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rotation allows peritrichously flagellated bacteria, such as E. coli and B. subtilis, to form a

bundle, providing a thrust to the cell body. When the motors turn in the CW direction, the

flagellar bundle falls apart and the bacterium lose its ability to swim. But this seemingly

futile (tumbling) interval serves an important biological function; it allows the bacterium

to randomize its swimming direction and by chance it may head towards a more promising

direction. Thus the two directions of motor rotation play different functional roles, one for

swimming and other for reorientation. Hence, there is no compelling reason to expect that

the CCW and CW rotation of the motor should be symmetrical, and in fact they are not.

Existing experiments show that E. coli’ s flagellar motor is asymmetrical in many different

ways. For instance, the torque-speed relationship in the run interval is entirely different from

that of the tumbling interval; in the former there exists two different regimes depending on

the load but in the latter there is only a single linear regime [95]. Moreover, the motor is

strongly biased toward CCW rotation, e.g., in a homogeneous medium without signals, E.

coli spend ∼ 90% of their times swimming and other 10% randomizing their directions 1.

The preferential bias toward the CCW rotation in E. coli makes biological sense since CW

interval is non-productive as no motility is produced. Lastly, measurements showed that

in the absence of chemotaxis regulator CheY, E. coli motors run exclusively in the CCW

direction, indicating that CCW rotation is the default state of the motor [72].

Let’s now examine the swimming behavior of polar flagellated bacteria V. alginolyticus.

This bacterium also has a left-handed flagellum. When the motor turns in the CCW di-

rection, the flagellum pushes the cell body, which may be called forward swimming, but

when the motor turns in the CW direction, the flagellum pulls the cell body, which may be

called backward swimming. Due to low-Reynolds (Re) number hydrodynamics, CW rota-

tion of the flagellar motor causes the bacterium to precisely backtrack its forward swimming

trajectory when thermal noise is absent [69]. Recent studies have shown that cells of V.

alginolyticus spend about the same amount of time swimming forward and backward [92].

The equal motor bias makes one wonder if there is a need or even it makes sense to specify

the swimming direction. In a recent investigation however we found that forward and back-

1For individual motors, the CCW bias is smaller, ∼ 60− 80%, indicating run and tumble are not deter-
mined by individual motors [72, 32].
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ward symmetry in swimming of V. alginolyticus is broken in an unexpected way, i.e., the

bacterium incorporates a flick movement of its flagellum during the transition from backward

to forward swimming, causing the cell body to veer in a new random direction. Evidently, a

flick is functionally equivalent to a tumble, and V. alginolyticus ’ swimming pattern therefore

consists of a cyclic sequence of three steps, forward-backward-flick. During each swimming

cycle, the swimming trajectories are strongly correlated, but there is no or little correlation

between cycles. Very little is known about how the flick is initiated or for that matter its

molecular components. The work reported below is our first attempt to address this issue.

6.2 RESULTS

6.2.1 Cell body and flagellar rotation frequencies in different swimming inter-

vals

We found in our measurements that there is a large fraction of cells (∼ 80%) for which the

+x0 and−x0 states (see Appendix A.2 for the definitions of the±x0 states) behave differently

as a function of time. For the run presented in Figure 5.3, the −x0 state is more stable than

the +x0 state, which is slanted as t increases in each interval. This difference between the

+x0 and the −x0 states changes from cell to cell, suggesting that the orientations of the

bacteria in the optical trap are random (see Figures 5.3(A-B)). The observed inclination in

one of those states is therefore intrinsic to the flagellum dynamics of the bacteria and can

be used to determine the sense of motor rotation. One also observes in Figure 5.3 that the

transition rates from the lower to the upper state or vice versa are not the same; the former

is faster than the latter. The above two characteristics are strongly correlated so long as

these features could be identified in individual cells. Since the forward run is interrupted by

a flick, it is reasonable to expect that the the slower transition is the switch from backward

to forward (CW→CCW) swimming. Thus, the upper state in Figure 5.3 is the backward

and the lower state is the forward interval. This designation of the rotation sense produces

the same kind of dwell-time distributions (see Figure 5.4) as measured using free-swimming
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cells, which indicates that our method is valid [5, 92].

Interestingly when analyzing the rotational angular frequencies in each swimming interval

using power spectral analysis, we found that the spectral characteristics are also different for

the +x0 and the−x0 state. This is illustrated in Figure 6.1 by the sequence of plots (I-VII)

of the power spectra calculated using the windows specified in the time series x(t) (see the

red boxes). We found that in the CW (backward) intervals, the cell body frequency Ωb is

higher than that of the CCW (forward) Ωf , Ωb > Ωf , but the trend is reversed for the

flagellum rotations, ωb < ωf . This behavior is very peculiar considering that for swimming

in low Re, ω and Ω should be proportional to each other; when one increases, the other must

also increase and vice versa. One can exclude the possibility that the anticorrelation is due

to internal friction of the motor because in this case, say CCW is less frictional, we expect

Ωb < Ωf and ωb < ωf and the frequency pair (Ωb, ωb) in Figure 6.1 should shift to the left

uniformly relative to (Ωf ωf ), but this is not what seen in V. alginolyticus. Because torque

balance is required for free-body swimming, one can also exclude other internal mechanisms

or processes that are energy conserving. Thus, whatever the cause of the anticorrelation,

it must be due to an “external” agent. Running the time window continuously across the

time series x(t), the variations of Ω(t) and ω(t) with time can be calculated, and the result

is displayed in Figure 5.3(D). The data show that Ω(t) and ω(t) are oscillating out of phase

but are synchronous with the motor reversals.

We next investigated how the anticorrelation between Ω and ω observed in single cells

behaves at the population level. For this purpose in Figure 6.2, a scattered plot is generated

using pairs of (∆Ω/Ω̄, ∆ω/ω̄) collected from individual swimming intervals of many bacteria,

where ∆Ω ≡ Ω − Ω̄, ∆ω ≡ ω − ω̄, and Ω̄ and ω̄ are the mean values for the individual cell

trapped. In the figure, each dot represents one of the swimming intervals for a trapped

bacterium, and altogether n = 2117 bacteria were used to generate the plot. We noticed

that the data points are widely spread but the distribution is far from uniform. Specifically,

most of the data points are clustered in the second and the fourth quadrants, corresponding

to CCW and CW intervals, respectively. Thus, despite large cell to cell variations, the

anticorrelation between Ω and ω is discernible even in a large population.
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Figure 6.1: Simultaneous measurements of the cell-body Ω(t) and the flagellar ω(t) rotational
frequencies. The consecutive CCW and CW intervals of the polar flagellum motor of a
trapped V. alginolyticus are measured based on the time trace x(t), which is plotted by
the black line. To find the rotation frequencies Ω(t) and ω(t), power spectra are calculated
at different times t using a fixed window of 200ms in width, which is delineated by the red
boxes. Plots I-VII show the power spectra taken in different t, where the red and black curves
correspond respectively to spectra calculated using the x−or the y−channel of PSD. As can
be seen the spectra consist of two dominant peaks. The low frequency peak Ω = 2πfL
corresponds to cell-body rotation and the high frequency peak ω = 2πfH corresponds to
flagellum rotation. Note the anticorrelation between Ω(t) and ω(t) in consecutive swimming
intervals, which are marked by the vertical green lines.
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Figure 6.2: Correlations between cell-body and flagellum rotations. Each dot in the figure
represents the relative change in the flagellum rotation frequency ∆ω/ω̄ vs. the relative
change in the cell-body frequency ∆Ω/Ω̄ of a single swimming interval of a single bacterium,
where ω̄ and Ω̄ are the mean values for the angular frequencies of the cell trapped. Altogether
N = 7191 intervals corresponding to n = 2117 cells are presented in the plot. It is evident
that (∆Ω/Ω̄, ∆ω/ω̄) are not distributed uniformly; they are clustered predominately in the
upper-left and lower-right lobes, indicating anticorrelation between rotations of the cell-body
Ω and the flagellum ω. As described in the main text, the lower-right and upper-left lobes
are attributed to the bacterial backward (CW) and forward (CCW) swimming intervals,
respectively.
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Table 6.1: Statistics of rotation angular frequencies. The table shows the ensemble average
of the cell-body Ω, the flagellum ω, and the motor Ωm angular velocity of a large number of
bacteria (n = 1704).

Ω/2π (Hz) ω/2π (Hz) Ωm/2π (Hz)

Forward 73± 18 493± 78 566± 82

Backward 84± 19 452± 62 535± 64

6.2.2 Asymmetries in the forward and the backward propulsion

Altogether n = 1704 bacteria were measured and analyzed, each lasting for 6 s. All four

angular frequencies, Ωf (t), Ωb(t), ωf (t), and ωb(t), were determined by time averaging for

individual cells. We found in our experiment that some bacteria are more resistant to optical

trapping (or “photo-damage”) than others. For instance, the bacterium shown in Figure 6.1

displays little laser effect but for the one in Figure 5.3(C), trapping causes it to stop switching

after some time. In those latter cases, the last long period is ignored and is not included in

the time average. Figures 6.3(A-C) display probability density functions (PDFs) for the cell-

body Ωf , the flagellum ωf , and the flagellar motor Ωm
f ≡ Ωf +ωf angular frequencies for the

forward swimming intervals. The corresponding PDFs for backward swimming intervals are

displayed in Figures 6.3(D-F). We found that all these PDFs are broadly distributed and can

be adequately fit by Gaussian functions, P (x) = 1√
2πσ2

exp
[
− (x−x0)2

2σ2

]
, which are delineated

by the green lines in the plots. For convenience, the results of the fitting procedure are listed

in Table 6.1. It is conspicuous that the backward (CW) motor frequency Ωm
b is narrower than

that of forward Ωm
f , and consequently the backward flagellum rotation frequency ωb is also

narrow since ωb ≫ Ωb. Despite broadness of the PDFs, however, the shifts in the ensemble

means of forward and backward rotation frequencies are discernible and are consistent with

anticorrelation, Ω̄f < Ω̄b and ω̄f > ω̄b, seen in individual cells.

Statistics of anticorrelation for individual cells can be analyzed more stringently by plot-

ting the PDFs of the frequency ratios P (Ωf/Ωb), P (ωf/ωb), and P (Ωm
f /Ω

m
b ), which are

displayed in Figures 6.3(G-I). Here the ratios were calculated based on the time average of
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Figure 6.3: Probability density functions (PDFs) of angular frequencies and their ratios. The
plots (A) and (D) show that overwhelming number of bacteria having their forward cell-body
rotation slower than the backward cell-body rotation rate. On the other hand, the opposite
is true for the flagellum rotation rates (see (B) and (E)). Plots also show that the motor
speed in the forward direction (C) is slightly higher than in the backward direction (F). This
indicates that for cells of V. alginolyticus the propulsion efficiency in the forward direction
may not be as high as in the backward direction; it is as if in the forward interval, the
motor is running empty with a lower load than backward. If the propulsive device (motor
and flagellum) is symmetric, the frequency ratios, Ωf/Ωb, ωf/ωb, and Ωm

f /Ω
m
b , should be

distributed with the peak at unity. However, this is clearly not the case as delineated by in
(G-I) by the vertical red lines. Green lines in the plots are fits to a Gaussian distribution,
where the mean and the standard deviations are listed in Tables 6.1 and 6.2.
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frequencies of individual bacteria. For symmetrical swimmers, it is expected that these PDFs

should peak at unity (see the red dashed lines) because for Re → 0, the streamlines would

not change but the velocity vectors associated with them simply reverse directions. The

asymmetry in the PDFs is striking because the overwhelming number of cells are strongly

biased, which is consistent with the scattered plot in Figure 6.2. One observes that for

the cell-body, Ωb is ∼ 10% higher than Ωf and for the flagellum, ωb is ∼ 10% lower than

ωf . However, for the flagellar motor, Ωm
f is only ∼ 5% faster than Ωm

b on the average.

A higher forward motor speed suggests the following possibilities: (a) the motor is more

powerful or (b) the load is smaller in the CCW direction. The latter could be the case if

say the flagellum has two different conformations as a result of different motor directions,

and one conformation is more efficient in propelling than the other. To differentiate these

possibilities, it is helpful to determine the motor output power Ws = D0ΩsΩ
m
s , where D0 is

the rotational drag coefficient of the cell body, for the forward s = f and backward s = b

intervals. It is fortuitous that our measurements also allow us to calculate the power ra-

tio Wf/Wb ≡ ΩfΩ
m
f /ΩbΩ

m
b for individual cells. This distribution acquired from the large

number of cells is plotted in Figure 6.4(B). It shows that the power output of the motor is

higher, by ∼ 5%, in the backward than in the forward direction, which is contradictory to

the possibility (a) but consistent with (b) above. Our experiment also allows us to determine

the rotational drag of the flagellum in the fluid, which constitutes a major portion of the

swimming load. Let us assume that during forward and backward swimming, the cell-body

and flagellar axes are coaxial so that the torque balance demands Ds = D0Ωs/ωs, where

Ds is rotational drag coefficient of the flagellum when the motor is in the rotation state s

. Since the drag coefficient of the cell body D0 is expected to be constant, it follows that

the ratio of the drag coefficient is given by Df/Db = Ωfωb/(Ωbωf ) and can be determined

for each bacterium. The PDF P (Df/Db) is presented in Figure 6.4(C). We were surprised

to find that the mean value Db is larger than Df by as much as ∼ 20%, which is more than

twice the standard deviation as shown in Table 6.2. The change in Ds is substantial if the

effect is entirely due to flagellum deformation as will be discussed later.

In free-swimming bacteria of V. alginolyticus, our measurements have shown that the

swimming speed in the backward direction is ∼ 6% higher than in the forward direction,
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Table 6.2: Statistics of the asymmetry in polar flagellar motors of V. alginolyticus. For a
symmetric cell, the means of these ratios should all be unity, but in the polar flagellum of
V. alginolyticus, the deviation from this expected value is large as judged by the shift from
unity in most of cases is greater than one standard deviation, except for the power Wf/Wb

and the velocity Vf/Vb ratios.

Ωf/Ωb ωf/ωb Ωm
f /Ω

m
b Wf/Wb Df/Db Vf/Vb

0.89± 0.07 1.12± 0.08 1.08± 0.07 0.94± 0.10 0.82± 0.08 0.94± 0.19

which is delineated in Figure 6.4(A). This is consistent with the energy rate measurement

above, showingWb is greater thanWf by about the same amount. This is also consistent with

the above torque measurement P (Ωf , Ωb), showing Ωb > Ωf . Since the energetic argument

is sufficient to account for the rotational bias, it appears unnecessary to appeal to flagellar

deformation as a mechanism for the motor asymmetry seen in this experiment. This point

will be elaborated further below.

6.2.3 Bias of flagellar motors in de-energized bacteria

Aside from the (a)symmetrical properties of flagellar motors, there is also the interesting

issue concerning which motor state has a lower free energy. In wild-type bacteria the flagellar

motor is regulated by the chemotaxis regulator (CheY) via a two-component system [83].

However, evidence shows that a flagellar motor switch is also influenced by factors such as

membrane potential and the hydrodynamic load on the motor. In the pioneering work of

Khan and Macnab, it was found that for E. coli and B. subtilis when the motor rotation

frequency is about ∼ 80% of its maximum, it preferentially rotates in the CCW direction

that rarely reverses [45]. These investigators went to a great length to rule out possibilities

other than membrane potential that causes the observed behavior. Specifically, they found

that the oxygen level, the ATP concentrations, the pH difference inside and outside bacteria,

and the swimming load are irrelevant. However, recent findings due to H. Berg’s group at

Harvard appear to be more complicated and summarized in Appendix D.

To see if this is also the case in V. alginolyticus, we examined our data set (5 µM
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Figure 6.4: Swimming velocity, motor power, and rotation load PDFs. In (A), the PDF for
the ratio of the forward and backward swimming speed is plotted for (n˜1000) swimming
cells. The velocity Vs here is the average velocity in the swimming interval s = f or s = b.
The data is consistent with the power ratioWf/Wb in (B) and the rotational load ratioDf/Db

in (C) in that both an increase in the rotation power and a higher torque (Nb = D0Ωb) in
the backward direction can yield a higher backward swimming velocity. However, unlike (B)
and (C), the PDF for the velocity ratio has a much larger variance. This perhaps due to a
large variation in the cell body sizes.

serine, no-delay) obtained in the optical trap. As mentioned above, there is a great deal of

heterogeneity in the way the bacteria responded to laser trapping, while some show little or

no laser effect, the others display what one may call de-energizing symptom. Specifically, we

found that the motor speed and switching rate of these de-energized cells decrease with time

while being trapped and once released from the trap, their swimming is not as vigorous as

before they are trapped. A typical time trace x(t) of one of those cells is displayed in Figure

5.3(C). It is seen that for the first 3-4 s, the bacterium displays frequent motor reversals,

then it slows down and becomes paralyzed at a particular rotation state. Studying ten

randomly selected de-energized cells, we found that all of them become locked in the CCW

direction if a long pause can be identified at the end of run. Thus we conclude that for

de-energized V. alginolyticus, CCW rotation has a lower free energy, which is the same as E.

coli motors. Why de-energized motors always locked in a CCW state and why de-energized

cells do not switch their motors? Are these two phenotypes related to each other or just

a coincidence? The answer to these questions will certainly shed light on how the flagellar

motor of V. alginolyticus works and how its rotation is regulated. However, these interesting
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and important questions are beyond the scope of current investigation and will be addressed

in future experiments.

6.2.4 Unusual motions of tethered V. alginolyticus bacteria

We observed that very small number of wild-type V. alginolyticus can stick to glass surfaces

in such a way that the base of their flagellum appears to be glued to the surface. Some

of these stuck cells move in a very peculiar way that may give hints on the asymmetry

of bacterium swimming and the mechanism of flicking at the transition from backward to

forward swimming.

A common feature of these stuck cells is that they protrude (or project) their cell body

forward and remain in this extended position for a short period of time before retracting to

their stuck position. Observations showed that the dwell time in the extended or contracted

state is comparable or longer than CCW or CW intervals typically seen in free swimming

cells, and in all the cases we observed the stuck positions are located at the base of the

bacteria. We present and discuss below three cases (see video files CaseI, CaseII, CaseIII),

among several, that were recorded by video imaging microscopy.

In case I, the tethered cell can roll on the glass surface with one of its poles as a pivot,

which is delineated in Figure 6.6. Here, the center of the cell body moves in a small circle

in the CCW direction as viewed from above the glass coverslip. When protruded, the cell

body now moves in a large circle, but this time the motion can be in either CW or CCW

direction. The precision by which the cell returns to its original position suggests that the

tether must be very short, certainly not caused by an intact or partially sheared flagellum.

In case II, the cell body is more or less stationary when not extended. Hence, it is difficult to

judge its rotation direction. From video microscopy, it appears to be in an upright position

when not extended. However, when projected, its body is parallel to the surface as shown in

Figure 6.7. The cell body protrudes erratically in time but the distance it covered is rather

consistent. In case III, which is displayed in Figure 6.8, the contraction and extension are

more periodic in time. Similar to case II, in the contracted state the cell body is upright and

appears motionless, but in the extended state, the cell body has limited lateral motions. A
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common feature of these tethered cells, not restricted to the three reported here, is that the

projection and contraction occur rapidly and is always along a straight line, which is clearly

seen from the trajectories plotted. For the above three cases, we measured the x-y position

of the cell body as a function of time, taking the tethering point as the origin. These x-y

time traces are displayed by the black and red lines respectively in the corresponding plots.

For convenience, we also plot the time trace of the radial positions r(t) =
√

x2(t) + y2(t) as

a function of time, which is displayed by the black line.

Why do different tethered cells exhibit different behaviors? We believe that it all has to

do with how close is the cell body to the glass surface. If the cell body is horizontal, parallel

to the glass surface, the non-slip boundary condition dictates that the cell body must roll,

which is case I. However, when the bacterium is projected away from the glass surface, the

cell body and the surface hydrodynamic interactions become weak, and consequently the

motion of the cell body simply follows a straight line as in case III. Using 100x immersion

objective, which has a small depth of view, we confirmed that this was indeed the case for

the cells observed. However, presently we are unable to tell the motor rotation direction

when the cell body is extended or contracted.

Because bacterial flagella are tenuous, one of the possible explanations for what we

observed is the unwinding of the left-handed helix [17]. However, this is not a satisfactory

answer because (a) it is not consistent with the observation that the tethering point is at

the pole of the bacterium, suggesting that the amount that could be unwind is limited, and

(b) even unwinding of the full length of the flagellum is still short compared to the extension

seen in our experiment. Here is a simple calculation of the length that can be liberated by

unwinding the flagellum of V. alginolyticus. According to our early measurements [24], the

flagellum is parametrized by the pitch λ = 1.2±0.2µm, the radius R = 0.140±0.001µm, and

the length ℓ = 3.7± 1.0µm. From these, one can easily calculate the contour length of the

flagellum to be L = ℓ/ cosϕ ≃ 4.6µm, where the pitch angle Ψ = tan−1(2πR/λ) ≃ 36.24o.

Thus the maximum stretching possible for this bacterium is ∆ℓ(= L− ℓ) ∼ 0.9µm, which is

significantly shorter than our observed ∆r ≃ 2− 4µm seen in Figures 6.6-6.8 .

Hence, the protrusion of the cell body could be due to an organelle, other than the

flagellum, inside the cell that is flexible and can be extended over a large distance. One of
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the possibilities is that the tethered cells possess a flagellum at each pole, with one stuck

at its base, and the cell body is subject to pulling by the flagellum at the opposite pole

as delineated in Figure 6.5. Since cells with flagella on both poles are not common and

flagella tend to entangle, the proposed scenario can explain the rarity of tethered cells that

can project and contract on surfaces and the fact why most of them are near other stuck

cells. If the above picture holds, the organelle must have the remarkable property that it

can rapidly change its conformation upon pulling and it is stiff enough not to break on

tension. It remains an intriguing possibility that the native conformation of the organelle is

also a left-handed coil, similar to the flagellum, and it is hidden inside the cell in the free

swimming state (see Figure 6.5). To explain our observation, this organelle is not as stiff as

the flagellum in that when in the CCW rotation, it winds up tightly forming a rigid joint,

keeping the flagellum coaxial with the cell-body axis while forward swimming. However,

when in CW rotation, the coil becomes somewhat loose forming a flexible joint so that the

flagellum and the cell body may not be strictly coaxial. Implication of such flexible joint

for a kink formation at the base of the flagellum and swimming direction randomization [92]

will be further delineated in Section 6.4.

It is helpful at this point to analyze the force produced during the projection and the

contraction phases of the tethered cells. Our data shows that the speed of projection is faster

than contraction, indicating that the thrust in projection is larger than that of contraction.

As an estimate we use case III as an example. Based on video microscopy, this bacterium

extends radially outwards by ∆r = 4µm in about τext = 0.07 s. This gives a velocity

V ≃ 57µm/s and is close to the free-swimming speed of the bacteria. The thrust is therefore

Fthrust ∼ 1 pN based on our earlier measurement [24]. However, proximity of the cell body

to the surface and the resistance to pulling by the unknown organelle may alter the above

thrust force estimate somewhat.
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Figure 6.5: An hypothetical stretchable component in the flagellar motor of V. alginolyticus.
To explain our experimental observation, we postulate that the polar flagellum is attached
to the motor via a soft coil-like joint that has the same helicity as the flagellum itself. Our
observed stretchable cells have the phenotype that they possess flagella on both poles. One
of the flagellum is attached to the surface at a location indicated by the red dot. If the
cell body is upright as drawn, it can be pushed (A) or pulled (B) by the flagellum on the
other pole, if this flagellum is mature and functional. When pushed (CCW), the soft joint
stiffens and the cell body appears to be attached to the surface, and when pulled (CW),
the soft joint lengthens (or unwinds) and the cell body moves away from the tethering point
as shown. If the cell body is pushed or pulled (C) near the surface, aside from lengthening
the tether, the cell body can also roll on the surface, giving rise to circular paths as seen in
Figure 6.6.
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Figure 6.6: Case I: A horizontally tethered cell. The tethering point is marked by the red
cross and the position of the bacterium itself is marked by the green arrows in the set of
video images. It is evident that in both contracted and extended state, the bacterial cell
body is horizontal, parallel to the glass surface. In both the contracted and the extended
state, cell body rolls on the surface giving rise to the circular paths as shown in the bacterial
track in the upper right corner. The plot in the middle is the x(t) (black) and the y(t) (red)
position of the cell body as a function of time. The plot in the bottom is the radial position
r(t) =

√
x2(t) + y2(t) of the cell from the tethering point.
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Figure 6.7: Case II: A nearly vertically tethered bacterium. This bacterium is nearly ver-
tically tethered so that when in the contracted state, the cell body has a limited motion.
The cell projects along a straight path and remains extended and moves about at a large
distance from the tethering point. When retracted, it typically follows a different path from
the projecting path as seen in the particle track depicted in the upper right corner. The
middle and lower plots are respectively for the x(t) (black) and y(t) (red) positions, and for
the r(t) positions of the bacterium as a function of time.
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Figure 6.8: Case III: A vertically tethered bacterium. This bacterium is vertically tethered
and when in the contracted state, the cell body appears motionless. The cell projects along
a straight path and retracts along a path that is close-by. This suggests that in the extended
state, the cell body is far away from the surface and hence it cannot roll (see the particle
track in the upper right corner). The middle and lower plots are respectivly for the x(t)
(black) and y(t) (red) positions, and for the r(t) positions of the bacterium as a function of
time.
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6.3 THEORETICAL ANALYSIS

6.3.1 Deformation of flagellum in V. alginolyticus cannot account for the large

difference in Df and Db

A simple way to explain the large difference in Df and Db seen in our experiment is perhaps

due to the conformational change when the motor changes its rotation direction. Morpho-

logical transformations in bacterial flagella are not uncommon and have been reported in

E. coli and Salmonella [38, 88]. These transformations can be induced by motor reversals

and are often accompanied by a strikingly large change in the overall shape of the flagellum.

The effect was also investigated in polar flagella of V. alginolyticus [39, 66]. These latter

studies were motivated by the original observations of Magariyama et al. who discovered the

large asymmetry in the swimming speeds when the motor rotates in the CCW (forward) and

the CW (backward) directions [56]. To characterize the asymmetry, the Magariyama et al.

defined a velocity index Iv ≡ (Vf − V b)/(Vf + Vb) for each bacterium, and the distribution

P (Iv) for a group of 150 cells were measured. They found that P (Iv) was approximately

normally distributed with the mean and standard deviation given by Īv = −0.17±0.14. The

PDF is strongly biased in the negative Iv (by more than one standard deviation), suggesting

that Vb is greater than Vf by ∆V/V ∼ 37%. This ratio is substantially higher than our

experimental observations, which we found to be Īv = −0.04± 0.11 in neutral TMN buffer,

Īv = −0.08 ± 0.13 in TMN+10 mM phenol, and Īv = −0.05 ± 0.10 near a micropipette

filled with 10mM serine. Thus in our experiment, Īv is at least a factor of two smaller. We

suspect that the large discrepancy could result from the fact that our measurements were

conducted in a bulk fluid but theirs were in a chamber with only ∼ 1µm gap. It may be

that hydrodynamic interactions with surfaces are strongly asymmetrical in the forward and

backward swimming directions, giving rise to the large difference seen in their experiment.

Using dark-field optical microscopy, Nishitoba et. al. studied the flagellum deformation

of free-swimming V. alginolyticus [66, 39]. For a left handed helix, the CCW (forward)

swimming causes the helix to tighten up, resulting in a slightly reduced pitch λ and CW

(backward) swimming causes the helix to unwind, resulting in a slightly increased pitch.
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Quantitatively, λ0 = 1.27µm for an non-swimming cell, λf = 1.23µm and λb = 1.31µm

for a forward and backward swimming cell, respectively. Thus, the total deformation ∆λ ≡

λb − λf ≃ 0.08µm is ∼ 6.3% of the mean λ0. Moreover, they found that the radius R of the

helix does not change noticeably and they speculated that this is perhaps due to the fact

that the pitch angle remains constant. For a fixed length of the flagellum, lengthening or

shortening of λ results in the number of turns N in the helix to be changed; for the forward

case, N changes from 2.84 to 2.92 and for the backward case, it changes from 2.84 to 2.77.

Nishitoba et al.’s measurement suggests that for V. alginolyticus, the flagellum deforma-

tion is considerably smaller than those seen in peritrichously flagellated bacteria. Essentially,

unlike E. coli or Salmonella, there is no morphological transformation in V. alginolyticus and

is consistent with our own experience. The small change in flagellum conformation due to

different swimming directions was also confirmed by a theoretical calculation conducted by

Takano et al. using a linear elastic theory [85]. The question we attempt to address below is

whether the observed changes in flagellum pitch λ during forward and backward swimming

is sufficient to explain the large change in D seen in our experiment. For convenience, we

used the parameters used by Takano et al. since their modeling is for V. alginolyticus YM4

strain, which we used. For convenience, these parameters are listed in Table 6.3.

For a free swimming cell, the force and the torque balance equations are given by

−A0V = AV −Bω, (6.1)

−D0Ω = −BV +Dω, (6.2)

where A0 = 4πηb/ [ln (2b/a)− 0.5] and D0 = 16πηa2b/3 are the linear and rotational drag

coefficients of the bacterial cell body with the semi-major axis b and semi-minor axis a, and

A and D are the linear and the rotational drag coefficients for the helical flagellum, and B

is responsible for the propulsion of the cell body. The set of coefficients A, B, and D, is

positive definite and forms what is known as the propulsion matrix, which is symmetrical
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[70]. Simple calculations show that they are given by,

A = KnL
(
1− α2

) [
1 + γk

α2

1− α2

]
, (6.3)

B = KnL

(
λ

2π

)(
1− α2

)
[1− γk] , (6.4)

D = KnL

(
λ

2π

)2 (
1− α2

) [
1 + γk

1− α2

α2

]
, (6.5)

where L is the total contour length of the flagellum, λ is the pitch measured along the z-axis

of the flagellum, α is the directional cosine of the pitch angle Ψ defined as α ≡ cos (Ψ) and

Ψ = tan−1 (2πR/λ), R is the radius of the flagellar helix, and γk(≡ Kt/Kn) is the ratio of the

tangential Kt to the normal Kn drag coefficient of a small segment of the flagellum filament.

Following Lighthill’s parametrization scheme [52], one obtains,

Kt =
2πη

ln [0.18λ/ (αa0)]
, (6.6)

and

Kn =
4πη

ln [0.18λ/ (αa0) + 0.5]
, (6.7)

where η is the viscosity of the fluid and a0 is the radius of the flagellar filament.

For L and R to be fixed, we rewrite Eqs. 6.3-6.5 in non-dimensional forms and they are

functions of the wavenumber k = 2π/λ only. This yields

A/KnL =
R2k2

1 +R2k2
(1 +

γk
R2k2

), (6.8)

B/KnLR =
Rk

1 +R2k2
(1− γk), (6.9)

D/KnLR
2 =

1

1 +R2k2
(1 + γkR

2k2). (6.10)

This set of equations produces the anticipated results in the limits of k → 0 (a fully stretched

helix) and k → ∞ (a fully compressed helix). In particular, B → 0 in both limits, indicating

these types of flagellum morphologies are not capable of generating thrust, which is expected.
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Table 6.3: Parameters for calculating flagellar deformation. We used the bacterial parame-
ters, the fluid viscosity η, the semi-minor a, the semi-major b, the flagellum contour length
L, the pitch λ, the radius R, and the filament radius a0 from Ref. [85]. The calculated
flagellum drag coefficients in different swimming states are listed in the last column.

η (kg/m · s) 2a (µm) 2b (µm) L (µm) a0 (µm) v (µm/s) λ (µm) R (µm) D (×10−21kg ·m2/s)

1.3× 10−3 1 2 5.5 0.016 0 1.27 0.233 1.04

100 1.23 0.232 1.02

−100 1.31 0.235 1.05

Using the given R = 0.23µm and approximating γk ≈ 0.5, we plot Eqs. 6.8-6.10 in

Figure 6.9. It is seen that as the wavenumber k increases, the propulsive coefficient B (black

curve) becomes large first, passes through a maximum before it slowly declines. Thus, for

this simple resistive force model, the maximum B occurs at Rk = 1. It is also seen that A

(blue curve) and D (green curve) depend on k differently with A increases monotonically

but D decreases monotonically with k. Based on the measured pitches given in Table 6.3,

we found that for YM4, the wavenumber during forward swimming is slightly greater than

in the backward swimming, which are delineated by the vertical dotted lines in the figure. It

is evident from their intersections with the green curve, which is for D vs. k, we found that

there is only a marginal change inD orDf/Db ≈ 0.97, which is significantly smaller than that

measured in the optical trap with Df/Db ≈ 0.82. Hence, we conclude that conformational

change in the pitch of polar flagellum is insufficient to account for the large rotational load

observed in our current experiment.

Based on the above calculation, we can also compute the ratio of the swimming speeds

in the two motor states. The swimming speed is given by,

Vs = Bsωs/(A0 + As), (6.11)

where s = (f, b). Thus the ratio is given by Vf/Vb = (
Bf

Bb
)(

ωf

ωb
)A0+Ab

A0+Af
. Our measurements

(ω’s) and calculations (B’s and A’s) show that ωf/ωb is by far the largest compared to

Bf/Bb and (A0 + Ab)/(A0 + Af ). We therefore expect Vf/Vb ≃ ωf/ωb > 1. However, this
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Figure 6.9: Effect of flagellum deformation on bacterial swimming. In the figure, non-
dimensional linear drag coefficient A (blue), the propulsive coefficient B (black), the rota-
tional drag coefficient D (green) of a helical coil are plotted. Here, the helix radius R is fixed
but the wavenumber k = 2π/λ is varied. The vertical black line corresponds to the flagellar
conformation with the maximum thrust force. The green and red vertical lines correspond to
the flagellar conformations of V. alginolyticus (YM4) in the forward and backward swimming
directions, respectively. We noticed that upon transition from the forward to the backward
swimming, B hardly changes, A decreases slightly, and D (see the solid dots) also increases
slightly. Quantitatively, the change in D is only a few percent instead of 20% as seen our
measurements.
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result is inconsistent with the velocity ratio measured in free swimming cells as delineated

in Figure 6.4(A). This suggests that either the above resistive force theory is inadequate in

predicting bacterial swimming in V. alginolyticus or there are other “degrees of freedom” in

the bacterial swimming that has not been taken into account appropriately.

In the above calculation, we have used the set of parameters obtained when the bacteria

are in the free-swimming state. The question is whether trapping of a bacterium in the

optical tweezers introduces additional stresses, causing a greater flagellum deformation than

we calculated. We think this is not likely because the major energy expenditure is in the

rotation of the cell body and the flagellum, which dissipates most of heat (∼ 98% of the

total power generated by the motor [23]) and is the main cause of the stress. The linear

motion of the cell only contribute a small amount in the torque equation via the BV term. A

simple back-of-the-envelope estimate quickly shows that |Bv|/|D0Ω| ≪ 1 and more precisely

for V. alginolyticus who swims at V = 50µm/s, the ratio is only about two percent. Thus,

we conclude that a suppression of the linear motion of the bacterium can only contribute

minimally to the flagellum deformation compared to the cell rotation. We note in passing

that a detailed calculation based on Takano et al’s work [85] is feasible but it is beyond the

scope of this thesis.

6.3.2 Precession of flagellum during backward swimming

If flagellum deformation is insufficient to account for the increased rotational load when

the motor is CW, an alternative is for the flagellum to precess about its cell body axis as

delineated in Figure 6.10(B). Because of a large hydrodynamic resistance for this motion,

which is to be analyzed below, even a small precession angular velocity ωp will contribute

a non-negligible torque N⃗p · ẑ along the cell body axis, making the body rotate faster than

when the flagellum is coaxial with the cell body.

Let’s consider flagellar motion at the instance depicted in Figure 6.10(B). It experiences

two rotations, one about its local z′-axis (self rotation) with an angular velocity ωb and a

torque N⃗ω = Dbωbẑ′, and the other about the cell-body axis ẑ (precession) with an angular

velocity ωp and a torque N⃗p = Dpωpŷ′, where ŷ′ is an instantaneous rotation axis in the
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Figure 6.10: States of flagellum rotation in optical trap. The anticorrelation seen our mea-
surements can be quantitatively explained if one assumes that during forward swimming
(CCW), the flagellum and the cell body are coaxial as shown in (A) but during backward
swimming (CW), the flagellum precesses about the fixed (cell-body) z axis with a tilting
angle θ as shown in (B). Since the laser trap is axially symmetric, it cannot exert a torque
about the trapping z axis, and consequently the z-components of the torque generated by
flagellar self rotation N⃗ω and the precession torque N⃗p should sum to zero.
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moving coordinates (x’, y’, and z’). Calculations in Appendix E show that Dp is given by

Dp =
1

3
KnL

3α2

(
1− 1

2
(1− γk)(1− α2)

)
. (6.12)

We note that since Dp scales with the flagellum length L as L3 whereas Db scales as LR
2, the

ratio Db/Dp ∝ (R/L)2 ∼ 10−3 is very small. In other words the precession angular velocity

must be correspondingly small to produce a torque comparable to that due to flagellar self

rotation. For the precession angle θ, one can write the torque balance as,

D0Ωb = Nω cos θ +Np sin θ, (6.13)

Np cos θ = Nω sin θ +Next, (6.14)

where Next is the torque due to the optical trap. In the above equations, there are three

unknowns, Np, Next, and θ and therefore we can solve θ and Np in terms of Next. A straight

forward calculation shows,

cos(θ + θ0) =
Nω√

(D0Ωb)2 +N2
ext

(6.15)

Np = D0Ωb sin θ +Next cos θ (6.16)

where θ0 = cos−1
(
D0Ωb/

√
(D0Ωb)2 +N2

ext

)
. For the given torque produced by the laser

trap Next, θ0 can be evaluated and so is the precession angle θ. Using Next and θ, Eq. 6.16

yields the torque that drives the procession of the flagellum.

In order to evaluate Eqs. 6.15 and 6.16 we need to know NΩ = D0Ωb, Nω = Dbωb, and

Next. The torque of cell-body rotation can be readily evaluated using Tables 6.1 and 6.3,

yielding NΩ ≃ 2.87 pN · µm. To evaluate the torque Nωon the flagellum, we assume that the

flagellum is rigid and is coaxial with the cell body in the forward interval (D0Ωf = Dfωf ),

which yields Nω = (Ωf/ωf )D0ωb ≃ 2.29 pN · µm. Finally, Next can be evaluated using the

experimentally observed rate of change of the cell-body orientation θ when the bacterium

is trapped by the optical tweezers, i.e. Next = D0∆θ/∆t. From the time trace x(t) ∝ ∆Ix

in Figure 2.2(B), we found that a horizontally swimming cell becomes aligned with the
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trapping axis (∆θ = π/2) in about ∆t ≃ 10ms. This gives Next ≈ 0.86 pNµm. It follows

from Eqs. 6.15 and 6.16 θ ≃ 24o and the the torque about the instantaneous rotation axis ŷ′,

Np ≃ 1.94 pNµM. Using the calculated Dp ∼ 0.11 pNµms and projecting the rotation onto

the cell-body ẑ-axis, we found the precession angular frequency about this axis is ∼ 3Hz,

which corresponds to one full rotation in an average backward interval.

This calculation is consistent with our proposed model (see Figure 6.5) that when the

bacterium swims forward, the joint at the flagellar base is rigid so that the pair of the

torques, one due to the flagellum rotation and one due to the cell-body rotation, is coaxial

with a zero net torque. However, when the bacterium swims backward, the joint is no longer

rigid and fluctuations, such as thermal noise, can cause the flagellum to tilt and to precess

about the cell-body axis. Because the hydrodynamic resistance is significantly larger for

precession than for flagellar self rotation about its own axis, the rotational load on the cell

body increases, causing the cell body to rotate faster (Ωb > Ωf ) but the flagellum to rotate

slower (ωb > ωf ) than the corresponding forward interval. It remains to be investigated how

the bacterial swimming speed and efficiency are affected by the soft joint at the base of the

flagellum, in particular why the backward swimming speed is higher than forward as seen in

our measurement.

6.4 DISCUSSION

The anti-correlation reported here raises an interesting question about the torque-speed

relationship in this marine bacterium. For V. alginolyticus, this relation has been measured

by Kawagishi et al. [42] and Sowa [79] but only for the CCW rotation. The experiment

was carried out using a bead assay in which the cell body was fixed to a glass surface,

the polar flagellum was sheared off, and a micron-sized bead (poly-L-lysine modified) was

attached to the fragmented flagellum. The torque-speed curve has the generic shape as that

of E. coli, i.e., there exits two different regimes separated by the cross-over flagellum angular

velocity ω = ωC . In the high-load regime, ω < ωC , the torque is approximately constant

but declines slightly with ω. In the low-load regime, ω > ωC , the torque decreases rapidly,
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in a linear fashion, with ω and reaches the zero torque at a characteristic speed ω0. It was

found that the stall-torque N0 (measured when ω → 0), the ωC , and ω0 are function of the

sodium concentration, and the motor is more powerful as the salt concentration increases.

For instance at 50mM Na, which is comparable to our measurements, N0 ≃ 3800 pNnm,

ωC/2π ≃ 450Hz with N(ωC) ≃ 3500 pNnm, and ω0/2π ≃ 700Hz. A schematic drawing is

given in Figure 6.11, where the slopes in the high- and low-load regimes are given respectively

by g = 2π∆N/∆ω = 0.67 and 14 pN · nm/Hz. In light of these facts, we wonder what

kind of torque-speed curve the cell must have in order to account for the anticorrelation

we observed. Can we say something about whether for V. alginolyticus there is a unique

torque-speed relationship or our measurements demand two such relationships, one for each

rotation state?

We noticed that since the torque-speed curve has negative slopes in both high- and low-

load regimes, a reduction in the flagellum rotation speed implies a shift to a higher load.

This is consistent with our observations when the motor switches from CCW (forward) to

CW (backward) direction, which is delineated by the solid green and dashed red lines in the

figure. However, it is evident that if V. alginolyticus operates in the high-load regime (see

the first set of the loading lines to the left), the fractional change in the torque δN/N =

g(ωf − ωb)/(2πN) ≃ 0.7% (using N = 3600 pN · nm), according to Figure 6.11, would be

too small as compared to our measured δN/N = 2(ωf − ωb)/(ωf + ωb) ≃ 14%. However, if

V. alginolyticus operates in the low-load regime (see the second set of the loading lines to

the right), the fractional change in the torque is now δN/N = g(ωf − ωb)/(2πN) ≃ 15%,

which is very close to what we have observed. Interestingly, the crossover frequency ωC is

very close to our measured ωb and consequently ωf is in the low-load regime. Hence, it is

highly likely that for V. alginolyticus the torque-speed relation is identical in the forward

and backward swimming intervals, which is different from what we know about E. coli’ s

motors. For a bi-directional swimmer, which is capable of performing chemotaxis in both

swimming direction, this is reasonable.

Non-axis rotation of the polar flagellum, though appears as an unnecessary oddity of

bacterial motion, it may play an important role for the flick movement seen in our earlier

experiment [92]. Functionally, a flick in V. alginolyticus is like a tumble in E. coli and
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Figure 6.11: Torque-speed relation and motor asymmetry of V.alginolyticus ’ polar flagellar
motor. For the CCW rotation, the torque-speed relation has been measured using different
sodium salt concentrations [79]. Their data is duplicated above (solid circles) for 50mM
sodium chloride in TMN buffer, which is similar to our measurement. Their measurement
displays a high-load and a low-load regime, which are similar to E. coli, separated by a corner
frequency ωC/2π ≃ 450Hz, which is much higher than E. coli. The operating points are
determined by the intersection between the loading lines, green for the forward and red for
the backward swimming, and the torque-speed curve (blue lines). Note in our experiment,
the average change in the motor frequency is (ωf −ωb)/2π ≃ 40Hz, which according to Sowa
et al.’ measurement will produce a very small change in the torque if the motor is operated
in the high-load regime. However, if the motor operates in the low-load regime, the change
in torque is comparable to what we observed in our experiment. Interestingly, the motor
frequency in the backward interval, ωb/2π, turns out to be close to ωC/2π as delineated in
the figure, the second set of loading lines to the right.

121



therefore is an important phenotype for efficient chemotaxis. Mechanistically, the precession

generates a kink at the base of the flagellum. Upon switching to the forward direction this

kink can be amplified since the bacterial body is now being pushed off-axis. If our proposed

soft-joint model is correct, the CCW motor rotation tightens the joint, making it more stiff.

This causes the re-alignment of the flagellum and the cell-body axis, which signals the end

of a flick and the beginning of a new forward run interval. Unlike a tumble in E. coli, a flick

in V. alginolyticus is brief lasting no more than 70ms based on our early measurement [92].
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APPENDIX A

MATERIALS AND METHODS

A.1 BACTERIAL STRAINS AND CULTURE CONDITIONS

The bacterial strain V. alginolyticus YM4 (Pof+, Laf−) was a kind gift of Michio Homma.

The cells were grown overnight in 2ml of VC (0.5% polypeptone, 0.5% yeast extract, 0.4%

K2HPO4, 3.0% NaCl, 0.2% glucose) at 30 oC with shaking at 200 rpm. The overnight culture

was then diluted 1 : 100 in VPG (1.0% polypeptone, 0.4% K2HPO4, 3.0% NaCl, 0.5%

glycerol) and incubated for 3 − 4 hrs at 30 oC with shaking at 200 rpm. For chemotaxis

studies, the cells were washed twice in TMN motility buffer (50mM Tris-HCl (pH 7.5), 5mM

MgCl2, 5mM glucose, 30mM NaCl, 250mM KCl) by gentle centrifugation (900 g, 2mins)

and resuspended in fresh TMN. They were incubated at 25 oC with shaking at 200 rpm for

at least 8 hrs before measurements. We found that the last stage of the preparation, i.e.,

gentle washing and a long incubation time, is essential for obtaining highly motile bacteria.

For optical trapping, the bacteria were diluted 1:100 to avoid multiple cells being captured

during a measurement.

A.2 OPTICAL TRAP AND MEASUREMENT PROCEDURES

The optical trap was formed by focusing an IR laser (1064 nm, ∼ 50mW at the laser output;

Suwtech, LDC-2500) into an open-top chamber with a 100× oil immersion objective (see
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Figure 2.2(A)). To avoid hydrodynamic interactions with boundaries, the cells were trapped

at 100µm above the bottom surface of the chamber. At this large distance a bacterium is

always trapped with its cell body along the optical axis of the trap as depicted in Figure

2.2(C-F). The scattered light from the trapped bacterium was collected by a high numerical

aperture (N.A. = 1.25) condenser and projected on a silicon position-sensitive detector

(PSD) (Pacific Silicon Sensor, DL100-7PCBA). The position of the trapped bacterium was

monitored by a PC equipped with an analog-digital converter (National Instruments, AT-

MIO-16E-2) and digitized at 10 kHz with a 12-bit resolution. Also incorporated in this

setup is a CCD camera (MTI, CCD72), which allows us to visualize bacteria in the sample

chamber. As reported earlier [23], this optical trap-microscope setup allows the cell-body Ω

and the flagellar ω rotation speeds to be independently measured for individual bacteria.

To stimulate a trapped cell, a micropipette was mounted on an x-y stage that holds the

sample chamber. In this way, the micropipette can move together with the chamber while

the optical trap remains fixed in space. The simultaneous movement of the sample chamber

and the micropipette relative to the trap is crucial, because in this way the chemoattractant

profile remains unperturbed. The x-y movements were controlled by DC actuators (New-

port, 850A) whereas the z movement was controlled by a piezo-actuator (Physik Instrumente,

P.841.60). Both the x-y and the z actuators are interfaced to the PC via the data acqui-

sition board (National Instruments, AT-MIO-16E-2). The computer controlled x-y and z

movements make it possible to automate our measurements, which will be discussed below.

When a bacterium swims far from a boundary, its body wobbles around the swimming

axis and can be readily seen by optical microscopy. Such a wobbly motion can be a result

of a slight asymmetry between the flagellum and the cell body axes or the length of the

cell body being not an integer multiple of the half wavelength that the cell body undulates

because of flagellum rotation. This wiggly motion manifests itself in the optical trap as well

and allows us to simultaneously determine the cell-body and the flagellum rotation angular

frequencies, Ω and ω, as a function of time t as delineated in Figure 2.3 [23]. However, for

a highly symmetric cell, the x(t) and y(t) signals in the detector become small, making a

motor reversal hard to detect. To make our measurement reliable, the trap beam was slightly

tilted, ∼ 3o, as depicted in Figure 2.2(G). In this case, a cell trapped in the tail-up position
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with its flagellum rotating CCW is stabilized slightly below the beam waist, causing a small

shift in its x-position towards the positive side. Likewise if the flagellum is rotating CW,

the cell body will be shifted towards positive z and its x−position will be slightly negative.

Thus, depending on rotation directions, the cell will be preferentially located in the +x0 and

−x0 positions in the optical trap, which is seen by the two lobes in Figure 2.3(A) and Figure

2.5(A and B). The transition from one state to the other is rapid with an average transition

time of ∼ 20ms. The tilted optical trap significantly improves the detection efficiency of

motor reversals.

A drawback of our current setup is that a bacterium can be trapped either in the tail-

down (C and E) or tail-up (D and F) configurations as displayed in Figure 2.2. For each of

these configurations, the cell can swim forward (C and F) or backward (D and E), leading

to four possibilities. Even though one can measure Ω and ω, (C) and (D) or (E) and (F) are

degenerate, i.e., an experimenter cannot tell if the cell is swimming forward or backward.

This degeneracy persists even when the optical trap is tilted. As a result of this deficiency,

initially, we were only able to measure the bacterial switching rate S(t) but not the CCW

bias Φ(t).

For the time-dependent switching rate measurements, the optical trap was positioned

3µm away from the serine-filled micropipette using the computer controlled x-y stage. For

an appropriate cell concentration, ∼ 106ml−1, the typical waiting time was about 5 minutes

before a single V. alginolyticus was captured by the optical trap. Too high a cell density

increased the chance of trapping multiple cells during a measurement; such events were

discarded from our data set. Since timing is important in this measurement, the entire

procedure was essentially computer controlled. We found that the optical signal detected by

the PSD is quiescent when no bacterium is present in the trap. However, when a bacterium

is captured, the signal ∆Ix(t) and ∆Iy(t) fluctuates wildly, where ∆Ix(t) and ∆Iy(t) are

proportional to the cell-body displacement (x, y) with respect to the trapping center. A

typical event is registered in a time series depicted in Figure 2.2(B), where we noticed

that a swimming cell falls into the trap rapidly within ∼ 10ms, causing a large spike in

∆Ix(t). Once the cell becomes stably trapped, ∆Ix(t) fluctuates with a large amplitude and

frequency. The red line in Figure 2.2(B) indicates the moment just before the bacterium fell
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into the trap. We used the rms value of ∆Ix(t) to monitor the status of the optical trap. If

the rms value surpasses a pre-determined threshold, the movement of the x-y stage starts and

this defines t = 0 in a measurement. In the subsequent episode, the bacterium was forced to

move 180µm against the chemical gradient direction (−∇⃗c) in 6 s while the rotation of the

flagellar motor was continuously monitored by the PSD. From the bacterium’s perspective, it

experiences an initial increase (while it is swimming into the trap) and subsequent decrease

in chemoattractant concentration (while the stage is being moved relative to the trap). The

speed of the movement, v = 30µm/s, was close to the swimming speed vsw ≃ 45µm/s of

the bacterium. One can define a chemical exposure time τ0 ≡ 2ρ0/v ≃ 0.4 s, where ρ0 is

the characteristic width of the concentration profile. For each serine concentration in the

micropipette, at least a few hundreds of bacteria were trapped, resulting in several thousand

switching events.

To find the cell-body and flagellum angular frequencies, Ω(t) and ω(t), a moving time

window of 200ms was used to calculate power spectra from the time trace x(t) and y(t).

This time window is comparable to the mean switching time but is long compared to the

cell-body rotation period so that the low-frequency of the cell-body motion can be resolved.

The power spectrum typically consists of a prominent low frequency component, which is

due to the cell body rotation Ω(t), and a prominent high frequency component, which is

due to the flagellum rotation ω(t). These two outstanding frequencies are well separated so

that there is no ambiguity in assigning cell body and flagellar rotation angular frequencies.

Sometimes there are satellite peaks around the prominent ones in the power spectrum. In

this case, Ω(t) and ω(t) were calculated by averaging over the three highest peaks from

each channel weighted by their corresponding spectral heights. Figure 5.3(D) displays the

rotation angular frequencies of the cell body Ω(t) and the flagellum ω(t) for the time series

given in Figure 5.3(C).

In the measurements we identified individual swimming intervals. Within each swim-

ming interval we determined the rotation direction s = (f, b) of the flagellar motor and the

angular frequencies of the flagellum ωs(t) and the cell body Ωs(t). From these measure-

ments, dynamically useful information, such as the motor speed ΩM
s (t) = Ωs(t) + ωs(t), the

motor torque Ns(t) = D0Ωs(t), the power generated by the motor Ws(t) = Ns(t)Ω
M
s (t), the
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rotational load of the flagellum Ds(t) = D0Ωs(t)/ωs(t) in different swimming intervals s can

be determined for individual cells.

A.3 CREATION OF A LOCALIZED CHEMICAL GRADIENT

We created a sharp concentration gradient using a micropipette prepared by a microelectrode

puller (Narishige, PP-830). The inner diameter of the micropipette is less than 1µm so that

bacteria cannot accumulate inside the capillary. The micropipette was filled with serine of

concentration c0 up to a level beyond which a capillary effect vanishes. A small hydrostatic

pressure was applied via a plastic tubing by a water column of height H as illustrated

in Figure 2.2. To calibrate the serine profile, fluorescein dye at 10mM concentration was

used, and the fluorescence intensity profile was measured using an electron-multiplying CCD

camera (Hamamatsu, C9100-12) and analyzed by SimplePCI (Compix Inc.). We found that

for a given H, the concentration profile can be established almost instantaneously, in less

than 1 s, and it is stable over a long period of time, indicating that a quasi-steady state has

been reached.

A.4 TRACKING OF FREE-SWIMMING CELLS

For comparison with the steady-state measurements in the optical trap, we also collected

switching statistics of free-swimming cells. The bacterial swimming trajectories were ob-

served under an inverted microscope (Nikon, TE300) with a 20x objective. The cells were

confined between two glass coverslips with a spacing ∼ 100µm. Video images were captured

at 30 fps by the CCD camera, and the images were analyzed using ImageJ (National In-

stitutes of Health). The mean forward tf and backward tb swimming times were measured

using an ensemble of 61 cells, totaling 617 switching events. This yields the mean switching

rate S0 = 2/(tf + tb) ≃ 3.25± 0.03 s−1, which is consistent with the observation made in the

optical trap.

127



A.5 VIDEO IMAGING OF STUCK CELLS

Swimming bacteria were placed in an open chamber with the bottom surface made of a thin

glass coverslip. Over time, some bacteria became stuck to the surface. Most of the stuck

cells laid horizontally on the glass surface and were motionless. However, in rare occasions

one can find cells that move erratically by protruding and then contracting their cell bodies

from the same fixed point. These motions are quite unusual since we never found such a case

in stuck E. coli cells. In Chapter 6 we will call those that exhibit erratic motions tethered

cells.

Our observation showed that most of the tethered cells are close to the other stuck

cells, indicating that flagellar entanglement between different cells may be a major cause of

tethering and immobilization. However, isolated tethered cells can also be found on the glass

coverslip and they also exhibit projection and contraction on the glass surface.

Motion of the tethered cells was captured by a video card in a PC computer and were

manually tracked using the centering correction option of ImageJ, which is set to find the

local minimum in a 10 pixels x 10 pixels box.
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APPENDIX B

CALCULATION OF THE MEAN DISPLACEMENT

In the following we provide a more detailed derivation of the mean displacement x̄i = x̄fi+x̄bi

in a single 3-step cycle. The displacement is made in the two time intervals, ∆f and ∆b, and

is represented by Eq. 4.5. The concentration sensed by the bacterium is piecewise continuous

according to Figure 4.2 and is given by,

c(t) =


c0 +∇c v′bit , t < 0

c0 +∇c vfit , 0 ≤ t < ∆f

c0 +∇c vfi∆f +∇c vbi(t−∆f ) , ∆f ≤ t < ∆f +∆b

where the subscript i designates the component of the velocity along the gradient direction.

The primed and unprimed velocities correspond to t < 0 (regime I′) and t ≥ 0 (regimes I

and II), respectively.

The first part of Eq. 4.5 is readily calculated by integration by parts,

x̄fi ≡

⟨ ∞∫
0

d∆f

(
−∂Pf (∆f )

∂∆f

)
vfi∆f

⟩
=

⟨ ∞∫
0

d∆fPf (∆f )vfi

⟩
(B.1)

where Pf (∆f ) is given by Eq. 4.3, which contains an integration in time t over the range:

−θ ≤ t ≤ ∆f − θ. Since ∆f varies from 0 to ∞, we have to distinguish two cases in the
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integration: (i) ∆f − θ < 0 and (ii) ∆f − θ > 0. One can deal with these two mutually

exclusive cases by the use of Heaviside functions H(x), i.e., we write,

∞∫
0

d∆f (...) ≡
∞∫
0

d∆f [H(θ −∆f ) +H(∆f − θ)](...). (B.2)

The first Heaviside function confines the integral to t < 0, and since ⟨v′bivfi⟩ = 0, there is no

contribution from this term. The integration constrained by the second Heaviside function

yields,

x̄fi = αf∇c⟨v2fi⟩τ 2f exp
(
− θ

τf

)
. (B.3)

This equation is identical to that found by de Gennes when he calculated the drift velocity

for E. coli cells [29].

The second part of Eq. 4.5 is more complicated because one has to take into account

more possibilities. Again, we used integration by parts to obtain,

x̄bi ≡

⟨ ∞∫
0

d∆f

∞∫
0

d∆b

(
−∂Pf (∆f )

∂∆f

)(
−∂Pb(∆b,∆f )

∂∆b

)
vbi∆b

⟩

=

⟨
Pf (0)

∞∫
0

d∆bPb(∆b, 0)vbi

⟩
+

⟨ ∞∫
0

d∆f

∞∫
0

d∆bPf (∆f )
∂Pb(∆b,∆f )

∂∆f

vbi

⟩
. (B.4)

Let the first term in the above equation be x̄
⟨bb⟩
bi and the second term be x̄

⟨bf⟩
bi . Since Pf (0) = 1

and Pb(∆b, 0) = Pf (∆b), it follows that the integration in the first term is identical to Eq.

B.1 with the replacement of the subscript f by b. This yields,

x̄
⟨bb⟩
bi = αb∇c⟨v2bi⟩τ 2b exp

(
− θ

τb

)
. (B.5)

Now, lets examine the anti-correlation term x̄
⟨bf⟩
bi , which corresponds to the situation when

the bacterium swims down the gradient but it still keeps its “old good memory”. Dropping

the nonlinear terms in concentration c, we found,

x̄
⟨bf⟩
bi =

αb

τb

⟨ ∞∫
0

d∆f

∞∫
0

d∆b exp

(
−∆f

τf

)
exp

(
−∆b

τb

)
∂

∂∆f

∆f+∆b−θ∫
∆f−θ

dt c(t) vbi

⟩
. (B.6)
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When integrating over ∆f , there are two possibilities for the lower limit of the t-integration,

i.e. either ∆f − θ < 0 or ∆f − θ ≥ 0. These will be delimited by the Heaviside functions as

before. For each of these cases, while integrating over ∆b, there are additional possibilities

for the upper limit of the t-integration. For the first case, when ∆f − θ < 0, there are three

possibilities: (i) ∆f − θ ≤ ∆f + ∆b − θ ≤ 0, (ii) 0 ≤ ∆f + ∆b − θ ≤ ∆f , and (iii) ∆f ≤

∆f +∆b− θ ≤ ∆f +∆b, corresponding to the regimes I′, I, and II in Figure 4.2, respectively.

However, since motion is uncorrelated after a flick or ⟨v′bivbi⟩ = 0, the first possibility does

not contribute to the displacement. In the second case, when ∆f − θ ≥ 0, there are two

additional possibilities: (iv) ∆f−θ ≤ ∆f+∆b−θ ≤ ∆f and (v) ∆f ≤ ∆f+∆b−θ ≤ ∆f+∆b,

corresponding to the regimes I and II in Figure 4.2, respectively. The corresponding time

integrals for the above four possibilities (ii-v) are given by

∆f+∆b−θ∫
∆f−θ

dt c(t) =



c0 (∆f +∆b − θ) + 1
2
∇c vfi (∆f +∆b − θ)2 , (ii)

c0∆f +
1
2
∇c vfi∆

2
f + c1 (∆b − θ)

+1
2
∇c vbi (∆b − θ)2 , (iii)

c0∆b +∇c vfi∆b

(
∆f +

1
2
∆b − θ

)
, (iv)

c0θ +∇c vfiθ
(
∆f − θ

2

)
+ c1 (∆b − θ)

+1
2
∇c vbi (∆b − θ)2 , (v)

(B.7)

where c1 ≡ c0 +∇c vfi∆f . Using the above expressions, we take the derivative with respect

to ∆f to obtain,

∂

∂∆f

∆f+∆b−θ∫
∆f−θ

dt c(t) =



c0 +∇c vfi (∆f +∆b − θ) , (ii)

c0 +∇c vfi(∆f +∆b − θ) , (iii)

∇c vfi∆b , (iv)

∇c vfi∆b . (v)

(B.8)
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Again, using the Heaviside functions to represent these four non-trivial possibilities, we have

the following identity

∞∫
0

d∆f

∞∫
0

d∆b(...) =

∞∫
0

d∆f

∞∫
0

d∆b

{H(θ −∆f ) [H(∆f +∆b − θ)H(θ −∆b) +H(∆b − θ)H(θ)]

+H(∆f − θ) [H(∆b)H(θ −∆b) +H(∆b − θ)H(θ)]} (...). (B.9)

Substituting this equation into Eq. B.6, we found,

x̄
⟨bf⟩
bi =

αb

τb

⟨ ∞∫
0

d∆f

∞∫
0

d∆b exp

(
−∆f

τf

)
exp

(
−∆b

τb

)
×{H(θ −∆f ) [H(∆f +∆b − θ)H(θ −∆b)(ii) +H(∆b − θ)H(θ)(iii)]

+ H(∆f − θ) [H(∆b)H(θ −∆b)(iv) +H(∆b − θ)H(θ)(v)]} vbi

⟩
, (B.10)

where (ii), (iii), (iv), and (v) are the terms given in Eq. B.8. The four integrations in

the above equation are delimited by different combinations of Heaviside functions, yielding

different lower and upper integration limits for each integral. Designating these integrals as(
x̄
⟨bf⟩
bi

)
ii
,
(
x̄
⟨bf⟩
bi

)
iii
,
(
x̄
⟨bf⟩
bi

)
iv
, and

(
x̄
⟨bf⟩
bi

)
v
, we found,

(
x̄
⟨bf⟩
bi

)
ii

=
αb

τb
∇c ⟨vfivbi⟩

θ∫
0

d∆f

θ∫
θ−∆f

d∆b exp

(
−∆f

τf

)
exp

(
−∆b

τb

)
(∆f +∆b − θ)

= αb∇c ⟨vfivbi⟩
τf

τf − τb
exp

[
−θ

(
1

τb
+

1

τf

)]
×
{
τ 2b

[
exp

(
θ

τb

)
− 1

]
− τ 2f

[
exp

(
θ

τf

)
− 1

]
+ θ (τf − τb)

}
, (B.11)

(
x̄
⟨bf⟩
bi

)
iii

=
αb

τb
∇c ⟨vfivbi⟩

θ∫
0

d∆f

∞∫
θ

d∆b exp

(
−∆f

τf

)
exp

(
−∆b

τb

)
(∆f +∆b − θ)

= αb∇c ⟨vfivbi⟩ τf
[
τf + τb − (τf + τb + θ) exp

(
− θ

τf

)]
exp

(
− θ

τb

)
, (B.12)
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(
x̄
⟨bf⟩
bi

)
iv

=
αb

τb
∇c ⟨vfivbi⟩

∞∫
θ

d∆f

θ∫
0

d∆b exp

(
−∆f

τf

)
exp

(
−∆b

τb

)
∆b

= αb∇c ⟨vfivbi⟩ τf
[
τb − (θ + τb) exp

(
− θ

τb

)]
exp

(
− θ

τf

)
, (B.13)

(
x̄
⟨bf⟩
bi

)
v

=
αb

τb
∇c ⟨vfivbi⟩

∞∫
θ

d∆f

∞∫
θ

d∆b exp

(
−∆f

τf

)
exp

(
−∆b

τb

)
∆b

= αb∇c ⟨vfivbi⟩ τf (τb + θ) exp

(
− θ

τf

)
exp

(
− θ

τb

)
. (B.14)

In the above calculation, the terms involving c0 do not contribute since ⟨vbi⟩ = 0. The

anti-correlation term due to all the above contributions is then given by,

x̄
⟨bf⟩
bi =

(
x̄
⟨bf⟩
bi

)
ii
+
(
x̄
⟨bf⟩
bi

)
iii
+
(
x̄
⟨bf⟩
bi

)
iv
+
(
x̄
⟨bf⟩
bi

)
v

= αb∇c ⟨vfivbi⟩
τ 2f τ

2
b

τb − τf

[
1

τf
exp

(
− θ

τb

)
− 1

τb
exp

(
− θ

τf

)]
. (B.15)

Combining Eqs. B.3, B.5, and B.15, we finally obtain the mean displacement in a given

cycle for the 3-step swimmer,

x̄i = αf∇c
⟨
v2fi
⟩
τ 2f exp

(
− θ

τf

)
+ αb∇c

⟨
v2bi
⟩
τ 2b exp

(
− θ

τb

)
+αb∇c ⟨vfivbi⟩

τ 2f τ
2
b

τb − τf

[
1

τf
exp

(
− θ

τb

)
− 1

τb
exp

(
− θ

τf

)]
. (B.16)
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APPENDIX C

OPTIMIZATION OF THE DRIFT VELOCITY

For the first chemotactic strategy, Rf (t) and Rb(t) in Eq. 4.9 are independently optimized.

The procedure requires to constrain a family of response functions Rs(t), where s = f, b.

We followed Clark and Grant’s approach [27] and assumed that Rs(t) is finite, continuous,

and decays to zero for large t. The simplest way to impose the constraint is to assume a

finite variance
∞∫
0

R2
s(t)dt = σ2

s/τs (C.1)

that is to be satisfied by all curves in the family. Optimizing κ(= V/∇c), which is given by

Eq. 4.9, with the above constraint is equivalent to

δ

δRs(t)

∞∫
0

dt

[
Rs(t)Ks(t)− λ

(
R2

s(t)−
σ2
s

τs

)]
= 0 (C.2)

whereKs(t) is the kernel that weights the forward (s = f) and the backward (s = b) response

functions,

Kf (t) = exp

(
− t

τf

)
, (C.3)

Kb(t) = exp(− θ

τb
)−

τ 2f
τf − τb

(
1

τb
exp(− θ

τf
)− 1

τf
exp(− θ

τb
)

)
. (C.4)

Aside from normalization constants, the optimized response functions are given in Eqs. 4.10

and 4.11.
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A similar procedure can also be applied to the second chemotactic strategy, resulting in

the optimized response function given by Eq. 4.13.
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APPENDIX D

WHAT DO WE KNOW ABOUT FLAGELLAR MOTOR SWITCHES?

Khan and Macnab initiated this line of research, and some of their original finding were

delineated in the main text [45]. However, recent detailed studies, at least for E. coli, the

physical picture is different. Specifically, in recent studies by the Howard Berg group at

Harvard, a number of physical effects would show to cause a rotation bias other than pH

alone. It was found that in the absence of chemotaxis regulator protein CheY-P, the motor

is exclusively in the CCW direction at room temperature. However, motor reversal can be

induced in this cheY-P deficient E. coli strain simply by reducing temperature below 10 oC

and at −2 oC the motor is exclusively in the CW direction [87]. Fahrner et al. [32] discovered

that a hydrodynamic load also has a strong influence on the motor bias, similar to the action

of fumarate [68]. Specifically, in the high-load regime (normal swimming), the motor has a

strong CCW bias, however, when the load increases so that the motor speed decreases (to

ω < 50Hz), the CW bias increases significantly [32]. Aside from the bias, the switching rate

is also altered [94, 95]. In the high-load regime, the motor switching frequency decreases

with the load but in the low-load regime, the motor switching frequency increases. These

observations together suggest that the motor switch, aside from being regulated by CheY-P,

also senses the load or proton ion fluxes. However, since in the high-load regime, the torque

changes only about 5% in the speed range 0 < ω < 50Hz, it was conjectured that the ion

flux may be the main cause of the effect. (Note this conclusion is based on the Meister,

Lowe, Berg’s observation in 1987 when they found that the number of ions flowing through

the motor per revolution is approximately constant [62].) However, if this latter finding is
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contradictory to the pH measurement of Khan and Macnab [45].
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APPENDIX E

FORCE AND TORQUE DUE TO TILTING OF THE BACTERIAL

FLAGELLUM

We assume that in the lab coordinates (x, y, z) the cell body is along the z-axis, and the

misaligned flagellum rotates about the z-axis with a constant angular velocity ωp at an angle

θ as shown in Figure 6.10(B). We define a fixed local coordinate system (x′, y′, z′) such that

the z′-axis coincides with the tilted flagellar axis. At the instance of consideration, let the

x′-axis be parallel to the x-axis. In this local moving coordinate system the flagellum can

be parametrized as

−→
h (s) =

(
R cos(Ks+ ϕ), R sin(Ks+ ϕ),

√
1−K2R2s

)
, (E.1)

where R is the radius of the helix, K = 2π/Λ is the wavenumber measured along the contour

with wavelength Λ, s is the contour length along the flagellum, and ϕ is a random phase

which will be averaged over 2π at the end of calculation. Note also the pitch λ along z axis

and along s are related by the directional cosine, cosΨ = α =
√
1−R2K2 = λ/Λ. The

tangential unit vector t̂ of h⃗(s) is,

t̂(s) =
(
−RK sin(Ks+ ϕ), RK cos(Ks+ ϕ),

√
1−K2R2

)
. (E.2)

We will calculate the torque based on this instantaneous configuration, but the result holds

for other angular positions of the flagellum as well. Since we are only interested in precession

about z-axis, there is no need to consider flagellum self rotation about the local z′-axis. Let
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the instantaneous rotation axis being along ŷ′ or ω⃗p = ωpŷ′. The velocity of the flagellar

segment located at s to s+ ds in the local coordinates can be readily calculated as

v⃗(s) = ω⃗p × h⃗(s) = ωp(
√
1−K2R2s, 0,−R cos(Ks+ ϕ)). (E.3)

One can decompose this velocity into the longitudinal vt and the transverse vn component

with the result,

−→vt (s) =
(−→v (s) · t̂(s)

)
t̂(s), (E.4)

−→vn(s) = −→v (s)−−→vt (s). (E.5)

The force density acting on the segment ds located at s is then given by f⃗(s) = Kt
−→vt (s) +

Kn
−→vn(s). The total force F⃗p and the torque N⃗p can then be calculated by straight forward

integration:

F⃗p =
1

2π

2π∫
0

dϕ

L∫
0

f⃗(s)ds =
1

2
KnLαωp

[
L

2

((
1 + α2

)
+ γk(1− α2)

)
, R

√
1− α2(1− γk), 0

]
,

(E.6)

N⃗p =
1

2π

2π∫
0

L∫
0

h⃗(s)× f⃗(s)ds =
1

3
KnL

3α2ωp

[
0, 1 +

1− α2

2α2
(γk − 1)

+
3

2α2

(
R

L

)2

γk +
(1− α2)

2α2
(1− γk)

(
R

L

)2
(
3 + (1− α2)

(
L

R

)2
)
, 0

]
. (E.7)

In the limit of small R/L, the above expression can be simplified with the result,

N⃗p ≃
1

3
KnL

3α2ωp

[
0, 1− 1− α2

2
(1− γk), 0

]
. (E.8)

Thus, the precession of the flagellum will generate a net force F⃗p and a torque N⃗p given

above. For free-swimming, all forces and torques should be balanced on a bacterium. When

trapped in the optical tweezers, the force F⃗ext and torque N⃗ext generated by the optical trap

should also be taken into account.
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