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HIV-1 infected individuals show a remarkable variation in virus replication and disease 

progression.  Host cellular gene expression as a response to virus infection is directly correlated 

with disease patterns.  Here, we examine the role of microRNAs on mRNA regulation and its 

effect in HIV-1 disease progression by performing a comparative microRNA and mRNA 

profiling. 

Total RNA was extracted from subjects with high viral load (HVL)(>45,000 copies/ml), 

low viral load (LVL) (~<40 copies/ml), and uninfected controls.  RNA was quality tested and 

then reverse transcribed and tested using a Megaplex Real-time PCR for the quantification of 

expression of 754 miRNAs, in addition to controls, using a high throughput array.  

Transcriptome profiling was carried out using Illumina HT-12 array, which targets more than 

28,688 annotated genes with more than 47,231 probes.  Computational analysis to find the 

mRNA targets of significantly differentially regulated miRNAs was performed with the 

expression values of both miRNA and mRNA, supplemented with a GenMir++. 

HIV-1 infection with high viral load significantly dysregulated the miRNA profile in the 

infected individuals compared to uninfected or LVL group, whereas infection with low viral load 

produced a less distinctive profile compared to the controls.  These differences are independent 

of age within these populations.  Independent validations confirmed the high throughput results 

in 65-85% in independent donors. GO enrichment analysis further showed 34 significant terms 
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of biological processes in the high viral load compared to controls.  A less distinctive profile was 

seen in the low viral load samples compared to controls on both the miRNA and mRNA levels.  

Biological validation studies also confirmed the expression of HIV induced host cellular factors 

in in vitro infected samples.  Together, these results indicate that HIV-1 infection differentially 

regulates host cellular transcriptome through miRNA expression. 

Public health relevance: Viral load significantly upregulates miRNA expression, which 

translates to an altered expression on the mRNA level.  The discovery of microRNAs that play a 

role in HIV infection could lead to the development of new biomarkers that could be used to 

identify disease progression within the infected individuals as well as the infected individuals’ 

ability to respond to antiviral treatment.  
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1.0  INTRODUCTION 

An estimated 33.3 million people are living with HIV infection around the world[1].  However, 

the disease susceptibility and progression within the infected individuals show remarkable 

variation in virus replication and immune control [2-5]. Even with advancements in diagnostics 

and therapy, there is a variation in the level of progression of disease.  Research has identified 

several host factors including the CCR5-∆32 as a factor contributing to the resistance against 

HIV; however, the mutation does not account for the majority of cases that are persistently 

resistant[6].  Other genetic factors, such as a particular class 1 HLA allele (HLA-B27 and HLA-

B57), appear to also play a role[7, 8].  In addition to these factors, it is likely that host differences 

in gene expression also contribute to the different disease patterns. 

Previous studies have shown that the replication and immune evasion of the virus are 

affected by the host transcriptome and gene regulation in immune cells, particularly those 

targeted by HIV[9, 10].  Several other genome-wide association studies have examined the 

resistance of uninfected exposed sex workers; however, they could not fully confirm what makes 

the group resistant[11].  Other systems biology studies of elite controllers have identified the 

FOXO3a, STAT5, and Wnt/beta-catenin pathways as signatures associated with the survival of T 

cells during the infection[12].  This suggests that other host factors, perhaps those involved in 

regulating host gene expression, may be involved. 
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Gene expression is regulated on three levels: transcriptional, post-transcriptional, and 

translational.  The promoter and coding regions of host genetics affect the transcriptional and 

translational controls; whereas, external factors including cellular factors regulate the post-

transcriptional controls.  One of the ways that gene expression is regulated on the post-

transcriptional level is through microRNAs.  MicroRNAs (miRNAs) are a class of newly 

identified non-coding 18-22nt RNA that act as post-transcriptional regulators controlling gene 

expression.  Over 1,000 miRNAs have thus far been identified in animal genomes[13].  

MicroRNAs have been implicated to play a role in development, differentiation, apoptosis, 

metabolism, cancer, and viral infection[14-16].  By binding to the 3’ UTR of their target 

mRNAs, microRNAs cause translational repression or mRNA degradation[17].  It has been 

reported that miRNAs regulate up to 92% of human genes[18]. 

Studies comparing miRNA expression in resting and in activated CD4+ T lymphocytes 

showed that several miRNAs, which target the Nef-3’-UTR contribute to HIV-1 latency[19].  

We hypothesize that host cellular gene expression is controlled by a combination of host 

genetics, post-transcriptional regulators mediated by HIV-1 infection resulting in a loss of 

immune control, and disease progression.  To test this hypothesis, we evaluated the role of 

microRNAs on the transcriptome in HIV-1 disease progression by performing a comparative 

microRNA and mRNA profiling. 
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2.0  BACKGROUND 

2.1 THE AIDS EPIDEMIC AND HIV DISEASE PROGRESSION 

There are currently 33.3 million HIV infected individuals worldwide, with more new cases 

reported each year[20].  The virus infects two types of cells in the immune system: CD4+ T cells 

and macrophages.  It is the count of CD4+ T lymphocytes that is currently used as one of the 

markers of disease progression in HIV infection[21].  The infection is marked by several stages.  

During the acute infection stage, which occurs 2-4 weeks after infection, an infected individual 

may experience severe flu-like symptoms.  As the virus replicates and the viral load increases, 

the CD4 count decreases until a viral set point is reached.  At this point, the immune response 

stabilizes the level of the virus and somewhat increases the CD4 count.  The second stage of HIV 

infection is the clinical latency period, which typically lasts about eight to twenty years, 

depending on the patient’s disease progression.  It is a stage where HIV replicates at low levels 

and the individual may exhibit undetectable viral load levels and a healthy CD4 count.  Toward 

the middle/end of this period, the virus resumes its rapid replication causing a decrease in 

bystander CD4 cells[5].  When the count drops below 200 cells/mm3, the individual is diagnosed 

with AIDS (Acquired immune deficiency syndrome), and eventually succumbs to opportunistic 

infections that he/she would normally be able to fight off[22].  The incubation period between 

the time of infection to the development of AIDS is 10 years on average[23]. 
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2.1.1 Long-Term Non-Progressors/Elite Controllers 

The introduction of HAART has been able to significantly reduce the rate of individuals 

progressing to the AIDS stage and has been able to slow the progression of disease.  However, 

there are certain groups of individuals, known as long-term non-progresors (LTNPs), who even 

without therapy maintain stable CD4 counts[2].  A subset of these individuals, known as elite 

controllers, actually has undetectable levels of viral replication, and therefore exhibits 

completely atypical patterns of disease progression[3].  Studies on CD4+ T cells from these 

individuals have found that they are susceptible to HIV[2].  APOBEC3 family members are 

RNA editing enzymes, which become incorporated into HIV through their interaction with Gag 

and result in restriction of HIV-1 infection [24, 25].  The level of hypermutation of G to A 

caused by APOBEC3G and APOBEC3F in elite controllers is not significantly different from 

people on HAART, indicating that the hyperactivity of these proteins is not a cause of the viral 

control [2]. 

2.1.2 Rapid Progressors 

On the other hand, there are other infected individuals who progress to AIDS faster than 

expected.  It is estimated that about 10% of HIV-infected individuals fall into this category and 

progress to AIDS within 3-5 years after infection[4].  These rapid progressors have higher viral 

load levels and weaker cellular and humoral immune responses than conventional 

progressors[26].  Physiologically, these individuals exhibit lower levels of cytokines, including 

RANTES and MIP-1 alpha and beta, which may contribute to the impaired cellular immune 

response to infection[4]. 
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2.1.3 Highly Exposed Seronegatives 

Additionally, a third group of individuals, known as highly exposed seronegatives, indicates the 

existence of a natural or acquired immunity to HIV [27].  These highly exposed seronegatives 

have been reported, among other groups, in children born to seropositive mothers [28], in 

intravenous drug users [29], and in sex workers [30, 31].  However, the exact mechanisms 

contributing to the various immune defenses in all of these groups of individuals remain unclear. 

2.2 POSSIBLE EXPLANATIONS FOR VARYING DISEASE PROGRESSION 

The differential progression of disease can be partially explained by genetic factors.  The 

discovery that HIV uses chemokine receptors as co-receptors has led to the identification of 

CCR5- Δ 32 mutation.  The mutation is more common in Caucasians and for people that are 

homozygous for the mutation represents a lower possibility of susceptibility to infection [32].  

Homozygous CCR5-Δ 32 mutation has been found to be highly protective against M-tropic HIV 

strains; it is, however, ineffective against T-tropic HIV strains [33].  Heterozygous individuals 

have been found to exhibit slower disease progression [34-36]. 

 Another possible explanation for an increased HIV/AIDS protection is high level of 

CCR5-binding chemokines that effectively compete with the virus for the CCR5 receptor [37].  

Similarly, an increased presence of stromal cell-derived factor-1 (SDF-1), which occurs 

following an SDF-1 3’α mutation, slows disease progression by competitively inhibiting T-tropic 

HIV strains from binding to CXCR4 receptors[32]. 
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 Different human leukocyte antigen (HLA) alleles, which are associated with the Major 

histocompatibility complex (MHC) molecule, have also been associated with different disease 

progressions and susceptibility to infection[32].  Delayed HIV disease progression has been 

reported in association with HLA-B*57 and B*27[7, 38]. 

Recent research suggests that host cellular gene expression (transcriptome) profile as a 

response to virus infection is directly correlated with disease patterns[39-43].  A study of highly 

exposed seronegatives from a cohort of Nairobi sex workers found a number of differentially 

expressed genes compared to controls[44].  Additionally, Borjabad et al. have demonstrated the 

presence of a differential transcriptome profile between HIV-1 HAND (HIV subjects with 

associated neurocognitive disorders) in the presence or absence of therapy[45].  A study of gene 

expression between HIV+ therapy naive and HIV- Botswana females found HIV-1 infection to 

be associated with genes linked to TLR activation, interferon, and antiviral RNA response 

pathways[46]. 

Since gene expression is regulated at multiple levels including transcription, post-

transcription, and translation, it is possible that host factors, such as microRNAs, are involved in 

producing the differential gene expression profile. 

2.2.1 MicroRNA (miRNA) biology 

MicroRNAs (miRNAs) are a new class of 18-22 nt long, non-coding RNAs that act as post-

transcriptional regulators and alter the stability of their target mRNAs[47].  It is predicted that 

more than 60% of all human protein coding genes contain miRNA binding sites in their 

3’untranslated region (UTR) for miRNA to bind to[17].  The miRNA-mRNA relationship is 
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complex in that one miRNA has the potential to target multiple mRNAs and one mRNA can also 

be targeted by multiple miRNAs[48]. 

2.2.2 MiRNA processing and function 

Genes encoding miRNAs are transcribed by RNA polymerase II as hairpin-containing pri-

microRNAs.  The hairpin is then processed into the nucleus by RNAse III Drosha enzyme to 

form pre-microRNAs.  These are then transported out of the nucleus via Exportin 5.  In the 

cytoplasm, RNAse III Dicer generates a dsRNA complex composed of a miRNA and miRNA*.  

One of the strands is selected as a guide strand, while the complementary one is typically 

degraded.  The guide strand is recruited to an RNA-induced silencing complex (RISC).  The 

miRNA-RISC complex then binds the 3’-UTR of mRNAs and inhibits translation.  Perfect or 

near perfect complementarity between the miRNA and the 3’-UTR of the mRNA results in the 

degradation of mRNA, while mismatched complementarity results in the inhibition of translation 

due to the inhibition of the circularization of mRNA that is needed for ribosomal attachment 

[49]. 
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Figure 1. The ‘linear’ canonical pathway of microRNA processing 

 

 

Reprinted with permission from Macmillan Publishers Ltd: NATURE CELL BIOLOGY, Many roads to 
maturity: microRNA biogenesis pathways and their regulation, 2009. 
http://www.nature.com/ncb/index.html 
 

http://www.nature.com/ncb/index.html
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2.2.3 Viral miRNA and HIV 

miRNAs are encoded by many viruses, including HIV.  HIV is associated with a transactivation 

response element (TAR), which binds the transcription activator (Tat) in order to initiate 

transcription from the LTR[50].  A miRNA encoded by HIV-1 TAR has been shown to produce 

a diminished viral gene expression and, therefore, has been suggested to play a role in viral 

latency[51]  Additionally, Oullet at al have demonstrated the TAR region to be a source of two 

additional miRNAs: miR-TAR-3p and miR-TAR-5p; the biological role of these miRNAs has 

yet to be established[52].  Furthermore, using a computer-directed analysis, Bennasser et al have 

found five HIV encoded pre-miRNAs and a number of 3’UTR binding sites in the human 

genome, indicating the potential role of these viral miRNAs in regulating cellular transcripts[53].  

The HIV-1 accessory protein Nef has also been shown to encode viral miRNAs.  One of these 

Nef-derived miRNAs is miR-N367, which functions not on the post-transcriptional level like 

ordinary miRNAs but through the suppression of HIV-1 promoter activity[51].  More research is 

required to learn more about the exact mechanism of the suppression. 

2.2.4 Host miRNA and HIV 

Although much of the research regarding miRNAs has focused on their association with cancer, 

miRNAs have also been implicated to play a role in infectious diseases.  For instance, miR-32 

has been shown to exhibit antiviral activity when a knockout of the expression of the miRNA or 

the deletion of its target sequence produced an increase in the replication of primate foamy virus 

1 [54]. 
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 Several groups have begun to examine a possible relationship between host miRNAs and 

HIV-1 infection.  Regarding the possible connection to CD4+T cells, one of the main targets of 

HIV, miR-28, miR-125b, miR-150, miR-223, and miR-382 of miRNAs were found to be 

upregulated in resting CD4+ T cells compared to activated CD4+ T cells, suggesting their 

possible role in HIV latency[19].  The suppression of these miRNAs in monocytes was found to 

facilitate HIV infection, while an increase in these anti-HIV-1 miRNAs led to an inhibition of 

viral replication[55].  Triboulet et al discovered that HIV-1 suppressed the miR-17/92 miRNA 

cluster, thus allowing efficient viral replication to occur[56].  Additionally, miR-29a has been 

shown to be highly expressed in CD4+ T cells.  This miRNA targets both the 3’ UTR of HIV -1 

transcripts and HIV-1 Nef; thus, it may be a key player in controlling viral replication[57]. 

 However, up till now, there has not been a study that we are aware of that has examined 

both the miRNA and mRNA profiles in subjects with varying viral loads.  For this reason, our 

examination of both of these profiles and our analysis of how the miRNA and mRNA interplay 

with each other is a novel study. 
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3.0  THESIS AIMS 

We hypothesize that host cellular gene expression is controlled by a combination of host 

genetics, and post-transcriptional regulators, that are altered by HIV-1 infection resulting in loss 

of immune control, cellular dysfunction, and disease progression.   

 

AIM #1: To examine a whole genome miRNA and mRNA profiles of HIV positive subjects 

along with appropriate uninfected controls in a cross-sectional study 

A. To perform the profiling in PBMCs of subjects infected with low viral load, high viral 

load, and in uninfected controls. 

B. To perform miRNA and mRNA validations on independent subjects with similar 

disease status. 

AIM #2: To examine the interplay of miRNA and their target mRNA using computational 

analyses 

A. To perform a computational analysis to predict possible mRNA targets of the 

significantly dysregulated miRNAs. 

B. To perform correlation studies for selected transcripts and CD4, Nadir CD4 counts, 

and viral load. 

C. To perform in-vitro biological functioning studies. 

AIM #3: To identify miRNA profiling in CD4 and CD14 cells  
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A. In subjects with low viral load and uninfected controls. 

B. In in vitro infected samples representing high viral load and in mock infected samples 

representing uninfected controls. 
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4.0  MATERIALS AND METHODS 

4.1 STUDY POPULATION AND SELECTION CRITERIA 

All donor samples were obtained from the Pittsburgh site of the Multicenter AIDS Cohort Study 

(MACS).  The study population included uninfected seronegative controls (N=42), HIV-1 

positive subjects with low viral load (~<40 copies/ml) (N=37), and HIV-1 positive subjects with 

a high viral load (>45,000 copies/ml) (N=35) at the time of sample collection.  Infected subjects 

were selected and grouped into the appropriate categories (low viral load/high viral load) if they 

maintained the appropriate viral load for a period of at least a year leading up to the date of 

collection.  Details of the subjects including age, CD4 counts at the time of sample collection, 

Nadir CD4 counts, viral load at the time of sample collection, viral load for the past 5 years and 

number of years on ART/HAART are included in Table 1-3. 
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Table 1. Clinical characteristics of uninfected control samples 
ID AGE miRNA mRNA CD4  CD4 range over last 5 yrs Nadir CD4 

CT1 74 yes no 1326 1116-1892 1074 
CT2 54 yes yes 644 664-964 240 
CT3 55 yes yes 584 460-584 400 
CT4 56 yes yes 385 351-759 351 
CT5 55 yes yes 889 535-1015 535 
CT6 53 yes yes 702 530-921 474 
CT7 57 yes yes 537 497-732 426 
CT8 49 yes yes 685 438-1082 428 
CT9 42 yes yes 841 556-947 553 

CT10 42 yes yes 1634 1365-1852 757 
CT11 28 yes yes 1178 709-1225 636 
CT12 34 yes no 894 819-1147 819 
CT13 36 yes yes 852 664-1014 664 
CT14 36 yes yes 789 725-1061 725 
CT15 52 yes no 491 491-654 363 
CT16 46 yes yes 918 799-1315 799 
CT17 51 yes yes 2194 715-2194 715 
CT18 72 yes yes 530 470-859 470 
CT19 52 yes yes 733 625-888 625 
CT20 64 yes yes 879 736-1107 737 
CT21 60 yes yes 1019 894-1281 894 
CT22 49 yes yes 589 481-765 481 
CT23 38 yes yes 545 545-1187 545 
CT24 28 yes yes 857 605-947 605 
CT25 43 yes yes 1106 732-1106 732 
CT26 50 yes yes 790 703-1304 571 
CT27 56 yes yes 488 479-703 479 
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Continued Table 1. 

 38 yes yes 1074 587-1175 587 
CT29 52 yes yes 993 977-1453 840 
CT30 33 yes yes 886 737-1170 737 
CT31 77 yes yes 489 444-569 328 
CT32 30 yes yes 732 588-854 520 
CT33 58 yes yes 568 390-732 390 
CT34 51 yes yes 885 659-1083 659 
CT35 50 yes yes 944 637-1204 523 
CT36 50 yes no 606 550-872 550 
CT37 46 no yes 1054 870-1360 444 
CT39 30 no yes 589 419-979 419 
CT40 43 no yes 1636 1297-1659 1045 
CT38 54 no yes 676 598-771 441 
CT41 38 no yes 1057 784-1071 783 
CT42 41 no yes 1429 683-1551 683 
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Table 2. Clinical characteristics of low viral load subjects 
CODE 

ID miRNA mRNA AGE CD4  CD4 range over 
 last 5 yrs Nadir CD4 ART yrs  on 

HAART V. Load 

LVL1 yes no 53 356 252-696 252 yes 5 59 
LVL2 yes yes 57 256 248-435 248 yes - 40 
LVL3 yes yes 50 334 321-433 184 yes 6 40 
LVL4 yes yes 61 662 330-662 109 yes 7 40 
LVL5 yes yes 59 552 496-690 93 yes 13 51 
LVL6 yes yes 52 304 249-607 249 yes 13 40 
LVL7 yes yes 39 366 91-816 13 yes 12 122 
LVL8 yes yes 43 1066 672-1148 436 yes 8 40 
LVL9 yes yes 39 753 414-753 325 yes 12 40 

LVL10 yes yes 52 766 693-1187 492 yes 14 40 
LVL11 yes yes 34 597 65-597 65 yes 2 40 
LVL12 yes no 44 952 558-952 70 yes 11 40 
LVL13 yes yes 59 502 502-973 502 yes 13 4615 
LVL14 yes no 57 193 75-275 75 yes 10 2580 
LVL15 yes yes 47 746 627-868 543 yes 8 40 
LVL16 yes yes 61 927 871-1195 639 yes 11 40 
LVL17 yes yes 53 471 304-757 304 yes 13 40 
LVL18 yes yes 49 379 272-482 272 yes 13 40 
LVL19 yes yes 49 1421 582-1459 582 yes 4 40 
LVL20 yes yes 61 509 431-671 350 yes 14 40 
LVL21 yes yes 57 674 315-674 315 yes 2 40 
LVL22 yes yes 55 845 508-932 99 yes 8 40 
LVL23 yes yes ND 459 406-598 238 yes 14 40 
LVL24 yes yes 41 595 463-756 463 yes 9 40 
LVL25 yes yes 49 654 672-971 267 yes 12 40 
LVL26 yes yes 55 862 570-1084 231 yes 13 40 
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Continued Table 2. 
LVL27 yes yes 41 826 680-1103 393 yes 13 40 
LVL28 yes yes 62 680 557-726 272 yes 14 40 
LVL29 yes yes 46 488 496-797 207 yes 13 40 
LVL30 yes yes 51 769 615-864 281 yes 14 40 
LVL31 yes yes 51 960 543-1000 231 yes 14 40 
LVL32 yes yes 50 782 636-785 191 yes 14 40 
LVL33 no yes 52 552 287-642 279 yes 11 40 
LVL34 no yes 50 915 473-860 461 yes 11 40 
LVL35 no yes 53 771 689-1146 333 yes 5 40 
LVL36 no yes 57 879 721-960 100 yes 9 40 
LVL37 no yes 38 377 331-807 331 yes 11 497 
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Table 3. Clinical characteristics of high viral load subjects 

CODE ID miRNA mRNA AGE CD4 CD4 range 
 over last 5 yrs Nadir CD4 Yrs on 

ART/HAART V. load 

HVL1 yes yes 46 219 77-219 77 7 336300 
HV2 yes no 37 222 222-520 222 7 96534 
HV3 yes no 37 246 246-524  246 7 47083 
HV4 yes no 43 173 173-456 173 4 79454 
HV5 yes no 64 142 142-495 142 1 250617 
HV6 yes yes 62 279 275-1175 275 2 151396 
HV7 yes yes 37 337 320-576 320 1 76521 
HV8 yes no 31 162 29-323 29 1 198196 
HV9 yes no 36 312 231-894 231 5 71580 

HV10 yes no 65 233 142-495 142 2 49430 
HV11 yes yes 51 136 136-449 135 2 561627 
HV12 yes yes 50 120 120-804 120 1 297672 
HV13 yes yes 37 378 378-1025 378 6 289528 
HV14 yes no 35 38 38-472 38 0 167261 
HV15 yes yes 39 96 79-365 79 1 47310 
HV16 yes yes 63 268 251-495 251 0 123700 
HV17 yes no 47 151 151-453 151 0 146580 
HV18 yes yes 42 232 232-634 232 0.75 252692 
HV19 yes yes 45 218 218-582 218 0 48352 
HV20 yes yes 37 120 120-196 119 0 370999 
HV21 yes yes 49 336 515-787 336 0 161325 
HV22 yes no 62 147 147-483 147 3 320455 
HV23 yes yes 49 215 215-998 215 0 184411 
HV24 yes no 39 188 188-483 188 0 201158 
HV25 yes yes 50 120 120-804 120 1 297672 
HV26 yes yes 39 188 188-483 188 0 112327 
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Continued Table 3. 
HV27 yes yes 28 234 234-779 234 0 46053 
HV28 yes yes 53 100 100-460 100 0 111314 
HV29 yes yes 33 310 149-1245 149 0 127376 
HV30 yes yes 42 272 265-480 235 0 50530 
HV31 yes yes 40 351 308-697 308 0 116293 
HV37 no yes 38 312 312-1001 312 0 108499 
HV38 no yes 40 172 172-603 172 0 48494 
HV39 no yes 39 188 188-765 188 0 112327 
HV40 no yes 38 116 24-281 24 11 1157700 
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4.2 PBMC ISOLATION 

Blood samples were obtained from the Pittsburgh site of the Multicenter AIDS Cohort Study and 

processed within 12 hours of delivery.  The blood was first spun with a lymphocyte separation 

solution (Cellgro) to obtain a buffy coat layer, which was subsequently diluted with PBS and 

washed twice with PBS.  Isolated PBMCs were then counted and either stored in RNA later 

(Ambion) in -80°C or immediately used for RNA isolation and/or other cell type isolation. 

4.3 CD4+ AND CD14+ CELL ISOLATION 

CD14+ cells were isolated from PBMCs by positive selection using CD14 MicroBeads 

according to the manufacturer’s instruction (Miltenyi Biotec).  CD4+ cells were then isolated 

from the non-CD14 elute by positive selection using CD4 MicroBeads (Miltenyi Biotec).  

Isolated cells were tested by flow cytometry for the purity.  Briefly, the cells were first washed 

twice with FACS buffer and stained with anti-human CD4-PE (Immunotech) and CD14-PE 

(Immunotech), or IgG-PE (Pharmingen) for 60 minutes in ice, and then again washed twice with 

PBS.  The purified CD4+, CD14+, and remaining non-target cells were immediately processed 

for RNA isolation. 
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4.4 RNA ISOLATION 

PBMCs (fresh or frozen) or isolated CD4+, CD14+, and non-target cells were used for RNA 

isolation using the MirVana kit (Applied Biosystems), according to the manufacturer’s protocol.  

Briefly, 5-10 million cells were lysed with 600μl of lysis buffer.  For fewer cells, only 300μl of 

lysis buffer was added.  Next, RNA homogenate at a volume equaling 1/10 of lysis buffer was 

added to the cells, and the cells were incubated on ice for 10 minutes.  This was followed by an 

addition of acid phenol chloroform at a volume equal to that of the lysis buffer.  The samples 

were then thoroughly vortexed for 30 seconds and centrifuged for five minutes at room 

temperature at 12,000 rpm.  The aqueous phase was then removed.  Next, 100% ethanol was 

added.  Using a filter cartridge, the samples were spun and washed three times with wash 

solutions.  Finally, the samples were eluted with 90μl of pre-heated elution solution.  RNA 

concentration was determined with NanoDrop2000 spectrophotometer, and the samples were 

stored at -80°C. 

4.5 RNA QUALITY CONTROL 

RNA (100ng) was used to test the expression of endogenous controls RNU48, miR-26b, or 

U6snRNA.  Briefly, the RNA was first converted into cDNA using the Taqman MicroRNA 

Reverse Transcription kit (Applied Biosystems) according to Table 4 and run at 16°C for 30 

mins, 37°C for 30 mins, 85°C for 5 mins, and indefinitely held at 4°C. The cDNA was either 

stored at -20°C or immediately used for a qRT PCR.  The qRT PCR reaction was run in 20μl 

triplicates (according to Table 5), using the ABI Prism 7000 Sequence detection system, set at 
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50°C for 2 mins, 95° for 10 mins, and 40 cycles of 95°C for 15 sec and 60°C for 1 min.  The 

expression of the endogenous controls was analyzed using CT values obtained with an auto 

threshold of 0.2.  If a particular RNA sample showed endogenous control expression, at least 

three times, with a value of 25 or greater, the particular sample was eliminated from further 

analysis.  The RNA quality was also determined using Agilent Bioanalyzer 2100 and the 

protocol developed by the Core.  RNA samples with RNA Integrity Number (RIN) 5-10 were 

determined to be of good quality and were used for further processing. 

 

Table 4. Reverse transcription reactants per reaction for miRNA detection 
Reagents Volume (µl) 

100mM dNTPs with dTTP 0.15 
Multiscribe Reverse Transcriptase 50 U/ul 1 

10X Reverse Transcription Buffer 1.5 
RNase Inhibitor, 20U/ul 0.19 

Nuclease-free water 4.16 
RNA 5 

Taqman MicroRNA assay (5x) 3 
Total 15 

 

Table 5. Real Time PCR reactants per reaction for miRNA detection 
Reagents Volume (µl) 

Taqman MicroRNA assay (20X) 3.6 
cDNA 4.8 

Taqman 2X Univesal PCR Master Mix II, No UNG 36 
Nuclease-free water 27.61 

Total 70 
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4.6 MICRORNA PROFILING AND DATA ANALYSIS 

4.6.1 MicroRNA profiling 

Microfluidic cards - Human MicroRNA card set v3.0 (purchased from Applied Biosystems) 

were used for miRNA profiling of samples.  This set, composed of 2 cards (Pool A and Pool B), 

enables quantitation of 768 miRNA in total, which include 754 targets, 4 endogenous controls 

(MammuU6/U6 snRNA run in quadruplicates, and RNU44, RNU48, and ath-miR-159a run in 

duplicates). One µg of RNA was reverse transcribed using Taqman microRNA reverse 

transcription kit (Applied Biosystems, CA) along with 1.5 Reverse transcription master mix 

(Table 6) at a volume equal to 1.5 times the volume of RNA.  The PCR was run for 40 cycles at 

16°C for 2 mins, 42°C for 1 min, 50°C for 1 sec, followed by 85°C for 5 minutes and indefinite 

holding at 4°C.  The resulting PCR product was either stored at -20°C or directly loaded on to a 

4.5array cards with 450μl Taqman Universal Master Mix II-No UNG, and nuclease-free water to 

make the final volume equal 900μl.  The cards were run on ViiA7 Real-Time PCR system 

according to manufacturer’s protocol, using comparative CT and standard settings. 

 

Table 6. Reverse transcription reagents for microRNA high throughput miRNA profiling 
Reagents Volume (µl) 

Megaplex RT primers (10X) 0.8 
dNTPs with dTTP (100mM) 0.2 

Multiscribe Reverse Transcriptase 50U/ul) 1.5 
10X RT buffer 0.8 

MgCl2 (25mM) 0.9 
RNase Inhibitor, 20U/ul 0.1 

Nuclease-free water 0.2 
Total 4.5 
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4.6.2 Data Analysis 

Initial miRNA expression data were analyzed using integrated ViiA7 software (Applied 

Biosystems). Each run was exported separately using an auto detection threshold. The data were 

then uploaded to RealTime StatMiner software (Integromics, PA) for further analysis.  

Detectability threshold for miRNA assays was set to Ct value less than or equal to 35 and at least 

25% of all samples in each group.  We used Grubbs method to eliminate outliers within technical 

replicates and Genorm method to select endogenous control that is U6-snRNA/mammU6 for 

normalization based on stability scoring across the samples in each group. Differentially 

expressed miRNA between different groups were identified using parametric t-test or LIMMA 

(one factor analysis) and were then sorted using Benjamini-Hochberg false discovery rate (FDR) 

method with adjusted p-value <0.05.  The fold changes were obtained using linear RQ values. 

Hierarchical clustering for differentially expressed miRNA was performed with their 

corresponding dCt values across the samples in different groups with ‘Complete linkage’ 

clustering method and ‘Euclidean’ distance measure for dendrograms. 

4.7 GENE EXPRESSION PROFILING AND DATA ANALYSIS 

4.7.1 Gene Expression Profiling 

For whole genome transcriptome analysis, we used Illumina HT-12 V4 array bead chips 

(Illumina, Inc., San Diego, CA, USA) for mRNA profiling of different groups (Control, LVL and 

HVL) samples in the study. Each array targets about 47,231 probes that include 28,688 well-
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characterized or annotated coding transcripts along with 11,121 coding transcripts with 

provisional annotation and remaining being non-coding transcripts and splice variants. RNA (1 

µg) samples were labeled using ‘TotalPrep RNA’ labeling kit (Ambion), reverse transcribed to 

cDNA, hybridized onto array bead chips overnight on rocker and scanned on ‘iScan system’ 

according to the manufacturer's protocols as well as standardized protocols developed by 

Genomics and Proteomics Core Laboratories. 

4.7.2 Data Analysis 

Data analysis was performed using the Illumina software to delineate the false discovery rate 

(FDR) and differences with statistical significance (p<0.05). Initial raw data analysis and cubic 

spline normalization was done using BeadStudio Gene expression module (Illumina, Inc.). The 

normalized sample probe profile and control probe profile were then uploaded to Integrated 

Biomarker Discovery (IBD) (Integromics) for further data analysis. A total of 21,852 probe sets 

were detected in all samples of different groups (Control, LVL and HVL) with present call filter 

set to probes detected in at least 75% of samples in each group. Linear models for microarray 

data (LIMMA) (one factor analysis) was used to identify differentially expressed genes/probes 

between different groups. These genes were further sorted based on Benjamini-Hochberg false 

discovery rate (FDR) method with adjusted p-value <0.05 and fold change cut-off of at least 2-

fold up/down regulation. Hierarchical clustering for differentially expressed genes/probes was 

performed using their corresponding detection signal values across the samples in different 

groups with ‘Complete linkage’ clustering method and ‘Euclidean’ similarity measure for 

dendrograms. 
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4.8 VALIDATION OF SELECTED DIFFERENTIALLY REGULATED MIRNAS 

Based on the data analyses, selected miRNA were verified by qRT-PCR using specific Taqman 

based primers and probes (Applied Biosystems). We used independent RNA samples (n=5) from 

the miRNA microarray profiling to validate the high throughput microarray results. Selected 

primers were used to generate cDNA from 33ng of RNA using the miRNA Reverse 

Transcription Kit (Applied Biosystems). The procedure was identical to that described in Quality 

control RNA section. Following normalization to U6, the data were exported and analyzed in 

RealTime Statminer software, as described previously.   

4.9 VALIDATION OF SELECTED DIFFERENTIALLY REGULATED MRNAS 

cDNA was generated from 100ng of RNA using the High Capacity cDNA Reverse Transcription 

Kit (Applied Biosystems), according to Table 7.  The PCR was run at 25°C for 10 mins, 37°C for 

120 min, 85°C for 5mins, and held indefinitely at 4°C.  The cDNA was then either kept at -20°C 

or immediately used for qRT PCR.  The qRT PCR was run in 20μl triplicates (according to Table 

8), using the ABI Prism 7000 Sequence detection system, set at 50°C for 2 mins, 95° for 10 

mins, and 40 cycles of 95°C for 15 sec and 60°C for 1 min. Relative expression (ddCT) was 

calculated after normalization to RPLPO. The data were analyzed using Realtime StatMiner 

following an individual export of each sample, set an auto threshold.
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Table 7. Reverse transcription reagents for mRNA validations 
Reagents Volume (µl) 

RNA  10 
10X RT buffer 2 

25x dNTP 0.8 
Random Primer 2 

Multiscribe Reverse Transcriptase 1 
Nuclease-free water 4.2 

Total 20 
 

Table 8. Real Time PCR reagents for mRNA validations 
Reagents Volume (µl) 

cDNA 20 
Taqman Gene Expression Master Mix 35 

mRNA assay 3.5 
Nuclease-free water 11.5 

4.10 PATHWAY ANALYSES 

To determine gene interactions and correlation networks, we used STRING. The cutoff values 

for inclusion in these analyses were differential mRNA expression, with p-value <0.05 and +2.0 

in fold change. Since no mRNAs were differentially regulated between the LVL and Control 

groups at this fold change cutoff, all mRNAs with a p<0.05 (regardless of fold change) were 

considered for the pathway analysis between these groups.  Gene Ontology Enrichment (GO) 

analysis tool within IBD was used to detect biological annotations that are statistically over-

represented in the list of differentially regulated genes/probes between different groups (e.g. 

Control and LVL).  With minimum number of overlapping genes equal to 3 and FDR threshold 

of <0.05, both singular and concurrent enrichment analyses were carried out. Significant terms 

for biological processes (BP), molecular functions (MF) and cellular components (CC) were 

retrieved, arranged in an order based on p-value for the corresponding term. 
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4.11 COMPUTATIONAL ANALYSIS FOR MIRNA-MRNA INTERACTION 

PREDICTIONS 

Computational analysis was kindly performed by our collaborators Haison Le and Dr. Ziv Bar-

Joseph from Carnegie Mellon University.  Using the mRNA data from Illumina, they used the R 

package samr to detect differentially expressed mRNAs, which were then combined with the 

differentially expressed miRNAs from our analysis and used as input for GenMIR++, using 

MicroCosm Targets database to make the miRNA-mRNA predictions.  Predictions were filtered 

to the union of the significantly differentially regulated miRNA and mRNA (mRNA and miRNA 

present in at least 75% of the samples, without FDR correction) or to the specific list of 

significantly differentially regulated miRNA and mRNA from each group analysis. 

4.12 INFECTION OF PBMCS 

Isolated PBMCs were stimulated with PHA (1μl/1ml R10 media) for three days and 

subsequently infected with 500pg equivalent p24 of EGFP reporter NL43 (CXCR4 tropic) or 

YU2 (CCR5 tropic) virus per 106 cells.  Seven days post-infection, EGFP fluorescence was 

observed under a microscope and examined with HIV-1 p24 ELISA, and CD4 and CD14 cells 

were isolated, as described previously. 
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4.13 BIOLOGICAL VALIDATION OF MRNA BY QRT-PCR USING PBMCS 

INFECTED IN VITRO 

mRNA expression was tested in an in vitro model of uninfected PBMCs and PBMCs infected 

with CXCR4 (NL43) or CCR5 (YU2)-coreceptor utilizing viruses (n=3).  It was also assessed in 

normal donor PBMCs or in a set of independent donors (n=5). cDNA was generated from 100ng 

of RNA using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems). QPCR 

was then performed using the Taqman Gene Expression Master mix (Applied Biosystems) and 

the appropriate gene assay (Applied Biosystems), as suggested by the manufacturer using the 

ABI Prism 7000 Sequence Detection System. Relative expression (ddCT) was calculated after 

normalization to RPLPO. 

4.14 BIOLOGICAL VALIDATION OF HIV-1 REGULATED FACTORS BY ELISA 

HIV-1 induced cytokines and chemokines were tested in an in vitro model by infecting normal 

donor blood derived PBMCs infected with CXCR4 (NL43)- or CCR5 (YU2) coreceptor utilizing 

viruses as described above.  Infection was confirmed via a HIV-1 p24 ELISA.  Seven days 

postinfection, supernatant was assessed for the production of CCL2, CCL8, IL-6 and IL-8 by 

ELISA (BD Biosciences, CA), 
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4.15 WESTERN BLOT ASSESSMENT FOR NEUROGRANIN (NRGN) 

Whole cell lysates were prepared using RIPA buffer (containing 50mM Tris (pH 7.5), 150mM 

NaCl, 1% Triton X-100, 1mM sodium orthovanadate, 10mM sodium fluoride, 1mM 

phenylmethyl-sulfonylfluoride, 0.05% deoxycholate, 10% SDS, 0.07 trypsin and protease 

inhibitors 1ug/ml) and 20 μg equivalents of protein were separated by 12% SDS–PAGE, 

transferred to nitrocellulose membrane (Bio-Rad), and probed with anti-NRGN (Millipore) for 

4°C over night, and then washed with PBS and 0.1% Tween20 and incubated with goat anti-

rabbit IgG conjugated to horseradish peroxidase (Caltag) for 1hr at room temperature.  The 

membrane was developed using an ECL enhanced chemiluminescence kit (Pierce).  

Densitometry analysis was performed using Image J software. 
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5.0  RESULTS 

5.1 AIM #1: TO EXAMINE WHOLE GENOME MIRNA AND MRNA PROFILES OF 

SUBJECTS IN A CROSS-SECTIONAL STUDY 

5.1.1 To perform miRNA profiling in PBMCs of subjects infected with low viral load, 

high viral load, and in uninfected controls 

To examine the expression of miRNAs in the uninfected controls, low viral load, and high viral 

load donors, we isolated RNA from PBMCs and tested its quality with Nanodrop 2000 

spectrophotometer and Taqman assays for endogenous controls U6, RNU48, or miR-26b.  If the 

expression of the endogenous controls in a sample exceeded Ct of 25, that sample was eliminated 

from further processing.  

 The miRNA profiling consisted of running two microfluidic cards per sample for 

the combined effect of the ability to detect 754 miRNA and 4 controls.  Once again, for RNA 

quality purposes, samples where the endogenous controls exceeded Ct of 25 were eliminated. 

Our endogenous control analyses indicate that the Ct values for all our samples range from 15-22 

and none of them are more than 25 (Fig. 2). 
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Figure 2. Endogenous control profile of samples used for microRNA profiling 
 

 

Endogenous CT values for each sample were obtained using RealTime StatMiner to determine the quality of the sample.  Green depicts 
MammU6 (Pool A), while brown depicts U6 snRNA (Pool B). 
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Results from high and low viral groups were compared with the uninfected control group 

as well as within the HIV-1 positive groups.  Differentially regulated miRNAs between these 

groups were analyzed using two different software packages using appropriate settings required 

for each software to maximize the confidence (Table 9, 10, and 11).  The first program used was 

DataAssist (Applied Biosystems), and the settings were default, as suggested by the 

manufacturer.  Briefly, maximum allowable Ct value was set at 40, meaning that any miRNAs 

with a Ct>40 were assigned Ct of 40, so that fold change could be calculated.  Benjamini-

Hochberg False Discovery Rate adjustment was also applied.  

The second program used was Realtime StatMiner (Integromics) in which we considered 

Ct values that are >35 as non-specific.  In our analyses, we excluded miRNAs that show a raw Ct 

value of >35 in more than 75% of the subjects in each group as suggested[58].  This resulted in 

elimination of 177, 173 and 160 miRNAs from each comparison (control vs. LVL; control vs. 

HVL; LVL vs. HVL) respectively.  The remaining miRNA were assessed using a statistical 

package within Realtime StatMiner to identify the significantly regulated miRNA within and 

between these groups.  Results indicate that HIV-1 infection differentially regulated expression 

of several miRNAs (+/- 1.72-fold with p<0.05 using Benjamini-Hochberg method within each 

group analysis).  The level of expression in infected subjects was compared with that in 

uninfected controls, and fold differences were calculated based on normalization with 

endogenous control, U6 snRNA/MammU6, as suggested by the manufacturer.  
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Table 9. Differentially regulated miRNA in low and high viral load compared to uninfected 
control group and within the infected groups using DataAssist 
 

  
Differentially 

regulated 
miRNA 

Differentially 
regulated 
miRNA 
p<0.05 

Differentially 
regulated 
miRNA 
p<0.01 

Differentially 
regulated 
miRNA 

+/- 2-fold 
p<0.05 

Differentially 
regulated 
miRNA 

+/- 2-fold 
p<0.01 

Control vs. 
 

N/A 39 8 38 8 
Control vs. 

 

 

N/A 245 164 244 163 
LVL vs. HVL N/A 194 93 183 90 

 

Table 10. Differentially regulated miRNA in low and high viral load compared to 
uninfected control group and within the infected groups using RealTime StatMiner 

  

Differentially 
 regulated 
 miRNA 

Differentially 
 regulated 
miRNA 
 p<0.05 

Differentially 
 regulated 
miRNA 
p<0.01 

Differentially  
regulated 
miRNA 
+/-2-fold 
p<0.05 

Differentially  
regulated 
miRNA 
+/-2-fold 
p<0.01 

Control vs. 
 

577 41 14 41 14 
Control vs. 

 
580 221 138 218 137 

LVL vs. HVL 593 190 100 182 99 
 

Table 11. Commonly differentially regulated miRNAs between DataAssist and RealTime 
StatMiner 

  

Differentially 
 regulated 
miRNA 
 0 0  

Differentially 
 regulated miRNA 

p<0.01 
Control Vs. 

 
21 8 

Control vs. 
 

191 118 
LVL vs. HVL 158 80 

 

Among the 754 miRNAs tested, 21 miRNAs were significantly (p<0.05) regulated in low 

viral load individuals compared to uninfected controls by both DataAssist and StatMiner.  Of 

these, 2 miRNAs were downregulated (with a StatMiner derived fold change ranging from -27.6 
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to –1117.81) and 19 miRNAs were upregulated, with a StatMiner derived fold change ranging 

from 3.09 to 20.48 (Appendix A1).   

However, in case of HVL group, the number of differentially regulated miRNAs was 

higher than that in the LVL group.  A total of 191 miRNAs were differentially regulated in high 

viral load subjects compared to uninfected controls by both StatMiner and DataAssist.  Of these, 

13 were downregulated (with a StatMiner derived fold change ranging from -2.05 to -89.82).  In 

the 178 miRNAs that were upregulated, the StatMiner derived fold change ranged from 1.77 to 

4078.26 (Appendix A2).   

Similarly, we also assessed the differentially regulated miRNA in low viral and high viral 

load groups that resulted in 158 miRNAs.  Of these, 27 were downregulated (with a StatMiner 

derived fold change ranging from -69.08 to -1.86).  In the 131 upregulated miRNAs, the 

StatMiner derived fold change ranged from 1.73 to 6460.41 (Appendix A3).  These results 

indicate that the number of miRNAs that are dysregulated in high viral load group is much 

higher that in low viral load. 

Intersection between these groups indicates that there are several miRNAs that are 

common in the context of HIV-1 infection independent of viral load (Fig. 3).  Figure 3 exhibits 

the miRNAs that are specific to each group as well as the overlap between the groups.  When 

uninfected group versus HIV-1 infected samples were compared, 17 miRNAs are commonly 

regulated in HIV-1 infected subjects (LVL and HVL combined) compared to uninfected 

controls.  Among the 21 miRNAs that are differentially regulated in CT vs. LVL, 3 were unique 

to the LVL group, whereas 62 were specific to HVL group among the 191 observed in CT versus 

HVL group.  Similarly, we also compared all three groups and found that 4 miRNA are 

commonly regulated in all three groups.  Further examination indicates that miR-1275, miR-483-
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5p, and miR-650 show similar upregulation compared to control or LVL group, whereas miR-

1262 shows downregulation in control versus HIV-1 positive group, and were upregulated in 

HVL group compared to LVL group.  Together, these results suggest that HIV-1 infection 

(irrespective of viral burden) and high viral load have specific regulatory effects on miRNA 

expression profile. 

 

Figure 3. Venn diagram illustrating the number of significantly differentially regulated 
miRNAs between low viral load, high viral load, and uninfected controls 

 

 

To further assess the clustering of subjects within these groups and across the groups, 

hierarchical clustering was performed between control versus low viral load (Fig. 4) and control 

versus high viral load (Fig. 5). Results indicate that when control versus LVL group is compared, 

subjects from each group formed several clusters and these clusters dispersed intermittently.  The 

The Venn diagram displays the number and overlap of significantly differentially expressed miRNA 
(Benjamini-Hochberg adjusted, p<0.05) among the LVL and HVL groups relative to the CT and 
within the infected groups.  miRNAs represent those miRNAs that were found to be significantly 
differentially regulated by both RealTime StatMiner and DataAssist. 
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control groups formed 3 major clusters; whereas, LVL showed 2 majors clusters with a few 

outliers in each group.  The clustering appears to be independent of any patterns in the clinical 

characteristics (Table 1 and 2).  However, when we compared uninfected versus HVL group, 

these subjects clustered distinctly from each other based on their miRNA profile.  Few 

exceptions were present in the HVL cluster.  One group of control samples, including CT20, 

CT21, CT7, CT9, CT25, CT13, and CT23, clustered with the HVL samples.  A second major 

group, which also clustered with the HVL samples, was composed of CT19, CT1, and CT2.  A 

closer look at the clinical characteristics (CD4 and Nadir CD4 counts and age) of these subjects 

does not reveal a pattern that makes them different from the rest of the controls (Table 1).  

Majority of the subjects within each group, however, exhibit a distinct profile and a single cluster 

with mixed population (Fig. 5). Similar distinction was observed when LVL group was 

compared to HVL group (Fig. 6).  Importantly, these results suggest that miRNA expression 

profile within the infected subjects with high viral load is specific.  This pattern is different in 

HIV-1 subjects with undetectable viral load and high CD4 counts which maintains the 

expression profile similar to uninfected controls.  More importantly, this distinct profile is 

observed in most of the subjects (based on the clustering) and further confirms the specificity of 

miRNA expression profile. 
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Figure 4. miRNA hierarchical clustering between low viral load samples and uninfected controls     

Hierarchical clustering of miRNA between CT and LVL. miRNA in the clustergram are dysregulated at a significance cutoff of p<0.05. The 
dendrogram depicting the clustering of samples is calculated using Complete linkage with Euclidian distance measure values. Color ranging from green 
to red indicates minimum to maximum dCT. Gray indicates empty wells. Numbers on X axis represent subject group. CT, uninfected controls; LVL, 
low viral load subjects. 
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Figure 5.  miRNA hierarchical clustering between high viral load samples and uninfected controls  

Hierarchical clustering of miRNA between CT and HVL.  miRNA in the clustergram are dysregulated at a significance cutoff of p<0.05. The 
dendogram depicting the clustering of samples is calculated using Complete linkage with Euclidian distance measure values. Color ranging 
from green to red indicates minimum to maximum dCT. Gray indicates empty wells. Numbers on X axis represent subject group. CT, 
uninfected controls; HVL, high viral load subjects. 
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Figure 6. miRNA hierarchical clustering between high viral load and low viral load samples 

Hierarchical clustering of miRNA between LVL and HVL. miRNA in the clustergram are dysregulated at a significance cutoff of 
p<0.05. The dendrogram depicting the clustering of samples is calculated using Complete linkage with Euclidian distance measure 
values. Color ranging from green to red indicates minimum to maximum dCT. Gray indicates empty wells. Numbers on X axis represent 
subject group. LVL, low viral load subjects; HVL, high viral load subjects. 
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5.1.2 To perform mRNA profiling in PBMCs of subjects infected with low viral load, high 

viral load, and in uninfected controls 

MicroRNAs produce translational inhibition by binding to the 3’-UTR of their target mRNAs 

[59].  Therefore, we next performed mRNA profiling in PBMCs of the three groups of subjects 

to assess whether a direct correlation exists between the expression patterns of miRNA and 

mRNA.  Microarray profiling of mRNA samples was normalized with the internal endogenous 

control and cross-compared between the two groups.  Among the 47,000 transcripts tested, 

21,852 were detected in all samples.  Among the total detected probes, 47, 11,510 and 10,007 

probes were significantly regulated (with a fold change ranging from +/- 0.2 to 6) with the p-

value of <0.01 in control versus LVL, control versus HLV and LVL versus HVL, respectively.  

When we narrowed the probes with a fold change of +/- 2-fold (p<0.01), it resulted in 0, 309 and 

182 probes in the 3 groups, respectively (Table 12).  
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Table 12. Differentially regulated mRNA probes in low and high viral load groups 
compared to uninfected control group and within the infected groups with statistical 
significance 

 

Total 

Detected 

probes 

p <0.05 

(All probes) 

p <0.05 

(Known probes) 

+/- 2 fold and 

p<0.05 

(All probes) 

+/- 2 fold and 

p<0.05 

(Known probes) 

Control Vs. LVL 
 

21,852 

47 41 0 0 

Control Vs. HVL 15,736 13,866 309 280 

LVL Vs. HVL 14,432 11,014 182 166 

 

 Total 

Detected 

probes 

p <0.01 

(All 

probes) 

p <0.01 

(Known probes) 

+/- 2 fold and 

p<0.01 

(All probes) 

+/- 2 fold and 

p<0.01 

(Known probes) 

Control Vs. LVL  

21,852 

47 41 0 0 

Control Vs. HVL 11,510 9,137 309 280 

LVL Vs. HVL 10,007 7,820 182 166 
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Among the detected 47 probes (41 annotated) in the low viral load samples compared to 

uninfected controls (FDR corrected with p-value of <0.01), 36 were upregulated and 11 were 

downregulated (Appendix B1).  None of the transcripts show more than 1 fold difference 

compared control suggesting that there is not a greater difference between uninfected versus 

subjects with no detectable viral load.   

In contrast, 309 probes (280 annotated) were differentially regulated in the high viral load 

samples compared to the uninfected controls (FDR corrected with a p-value of <0.01 with +/- 2-

fold regulation).  Of these, 125 were upregulated, and 184 were downregulated (Appendix B2). 

Similarly, we also compared the differentially regulated probes between LVL and HVL 

groups and the results indicate that 182 probes (166 are annotated) are regulated.  Within the 

differentially regulated transcripts, a majority of them (113) are downregulated and 69 were 

upregulated (Appendix B3).  

Further distribution of these probes within the groups indicate that 178 probes were 

commonly shared between control versus HVL and LVL versus HVL, whereas none of the 

mRNAs are shared by all the groups or between control versus LVL group (Fig. 7).  More 

importantly, the remaining 131 probes are very specific to HVL group.  Together these results 

suggest that transcriptome profile in subjects with high viral load or AIDS exhibits a unique 

transcriptome profile compared to the low viral load group.  
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Figure 7. Venn diagram illustrating the number of significantly differentially regulated 
mRNA probes between low viral load, high viral load, and uninfected control groups.  

 

 
  
 

Clustergram analysis of differentially regulated mRNA profile between control and LVL 

did not show distinct clustering (Fig. 8), whereas control versus HVL and LVL versus HVL 

group segregated distinctly indicating a different transcriptome profile mediated by virus 

replication within this group (Fig. 9 and 10).  Samples LVL2, LVL4, LVL6, LVL15, and LVL11 

did cluster with the HVL group; however, these clusters did not exhibit a clinical characteristic 

pattern that would explain why these samples resembled the HVL donors.  

The Venn diagram displays the number and overlap of significantly differentially expressed mRNA 
(Benjamini-Hochberg adjusted, p<0.05, +/- 2-fold for CT vs. HVL and LVL vs. HVL) among the LVL 
and HVL groups relative to the CT and among the infected groups.  
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Figure 8. mRNA hierarchical clustering between control and low viral load groups

Probes in this clustergram are differentially regulated (p<0.05). Red indicates high, blue indicates low, and gray stands for average level of 
expression.  Sample category is indicated on top. 
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Figure 9. mRNA hierarchical clustering between control and high viral load groups  
 

 Probes in this clustergram are differentially regulated with a fold change>2 (p<0.05). Red indicates high, blue indicates low, and gray stands 
for average level of expression. Sample category is indicated on top. 
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Figure 10. mRNA hierarchical clustering between low and high viral load groups 

Probes in this clustergram are differentially regulated with a fold change>2 (p<0.05). Red indicates high, blue indicates low, and gray stands for 
average level of expression.  Sample category is indicated on top. 
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5.1.3 To analyze pathways and biological processes altered by HIV-1 infection 

In order to examine the pathways and biological processes involved in HIV-1 infection, we 

analyzed the significantly differentially regulated mRNAs from each analysis with STRING and 

Gene Enrichment Ontology.  All significantly upregulated and downregulated mRNAs were 

grouped together and analyzed.  Results of STRING analysis indicate that LVL vs. uninfected 

controls did not show significant changes in cellular pathways (Fig 11).   

 

Figure 11. STRING analysis of Predicted interaction networks of genes significantly 
dysregulated in LVL relative to CT. 
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This contrasts the HVL, which in comparison to the uninfected controls, exhibited 

distinct pathway regulation (Fig. 12).  STRING analysis shows four major clusters: chemokines 

and its receptors, pro-inflammatory cytokines, interferon induced genes, and metallothionein 

genes.  Among these clusters, the most significantly regulated molecules include inflammatory 

factors, cytokines/chemokine, cell cycle and apoptosis related proteins, cell signaling molecules, 

factors expressed in response to virus/bacterial infection, innate factors and cell-to-cell 

interaction.  Most importantly, many of the inflammatory factors and cytokines (CXCL5, CCL2, 

CCL8, CXCL10, CCL7, IL-1α, IL-1β, IL-6 and IL-8) are upregulated in HVL group, whereas 

antiviral factors and innate immune molecules (members of Defensin family, IFN) were 

significantly downregulated. 
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Figure 12. STRING analysis of predicted interaction networks of genes significantly dysregulated in HVL relative to CT. 
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Figure 13. STRING analysis of predicted interaction networks significantly dysregulated in HVL relative to LVL
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Finally, the comparison between the HVL and LVL shows a similar pathway with an 

evident presence of pro-inflammatory cytokines and chemokines (Fig. 13). 

We next chose to study the functionality of the significantly dysregulated genes with a 

focus on those genes that were statistically over represented.  An analysis of biological functions, 

using Gene Ontology Enrichment, shows only four significant functions including response to 

virus, IFNγ mediated signaling pathway, immune response, and cellular component movement 

for the comparison between LVL and controls (Fig. 14A).  This contrasts with 34 significant 

functions, including inflammatory response, chemotaxis, and immune response, produced from 

the comparison between HVL and the control group (Fig. 14B).  Interestingly, only four 

significant functions were obtained from the comparison between HVL and LVL (Fig. 14C).  

These functions relate mostly to viral replication and include translational elongation, viral 

transcription, and translational termination.  Overall, these results suggest that high viral load 

alters several genes and cellular processes related to HIV-1 induced disease progression. 
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Figure 14. Gene Ontology Enrichment Analysis for biological processes using significantly 
differentially regulated genes  

Bar graphs were generated using average –lop of p value for each term on y-axis and term name on x-axis 
using Gene Ontology Enrichment tool in IBD. 
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5.1.4 To perform miRNA and mRNA validations on independent subjects. 

Because the high throughput platforms simultaneously test for the expression of many miRNAs 

or many mRNA, we chose to validate selected miRNAs and mRNAs, ones that we determined to 

be significant (>2-fold change, p<0.05), by qRT PCR in a set of independent donors.  This was 

performed to increase the confidence in our results and to reduce the possibility of platform 

related errors. 

5.1.4.1 miRNA validations 

To validate the differentially regulated miRNAs from the microarray results, we randomly 

selected miRNAs (miRNAs with >2-fold change and p<0.05) and tested them in independent 

subjects (using similar selection criteria) using miRNA specific Taqman primers and probes by 

qRT-PCR (Fig. 15A).  Results from the comparison of the low viral load and uninfected controls 

indicate that among the six miRNAs tested, four miRNAs (miR-483-5p, miR-18b*, miR-938, 

and miR-1260) exhibit similar fold change pattern as the high throughput results with miR-483-

5p showing significance (p<0.001).  For instance, three of these miRNAs are upregulated in high 

throughput and also upregulated in qRT PCR assay, while fourth miRNA is downregulated in 

both platforms.  Validation of two miRNAs (miR-1262 and miR-21*) showed an opposite fold 

change pattern to that of the high throughput results.  Specifically, miR-1262 was downregulated 

and miR-21* upregulated in high throughput, while in the qRT PCR, they were upregulated and 

downregulated, respectively. 

We also tested selected miRNAs in a set of independent high viral load donors relative to 

uninfected controls (Fig. 15B).  This comparison indicated that among the seven miRNAs tested, 
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all but two miRNA (miR-21* and miR-18b*) positively validated the high throughput results. 

All but one of these (miR-935) also produced significance (p<0.05). 

Overall, validation of miRNA in both sample groups confirms >65-85% of the mRNAs, 

suggesting that the array analyses in our samples are reproducible.  

 
 
Figure 15. Independent validations of randomly selected miRNAs 

5.1.4.2 mRNA validations 

Since all of the significant mRNAs in the comparison between low viral load and uninfected 

controls had a very low fold change (-0.768 to 1.03), none of them met our selection criteria for 

validation.  We still chose to validate certain transcripts, which were previously shown to be 

associated with HIV infection (Fig. 16A).  We chose to examine CCL2, or CC Chemokine 

Ligand 2, which is a chemoattractant produced by macrophages following inflammation and is a 

qRT-PCR was used to validate the expression of selected miRNAs between CT and LVL (A) and 
CT and HVL (B) from the high throughput results (derived by StatMiner) using a specific primer 
and probe for each miRNA. Fold increase/decrease was calculated based on normalization to U6. 
Average fold change for each miRNA represents fold change obtained from independent donors 
(CT: N=5 or 4, LVL: N=5, HVL: N=5). *=p<0.05, **=p<0.01, ***=p<0.001. 
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factor that has been associated with disease progression [60].  We also examined the expression 

of CCL8, a CCR5 binding ligand and, therefore, an inhibitor of HIV-1 viral entry[61].  

Furthermore, we examined the expression of IFNγ, a cytokine produced by T lymphocytes, 

which has been shown to be upregulated following HIV infection[62].  We also examined the 

expression of IL1β, an inflammatory cytokine previously shown to be stimulated in monocytes 

and macrophages by extracellular HIV Tat[63].  Finally, we chose to examine the expression of 

Neurogranin (NRGN).  Neurogranin is a cellular factor that plays a role in the calcium-

calmodulin signaling pathway and has been suggested to play a role in learning and memory[64].  

We chose to explore its expression because its neurocognitive effects could be linked to HAND 

(HIV associated neurocognitive disorders).  Additionally, NRGN acts as a substrate for protein 

kinase C, which has been shown to be involved in HIV-1 gp120-induced apoptosis[65].  Our 

qPCR results indicate that CCL2, CCL8, and IL1β were downregulated, while IFNG and NRGN 

were upregulated in donors with low viral load compared to uninfected controls (Fig 16A). 

 Since our microarray data for the comparison between HVL and the uninfected controls 

yielded significantly differentially regulated mRNAs at a > +/-2 fold change, we were able to 

validate several of these mRNAs and compare our validation results to those of the microarray 

(Fig. 16B).  In addition to CCL2 and NRGN, which we also tested in the low viral load subjects, 

we examined the expression of AIF1 and IL-6.  AIF1 or Allograft inflammatory factor 1 is a 

protein that is induced by cytokines and interferon and is involved in the anti-inflammatory 

response in blood vessels [66].  We also examined the expression of IL-6, whose expression has 

for a very long time been known to be elevated in HIV infected individuals [67].  Three out of 

the four mRNAs selected exhibited the same fold change pattern as in the microarray data.  

NRGN was the only mRNA that exhibited the opposite fold change pattern in that in the 



  57 

validation results, it produced a fold change of 2.3, compared to -4.029. However, it is important 

to note that the fold change is not very high and may not be significant. 

 

Figure 16. Independent validations of randomly selected mRNAs 

 

5.1.5 Summary of AIM #1 

Viral load significantly alters the miRNA and mRNA profiles in infected individuals.  It is high 

viral load, in particular, that has the greatest effect on producing a differential profile.  Low viral 

load individuals exhibit profiles that in general resemble those of uninfected individuals.  This 

contrasts to high viral load donors, who produced higher numbers of significantly differentially 

regulated miRNAs and mRNAs in comparison to both the uninfected controls and the low viral 

load samples.  We hypothesize that the altered miRNA profile differentially regulates the mRNA 

profile.  The study of the interplay of the two profiles is the focus of Aim #2. 

qRT-PCR was used to validate the expression of selected mRNAs between CT vs. LVL (A) and CT 
vs. HVL (B) from the high throughput results (derived by StatMiner) using a specific primer and 
probe for each mRNA. Fold increase/decrease was calculated based on normalization to RPLPO. 
Average fold change for each miRNA represents fold change obtained from independent donors (CT 
vs. LVL: N=5 vs. N=5; CT vs. HVL: N=3 vs. N=3).  **=p<0.01. 
 



  58 

5.2 AIM #2: TO EXAMINE THE INTERPLAY OF MIRNA AND THE TARGETED 

MRNA 

Since miRNAs’ function is to inhibit translation by targeting mRNAs, our goal was to identify 

which differentially regulated microRNAs targeted which mRNAs.  Several online databases are 

available for predicting the miRNA-mRNA interplay.  One of these databases is Targetscan, 

which predicts miRNA targets by searching for conserved 8mer and 7mer sites in the mRNA that 

would match the seeding region in the miRNA, mismatches that are compensated by a conserved 

3’pair; non conserved sites are also predicted[68].  An additional database is miRDB, which is 

based on support vector machines to improve generalization on unseen data[69].  Furthermore, 

there is MicroCosm Targets, which uses a miRanda scoring algorithm and scans a single 

organism’s genome and all of its miRNA sequences against 3’ UTR sequences[70].  However, 

there is not always a uniform consensus between the different databases and the predictions they 

make.  Zhu et al have, through their study of mouse mammary tumors, also demonstrated that the 

online databases can generate a large number of false positives[71].  As a result, we chose to 

perform a computational analysis using our two sets of array data.  This follows the example of 

Wang et al who used a similar strategy to identify an intrinsic miRNA-mRNA correlation during 

monocytic differentiation[72]. 

5.2.1 To perform a computational analysis to predict possible mRNA targets of the 

significantly dysregulated miRNAs. 

To predict the targets of our significantly differentially regulated miRNAs, we performed a 

computational analysis that takes into account our expression data and a database of predicted 
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miRNA-mRNA interactions.  Table 13 shows the predicted miRNA-mRNA interactions 

following an analysis examining the union of all significant miRNAs and mRNAs and an 

analysis examining the individual group significant miRNAs and mRNAs.  Although multiple 

miRNAs were predicted to have potential binding sites, many miRNAs show a clear inverse 

correlation between the miRNA-mRNA interaction pairs.  For instance, the downregulated 

NRGN was shown to be targeted by miR-564, which was upregulated in our miRNA analyses. 
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Table 13. Predicted miRNA-mRNA interacting pairs with high confidence 
  Control vs. LVL Control vs. HVL LVL vs. HVL 

miRNA mRNA Fold 
change 

p value Fold 
change 

p value Fold 
change 

p value 

miR-376a IL-6 -1.264 0.697 -2.639 0.0185 -2.088 0.0797 
miR-210 NRGN 2.931 0.162 10.536 0.000121 3.595 0.00276 
miR-564 NRGN 2.467 0.229 11.667 0.00000170 4.730 0.00306 

miR-483-5p AIF1 5.969 0.00410 17.089 0.000000205 2.863 0.00259 
miR-605 AIF1 1.164 0.872 29.059 0.0000000127 24.962 0.0000000554 
miR-222 ALDH1A1 1.710 0.229 4.887 0.00000170 2.858 0.000129 
miR-152 KLF4 1.243 0.799 5.263 0.00190 4.233 0.000544 
miR-34b NCR3 1.080 0.893 3.234 0.000494 3.000 0.0182 
miR-660 NCR3 2.276 0.393 6.452 0.00778 2.835 0.0233 
miR-518f CCL2 -5.801 0.315 -3.178 0.442 1.826 0.699 
miR-518e CCL2 -1.480 0.614 4.285 0.00896 6.342 0.00145 
miR-518f CCL8 -5.801 0.315 -3.178 0.442 1.826 0.699 

 

 

We were able to generate a visual representation of the predicted miRNA-mRNA 

interactions between HVL and the uninfected controls (Fig. 17).  However, due to the large 

number of predictions, the entire interactome is difficult to read.  Here, we chose to highlight 4 

miRNAs and their mRNA predictions (Fig. 18A-D).  MiR-92a, miR-564, and miR-130b are 

examples of miRNAs that are associated with the presence of high viral load, while miR-483-5p 

is an example of a miRNA that is associated not only with high viral load but also with infection 

in general.  The interactions were ranked based on confidence.  From the 24 interactions shown 

for miR-92, 21 interactions for miR-564, 14 interactions for miR-130b, and 14 interactions for 

miR-483-5p, 6, 4, 1, and 3 of the interactions had a confidence greater than 0.5 for each of the 

miRNAs, respectively.  

miRNA-mRNA predicted pairs were selected from the GenmiR++ analysis.  Two different analyses 
were performed: first one utilized the union of significant miRNA and mRNA, the second examined the 
significant miRNA and mRNA by individual group comparisons.  Fold change and p-value refer to those 
of the miRNA in the appropriate analysis.  Red indicates significant p-values (p<0.05). 
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Figure 17. Predicted miRNA-mRNA interactions 

Predicted miRNA-mRNA interactions between HVL and CT groups were formulated using array data and GenMIR++ and visualized by Cytoscape.  
Red indicates upregulation, green stands for downregulation.  
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Figure 18.  Selected predicted miRNA-mRNA interactions 
 

Selected miRNA-mRNA predicted interactions were chosen from a list of 129 miRNAs and their targets.  
The analysis was performed using the expressions of significantly differentially regulated miRNAs and 
mRNAs between HVL and control and the data from MicroCosm Targets dabatase.  Red indicates 
upregulation, green stands for downregulation.  Each slice of a circle represents one HVL sample. 
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5.2.2 To examine the relationship between CD4 count, Nadir CD4 count, and viral load 

and selected transcripts 

To examine whether other factors, besides the presence of high viral load, play a role in 

producing a differential mRNA profile, we selected a number of cellular molecules from our 

predictions and assessed their expression between the three groups of donors and also assessed 

their possible correlation with CD4 count, Nadir CD4 count, and viral load level.  In addition to 

selected cellular factors, which we previously described, we chose to focus on IL-8, whose 

expression is elevated in the sera of HIV infected individuals [73].  We also focused on CXCL5, 

which has been inferred to have an influence on the CXCR1 gene, the receptor for IL-8 [74].   
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Results show that the signals of all of the transcripts are significantly different for the high viral 

load compared to both the uninfected control and the low viral load group (p<0.0001). 

Furthermore, NRGN and IL-6 signals in the low viral load also significantly differ from the 

uninfected control group (Fig. 19). 

Figure 19. Expression of selected transcripts among the CT, LVL, and HVL groups 
Unpaired Student’s t-test was used to assess significance between the three groups (CT vs. LVL, CT vs. 
HVL, and LVL vs. HVL) (*=p<0.05, **=p<0.01, ***=p<0.0001) 
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To see if CD4 count, the major determinant of HIV infection, plays a role in altering the 

transcriptome profile, we performed Spearman correlations between the CD4 count and the 

signal intensity of each selected transcriptome within the three groups of subjects.  Similarly, we 

also assessed the role of Nadir CD4 count, which is the lowest CD4 count of an individual up to 

the date of collection (Table 14).  Results indicate that none of the transcripts significantly 

correlate with either CD4 count or Nadir CD4 count within the uninfected control group. (Table 

14A)  Within the LVL group, IL-6 and NRGN significantly correlate with CD4 (p<0.01 and 

p<0.05).  If we consider a strong relationship to be one with a correlation coefficient between +/-

1 and +/-0.7, neither of these relationships is a strong one.  None of the transcripts within LVL 

correlate with the Nadir CD4 count (Table 14B).  In the HVL group, IL-8 was the only transcript 

that had a significant correlation with CD4 count (p<0.05), but once again the relationship was 

not strong.  With respect to Nadir CD4 count, IL-6 and IL-8 correlated significantly (p<0.01) but 

without a strong negative relationship (Table 14C). 

High viral load group consisted of subjects whose viral load ranged from 46,053 to 

561,627 copies/ml, with the exception of one donor with 1,157,700 copies/mL (this outlier 

sample was eliminated from this analysis).  To assess, whether viral load amount within the HVL 

group is directly or inversely correlated with host cellular factors expression, we also performed 

Spearman correlation with viral load.  Results indicate, however, that there is no significant 

correlation between viral load and the signal of any of our selected cellular transcripts (Table 

14C).
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Table 14. Spearman correlations between selected transcript signals and CD4 count, Nadir 
CD4 count, and viral load. 
A. 

 CD4 Count Nadir CD4 
Transcript Spearman r p-value Spearman r p-value 

CCL2 -0.00296 0.986 0.156 0.358 
CXCL5 0.0385 0.821 0.101 0.553 

IL-6 -0.0236 0.877 0.0424 0.799 
IL-8 0.0234 0.891 0.227 0.176 

NRGN -0.186 0.278 -0.172 0.309 
 

B. 

 CD4 Count Nadir CD4 
Transcript Spearman r p-value Spearman r p-value 

CCL2 -0.281 0.133 -0.193 0.283 
CXCL5 0.0251 0.895 -0.0267 0.883 

IL-6 -0.488 0.0062 -0.185 0.304 
IL-8 -0.219 0.246 -0.143 0.427 

NRGN 0.41 0.0244 0.314 0.0748 
 

C. 

 CD4 Count Nadir CD4 Viral Load 
Transcript Spearman r p-value Spearman r p-value Spearman r p-value 

CCL2 -0.0222 0.918 -0.0843 0.695 0.202 0.355 
CXCL5 -0.277 0.190 -0.367 0.078 0.190 0.385 

IL-6 -0.324 0.122 -0.414 0.0445 -0.199 0.364 
IL-8 -0.495 0.0139 -0.609 0.0016 -0.085 0.670 

NRGN 0.224 0.292 0.153 0.475 0.143 0.516 
 

 

Spearman correlations between selected transcripts and CD4 count, Nadir CD4, and viral load (where 
applicable) within the control (n=37) (A), low viral load (n=30 for CD4 count, n=33 for Nadir CD4 count) 
(B), and high viral load (n=24 for CD4 and Nadir CD4 count, n=23 for viral load) (C) obtained from 
GraphPad Prism set to produce a two-tailed p-value. 
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5.2.3 Biological validation of HIV-1 regulated factors 

Although, an in vivo validation of serum cytokines and chemokines as well as other markers 

would be ideal, we first evaluated expression of the inflammatory factors using an in vitro 

experimental culture model.  Normal human primary PBMCs infected with HIV-1 virus were 

assessed for CCL2, CCL8, IL-6, IL-8, and CXCL5 protein expression.  Chemokines released 

from the infected culture post infection were assessed in the infected and uninfected culture 

using cells from multiple donors (Fig. 20). Results indicate that HIV-1 infection significantly 

increased the expression of inflammatory factors, and this expression was independent of viral 

tropism.  Infection with either NL43 or YU2 significantly upregulated the level of IL-6 by 8-

fold, CCL2 by 3-fold, and CXCL5 by 4-fold with a significance of p<0.05 in multiple donors. 

However, the upregulation was about 2.5-fold for CCL8 (p>0.05) and 8-fold with p<0.05 for IL-

8 in NL43 infected PBMC, whereas 3-fold (p>0.05) in YU2 infected PBMC.  These results 

exhibit a direct correlation with the mRNA transcript expression.  
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Figure 20. Biological validation of selected HIV-1 related factors by ELISA 
 
 

 

 

Expression of CCL2, CCL8, CXCL5, IL-6 and IL-8 was monitored by ELISA in supernatants 
obtained from PBMCs infected with CXCR4-coreceptor virus (NL43), CCR5-coreceptor virus 
(YU2) or mock infected PBMCs (n=7). *=p<0.05, NS=not significant 
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We also tested the expression level of NRGN in the RNA of these samples by performing 

qRT PCR. Results indicate that PBMC infected with NL43 or YU2 showed significant 

downregulation of NRGN RNA transcript compared to mock or uninfected control (Fig. 21).  

                  

 Figure 21. qRT-PCR expression of NRGN after normalization to RPLPO 
 

 

 

To further confirm the repression of NRGN at the protein level, expression of NRGN in 

cell lysates of PBMC infected with NL43, YU2 or mock was assessed by immunoblotting using 

anti-NRGN antibody (Fig. 22). Results suggest that PBMC infected with NL43 or YU2 showed 

significant down regulation of NRGN compared to uninfected or mock-infected control cells.  

Further quantitative analysis using densitometry scanning indicate that the reduction is ~55% in 

PBMC infected with NL43 virus, whereas a ~85% reduction was found in PBMC infected with 

qRT-PCR was used to assess the expression of NRGN in PBMCs infected with NL43 and 
YU2. Fold increase/decrease was calculated relative to uninfected PBMCs and based on 
normalization to RPLPO (n=2). 
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YU2 virus.  Although it is not clear why the two different viruses exhibit different level of down 

regulation of NRGN, one of the possible explanations could be the infectivity level within these 

cultures, as both macrophages and CD4 cells are infected by YU2, whereas, NL43 infects only 

CD4+ T cells.  Although it is not clear why the two different viruses exhibit different level of 

down regulation of NRGN, one of the possible explanations could be the infectivity level within 

these cultures, as both macrophages and CD4 cells are infected by YU2, whereas, NL43 infects 

only CD4+ T cells. 

 

Figure 22. Western blot analysis of NRGN 

5.2.4 Summary of AIM #2 

Our computational analyses have predicted several miRNA-mRNA interactions.  The 

comparison between HVL and control produced the largest number of predictions with several of 

NRGN expression of in vitro infected (NL43 and YU2) PBMCs was analyzed by Western blot and 
compared to mock infected (A). Densidometry was performed on the blot (B). Fold changes 
represent ratios of NRGN to Actin, normalized to mock infection. 
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them having a confidence greater than 0.5.  Even at this confidence, several miRNAs had 

multiple targets, with some targeting as many as 9 mRNAs.  Similarly, the 3’ UTR of a single 

mRNA contains many miRNA binding sites and, consequently, can be targeted by multiple 

miRNAs.  Correlation studies of some of the mRNAs involved in these interactions showed no 

strong significant relationships to CD4 and Nadir CD4 counts, and no significant relationships to 

viral load.  ELISA and qPCR results of selected HIV related transcripts tested in in vitro samples 

confirmed the expression patterns of the mRNA transcripts. 

5.3 AIM #3 TO PERFORM MIRNA PROFILING IN CD4 AND CD14 CELLS OF 

LOW VIRAL LOAD, HIGH VIRAL LOAD, AND UNINFECTED CONTROL DONORS 

The primary cell types targeted during HIV infection are CD4+ T cells and 

monocytes/macrophages. These cells play a major role in the immune system by recruiting 

neutrophils, eosinophils and basophils, inducing macrophages, and aiding B cells in the 

production of antibodies[75]. Macrophages, which phagocytoze pathogens and help fight off 

opportunistic infections[76].  Macrophages are thought to be the first infected cells following 

HIV entry into the body and the source of HIV following the depletion of CD4 T cells[77].  Both 

of these cell types express HIV coreceptors CCR5 and CXCR4[78], but in macrophages the 

CXCR4 coreceptor is thought to be nonfunctional[79]. 

We chose to assess if any of the significantly differentially regulated miRNAs found in 

the PBMC population were HIV-1 target cell type specific.  CD4+ and CD14+ cells were 

isolated from a subset of control and low viral load donors, for which we had previously 

performed miRNA profiling in PBMCs. 
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Figure 23. Venn diagram illustrating the number of significantly differentially regulated 
miRNAs between CD4, CD14, and PBMCs of subjects from uninfected and low viral load 
groups (N=5) 
 

 

 

 

 

Data (analyzed with RealTime StatMiner) from 5 subjects from the uninfected control 

and low viral load groups indicate that there were 25 miRNAs specific to CD4+ T cells and 16 

miRNAs that were specific to CD14 cells.  Analysis of PBMC data from the same donors 

showed a total of 33 miRNAs that were significantly dysregulated between the two groups.  Only 

2 of these miRNAs (miR-425* and miR-576-3p) were found in the CD4+ population, while none 

of these were found in the CD14 population (Fig. 23).  There is currently no information relating 

these miRNAs to any disease or condition. 

miRNA profiling was performed on PBMC, CD4+ T cells, and CD14+ T cells to identify the ____ 
of HIV target cells compared to PBMC (N=5). The Venn diagram displays the number and overlap 
of significantly differentially expressed miRNA (p<0.05) among the LVL group relative to the CT 
in CD4, CD14, and PBMCs of the same donors (CT: N=5, LVL: N=5). 
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Furthermore, hierarchical clustering of miRNAs among the CD4 cells of low viral load 

and uninfected samples results in the formation of three clusters; the first is composed of low 

viral load, the second of uninfected control, and the third of both types of samples (Fig. 24).  We 

also performed the clustering in CD14 cells of the same subjects and observed an occasional 

clustering of two samples from the same group (Fig. 25).  Overall, however, the clustering 

separation was extremely variable.  Although differentially regulated miRNAs in PBMCs 

separated between CT vs. LVL (with the exception of LVL30), similar clustering was not 

observed in CD4+T and CD14+ cells from the same donors, suggesting non-target cell types 

might be involved (Fig. 26).  Alternatively, the number of samples may be too low to derive any 

meaningful conclusions; thus, the study needs additional work. 
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Figure 24. Hierarchical clustering of miRNAs in CD4 cells between low viral load and uninfected controls 
Hierarchical clustering of miRNA in CD4 cells between CT and LVL (N=5, N=5). miRNA in the clustergram are dysregulated at a 
significance cutoff of p<0.05. The dendogram depicting the clustering of samples is calculated using Complete linkage with 
Euclidian distance measure values. Color ranging from green to red indicates minimum to maximum dCT. Gray indicates empty 
wells. Numbers on X axis represent subject group. CT, uninfected controls; LVL, low viral load subjects. 
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Figure 25. Hierarchical clustering of miRNA in CD14 cells between low viral load and uninfected controls 
Hierarchical clustering of miRNA in CD14 cells between CT and LVL (N=5, N=5). miRNA in the clustergram are dysregulated at a 
significance cutoff of p<0.05. The dendogram depicting the clustering of samples is calculated using Complete linkage with Euclidian 
distance measure values. Color ranging from green to red indicates minimum to maximum dCT. Gray indicates empty wells. Numbers 
on X axis represent subject group. CT, uninfected controls; LVL, low viral load subjects. 
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Figure 26. Hierarchical clustering of PBMCs between low viral load and uninfected controls 
Hierarchical clustering of miRNA in PBMCs between CT and LVL (N=5, N=5). miRNA in the clustergram are dysregulated at a 
significance cutoff of p<0.05. The dendogram depicting the clustering of samples is calculated using Complete linkage with Euclidian 
distance measure values. Color ranging from green to red indicates minimum to maximum dCT. Gray indicates empty wells. Numbers 
on X axis represent subject group. CT, uninfected controls; LVL, low viral load subjects. 
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 Since the majority of the subjects in our high viral load group were deceased or no longer 

participating in the study, we were unable to isolate the CD4 and CD14 cells from them.  

Additionally, because most of the current subjects in the Pitt MACS are on therapy and are, 

therefore, able to control their viral load, we did not have access to fresh blood of new high viral 

load donors.  As a result, we isolated the cells from frozen PBMCs.  These PBMCs, however, 

were several years old and did not yield high number of purified cell types.  In order to perform 

the profiling in these samples, we would have to pre-amplify the cDNA.  Pre-amplification 

results in higher expression of most miRNAs, including the endogenous controls.  Samples that 

are pre-amplified, therefore, cannot be compared to those that are not pre-amplified.  

 As an alternative, we used an in vitro system as a model for the high viral load donors.  

CD4+ and CD14+ cells were isolated from PBMCs that were infected with either CXCR4 

(NL43) or CCR5 (YU2) co-receptor utilizing virus. Post infection, RNA was isolated and 

miRNA profiling was performed. First, we examined the intersection between the differentially 

regulated donor PBMCs and a union of the in vitro infected PBMCs (NL43 vs. mock and YU2 

vs. mock) (Fig 27).  
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Figure 27. Venn diagrams illustrating the intersection of significantly differentially 
regulated miRNAs between HVL vs. CT donor PBMCs and  in in vitro infected PBMC 
samples 

 

 

 

Since the sample size of the in vitro samples was rather small compared to our donor 

population, we obtained only 3 significant miRNAs (miR-518b, miR-639, miR-886-3p) in 

common between the two.  Given that we did obtain miRNAs in common, however, we 

examined the expression of significantly differentially regulated miRNAs (determined by 

StatMiner and DataAssist) of PBMCs from the comparison of CT vs. HVL in these CD4+ and 

CD14+ in vitro infected samples.  Results indicate that of the 191 miRNAs examined, 141 

miRNAs had a common fold change pattern between the donor PBMCs and in vitro infected 

CD4 cells with NL43.  Additionally, there were 146 miRNAs from the donor PBMCs that had a 

common fold change pattern with CD4 cells infected with YU2.  Considering there were 112 

miRNAs that were commonly regulated between the PBMCs and CD4 cells (regardless of the 

type of virus), 16 miRNAs from the 191 miRNAs in the PBMCS examined came from a cell 

type other than CD4 cells (Fig. 28A). 

The Venn diagram displays the number and overlap of significantly differentially expressed miRNA 
(p<0.05) among the HVL group relative to the CT in donor PBMCs and in vitro infected PBMCs 
relative to mock (CT: N=36, HVL: N=32, NT=4; YU2=4, NL43: N=4). 
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 We also examined the intersection of these same 191 miRNAs in CD4 and CD14 cells 

infected with YU2.  We discovered 115 miRNAs that had the same fold change pattern in the 

PBMCs and CD14 cells and 94 miRNAs that had the same fold change pattern between the 

PBMCs and CD4 and CD14 cells infected with YU2.  Consequently, 24 out of the total 191 

miRNAs did not come from the CD4 or CD14 cells infected with YU2 (Fig. 28B). 

 

 

Figure 28. Venn diagrams illustrating the distribution of 191 significantly differentially 
regulated miRNAs from HVL in in vitro infected cell specific samples 
 

5.3.1  Summary of AIM #3 

Since HIV infects both CD4+ T cells and monocytes/macrophages, we focused on studying the 

origin of the significantly differentially regulated miRNAs within the PBMCs.  In our low viral 

A total of 191 PBMC miRNA were examined and their fold change pattern (up/down) was compared to 
in vitro data from CD4 and CD14 infected cells.  The fold change for the cell specific data was generated 
with a comparison to untreated cells from the same donor.  CT=uninfected controls, N=36; HVL=high 
viral load, N=31; CD4 + NL43=CD4 cells infected with NL43, N=3, CD4 + YU2=CD4 cells infected 
with YU2, N=3; CD14 + YU2= CD14 cells infected with YU2; N=3. 
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load comparison to uninfected controls, we discovered that most of the miRNAs come from cell 

types other than CD4 and CD14 cells.  Our comparison of the donor high viral load PBMC 

miRNA data with cell specific samples isolated from in vitro infected PBMCs showed that most 

of the miRNAs originate from CD4+ and CD14+ cells. 
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6.0  DISCUSSION 

Although it has been about 30 years since the first HIV/AIDS cases were reported, the virus 

continues to be a threat to the world population.  Even with extensive research, it is not exactly 

clear how the virus interacts with the host immune system.  Additionally, it is unclear why 

certain individuals progress through the disease stages faster than others and why some people 

are immune to infection despite repeated exposure.  In this study, we concentrated on 

understanding the cellular transcription and its regulation to HIV infection in the form of 

microRNAs.  Since miRNAs bind to the 3’UTR of their target mRNAs, we explored both 

miRNA and mRNA profiles between uninfected and infected individuals.  Further, we studied 

the effect that viral load (low vs. high) may have on both of these profiles. 

Several factors, including age, sex and infection/disease, may influence a miRNA 

profile[80, 81].  Consequently, to reduce the effect of these influences, we strived to match our 

subjects as closely as possible.  All of our subjects were males and their median age placed them 

in the middle-aged category.  Specifically, the median ages in our uninfected, low viral load, and 

high viral load groups were 50, 51.5, and 40, respectively.  With respect to the viral load 

groupings, we classified viral load individuals as those who had mostly undetectable/low levels 

(~<40 copies/mL) and maintained a fairly low viral load for the duration of the past 5 years.  

High viral load individuals, on the other hand, were those whose viral load was high (>45,000 

copies/mL) for at least 6 months prior to the date of collection. 
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To decrease the potential for variability of results due to software, we analyzed our data 

with two programs.  Our results indicate that viral infection induces a differential regulation of 

microRNA compared to uninfected controls.  Furthermore, viral load level has an additional 

effect.  It is high viral load, in particular, that produces the greatest effect on altering the miRNA 

profile.  This is further supported by our finding of fewer significantly dysregulated miRNAs 

between LVL and the control and the less distinctive clustering among these samples.  We only 

found 21 miRNAs that were significantly differentially regulated between controls and LVL, 

compared to 191 miRNAs and 158 miRNAs that were significantly dysregulated between CT vs. 

HVL and LVL vs. HVL.   

Witwer et al had recently published miRNA profiling data on PBMCs of uninfected, elite 

suppressors, and viremic donors[82].  Results from this study and ours differed in several 

aspects.  First, our sample size of 99 was considerably larger than their 22 donor population.  

Additionally, all of our low viral load donors were on HAART and consequently, do not fit the 

definition of being elite suppressors.  We found a total of 9 miRNAs in common with Witwer’s 

data (p<0.05).  Eight of these miRNAs exhibited the same fold change pattern.  The only 

discrepancy was let-7g, which we found to be upregulated, while Witwer reported it as being 

downregulated.  This difference could potentially be attributed to donor variability given that the 

fold change that Witwer reports for let-7g is not very high (-1.5 to -1.7). 

As previously mentioned, Huang et al had found miR-28, miR-125b, miR-150, miR-223, 

and miR-382 to be downregulated in activated CD4+ T cells compared to resting CD4+ T 

cells[19].  Of these 5 miRNAs, we found three to be significantly differentially regulated in any 

of our analyses.  Only, miR-223 was downregulated, however; while, miR-28-3p/5p, and miR-

382 were upregulated.  This suggests that profiling with multiple platforms would be 
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advantageous to determine which miRNAs are truly significant and to eliminate the possibility of 

platform related errors.  Our independent validation with qRT PCR confirmed our high 

throughput data in 65-75% of the cases.  Although this validation performance is standard, using 

multiple profiling platforms would certainly be more advantageous. 

Similarly Bignami et al had performed a functional analysis of miRNAs dysregulated in 

CD4+ T lymphocytes.  Several of our differentially regulated miRNAs fall into Bignami’s 

categories.  miR-34a is associated with viral replication, miR-21, miR-155, and miR-424 are 

linked to immune response, and miR-146b-3p is linked to both functions[83].  Of these, miR-34a 

and miR-424 were also significantly upregulated in the in vitro infected (NL43 and YU2, 

repsectively) CD4+ T cells.  Although not significant, the remaining miRNAs also exhibited the 

same fold change pattern in the in vitro infected CD4+ T cells as in the donor PBMCs.  Notably, 

the fold change of these miRNAs in the CD14 cells was either negative or close to 1, indicating 

that these miRNAs likely originated from the CD4 population. 

Finally, we have also shown the notion that the LVL group is similar to the uninfected 

controls on the mRNA level by performing a STRING pathway analysis on the mRNA array 

data, which produced very few gene interactions in the comparison between the low viral load 

and uninfected controls; it did, however, produce many cytokine and chemokine interactions for 

the comparison between the high viral load and both uninfected controls and low viral load 

samples.  Overall, we found only 41 significantly dysregulated mRNAs between CT and LVL 

and all of these miRNAs had a fold change<2.  Meanwhile, the comparisons of CT vs. HVL and 

LVL vs. HVL yielded 309 and 182 significantly differentially regulated probes (Table 12).  We 

found STAT1 to be upregulated in the high viral load (compared to low viral load), which is 

consistent with Rotger et al who reported this interferon receptor to be significantly upregulated 
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with increasing viral load[43]. We also found APOBEC3G, a cellular defense factor against 

retroviruses, to be upregulated in the presence of infection (CT vs. LVL) and high viral load (CT 

vs. HVL), which parallels Rotger et al and their finding that the gene is upregulated with 

increasing viral load[43].  The overall clustering of the samples is also similar in that the 

uninfected controls tended to cluster with treated subjects (similar to LVL group) and, for the 

most part, separate from the viremics[43].  Unfortunately, we have currently performed mRNA 

profiling only on PBMCs.  It would certainly be interesting to perform it on HIV target cells 

(similar to what we have done on the miRNA level) to observe the effect that infection and viral 

load may have on the mRNA within the individual cell types. 

To validate our mRNA data, we performed independent qRT PCR validations, which 

confirmed our high throughput data in 75% of the cases.  The only mRNA, which did not yield 

the proper fold change pattern in the qRT PCR data was NRGN.  The fold change that we have 

obtained for it in the qRT PCR data was not very high and was not significant, however.  Our 

biological validations of NRGN using in vitro infected PBMCs indicate that NRGN is indeed 

downregulated following infection and that the downregulation is virus specific.  Furthermore, 

our ELISA-based biological validations of HIV-1 related factors confirm the upregulation of 

these factors after infection.  

To study the interaction between the miRNA and mRNA, we chose to not simply rely on 

online interaction databases like TargetScan.  Instead, we chose to use our array data as a 

supplement to GenMiR++.  GenMir++ is a Bayesian method that formulates miRNA-mRNA 

predictions using both experimentally measured data and a database of potential miRNA-mRNA 

sets[84].  In our analysis, we chose MicroCosm Targets as our database.  Using two sets of filters 

(first set to the union of the significantly differentially regulated miRNAs and mRNAs, second 
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set to the significantly differentially regulated miRNAs and mRNAs from individual group 

analysis), we were able to come up with a number of predictions.  Several of these predictions 

had confidence greater than 0.5 and would, therefore, be good targets for additional miRNA-

mRNA related studies.  Notably, our analysis has predicted targets for miRNAs associated with 

high viral load (miRNAs upregulated in CT vs. HVL and LVL vs. HVL: miR-564, miR-92a, and 

miR-130b) and those that are related to both viral load level and infection (miRNA upregulated 

in CT vs. LVL, CT vs. HVL, and LVL vs. HVL: miR-483-5p).  It is these miRNAs that should 

be examined further in the future since they are the ones that hold the most value for possible 

clinical use. 

We also performed correlation studies for selected transcripts to determine if other 

factors, besides the presence of high viral load, could have an effect on the differential mRNA 

expression.  We found a significant negative correlation for IL-8 in HVL and CD4; this is 

consistent with data in the literature that associate infection (therefore a lower CD4 count) with 

elevated IL-8[73].  In this group, IL-6 and IL-8 also correlated with Nadir CD4.  This was not 

surprising because the Nadir CD4 counts for some of the HVL subjects were quite low.  

Furthermore, this paralleled Stone et al’s findings of elevated IL-6 in HIV patients after an 

immune restoration [85].  We also found significant correlations within LVL for IL-6 and NRGN 

and CD4.  None of the observed correlations were strong (Spearman r<0.5).  Interestingly, we 

found no significant correlations with the level of high viral load, indicating that the presence of 

high viral load has an effect on producing differential mRNA expression but the level of the high 

viral load makes no additional difference. 

Our profiling was done on PBMCs, which are composed of several different cell types.  

Typically, PBMCs are composed of 15% NK cells, 10% B cells, 15% monocytes/macrophages 
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(CD14+), and 60% T cells[86].  Approximately 70% of the T cells are CD4+ [86].  Given that 

HIV infects both CD4+ T cells and macrophages, we chose to study miRNA profiles in these 

subsets of cells to determine the origins of the differentially regulated miRNAs found in PBMCs.  

Our results of the comparison between low viral load and uninfected control donors show that 

only two of the differentially regulated miRNAs in PBMCs come from CD4+ T cells, and none 

of them come from CD14+ cells, indicating that the miRNAs originate from non-target cell 

types.  This is supported by our clustergram analyses.  CD4 and CD14 clusterings showed an 

indistinctive cluster pattern, where as the PBMC miRNA clustergram showed a distinctive 

control cluster and a separate low viral load cluster. 

Further analyses into the miRNAs that were differentially regulated in CD4+ cells 

indicates that miR-30d* and miR-656 may be particularly important.  This is because these 

miRNAs were found to be significantly differentially regulated by both of our software 

programs, and they exhibited similar expression patterns in in vitro infected and uninfected 

samples.  Similarly, of the miRNAs significantly differentially regulated in CD14 cells, miR-

301b, miR-550, and miR-616 may be the key players since their expression was similar in our in 

vitro samples.  It is possible that in the PBMC population, these miRNAs become less 

differentially regulated due to the effect of other cell types and that is why they are not 

significant there. 

Although we were unable to perform CD4 and CD14 profiling in high viral load donors, 

we were able to compare the results of the high viral load PBMC profiling to those of in vitro 

infected samples.  Of the 191 miRNAs that were differentially regulated in PBMCs, all but 16 

originated from cells other than the HIV target cells.  This suggests that the presence of high 

viral load causes the dysregulation of several miRNAs in the CD4 and CD14 cells and that the 
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expression of these miRNAs cannot be brought back to normal levels by the non-target cells, 

leading to those miRNAs still being dysregulated in the PBMC population. 

 Our study of miRNA and mRNA profiles in individuals infected with low and high levels 

of viral load has significant public health relevance.  The finding of several miRNAs that are 

specific to a particular viral load and infection could lead to the use of these miRNAs as 

biomarkers for the determination of prognosis of the disease.  In addition, these miRNAs could 

aid in the determination of the infected individuals’ ability to respond to antiviral treatment.  Our 

identification of additional cellular molecules, namely Neurogranin, that are dysregulated by 

HIV-1 infection may also lead to new potential targets for antiviral development.  
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APPENDIX A 

SIGNIFICANTLY DIFFERENTIALLY REGULATED MIRNA 

A.1 CONTROL VS. LVL 

CT vs. LVL 
  RealTime Statminer DataAssist 

  p-value 
Fold 
Change p-value 

Fold 
Change 

hsa-miR-1183 2.80E-02 4.57 0.0255 5.42 
hsa-miR-1260 3.99E-02 5.66 0.0359 6.55 
hsa-miR-1262 4.13E-04 -1117.81 0.0016 -909.09 
hsa-miR-1275 2.84E-02 6.26 0.0255 7.55 
hsa-miR-1291 1.46E-02 5.13 0.0366 5.05 
hsa-miR-148b* 1.30E-02 3.53 0.0135 3.89 
hsa-miR-18b* 2.58E-02 -27.60 0.035 -95.24 
hsa-miR-191* 1.63E-02 4.49 0.0255 5.85 
hsa-miR-21* 2.27E-03 6.66 0.002 7.59 
hsa-miR-454* 1.82E-03 3.18 0.0016 3.57 
hsa-miR-483-5p 4.10E-03 5.97 0.0048 6.56 
hsa-miR-542-5p 2.47E-02 4.64 0.0255 6.13 
hsa-miR-550 4.10E-03 4.06 0.0016 4.65 
hsa-miR-584 6.72E-03 13.78 0.0016 22.48 
hsa-miR-650 3.15E-02 5.90 0.0359 6.91 
hsa-miR-744* 1.46E-03 5.01 <9E-05 8.24 
hsa-miR-93* 2.84E-02 3.10 0.0255 3.44 
hsa-miR-938 2.60E-04 20.48 0.0048 14.21 
hsa-miR-941 4.59E-02 3.97 0.0447 4.46 
rno-miR-29c* 4.00E-02 3.97 0.0255 5.41 
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Continued Control vs. LVL 
rno-miR-7* 3.02E-02 5.60 0.0434 5.67 

 

A.2 CONTROL VS. HVL 

CT vs. HVL 
  Realtime StatMiner DataAssist 

  p-value 
Fold 
Change p-value 

Fold 
Change 

dme-miR-7 1.26E-07 13.87 <9E-05 14.28 
has-miR-1305 5.30E-11 4078.26 <9E-05 4098.64 
has-miR-155 1.03E-04 16.78 1.00E-04 16.86 
has-let-7d 2.03E-02 4.09 0.0131 4.41 
has-let-7g 1.19E-02 8.76 0.01 8.81 
has-miR-106b* 3.86E-02 2.75 0.0309 2.76 
has-miR-10a 1.58E-03 4.58 8.00E-04 4.88 
has-miR-10b* 4.80E-02 2.53 0.0151 3.07 
has-miR-1180 1.59E-02 3.43 0.0036 5.31 
has-miR-1183 2.17E-06 12.67 <9E-05 12.73 
has-miR-1201 1.12E-03 5.40 4.00E-04 6.55 
has-miR-1225-3P 4.67E-13 26.45 <9E-05 26.59 
has-miR-1227 1.49E-02 3.84 0.0118 3.86 
has-miR-124 1.58E-10 63.94 <9E-055 83.40 
has-miR-1247 5.57E-04 49.54 6.00E-04 49.79 
has-miR-1253 1.45E-07 17.03 <9E-05 18.30 
has-miR-1254 1.21E-04 4.64 1.00E-04 5.91 
has-miR-1255B 8.44E-04 4.92 6.00E-04 4.95 
has-miR-125b-1* 2.22E-02 4.46 4.00E-04 10.09 
has-miR-1260 9.72E-03 5.88 0.0078 5.91 
has-miR-1262 2.66E-02 -60.30 0.0288 -59.88 
has-miR-1267 2.62E-02 -20.06 0.0316 -19.96 
has-miR-127-3p 2.89E-02 3.18 0.0153 3.73 
has-miR-1270- 3.39E-03 5.80 0.0012 6.88 
has-miR-1271 1.18E-04 3.04 <9E-05 3.75 
has-miR-1274A 6.05E-05 4.47 <9E-05 4.49 
has-miR-1275 7.47E-05 17.07 1.00E-04 17.16 
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Continued Control vs. HVL 
hsa-miR-1276 1.96E-06 10.48 <9E-05 13.10 
hsa-miR-1282 6.59E-04 4.78 7.00E-04 4.82 
hsa-miR-1285 5.15E-03 10.10 0.0036 12.68 
hsa-miR-1290 4.19E-05 5.12 <9E-05 5.15 
hsa-miR-1291 4.33E-04 4.35 4.00E-04 4.29 
hsa-miR-1298 1.78E-03 18.84 0.0025 18.93 
hsa-miR-1300 1.50E-03 4.71 5.00E-04 5.85 
hsa-miR-1303 4.67E-13 137.21 <9E-05 252.19 
hsa-miR-130b* 1.05E-04 -7.37 0.0016 -5.49 
hsa-miR-130b 1.48E-02 2.55 0.0039 3.25 
hsa-miR-132 3.14E-07 12.92 <9E-05 15.52 
hsa-miR-135b 5.43E-03 4.19 0.001 6.59 
hsa-miR-138-2* 7.47E-05 14.76 <9E-05 21.88 
hsa-miR-140-5p 1.19E-02 3.04 0.0085 3.06 
hsa-miR-142-3p 6.03E-03 10.84 0.005 10.90 
hsa-miR-144 5.08E-06 -25.71 1.00E-04 -23.31 
hsa-miR-146a* 4.63E-02 -6.13 0.021 -9.88 
hsa-miR-146a 9.83E-03 10.81 0.0084 11.62 
hsa-miR-146b-3p 2.31E-05 6.03 <9E-05 6.23 
hsa-miR-148a* 2.41E-02 -89.82 0.0316 -106.38 
hsa-miR-148b* 7.62E-03 3.11 0.0047 3.23 
hsa-miR-151-5P 1.50E-03 6.11 7.00E-04 7.07 
hsa-miR-152 1.90E-03 5.26 0.0011 5.83 
hsa-miR-155* 1.78E-05 7.63 <9E-05 11.64 
hsa-miR-15a 2.23E-02 4.92 0.0151 5.37 
hsa-miR-16 1.20E-02 16.03 0.0106 16.11 
hsa-miR-181a 2.26E-03 7.42 0.0015 8.49 
hsa-miR-181c 1.30E-02 2.90 0.0039 3.54 
hsa-miR-1826 1.08E-02 -39.77 0.0494 -5.58 
hsa-miR-185 1.01E-02 4.10 0.0056 4.81 
hsa-miR-186 1.24E-02 3.86 0.0096 3.88 
hsa-miR-18a* 2.02E-02 2.41 0.0037 3.35 
hsa-miR-18b* 2.14E-02 -15.81 0.023 -140.85 
hsa-miR-191* 3.49E-03 5.96 0.0025 7.77 
hsa-miR-193a-5p 2.17E-06 13.71 <9E-05 16.28 
hsa-miR-193b 1.50E-03 6.81 0.0011 6.84 
hsa-miR-194 2.31E-03 4.87 0.0016 4.89 
hsa-miR-195 2.46E-02 3.99 0.0183 4.40 
hsa-miR-19a 2.37E-02 7.68 0.0209 7.71 
hsa-miR-19b-1* 1.00E-02 2.76 0.0073 3.10 
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Continued Control vs. HVL 
hsa-miR-19b 1.28E-02 13.55 0.0113 13.62 
hsa-miR-200b 4.10E-03 4.74 0.0021 5.12 
hsa-miR-200c 3.66E-02 3.79 0.0248 4.10 
hsa-miR-202 9.92E-04 5.24 7.00E-04 5.26 
hsa-miR-206 1.16E-03 3.75 6.00E-04 3.77 
hsa-miR-20a 1.08E-02 10.19 0.0095 10.24 
hsa-miR-20b 1.97E-02 3.32 0.0152 3.34 
hsa-miR-21* 4.03E-05 7.89 <9E-05 8.24 
hsa-miR-21 3.51E-06 6.15 <9E-05 6.18 
hsa-miR-210 1.21E-04 10.54 1.00E-04 11.15 
hsa-miR-211 1.67E-02 3.03 0.0106 4.51 
hsa-miR-212 7.74E-08 7.20 <1E-05 9.46 
hsa-miR-219-5p 3.22E-02 5.07 6.00E-04 13.44 
hsa-miR-22* 4.08E-02 1.77 0.0051 2.17 
hsa-miR-22 4.47E-05 15.41 <9E-05 18.00 
hsa-miR-222 1.70E-06 4.89 <9E-05 4.91 
hsa-miR-223 5.58E-03 -2.05 0.0028 -2.04 
hsa-miR-24-2* 1.70E-02 2.79 0.0137 2.94 
hsa-miR-25 1.17E-03 2.89 1.00E-04 3.59 
hsa-miR-27a* 1.13E-03 2.03 1.00E-04 2.04 
hsa-miR-27a 4.32E-02 2.43 0.0213 2.98 
hsa-miR-28-3p 7.98E-04 1.96 1.00E-04 1.97 
hsa-miR-28-5p 8.00E-03 3.89 0.0036 4.81 
hsa-miR-29a* 2.66E-02 2.86 0.0099 3.64 
hsa-miR-29a 3.98E-02 2.91 0.032 2.92 
hsa-miR-29b-1* 1.19E-04 7.59 1.00E-04 8.17 
hsa-miR-29b-2* 6.75E-03 6.47 0.0014 9.77 
hsa-miR-29b 2.07E-02 3.56 0.01 4.24 
hsa-miR-302a* 5.15E-03 5.62 1.00E-04 10.27 
hsa-miR-30a-5p 4.08E-02 3.79 0.0247 4.58 
hsa-miR-30b 1.83E-02 7.28 0.0155 7.32 
hsa-miR-31* 1.97E-02 -2.72 0.0272 -2.76 
hsa-miR-320B 4.38E-03 6.78 0.0034 6.82 
hsa-miR-324-3p- 5.61E-04 5.66 4.00E-04 6.85 
hsa-miR-324-5p 2.28E-03 5.17 0.0012 5.56 
hsa-miR-330-3p 4.43E-03 3.60 0.0016 4.19 
hsa-miR-331-3p 3.19E-02 4.60 0.0227 5.24 
hsa-miR-335* 3.04E-03 4.62 0.002 4.64 
hsa-miR-337-5p 2.37E-02 3.10 0.0108 3.74 
hsa-miR-338-5P 2.41E-04 136.49 3.00E-04 137.17 
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Continued Control vs. HVL 
hsa-miR-339-5p 3.72E-03 3.32 0.0016 4.22 
hsa-miR-33a* 1.81E-02 2.47 0.0052 3.12 
hsa-miR-342-3p 4.08E-02 6.91 0.0319 7.61 
hsa-miR-342-5p 9.42E-05 9.71 1.00E-04 11.30 
hsa-miR-346 1.70E-06 22.98 <9E-05 39.30 
hsa-miR-34a* 4.02E-02 3.04 0.0435 3.07 
hsa-miR-34a 1.53E-05 20.68 <9E-05 20.78 
hsa-miR-34b 4.29E-04 3.24 3.00E-04 3.26 
hsa-miR-361-3p 1.30E-02 3.75 0.0097 4.53 
hsa-miR-361-5p 2.62E-02 2.81 0.0062 3.61 
hsa-miR-362-5p 4.09E-02 2.87 0.0256 3.08 
hsa-miR-363 4.91E-03 3.35 0.0028 3.69 
hsa-miR-378 1.21E-04 6.37 1.00E-04 6.40 
hsa-miR-380-5p 1.90E-03 7.67 0.0016 8.23 
hsa-miR-381 9.03E-05 7.34 <9E-05 9.05 
hsa-miR-382 5.82E-04 7.74 4.00E-04 8.25 
hsa-miR-424 1.45E-03 4.82 3.00E-04 5.73 
hsa-miR-425 7.25E-03 6.52 0.0057 6.56 
hsa-miR-433 1.70E-06 14.28 <1E-05 16.55 
hsa-miR-451 1.19E-02 -4.36 0.0118 -4.34 
hsa-miR-483-5p 2.05E-07 17.09 <1E-05 18.24 
hsa-miR-486-3p 4.08E-02 3.36 0.0352 3.38 
hsa-miR-487a 4.02E-02 2.51 0.0357 2.52 
hsa-miR-490-3p 5.64E-06 18.24 <9E-05 21.19 
hsa-miR-491-5p 2.77E-03 3.05 0.0014 3.14 
hsa-miR-500 1.76E-04 3.93 1.00E-04 4.12 
hsa-miR-501-5p 3.32E-03 5.66 0.0018 6.13 
hsa-miR-502-5p 1.85E-03 3.47 5.00E-04 4.74 
hsa-miR-505 3.36E-02 3.31 0.024 3.64 
hsa-miR-509-5p 5.87E-03 5.46 0.0022 7.30 
hsa-miR-511 1.38E-04 8.24 <9E-05 14.85 
hsa-miR-512-3p 2.98E-02 3.94 8.00E-04 11.35 
hsa-miR-516-3p 3.38E-02 2.95 0.0438 2.86 
hsa-miR-516b 1.75E-06 10.10 <9E-05 9.22 
hsa-miR-518b 1.54E-11 32.73 <9E-05 37.28 
hsa-miR-518d-3p 4.91E-03 4.87 0.0039 5.32 
hsa-miR-518e 8.69E-03 4.28 0.0083 4.31 
hsa-miR-541 8.65E-03 6.52 0.0117 5.49 
hsa-miR-551b* 2.25E-02 2.37 0.0053 3.25 
hsa-miR-564 1.70E-06 11.67 <9E-05 11.73 
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Continued Control vs. HVL 
hsa-miR-571 1.45E-07 23.50 <9E-05 23.62 
hsa-miR-572 2.28E-03 5.38 5.00E-04 8.54 
hsa-miR-575 6.71E-03 6.34 0.0119 6.11 
hsa-miR-579 1.81E-02 2.87 0.0093 3.83 
hsa-miR-584 5.32E-05 34.84 1.00E-04 35.01 
hsa-miR-589 9.02E-03 3.41 0.0039 3.81 
hsa-miR-596 3.95E-05 4.74 <9E-05 4.76 
hsa-miR-598 1.19E-02 4.06 0.0094 4.08 
hsa-miR-605 1.27E-08 29.06 <9E-05 32.75 
hsa-miR-615-3p 2.79E-02 4.81 <9E-05 51.71 
hsa-miR-622 1.82E-02 6.32 4.00E-04 18.54 
hsa-miR-623 3.78E-08 35.24 <9E-05 35.41 
hsa-miR-636 3.25E-02 3.05 0.0271 3.06 
hsa-miR-638 1.84E-05 14.71 <9E-05 21.19 
hsa-miR-639 1.53E-03 5.45 0.0011 5.48 
hsa-miR-642 7.47E-05 3.65 <9E-05 4.90 
hsa-miR-643 1.95E-03 6.81 0.0015 6.85 
hsa-miR-644 1.61E-02 4.02 0.0083 6.16 
hsa-miR-650 1.47E-05 18.04 <9E-05 20.29 
hsa-miR-652 5.30E-04 6.07 4.00E-04 6.10 
hsa-miR-654-3p 3.17E-02 3.46 0.0047 5.29 
hsa-miR-655 1.58E-02 6.57 0.0271 6.69 
hsa-miR-659 1.97E-04 25.33 2.00E-04 27.59 
hsa-miR-660 7.78E-03 6.45 0.0062 6.48 
hsa-miR-661 2.09E-05 12.97 <9E-05 17.85 
hsa-miR-668 4.32E-03 -4.47 0.048 -3.34 
hsa-miR-671-3p 4.08E-02 2.61 0.0152 3.43 
hsa-miR-672 4.47E-07 21.24 <9E-05 22.23 
hsa-miR-744* 1.58E-03 4.24 5.00E-04 5.20 
hsa-miR-766 2.14E-02 2.02 0.0114 2.03 
hsa-miR-769-5p 1.08E-02 3.04 0.0038 3.82 
hsa-miR-770-5p 1.27E-03 7.69 1.00E-04 19.19 
hsa-miR-886-3p 7.68E-03 4.26 0.0118 5.17 
hsa-miR-9* 4.49E-02 1.99 0.0118 2.48 
hsa-miR-9 9.42E-05 10.66 <9E-05 12.40 
hsa-miR-92a 4.29E-03 6.82 0.0034 6.85 
hsa-miR-93* 5.51E-03 3.27 0.0036 3.29 
hsa-miR-93 1.00E-02 4.21 0.0077 4.23 
hsa-miR-935 1.79E-08 -22.43 <9E-05 -75.76 
hsa-miR-938 2.19E-04 10.36 0.0204 5.46 
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Continued Control vs. HVL 
hsa-miR-939 2.57E-05 37.01 <9E-05 37.20 
hsa-miR-99b* 3.46E-04 5.69 3.00E-04 5.72 
rno-miR-29c* 1.52E-02 3.09 0.0062 3.62 
rno-miR-7* 9.81E-03 5.92 0.008 5.95 

A.3 LVL VS. HVL 

 

LVL vs. HVL 
  Realtime StatMiner DataAssist 

  p-value 
Fold 
Change p-value 

Fold 
Change 

dme-miR-7 3.62E-03 4.10 0.006 4.95 
has-miR-1305 7.97E-12 6460.41 <9E-05 6811.67 
has-miR-155 8.08E-07 3.24 <9E-05 3.25 
hsa-miR-103 1.85E-02 2.53 0.02 2.54 
hsa-miR-106b 2.01E-02 2.43 0.0209 2.44 
hsa-miR-107 1.95E-02 3.36 0.0204 3.51 
hsa-miR-10a 1.59E-04 5.46 2.00E-04 5.47 
hsa-miR-120 8.73E-03 2.96 0.0099 2.97 
hsa-miR-1225-3P 3.09E-09 18.30 <9E-05 18.36 
hsa-miR-1227 2.01E-05 4.86 <9E-05 4.87 
hsa-miR-1233 1.22E-02 3.21 0.0137 3.22 
hsa-miR-124 5.07E-03 10.59 0.0085 10.62 
hsa-miR-1247 3.31E-04 37.27 5.00E-04 40.96 
hsa-miR-1253 8.31E-03 4.80 0.0113 4.81 
hsa-miR-1254 1.39E-02 3.19 0.016 3.20 
hsa-miR-1262 3.40E-02 18.54 0.0446 18.60 
hsa-miR-1267 1.25E-02 -69.08 0.0172 -68.97 
hsa-miR-127-3p 1.93E-02 3.69 0.0191 3.99 
hsa-miR-1270 3.25E-04 8.97 3.00E-04 9.77 
hsa-miR-1271 1.65E-02 2.14 0.0117 2.26 
hsa-miR-1274B 9.93E-03 2.52 0.0105 2.52 
hsa-miR-1275 1.82E-02 2.73 0.0192 2.74 
hsa-miR-1276 2.70E-02 3.23 0.0318 3.24 
hsa-miR-1282 3.53E-05 11.33 <9E-05 17.03 
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Continued LVL vs. HVL 
hsa-miR-1303 1.18E-04 18.47 0.0014 28.20 
hsa-miR-130a 1.52E-02 3.46 0.0185 3.47 
hsa-miR-130b* 6.47E-04 -9.05 9.00E-04 -9.02 
hsa-miR-130b 1.52E-02 2.32 0.0117 2.44 
hsa-miR-132 8.80E-09 7.86 <9E-05 8.66 
hsa-miR-134 1.09E-03 -7.85 0.0074 -6.43 
hsa-miR-135b 4.00E-03 3.27 0.0035 3.58 
hsa-miR-140-5p 3.38E-02 2.24 0.035 2.25 
hsa-miR-142-3p 2.20E-03 4.10 0.0026 4.11 
hsa-miR-144* 1.22E-02 -3.96 0.0157 -3.94 
hsa-miR-144 2.41E-04 -21.77 3.00E-04 -25.97 
hsa-miR-146a 2.28E-02 1.84 0.018 1.85 
hsa-miR-146b-3p 9.63E-04 5.38 8.00E-04 6.56 
hsa-miR-148b 1.64E-02 2.34 0.0146 2.43 
hsa-miR-151-5P 4.22E-02 1.93 0.0394 1.93 
hsa-miR-152 5.44E-04 4.23 7.00E-04 4.25 
hsa-miR-15a* 4.78E-03 -3.23 0.0024 -3.70 
hsa-miR-181a 1.53E-03 3.16 0.0017 3.17 
hsa-miR-181c 4.27E-02 2.29 0.0463 2.30 
hsa-miR-1825 1.22E-02 18.09 0.0161 18.15 
hsa-miR-1826 3.40E-02 -2.76 0.0188 -2.75 
hsa-miR-191 5.81E-05 -2.35 <9E-05 -2.35 
hsa-miR-193a-5p 2.56E-04 9.87 6.00E-04 10.89 
hsa-miR-193b 1.22E-02 1.91 0.0088 1.91 
hsa-miR-194 3.96E-02 2.51 0.0441 2.51 
hsa-miR-196b 4.78E-03 -2.32 0.0036 -2.31 
hsa-miR-202* 3.40E-02 -2.57 0.0182 -2.56 
hsa-miR-202 2.89E-02 3.97 0.0363 3.98 
hsa-miR-21 2.99E-05 5.82 <9E-05 5.84 
hsa-miR-210 2.76E-03 3.60 0.0028 3.61 
hsa-miR-211 4.27E-02 2.92 0.0028 7.27 
hsa-miR-212 1.19E-05 5.36 <9E-05 5.82 
hsa-miR-219-5p 4.58E-03 11.46 0.0054 9.45 
hsa-miR-22 2.12E-04 10.53 5.00E-04 10.41 
hsa-miR-221 1.56E-02 3.94 0.0199 3.96 
hsa-miR-222 1.29E-04 2.86 1.00E-04 2.87 
hsa-miR-223 2.66E-02 -2.15 0.0279 -2.15 
hsa-miR-224 3.71E-02 3.27 0.0403 3.54 
hsa-miR-24-2* 1.95E-02 2.79 0.0411 2.71 
hsa-miR-24 4.48E-02 1.73 0.0377 1.73 
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Continued LVL vs. HVL 
hsa-miR-25 7.81E-03 3.17 0.0085 3.18 
hsa-miR-27a* 4.43E-03 2.09 0.0024 2.09 
hsa-miR-27a 1.19E-02 2.90 0.0131 2.91 
hsa-miR-28-3p 9.74E-03 1.96 0.0066 1.97 
hsa-miR-28-5p 8.08E-03 2.94 0.0095 2.95 
hsa-miR-298 2.81E-02 9.82 0.016 8.35 
hsa-miR-29b-1* 1.38E-03 5.83 1.00E-04 10.01 
hsa-miR-29b-2* 8.73E-03 8.44 9.00E-04 16.92 
hsa-miR-29b 1.82E-02 3.67 0.0221 3.68 
hsa-miR-302a* 3.69E-02 3.47 0.0265 4.25 
hsa-miR-302c* 1.32E-04 46.73 1.00E-04 70.20 
hsa-miR-30b 1.74E-02 2.55 0.0191 2.56 
hsa-miR-30c 1.82E-02 2.38 0.0195 2.38 
hsa-miR-31* 3.55E-03 -3.60 0.0064 -3.66 
hsa-miR-320B 3.27E-02 3.66 0.0403 3.67 
hsa-miR-324-3p 1.34E-03 3.80 0.0017 3.81 
hsa-miR-324-5p 3.27E-03 4.81 0.0039 5.12 
hsa-miR-328 1.10E-02 3.46 0.0133 3.47 
hsa-miR-330-3p 7.46E-04 3.50 8.00E-04 3.52 
hsa-miR-331-3p 1.16E-02 2.28 0.0117 2.29 
hsa-miR-339-3p 1.42E-02 1.78 0.0085 1.79 
hsa-miR-339-5p 4.57E-06 5.43 <9E-05 5.45 
hsa-miR-33a* 3.27E-02 2.79 0.0249 3.11 
hsa-miR-33a 1.22E-02 -4.88 0.016 -4.86 
hsa-miR-342-5p 5.61E-06 8.08 <9E-05 8.11 
hsa-miR-346 8.74E-06 19.77 <9E-05 37.83 
hsa-miR-34a 5.76E-04 10.68 8.00E-04 12.59 
hsa-miR-34b 1.82E-02 3.00 0.0182 3.24 
hsa-miR-361-3p 6.85E-03 5.24 0.0121 4.88 
hsa-miR-363 4.34E-02 2.25 0.0376 2.40 
hsa-miR-381 1.02E-03 5.95 0.0013 5.97 
hsa-miR-382 2.83E-04 10.04 4.00E-04 10.08 
hsa-miR-422a 2.99E-02 -1.86 0.0267 -1.85 
hsa-miR-425 4.44E-02 1.87 0.0411 1.88 
hsa-miR-433 4.58E-05 12.25 <9E-05 15.91 
hsa-miR-454* 1.82E-02 -2.01 0.0307 -1.86 
hsa-miR-483-3p 2.59E-03 8.69 0.0013 26.74 
hsa-miR-483-5p 1.25E-02 2.86 0.0136 2.87 
hsa-miR-490-3p 2.04E-04 10.47 1.00E-04 12.39 
hsa-miR-491-5p 1.10E-02 3.40 0.0135 3.41 
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Continued LVL vs. HVL 
hsa-miR-500 9.74E-03 2.39 0.0065 2.58 
hsa-miR-501-5p 2.32E-02 3.24 0.0283 3.25 
hsa-miR-502-5p 1.82E-02 2.53 0.0102 3.44 
hsa-miR-503 7.88E-03 -5.29 0.018 -10.30 
hsa-miR-505 3.25E-04 9.95 1.00E-04 15.80 
hsa-miR-509-5p 1.16E-02 6.19 0.0058 8.64 
hsa-miR-511 1.21E-03 7.18 <9E-05 17.56 
hsa-miR-512-3p 8.29E-03 5.95 <9E-05 18.66 
hsa-miR-516-3p 1.17E-06 9.90 <9E-05 9.93 
hsa-miR-518b 2.01E-05 14.99 <9E-05 15.04 
hsa-miR-518d-3p 3.67E-03 5.47 0.0035 7.71 
hsa-miR-518e 1.45E-03 6.34 0.0018 6.36 
hsa-miR-519b-3p 1.18E-03 198.48 0.0021 199.13 
hsa-miR-520D-3P 3.73E-02 -51.72 0.0471 -51.55 
hsa-miR-523 1.25E-02 -8.74 0.0207 -8.58 
hsa-miR-532-3p 3.88E-02 2.04 0.0393 2.04 
hsa-miR-541* 2.67E-03 13.56 8.00E-04 12.52 
hsa-miR-545* 1.16E-02 -3.40 0.02 -3.08 
hsa-miR-550 7.80E-03 -2.73 0.0084 -2.72 
hsa-miR-564 3.06E-03 4.73 0.004 4.75 
hsa-miR-571 5.01E-05 26.35 1.00E-04 26.43 
hsa-miR-572 4.17E-02 4.21 0.0449 4.81 
hsa-miR-579 7.93E-03 4.45 0.005 6.86 
hsa-miR-589 4.49E-02 2.25 0.0468 2.26 
hsa-miR-590-3P 1.12E-06 -6.15 <9E-05 -6.13 
hsa-miR-596 3.78E-03 3.48 0.0043 3.49 
hsa-miR-598 3.46E-02 2.42 0.0392 2.43 
hsa-miR-605 5.54E-08 24.96 <9E-05 28.35 
hsa-miR-623 2.15E-05 18.51 <9E-05 19.76 
hsa-miR-624 2.81E-02 -3.15 0.0036 -3.16 
hsa-miR-628-5p 1.85E-02 -4.08 0.0229 -4.06 
hsa-miR-636 1.45E-04 4.89 1.00E-04 4.91 
hsa-miR-638 3.53E-05 18.77 1.00E-04 18.83 
hsa-miR-639 1.45E-02 5.35 0.0188 5.37 
hsa-miR-642 3.53E-05 3.96 <9E-05 4.41 
hsa-miR-643 5.61E-06 21.78 <9E-05 24.22 
hsa-miR-648 1.64E-02 5.85 0.0112 8.46 
hsa-miR-649 2.85E-03 -9.87 0.0419 -6.74 
hsa-miR-650 1.85E-02 3.06 0.0205 3.07 
hsa-miR-652 5.76E-04 4.91 8.00E-04 4.93 
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Continued LVL vs. HVL 
hsa-miR-659 5.61E-06 29.90 <9E-05 31.51 
hsa-miR-660 2.33E-02 2.83 0.0267 2.84 
hsa-miR-661 1.95E-02 3.95 0.0242 3.97 
hsa-miR-672 8.02E-07 17.80 <9E-05 19.98 
hsa-miR-720 3.45E-04 -3.00 4.00E-04 -2.99 
hsa-miR-769-5p 2.42E-02 2.73 0.0282 2.74 
hsa-miR-770-5p 2.58E-02 4.60 0.0169 6.91 
hsa-miR-9 1.74E-04 7.41 1.00E-04 9.26 
hsa-miR-922 5.98E-05 -5.13 0.0205 -7.91 
hsa-miR-92a 2.89E-02 2.30 0.0315 2.31 
hsa-miR-93 3.46E-02 2.62 0.0402 2.62 
hsa-miR-935 1.35E-05 -13.14 <9E-05 -64.10 
hsa-miR-939 1.29E-03 5.37 0.0017 5.39 
hsa-miR-95 1.10E-02 2.71 0.0117 2.72 
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APPENDIX B 

SIGNIFCANTLY DIFFERENTIALLY REGULATED MRNA 

B.1 CONTROL VS. LVL 

Gene Symbol Fold change  p-value Gene Symbol Fold change  p-value 
LAG3 1.03 3.16E-02 PDE5A -0.77 4.71E-02 
CD8A 0.95 2.10E-02 KRT73 -0.72 2.10E-02 
CD8B 0.84 1.59E-02 COLQ -0.65 2.81E-02 

CCL4L2 0.83 4.42E-02 RNF165 -0.62 1.59E-02 
APOBEC3G 0.81 1.82E-02 HGD -0.57 3.16E-02 
APOBEC3H 0.76 1.59E-02 LTB4R -0.50 3.46E-02 
PPP2R5C 0.63 4.42E-02 COLQ -0.49 4.26E-02 

SCD 0.61 4.27E-02 MLST8 -0.36 3.71E-02 
APOL6 0.58 4.26E-02 FASTK -0.31 7.51E-03 

KIAA1671 0.56 4.42E-02 DDX28 -0.26 4.71E-02 
HDGFRP3 0.52 2.95E-02 

   RAB27A 0.50 4.42E-02 
   CDCA7 0.49 1.98E-02 
   SERPINB9 0.49 4.42E-02 
   UEVLD 0.48 3.46E-02 
   B3GNT2 0.48 3.86E-02 
   MAPK14 0.48 2.10E-02 
   RAB28 0.47 4.26E-02 
   TNFRSF9 0.45 1.59E-02 
   GALK2 0.44 4.16E-02 
   RPL29 0.44 4.42E-02 
   PCGF6 0.43 2.10E-02 
   UBE2G1 0.43 4.27E-02 
   

refetd
Typewritten Text

refetd
Typewritten Text
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Continued Control vs. LVL    
REEP3 0.35 3.46E-02 

   HDLBP 0.34 3.68E-02 
   GCLM 0.34 4.16E-02 
   TMEM110 0.33 4.16E-02 
   RCAN1 0.32 1.59E-02 
   PPP2R3C 0.31 3.72E-02 
   IL12A 0.30 4.16E-02 
   NIPA2 0.29 4.42E-02 
   DDX28 -0.26 4.71E-02 
   FASTK -0.31 7.51E-03 
   MLST8 -0.36 3.71E-02 
   COLQ -0.49 4.26E-02 
   LTB4R -0.50 3.46E-02 
   HGD -0.57 3.16E-02 
   RNF165 -0.62 1.59E-02 
   COLQ -0.65 2.81E-02 
   KRT73 -0.72 2.10E-02 
   PDE5A -0.77 4.71E-02 
   

B.2 CONTROL VS. HVL 

Gene 
Symbol 

Fold 
change p-value 

Gene 
Symbol 

Fold 
change p-value 

INDO 5.18 1.44E-23 DEFA1 -5.60 2.22E-16 
IFI27 5.17 4.61E-21 DEFA3 -5.28 5.88E-14 
CCL8 5.11 4.31E-15 CPVL -4.91 1.15E-21 

MT1G 4.93 2.01E-16 FCN1 -4.84 4.11E-24 
SERPINB2 4.76 3.04E-19 FCER1A -4.70 6.28E-30 

CXCL5 4.58 6.33E-15 CSF3R -4.47 3.09E-31 
C15orf48 4.55 1.34E-17 SEPT5 -4.40 3.55E-27 

CCL2 4.53 6.48E-11 FOSB -4.20 2.55E-22 
CXCL5 4.53 1.11E-15 MS4A6A -4.15 2.55E-22 

SERPINB2 4.42 2.21E-19 CFD -4.08 1.19E-18 
MT1H 4.39 4.27E-14 DEFA1B -4.06 1.20E-13 

ADAMDEC1 4.07 6.88E-21 NRGN -4.03 1.70E-29 
IL-6 4.01 2.24E-14 TUBB1 -4.00 1.16E-27 

CTSL1 3.98 1.42E-16 LST1 -4.00 2.82E-19 
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Continued Control vs. HVL 
IL1A 3.95 2.73E-17 DEFA1B -3.97 6.83E-13 
OLR1 3.80 2.00E-12 F13A1 -3.90 1.64E-27 
CTSL1 3.74 8.40E-17 NFE2 -3.88 6.53E-26 

PLA2G7 3.62 9.92E-18 S100P -3.86 5.31E-18 
CTSL1 3.62 2.52E-14 CD1D -3.86 1.11E-27 
CCL7 3.61 3.01E-07 CAMP -3.82 4.19E-19 
IFI44L 3.51 1.08E-17 ASGR1 -3.81 3.89E-19 
CCL22 3.46 3.42E-26 FOS -3.77 5.28E-16 
RGL1 3.38 3.02E-18 CLC -3.76 6.17E-13 
CCL3 3.36 4.11E-16 MS4A6A -3.69 7.80E-16 

C15orf48 3.36 5.81E-18 ZNF467 -3.60 1.59E-21 
MT1M 3.36 1.22E-10 FLJ22662 -3.56 4.68E-22 
RSAD2 3.34 4.21E-20 SDPR -3.54 9.46E-25 
PMP22 3.27 1.01E-11 FCGR3B -3.51 2.16E-14 
CXCL10 3.22 3.71E-12 C10orf54 -3.49 1.25E-19 

SLC7A11 3.21 5.39E-22 GP9 -3.43 2.74E-26 
CCL3L1 3.16 7.48E-15 PADI4 -3.41 8.34E-27 

IL1B 3.11 2.84E-11 CMTM2 -3.39 8.79E-15 
CCL3L1 3.06 5.14E-12 FOLR3 -3.36 2.70E-19 
LAMP3 3.04 1.85E-27 SIGLEC10 -3.33 8.65E-22 

ADAMDEC1 3.01 5.11E-18 FPR1 -3.32 1.49E-17 
CCL20 2.97 2.90E-10 PRAM1 -3.29 6.78E-27 
CXCL2 2.97 2.99E-12 ASGR2 -3.29 6.48E-25 
MMP9 2.96 1.01E-06 KLF4 -3.21 6.53E-26 

HSPA1B 2.91 9.26E-22 MS4A6A -3.19 6.53E-16 
TNFAIP6 2.89 2.03E-12 GPBAR1 -3.19 7.85E-25 
CCL3L3 2.86 8.83E-14 LST1 -3.16 4.83E-19 
EPSTI1 2.81 1.21E-18 SULF2 -3.15 6.82E-24 

GPNMB 2.79 1.01E-08 CD36 -3.08 4.08E-11 
DFNA5 2.76 1.26E-19 LYZ -3.07 2.33E-14 

KIAA1199 2.74 1.44E-10 SLC40A1 -3.00 5.16E-26 
IFNG 2.73 6.28E-08 CD302 -2.95 6.26E-22 
MT1E 2.73 1.97E-11 ALDH2 -2.92 3.27E-18 
IL24 2.72 7.88E-10 S100A12 -2.90 2.24E-16 

GPR68 2.69 9.42E-23 UBE2L3 -2.89 1.19E-21 
GBP1 2.68 1.76E-16 ASGR2 -2.88 4.23E-24 
KYNU 2.67 6.25E-18 GNG11 -2.84 1.45E-18 
FPR3 2.67 7.83E-08 ACRBP -2.83 3.68E-21 
EBI3 2.66 4.44E-14 CLEC7A -2.82 1.17E-13 

PMP22 2.65 1.70E-16 DYSF -2.80 6.59E-20 
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Continued Control vs. HVL 
EMP1 2.62 1.09E-10 RNASE2 -2.80 7.62E-19 
KYNU 2.62 1.59E-14 LGALS2 -2.79 4.65E-17 
TXN 2.59 3.57E-15 CSF3R -2.79 3.15E-21 

RN7SK 2.59 7.79E-24 CD36 -2.78 6.56E-10 
ANKRD22 2.58 5.37E-13 CD4 -2.77 3.00E-25 

CCL4L2 2.55 6.24E-16 KBTBD11 -2.76 6.47E-21 
EOMES 2.53 5.23E-16 IMPA2 -2.72 7.50E-20 
GBP1 2.50 3.71E-15 EGR1 -2.71 4.35E-21 
TNIP3 2.49 9.72E-16 MTMR11 -2.71 3.69E-21 

CYP1B1 2.47 7.42E-12 LILRA2 -2.71 1.49E-12 
SLC16A10 2.45 7.84E-11 VCAN -2.70 2.73E-09 

IL4I1 2.45 5.52E-15 MMP25 -2.69 7.56E-20 
SLC39A8 2.40 4.54E-16 HDC -2.68 1.78E-17 

MT1A 2.39 7.66E-12 AIF1 -2.67 7.62E-12 
IL19 2.36 2.73E-10 CLEC7A -2.65 3.39E-12 

MT2A 2.34 1.45E-14 CD33 -2.64 2.56E-16 
TXN 2.33 3.85E-21 CST3 -2.62 6.91E-14 

TBC1D2B 2.33 1.27E-22 AIF1 -2.61 3.24E-11 
OAS2 2.31 8.35E-18 IL8RB -2.61 3.71E-12 
CLK1 2.31 7.05E-23 ALDH1A1 -2.60 3.43E-17 

FASLG 2.31 4.57E-22 P2RY13 -2.60 1.05E-19 
LAG3 2.29 1.76E-12 TSPAN32 -2.58 1.34E-15 

THBS1 2.29 2.20E-06 PI3 -2.57 3.90E-09 
GK 2.28 2.43E-15 LOC338758 -2.56 2.59E-20 

OASL 2.27 1.06E-13 PTCRA -2.56 1.49E-20 
CCL13 2.27 3.68E-07 CLEC12A -2.55 5.52E-11 

TMEM51 2.26 5.11E-12 KLF11 -2.55 1.42E-16 
IL19 2.26 3.33E-09 GARNL4 -2.55 2.63E-20 
IFI44 2.26 2.08E-19 CEBPD -2.54 4.76E-22 

PTGR1 2.26 1.01E-16 PTGS1 -2.53 1.15E-18 
FLJ14213 2.24 2.06E-17 LY86 -2.53 8.47E-21 

LOC730249 2.22 5.67E-08 LILRA5 -2.53 2.24E-17 
GK 2.22 5.28E-16 RGS18 -2.52 8.94E-11 

CCL3L1 2.22 1.98E-07 CDA -2.52 3.59E-24 
PLSCR1 2.21 7.11E-16 LOC653600 -2.51 7.43E-09 

MTE 2.21 2.23E-11 TSPAN18 -2.51 1.53E-25 
CCL24 2.19 3.88E-09 CLEC1B -2.49 1.93E-14 
STAT1 2.15 1.41E-14 VENTX -2.48 8.99E-24 

HSPA1A 2.13 2.31E-17 MAL -2.48 4.71E-15 
ACTA2 2.12 7.45E-16 GAS7 -2.46 3.11E-13 
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Continued Control vs. HVL 
SLC39A8 2.11 1.98E-07 TCEA3 -2.45 1.32E-19 
RNASE1 2.09 4.50E-05 LILRA5 -2.45 1.40E-18 

IFIH1 2.08 4.01E-21 TESC -2.44 6.61E-21 
ISG15 2.07 1.55E-12 RRP12 -2.42 3.01E-17 
IFIT1 2.07 2.03E-08 TREM1 -2.42 1.18E-11 

APOBEC3G 2.06 8.25E-18 CRIP2 -2.39 3.92E-21 
TIGIT 2.06 4.59E-17 G0S2 -2.38 1.29E-10 

APOBEC3G 2.03 3.02E-18 CD300LF -2.37 1.81E-13 
CD8A 2.03 2.45E-14 MME -2.37 4.34E-10 
NPC1 2.03 1.98E-19 PELI2 -2.36 1.52E-19 
GBP4 2.03 5.22E-18 ZNF185 -2.35 5.24E-27 

SC4MOL 2.03 1.43E-28 MPL -2.35 2.64E-16 
VCAM1 2.01 1.82E-15 RBP7 -2.34 6.78E-27 
MT1X 2.01 1.91E-09 CRISPLD2 -2.34 1.62E-17 
IL-8 2.00 1.08E-06 ALAS2 -2.34 5.67E-08 

BCL11A -2.01 1.98E-19 TSPAN9 -2.33 3.78E-16 
UBXN11 -2.01 3.04E-17 MGST2 -2.33 1.13E-14 

PYGL -2.01 3.49E-12 PLEKHG3 -2.33 1.34E-15 
EMR3 -2.03 1.09E-12 MGC13057 -2.33 2.31E-18 
FCER2 -2.03 4.66E-14 MGC33556 -2.32 2.80E-20 
VIPR1 -2.03 1.31E-21 H3F3B -2.32 4.57E-22 
CD93 -2.03 1.48E-06 MNDA -2.31 5.05E-10 

RASGRP2 -2.04 3.43E-14 CTTN -2.31 8.21E-19 
CACNA2D3 -2.04 8.30E-17 NCR3 -2.30 8.18E-22 

NLRP12 -2.04 5.26E-19 DEFA4 -2.29 1.77E-08 
GPBAR1 -2.04 1.02E-17 CDH23 -2.29 9.14E-24 
PROK2 -2.05 5.29E-08 ZNF101 -2.27 2.13E-18 

SERPINA1 -2.05 4.39E-07 LOC255809 -2.27 3.00E-25 
OAF -2.06 2.53E-16 C22orf32 -2.26 3.75E-23 
SELL -2.06 4.63E-11 TMEM154 -2.24 8.83E-16 
CTSS -2.07 4.07E-11 NACC2 -2.24 6.30E-19 

CREB5 -2.08 8.29E-23 ABL1 -2.24 5.88E-26 
BST1 -2.08 2.28E-15 PGLYRP1 -2.24 5.85E-12 

PECAM1 -2.09 1.27E-16 GRASP -2.24 2.19E-16 
KRT72 -2.10 4.23E-10 SERPINA1 -2.23 1.15E-10 

HK3 -2.10 1.78E-14 TCN1 -2.23 2.07E-10 
S100A4 -2.10 1.08E-16 CLEC12A -2.22 2.23E-12 

ALDH1A1 -2.11 9.11E-19 LCN2 -2.22 3.17E-17 
IRS2 -2.12 1.55E-22 PTGDS -2.22 2.72E-19 

C1orf162 -2.13 3.21E-16 WWP2 -2.22 8.84E-16 
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Continued Control vs. HVL 
MS4A3 -2.13 1.21E-14 ETNK1 -2.21 1.79E-17 

TOP1MT -2.13 5.12E-19 FGL2 -2.21 5.66E-09 
ESAM -2.14 1.72E-19 VNN2 -2.20 4.24E-06 

ADAM15 -2.17 9.82E-22 ITGAM -2.20 4.81E-15 
SULF2 -2.18 2.54E-26 S100A8 -2.20 6.05E-14 

TMEM91 -2.19 1.03E-18 SH3BGRL2 -2.20 1.58E-22 
SH3BGRL2 -2.20 1.58E-22 TMEM91 -2.19 1.03E-18 

S100A8 -2.20 6.05E-14 SULF2 -2.18 2.54E-26 
ITGAM -2.20 4.81E-15 ADAM15 -2.17 9.82E-22 
VNN2 -2.20 4.24E-06 ESAM -2.14 1.72E-19 
FGL2 -2.21 5.66E-09 TOP1MT -2.13 5.12E-19 

ETNK1 -2.21 1.79E-17 MS4A3 -2.13 1.21E-14 
WWP2 -2.22 8.84E-16 C1orf162 -2.13 3.21E-16 
PTGDS -2.22 2.72E-19 IRS2 -2.12 1.55E-22 
LCN2 -2.22 3.17E-17 ALDH1A1 -2.11 9.11E-19 

CLEC12A -2.22 2.23E-12 S100A4 -2.10 1.08E-16 
TCN1 -2.23 2.07E-10 HK3 -2.10 1.78E-14 

SERPINA1 -2.23 1.15E-10 KRT72 -2.10 4.23E-10 
GRASP -2.24 2.19E-16 PECAM1 -2.09 1.27E-16 

PGLYRP1 -2.24 5.85E-12 BST1 -2.08 2.28E-15 
ABL1 -2.24 5.88E-26 CREB5 -2.08 8.29E-23 

NACC2 -2.24 6.30E-19 CTSS -2.07 4.07E-11 
TMEM154 -2.24 8.83E-16 SELL -2.06 4.63E-11 
C22orf32 -2.26 3.75E-23 OAF -2.06 2.53E-16 

LOC255809 -2.27 3.00E-25 SERPINA1 -2.05 4.39E-07 
ZNF101 -2.27 2.13E-18 PROK2 -2.05 5.29E-08 
CDH23 -2.29 9.14E-24 GPBAR1 -2.04 1.02E-17 
DEFA4 -2.29 1.77E-08 NLRP12 -2.04 5.26E-19 
NCR3 -2.30 8.18E-22 CACNA2D3 -2.04 8.30E-17 
CTTN -2.31 8.21E-19 RASGRP2 -2.04 3.43E-14 

MNDA -2.31 5.05E-10 CD93 -2.03 1.48E-06 
H3F3B -2.32 4.57E-22 VIPR1 -2.03 1.31E-21 

MGC33556 -2.32 2.80E-20 FCER2 -2.03 4.66E-14 
MGC13057 -2.33 2.31E-18 EMR3 -2.03 1.09E-12 
PLEKHG3 -2.33 1.34E-15 PYGL -2.01 3.49E-12 
MGST2 -2.33 1.13E-14 UBXN11 -2.01 3.04E-17 
TSPAN9 -2.33 3.78E-16 BCL11A -2.01 1.98E-19 
ALAS2 -2.34 5.67E-08 

   CRISPLD2 -2.34 1.62E-17 
   RBP7 -2.34 6.78E-27 
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Continued Control vs. HVL    
MPL -2.35 2.64E-16 

   ZNF185 -2.35 5.24E-27 
   PELI2 -2.36 1.52E-19 
   MME -2.37 4.34E-10 
   CD300LF -2.37 1.81E-13 
   G0S2 -2.38 1.29E-10 
   CRIP2 -2.39 3.92E-21 
   TREM1 -2.42 1.18E-11 
   RRP12 -2.42 3.01E-17 
   TESC -2.44 6.61E-21 
   LILRA5 -2.45 1.40E-18 
   TCEA3 -2.45 1.32E-19 
   GAS7 -2.46 3.11E-13 
   MAL -2.48 4.71E-15 
   VENTX -2.48 8.99E-24 
   CLEC1B -2.49 1.93E-14 
   TSPAN18 -2.51 1.53E-25 
   LOC653600 -2.51 7.43E-09 
   CDA -2.52 3.59E-24 
   RGS18 -2.52 8.94E-11 
   LILRA5 -2.53 2.24E-17 
   LY86 -2.53 8.47E-21 
   PTGS1 -2.53 1.15E-18 
   CEBPD -2.54 4.76E-22 
   GARNL4 -2.55 2.63E-20 
   KLF11 -2.55 1.42E-16 
   CLEC12A -2.55 5.52E-11 
   PTCRA -2.56 1.49E-20 
   LOC338758 -2.56 2.59E-20 
   PI3 -2.57 3.90E-09 
   TSPAN32 -2.58 1.34E-15 
   P2RY13 -2.60 1.05E-19 
   ALDH1A1 -2.60 3.43E-17 
   IL8RB -2.61 3.71E-12 
   AIF1 -2.61 3.24E-11 
   CST3 -2.62 6.91E-14 
   CD33 -2.64 2.56E-16 
   CLEC7A -2.65 3.39E-12 
   AIF1 -2.67 7.62E-12 
   HDC -2.68 1.78E-17 
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Continued Control vs. HVL    
MMP25 -2.69 7.56E-20 

   VCAN -2.70 2.73E-09 
   LILRA2 -2.71 1.49E-12 
   MTMR11 -2.71 3.69E-21 
   EGR1 -2.71 4.35E-21 
   IMPA2 -2.72 7.50E-20 
   KBTBD11 -2.76 6.47E-21 
   CD4 -2.77 3.00E-25 
   CD36 -2.78 6.56E-10 
   CSF3R -2.79 3.15E-21 
   LGALS2 -2.79 4.65E-17 
   RNASE2 -2.80 7.62E-19 
   DYSF -2.80 6.59E-20 
   CLEC7A -2.82 1.17E-13 
   ACRBP -2.83 3.68E-21 
   GNG11 -2.84 1.45E-18 
   ASGR2 -2.88 4.23E-24 
   UBE2L3 -2.89 1.19E-21 
   S100A12 -2.90 2.24E-16 
   ALDH2 -2.92 3.27E-18 
   CD302 -2.95 6.26E-22 
   SLC40A1 -3.00 5.16E-26 
   LYZ -3.07 2.33E-14 
   CD36 -3.08 4.08E-11 
   SULF2 -3.15 6.82E-24 
   LST1 -3.16 4.83E-19 
   GPBAR1 -3.19 7.85E-25 
   MS4A6A -3.19 6.53E-16 
   KLF4 -3.21 6.53E-26 
   ASGR2 -3.29 6.48E-25 
   PRAM1 -3.29 6.78E-27 
   FPR1 -3.32 1.49E-17 
   SIGLEC10 -3.33 8.65E-22 
   FOLR3 -3.36 2.70E-19 
   CMTM2 -3.39 8.79E-15 
   PADI4 -3.41 8.34E-27 
   GP9 -3.43 2.74E-26 
   C10orf54 -3.49 1.25E-19 
   FCGR3B -3.51 2.16E-14 
   SDPR -3.54 9.46E-25 
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Continued Control vs. HVL    
FLJ22662 -3.56 4.68E-22 

   ZNF467 -3.60 1.59E-21 
   MS4A6A -3.69 7.80E-16 
   CLC -3.76 6.17E-13 
   FOS -3.77 5.28E-16 
   ASGR1 -3.81 3.89E-19 
   CAMP -3.82 4.19E-19 
   CD1D -3.86 1.11E-27 
   S100P -3.86 5.31E-18 
   NFE2 -3.88 6.53E-26 
   F13A1 -3.90 1.64E-27 
   DEFA1B -3.97 6.83E-13 
   LST1 -4.00 2.82E-19 
   TUBB1 -4.00 1.16E-27 
   NRGN -4.03 1.70E-29 
   DEFA1B -4.06 1.20E-13 
   CFD -4.08 1.19E-18 
   MS4A6A -4.15 2.55E-22 
   FOSB -4.20 2.55E-22 
   SEPT5 -4.40 3.55E-27 
   CSF3R -4.47 3.09E-31 
   FCER1A -4.70 6.28E-30 
   FCN1 -4.84 4.11E-24 
   CPVL -4.91 1.15E-21 
   DEFA3 -5.28 5.88E-14 
   DEFA1 -5.60 2.22E-16 
   

B.3 LVL VS. HVL 

Gene Symbol Fold change  p-value Gene Symbol Fold change  p-value 
IFI27 4.12 9.49E-11 DEFA1 -5.13 1.28E-07 
CXCL5 4.07 2.43E-08 DEFA3 -5.12 9.67E-08 
CXCL5 4.04 1.72E-08 CPVL -4.61 1.08E-15 
SERPINB2 3.96 8.28E-10 FCN1 -4.43 4.74E-14 
CCL2 3.95 1.42E-05 DEFA1B -4.07 2.99E-07 
CCL8 3.89 5.18E-05 DEFA1B -3.96 3.24E-07 
MT1G 3.87 1.78E-06 FCER1A -3.71 1.56E-11 
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Continued LVL vs. HVL 
C15orf48 3.87 4.50E-08 MS4A6A -3.71 1.38E-12 
INDO 3.85 8.14E-07 LST1 -3.61 7.06E-14 
SERPINB2 3.66 7.66E-10 CSF3R -3.56 1.35E-13 
IL1A 3.39 4.17E-09 FOSB -3.56 1.39E-10 
MT1H 3.29 2.15E-05 CFD -3.55 3.42E-11 
IL-6 3.28 1.71E-07 MS4A6A -3.51 2.16E-11 
CTSL1 3.20 9.18E-08 CD1D -3.47 1.09E-13 
ADAMDEC1 3.16 3.26E-08 ASGR1 -3.46 1.57E-13 
CTSL1 3.01 1.45E-07 S100P -3.41 5.84E-11 
OLR1 3.00 6.66E-06 SEPT5 -3.37 4.37E-10 
PLA2G7 2.84 5.02E-08 CAMP -3.34 1.77E-08 
CCL7 2.80 2.50E-03 FOS -3.34 4.56E-10 
RSAD2 2.78 1.71E-09 NFE2 -3.25 3.60E-12 
CTSL1 2.75 4.21E-06 FLJ22662 -3.23 8.43E-13 
SLC7A11 2.75 1.37E-10 ZNF467 -3.23 1.33E-14 
C15orf48 2.75 1.42E-07 F13A1 -3.19 3.48E-13 
CXCL2 2.70 2.24E-08 C10orf54 -3.09 2.33E-13 
CCL20 2.68 2.05E-07 GPBAR1 -3.07 1.42E-14 
CCL22 2.67 6.57E-07 NRGN -3.06 5.42E-12 
IFI44L 2.66 1.94E-08 KLF4 -3.04 1.91E-13 
IL24 2.63 6.22E-08 FPR1 -3.02 8.09E-13 
MT1M 2.61 1.62E-04 LOC653600 -3.00 9.45E-07 
RGL1 2.57 1.47E-06 MS4A6A -2.98 2.86E-09 
RN7SK 2.55 5.75E-19 FOLR3 -2.97 2.80E-10 
PMP22 2.51 7.10E-05 TUBB1 -2.97 1.27E-10 
THBS1 2.50 2.58E-05 SIGLEC10 -2.96 6.92E-13 
CCL3L1 2.49 1.30E-06 LYZ -2.95 1.11E-11 
CCL3L3 2.47 1.54E-07 S100A12 -2.91 1.97E-13 
IL1B 2.47 4.20E-06 CLC -2.91 3.52E-07 
TNFAIP6 2.45 2.49E-07 DEFA4 -2.86 1.11E-07 
CCL3 2.42 1.39E-07 CD36 -2.85 2.44E-07 
CCL3L1 2.42 1.74E-07 FCGR3B -2.84 3.52E-08 
ADAMDEC1 2.39 9.90E-08 ASGR2 -2.83 1.03E-14 
EMP1 2.38 1.02E-06 PADI4 -2.82 1.23E-11 
LAMP3 2.38 6.62E-08 LST1 -2.81 7.33E-13 
HSPA1B 2.33 6.78E-12 RNASE2 -2.77 1.55E-10 
DFNA5 2.25 2.64E-09 PRAM1 -2.68 1.10E-12 
IL19 2.17 1.80E-07 CD36 -2.64 4.17E-07 
CYP1B1 2.14 8.13E-08 UBE2L3 -2.64 5.17E-12 
MMP9 2.12 5.38E-03 CLEC12A -2.64 4.94E-08 
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Continued LVL vs. HVL 
KYNU 2.11 9.32E-10 GP9 -2.63 2.15E-10 
EBI3 2.11 3.19E-06 ALDH2 -2.60 6.65E-13 
IL19 2.11 5.37E-07 SULF2 -2.60 3.80E-13 
PTGR1 2.11 3.10E-12 AIF1 -2.59 1.38E-10 
KYNU 2.07 2.39E-07 LILRA2 -2.59 7.66E-11 
PMP22 2.05 1.57E-06 CMTM2 -2.56 6.97E-07 
TNIP3 2.05 3.84E-08 CD33 -2.54 8.47E-12 
SLC16A10 2.03 7.50E-05 AIF1 -2.53 4.19E-11 
GPNMB 2.03 6.82E-04 CD302 -2.53 2.59E-11 
TXN 2.01 5.31E-09 SDPR -2.51 8.07E-11 
GPR68 2.01 3.97E-08 LGALS2 -2.51 2.33E-10 
MGST2 -2.00 1.11E-08 DYSF -2.49 1.32E-11 
CLEC12A -2.01 1.42E-06 P2RY13 -2.48 2.43E-14 
IL8RB -2.01 1.42E-06 CLEC7A -2.48 9.44E-10 
PGLYRP1 -2.02 1.81E-06 LILRA5 -2.45 3.15E-15 
KLF10 -2.02 1.92E-09 ALDH1A1 -2.45 3.71E-09 
GPBAR1 -2.03 3.79E-11 MTMR11 -2.40 8.52E-11 
MGC33556 -2.04 3.15E-15 MNDA -2.40 1.71E-09 
LOC338758 -2.04 1.08E-08 CST3 -2.39 7.62E-10 
GAS7 -2.04 1.11E-08 KBTBD11 -2.37 2.58E-14 
ALDH1A1 -2.04 1.41E-08 CLEC7A -2.35 3.86E-09 
S100A8 -2.06 2.06E-10 CD4 -2.33 9.37E-14 
PTCRA -2.06 1.56E-11 SLC40A1 -2.33 2.64E-13 
LY86 -2.07 1.05E-09 CRISPLD2 -2.28 6.31E-14 
ACRBP -2.07 3.35E-10 RNASE3 -2.26 1.62E-08 
LOC255809 -2.08 5.42E-12 ASGR2 -2.25 9.40E-13 
GNG11 -2.08 4.75E-08 PLEKHG3 -2.25 1.60E-13 
PI3 -2.10 4.85E-06 VNN2 -2.25 3.10E-06 
TSPAN32 -2.10 5.85E-09 LILRA5 -2.25 3.07E-13 
KLF11 -2.11 1.19E-09 FGL2 -2.24 1.16E-07 
G0S2 -2.12 9.91E-06 CDA -2.23 4.84E-12 
SERPINA1 -2.15 2.59E-11 FCGR1B -2.22 7.04E-07 
SERPINA1 -2.16 5.04E-09 VCAN -2.19 1.66E-05 
IMPA2 -2.17 1.16E-08 GARNL4 -2.19 8.15E-12 
CSF3R -2.17 4.48E-11 CD300LF -2.19 2.39E-10 
EGR1 -2.18 4.51E-09 TESC -2.19 1.58E-11 
TESC -2.19 1.58E-11 EGR1 -2.18 4.51E-09 
CD300LF -2.19 2.39E-10 CSF3R -2.17 4.48E-11 
GARNL4 -2.19 8.15E-12 IMPA2 -2.17 1.16E-08 
VCAN -2.19 1.66E-05 SERPINA1 -2.16 5.04E-09 
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Continued LVL vs. HVL 
FCGR1B -2.22 7.04E-07 SERPINA1 -2.15 2.59E-11 
CDA -2.23 4.84E-12 G0S2 -2.12 9.91E-06 
FGL2 -2.24 1.16E-07 KLF11 -2.11 1.19E-09 
LILRA5 -2.25 3.07E-13 TSPAN32 -2.10 5.85E-09 
VNN2 -2.25 3.10E-06 PI3 -2.10 4.85E-06 
PLEKHG3 -2.25 1.60E-13 GNG11 -2.08 4.75E-08 
ASGR2 -2.25 9.40E-13 LOC255809 -2.08 5.42E-12 
RNASE3 -2.26 1.62E-08 ACRBP -2.07 3.35E-10 
CRISPLD2 -2.28 6.31E-14 LY86 -2.07 1.05E-09 
SLC40A1 -2.33 2.64E-13 PTCRA -2.06 1.56E-11 
CD4 -2.33 9.37E-14 S100A8 -2.06 2.06E-10 
CLEC7A -2.35 3.86E-09 ALDH1A1 -2.04 1.41E-08 
KBTBD11 -2.37 2.58E-14 GAS7 -2.04 1.11E-08 
CST3 -2.39 7.62E-10 LOC338758 -2.04 1.08E-08 
MNDA -2.40 1.71E-09 MGC33556 -2.04 3.15E-15 
MTMR11 -2.40 8.52E-11 GPBAR1 -2.03 3.79E-11 
ALDH1A1 -2.45 3.71E-09 KLF10 -2.02 1.92E-09 
LILRA5 -2.45 3.15E-15 PGLYRP1 -2.02 1.81E-06 
CLEC7A -2.48 9.44E-10 IL8RB -2.01 1.42E-06 
P2RY13 -2.48 2.43E-14 CLEC12A -2.01 1.42E-06 
DYSF -2.49 1.32E-11 MGST2 -2.00 1.11E-08 
LGALS2 -2.51 2.33E-10 

   SDPR -2.51 8.07E-11 
   CD302 -2.53 2.59E-11 
   AIF1 -2.53 4.19E-11 
   CD33 -2.54 8.47E-12 
   CMTM2 -2.56 6.97E-07 
   LILRA2 -2.59 7.66E-11 
   AIF1 -2.59 1.38E-10 
   SULF2 -2.60 3.80E-13 
   ALDH2 -2.60 6.65E-13 
   GP9 -2.63 2.15E-10 
   CLEC12A -2.64 4.94E-08 
   UBE2L3 -2.64 5.17E-12 
   CD36 -2.64 4.17E-07 
   PRAM1 -2.68 1.10E-12 
   RNASE2 -2.77 1.55E-10 
   LST1 -2.81 7.33E-13 
   PADI4 -2.82 1.23E-11 
   ASGR2 -2.83 1.03E-14 
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Continued LVL vs. HVL    
FCGR3B -2.84 3.52E-08 

   CD36 -2.85 2.44E-07 
   DEFA4 -2.86 1.11E-07 
   CLC -2.91 3.52E-07 
   S100A12 -2.91 1.97E-13 
   LYZ -2.95 1.11E-11 
   SIGLEC10 -2.96 6.92E-13 
   TUBB1 -2.97 1.27E-10 
   FOLR3 -2.97 2.80E-10 
   MS4A6A -2.98 2.86E-09 
   LOC653600 -3.00 9.45E-07 
   FPR1 -3.02 8.09E-13 
   KLF4 -3.04 1.91E-13 
   NRGN -3.06 5.42E-12 
   GPBAR1 -3.07 1.42E-14 
   C10orf54 -3.09 2.33E-13 
   F13A1 -3.19 3.48E-13 
   ZNF467 -3.23 1.33E-14 
   FLJ22662 -3.23 8.43E-13 
   NFE2 -3.25 3.60E-12 
   FOS -3.34 4.56E-10 
   CAMP -3.34 1.77E-08 
   SEPT5 -3.37 4.37E-10 
   S100P -3.41 5.84E-11 
   ASGR1 -3.46 1.57E-13 
   CD1D -3.47 1.09E-13 
   MS4A6A -3.51 2.16E-11 
   CFD -3.55 3.42E-11 
   FOSB -3.56 1.39E-10 
   CSF3R -3.56 1.35E-13 
   LST1 -3.61 7.06E-14 
   MS4A6A -3.71 1.38E-12 
   FCER1A -3.71 1.56E-11 
   DEFA1B -3.96 3.24E-07 
   DEFA1B -4.07 2.99E-07 
   FCN1 -4.43 4.74E-14 
   CPVL -4.61 1.08E-15 
   DEFA3 -5.12 9.67E-08 
   DEFA1 -5.13 1.28E-07 
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