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Stewart Anderson, PhD 

Abstract 

Survival analysis concerns the characterization or comparison of one or more distributions of the 

time to a well defined event.  The log-rank test is the most common method used to compare the 

survival distributions of two samples. When data within the two groups are stratified according 

to some risk factors, then a stratified log-rank test is employed.  

Stratified analysis is a procedure used to compare outcomes in different groups while at the same 

time correcting for the effects of confounders. It is one way to ensure that important prognostic 

factors are equally distributed among different treatments. 

The ordinary log-rank test is known to be conservative when treatments have been assigned by a 

stratified design.  The stratified log-rank test is valid even when the sizes of strata differ.  

Schoenfeld and Tsiatis modified the log-rank test with a variance adjustment reflecting the 

dependence of survival on strata size. Their method is shown to be more efficient than the 

ordinary stratified log rank test when the number of strata is large, and it remains valid when the 

censoring distributions differ across treatment groups. 

In this thesis, we investigate these three log-rank tests for survival analysis. The effect of the 

stratum sizes on each type of analysis is evaluated using simulated data.  

THE EFFECTS OF OVERSTRATION ON THE STRATIFIED LOG 
RANK TEST FOR SURVIVAL ANALYSIS 

 

Shuting Yang M. S. 

University of Pittsburgh, 2012
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Our results show that the modified log rank test is beneficial for stratified survival analysis in 

most cases especially when there are large numbers of strata and the strata sizes get small. The 

statistical power of the modified log-rank test is relatively stable even with very small strata sizes 

and high strata effects.  

The public health relevance of this thesis is that the modified log-rank test we investigated and 

implemented using the R programming language provides an alternative and more efficient way 

to accommodate higher amounts of stratification in analyzing survival data. More efficient 

statistical methods indirectly have public health impact as such methods lead to analyses which 

better identify treatments, interventions or factors that influence health outcomes.  Such analyses 

are commonly used in clinical trials and other studies which influence public health. 
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ULR: unstratified log-rank test 

SLR:  stratified log-rank test  
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1.0 INTRODUCTION 

Survival analysis is used to measure follow-up time to the occurrence of a well defined event 

from a defined starting point. It involves estimation of the survival function and sometimes 

involves comparison of survival curves in different groups (treatments). Since survival data may 

involve incomplete observation of the failure times, and the underlying distribution is rarely 

normal, special techniques are required for comparing the risk for death (or event) associated 

with different treatments. The most commonly used statistical test for comparing survival 

distributions of two treatments is called the log-rank test. It is used to test the null hypothesis that 

the probability an event occurring at any time point is the same for each treatment. Log-rank 

tests are appropriate to use when data are right skewed and censored (Mantel, 1966).  

In prospective, randomized studies where treatments are being compared, stratification is often 

employed to ensure that treatments groups are reasonably balanced with respect to variables that 

confound results. The basic idea of stratification is to divide the sample space into subgroups 

called strata, and attempt to force treatment balanced within each subgroup among variables 

other than treatment which could affect outcome. Fewer observations are required for a stratified 

analysis to achieve a particular precision of errors compared to an un-stratifies analysis (Podgor 

& Gastwirth, 1994). Stratified analyses are used to compare outcome in different groups while at 

the same time correcting for the effects of the “confounders” (or variables other than treatment 

that are related to outcome). Many clinical trials are often designed to compare the survival 

distributions of different treatment groups, and the treatment effects are assessed through 
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significance tests (Peduzzi, Henderson, Hartigan, & Lavori, 2008). The basic comparison is 

made within such groups, and the discrepancy found is accumulated across all strata, the test 

statistic is derived from these accumulated statistics. Stratification in analysis allows a factor to 

be adjusted for without estimating its effect. 

Stratification is very important and necessary in many randomization clinical trial designs, but 

the amount of stratification is crucial. The number of strata and the size of each stratum are two 

essential issues to concern for stratification analysis (Akazawa, et al., 1997). A stratified analysis 

will be very efficient as long as the number of strata is relatively small; however, as the number 

of strata gets large, this method becomes more inefficient partially as the size of each stratum 

gets smaller.  Under-stratification risks bias due to imbalance of confounder across treatments, 

while over-stratification may reduce the precision of estimated effects and lowers the power of 

the analyses (De Stavola & Cox, 2008).  

Previous work was developed to study the power loss of the log-rank test under certain 

conditions (Lagakos, 1988; Akazawa, Nakamura, & Palesch, 1997;De Stavola & Cox, 2008). 

Their results and others (Feng, Wang, & Tu, 2010 )  indicate that the power loss of the stratified 

log-rank test due to the fact that the stratum sizes may be too small or alternatively due to the 

existence of heterogeneity  within strata.  
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1.1 LOG-RANK TESTS FOR NON-STRATIFIED AND STATIFIED DATA 

The ordinary or unstratified log-rank test (Mantel, 1966) is used to compare the survival curves 

for the two treatment groups. Typically, the null hypothesis for log-rank test is that the 

probability of an event occurring at any time point is the same for each treatment group. Under 

the null hypothesis, the risk of death can be calculated from the combined data for both groups. 

Statistics are calculated based on the formula in Appendix A ( A(1)). This test is known to be 

conservative when treatments have been assigned by a stratified design.  Additionally, when the 

number of patients in each subgroup is uneven, the test will be biased. 

The stratified log-rank test (Green & Byar, 1978) is applied when we wish to compare two 

groups but taking into account the other variables such as age, sex or center. The null hypothesis 

is that there is no difference between the groups in the survival distribution for each stratum. 

This test is valid even when the patients in subgroups are different in number (but balanced by 

treatments), and can be very efficient as long as the size of each stratum is relatively large. 

However, as the number of strata gets large and/or the size of each stratum gets relatively small, 

this method of analysis can become substantially less efficient (Day, Byar, & Green, 1980; 

Neuhauser & Becher, 1997). 

The modified log-rank test (Schoenfeld & Tsiatis, 1987)  studied in this thesis is similar to the 

ordinary log-rank test, but employs a variance adjustment to reflect the dependence of survival 

on strata. This method is shown to be more efficient than the stratified log rank test when the 

number of strata is large, and it remains valid when the censored distributions depend on the 

treatment group. 
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The unstratified log rank test is always asymptotically more powerful than the stratified log rank 

test in a homogeneous sample (within stratum). The loss of power of a stratified log rank test is 

due to the loss of information from unnecessary stratification. (Akazawa, et al., 1997;  Feng & 

Tu, 2010; Liao, 1998)  

1.2 SIMULATION IN SURVIVAL ANALYSIS 

Simulation is increasingly being applied to solve a variety of scientific problems. Simulation 

studies are increasingly employed in evaluating the validity of statistical models. Statistical 

simulation is a numerical method of solving mathematical problems. It is a way to model random 

events. To test the desired phenomenon of a model, a mathematical model of the phenomenon is 

constructed, stochastic errors are added and the needed quantities are determined by a statistical 

analysis of the model. The process is performed repeatedly, so that estimates of various 

parameters or other features can be accurately determined. By observing simulated outcomes, 

one can gain insight on real world problems. 

In this thesis, the effect of over stratification on the survival analysis was evaluated using three 

types of log rank tests with simulated survival data. For the three log-rank tests of interest, we 

evaluated how different strata sizes affected the efficiency for the analyses.  To do this, we first 

generated both censored and uncensored data with hazard ratio of 1 and 1.86. We also varied 

sample and stratum sizes. A detailed description of our simulation strategy is given in section of 

2.1 of this thesis. Our strategy followed that of Schoenfeld and Tsiatis (1987). 
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2.0  DATA SET GENERATION AND ANALYSIS 

2.1 DATA GENERATION  

 

 

 

 

  

 

 

 

 

 

Figure 1. The strategy of data generation 

 

 
START 

Generate  survival data  
sets for 2 groups:  

1) Unstratified; 2) Stratified; 3) Modified 
log-rank test 

       Output: 1) χ2 stat.;   2) p-value 

1. Count p-values <0.05 from the statistical  tests  
2. Power is the proportion of the p-values less than 

0.05 over all the tests. 

Repeat 
N=1000 
times 



     

 6 

 

 

The strategy of the data generation had been shown in Figure1. In the simulations, we first used a 

total sample size of 100, 50 in each group (treatment A and treatment B). In these data sets, we 

developed the uncensored and censored data.  The censored data had 15% censored information.  

We also generated data with a smaller sample size of 60 observations, one with 30 observations 

in each group, and one with 40 observations in one group and 20 observations in the other group.  

Following the procedures in 1987, the failure times were generated according to a hazard rate 

model with the relationship: ߣೕ
ሺ1ߣ =  ଵ

ଶ
ೕߣ  for treatment A, and (ߠ

ሺ1ߣ = െ ଵ

ଶ
 for treatment (ߠ

B. Here j is the stratum indicator, and  ߣ  is the baseline hazard rate in stratum j within the 

treatments. The hazard rate is sometimes called as mortality rate, failure rate or death intensity, it 

is denoted as the instantaneous rate of failure for the survivors to time t during the next instant of 

time. The hazard rate is calculated from the formula:  

λ=lim∆௫՜
ሺ௫ஸା∆௫|ஹ௫ሻ

∆௫
. 

The function of hazard rate can have different shapes; the most common type is the exponential 

distribution. In our distributions, the hazard ratio for treatment A over B in each stratum is given 

by 

ߣ ൌ
 ఒಲೕ

 ఒಳೕ
ൌ ሺ1  ଵ

ଶ
ሺ1 /(ߠ െ ଵ

ଶ
 (ߠ

with the null hypothesis being represented by ߠ  =0, which corresponding to ߣ ൌ 1 . The 

simulations were also computed with 0.6= ߠ, corresponding to a hazard ratio of  

ߣ  ൌ ሺ1  .

ଶ
ሻ/ሺ1 െ .

ଶ
ሻ =1.857.  
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For any given simulation, a D-fold strata effects means that the ratio of the larger strata hazard 

rate to the smaller strata hazard rate is D. Hazard rates were distributed uniformly among the 

strata. The formula ߣ=λ({1+(D-1)(j-1)/(K-1)} was used for all j stratum.  

2.2 DATA  ANALYSIS  

For each set of data, three tests, ordinary (unstratified) log-rank test (ULR), stratified log-rank 

test(SLR) and modified log-rank test(MLR) were performed and the null hypotheses were 

rejected if these test statistics exceeded the critical value for p=0.05 (1.645).  The statistical 

power is the percentage of the p-values less than 0.05 over all the tests (number of simulations).  

For all the tables, “stratum size” means the number of patients in each stratum, “no censored” 

means there was no censored in the data set, “censored” means there were 15% censored in the 

data set. Finally, each experiment was simulated 1000 times. All the data generation, simulation 

and statistical analysis were done by R. We used the built in R-programs to perform the 

unstratified and stratified log-rank test and used our own R programs to perform the modified 

log-rank test. A sample simulation program is displayed in Appendix B. 
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3.0  RESULTS  

3.1 BASELINE OF STATISTICAL POWER OF THE THREE METHODS 

ACCORDING TO STRATA SIZE 

We initially checked the baseline statistical power which with no stratification effects or 

treatment effects. Table 1 and Figure 2 summarize the statistical power for the larger sample size 

(n=100).  All of the three log rank tests including un- stratified log-rank test (ULR), stratified 

log-rank (SLR) test and modified log rank test have statistical power which is near to the correct 

value of 0.05 across all the different stratum sizes for uncensored data and the censored data. 

Similar results were generalized with the relatively smaller sample size (n=60), and again, the 

baseline statistical power is near to 0.05 across all of different stratum size with balanced and 

unbalanced designs (Tables 2  and Figure 3). For the unbalanced data with small strata, the 

average power was a bit higher than the normal level of 0.05 (Table 2). 

Table 1. Statistical power at baseline for different stratum size (n=100) 

  Uncensored   Censored* 

Number of 
stratum 

Stratum 
size 

ULR  SLR  MLR  ULR  SLR  MLR 

K=2  50  0.053  0.061  0.052  0.052  0.057  0.062 

K=5  20  0.067  0.062  0.074  0.048  0.052  0.052 

K=10  10  0.054  0.049  0.059  0.044  0.04  0.052 

K=25  4  0.042  0.046  0.054  0.062  0.062  0.066 

K=50  2  0.063  0.069  0.075  0.062  0.05  0.068 

*There are 15% censored observations 
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                  Figure 2. Baseline of Statistical power (D=1, HR=1, n=100) 
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Table 2. Statistical power at baseline for different stratum size (n=60)  

                    with balanced and unbalanced design 

                         Balanced Design* Unbalanced Design**     
Number of 
stratum 

Stratum 
size 

MLR ULR SLR MLR ULR SLR 

K=2 30 0.08 0.064 0.06 0.082 0.062 0.06 
K=4 15 0.08 0.068 0.072 0.054 0.054 0.06 
K=5 12 0.086 0.066 0.066 0.078 0.07 0.066 
K=10 6 0.08 0.058 0.048 0.062 0.06 0.042 
K=15 4 0.07 0.076 0.06 0.058 0.048 0.052 
K=30 2 0.054 0.066 0.044 0.082 0.066 0.052 
*Balanced design: 30 observations in each group;**Unbalanced design: 40 observations in one 
group and 20 observations in the other group. 

3.2 STATISTICAL POWER OF THE THREE METHODS FOR VARIOUS STRATA 

EFFECTS 

Table 3 summarizes the stratification effects on the statistical power for the three methods with 

larger sample (n=100). Generally, for each method, the statistical power tends to decrease with 

the increasing of the strata effects.  With the lower strata effects (D =1 or 2), the power o f SLR 

is slightly lower or close to ULR, the power of MLR is also close to ULR when stratum size was 

the same. While with the higher strata effects (D=5 or10), both the statistical power of both the 

MLR and SLR are higher than that of ULR when the stratum sizes are the same. The ratio of 

SLR over ULR tends to increase with the increase of strata effect when the methods are applied 
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to the relatively larger size of stratum. When the stratum size getting bigger, for the stratum size 

(nj) equal to nj = 10(k=10), nj=20 (k=5) or nj=50 (k=2), the ratio of the statistical power of SLR 

over ULR increased from 0.99 to 1.63 (k=2), 1.03 to 1.53 (k=5) and 0.9 to 1.22 (k=10) for D=1 

to D=10.  The ratio of SLR over ULR tends to decrease with the increase of strata effect when 

the methods are applied to the small size of stratum. In the case of uncensored data, for the 

sample size equal to 4 (k=25), the ratio of statistical power of SLR over ULR is decreased from  

 

 

Figure 3.  Baseline of Statistical power (D=1, HR=1, n=60) 
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1.23 for D=1 and to 0.99  for D=10, and for the sample size equal to 2 (k=50), the ratio of the  

statistical power of SLR over ULR is decreased from 1.32 for D=1 to 1.18 for D=10.  But the 

ratio of MLR over ULR kept increasing with the increase of strata effects for relatively larger 

stratum sizes while it kept relatively stable with smaller stratum size  nj=4 (k=25) or nj=2 (k= 50). 

The censored and uncensored data showed nearly the same trend for the change, while the 

statistical power for censored data is generally lower than that of uncensored data set. And the 

ration of MLR to ULR for censored data is even higher compared to that of uncensored data at 

the same condition. 

Table 4 shows the results when the statistical methods were applied to the relatively smaller 

sample size (n=60). With the balanced design, even though the statistical power was dramatically 

lower compared to the larger size sample (n=100), they both have the same trends.  

The statistical power decreases with the increasing of strata effects, and both the ratio of MLR 

over ULR and the ratio of SLR over ULR were increase with the increasing of strata effects, 

while the ratio of MLR over ULR was always greater than “1” across all the different stratum 

number with different strata effects, while the ratio of SLR over ULR was less than “1” when the 

strata number getting larger. 

With the unbalanced design, the statistical power was even lower than that of balanced design.  

At the lower k (k≤ 10), the ratio of MLR to ULR and the ratio of SLR to ULR closed or greater 

than “1”, and both of them were increased with the increasing of strata effects. At a higher 

number of strata (k>10),  the results appeared no stable trends and in most cases, the ratios of 

MLR to ULR and the ratio of SLR to ULR were less than “1”, indicating there was no significant 



     

 13 

advantage for either MLR or SLR over ULR.   Fig.4 showed the general trends for statistical 

power according to the strata effects. Even with some exceptions, we still can state that in 

generally, the statistical power dropped with the increasing of strata effects.       

Table 3. Statistical power with various strata effects ( n=100, 1.857=ܴܪ) 

N=100;    Uncensored  Censored 

Stratum 
Number 

Stratu
m Size 

Strata 
Effects 

MLR  ULR  SLR  M/U
* 

S/U
** 

MLR  ULR  SLR  M/U
* 

S/U
** 

K=2  50 
 

D=1  0.89      0.865    0.86  1.03  0.99  0.815    0.78      0.775  1.04  0.99 

D=2  0.845    0.83      0.86  1.02  1.04  0.69      0.66      0.71  1.05  1.08 

D=5  0.79      0.675    0.85  1.17  1.26  0.675    0.535    0.795  1.26  1.49 

D=10    0.79    0.54      0.88  1.46  1.63  0.61      0.4        0.775  1.52  1.94 

K=5  20 
 
D=1  0.86      0.835    0.775 1.03  0.93  0.805    0.8        0.76  1.01  0.95 

D=2  0.87      0.845    0.79  1.03  0.93  0.835    0.795    0.8  1.05  1.01 

D=5  0.795    0.68      0.785 1.17  1.15  0.675    0.565    0.73  1.19  1.29 

D=10  0.76      0.535    0.82  1.42  1.53  0.57     0.445    0.75  1.28  1.69 

K=10  10 
 
D=1  0.87      0.875 0.79  0.99  0.90  0.755    0.76      0.735  0.99  0.97 

D=2  0.85      0.815    0.81  1.04  0.99  0.815    0.775    0.725  1.05  0.94 

D=5  0.82      0.765    0.77  1.07  1.01  0.735    0.65      0.73  1.13  1.12 

D=10  0.81      0.66      0.805 1.23  1.22  0.69      0.53      0.78  1.3  1.47 

K=25  4 
 
D=1  0.865    0.705 0.865    1.23  1.23  0.785    0.64  0.76      1.23  1.19 

D=2  0.815    0.67  0.8        1.22  1.19  0.81      0.585  0.75      1.38  1.28 

D=5  0.83      0.655 0.755 1.27  1.15  0.69     0.565  0.655    1.22  1.16 

D=10  0.78      0.67  0.66      1.16  0.99  0.665    0.59  0.57      1.13  0.97 

K=50  2 
 
D=1  0.875    0.655 0.865 1.34  1.32  0.82      0.52  0.81      1.58  1.56 

D=2  0.875    0.645 0.815 1.36  1.26  0.81     0.495  0.775    1.64  1.57 

D=5  0.82  0.64  0.73  1.28  1. 
14 

0.74     0.505  0.645    1.47  1.28 

D=10  0.815    0.595 0.705 1.37  1.18  0.715    0.49  0.635    1.46  1.30 

*M/U: the ratio of MLR over ULR;  **S/U: the ratio of SLR over ULR 
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3.3 STATISTICAL POWER COMPARISON FOR DIFFERENT STRATA SIZE 

 3.3.1 Statistical power comparisons when the methods applied to the larger sample (n=100) 

The effects of the stratum size on the statistical power are shown in Tables 5 to Table 8 and 

Figure 5.  We generated the simulation data with both uncensored and censored data with 15% of 

censoring. Given stratification effect level, the statistical power always increased with the 

increasing of the stratum size, in the other way to say, the statistical power dropped with the 

increasing of number of strata.     With no strata effects (D=1), the power of MLR and SLR were 

relatively stable with the increase of number of strata.  For censored data, the powers of MLR for 

Table 4. Statistical power with various strata effects ( n=60, 1.857=ܴܪ) 

N=60;    N.sim=1000  Balance Design  Unbalanced Design 
Stratum 
Number 

Stratum 
size 

Strata 
Effect 

MLR  ULR SLR M/U* S/U*
* 

MLR ULR  SLR  M/U* S/U*
* 

K=2  30 
 

D=1  0.674  0.64 0.62 1.05 0.97 0.576 0.588  0.536  0.98 0.91

D=2  0.646  0.568 0.622 1.14 1.1 0.522 0.508  0.552  1.03 1.09

D=5  0.56  0.42 0.642 1.33 1.53 0.464 0.334  0.562  1.39 1.68

D=10 0.566  0.3 0.662 1.89 2.21 0.414 0.23  0.58  1.8 2.52

K=5  12  D=1  0.66  0.642 0.548 1.03 0.85 0.562 0.594  0.514  0.95 0.87

D=2  0.68  0.612 0.572 1.11 0.93 0.57 0.566  0.544  1.01 0.96

D=5  0.554  0.452 0.542 1.23 1.2 0.466 0.392  0.498  1.19 1.27

D=10 0.554  0.36 0.594 1.54 1.65 0.404 0.242  0.516  1.67 2.13

K=10  6  D=1  0.678  0.638 0.524 1.06 0.82 0.578 0.572  0.432  1.01 0.76

D=2  0.638  0.616 0.5 1.04 0.81 0.56 0.568  0.448  0.99 0.79

D=5  0.586  0.488 0.502 1.2 1.03 0.482 0.41  0.452  1.18 1.1

D=10 0.544  0.368 0.504 1.48 1.37 0.444 0.286  0.446  1.55 1.56

  K=15  4  D=1  0.652  0.62 0.438 1.05 0.71 0.27 0.576  0.408  0.47 0.71

D=2  0.622  0.576 0.474 1.08 0.82 0.226 0.564  0.352  0.4 0.62

D=5  0.606  0.516 0.478 1.17 0.93 0.182 0.534  0.352  0.34 0.66

D=10 0.534  0.378 0.446 1.41 1.18 0.152 0.474  0.32  0.32 0.68

K=30  2  D=1  0.698   0.656 0.368 1.06 0.56 0.078 0.556  0.228  0.14 0.41

D=2  0.666  0.616 0.332 1.08 0.54 0.074 0.622  0.42  0.12 0.68

D=5  0.586  0.506 0.344 1.16 0.68 0.048 0.512  0.612  0.09 1.2

D=10 0.542  0.39 0.332 1.39 0.85 0.028 0.458  0.738  0.06 1.61

*M/U: the ratio of MLR over ULR;  **S/U: the ratio of SLR over ULR 
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all set stratum were closing to 0.88, and the power of SLR is closing to 0.86, while the power of 

ULR decreased from 0.86 at k=2 to 0.655 at k=50. The power for the censored data was slightly 

lower than that for uncensored data. For a given stratum size, SLR was generally higher than 

  

Figure 4.   Statistical power varies according to strata effects  
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ULR, and MLR was generally higher than SLR. The ratio of SLR/ULR for uncensored data was 

increased from 1.01 (K=2) to 1.32 (k=50), and the ratio of MLR/ULR for uncensored data was 

increased from 1.03 (K=2) to 1.34 (k=50). The ratio of MLR/ULR for censored data increased 

from 1.05 (k=2) to 1.58(k=50), SLR/ULR for censored data increased from 1.06 (k=2) to 1.56 

(k=50). These results indicate that both the MLR and SLR might be more advantages with 

censored data as compared to the uncensored data fort this condition (Table 5). With the strata 

effects for D=2, the statistical power of the three test methods have the nearly same pattern as 

that with the strata effects for D=1, even when the ratios of MLR over ULR and SLR over ULR 

are very close at each stratum (Table 6). 

Table 5.  Statistical power various according to stratum size ( n=100, D=1)  

D=1  Uncensored   Censored*** 
Number of 
stratum 

Stratum 
size 

MLR  ULR  SLR M/U
* 

S/U
** 

MLR  ULR SLR  M/U
* 

S/U
** 

K=2  50  0.89      0.86  0.865    1.03  1.01  0.815    0.775  0.78      1.05  1.01 

K=5  20  0.86      0.775 0.835    1.11  1.08  0.805    0.76  0.8        1.06  1.05 

K=10  10  0.87          0.79  0.875 1.1  1.11  0.755    0.735  0.76      1.03  1.03 

K=25  4  0.865      0.705 0.865    1.23  1.23  0.785    0.64  0.76      1.23  1.19 

K=50  2  0.875      0.655 0.865 1.34  1.32  0.82      0.52  0.81      1.58  1.56 

*M/U: the ratio of MLR over ULR;  **S/U: the ratio of SLR over ULR; ***15% censored 
observations 

Table 6.  Statistical power various according to stratum size ( n=100, D=2)  

D=2  Uncensored   Censored 
Number of 
stratum 

Stratum 
size 

MLR  ULR  SLR M/U
* 

S/U
** 

MLR  ULR SLR  M/U
* 

S/U
** 

K=2  50  0.845       0.86      0.83  0.98  0.97  0.69      0.66      0.71  1.05  1 

K=5  20  0.87      0.79  0.845    1.1  1.07  0.835    0.8  0.795    1.04  0.99 

K=10  10  0.85      0.81  0.815    1.05  1.01  0.815    0.725  0.775    1.12  1. 
07 

K=25  4  0.815       0.67  0.8        1.22  1.19  0.81      0.585  0.75      1.38  1.28 

K=50  2  0.875      0.645 0.815 1.36  1.26  0.81     0.495  0.775    1.64  1.57 

*M/U: the ratio of MLR over ULR;  **S/U: the ratio of SLR over ULR 
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Table 7.  Statistical power various according to stratum size ( n=100, D=5)  

D=5  Uncensored   Censored 
Number of 
stratum 

Stratum 
size 

MLR  ULR  SLR M/U
* 

S/U
** 

MLR  ULR SLR  M/U
* 

S/U
** 

K=2  50  0.79      0.675    0.85  1.17  1.26  0.675    0.535    0.795  1.26  1.49 

K=5  20  0.795       0.68      0.785 1.17  1.15  0.675    0.565    0.73  1.19  1.29 

K=10  10  0.82      0.765    0.77  1.07  1.01  0.735    0.65      0.73  1.13  1.12 

K=25  4  0.83      0.655 0.755 1.27  1.15  0.69     0.565  0.655    1.22  1.16 

K=50  2  0.82  0.64  0.73  1.28  1.14  0.74     0.505  0.645    1.47  1.28 

*M/U: the ratio of MLR over ULR;  **S/U: the ratio of SLR over ULR 

Table 8.  Statistical power various according to stratum size ( n=100, D=10) 

D=10  Uncensored   Censored 
Number of 
stratum 

Stratum 
size 

MLR  ULR  SLR M/U
* 

S/U
** 

MLR  ULR SLR  M/U
* 

S/U
** 

K=2  50    0.79       0.54      0.88  1.46  1.63  0.61      0.4        0.775  1.52  1.94 

K=5  20  0.76      0.535    0.82  1.42  1.53  0.57     0.445    0.75  1.28  1.69 

K=10  10  0.81       0.66      0.805 1.23  1.22  0.69      0.53      0.78  1.3  1.47 

K=25  4  0.78       0.67  0.66      1.18  1.02  0.665    0.59  0.57      1.13  0.97 

K=50  2  0.815      0.595 0.705 1.37  1.18  0.715    0.49  0.635    1.46  1.3 

*M/U: the ratio of MLR over ULR;  **S/U: the ratio of SLR over ULR 

 

As the strata effects get higher, the patterns of statistical power for these log rank tests were 

becoming more and more complicated. With lower strata effects (D=1, 2), the power of all the 

three test methods were very close for k=2, but the power of ULR dropped dramatically with the 

increasing number of strata, while the power of the MLR and SLR tests were relatively stable. 

Also the ratio of the power of MLR over that of ULR and the power of SLR over that of ULR 
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increased with the increasing of the number of strata. When the strata effects were high (D=5, 

10), the power of ULR was low for nearly all number of strata; the power of SLR was higher at 

the lower number of strata but dropped quickly when the number of strata getting bigger; but the 

 

Figure 5.  Statistical power varies according to the number of stratum (HR=1, n=100) 

power of MLR kept stable higher for all the number of strata (Tables 7, 8 and Figure 5). For the 

censored data, the power of ULR dropped even sharply, the power of SLR was also significantly 
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decrease, only the power of MLR kept relatively higher and stable cross all the number of 

strata(tables 9,10 and Figure 6). 

 

Figure 6. Statistical power varies according to number of stratum (  n=100): Censored data 
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3.3.2 Statistical power comparisons when the methods applied to the smaller sample (n=60) 

In this section, we compare the statistical power of the three different log rank tests when they 

were applied to the relatively smaller sample size (n=60). The simulation data were generated 

without censoring but with the different designs which were balanced design and unbalanced 

design.   For the balanced design, we separated the total 60 patients evenly into two groups; for 

the unbalanced design, we signed 40 patients in one group, and the other 20 patients in the 

different groups.   It is very interesting that for the balanced design, at D=1 (no strata effects) and 

D=2 (low strata effect), the power of SLR had dramatic change, it decreased from the same level 

as the powers of ULR and MLR at k=2 to the very lower level at higher number of strata (k=30).  

Generally, the ratio of SLR over to ULR is less than “1”, and the ration of MLR over ULR is 

higher than “1” (Tables 9, 10).  When the strata effects were high (D=5,10), the power of SLR 

changed dramatically; it started at very high level at the lower number of strata, but dropped 

significantly with the increase of the number of strata, while the power of MLR was higher and 

stable. The power of ULR was relatively stable, but it was low across all the strata. For the 

unbalanced data, the results were hard to explanation, especially for the higher stratification. We 

might need further extensive studies on this issue (Tables 9,10 and Figure 7 ). 
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Table 9. Statistical power various according to stratum size ( n=60, D=1) 

  Uncensored (  HR=1.857 D=1): Balanced and unbalanceddesign 

D=1  Balanced  Design Unbalanced  Design 
Number of 
stratum 

Stratum 
size 

MLR  ULR SLR M/U
* 

S/U
** 

MLR ULR  SLR  M/U
* 

S/U
** 

K=2 30 0.674 0.64 0.62 1.05  0.97  0.576 0.588 0.536 0.98  0.91 

K=5 12 0.66 0.642 0.548 1.03  0.85  0.562 0.594 0.514 0.95  0.87 

K=10 6 0.678 0.638 0.524 1.06  0.82  0.578 0.572 0.432 1.01  0.76 

K=15 4 0.652 0.62 0.438 1.05  0.71  0.27 0.576 0.408 0.47  0.71 

K=30 2 0.698 0.656 0.368 1.06  0.56  0.078 0.556 0.228 0.14  0.41 
 *M/U: the ratio of MLR over ULR;  **S/U: the ratio of SLR over ULR 

 

Table 10.  Statistical power various according to stratum size ( n=60, D=2) 

  Uncensored (  HR=1.857 D=2): Balanced and unbalanced design 

D=2  Balanced  Design Unbalanced  Design 
Number of 
stratum 

Stratum 
size 

MLR  ULR SLR M/U
* 

S/U
** 

MLR ULR  SLR  M/U
* 

S/U
** 

K=2 30 0.646 0.568 0.622 1.14  1.1  0.522 0.508 0.552 1.06  1.09 

K=5 12 0.68 0.612 0.572 1.11  0.93  0.57 0.566 0.544 0.91  0.96 

K=10 6 0.638 0.616 0.5 1.04  0.81  0.56 0.568 0.448 0.76  0.79 

K=15 4 0.622 0.576 0.474 1.08  0.82  0.226 0.564 0.352 0.72  0.62 

K=30 2 0.666 0.616 0.332 1.08  0.54  0.074 0.622 0.42 0.37  0.68 

*M/U: the ratio of MLR over ULR;  **S/U: the ratio of SLR over ULR 

 

Table 11.  Statistical power various according to stratum size ( n=60, D=5) 

  Uncensored (  HR=1.857 D=5): Balanced and unbalanced design 

D=5  Balanced  Design Unbalanced  Design 
Number 

of 
stratum 

Stratu
m size 

MLR  ULR  SLR  M/U
* 

S/U**  MLR  ULR  SLR  M/U
* 

S/U*
* 

K=2 30 0.56 0.42 0.642 1.14  1.10  0.464 0.334 0.562 1.39  1.68 
K=5 12 0.554 0.452 0.542 1.11  0.93  0.466 0.392 0.498 1.19  1.27 

K=10 6 0.586 0.488 0.502 1.04  0.81  0.482 0.41 0.452 1.18  1.10 
K=15 4 0.606 0.516 0.478 1.08  0.82  0.182 0.534 0.352 0.34  0.66 
K=30 2 0.586 0.506 0.344 1.08  0.54  0.048 0.512 0.612 0.09  1.20 

*M/U: the ratio of MLR over ULR;  **S/U: the ratio of SLR over ULR 
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Table 12.  Statistical power various according to stratum size ( n=60, D=10) 

  Uncensored (  HR=1.857 D=10): Balanced and unbalanced design 

D=10  Balanced  Design � Unbalanced  Design*** 
Number 
of stratum 

Stratu
m size 

MLR  ULR  SLR  M/U
* 

S/U*
* 

MLR  ULR  SLR  M/U
* 

S/U*
* 

K=2 30 0.566 0.3 0.662 1.89  2.21  0.414 0.23 0.58 1.80  2.52 
K=5 12 0.554 0.36 0.594 1.54  1.65  0.404 0.242 0.516 1.84  2.13 

K=10 6 0.544 0.368 0.504 1.48  1.37  0.444 0.286 0.446 1.67  1.56 
K=15 4 0.534 0.378 0.446 1.41  1.18  0.152 0.474 0.32 1.55  0.68 
K=30 2 0.542 0.39 0.332 1.39  0.85  0.028 0.458 0.738 0.32  1.61 

*M/U: the ratio of MLR over ULR;  **S/U: the ratio of SLR over ULR 

 

Figure 7.  Statistical power varies according to number of stratum: Balanced Design 
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Figure 8.  Statistical power varies according to number of stratum: Unbalanced Design 
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4.0  DISCUSSION 

In this thesis, we evaluated the three log-rank tests using statistical simulations. The results 

showed that the stratum size is an important factor that affects the statistical power, confirming 

the previous results that the power loss of the stratified log-rank test can be caused by very small 

stratum sizes. Using our comparisons of the three log-rank tests, we confirmed that the modified 

log-rank test is beneficial for most cases of highly stratified data especially for the smaller 

sample size.  Despite the fact that several previous studies indicated that the modified log-rank 

test tends to inflate  the  statistical power (Shih, 1999), the Schenfeld-Tsiatis test is, nevertheless,  

a very useful way to adjust for high stratification in studies, even though there might not be the 

advantages for using the modified log-rank test (Akazawa, et al., 1997)  when the number of 

strata are relatively low.  Concerning the suitable stratum size for applying to modified log-rank 

test, we might not have to worry too much about the stratum size when the balanced designs 

were used but we may have to be wary of the stratum size with the unbalanced design, since it 

appears that statistical power are very unstable when the stratum size dropped to 6 observations 

in our simulation data (Figure 8).  

The strata effect has been also played a part in affecting statistical power. In this thesis, we 

addressed the strata effect from D=1, which means no strata effect to D=2, 5, and 10 four levels. 

The results indicate that the statistical power of all the three tests decreased with increasing of 

the strata effects for nearly all the set conditions, including censored and uncensored with 
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balanced and unbalanced design. When comparing to the unstratified log-rank test, which is 

invalid when there are the strata effects and the stratified log-rank test, we showed the 

advantages when the sizes of strata are not small but lost the advantages when the sizes of 

stratum got smaller, The statistical power of the modified log-rank test is relatively stable even 

with the very smaller sizes of stratum and the high strata effects.  

Compared to the results with Shoenfeld & Tsiatis 1987, the statistical power in our simulation 

were close but slightly lower than that in their studies.  The reasons for these difference affect the 

statistical power might need to be further investigated. It is also indicating that there might be 

still the other reasons can cause this difference.  

To our knowledge, there are no statistical packages which employ the modified log-rank test 

suggested by Schoenfeld and Tsiatis (Schoenfeld & Tsiatis, 1987). One reason might be the 

complicated calculation formulas in this test. We tackled with this issue by using R and we 

finally got our R program to handle this relatively complicated test.  
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5.0  CONCLUSSION 

 

By comparing the three log-rank tests, we conclude that the modified log-rank test is superior to 

both the unstratified log-rank test and stratified log-rank test in most cases, especially when there 

is a large number of strata, which agree with the results of Scoenfeld.  

In the current R package, there are programs for unstratified and stratified log-rank tests that 

have been built in. It would be useful if programs for the modified log-rank test can be built into 

the R package based on our current results.  
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APPENDIX A 

MATH FORMULARS 

A.1  Unstratified log-rank statistic: 
ሻሻ݊݅ݐ݂ܽܿ݅݅ݐܽݎݐݏ݊ݑሺݐܽݐܵ ൌ  

∑ ௱ሼିതሺሻሽ

ሾ∑ ௱ሺሻሼଵିതሺሻሽሿ
భ
మ
   

ҧܼሺݑሻ ൌ  ܼܫ൫ ܺ  ൯ݑ  ሺܫ ܺ  ሻൗݑ  

 

 
A.2 Stratified log-rank statistic: 
Stat(stratified)= 

∑ ∑ ௱ೕሼିതೕሺೕሻೕ ሽ

ሾ∑ ∑ ௱ೕതೕሺೕሻሼଵିതೕሺೕሻೕ ሿ
భ
మ
 

ҧܼሺݑሻ ൌ  ܼܫሺ ܺ  ሻݑ

ೕ

ୀଵ

 ሺܫ ܺ  ሻݑ

ೕ

ୀଵ

൙  

 
 
 
 

A.3 Stratified log-rank test as modified by Schoenfeld (Schoenfeld and Tsiatis, 1987): 
ఈܮ ൌ ሼݍܼሺ2 െ ሻߙ  ሺ1 െ ܼሻሺ ߙ െ 1ሻሽܫሺܺ ب ܺሻ

,

 

ܵ ൌ ܮ ሺܮଵ  ⁄ଶሻܮݍ  

ܶ ൌ  ሼ߂ ܼݍ ܵଶ െ ሺ1 െ ܼሻ ܵଵሽ
,
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APPENDIX B 

R-CODE 

B.1   R –code for data generation and analysis 

 

library(survival) 
n1=30 
n2=30 
 
n<-n1+n2  
 
h<-0.1 ###<--lambda: baseline hazard rate 
D<-2   ###<-- Stratification effect: ratio of the highest to lowest hazard     
           Rate (can be changed) 
e<-0.6 ####<-- Treatment effect: e=0 => HR=1; 
           #<-- e=0.6 => HR=1.857  
 
K <-2  #<----Number of strata (can be changed) 
N.sim <-1000 
# ---------------------------------------------------- 
# INITIALIZE vectors with output information 
# ---------------------------------------------------- 
lr.stat<-rep(NA,N.sim) # ORDINARY log-rank statistic (unstratified) 
lr.stat.strat<-rep(NA, N.sim) # ORDINARY log-rank statistic (stratified) 
lr.stat.modi.strat<-rep(NA, N.sim) # MODIFIED log-rank statistic (stratified) 
p.val<-rep(NA, N.sim)#p-value for unstratified log-rank  
p.val.strat<-rep(NA, N.sim)   # p-value for stratified analysis 
p.val.modi.strat<-rep(NA, N.sim) #P-value for modified analysis 
 
######################SIMULATION LOOP ################### 
 
 
for(l in 1:N.sim){ 
    
   Z<-c(rep(1,n1),rep(0,n2))###control and treatment group 
   J.<-c(rep(1:K,n/K)) 
   k<-c(1:K) 
  hj<-h*(1+(D-1)*(k-1)/(K-1)) 
    #hj<-ifelse(J.==1,h,D*h) 
  haj<-hj*(1+e/2); hbj<-hj*(1-e/2)###hazard rate for treatment A and B in 
stratum j  
    x.1<-rexp(n1,haj)####group1 (Z1) 
    x.2<-rexp(n2,hbj)####group 2 (Z2) 
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    x<-c(x.1,x.2)###### 
    d.<-rbinom(n,1,1) #<-- CENSORING INDICATOR (NO CENSORED) 
     #d.<-rbinom(n,1,0.85) #<-- CENSORING VARIABLE (15% CENSORED) 
     
 
data.<-cbind(x,d.,J.,Z) 
(o <- order(x)) 
data.[o, ] 
  
data.simu<-data.frame(data.[o, ])##re-order the data frame with increasing x 
 
##### unstratified and stratified  log-rank tests using R functions #####    
diff.lr.sv<-survdiff(Surv(x,d.)~Z,data=data.simu)####unstratified 
check.lr.sv<-coxph(Surv(x,d.)~Z,data=data.simu) 
check.lr.sv 
diff.lr.stra.sv<-survdiff(Surv(x,d.)~Z+strata(J.),data=data.simu)##stratified 
 
#################----- code for Modified Logrank test------#########   
 
x.<-data.simu$x; d<-data.simu$d.;J<-data.simu$J.;Z.<-data.simu$Z  
data.m<-cbind(x.,d,J,Z.) ##ensure to use the same data as above 
 
ar.ind<-matrix(0,n,K) 
for (i in 1:n){ 
 
j <- data.m[i,3] 
ar.ind[i,j] <- 1 
 
} 
 
Zj.<-Z.*ar.ind ###pts with treatment in each stratum 
 
nn<-length(x[Z.==1]) ##total number of treatment A in all (stratum 1&2) 
 
nnj.<- c(rep(0,K)) 
nj. <- c(rep(0,K)) 
for (j in 1:K){ 
nnj.[j] <-length(x[Zj.[,j]==1]) 
nj.[j] <-length(x[J==j]) 
pj.<-nnj./nj.;qj.<-1-pj. 
p.<-nn/n;q.<-1-p. 
} 
 
#####--------Working on Lji1&Lji2-------####### 
 
At.risk<-matrix(rep(1,n^2), nrow=n) 
 
for (i in 1:n){ 
for (j in 1:n){ 
  At.risk[i,j]<-ifelse(j>i,0,1) 
 } 
} 
 
ar.ind<-matrix(0,n,K) 
for (i in 1:n){ 
j <- data.m[i,3] 
ar.ind[i,j] <- 1 
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} 
 
Lji1<-apply(At.risk*qj.*Z.,2,sum) 
Lji2<-apply(At.risk*pj.*(1-Z.),2,sum) 
 
Sji1<-Lji1/(p.*Lji1+q.*Lji2); Sji2<-Lji2/(p.*Lji1+q.*Lji2) 
 
Tj.<-d*(Z.*qj.*Sji2-(1-Z.)*pj.*Sji1) 
modi.strat.T<-sum(Tj.) 
 
 
######-----Working on the denominators of statistics (Variance)-----####### 
 
######denormators for dji1&dji2####### 
Ddn<-apply(At.risk*p.*qj.*Z.,2,sum)+apply(At.risk*q.*pj.*(1-Z.),2,sum) 
Ddn ##Denominator for dji1&dji2 
 
rDdn<-1/Ddn 
 
#####---Fraction term for dji1&dji2---##### 
At.event<-matrix(rep(0, n^2), nrow=n) 
for (i in 1:n){ 
for (j in 1:n){ 
  At.event[i,j]<-ifelse(j>=i,1,0) 
 } 
} 
 
fnn<-p.*qj.*Z.+q.*pj.*(1-Z.) 
 
sum1<-apply(At.event*rDdn*d*Sji1,2,sum)     ##q1; q2 for all term 
sum2<-apply(At.event*rDdn*d*Sji2,2,sum)     ##q1;q2 for all term 
sum1;sum2 
frac1<-fnn*sum1;frac2<-fnn*sum2 
frac1;frac2 
 
dji1<-d.*Sji1-frac1;dji2<-d.*Sji2-frac2 
dji1;dji2 
 
Ddn<-apply(At.risk*p.*qj.*Z.,2,sum)+apply(At.risk*q.*pj.*(1-Z.),2,sum) 
      
######---variance calculation---###### 
 
Vj.1<-(pj.^2)*((1-Zj.)*ar.ind*dji1^2) 
Vj.1s<-c(apply(Vj.1,2,sum)) 
  
Vj.2<-(qj.^2)*(Zj.*dji2^2) 
Vj.2s<-c(apply(Vj.2,2,sum)) 
 
Vj.3<-((1-Zj.)*ar.ind*dji1) 
Vj.3s<-c(apply(Vj.3,2,sum)) 
 
Vj.4 <-Zj.*dji2 
Vj.4s<-c(apply(Vj.4,2,sum)) 
 
Vj.<-Vj.1s+Vj.2s-(Vj.3s)*(Vj.4s)/nj. 
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modi.strat.var<-sum(Vj.) 
modi.strat.V<-sqrt(modi.strat.var) 
 
Z.modi.strat.Stat<-modi.strat.T/modi.strat.V 
 
Z.diff.lr.stat.R<-sqrt(diff.lr.sv$chisq) 
Z.diff.lr.stra.stat.R<-sqrt(diff.lr.stra.sv$chisq) 
Z.diff.lr.stat.R 
Z.diff.lr.stra.stat.R 
Z.modi.strat.Stat 
 
lr.stat[l]<-diff.lr.sv$chisq 
lr.stat.strat[l]<-diff.lr.stra.sv$chisq 
lr.stat.modi.strat[l]<-modi.strat.T^2/modi.strat.var 
 
p.val[l]<-1-pchisq(diff.lr.sv$chisq,1) 
p.val.strat[l]<-1-pchisq(diff.lr.stra.sv$chisq,1) 
p.val.modi.strat[l]<-1-pchisq(lr.stat.modi.strat[l],1) 
 
}  #<-- END of simulation loop 
 
 
alpha=0.05 
sig.lr<-ifelse(p.val<alpha,1,0) 
power.lr<-sum(sig.lr)/N.sim 
power.lr 
#power.all.ULR[k]<-power.lr 
 
sig.strat<-ifelse(p.val.strat<alpha,1,0) 
power.strat<-sum(sig.strat)/N.sim 
power.strat 
#power.all.SLR<-power.strat 
 
 
p.val.modi.strat<-na.omit(p.val.modi.strat) 
sig.modi.strat<-ifelse(p.val.modi.strat<alpha,1,0) 
power.modi.strat<-sum(sig.modi.strat)/N.sim 
power.modi.strat 
#power.all.MLR[k]<-power.modi.strat 
cbind(power.modi.strat,power.lr,power.strat) 
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B.2       R –code for graphing 

par(mfrow=c(2,1)) 
 
ULR<-c(0.053,0.067,0.054,0.042,0.063) 
SLR <-c(0.061,0.062,0.049,0.046,0.069) 
MLR<-c(0.052,0.074,0.059,0.054,0.075) 
g_range<-range(0,1)  
plot(ULR, type="o", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:5, lab=c("2","5","10","25","50")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.8, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="Baseline:D=1,HR=1(uncensored,n=100)", font.main=1) 
 
 
 
#D=1, h=1, censored 
ULR<-c(0.052,0.048,0.044,0.062,0.062) 
SLR <-c(0.057,0.052,0.04,0.062,0.05) 
MLR<-c(0.062,0.052,0.052,0.066,0.068) 
g_range<-range(0,1)  
plot(ULR, type="o", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:5, lab=c("2","5","10","25","50")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.8, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="Baseline:D=1,HR=1(censored,n=100)", font.main=1) 
 
########---------######################################### 
 
 
par(mfrow=c(2,2)) 
#D=1, h=1.857,n=100 uncensored 
 
ULR<-c(0.86,0.775,0.79,0.705,0.655) 
SLR <-c(0.865,0.835,0.875,0.865,0.865)        
MLR<-c(0.89,0.86,0.87, 0.865,0.875)    
    
g_range<-range(0,1)  
plot(ULR, type="o", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:5, lab=c("2","5","10","25","50")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
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lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="D=1(uncensored) (n=100)", font.main=1) 
 
 
#D=2, h=1.857,  uncensored 
ULR<-c(0.86,0.79,0.81,0.67,0.645) 
SLR <-c(0.83,0.845,0.815,0.8,0.815)         
MLR<-c(0.845,0.87,0.85,0.815,0.875 )    
 
g_range<-range(0,1)  
plot(ULR, type="o", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:5, lab=c("2","5","10","25","50")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="D=2(uncensored) (n=100)", font.main=1) 
 
 
 
#D=5, h=1.857, uncensored 
ULR<-c(0.85,0.785,0.77,0.655,0.64) 
SLR <-c(0.675,0.68,0.765,0.755,0.73 )    
MLR<-c(0.79,0.795,0.82,0.83,0.82) 
      
g_range<-range(0,1)  
plot(ULR, type="o", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:5, lab=c("2","5","10","25","50")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="D=5(uncensored) (n=100)", font.main=1) 
 
 
#D=10, h=1.857, uncensored 
ULR<-c(0.54,0.535,0.66,0.66,0.595) 
SLR <-c(0.88,0.82,0.805,0.67,0.705 )         
MLR<-c(0.79,0.76,0.81,0.78,0.815)       
  
g_range<-range(0,1)  
plot(ULR, type="o", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
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axis(1, at=1:5, lab=c("2","5","10","25","50")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="D=10(uncensored) (n=100)", font.main=1) 
 
 
 
################   censored  ############################# 
 
par(mfrow=c(2,2)) 
#D=1, h=1.857, n=100 censored 
ULR<-c(0.775,0.76,0.735,0.64,0.52) 
SLR<-c(0.78,0.8,0.76,0.76,0.81)          
MLR<-c(0.815,0.805,0.755,0.785,0.82)        
g_range<-range(0,1)  
plot(ULR, type="o", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:5, lab=c("2","5","10","25","50")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="D= 1(censored) (n=100)", font.main=1) 
 
 
#D=2, h=1.857,censored 
 
ULR<-c(0.66,0.8,0.725,0.585,0.495) 
SLR<-c(0.66,0.795,0.775,0.75,0.775)         
MLR<-c(0.69,0.835,0.815,0.81,0.81)       
  
g_range<-range(0,1)  
plot(ULR, type="o", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:5, lab=c("2","5","10","25","50")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="D=2(censored) (n=100)", font.main=1) 
 
#D=5, h=1.857, censored 
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ULR<-c(0.535,0.565,0.65,0.565,0.505) 
SLR<-c(0.795,0.73,0.73,0.655,0.645)        
MLR<-c(0.675,0.675,0.735,0.69,0.74)      
     
g_range<-range(0,1)  
plot(ULR, type="o", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:5, lab=c("2","5","10","25","50")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="D=5(censored) (n=100)", font.main=1) 
 
 
#D=10, h=1.857,censored 
ULR<-c(0.4,0.445,0.53,0.59,0.49) 
SLR<-c(0.775,0.75,0.78,0.57,0.635)         
MLR<-c(0.61,0.57,0.69,0.665,0.715)            
  
g_range<-range(0,1)  
plot(ULR, type="o", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:5, lab=c("2","5","10","25","50")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
 
 
 
 
#######----small data set n=60(uncensored balanced data)----############ 
par(mfrow=c(2,1)) 
#D=1, h=1, balanced(baseline) n=60 
ULR<-c(0.062,0.054,0.07,0.06,0.048,0.066) 
SLR <-c(0.06,0.06,0.066,0.042,0.052,0.052) 
MLR<-c(0.082,0.054,0.078,0.062,0.058,0.082) 
g_range<-range(0,1)  
plot(ULR, type="o",ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:6, lab=c("2","4","5","10","15","30")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.8, c("ULR","SLR","MLR"), cex=0.5,    
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  pch=21:23, lty=1:3); 
title(main="Baseline:D=1,HR=1(Balanced,n=60)", font.main=1) 
########-----unblanced design----##################### 
#D=1, h=1, unblanced(baseline) 
ULR<-c(0.064,0.068,0.066,0.058,0.076,0.066) 
SLR <-c(0.06,0.072,0.066,0.048,0.06,0.044) 
MLR<-c(0.08,0.08,0.086,0.08,0.07,0.054) 
g_range<-range(0,1)  
g_range<-range(0,1)  
plot(ULR, type="o",ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:6, lab=c("2","4","5","10","15","30")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.8, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="Baseline:D=1,HR=1(Unbalanced,n=60)", font.main=1) 
######-----balanced design------------################################ 
#D=1, h=1.875, balanced n=60 
par(mfrow=c(2,2)) 
 
ULR<-c(0.64,0.642,0.638,0.62,0.656) 
SLR <-c(0.62,0.548,0.524,0.438,0.368) 
MLR<-c(0.674,0.66,0.678,0.652,0.698) 
g_range<-range(0,1)  
plot(ULR, type="o",  ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:5, lab=c("2","5","10","15","30")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main=" n=60 D=1 Balanced Design ", font.main=1) 
 
 
ULR<-c(0.568,0.612,0.616,0.576,0.616) 
SLR <-c(0.622,0.572,0.5,0.474,0.332) 
MLR<-c(0.646,0.68,0.638,0.622,0.666) 
g_range<-range(0,1)  
plot(ULR, type="o",  ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:5, lab=c("2","5","10","15","30")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
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  pch=21:23, lty=1:3); 
title(main=" n=60 D=2 Balanced Design ", font.main=1) 
 
 
ULR<-c(0.42,0.452,0.488,0.516,0.506) 
SLR <-c(0.642,0.542,0.502,0.478,0.344) 
MLR<-c(0.56,0.554,0.586,0.606,0.586) 
g_range<-range(0,1)  
plot(ULR, type="o",  ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:5, lab=c("2","5","10","15","30")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main=" n=60 D=5 Balanced Design ", font.main=1) 
 
 
ULR<-c(0.3,0.36,0.368,0.378,0.39) 
SLR <-c(0.662,0.594,0.504,0.446,0.332) 
MLR<-c(0.566,0.554,0.544,0.534,0.542) 
g_range<-range(0,1)  
plot(ULR, type="o",  ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:5, lab=c("2","5","10","15","30")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main=" n=60 D=10 Balanced Design ", font.main=1) 
 
#######----small data set n=60(uncensored unbalanced data)----############ 
 
 
par(mfrow=c(2,2)) 
 
ULR<-c(0.588,0.594,0.594,0.572,0.576,0.556) 
SLR <-c(0.536,0.552,0.514,0.432,0.408,0.228) 
MLR<-c(0.576,0.594,0.562,0.578,0.27,0.078) 
g_range<-range(0,1)  
plot(ULR, type="o", col="blue", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:6, lab=c("2","4","5","10","15","30")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
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legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main=" n=60 D=1 Unbalanced Design ", font.main=1) 
 
 
ULR<-c(0.508,0.514,0.566,0.568,0.564,0.622) 
SLR <-c(0.552,0.498,0.544,0.448,0.352,0.42) 
MLR<-c(0.536,0.552,0.514,0.432,0.408,0.228) 
g_range<-range(0,1)  
plot(ULR, type="o", col="blue", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:6, lab=c("2","4","5","10","15","30")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main=" n=60 D=2 Unbalanced Design ", font.main=1) 
 
 
ULR<-c(0.334,0.436,0.392,0.41,0.534,0.512) 
SLR <-c(0.562,0.552,0.498,0.452,0.352,0.612) 
MLR<-c(0.464,0.526,0.466,0.482,0.182,0.048) 
g_range<-range(0,1)  
plot(ULR, type="o", col="blue", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:6, lab=c("2","4","5","10","15","30")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main=" n=60 D=5 Unbalanced Design ", font.main=1) 
 
 
ULR<-c(0.23,0.236,0.242,0.286,0.474,0.458) 
SLR <-c(0.58,0.542,0.516,0.446,0.32,0.738) 
MLR<-c(0.414,0.434,0.404,0.444,0.152,0.028) 
g_range<-range(0,1)  
plot(ULR, type="o", col="blue", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:6, lab=c("2","4","5","10","15","30")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main=" n=60 D=10 Unbalanced Design ", font.main=1) 
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#######----Stiatics power with strata effects  ----############ 
par(mfrow=c(2,2)) 
 
ULR<-c(0.775,0.79,0.6,0.62) 
SLR <-c(0.835,0.845,0.81,0.82) 
MLR<-c(0.86,0.87,0.8, 0.79) 
  
g_range<-range(0,1)  
plot(ULR, type="o", col="blue", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:4, lab=c("2","4","5","10")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="n=100 K=5 Noncensored with Balanced", font.main=1) 
 
 
 
 
ULR<-c(0.805,0.835,0.675,0.57)      
SLR <-c(0.76,0.8,0.73,0.75) 
MLR<-c(0.8,0.795,0.69,0.68) 
g_range<-range(0,1)  
plot(ULR, type="o", col="blue", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:4, lab=c("2","4","5","10")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="n=100 K=5 Censored with Balanced", font.main=1) 
 
 
 
ULR<-c(0.642,0.612,0.452,0.36) 
SLR <-c(0.548,0.572,0.542,0.594) 
MLR<-c(0.66,0.68,0.554,0.554) 
 
g_range<-range(0,1)  
plot(ULR, type="o", col="blue", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:4, lab=c("2","4","5","10")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
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title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="n=60 K=5 with Balanced", font.main=1) 
 
 
 
 
ULR<-c(0.594,0.566,0.392,0.242) 
SLR <-c(0.514,0.544,0.498,0.516) 
MLR<-c(0.562,0.57,0.466,0.404) 
 
g_range<-range(0,1)  
plot(ULR, type="o", col="blue", ylim=g_range,  
   axes=FALSE, ann=FALSE) 
axis(1, at=1:4, lab=c("2","4","5","10")) 
axis(2,las=2,at=0.2*0:g_range[1]) 
box() 
lines(ULR, type="o", pch=21, lty=1 ) 
lines(SLR, type="o", pch=22, lty=2 ) 
lines(MLR, type="o", pch=23, lty=3) 
 
title(xlab= "Strata Effects(D)") 
title(ylab= "Statistical power") 
legend(1, 0.2, c("ULR","SLR","MLR"), cex=0.5,    
  pch=21:23, lty=1:3); 
title(main="n=60 K=5 with Unbalanced", font.main=1) 

 

###############################----  End of code----####################### 
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