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ULTRACOLD QUANTUM GASES

Zixu Zhang, PhD

University of Pittsburgh, 2012

In this thesis, we discuss ultracold quantum gases both in continuum and optical lattices. For

the continuum Fermi gases in BCS-BEC crossover, we present an effective field theory study

on the recently discovered puzzling damping phenomena on the BCS side of the crossover.

We find that in contrast to the previous proposed pair-breaking mechanism of damping, the

damping process is due to the interaction between superfluid phonons and thermally excited

fermionic quasi particles. Results from our effective field theory are compared quantitatively

with experiments, showing a good agreement. For the ultracold fermionic atoms in optical

lattices, we propose two novel quantum phases. Firstly, we show that a novel superconduct-

ing pairing occurs for spin-imbalanced Fermi gases with the spin up and down Fermi levels

lying within the px- and s- orbital bands of a quasi-one-dimensional optical lattice. The

pairs condense at a finite momentum equal to the sum of the two Fermi momenta of spin

up and down fermions, and form a p-orbital condensate. The phase diagram shows that the

p-orbital pair condensate occurs in a wide range of fillings. Secondly, we study instabilities

of single-species fermionic atoms in the p-orbital bands in two-dimensional square optical

lattices. From the nearly-perfect nesting Fermi surfaces, charge density wave and orbital

density wave orderings with stripe or checkerboard patterns are found for attractive and

repulsive interactions, respectively. The superconducting phase, usually expected of attrac-

tively interacting fermions, is strongly suppressed. We also use field theory to analyze the

possible liquid crystal phases in our system. For bosons, we study ultracold bosonic atoms

loaded in a one-dimensional optical lattice of two-fold p-orbital degeneracy at each site, and

find an anti-ferro-orbital, a homogeneous px Mott insulator phase and two kinds of superfluid
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phases distinguished by the orbital ordering.
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1.0 INTRODUCTION

The first realization of Bose-Einstein condensation (BEC) in 1995 [5, 6, 7] opened up a new

era of studying quantum degenerate systems of atoms and molecules at very low tempera-

tures. The essential idea of this new area is to use external electric and magnetic fields to

generate the potential that atoms experience, and also tune the interaction between them.

By cooling down the systems to quantum degenerate temperature, statistical properties,

such as transport and phase transition, can then be studied. This new field is a combination

of traditional condensed matter physics and atomic, molecular, and optical (AMO) physics.

On one hand, compared to conventional condensed matter physics, where people focus on

the electronic properties in materials, here the trapping potential of atoms are highly tunable

by controlling the external electric and magnetic fields. One can also carry on experiments

with bosonic atoms in optical lattices, which cannot be realized with materials. On the other

hand, compared to the conventional AMO physics, where the single or few-body atomic sys-

tems are studied, this new direction emphasizes the many-body effects of the system, and

provides an unconventional platform with ultracold atoms and molecules to study statisti-

cal properties of quantum systems. As the beginning of the thesis, a brief history of the

development of ultracold quantum gases will be introduced as follows.

For bosons, after the realization of BEC in 1995 [5, 6, 7], people soon moved their interests

to ultracold bosons in optical lattices. In 2002, M. Greiner et al. successfully observed the

quantum phase transition between superfluid and Mott insulator phases by uploading bosonic

87Rb atoms onto a three-dimensional (3D) cubic optical lattices [8]. This landmark result

shows the possibility to use optical lattice systems to experimentally simulate the Hubbard

model – a very important and widely used model in condensed matter systems such as

high-Tc superconductive material.
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In addition to studying the Bose-Hubbard model, various research directions regarding

ultracold bosonic systems, such as quantum dynamics [9], have been proposed, appealing to

growing interests both theoretically and experimentally. Recently, unconventional BEC of

bosons on higher orbital bands of optical lattices [10] has been proposed in several theoretical

works [11, 12, 13, 14]. In these two years, more and more experiments have studied the higher-

band effects of ultracold bosonic gases in optical lattices, and unconventional superfluidity

involving bosons on p- or f - orbital bands has been reported [15, 16, 17].

On the fermionic side, the first achievement of degenerate Fermi gases was obtained by

JILA group in 1999 [18], where the Fermi statistics was observed with trapped 40K atoms.

Later on, a strongly interacting Fermi gas with divergent scattering length was first reported

by Duke group [19]. Afterward, by the spectroscopy measurement of pairing gap [20] and

the damping rate measurements [21, 22] , strong evidence indicating superfluidity of unitary

Fermi gases (divergent scattering length) [23] was discovered. In 2005, The direct observation

of vortex lattice provided definitive evidence for superfluidity nature of such systems [24].

Studies on the damping phenomena were continuously carried on in recent years [25, 4].

In addition to the Bardeen-Cooper-Schrieffer (BCS) to BEC (BCS-BEC) crossover and

fermionic superfluidity of bulk Fermi gases, ultracold fermionic atoms in optical lattices com-

prise a very clean and highly tunable quantum simulator to study the strongly correlated

periodic electronic systems, which can shed light in the corresponding electronic materials in

condensed matter physics. Although for ultracold atomic systems, some traditional measur-

ing technologies in condensed matter systems such as nuclear magnetic resonance or neutron

scattering are difficult to apply, new measuring methods, such as time-of-flight imaging, are

much easier to implement rather than in traditional condensed matter systems. In 2005,

Köhl et al. successfully observed Fermi surfaces in a 3D cubic optical lattice [26]. Before

long, the Mott insulator regime was observed for strongly repulsive lattice fermions [27, 28].

Currently, people are still making effects on trying to observe anti-ferromagnetism for repul-

sive fermions in optical lattices [29, 30]. In addition to 3D optical lattices, quantum phases

in lower dimensions such as Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) [31, 32] superconduc-

tivity in quasi-one-dimensional systems can also be studied by optical lattice techniques [33].
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1.1 OVERVIEW

In this thesis, the ultracold quantum gases in both continuum and optical lattice systems

will be discussed. Ultracold quantum gases include atomic and molecular gases, where the

latter has a finite-range dipolar interaction. In this thesis we focus on the atomic gases with

effectively short-range interactions. The thesis is organized as follows. In Chapter 2, we

will discuss the basic atomic physics, i.e., how the atoms behave in external electric and

magnetic fields, and how to tune the interaction between atoms by Feshbach resonance.

This chapter provides the background to understand the experimental methods to control

ultracold atoms. In Chapter 3, the background on bulk Fermi gases is introduced, including

cooling, trapping, and manipulating the bulk Fermi gases, and we will also discuss the sound

velocity and collective modes in such systems. In Chapter 4, I will present my study on the

damping of collective modes observed in recent experiments [34]. Starting from Chapter 5,

we will discuss the ultracold quantum gases in optical lattice systems. Chapter 5 provides

some background of optical lattices. In Chapter 6, I will present my work on novel multi-band

superconductivity in quasi-one-dimensional optical lattices [35]. In Chapter 7, I will present

my study on density wave ordering and liquid crystal phases from p-band single-species

fermions [36]. In Chapter 8, I will discuss my joint work with Xiaopeng Li on p-orbital

bosons in 1D optical lattices [37]. Chapter 9 is the conclusion of the thesis.

A list of my publications during my PhD study is present as follows.

• Chapter 4

Finite temperature damping of collective modes of a BCS-BEC crossover superfluid,

Zixu Zhang, W. Vincent Liu, Physical Review A 83, 023617 (2011), arxiv:1007.3694

• Chapter 6

Modulated pair condensate of p-orbital ultracold fermions, Zixu Zhang, Hsiang-Hsuan Hung,

Chiu Man Ho, Erhai Zhao, W. Vincent Liu, Physical Review A 82, 033610 (2010),

arxiv:0910.2431

• Chapter 7

Stripe, checkerboard, and liquid-crystal ordering from anisotropic p-orbital Fermi sur-

faces in optical lattices, Zixu Zhang, Xiaopeng Li, W. Vincent Liu, Physical Review A
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85, 053606 (2012), arxiv:1105.3387

• Chapter 8

Time reversal symmetry breaking of p-orbital bosons in a one-dimensional optical lattice,

Xiaopeng Li, Zixu Zhang, W. Vincent Liu, Physical Review Letters 108, 175302 (2012),

arxiv:1110.3364
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2.0 ATOMIC STRUCTURE

Due to the rich internal energy-level structure, an atom can interact with external electric

and magnetic fields to induce effective trapping potentials. In this chapter, we will briefly

review the behaviors of a single atom in electric and magnetic fields in Sec. 2.1 and 2.2.

In Sec. 2.3, we will introduce the scattering between two atoms with the existence of an

external magnetic field, i.e., the Feshbach resonance, which is a key ingredient of ultracold

atomic physics.

2.1 ZEEMAN SPLITTING

We first consider the Zeeman splitting of an atom in the external magnetic field. In ultracold

atomic experiments, alkali atoms, such as 6Li, 40K, and 87Rb, are usually used. In the

following, we will use 6Li atoms as an example. 6Li atom has 3 electrons, 3 protons and 3

neutrons, which is a fermion. It has the nuclear spin I = 1, and the outer shell electron is

at 2s orbital with spin S = 1/2 and orbital L = 0 as the ground state configuration.

We define Î, L̂, and Ŝ as the nuclear, orbital and spin angular momentum operators,

and define Ĵ = L̂+ Ŝ and F̂ = Î+ Ĵ as the total angular momentum operators for spin-

orbital coupling and spin-orbital-nucleus coupling. Since the electron is at L = 0 orbital

state, the spin-orbital coupling is trivial and Ĵ = Ŝ. The Hamiltonian describing hyperfine

electron-nucleus coupling reads

Ĥhf = AÎ · Ĵ =
A

2

(
F̂2 − Î2 − Ĵ2

)
, (2.1)

where A is the coupling constant.
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Without external magnetic field, F̂ commutes with Eq. (2.1) and the eigenenergy reads

E =
A

2
[F (F + 1)− I(I + 1)− J(J + 1)] . (2.2)

The energy splitting between F = I + J = 3/2 and F = I − J = 1/2 is given by

∆Ehf = hνhf =
3

2
A. (2.3)

As a result, from the measured value of the hyperfine splitting without external magnetic

field, we can obtain the coupling constant A. The measured νhf is 228MHz [38].

Now we consider the 6Li atom in an external magnetic field in z direction B = Bez,

where ez is the unit vector in z direction. The total Hamiltonian is

ĤB = AÎ · Ĵ+ CĴz +DÎz, (2.4)

where

C = gsµBB, D = −µ
I
B (2.5)

are the coupling constants to the external magnetic field B of the electron and the nucleus.

Here gs ≈ 2 is the g-factor of electron spin, and µB = e~/(2me) is the electron magnetic

moment (the Bohr magneton), with e=proton charge and me=electron mass. In Eq. (2.5), µ

is the nuclear magnetic moment, and we can express it as µ = µ
µN
µN , where µN = e~/(2mp)

with mp the mass of a proton. In general µ/µN is a number of order one.

We can diagonalize Eq. (2.4) in the basis |mJ ,mI⟩ (or |ms,mI⟩ since L = 0), where

ms = −1/2, 1/2 and mI = −1, 0, 1 are the z components of the angular momentum of

the electron and the nucleus. Eq. (2.4) conserves the z component of the total angular

momentum mF = mI + ms, and therefore we can evaluate the energy levels in different

subspace labeled by mF . The result for EmF
is

E3/2 =
1

2
A+

1

2
C +D,

E1/2 =
1

4

[
−A+ 2D ±

√
8A2 + (A+ 2C − 2D)2

]
,

E−1/2 =
1

4

[
−A− 2D ±

√
8A2 + (A− 2C + 2D)2

]
,

E−3/2 =
1

2
A− 1

2
C −D. (2.6)
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Figure 1: Energy levels of hyperfine states of the 6Li atom with I = 1 and L = 0 in external
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As indicated by Eq. (2.5), we have C/D ∼ µB/µ ∼ µB/µN ∼ mp/me ∼ 2 × 103, which

means D in Eq. (2.6) can be ignored. Using νhf = 228MHz for 6Li, the energy levels in the

external magnetic field are shown in Fig. 1.

2.2 STARK EFFECT

2.2.1 DC Stark Effect

When an atom is placed in an external static electric field E0, its energy levels are shifted and

an electric dipole moment is induced. From a semi-classical point of view, without external
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electric field the electrons have the orbit center coincide with the nucleus. When an external

electric field is applied, the orbital center of electrons will be moved away from the position

of the nucleus. Thus an electric dipole moment is induced. We can define the polarizability

α > 0 as

d = αE0, (2.7)

where d is the induced dipole moment of the atom. The induced electric dipole moment is

in the same direction as the external electric field. Therefore, the induced potential energy

of the atom is

∆E = −1

2
α|E0|2. (2.8)

In quantum mechanics, this effect is the well known DC Stark effect. For simplicity, we

consider a two-level system, where the ground state has even parity, and the excited state

has odd parity. The external electric field introduces the coupling Hamiltonian

Ĥ ′ = −d̂ · E0, (2.9)

where d̂ = −e
∑

i r̂i is the dipole moment operator for the electrons with r̂i the position

operator of the ith electron. By parity consideration it can be shown that the energy shift

from the first order perturbation is zero. The general form of second order correction to the

energy level m is given by

∆Em =
∑
n ̸=m

|⟨m|Ĥ ′|n⟩|2

Em − En
. (2.10)

For a simple two-level system with |g⟩ and |e⟩ as ground state and excited state, we can see

from Eq. (2.10) that ∆Eg < 0 and ∆Ee > 0, i.e., the energy levels repel each other.

In experiments, we always prepare the atoms at lower energy states, and the external

electric fields couple them to higher energy states. Therefore, we only consider the shift

of the ground state energy in a two-level system here. Assuming the electric field is in z

direction, the ground state energy shift is

∆E =
|⟨g|d̂zE0|e⟩|2

Eg − Ee
, (2.11)
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where d̂z is the z component of the operator d̂. Comparing Eq. (2.8) and Eq. (2.11), we get

the polarizability

α =
2|⟨g|d̂z|e⟩|2

Ee − Eg
. (2.12)

2.2.2 AC Stark Effect

In experiments, the electric field is provided by laser beams. Therefore, we need to consider

the situation that the AC external electric field is oscillating as E(t) = E0 cosωt. Notice that,

the electric field of a laser beam E(t) = E0 cos(kr − ωt) is spatially dependent. However,

since the size of an atom is much smaller than the laser beam wavelength, a single atom will

experience approximately a spatially uniform electric field within the atomic size. Therefore,

we can also use E(t) = E0 cosωt for the laser beams.

We can understand the situation here from DC Stark effect discussed in the previous

subsection. The perturbation of the Hamiltonian can be written as

Ĥ ′′ = −d̂ · E(t) = − d̂ · E0

2

(
eiωt + e−iωt

)
, (2.13)

and we can view the two-level atom as dressed in the external photon reservoir with photon

frequency ω. The average effect by the photon field is shifting the atomic energy levels by ω,

from emitting or absorbing one photon. For example, as the lower level absorb one photon

with frequency ω, the energy difference between the ground and excited states becomes

~(ωeg − ω), instead of ~ωeg in the previous static case. Here we define ωeg = (Ee − Eg)/~,

where ~ = h/2π with h the Planck constant. Taking all these process into account, in average

the polarizability α can be written down directly from Eq. (2.12) as

α(ω) = |⟨g|d̂z|e⟩|2
(

1

~ωeg + ~ω
+

1

~ωeg − ~ω

)
=

2~ωeg|⟨g|d̂z|e⟩|2

(~ωeg)2 − (~ω)2
. (2.14)

In Eq. (2.14), when ω−ωeg > 0, it is called blue detuning, where the laser frequency ω is on

the blue side of the resonance frequency ωeg. In this case, we have α(ω) < 0 in Eq. (2.14),

which means the energy shift Eq. (2.8) is positive. In other words, the atom experiences

a higher potential where the light intensity is stronger, and tends to be repelled from such
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regimes. Similarly, it is called red detuning when ω − ωeg < 0. In this case, we have

α(ω) > 0 and the energy shift Eq. (2.8) is negative. Therefore, in this red detuning situation

the atom tends to stay in the regimes of stronger light intensity. The attractive or repulsive

force can be evaluated as the gradient of the induced energy shift ∆E(r) in Eq. (2.8), i.e.,

F = −∇ [∆E(r)]. In the ω → 0 (static) limit, Eq. (2.14) reproduces Eq. (2.12) in the DC

stark case.

A more rigorous derivation from time-dependent perturbation theory is given as follows.

A state in this two-level system can be written in the general form as

|ψ(t)⟩ = ag(t)e
−iωgt|g⟩+ ae(t)e

−iωet|g⟩. (2.15)

Applying Schrödinger equation to |ψ(t)⟩ we obtain

i~ȧg = ae⟨g|Ĥ ′′|e⟩e−iωegt,

i~ȧe = ag⟨e|Ĥ ′′|g⟩eiωegt. (2.16)

Suppose the unperturbed system is at the ground state |g⟩, and we want to study the energy

shift of the ground state in the presence of the perturbation Ĥ ′′. To calculate the first order

result, we put in ag = 1 and ae = 0 (zeroth order result) to the right hand side (RHS) of

Eq. (2.16), and obtain

a(1)e =
⟨e|d̂zE0|g⟩

2~

[
ei(ωeg+ω)t − 1

ωeg + ω
+
ei(ωeg−ω)t − 1

ωeg − ω

]
(2.17)

after integrating over time. Plugging Eq. (2.17) (first order result) into the RHS of the first

equation of Eq. (2.16) we obtain the second order result of ag as a
(2)
g . Rewrite a

(2)
g = eiϕg ,

where ϕg is complex. The real part of ϕg tells the energy of the state, and the imaginary

part tells the amplitude of the state. The first equation of Eq. (2.16) reduces to

~ϕ̇g =
E2
0

2~a(2)g
|⟨e|d̂z|g⟩|2e−iωegt cosωt

[
ei(ωeg+ω)t − 1

ωeg + ω
+
ei(ωeg−ω)t − 1

ωeg − ω

]
. (2.18)

In RHS of Eq. (2.18), a
(2)
g can be replaced by a

(0)
g = 1 (zeroth order), since we are only

interested in the second order perturbation result. The next step is to average Eq. (2.18) over
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time, i.e., getting rid of all the time-dependent terms, since these terms are just oscillating

with time evolving and the overall effect vanishes. Afterward, we obtain

~⟨ϕ̇g⟩t =
E2
0

4~
|⟨e|d̂z|g⟩|2

[
1

ωeg + ω
+

1

ωeg − ω

]
, (2.19)

where ⟨...⟩t means the average over time. Eq. (2.19) is real, which means the amplitude of

the state keeps the same with average over time. Using the fact that the real part of the

phase evolving rate is just the energy of the state divided by ~, ∆E = ~⟨ϕ̇g⟩t of the ground

state is identified with Eq. (2.19). Meanwhile, the energy shift in the AC field case can be

defined in a similar manner that ∆E = −α(ω)⟨|E(t)|2⟩t/2. Comparing these two expressions

and using ⟨|E(t)|2⟩t = E2
0/2, α(ω) derived from this approach is the same as in Eq. (2.14).

2.3 SCATTERING AND FESHBACH RESONANCE

In this section, we will study the scattering of two atoms in the presence of an external mag-

netic field [23]. We will introduce the Feshbach resonance in ultracold atomic gases, where

the scattering length of the collision between two atoms can be tuned by external magnetic

field. Feshbach resonance makes it possible to tune the interaction, not only the magnitude,

but also the sign of the interaction, which is crucial in ultracold atom experiments.

In a scattering problem, we know that for the low energies where the scattering momen-

tum k is very small, s-wave scattering dominates. The scattering amplitude can be written

as

f0(k) =
1

k cot δ0(k)− ik
, (2.20)

where δ0(k) is the s-wave phase shift. We can define the scattering length a as

−1

a
≡ lim

k→0
k cot δ0(k). (2.21)

Therefore, the scattering amplitude also has the limit f0(k) → −a when k → 0. It was

shown by Huang and Yang [39] that a zero-range pseudo-potential

Veff (r) = gδ(r)
∂

∂r
r (2.22)
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open channel

closed channel

Interatomic distance

Energy

Figure 2: A schematic plot of the two bare channels in the scattering process. Red (Green)

solid curve: the potential energy between the two scattering atoms in bare open (closed)

channel. Red dashed line: the energy of the free scattering fermions in the open channel.

Green dashed line: the energy of the weakly bound fermions in the closed channel. The en-

ergy difference of the free scattering and the weakly bound cases, i.e., the difference between

the red and green dashed lines, can be tuned by external magnetic field.

can produce the scattering length a. Here g = 2π~2a/mr, with mr the reduced mass. For

two identical atoms, we have mr = ma/2 with ma the mass of the atom.

The scattering length for two particles without internal structure in the scattering channel

is fixed and not tunable. Due to the internal energy-level structure of atoms, Feshbach

resonance makes it possible to control the scattering length by involving two channels. For

6Li atoms, we use the two lowest energy states in Fig. 1. With magnetic field of hundreds of

gauss, these two states have approximately ms = −1/2, and mI = 0, 1. Consider the elastic

scattering process between two 6Li atoms 1 and 2, i.e., the internal states of the outgoing

atoms after scattering are the same as that of the incoming atoms before scattering. A

schematic illustration of energy levels in the scattering process is shown in Fig. 2. During
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the scattering, if the states of the two atoms are unchanged, it is called the open channel

as shown by the red dashed line in Fig. 2. In this open channel, two 2s electrons of the

two atoms have the same spins ms = −1/2, so this channel is also called triplet channel.

However, due to the hyperfine coupling, it is possible that during the scattering, one of the

electron spins is flipped, and the two electrons from the two atoms form a spin singlet, as long

as the total spin m1
s +m2

s +m1
I +m2

I is conserved, with one of the nuclear spins also flipped.

In this case, the two atoms form a weakly bound intermediate molecular state, as shown by

the green dashed line in Fig. 2. This weakly bound state is called closed channel, or singlet

channel. We know that for spin-triplet and spin-singlet states, their magnetic moments are

totally different (the nuclear magnetic moment is negligible), which means we can tune the

energy difference between spin-triplet open channel (free scattering) and spin-singlet closed

channel (weakly bound state) by using the external magnetic field. When the energy of

the weakly bound state is close to the energy of scattering state, the free scattering process

will have resonance with this weakly bound state, and the scattering length diverges. This

resonant divergence is called Feshbach resonance.

The above analysis is incomplete. Near Feshbach resonance, the open channel and closed

channel are coupled to each other, and the eigenstates of the system are from the hybridiza-

tion of the uncoupled (or bare) spin-singlet and spin-triplet states. As a result, the position

of Feshbach resonance is not at the magnetic field where the bare open channel has the same

energy as the bare closed channel. The actual resonance position is shifted.

In the presence of Feshbach resonance, the scattering length of two atoms is given by

a = abg

(
1− ∆B

B −B0

)
. (2.23)

Here, abg is named the background scattering length, and ∆B is the width of the resonance.

When the external magnetic field reaches the resonance magnetic field B0, the scattering

length a diverges. An illustration of the scattering length of 6Li is shown in Fig. 3. We can

see that a changes from positive to negative infinity as an increasing B across B0, or vice

versa.

A more detailed discussion of Feshbach resonance is given in Appendix A. In Sec. 3.2,

we will discuss the BCS-BEC crossover of bulk Fermi gases with Feshbach resonance.
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Figure 3: The scattering length (blue solid lines) of 6Li from Eq. (2.23). Here we use the
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3.0 BULK FERMI GASES

In this chapter, we will discuss ultracold bulk fermionic gases. In section. 3.1, we will briefly

introduce some experimental methods to trap and cool the quantum gases, including the

magneto-optic trap, the far-off resonance trap, and evaporative cooling. In section. 3.2,

we will introduce the ultracold bulk fermonic gases with Feshbach resonance in BCS-BEC

crossover. In section. 3.3, we will discuss measurable quantities such as sound velocity,

frequency and damping rate of collective modes, which can be used to investigate the physical

properties of the system.

3.1 TRAPPING AND COOLING

3.1.1 Magneto-Optic Trap

The magneto-optical trap (MOT) is an experimental apparatus that traps and cools the

atoms simultaneously. With spontaneously applied magnetic and optical fields, MOT is

widely used as the first step to trap and cool the atoms [40].

Consider a two-level atom with resonance frequency ωr. When a laser beam incident on

a rest atom has frequency ωl = ωr, the photon will be absorbed by the atom and the atom

acquires the photon momentum. In a MOT, the atoms have non-vanishing velocities in all

directions. If we use a red-detuned laser beam with frequency ωl < ωr, the atoms moving in

the opposite direction to the propagating laser beam will feel a higher photon frequency ω′
l

which is closer to the resonance frequency ωr. In contrast, the atoms that move in the same

direction with the propagating laser beam will experience an even lower photon frequency
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ω′′
l away from the resonance. Therefore, in the former case where the atoms move opposite

to the laser beam, they are more likely to absorb an photon since ω′
l is closer to ωr than ω

′′
l ,

after which they lose momenta. In other words, the atoms feel an effective Doppler force

against its movement. In experiments, two counter-propagating laser beams are applied and

we make three of such pairs in x, y and z directions.

After absorbing a photon, the excited atom will re-emit a photon spontaneously in a

random direction, where the atom may gain or lose momentum. If originally the atom

is fast, i.e., it has the kinetic energy much larger than the recoil energy, in average this

absorption and randomly emission process will slow the atom down. The recoil energy is

defined as ER = q2/2ma, where q is the photon momentum and ma is the mass of the atom.

In experiments, at first the laser frequency is well below the resonance frequency, where

the Doppler effect of the fast atoms will induce optical transition as discussed above. These

fast atoms will be distinguished by the laser beam, and will gradually lose their momenta by

the absorption-emission process. The slow atoms will be less affected, since the Doppler effect

is weaker for them, and even the Doppler-shifted laser frequency is off-resonance. Therefore,

the whole system is cooling down. As more and more atoms become slower, we need to

increase the laser frequency to cool the system further, since now the atoms are slower than

before, which means the Doppler effect is weaker and a larger laser frequency has to be

applied to reach the resonance.

On the other hand, the optical transition always has a finite frequency width, which

means after cooling the system to some certain temperature, we have to use a laser beam

with frequency near resonance. In this case, the relatively fast and slow atoms cannot

be distinguished by the laser beam due to the finite frequency width of optical transition.

Therefore, all the atoms will have the absorption-emission process, and the random emission

process will set a low temperature limit, which is called the Doppler limit. To further cool

the system, one needs to use other methods, such as the evaporative cooling, which will be

discussed later.

The laser cooling provides the optical part of the MOT, which can only cool the system.

Since it has no spatial dependence, spatial trapping can not be provided if we only have

laser beams. To confine atoms in space, a spatially inhomogeneous magnetic field is also
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Figure 4: Scheme of the MOT. The spatially inhomogeneous magnetic field causes the

Zeeman splitting as shown. We can see that for z < 0, the energy difference between

|F,mF ⟩ = |0, 0⟩ and |1, 1⟩ is closer to the frequency of the laser beam, which means in this

regime a σ+ photon coupling |0, 0⟩ and |1, 1⟩ propagating from left to right is more likely to

be absorbed by the atom. Similarly, for z > 0 a σ− photon propagating from right to left is

more likely to be absorbed.

needed. Consider an atom with angular momentum F = 0, 1. An inhomogeneous magnetic

field is generated such that B = B(z)ez, where B(z) > 0 for z > 0 and B(z) < 0 for z < 0.

Therefore, the mF = 0,±1 states of the F = 1 case have the energy level splitting depending

on the spatial position of the atom, as shown schematically in Fig. 4. With a red-detuned

laser beam of polarization σ+ propagating from left to right, this laser beam couples the

|F,mF ⟩ = |0, 0⟩ atomic state to |1, 1⟩ state. Meanwhile, another red-detuned laser beam

of polarization σ− with the same frequency is propagating from right to left, which couples

|0, 0⟩ to |1,−1⟩. As shown in Fig. 4, to the negative z axis, the laser frequency is closer to the

energy splitting between |0, 0⟩ and |1, 1⟩ than that between |0, 0⟩ and |1,−1⟩, which means

the atom is more likely to absorb the σ+ photon than σ− in the left space. Therefore, the
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atom in the left space is more likely to absorb the photon propagating to the right, which

induces an effective photon pressure towards the origin. Similarly, to the positive z axis,

the atom is more likely to absorb the σ− photon, and the atoms in the right space feel an

effective photon pressure to the left, i.e., also towards the origin. It provides the spatial trap

of the atoms. Therefore, atoms in the MOT can be trapped and cooled simultaneously.

3.1.2 Far-Off Resonance Trap

As discussed in Chapter 2, a two-level atom experiences an effective potential due to the

Stark effect. This electric response is used in the far-off resonance trap (FORT) as the final

stage to store and manipulate the ultracold atoms. The laser beam frequency is red-detuned

far away from the resonance frequency, so the absorption and emission rates are very small,

and the potential is approximately conservative, i.e., the number of atoms at a certain state

does not change significantly from optical transition.

In experiments, atoms with the two lowest hyperfine states are used. In the unpolarized

case, we have a 50 : 50 number ratio for the atoms with two states. For example, with an

external magnetic field, we consider a system of 6Li atoms with the two lowest states in Fig. 1

as 1, 2. FORT couples the atoms at state 1 to a higher p state (not shown in Fig. 1), and

induces a Stark trapping potential. Meanwhile, FORT also induces another Stark trapping

potential for the atoms at state 2, by couple them to another higher p state. Therefore, the

trapping potential reads Uσ = −1
2
ασ⟨|E(t)|2⟩t. Here σ = 1, 2 indicates that the polarizability

ασ depends on whether the 6Li atom is at state 1 or 2. However, in FORT the laser beam

is detuned far away from the resonance frequency, and the polarizability is essentially the

same for the two components, i.e., ασ is independent of σ. Such a state-independent trap

allows us to treat the system as a two-component system with the same trapping potential

for each component.

3.1.3 Evaporative Cooling

In addition to the laser cooling, evaporative cooling is also very widely used in ultracold

atomic experiments [40]. Consider a system in a potential trap at thermal equilibrium. By
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collisions, some of the particles can gain more energy and escape from the trap, where the

remaining particles lose the same amount of energy. The distribution is no long at thermal

equilibrium, with more particles occupying the lower energy states. After thermalization, the

temperature of the system will decrease. This idea of evaporative cooling can be imagined as

similar to the cooling of a cup of hot water. The most energetic water molecules can escape

from the surface of water and take away a larger share of energy, and the remaining water

will thermalize and becomes colder.

Collisions play a crucial role in evaporative cooling. The atoms are trapped in a finite

height potential. By collisions, some atoms can acquire more energy to escape from the

trap, and the thermalization for the remaining atoms can happen only via collisions. This

is the reason that fermions are more difficult to cool than bosons in experiments. Due

to the Pauli-exclusion principle, collisions between fermions are much less frequent than

for bosons, since if the final state after collision is occupied, the collision is forbidden. In

other words, the available states in phase space for collision is very limited for fermions.

Moreover, the s-wave scattering between identical fermions is absent. To overcome this limit

of collisions for fermions, one solution is to introduce another species of atoms, e.g., one can

put bosonic 7Li and fermonic 6Li together, where the former acts like a thermal bath. Since

the collisions between 7Li and 6Li are not forbidden and the former can be cooled to a very

low temperature, 6Li can also be cooled at the same time.

3.2 BCS-BEC CROSSOVER

Feshbach resonance discussed in Chapter 2 is a key ingredient in bulk ultracold quantum

gases, which makes the controlling of the sign and magnitude of interaction experimentally

feasible. In this section, we will discuss a 3D Fermi atomic gas with two components, and

using external magnetic field to induce Feshbach resonance. With tunable scattering length

from negative to positive, BCS-BEC crossover occurs in such systems.

A schematic illustration of the BCS-BEC crossover is shown in Fig. 5. The energies of the

bare open and closed channels are the same at magnetic field Bbare. However, as discussed
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Figure 5: A schematic illustration of the BCS-BEC crossover. Blue dashed lines: the bare

open (horizontal) and closed (tilted) channels. Red solid lines: the energy states with cou-

pling between the open and closed channels. Bbare: the magnetic field at which the energy is

the same for the bare open and closed channels. B0: the resonance magnetic field at which

the scattering length diverges, and a bound state emerges. The black arrow indicates the

electron spins of the two interacting atoms. For example, for the two lowest states of 6Li in

Fig. 1, on the BCS side, the electron spins of the two atoms are the same (spin triplet). On

the BEC side, the electron spins inside a tightly bound molecule are opposite (spin singlet).

in Sec. 2.3, due to the coupling between the two bare channels, the actual resonance with

divergent scattering length |a| → ∞ is at a shifted magnetic field B0, where a bound state

also emerges. Recall that the scattering length a can be described by Eq. (2.23) as

a = abg

(
1− ∆B

B −B0

)
. (3.1)

We start from the BCS side of the crossover to the right of resonance B0 as shown in

Fig. 5, where the scattering length is negative and its amplitude is small. The induced attrac-

tive interaction between the two Fermi components can induce superconductivity (fermionic
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superfluidity) through the usual BCS mechanism. The two components such as the two

lowest states of 6Li atoms have the same electron spin in this case. As we adiabatically

decrease the magnetic field, i.e., move to the left in Fig. 5, the Cooper pairs on the BCS

side evolve along the lower branch of the red curves, and smoothly become molecules on

the BEC side across the Feshbach resonance. On the BCS side, the Cooper pairs are large

in space and can be viewed as “fat” molecules. As one moves to the BEC side, the size of

the Cooper pairs becomes smaller and smaller, and eventually the two fermionic atoms are

tightly bound as a composite molecule, which is a boson with small size. In the composite

molecule, two fermionic atoms have opposite electron spins.

When the system reaches the BEC side and assume that we stay in the lower energy

branch as discussed before, the scattering length of the original fermions is positive and small.

It was shown that the molecular scattering length am is connected to the atomic scattering

length a on this BEC side as am ≈ 0.60a [23]. Therefore, the composite bosonic molecules are

weakly repulsive. As is well known, the bosonic particles with weakly repulsive interaction is

a BEC state, and therefore this positive scattering length side is called the BEC side of the

crossover. A 3D weakly interacting Bose gas is known to be a superfluid. Thus we expect

bosonic superfluidity on this BEC side. Notice that, although BEC and superfluidity usually

appear simultaneously, they are not the same concept. Superfluidity is a transport property,

which has non-dissipative and irrotational features, and can be described by a macroscopic

wave function. BEC is a massive occupation of the lowest energy state, which is defined

in a system at equilibrium. For example, in 2D no BEC occurs for Bose gases, however

superfluid can still exist. Also, an ideal 3D Bose gas is a BEC state at low temperature, but

no superfluidity is present.

To get the BEC of tightly bound molecules, one has to start from the BCS side and

adiabatically sweep magnetic field to the BEC side, in order to stay in the lower branch in

Fig. 5. Therefore we call it a BCS-BEC rather than BEC-BCS crossover. If we start from

the positive scattering length side, i.e., the left side of Fig. 5, the system will stay in the

upper branch if we increase magnetic field, and becomes a strongly repulsive Fermi gas near

resonance.

If we sweep magnetic field fast instead of adiabatically, the initial momentum distribution
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of BCS Cooper pairs can be obtained [41, 42, 43, 44]. This method is useful if we want to

study the superconductivity carrying finite center-of-mass momentum, as we will discuss in

Chapter 6.

Since there is no phase transitions observed in experiments, the regime between the BCS

and BEC sides is a crossover regime rather than phase transitions. In other words, the

fermionic superfluidity on the BCS side is smoothly connected to the bosonic superfluidity

on the BEC side. Therefore, the behavior of physical quantities such as phase transition tem-

perature and superfluid density in the BCS-BEC crossover becomes an interesting physical

problem.

We first discuss the homogeneous case, i.e., there is no trapping potential. An interesting

regime is the resonance limit |a| → ∞, which is also called the unitary limit. This name

comes from the scattering theory that when |a| → ∞, the cross section is limited by ∼ 1/k2

due to the unitarity of the scattering matrix. In contrast, in the low energy limit, the cross

section is limited by ∼ a2 [45]. In the unitary limit, all the other length scales are not

important, and the only two relevant length scales come from the density (inter-particle

distance) and temperature (thermal wavelength). At T = 0, only the density matters, and

we can define an energy scale EF from the density as

EF =
~2

2ma

(3π2n)
2
3 . (3.2)

The atomic mass is denoted by ma and the gas density is n. This is the Fermi energy of a

non-interacting two-species Fermi gas without polarization. The Fermi momentum kF and

Fermi temperature TF can be defined correspondingly. In the unitary limit, regardless of the

component of the Fermi gases, e.g., either 40K or 6Li, we have the universal relationship of

the chemical potential µ = (1+β)EF and the phase transition temperature Tc = αTF , where

α and β are universal constants regardless of the gas component. The energy per particle

and the pressure of the system are also related to EF by β as E/N = (1 + β)3EF/5 and

P = (1 + β)2nEF/5. Therefore, the determination of α and β is related to many physical

quantities of the unitary gases. In quantum Monte Carlo study [46, 47], it is shown that

β = −0.58± 0.1 and α = 0.157± 0.007 [23].
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Figure 6: Mean field solution of Eq. (3.3) at T = 0. Here ∆ is the gap order parameter and

µ is the chemical potential.

A basic but widely used theoretical approach of BCS-BEC crossover in this homogeneous

case is the mean field theory from single-channel model [48, 49, 50]. The detailed procedure

of this approach to get the mean field equations will be discussed in Chapter 4, and we will

only present the result here as follows (with Boltzmann constant kB = 1)

ma

4πa
=

∑
k

[
1

2ϵk
− 1

2Ek
tanh

(
Ek
2T

)]
,

n =
∑
k

[
1− ξk

Ek
tanh

(
Ek
2T

)]
. (3.3)

In Eq. (3.3), ∆ is the gap order parameter, and Ek =
√
ξ2k +∆2 is the energy spectrum of

the Fermi Bogoliubov quasiparticle, where ξk = ϵk − µ with ϵk = k2/2ma.

In Fig. 6, we shows ∆/EF and µ/EF at T = 0 by solving Eq. (3.3). This mean field

result in Fig. 6 only gives a qualitative picture of the BCS-BEC crossover since fluctuation

around the mean field solution is not considered. Quantum Monte Carlo simulations, or a

field-theory approach incorporating the fluctuation [51], can give more precise results. It has

been shown that the fluctuation can greatly suppress the ordering, i.e., giving a smaller ∆

at T = 0 compared with Fig. 6 and a lower phase transition temperature Tc.
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Now we consider the situation that a harmonic trap is present, where the trapping

potential can be described by the quadratic form

V =
1

2
maω

2
xx

2 +
1

2
maω

2
yy

2 +
1

2
maω

2
zz

2. (3.4)

In real experiments the traps are not in perfect quadratic form, but we will ignore this effect

here. In general trapped quantum gases can be studied by local density approximation, where

the trapping potential is taken into account as an effective local chemical potential. Local

density approximation is applicable if the energy scale of the trapped gas is much larger

than the trapping frequency, i.e., µ ≫ ~ωx,y,z [23]. For non-interacting Fermi gases with

two components in the trapping potential Eq. (3.4), we can find the following relationship

between the chemical potential µ and the total number of particles N to define the effective

Fermi energy EF

EF ≡ µ = (3N)
1
3~ω0, (3.5)

where we have ω0 = (ωxωyωz)
1/3. The Fermi energy EF Eq. (3.5) in harmonic trap can be

defined in another way. Supposing the density at the center of the trap is nc, the Fermi

energy EF in Eq. (3.5) turns out to be

EF =
~2

2ma

(3π2nc)
2
3 . (3.6)

It means that the Fermi energy EF in a harmonic trap coincides with the Fermi energy of

a spatial-uniform non-interacting Fermi gas with density the same as the density nc at the

center of the trap.

For interacting Fermi gases in BCS-BEC crossover in the presence of the harmonic trap,

in the unitary limit, a similar universal relationship as in the homogeneous can also be found.

For example, we have µ =
√
1 + βEF with the harmonic trap. The β has the same value as

before in the homogeneous case.

As we will show in the following section, by manipulating the traps in different manners,

collective properties of the trapped gas, such as collective mode frequency and damping rate,

can be measured to investigate the state of the system.
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3.3 SOUND VELOCITY AND COLLECTIVE MODES

3.3.1 Sound Velocity

Sound velocity is a very important physical quantity not only for Fermi gases exhibiting

BCS-BEC crossover, but also for many other physical systems. For Fermi liquids (no super-

conductivity or other symmetry breaking), the sound velocity is different for collisionless and

collisional cases. The latter can be described by classical hydrodynamics, where the collisions

between fermions are so frequent that the system can be considered at local equilibrium, and

the first (normal) sound can propagate in this case. We can also use the Boltzmann equation

to study the sound velocity in this collisional Fermi liquid. In contrast, the fermions barely

collide with each other in the collisionless regime, which can only be described by Landau

Fermi liquid theory. In this case, the collisionless Boltzmann equation can be used to deter-

mine the sound velocity, and the sound propagating here is known as zero sound. It is well

known that in Fermi liquids, the first sound and zero sound have different velocities.

If the system is in a superfluid phase, the Fermi liquid theory cannot apply. However, the

superfluidity can also be well described by hydrodynamics, since a superfluid can be viewed

as an irrotational perfect liquid [52]. Determining the sound velocity can help identify

whether the system is in collisionless or hydrodynamic regimes, while it cannot distinguish

hydrodynamic superfluid and hydrodynamic collisional Fermi liquid.

We review a very simple theory [53] for the sound velocity of the superfluid phase in

BCS-BEC crossover in the homogeneous case by using the well known expression for sound

velocity

c2s =
n

ma

∂µ

∂n
. (3.7)

Here, we consider T = 0 for simplicity. Start from Eq. (3.3) with T = 0

ma

4πa
=

∑
k

(
1

2ϵk
− 1

2Ek

)
,

n ≡ k3F
3π2

=
∑
k

(
1− ξk

Ek

)
. (3.8)
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Integrating by parts, Eq. (3.8) reduces to

π

2a
=

∆2 + µ2

2ma

J2 −
µ

2m2
a

J4,

k3F =
∆2

2ma

J4, (3.9)

where J2, J4 are defined as

J2 =

∫ ∞

0

dk
k2

E3
k

, J4 =

∫ ∞

0

dk
k4

E3
k

. (3.10)

By differentiating the first equation in Eq. (3.8), we get ∂µ/∂∆ = J2∆/Jξ, where Jξ is

defined as

Jξ =
1

2m
J4 − µJ2 =

∫ ∞

0

dk
k2ξk
E3
k

. (3.11)

Differentiating the second equation in Eq. (3.8) yields 4π2(∂n/∂µ)∆ = J2∆ and 4π2(∂n/∂∆)µ =

Jξ∆. By putting all these relations together in Eq. (3.7), we get

c2s =
1

3m2
a

J2J4∆
2

J2
2∆

2 + J2
ξ

. (3.12)

We can study some limiting cases of Eq. (3.12). In the deep BCS side, ∆ → 0 and

c2s → k2F/(3m
2
a), which is the well known result for the weakly interacting BCS fermionic

superfluidity. In the unitary limit where |1/a| → 0, Eq. (3.12) leads to c2s = 2µ/(3ma).

In Chapter 4, we will provide a different theoretical approach from effective field theory,

which leads to a more general expression of sound velocity at finite temperature. As T → 0,

the result in Chapter 4 reproduces Eq. (3.12).

On the experimental side, in 2007 the Duke group reported their result of measuring

the sound velocity [54]. They excited a sound wave in a Fermi gas in BCS-BEC crossover

regime and then observe the sound propagation at low temperature to extract the sound

velocity. The result agrees with multiple theoretical approaches very well, and confirms the

hydrodynamic behavior of the system.
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3.3.2 Collective Modes

In addition to the sound velocity, measuring collective modes is also a very useful experi-

mental tool to determine the state of the system. Collective mode is the oscillation of the

entire trapped gas. Similar as before, on the theoretical side hydrodynamics is widely used

to study the collective mode frequency for collisional Fermi liquid and superfluid with traps.

The Boltzmann equation can handle both the collisional and collisionless Fermi liquids, but

it cannot be used to study the superfluid.

In experiments, there are several kinds of collective modes that can be implemented. For

example, for an isotropic trap, a so-called breathing mode [22] can be realized by slightly

shrinking or expanding the trap isotropically, after which the bulk gas will oscillate radi-

ally as shown in Fig. 7(a). In a 3D isotropic gas, the oscillation of the breathing mode is

also isotropic. In contrast, for a cigar-like anisotropic gas, which is more widely used in

experiments, the radial breathing mode can be studied by applying the above shrinking and

expanding method in the radial direction. Fig. 7(b) shows the quadrupole mode, where the

bulk gas oscillates with compression in one dimension and elongation in another. Another

class of collective modes is called the scissor mode, where the cigar-like gas is rotated a little

bit against the trap, and then oscillates with respect to the trap axis, as shown in Fig. 7(c).

The collective mode is measured by the absorption imaging at a certain time after the

excitation [55, 21], where the spatial density profile is read out from the light absorption of

the trapped gas. This measurement is destructive, and therefore repeating experiments have

to be done to determine the spatial density profile at different instance [22]. The density

profile oscillating in time is then fit to extract the oscillation frequency and the damping

rate (the decaying of the oscillation amplitude).

In fact, in experiments collective mode is much easier to measure than measuring the

sound velocity, and the former experiments were implemented much earlier than the latter.

Similarly as in the situation of sound velocity, a collisionless Fermi liquid will in general have

different collective mode frequency from that of a collisional Fermi liquid or a superfluid

governed by hydrodynamics. However, with a non-rotating gas, measuring the collective

mode frequency cannot distinguish the collisional Fermi liquid and the superfluid either,
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(a) (b) (c)

Figure 7: Three types of collective modes in experiments. Red lines indicate the shape of

the ultracold gas in space. Blue lines indicate the equilibrium position of the ultracold gas

in the presence of a trap. Black arrows indicate the direction of the collective oscillations.

(a) Breathing mode. (b) Quadrupole mode. (c) Scissor mode.

since the equation of motion to determine the oscillation frequency for both are governed by

hydrodynamics.

The damping rate measurement can provide strong evidence to distinguish a collisional

Fermi liquid and a superfluid, besides the direct observation of the vortex lattices as a

concrete evidence for the superfluidity [24]. We take Duke experiment [22] as an example.

Duke group measured both the collective mode frequency and the damping rate of the

radial breathing mode in the unitary limit as a function of temperature. They found that

the collective mode frequency varies very smoothly and slightly with the temperature, and

agrees with a hydrodynamic theory very well. The hydrodynamic behavior of the collective

mode frequency means the system is either a collisional Fermi liquid or a superfluid.

For a collisional Fermi liquid, at low temperature the collision rate has the temperature

dependence 1/τ ∝ T 2. Here τ is the life time of the Fermi quasiparticles, and it is the

inverse of the collision rate. Therefore, as the temperature decreases, the collision rate also

decreases, which should increase the damping rate of a collisional Fermi liquid. The reason

is that the first sound can propagate in a collisional Fermi liquid due to the very frequent

collisions between Fermi quasiparticles, which drive the system to local equilibrium much

faster than the sound frequency. It is also the reason that the classical hydrodynamics can
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be applied in this case. If we decrease the collision rate, the local equilibrium will be harder

to maintain, which means the first sound will be more difficult to propagate in the system,

i.e., a stronger damping occurs. This point can also be seen from a Boltzmann equation

analysis [56], where it is shown that for a collisionless Fermi liquid the damping rate is

proportional to 1/τ , while for a collisional Fermi liquid the damping rate is proportional to

τ .

In contrast, the Duke group found that as temperature increases from ∼ 0.05TF to

∼ 0.25TF , the damping rate keeps increasing linearly, and afterward it increases nonlin-

early. This result indicates that the system is not a collisional Fermi liquid either. Assuming

the system is in a superfluid phase, the decreasing damping with decreasing temperature

is reasonable, since from the two-fluid model, the normal component portion of the system

will decrease when the temperature decreases. The superfluid component is not dissipative,

and the contribution to the damping is from the normal component. With smaller normal

component portion at lower temperature, the damping should become weaker. This experi-

ment provides strong evidence of the existence of superfluidity at unitarity of the BCS-BEC

crossover fermionic gas.
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4.0 DAMPING OF ULTRACOLD FERMI GASES

Recently, several experiments on ultracold fermions in the BCS-BEC crossover have shown

that puzzling damping phenomena of collective excitations occur in superfluid regime where

the system is at a finite temperature and on the BCS side of the crossover [21, 25, 4].

Especially, in Ref. [4], on the BCS side of the crossover, two puzzling damping peaks of scissor

mode were found with varying temperature. The first one is sharp and in the superfluid

regime, while the other is broad and in the normal Fermi liquid regime. In this chapter,

we will present the effective field theory study on these damping phenomena [34], focusing

on the experiment in Ref. [4]. Our effective theory is constructed based on a single-channel

model, which is known to be adequate for a broad Feshbach resonance. Furthermore, we

focus on the BCS side of the crossover, where puzzling damping phenomena have been

observed and received much attention [21, 4, 25]. In this regime, the BEC molecular effect is

negligible, and hence the single-channel calculation which we adopt is simple and valid. Our

theory shows that the dominant damping process is due to interaction between superfluid

phonons and thermally excited fermionic quasiparticles at finite temperature, in contrast to

the previously proposed pair-breaking mechanism [57, 4]. Such a process is similar to the well-

known Landau damping, which was previously discussed in a semiclassical approach [58, 59].

We also calculate the damping rate of collective excitations for the physical systems and find

a good comparison with the experimental findings [4]. Throughout this chapter, the Planck

constant ~ and Boltzmann constant kB are set unity (~ ≡ kB ≡ 1 in units).
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4.1 MEAN FIELD SOLUTION OF EFFECTIVE FIELD THEORY

We consider a homogeneous unpolarized ultracold fermionic system with two species (spin

↑ and ↓) of equal mass, and apply the path integral field theory to our system [60]. The

partition function of the system in the grand canonical ensemble can be described in the

path integral formalism

Z =

∫
D(ψ∗

σ, ψσ) exp(−Sψ), (4.1)

where Sψ =
∫
dxLψ(x) is the action. Here ψσ is the fermionic field for spin σ =↑, ↓, and x

is a four vector x = (x, τ), where x is the spatial coordinate and τ is imaginary time in the

range 0 < τ < β. We have β = 1/T and T is the temperature. The integration
∫
D(ψ∗

σ, ψσ)

in path integral formalism is introduced in Ref. [60]. The following Lagrangian is used to

describe the system:

Lψ = ψ∗
σ

(
∂τ −

∇2

2ma

− µ

)
ψσ + gψ∗

↑ψ
∗
↓ψ↓ψ↑, (4.2)

where ma is the mass of the fermion, g is the interaction (negative on the BCS side), and µ

is the chemical potential. The summation over σ is implicit.

We use a Hubbard-Stratonovich transformation [60] by introducing an auxiliary complex

bosonic field ∆(x) to eliminate the quartic term in Eq. (4.2) and get

Z =

∫
D(ψ∗

σ, ψσ)D(∆∗,∆) exp(−Sψ,∆), (4.3)

where the lagrangian is now

Lψ,∆ = ψ∗
σ

(
∂τ −

∇2

2ma

− µ

)
ψσ + (ψ∗

↑ψ
∗
↓∆+ c.c)− |∆|2

g
. (4.4)

In this transformation, the auxiliary field ∆(x) acquires exactly the same expectation value

as the pair field at the saddle point:

⟨∆⟩ = ⟨ψ↓ψ↑⟩.

The fermionic field is now in quadratic form and can be integrated out to get an effective

action for the field ∆

Z =

∫
D(∆∗,∆) exp(−S∆), (4.5)
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where

S∆ = −
∫
d4x

(
|∆|2

g
+ tr lnG−1

)
(4.6)

and

G−1 =

 ∂τ − ∇2

2ma
− µ ∆

∆∗ ∂τ +
∇2

2ma
+ µ

 . (4.7)

In the mean field approximation, we seek for a spatially uniform saddle point solution ∆0

of S∆, together with the requirement of fixing the number density n. These two conditions

determine the mean field equations in the crossover

δS∆

δ∆
= 0,

∂ lnZ

∂µ
= n. (4.8)

In momentum space we get

1

g
+
∑
k

1

2Ek
tanh

(
βEk
2

)
= 0,

∑
k

[
1− ξk

Ek
tanh

(
βEk
2

)]
= n, (4.9)

where Ek =
√
ξ2k +∆2 and ξk = k2/2ma − µ.

We use the regularization procedure to express the coupling g in terms of the scattering

length a as mentioned in Appendix A:

ma

4πa
=

1

g
+
∑
k

1

2ϵk
, (4.10)

where ϵk = k2/2ma and a is the effective scattering length. Eq. (4.9) can be expressed in

terms of a as

ma

4πa
=

∑
k

[
1

2ϵk
− 1

2Ek
tanh

(
βEk
2

)]
,

n =
∑
k

[
1− ξk

Ek
tanh

(
βEk
2

)]
. (4.11)

Eq. (4.11) includes two equations with ∆ and µ as two variables. By using the secant

method to solve Eq. (4.11), we can get ∆ and µ as function of 1/kFa and T/TF in mean field
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level, where kF and TF are the Fermi momentum and temperature of the non-interacting

Fermi gas in free space with the same number density n. The values of ∆ and µ from this

mean field calculation at T = 0 are shown in Fig. 6 in Chapter 3.

In the following sections, we will assume the system is ordered, i.e., the gap ∆ is non-zero,

and will use the mean field results, such as the gap order parameter, as input to calculate

the physical quantities of excitations.

4.2 QUANTUM FLUCTUATIONS

To consider the quantum fluctuations, we no longer treat the order parameter ∆ as a homo-

geneous constant in Eq. (4.4), but write it as

∆(x) = ∆0 [1 + λ(x)] ei2φ(x). (4.12)

Here λ is the amplitude fluctuation and φ is the phase fluctuation around the saddle point

solution ∆0 from Eq. (4.11), and both of them are real. The energy spectrum of φ is gapless,

i.e., in the long wavelength limit the excitation energy vanishes, which indicates the sound

(phonon) excitation of the system. The spectrum of φ is also related to the oscillation

frequency of the collective mode, where an experimentally excited collective oscillation with

frequency ω yields the same phonon frequency ω of the φ field. Then one can apply a local

U(1) gauge transformation to a new gauge where the order parameter is real everywhere in

space

∆ = ∆̃ei2φ(x), ψσ(x) = ψ̃σ(x)e
iφ(x), (4.13)

where ∆̃ = ∆0(1 + λ) is real. We have 1 + λ > 0 and φ ∈ [0, 2π) as the constrain.

The integration over λ can be extended to the range 1 + λ < 0, which only yields an overall

constant phase π add to φ. Since φ only appears in gradient form, this overall phase does not

change the effective action for φ. In addition, we treat the Jacobian of the transformation as a

constant using the same approximation in Ref. [51, 61], which is valid at low temperature [61].
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With the above considerations, in the new gauge, the Lagrangian density Eq. (4.4) be-

comes

Lψ̃,φ,λ = ψ̃∗
σ(∂τ −

∇2

2ma

− µ)ψ̃σ + (∆0ψ̃
∗
↑ψ̃

∗
↓ + c.c.) + ψ̃∗

σψ̃σ[i∂τφ+
(∇φ)2

2ma

] +∇φ · Ĵσ

+(∆0λψ̃
∗
↑ψ̃

∗
↓ + c.c.)− ∆2

0λ
2

g
, (4.14)

where Ĵσ = Ĵσ(x) = − i
2ma

[ψ̃∗
σ(∇ψ̃σ)− (∇ψ̃∗

σ)ψ̃σ] is the fermion current field.

We now integrate out the fermionic field. The fermionic field is gapped, which means

even in the long wavelength limit, the fermionic excitations (the Bogoliubov quasiparticles)

cost finite energy. In momentum space, for the fermionic field ψ̃, we use k = (k, iωm), where

ωm = (2m+1)π/β is the fermionic Matsubara frequency andm is an integer. For the bosonic

field λ and φ, we use q = (q, iωn), and ωn = 2nπ/β, where n is an integer.

Introducing two-component spinor in momentum space Ψ∗
k = (ψ̃∗

k↑, ψ̃−k↓), we can rewrite

the action in momentum space as S =
∑

k1,k2
Ψ∗
k1
G−1(k1, k2)Ψk2 , where G

−1 = G−1
0 +χ1+χ2

is 2× 2 matrix. Here G0, χ1, and χ2 are given by

G0(k1, k2) =
δk1,k2

ω2
m1

+ E2
k1

 iωm1 + ξk1 ∆0

∆0 iωm1 − ξk1


χ2(k1, k2) = −

∑
q

q · (k1 − k2 − q)

2maβV
φqφk1−k2−q

 1 0

0 −1


χ1(k1, k2) =

 χ11
1 (k1, k2) χ12

1 (k1, k2)

χ21
1 (k1, k2) χ22

1 (k1, k2)

 (4.15)

with

χ11
1 (k1, k2) =

[
ωm1 − ωm2√

βV
+
i(k2

1 − k2
2)

2m
√
βV

]
φk1−k2

χ22
1 (k1, k2) =

[
−ωm1 − ωm2√

βV
+
i(k2

1 − k2
2)

2m
√
βV

]
φk1−k2

χ12
1 (k1, k2) = χ21

1 (k1, k2) =
∆0√
βV

λk1−k2 . (4.16)
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We adopt Gaussian approximation for the amplitude field λ and low energy expansion

φ for the superfluid phase field, which means we keep the λ and φ fields to quadratic order∫
D(Ψ∗,Ψ)e−SΨ,λ,φ ≈ etr[G0χ2− 1

2
G0χ1G0χ1] = e−S

′
. (4.17)

The effective action reads

S ′ = Sφ + Sλ + Sφ,λ, (4.18)

where

Sφ =
∑
q

φqφ−q[f1(q)ω
2
n + [f4(q) +

n

2ma

]q2],

Sλ =
∑
q

λqλ−qf3(q),

Sφ,λ =
∑
q

[f2(q)λqφ−q(−ωn −
i

ma

q · k)− f2(q)λ−qφq(−ωn +
i

ma

q · k)], (4.19)

and

f1 =
1

βV

∑
k

ωmωm+n − ξkξk+q +∆2
0

(ω2
m + E2

k)(ω
2
m+n + E2

k+q)
,

f2 =
∆2

0

βV

∑
k

iωm + iωm+n + ξk + ξk+q
(ω2

m + E2
k)(ω

2
m+n + E2

k+q)
,

f3 = −∆2
0

g
− ∆2

0

βV

∑
k

ωmωm+n + ξkξk+q −∆2
0

(ω2
m + E2

k)(ω
2
m+n + E2

k+q)
,

f4 =
1

βV

∑
k

k2 cos2 θ

m2
a

−ωmωm+n + ξkξk+q +∆2
0

(ω2
m + E2

k)(ω
2
m+n + E2

k+q)
. (4.20)

We can also start from Eq. (4.6) and get the same result. Here in Eq. (4.14), we follow

the procedure in Ref. [60], where the coupling between the order parameter (amplitude λ

and phase φ) and the fermions is explicitly shown.

The next step is to integrate out the amplitude fluctuation field λ and keep only the

phase field φ. Define

C1(q) = f1 + f 2
2 /f3,

C2(q) = f4 +
n

2ma

, (4.21)

and the effective action of phase field φ is obtained as

Sφ =
∑
q

φqφ−q[C1(q)ω
2
n + C2(q)q

2]. (4.22)
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4.3 SOUND VELOCITY

To test our theory before calculating the damping rate, we first evaluate superfluid density

and sound velocity. Superfluid density is the non-dissipative density component of the sys-

tem. For a BEC superfluid, the superfluid density is not the condensate density. At T = 0,

the superfluid density is the total density, while the condensate density is only a fraction of

the total density. Since superfluid is irrotational, a rotating-bucket experiment can be used

to determine the superfluid density [52]. On the theoretical side, the superfluid density can

be directly calculated from the known expressions for both BEC and BCS cases [52].

In our problem of BCS-BEC crossover, we can apply a Galilean boost on the order pa-

rameter in Eq. (4.13), and get the superfluid density from the shift of free energy in the

superfluid hydrodynamic model with normal and superfluid components [62, 63, 64]. The

total normal density includes bosonic fluctuation part and non-condensed fermionic Bogoli-

ubov quasiparticle part. From the calculations of Ref. [62, 63, 64], the main contribution to

the normal density on the BEC side is the bosonic excitation part, while on the BCS side,

the main contribution is from the non-condensed Bogoliubov fermionic quasiparticle part.

Since our main focus is on the BCS side, we can neglect the contribution to the normal

density from bosonic excitations.

To the zeroth order of q, or in the long wavelength limit q → 0, all coefficients f1, f2, f3,

and f4 are real, in terms of which superfluid density and sound velocity can be expressed.

Since the imaginary part is zero, there is no damping for the collective modes, to the zeroth

order. We have C ′
1 ≡ limq→0C1 related to the density of states, and C ′

2 ≡ limq→0C2 =

ns/2ma is related to superfluid density ns [60]. In q → 0 limit, we neglect the bosonic

fluctuation contribution to the normal density, which is the q ̸= 0 fluctuation contribution

from the ∆ field [64].

Take the limit of q → 0 in the coefficients Eq. (4.20), and define f ′
1 ≡ limq→0 f1 and so
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on. After carrying out the Matsubara summation for iωm, we get

f ′
1 =

1

V

∑
k

[βnk(1− nk)
ξ2k
E2
k

+
∆2

0

2E3
k

(1− 2nk)] ,

f ′
2 =

∆2
0

V

∑
k

[βnk(nk − 1)
ξk
E2
k

+ (1− 2nk)
ξk
2E3

k

] ,

f ′
3 =

∆4
0

V

∑
k

[βnk(nk − 1)
1

E2
k

+
1

2E3
K

tan
βEk
2

] ,

f ′
4 =

∑
k

β

V

k2 cos2 θ

m2
a

nk(nk − 1) , (4.23)

where

nk =
1

eβEk + 1

is the quasiparticle Fermi-Dirac distribution. Eq. (4.22) becomes

Sφ =
∑
q

φqφ−q[C
′
1ω

2
n + C ′

2q
2] (4.24)

with

C ′
1 = f ′

1 + f ′2
2 /f

′
3 ,

C ′
2 = f ′

4 +
n

2ma

. (4.25)

To switch from the Matsubara frequency to real frequency (or from imaginary time to real

time), we apply a Wick rotation iωn = ωq + i0+ [60], and then the zero of the action

Eq. (4.24) gives the spectrum ωq = vs|q| of the φ field. This spectrum is the superfluid

phonon excitation, where vs tells the sound velocity. Thus, we get the following physical

quantities,

ns
2ma

= f ′
4 +

n

2ma

,

v2s =
f ′
4 + n/2ma

f ′
1 + f ′2

2 /f
′
3

. (4.26)
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At zero temperature, Eq. (4.23) reduces to

f ′
1,T=0 =

∆2
0

V

∑
k

1

2E3
k

,

f ′
2,T=0 =

∆2
0

V

∑
k

ξk
2E3

k

,

f ′
3,T=0 =

∆4
0

V

∑
k

1

2E3
k

,

f ′
4,T=0 = 0. (4.27)

Perform the summation for f ′’s over k as integration in the thermodynamic limit, and define

the following integral quantities as mentioned in Chapter 3 that

J2 =

∫ ∞

0

dk
k2

E3
k

, J4 =

∫ ∞

0

dk
k4

E3
k

, Jξ =

∫ ∞

0

dk
k2ξk
E3
k

. (4.28)

After some calculations, the sound velocity Eq. (4.26) at T = 0 is

v2s,T=0 =
1

3m2
a

J2J4∆
2
0

J2
2∆

2
0 + J2

ξ

, (4.29)

which reproduces the result Eq. (3.12) in Chapter 3, albeit that was derived in a different

method. The success in deriving the sound velocity verifies the validity of our effective field

theory approach.

Fig. 8 shows the numerical plot of superfluid density and superfluid sound velocity with

varying temperature and scattering length in the BCS regime, as a visualization for the real

part of the effective action from our effective field theory approach.
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Figure 8: (a) Superfluid sound velocity compared with Fermi velocity vs/vF in superfluid

regime. (b) Superfluid density compared with the total density ns/n. The superfluid sound

velocity from our effective field theory Eq. (4.29) reproduces the result Eq. (3.12) in Chapter 3

from hydrodynamic approach, which verifies the validity of our theory. We also see that the

superfluid density portion of total density decreases with increasing temperature, which is

expected.

4.4 DAMPING OF COLLECTIVE MODES

4.4.1 Formalism of the Damping Rate

We start from the effective action, Eq. (4.22), for the superfluid phase field. Keeping q

small but finite when evaluating the coefficients C1 and C2 in Eq. (4.21), imaginary terms

appear in Eq. (4.20), which corresponds to the damping of the collective modes. To get

exact dispersion relation including damping for the superfluid phonons, one needs to solve

for poles of the effective action Eq. (4.22) of φ. However, in the regime where the damping

is small, we can simplify the calculation.

The dispersion relation is determined by setting the quadratic field term Eq. (4.22) to

be zero. To evaluate the damping rate, we can apply a Wick rotation to change from the

Matsubara frequency to real frequency part and imaginary damping part as iωn = ω0 − iγ,
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and get

−C1(q̃)(ω0 − iγ)2 + C2(q̃)q
2 = 0, (4.30)

q̃ ≡ (q, iωn → ω0 + i0+), (4.31)

where ω0 is the oscillation frequency, or the real part of the phonon mode, and γ is the

damping rate. Although in principle, we should also keep γ when applying the Wick rotation

to the ωn’s in coefficients f1, f2, f3, and f4, for small damping, it is sufficient to just apply

iωn = ω0 + i0+ for the coefficients to get the lowest order results. This approximation is

similar to that adopted in the calculation for self-energy, for example, Ref. [65].

For the numerators in Eq. (4.20), we can still set q = 0 (zeroth order of q). The reason

for this is that the numerators are all real, and hence the small q expansion gives only

higher order corrections to the zeroth order contribution. If we want only the leading order

in the long wavelength expansion of the damping rate, the higher order corrections in the

numerators can be ignored, as we have checked.

Also, we can still use the results Eq. (4.23) obtained from last section for the real parts

of C1, C2, f1, f2, f3, and f4 (zeroth order of q), because we are not interested in the higher

order corrections (first and higher order of q) to the real parts of coefficients, which just give

higher order correction to the damping rate.

Adopting the above approximation, we can write C1 = C ′
1 + iC ′′

1 , C2 = C ′
2 + iC ′′

2 , f1 =

f ′
1 + if ′′

1 and so on, to find the poles of the effective action

(C ′
1 + iC ′′

1 )(ω0 − iγ)2 − (C ′
2 + iC ′′

2 )q
2 = 0 . (4.32)

Solving this equation gives the damping rate

γ

ω0

=
1

2

(
C ′′

1

C ′
1

− C ′′
2

C ′
2

)
. (4.33)

From Eq. (4.21), assuming that all the imaginary parts are small, i.e., only keeping up to

the first order of the imaginary part for f ’s, we have

C ′′
1 = f ′′

1 + 2
f ′
2

f ′
3

f ′′
2 −

(
f ′
2

f ′
3

)2

f ′′
3 ,

C ′′
2 = f ′′

4 . (4.34)
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After some calculation, we find that the imaginary parts of the coefficients f ′′’s contain

two different contributions, which we call channel a and b. In channel a we have

f ′′
1,a =

π

V

∑
k

(1− ∆2
0

E2
k

)δ[ω0 − (Ek+q − Ek)](nk − nk+q) ,

f ′′
2,a = −π∆

2
0

V

∑
k

ξk
E2
k

δ[ω0 − (Ek+q − Ek)](nk − nk+q) ,

f ′′
3,a = −π∆

4
0

V

∑
k

1

E2
k

δ[ω0 − (Ek+q − Ek)](nk − nk+q) ,

f ′′
4,a = − π

V

∑
k

k2 cos2 θ

m2
a

δ[ω0 − (Ek+q − Ek)](nk − nk+q) , (4.35)

and in channel b

f ′′
1,b =

π

V

∑
k

∆2
0

2E2
k

δ(ω0 − Ek − Ek+q)(1− nk − nk+q) ,

f ′′
2,b =

π∆2
0

V

∑
k

ξk
2E2

k

δ(ω0 − Ek − Ek+q)(1− nk − nk+q) ,

f ′′
3,b = −π∆

2
0

V

∑
k

(
1

2
− ∆2

0

2E2
k

)δ(ω0 − Ek − Ek+q) ,

×(1− nk − nk+q) ,

f ′′
4,b = 0 . (4.36)

The physical meaning of channel a and b, as defined in the above expressions, is illustrated

in Fig. 9. Channel a (Fig. 9(a)) is similar to the Landau damping in Fermi liquid. In channel

a, a fermionic quasiparticle absorbs or emits a superfluid phonon and becomes another

quasiparticle state at a different momentum within the same energy branch. In channel b

(Fig. 9(b)), a superfluid phonon excites a quasiparticle from the lower branch to the upper

branch, creating a particle-hole pair excitation in the quasiparticle eigenstate basis, which

corresponds to a Cooper pair breaking process in terms of original fermions. Both channels

cause imaginary part of superfluid phonon dispersion (collective excitations of the superfluid

state), which corresponds to the damping of phonon excitation, or collective oscillation.
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Figure 9: Two separate damping channels. The blue curves are the fermionic quasiparticle

spectrum. At T = 0, the lower branch is fully occupied and the higher branch is empty.

The green arrow is the incident phonon. The black arrow indicates the excitation of a

fermionic quasiparticle. The red straight line is the linear spectrum of the phonon, where

the slope is the sound velocity. The two black dashed lines are the changes of momentum

and energy of fermionic quasiparticle, as indicated. (a) A phonon scatters an existing (at

finite temperature) fermionic quasiparticle to a different state in the same energy branch.

Such a process is similar as Landau damping in Fermi liquid. This process can also happen

in the lower branch at finite temperature, which is not shown here. (b) A phonon creates a

quasi-particle-hole pair across the lower and upper bands, equivalent to Cooper pair breaking

in the representation of original fermions.

Before applying our result to real experimental systems, let us discuss the properties of

the damping in the ω0 → 0 limit (with ω0/|q| = vs fixed) at low temperature, where channel

b vanishes. To satisfy the δ function in Eq. (4.35), we need to have

| cos θ| =
∣∣∣∣Ekmavs

ξkk

∣∣∣∣ ≤ 1, (4.37)

which is difficult to solve analytically.

We can still get some analytical properties if we combine the numerical and analytical

analysis. At 1/kFa = −0.45 and T/TF < 0.1, numerical analysis shows that k < kµ does not
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contribute to the integral, with kµ the momentum corresponding to the chemical potential

µ. For k > kµ, we can substitute k = kµ in Eq. (4.37), except for ξk, to get the range of ξk.

We then apply a one-step iteration to get a more precise range for ξk. To satisfy Eq. (4.37),

we need to have

ξk >

√
ξ20 +∆2mavs√
2ma(ξ0 + µ)

≡ ξ1, ξ0 =
∆mavs
kµ

. (4.38)

The next step is to write

nk − nk+q ≈
∂nk
∂Ek

· (Ek − Ek+q) = βω0nk(1− nk) ≈ βω0e
−βEk . (4.39)

The first approximation comes from ω0 ≪ T and the second approximation comes from

T ≪ ∆. Also, numerical analysis shows that the contribution from C ′′
1 is much smaller than

that from C ′′
2 in the above regime. In addition, at low temperature, C ′

2 ≈ n/2ma since the

normal density is negligible. Taking all the above into account, we get

γ

ω0

≈ 3π

4

v3s
v3f

1

T

∫
Ek>

√
ξ21+∆2

dEk
E4
k

ξ4k
e−βEk . (4.40)

The integral in Eq. (4.40) needs to be evaluated numerically in general cases. At extremely

low temperature, where e−βEk changes much faster than E4
k/ξ

4
k with changing Ek, we can

approximately treat E4
k/ξ

4
k in Eq. (4.40) as a constant and substitute in ξk = ξ1, which gives

γ

ω0

≈ 3π

4

v3s
v3f

(ξ21 +∆2)2

ξ41
e−

√
ξ21+∆2

T . (4.41)

An interesting feature of damping is that in Eq. (4.40) and (4.41), γ/ω0 is independent

of ω0 when ω0 ≪ T . Therefore, we should observe the damping even in the ω0 → 0 limit

in finite temperature. A physical understanding of this feature is that the damping from

channel a is due to the coupling between superfluid sound (phonons) and thermally excited

Fermi quasiparticles, so that

γ ∝
∫
dkf(k,∆, µ)(nk − nk+q) ∝ ω0

∫
dkf(k,∆, µ)

dnk
dEk

, (4.42)

where f(k,∆, µ) is some function independent of ω0. This provides an experimental method

to verify our theory, which will be discussed later.
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4.4.2 Comparison with Experiments

The above theory can be applied to real physical systems numerically. We will focus on the

regime of γ/ω0 ≪ 1 on the BCS side of the Feshbach resonance, where our approximations

are quantitatively controlled. One should notice that in experiments, the cold gases are

trapped in anisotropic harmonic potentials. The parameters used here, i.e., the Fermi energy,

chemical potential, etc., correspond to the values at the center of the trap. We apply our

method to the experimental configuration in Ref. [4] and calculate the damping rate as

function of both temperature and scattering length. The number of particles is N = 4×105.

The trapping frequencies are ωx = 2π × 830 Hz, ωy = 2π × 415 Hz and ωz = 2π × 22 Hz.

Thus, ω̄ = (ωxωyωz)
1/3 = 2π × 196 Hz. Reading from Ref. [4], the oscillation (phonon)

frequency is ω0 ≈ 2π × 940 Hz ≈ 4.8 ω̄. According to ω̄/TF = 1/(3N)1/3, we get the ratio

between the phonon energy and Fermi temperature

ω0

TF
= 0.045. (4.43)

From ω0 = vs|q| and EF = 1
2
vFkF , we get

|q|
kF

=
1

2

vF
vs

ω0

EF
.

Since in most regime vF/(2vs) ∼ O(1) as shown in Fig. 8, using Eq. (4.43) we conclude that

|q| is also much smaller than the Fermi momentum kF . Thus, our model, which requires q

to be small, can be applied to this physical system.

Fig. 10 shows the numerical results of damping rate from channel a. It shows that

the damping rate increases for higher temperature and smaller scattering amplitude |a|. In

the superfluid regime, when T is close to Tc, the damping rate γ/ω0 becomes big. When

solving the equations for the damping rate in the preceding section, we assumed a small

damping γ compared with the oscillation frequency ω0, i.e., kept only the leading order in

the perturbative expansion of γ/ω0. In the regime of large γ/ω0 where a significant correction

is expected, our damping formula is no longer reliable. Thus, in Fig. 10 we use a plateau to

indicate the regime of γ/ω0 > 0.5. Also, in the normal Fermi Liquid regime T > Tc where

our theory no longer applies, we keep the damping plot open with no data points shown,

and will discuss this regime later.
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Figure 10: Damping rate of collective excitations in superfluid regime showing dependence

on T/TF and 1/kFa. When T is close to Tc, the results from our approximation are no

longer reliable since the damping rate γ is already very large compared with ω0. This regime

is indicated by the plateau. Also, when the system is no longer superfluid (T > Tc), our

effective field theory does not apply, and the damping rate is then not plotted there. The

phase transition temperature Tc/TF is indicated by the boundary of the plateau beyond

which there are no data points shown.

We did not include channel b when plotting Fig. 10. The reason is that we found that

under the experimental conditions [4], the contribution to damping from channel b is much

smaller than from channel a. To investigate the features of channel a and channel b in

more detail, let us start from the relationship ωq = vs|q|. We focus on the regime of long

wavelength and low temperature such that kF ≫ |q|, and T is not close to Tc. Thus ∆(T )

is of the same order as EF . In channel a, the first requirement is finite temperature, so that

the upper (lower) band is populated by quasiparticles (quasiholes) due to thermalization.

This fact is enforced by the factor (nk − nk+q) in Eq. (4.35). The second requirement is

energy conservation. The energy change of the fermionic quasiparticle after scattering with
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a phonon is as follows,

δE = Ek+q − Ek ≈
ξk
Ek

k · q
ma

≤ ξk
Ek

|k||q|
ma

. (4.44)

ωq ≈ δE is needed to satisfy energy conservation. Therefore, we have

ωq = vs|q| ≤
ξk
Ek

|k||q|
ma

. (4.45)

If |k| is too far away from kF , both the finite-temperature occupation number and the den-

sity of states are greatly suppressed. Equivalently, the most effective scattering of phonons

is from quasiparticle states around the upper (lower) band’s minimum (maximum). In ad-

dition, we have learned in Fig. 8 that vs does not exceed the order of vF . As long as |k|

is of the order kF or smaller, in principle, phonons of both large and small vs may excite

fermionic quasiparticles in channel a. However, the condition Eq. (4.45) suggests that small

vs is much more favored in channel a.

In channel b, the pair breaking process is allowed by the condition of occupation number

at T = 0 (nk = nk+q = 0 in Eq. (4.36)). However, in this case,

δE = Ek+q + Ek ≥ 2∆ , (4.46)

where the minimal value of δE takes place for k around kF . Again, by energy conservation,

ωq ≈ δE is required. Subsequently, we find the minimal condition required of the sound

velocity vs,

vs ≥
∆

Ek

kF
|q|
vF . (4.47)

As long as ∆ is of the same order of EF , and given that kF/|q| is quite large, the condi-

tion Eq. (4.47) in turns requires that the sound velocity vs be much larger than the Fermi

velocity vF . In the superfluid phonon case, the condition kF ≫ |q| is satisfied, and when

the temperature is still far away from Tc, channel b is prohibited, since vs < vF as shown in

Fig. 8. Another way to understand that the damping channel b is suppressed is to directly

use energy conservation. Since ωq ≪ 2∆, channel b can not happen.

At finite temperature, channel a becomes possible since some fermionic quasiparticles

and quasiholes are thermally created in the upper and lower band, respectively. They can
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scatter with superfluid phonons to cause decay. However, channel b is still greatly suppressed

as long as wq < 2∆.

In the experiment, since ω0/EF ≈ 0.04, channel b can happen only when when ∆(T )/EF ≈

0.02. From mean field analysis, near 1/kFa ≈ −0.5, to satisfy ∆(T )/EF ≈ 0.02, we need to

have T/Tc ≈ 99.7%, which is very near the phase transition. However, according to Ref. [4],

the damping happens at T ≈ 0.6Tc near 1/kFa ≈ −0.5, which is too low to let channel b

contribute in our calculation. Even if one uses some theories including quantum fluctuation

[63], at T ≈ 0.6Tc, ∆(T )/EF is still much larger than 0.02. Thus the damping peak should

not correspond to the pair breaking channel b. As T getting closer to Tc, channel a will be

more and more enhanced because of more and more thermally excited fermionic quasiparti-

cles. When ∆(T )/EF ≈ 0.02, channel b also happens, while the damping from channel a is

already very large. It is not clear which channel dominates because T near Tc is outside the

valid regime of our low energy effective field theory. It remains to be a challenge to formu-

late a quantum theory beyond the classical Boltzmann equation. Thus, our calculation just

considered the contribution from channel a. We also double checked channel b by numerical

method and confirmed that the contribution from channel b is zero for most regime, since

the δ function in Eq. (4.36) cannot be satisfied in most superfluid regime.

There is another piece of experimental evidence showing that why channel b does not

dominate. In experiments varying the magnetic field [21, 25], if the pair breaking mechanism

had dominated, one should also have observed very sharp peaks in these experiments. How-

ever, the damping rate changes relatively smoothly [21, 25], which means channel a should

be the reason for the smoothly increasing damping. Therefore, we expect the damping ob-

served by changing the temperature [4] to be due to channel a too, since increasing the

magnetic field at a finite temperature has the same effect as increasing the temperature at

fixing magnetic field, both just reducing the gap. Nevertheless, the pair breaking channel b

is also possible to contribute near the phase transition, but it does not necessarily dominate

in contrary to what has been suggested [57, 4].

We did not consider the fact that in the experiment, the fermionic gases are trapped and

inhomogeneous in space. The above consideration is effective for gas at the center of the

trap. On the edge of the trapped gas, by local density approximation, the effective density
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and Fermi energy is smaller than that of center, which means ω0/EF is larger and channel b

may contribute at lower temperature (but not very low). However, channel a also happens

on the edge since the above analysis still works for lower gas density on the edge, and the

effect of channel b is just to increase the damping rate, not giving a sudden peak.

To verify our main conclusion that channel a is the dominating process, we propose an

experiment, which is to measure the damping rate γ while varying the oscillation frequency

ω0, and observe how γ/ω0 changes. This can be done by either increasing the particle num-

ber or reducing the trapping potential. If channel b, the pair breaking mechanism, were

dominating, one should observe that the damping peak becomes increasingly narrow, and

eventually becomes too narrow to be observable, as ω0 decreases. The reason is that the

parameter regime to satisfy the energy conservation ω0 ≈ 2∆ diminishes with decreasing

ω0, and eventually vanishes. On the other hand, if channel a, the Landau damping mech-

anism, dominates, no matter how small ω0 is, as long as Eq. (4.37) is satisfied, the energy

conservation law is always satisfied. Eventually γ/ω0 will be independent of ω0 in the limit

of vanishing ω0 as discussed before in Eq. (4.42), and therefore the peak in γ/ω0 remains

unchanged and should always be observable.

The mechanism discussed here is different from the conventional acoustic attenuation

process in solid-state superconductors, where channel b overwhelms channel a and ωq ≈ 2∆.

For the conventional case, vs is large, so that a relatively large phonon energy ωq corresponds

to a very small momentum q. Channel a is suppressed as vs is too large to satisfy the energy

conservation condition (4.45). At the same time, a channel b pair breaking process (Fig. 9(b)),

associated with small momentum but large energy transfer from acoustic phonons to Fermi

quasiparticles, may happen. The original fermion pair breaking process is the creation of a

pair comprising particle and hole in the upper and lower branches of quasiparticle energy

spectrum, respectively. A small |q| ensures that fermionic quasiparticles are created at the

band extrema, which is known to result in a peak of damping rate, γ ∝ 1/
√
ω − 2∆, due

to the singularity of density of states. Therefore, the damping for large vs in the traditional

case is due to the pair breaking process (channel b).

In the regime T > Tc, where the system is no longer superfluid and our effective theory

breaks down, the classical Boltzmann equation can be used to calculate the oscillation fre-
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Figure 11: Damping rate of collective excitations by interpolating results from our effective

field theory in low temperature and the classical Boltzmann equation in high temperature.

Red crosses are the prediction from our calculation in low temperature superfluid regime,

and green crosses are calculated from the classical Boltzmann equation approach we adopt

from Ref. [2]. The blue solid line is the interpolation. The black squares are the experimental

data of damping [3]. (a) 1/kFa = −0.45; (b) 1/kFa = −0.55. The first peak moves toward

higher temperature when the system gets closer to the resonance (i.e., smaller |1/kFa|).

quency and damping rate, as shown in Ref. [2]. As supplement to our main result above,

we use the classical Boltzmann equation approach in Ref. [2] to calculate the oscillation

frequency and damping rate at high temperatures. As mentioned there, the formulas did

not take into account the effect of Pauli blocking, which means that this Boltzmann results

are more reliable at high temperatures. The calculation takes into account the trapping

potential. At 1/kFa = −0.45, if we interpolate our theory in the low temperature super-
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fluid regime with the results from Boltzmann equation in the high temperature Fermi liquid

regime, two peaks by two different methods appear in Fig. 11, which agrees with the ex-

perimental results fairly well (cf. Fig. 2(b) in Ref. [4]). Thus, we conclude that the first

sharp peak observed in Ref. [4] is due to the superfluid phonon and fermionic quasiparticle

interaction, mostly through channel a in Fig. 9(a). The second broad peak is given by the

Boltzmann equation from Ref. [2], which signals the collisional to collisionless transition of

Fermi liquid. Our model further shows that the first damping peak moves toward higher

temperature when the system gets closer to resonance (i.e., smaller |1/kFa|), as one can

see in the change from Fig. 11(b) to Fig. 11(a). This phenomenon was first reported in

the experiments of Ref. [4] (cf. Fig. 3 therein). Therefore, our theory provides a consistent

explanation for the experiments on damping as represented by Ref. [4].

According to our calculation, a damping due to phonon-fermion interaction should hap-

pen in the unitary limit. While this was not reported in the experiments of Ref. [4], in the

experiments of Ref. [22], the authors found that the damping rate of a Fermi gas at unitarity

displays a weak peak immediately followed by a notch near phase transition from superfluid

to normal state as temperature increases. Such a damping notch is consistent with the dip

of Fig. 11 that we propose here.

There are several reasons for the quantitative discrepancy between our calculation and

the experiments, due to the simplification we have made. The most important thing is that

our calculation is based on mean field results of ∆0 and µ from solving Eq. (4.11). Quantum

fluctuations tend to destroy the superfluid phase, i.e., reduce the transition temperature Tc

below the mean field results. More reliable inputs for ∆0 and µ from a calculation including

quantum fluctuations [51] will give a lower Tc, which will make our results better agree with

experiments. Secondly, our calculation is based on a Fermi gas in free space while in the

experiments, the gas is always trapped. Thirdly, we used approximation to solve for the

damping. However, to be specific one needs to exactly solve for the poles. Also, ω0 is read

from Ref. [4] and treated as a constant in our work. That is just an approximation since ω0

is also changing slightly with temperature.

Finally, we summarize the physical origin of the damping phenomena. As shown in

Fig. 12, by varying the temperature [4] as indicated by the red arrow, our theory predicts
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Figure 12: An illustrative phase diagram adapted from Ref. [4] showing the damping mech-

anism in the relative experiments. Red arrow: the evolution of system when we fix the

magnetic field and vary the temperature. Blue arrow: the evolution of system when we fix

the temperature and vary the magnetic field.

that one should find two peaks in the damping. The first is a sharp peak due to the

finite-temperature phonon-fermionic quasiparticle interaction, and the system changes from

hydrodynamic superfluid to collisionally hydrodynamic Fermi liquid. The second is a broad

peak due to the transition from the collisionally hydrodynamic to collisionless Fermi liquid.

In the experiment that varies the magnetic field [21, 25] but keeps temperature sufficiently

low as indicated by the blue arrow in Fig. 12, one should see only the peak due to the

phonon-fermionic quasiparticle interaction. After passing this peak, the system is already in

the collisionless regime without the need of going across a collisionally hydrodynamic regime.

Thus, there is no second broad peak.
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5.0 OPTICAL LATTICE AND HUBBARD MODEL

In this chapter, we will introduce the background of optical lattices. Optical lattice is one

of the most important ingredients in ultracold quantum systems. In Sec. 5.1, we will give

a general introduction of optical lattices. In Sec. 5.2, we will present the Hubbard model

description of optical lattices, which is the most widely used theoretical model to study

many-body physics of optical lattice systems. In Sec. 5.3, we will introduce the time-of-

flight imaging method of measurement in optical lattice experiments. In Sec. 5.4, we will use

mean field analysis to discuss the quantum phase transition in the Bose-Hubbard model.

5.1 FROM THREE DIMENSIONAL TO ZERO DIMENSIONAL

Optical lattices are very useful tools to simulate conventional condensed matter materials,

by using laser beams to create periodic potential, and using ultracold fermionic atoms to

simulate the electrons. In addition to simulate the electronic condensed matter systems, we

can also load bosons or single-species fermions onto optical lattices, and we can control the

hopping and interaction relatively easily. Optical lattices use off-resonance laser beams to

generate a spatially varying potential for atoms via the AC Stark effect. To create a periodic

lattice potential by laser beam, one can overlap two counter-propagating laser beams. By

interference a standing wave with period λ/2 can be formed. As mentioned in Chapter 2, the

atom is blue (red) detuned if the laser frequency ωL is greater (smaller) than the resonance

frequency ω0. In the blue (red) detuned case, the atoms will be trapped at the node (anti-

node) position of the standing wave. We consider the blue-detuned case and place the laser

beams in one direction of the 3D space, i.e., V (r) = Vx sin
2 kx. The atoms can still move
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freely in the yz plane, and in x direction it is confined to each lattice site. Such a system

can be viewed as weakly coupled 2D planes, or quantum wells, and the inter-plane coupling

can be tuned by changing the laser power Vx.

If we apply another perpendicular laser beam with a different polarization or a slightly

different frequency to avoid interference with the first laser beam, the resulting potential

V (r) = Vx sin
2 kx + Vy sin

2 ky imposes lattice confinements in both x and y directions and

the atoms can move freely in z direction. The system can be viewed as weakly coupled 1D

tubes. A recent experiment searching for a FFLO superconductive phase has been applied

in such a quasi-one-dimensional system [33].

When adding the third perpendicular laser beam with a slightly different frequency, the

system can be viewed as zero-dimensional weakly coupled points, i.e., a 3D optical lattice

with lattice potential V (r) = Vx sin
2 kx+ Vy sin

2 ky + Vz sin
2 kz. The lattice potential Vx, Vy

and Vz can be tuned to form anisotropic lattices. Experiments studying the Bose-Hubbard

model [8] and Fermi-Hubbard Model [26] have been carried on 3D isotropic optical lattices.

There are many other possibilities than the above cases. For example, by intersecting

laser beams with some angles rather than perpendicular to each other, or adjusting the

frequency and the power of laser beams, triangular [66], honeycomb lattices [67, 17], and

unconventional bipartite square optical lattices [16, 15] can be formed in experiments. In

a word, different types of optical lattices can be achieved in experiments by manipulating

laser beams, which provides various platforms to study ultracold atoms in periodic lattice

potentials.

5.2 THEORY OF THE HUBBARD MODEL

5.2.1 From Field theory to Hubbard Model

In this section, we will discuss the theoretical approach to obtain Hubbard model from a

general second-quantized field theory. In current theoretical study on lattice systems, the

Hubbard model is extremely important and is the most widely used model. In 1998, D.

53



Jaksch et al. suggest that the optical lattice system is almost the best candidate to realize

Hubbard model [68].

The Hubbard model is a second-quantized model in the Wannier basis [69], where the

tight-binding approximation is applied. For simplicity, here we only consider a simple cubic

spin-independent optical lattice with N3 sites. We use j = (ji, j2, j3) to label the sites, where

the position of sites j is given by Rj = aj with lattice constant a.

As discussed before, the spatial lattice potential has the form Vol(r) =
∑

ν Vν sin
2(kν).

Here ν runs over x, y, and z, and k is the wave vector of the laser beams, where the lattice

constant is given by a = π/k. The lattice potential Vol can also be written as the sum of a

series of local potential Vol(r) =
∑

j Vloc(r−Rj) where

Vloc(r) =


∑

ν Vν sin
2(kν), r ∈

[
−a

2
, a
2

]
0, elsewhere.

(5.1)

Bloch’s theorem states that the eigenstates of a lattice system with periodic potential

can always be written in the form ϕk(r) = eik·ruk(r), where uk(r) is a periodic function

with the same period of the lattice. We call ϕk’s Bloch states. In solid state physics we

usually apply periodic boundary conditions to the system. The momenta are quantized as

k = (Nx, Ny, Nz)2π/Na and confined in the first Brillouin zone. The first Brillouin zone

corresponds to Nx, Ny, Nz ∈ [0, N − 1] with Nx, Ny, Nz integers. We can define the Wannier

functions

Wj(r) ≡ W (r−Rj) =
1√
N

∑
k

ϕk(r)e
−ik·Rj , (5.2)

and it can be shown that Wannier functions, which are relatively localized around each lattice

site Rj, also form a complete and orthogonal basis in the lattice system. Wannier functions

provide an alternative basis to describe the periodic lattice potential problems, which is very

useful in tight-binding limit where the particles are highly localized at each lattice site.

In general, both Bloch functions and Wannier functions are difficult to obtain. A com-

monly used approximation is called the tight-binding approximation. In this approach, the

Wannier functions can be found approximately by solving a local Schrödinger equation, and

then the Bloch functions can be constructed as the inverse Fourier transform of Eq. (5.2)

ϕk(r) =
1√
N

∑
j

Wj(r)e
ik·Rj . (5.3)
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In the tight-binding approximation, instead of using the full Vol to solve the Schrödinger

equation, we focus on the local potential Vloc Eq. (5.1) and solve the local Schrödinger

equation [
~2∇2

2m
+ Vloc(r−Rj)

]
φj(r) = εφj(r), (5.4)

where φj ≡ φ(r−Rj). Assuming the lattice potential is deep and particles are tightly bound

at each site, the above approximation is valid. We can write the solutions to Eq. (5.4) as

φnj(r), where n labels the nth eigenenergy εn. Because the states obtained from Eq. (5.4)

are highly localized at each site, their overlap between different sites is very small and can be

viewed as approximately zero, i.e., we have the orthogonal relationship
∫
d3rφ∗

nj(r)φn′j′(r) ≈

δnn′δjj′ . Therefore, φnj(r) can be used to approximate the Wannier function Wnj(r), and we

will see in the following that the index n labeling the different local energy states becomes

the band index.

With the above background knowledge on solid state physics, we can proceed to construct

the Hubbard model. The Hamiltonian can be written as

Ĥ = ĤK + ĤI , (5.5)

where

ĤK =
∑
σ

∫
d3rψ̂†

σ(r)

(
~2∇2

2m
+ Vol(r)− µσ

)
ψ̂σ(r)

ĤI =
1

2

∑
σσ′

∫
d3r

∫
d3r′ψ̂†

σ(r)ψ̂
†
σ′(r

′)VI(r− r′)ψ̂σ′(r′)ψ̂σ(r) (5.6)

are the single-particle kinetic energy and the inter-particle interaction parts. The field op-

erators can be expanded in the Wannier basis as

ψ̂σ(r) =
∑
njσ

Wnj(r)ĉnjσ ≈
∑
njσ

φnj(r)ĉnjσ, (5.7)

where ĉnjσ is the annihilation operator of Wannier state at site j with spin σ. The Wannier

function has no spin dependence since the lattice potential is spin-independent.
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We first consider the kinetic energy part ĤK in Eq. (5.6). The last term of ĤK is easy

to obtain by the orthogonality of Wannier functions as∑
njσ

µσ ĉ
†
njσ ĉnjσ. (5.8)

Now consider the first two terms in ĤK using Eq. (5.7), and we get∑
σ

∑
nn′jj′

ĉ†njσ ĉn′j′σ

∫
d3rφ∗

nj(r)

[
~2∇2

2m
+ Vol(r)

]
φn′j′(r). (5.9)

For simplicity, we only consider nearest neighbor hopping, which means regarding in the

summation over jj′, only |j− j′| = 0, 1 terms are taken into account. The lattice potential

Vol can be written as the sum of local potential Eq. (5.1), and by approximation we only

keep the local potential at sites j, j′. For j = j′, we only need to keep the Rj local potential

and get the onsite term ∑
σnj

εnĉ
†
njσ ĉnjσ. (5.10)

For the hopping term between nearest sites, without loss of generality, we consider j = 0 and

j′ = j+ex, where ex is the unit vector in x direction. The hopping integral term between

state n at j = (0, 0, 0) and state n′ at j′ = (1, 0, 0) in Eq. (5.9) is given by

tnn
′ ≡ −

∫
d3rφ∗

n(r)

[
~2∇2

2ma

+ Vol(r)

]
φn′(r−aex), (5.11)

which can be reduced to

tnn
′

= −
∫
d3rφ∗

n(r)

[
~2∇2

2ma

+ Vloc(r) + Vloc(r−aex)
]
φn′(r−aex),

= −1

2

∫
d3rφ∗

n(r) [Vloc(r) + Vloc(r−aex)]φn′(r−aex). (5.12)

To derive Eq. (5.12), we have used the orthogonal relation for φ’s.

The interaction part ĤI in Eq. (5.6) can be expanded in Wannier basis in a similar

manner. By considering only the onsite interaction and using Eq. (5.7) we get

ĤI =
1

2

∑
j,n1n2n3n4,σσ′

Un1n2n3n4 ĉ†n1σj
ĉ†n2σ′jĉn3σ′jĉn4σj,

Un1n2n3n4 =

∫
d3r

∫
d3r′φ∗

n1
(r)φ∗

n2
(r′)VI(r− r′)φn3(r

′)φn4(r). (5.13)
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The local function φ in Eq. (5.4) can be solved numerically and be applied into Eq. (5.12)

and Eq. (5.13). Then we get the hopping terms t and the interaction term U . Together with

Eq. (5.8) and Eq. (5.10), the Hubbard model Eq. (5.5) is obtained.

As an example, the simplest Bose-Hubbard model only considers the single-species bosons

with repulsive interaction loaded on the s band (the lowest energy band). By removing the

spin label σ and all the n’s (since we only consider the lowest energy band), we obtain the

Bose-Hubbard model

ĤBH = −t
∑
⟨ij⟩

(b̂†i b̂j + h.c.)− µ
∑
i

n̂i +
U

2

∑
i

n̂i(n̂i − 1). (5.14)

Here, n̂i = b̂†i b̂i is the number operator at site i, and t, U > 0 are the hopping and onsite

repulsive interaction. The ⟨ij⟩ means the summation over nearest neighbors. The chemical

potential µ here is the combination of Eq. (5.8) and Eq. (5.10), which tells the effective chem-

ical potential with respect to the local s-orbital eigenenergy. In Sec. 5.4, we will use mean

field theory to study this Bose-Hubbard model, and show the quantum phase transitions in

this system.

5.2.2 Harmonic Approximation

The coefficients t, U obtained before in general need numerical evaluation. Nevertheless, in

the tight-binding regime, we can use the harmonic approximation to estimate these coef-

ficients analytically as follows. We consider the site at origin with j = 0. If the lattice

potential is very deep, the wave function will be highly localized around r = 0, which means

we only need to consider the lattice potential near r = 0. Therefore, in Eq. (5.1), we are in

the region that kν ≪ 1, and the local lattice potential can be approximately described by

the following harmonic oscillator potential form

Vloc(r) ≈ V ′
loc(r) =

∑
ν

Vνk
2ν2 =

1

2
maω

2
xx

2 +
1

2
maω

2
yy

2 +
1

2
maω

2
zz

2, (5.15)

where ων =
√

2Vνk2/ma. The local Hamiltonian Eq. (5.4) reduces to a harmonic oscillator

problem with energy levels εn =
∑

ν(nν + 1
2
)~ων , where we have n = (nx, ny, nz) with
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nx, ny, nz non-negative integers. The eigenstates are given by φn(r) = φnx(x)φny(y)φnz(z),

where φnx(x) is the wave function of a 1D harmonic oscillator

φnx =

(
αx√

π2nxnx!

) 1
2

Hn(αxx)e
− 1

2
α2
xx

2

. (5.16)

Here, Hnx is nxth-degree Hermite polynomials and αx =
√
maωx/~. We can also express

αx as αx = (Vx/ER)
1
4 k where the recoil energy ER is defined as ER = ~2k2/2ma. It is the

kinetic energy of the atom after emitting a lattice photon with wave vector k, given that the

atom is initially at rest.

We can then evaluate the hopping term between different sites analytically under har-

monic approximation. First we consider hopping of s-band atoms, where the wave function

reads φ0(r) = φ0(x)φ0(y)φ0(z). Here φ0(ν) is the lowest wave function of 1D harmonic

oscillator

φ0(ν) =

(
αν√
π

) 1
2

e−
1
2
α2
νν

2

. (5.17)

For two Gaussian wave functions as in Eq. (5.17) highly localized at 0 and aex, the maximum

overlap is at the center between them, i.e., aex/2. Therefore, we can expand the potential

Vloc around aex/2, and then carry out the integral Eq. (5.12) analytically. The hopping

between nearest neighbors of s band in x direction reduces to

ts = Vxk
2

∫
d3rφ0

(
x− a

2

)
φ0(y)φ0(z)x

2φ0

(
x+

a

2

)
φ0(y)φ0(z) =

~2α2
x

4ma

e−
1
4
α2
xa

2

, (5.18)

where we have used Eq. (5.17) for φ. Similarly, we can evaluate the hopping of atoms on px

band in x direction as

tp = Vxk
2

∫
d3rφ1

(
x− a

2

)
φ0(y)φ0(z)x

2φ1

(
x+

a

2

)
φ0(y)φ0(z) = −1

2
(α2

xa
2 − 6)ts. (5.19)

Here, φ1(x) =
(
αν√
π

) 1
2 √

2αxe−
1
2
α2
xx

2
is the wave function of the first excited state in the

harmonic oscillator potential.

The interaction term Eq. (5.13) can be obtained similarly. For simplicity, we consider

the contact interaction VI(r− r′) = V δ(r− r′) in Eq. (5.13), and the interaction term for

the s-band atoms reduces to

U = V

∫
d3rφ4

0(x)φ
4
0(y)φ

4
0(z) = V

αxαyαz
(2π)3/2

. (5.20)
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Harmonic approximation provides a good estimation for the Wannier functions in the

tight-binding regime, which becomes better as we consider deeper lattice potential, as shown

in Table I of Ref. [70].

5.3 TIME-OF-FLIGHT IMAGING

Time-of-flight imaging is a widely used measuring method in ultracold experiments with

optical lattices. In this section, we will study the time-of-flight imaging from theoretical side.

This method is very useful and provides a simple way to detect the momentum distribution

of the state, which can be further interpreted to understand the state of the system.

Suppose we have an optical lattice system with atoms loaded, and we suddenly release

the lattice at t0 = 0. The atoms will then expand freely, and we can take snapshots of

them at a certain time t to obtain the density distribution in space. We assume that during

this free expansion the atoms are non-interacting. At time t, the average density at space

position r is given by the expectation in Heisenberg picture

n(r, t) = ⟨ψ̂†(r, t)ψ̂(r, t)⟩, (5.21)

where ψ̂(r, t) is the field operator at position r and time t, and ⟨...⟩ means the expectation

value with initial condition being the state at t0 = 0, i.e., the state of the optical lattice

system. The field operator ψ̂(r, t) can be written as

ψ̂(r, t) =

∫
d3r1⟨r, t|r1, 0⟩ψ̂(r1). (5.22)

Here, |r, t⟩ is the position basis at time t in Schrödinger picture, and ⟨r, t|r1, 0⟩ is just the

free single-particle propagator

G0(r, t; r1, 0) =
(ma

i~t

)3/2

ei
ma
2~t (r−r1)2 , (5.23)

which can be obtained directly from the Schrödinger equation or a path integral approach.

Then Eq. (5.21) reduces to

n(r, t) =
(ma

~t

)3
∫
d3r1d

3r2e
ima
2~t (r1−r2)(2r−r1−r2)⟨ψ̂†(r1)ψ̂(r2)⟩, (5.24)
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where ⟨...⟩ has the same meaning as before. We set the system at origin of coordinates and

assume that the system size is much smaller than the measurement distance r. Therefore,

we can use the approximation 2r− r1 − r2 ≈ 2r, since the term ⟨ψ̂†(r1)ψ̂(r2)⟩ selects r1, r2
only within the system size. Using Fourier transform we reach the expression

n(r, t) =
(ma

~t

)3

n(k), (5.25)

where n(k) = ⟨â†kâk⟩ with k = mar/~t. Here, âk is the annihilation operator of the free

particle of wave vector k. Eq. (5.25) can also be understood in a semi-classical way. At time

t after releasing the lattice, the atom density at distance r is proportional to the average

number of atoms at velocity r/t, with wave vector k = mar/~t correspondingly.

To map the above operator âk to lattice wave vector p, we apply the following transfor-

mation for âk as

â†k =

∫
d3r

∑
pjm

eip·RjW ∗
mj(r)e

−ik·râ†mp, (5.26)

where we have used the Bloch basis, Wannier basis, and real space expansions subsequently.

Here the summation over bands is labeled by m. For Wannier functions, we know that

Wmj(r) = Wm(r−Rj), which means the Wannier functions in the same band are the same

functions with different centers. Therefore, by adding the identity e−ik·Rjeik·Rj to each site

of Eq. (5.26), it reduces to

â†k =
∑
pjm

eip·RjW ∗
m(k)e

−ik·Rj â†mp, (5.27)

where Wm(k) is the Fourier transformation of the Wannier function with band index m.

Afterward, the summation over j in Eq. (5.27) yields a delta function δp,k̄. Here k̄ is the

wave vector in the first Brillouin zone corresponding to k, i.e., k = k̄ + G, where G is a

reciprocal lattice vector that makes k̄ in the first Brillouin zone. Eq. (5.27) then reduces to

â†k =
∑
m

W ∗
m(k)â

†
mk̄
, (5.28)

which leads to the result

⟨â†kâk⟩ =
∑
m

W ∗
m(k)Wm(k)⟨â†mk̄

âmk̄⟩. (5.29)
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With Eq. (5.29) plugging into Eq. (5.25), we reach the final expression

n(r, t) =
(ma

~t

)3∑
m

W ∗
m(k)Wm(k)⟨â†mk̄

âmk̄⟩. (5.30)

By measuring n(r, t), we can extract information such as momentum distribution of the

initial state (the optical lattice state) from Eq. (5.30). In the higher-orbital BEC problems

as discussed in Chapter 8, time-of-flight imagining method can provide direct evidence of

condensate at finite momentum.

5.4 BOSE HUBBARD MODEL

In this section, we will use mean field theory to study the simplest Bose-Hubbard model

Eq. (5.14) obtained in Sec. 5.2. Bose-Hubbard model is a very simple but extremely impor-

tant model in lattice problems [71]. We will show that by tuning the parameters, at T = 0 a

phase transition can happen in this model. Since the phase transition is at zero temperature,

this Bose-Hubbard model provides the simplest example of the quantum phase transition.

We consider single-species bosonic atoms loaded in a 3D cubic isotropic optical lattice

system. Recall the Bose-Hubbard model obtained in Sec. 5.2

ĤBH = −t
∑
⟨ij⟩

(b̂†i b̂j + h.c.)− µ
∑
i

n̂i +
U

2

∑
i

n̂i(n̂i − 1). (5.31)

First we consider the two limiting cases. When t/U → 0, the system is dominated by the

onsite repulsive interaction. At integer filling, e.g., one particle per site, the particles are

localized since a particle moving from one site to another will cost a repulsive energy U . It

is an insulating state called Mott insulator, which is also the eigenstate of n̂i. On the other

hand, when t/U ≫ 1, the system reduces to a weakly repulsive bosonic gas, which we know

has a condensate at low T . In this case, the local particle number is not a good quantum

number and the system is not insulator. Therefore, for intermediate values of t/U , there

should be some phase transitions between the above two limiting cases.
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To apply mean field analysis, we write b̂i as

b̂i = b̂i − ⟨b̂i⟩+ ⟨b̂i⟩, (5.32)

where ⟨...⟩ means the ground state expectation value. In the mean field approximation, we

assume that ⟨b̂i⟩ is independent of i and we can write it as

⟨b̂i⟩ = ϕ, (5.33)

where ϕ serves as the order parameter. By plugging Eq. (5.32) into Eq. (5.31) and ignoring

second order terms in b̂i − ⟨b̂i⟩, different sites are decoupled and identical, which yields the

mean field Hamiltonian of one site

ĤMF = −Zt(b̂†ϕ+ b̂ϕ∗)− µn̂+
U

2
n̂(n̂− 1)− Ztϕ2, (5.34)

where the previous b̂i and n̂i are rewritten as b̂ and n̂ since they are independent of i. Here,

Z is the number of neighbors of one site. In 3D cubic lattice case Z = 6. We now use

the Fock basis |m⟩, where m is the occupation number of the state. A cutoff of m must be

set, and for m ≫ µ/U , the state |m⟩ has very small contribution, which can be checked by

increasing m and observe how the result changes. We also set ϕ as real, which means ϕ∗ = ϕ

in Eq. (5.34).

Eq. (5.33) and Eq. (5.34) can be solved self-consistently. In Fig. 13(a) and (b), we show

the order parameter ϕ = ⟨b̂⟩, and the occupation number ⟨b̂†b̂⟩, with the cutoff M = 10. In

Fig. 13(c) and (d), we show the boundaries where ϕ changes from zero to non-zero value, and

where the particle number per site changes from integer to non-integer value. We can see

that when ϕ = 0, the particle number per site is integer, which indicates the Mott insulator

nature of the system. When ϕ ̸= 0, the particle number per site is fractional.

Mean field theory provides a qualitative study of the quantum phase transition in the

Bose-Hubbard model, which presents the existence of the two distinguished phases and a

fair estimation of the phase boundary. Numerical studies on this model have been carried

on and show more precise results. For example, a recent quantum Monte Carlo study of the

3D Bose-Hubbard model in a simple cubic lattice found that when the average filling factor

is ñ = 1, the phase transition is at (U/t)c = 29.34 [72, 70].
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Figure 13: Mean field result of Bose-Hubbard model. (a) The phase diagram showing the

value of the order parameter ⟨b̂⟩ = ϕ with varying chemical potential and hopping. (b)

The corresponding particle number per site. (c) The contour showing the transition where

ϕ changes from zero to non-zero value. (d) The contour showing the transition where the

particle number per site changes from integer to non-integer value.
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6.0 MULTI-BAND FERMIONIC SUPERCONDUCTIVITY

In this chapter, we will study a novel fermionic superconductivity for fermions in optical

lattices, where the pairing of two-species fermions with mismatched Fermi surfaces on s- and

p-orbital bands is studied [35]. Pairing with mismatched Fermi surfaces has long fascinated

researchers in the fields of heavy fermion and organic superconductors [73, 74, 75], color

superconductivity in quark matter [76], and, most recently, ultracold Fermi gases with spin

imbalance [23, 77, 78, 79]. In a classic two-component model for superconductivity, the

mismatch arises from the spin polarization of fermions in the same energy band. Its effect

was predicted to produce intriguing, unconventional superfluids such as Fulde-Ferrell-Larkin-

Ovchinnikov (FFLO) phase [31, 32], deformed Fermi surface [80, 81], and breached pair

phases [82, 83]. The limiting case of large spin imbalance was also studied to explore the

formation of Fermi polarons [84]. In parallel, the behavior of particles in the higher orbital

bands of optical lattices, due to large filling factors, thermal excitations or strong interactions,

is widely studied for novel orbital orderings of both bosons [12, 11, 13] and fermions [85, 86]

with repulsive interactions. Recently, interband pairing of unpolarized fermions was shown

theoretically to give rise to Cooper pair density waves [87].

We will focus on a fermion pairing phase resulting from the interplay of Fermi surface

mismatch and p-orbital band physics. In such a phase, the pair condensate wave function

is spatially modulated and has a p-wave symmetry. This phase arises in an attractive two-

component Fermi gas on anisotropic optical lattices under a previously unexplored condition

of spin imbalance. Namely the majority (↑) spin and the minority (↓) spin occupy up to

Fermi levels lying in the px and s bands, respectively. We show that pairings take place

near the respective Fermi surfaces of the spin ↑ fermions in px band and ↓ fermions in s

band. This induces a modulated p-orbital pair condensate that differs from the usual p-wave
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superfluids such as 3He. The state requires only an on-site isotropic contact interaction and

the pair is a spin singlet, while the 3He p-wave superconductivity has to involve anisotropic

interaction and spin triplet. The modulation wave vector of the order parameter is Q ≈

kF↑ + kF↓, where kF↑, kF↓ are Fermi momenta for spin ↑ and ↓ species, respectively. This

2kF momentum dependence is an unprecedented signature in superfluids other than the spin-

and charge- density waves. In the strongly attractive limit, tightly bound pairs condense

at finite momentum Q, which realizes an unconventional Bose-Einstein condensate beyond

Feynman’s no-node theorem [12, 11, 88, 13, 89].

6.1 FULDE-FERRELL-LARKIN-OVCHINNIKOV SUPERCONDUCTIVITY

In this section, we will discuss the FFLO superconductivity, which can help better understand

the multi-band fermionic superconductivity afterward. Consider a two-component fermionic

system where we label the two species as spin ↑ and ↓. In the usual BCS pairing mechanism,

the spin ↑ and ↓ components have the same populations as shown in Fig. 14(a). In the grand

canonic ensemble, it means that they have the same chemical potential µ↑ = µ↓. As a result,

the two Fermi spheres are identical in momentum space. With attractive interaction, a k ↑

fermion can be paired with a −k ↓ one. All the fermions near the Fermi surface can be

paired in this manner, and all the pairs have the same center-of-mass momentum (CMM),

which is zero.

In contrast, in the case of FFLO superconductivity, the two species do not have the

same population, i.e., µ↑ ̸= µ↓, and the Fermi surfaces mismatch (Zeeman splitting) occur as

shown in Fig. 14(b). Such Fermi surfaces can be realized by a ultracold fermionic gas with

two species of different particle numbers. In this case, there is no way to pair the fermions

such that all the Cooper pairs have the same CMM, and the superconductivity is greatly

suppressed. However, if the interaction is strong enough and exceeds the Chandrasekhar-

Clogston limit [90, 91], the pairing can still happen via the usual BCS scheme and the

induced Cooper pairs have finite CMM. A recent theoretical study on FFLO phase in cold

atom context shows that in a 3D isotropic case, the FFLO phase only occupies a very small
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Figure 14: (a) The Fermi surfaces and pairing in BCS case where µ↑ = µ↓, and the Fermi

surfaces are the same for the two species. Green circle indicates the matched Fermi surfaces

and the arrows denote the paired fermions k ↑ and k ↓. (b) The Fermi surfaces in isotropic

3D FFLO case where µ↑ ̸= µ↓, and the Fermi surfaces are mismatched. Red (Blue) circle:

the Fermi surface for spin ↑ (↓) fermions. There is no way to make all the pairs have the

same CMM. (c) The Fermi surfaces and pairing in quasi-one-dimensional FFLO case where

µ↑ ̸= µ↓. By pairing the k ↑ fermion with −k+ q ↓ fermion, all the pairs can have roughly

the same CMM.

portion in the phase diagram, which is practically undetectable in experiments [77]. Until

now, people have not found concrete experimental signatures of FFLO phases in materials

yet.

An important theoretical breakthrough regarding FFLO phases in ultracold atoms is

the proposal of realizing FFLO phase in a quasi-one-dimensional system [79], which can be

implemented in experiments by optical lattices as discussed in Chapter 5. The quasi-one-

dimensional system has such advantages that it has nested Fermi surfaces to maximize the

pairing, and meanwhile it is not a 1D system where the true long range order is absent.

As shown in Fig. 14(c), by pairing fermions of momentum k ↑ with −k+ q ↓, all the

fermionic pairs have roughly the same CMM as q. An experiment searching for FFLO

superconductivity in such quasi-one-dimensional systems has been reported recently [33].

Since the Cooper pairs in FFLO superconductivity have non-zero CMM, we expect the
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order parameter to have momentum dependence. Two commonly used ansatz of the FFLO

order parameters have the form ∆e−iQ·x and ∆ cosQ · x, where the former is the FF order

parameter proposed by Fulde and Ferrell [31], and the latter is the LO order parameter

proposed by Larkin and Ovchinnikov [32]. In general, the LO order parameter has lower

energy than the FF one. The reason is that the cosine form of LO order parameter can

be viewed as a combination of FF order parameters with ±Q, which can pair the Fermi

surfaces on both sides. In the quasi-one-dimensional system discussed before, the Cooper

pair is composed by spin ↑ and ↓ fermions near their Fermi surfaces, and therefore we should

have Q ≈ kF↑ − kF↓ for the order parameter. Notice that, with proper filling and boundary

conditions, domain wall configuration of FFLO phases is also used as the ansatz to study

the phase diagram [79].

In the following sections, we will use these FF and LO ansatz for the order parameters

to study multi-band superconductivity, and explicitly show that the cosine form has lower

energy than the exponential form by mean field theory.

6.2 QUASI-ONE-DIMENSIONAL OPTICAL LATTICE SYSTEM AND

THEORETICAL MODEL

The system under consideration is at zero temperature and consists of two-component

fermions in a 3D cubic optical lattice with lattice constant a, described by the Hamilto-

nian

Ĥ =
∑
σ

∫
d3xψ̂†

σ(x)[−
~2

2m
∇2 + V (x)− µσ]ψ̂σ(x)

+g

∫
d3xψ̂†

↑(x)ψ̂
†
↓(x)ψ̂↓(x)ψ̂↑(x). (6.1)

Here ψ̂σ(x) is the fermionic field operator at x with spin σ =↑, ↓, V (x) is the lattice potential,

µσ is the chemical potential for spin σ fermions, and g < 0 is the contact attraction which

can be tuned by the Feshbach resonance. In particular, we consider the case where the
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lattice potential in the x (parallel) direction is much weaker than the other two (transverse)

directions, so the system behaves quasi-one-dimensionally.

As shown in Chapter 5, we expand ψ̂σ(x) =
∑

nr ϕn(x−r)ĉnr, where ϕn(x−r) is the nth

band Wannier function at lattice site r with ĉnr the annihilation operator in Wannier basis.

As a result, we obtain the usual attractive Hubbard model with nearest-neighbor hopping

between ith site with orbital band α and jth site with orbital band β

tαβ = −
∫
d3xϕ∗

α(x− ri)

[
−~2∇2

2m
+ V (x)

]
ϕβ(x− rj) (6.2)

and on-site attraction between orbitals

Uαβγη = g

∫
d3xϕ∗

α(x− ri)ϕ
∗
β(x− ri)ϕγ(x− ri)ϕη(x− ri). (6.3)

The lowest two energy bands are the s and px band (the py and pz band are much higher

in energy because of tighter confinement in the transverse directions). For brevity the px

band is simply called p band in the following. By filling fermions with spin ↑ to the p band

and spin ↓ to the s band, the Hamiltonian becomes

Ĥsp = −
∑
⟨r,r′⟩

(t∥sŜ
†
rŜr′ − t∥pP̂

†
r P̂r′ + h.c.)− µs

∑
r

n̂sr

−
∑
⟨r,r′′⟩

(t⊥s Ŝ
†
rŜr′′ + t⊥p P̂

†
r P̂r′′ + h.c.)− µp

∑
r

n̂pr

+ωb
∑
r

n̂pr + Usp
∑
r

n̂srn̂
p
r. (6.4)

Here, ⟨r, r′⟩ and ⟨r, r′′⟩ denote the nearest neighboring lattice sites in parallel and transverse

directions. t
∥
s and t

∥
p are the hopping amplitudes along the parallel direction for the s- and

p-band fermions respectively, while t⊥s = t⊥p = t⊥ are the hopping amplitudes in transverse

directions. Ŝr (P̂r) is the annihilation operator at lattice site r for s-band ↓ (p-band ↑)

fermions. n̂sr = Ŝ†
rŜr, n̂

p
r = P̂ †

r P̂r are the number operators, and µs, µp are the corresponding

chemical potentials. Usp is the attractive on-site interaction between s- and p-band fermions

and can be tuned by changing the scattering length using Feshbach resonance. ωb is related

to the band gap. In the tight binding region we assume ωb ≫ |Usp|, and consequently the

s-band fully filled spin ↑ fermions are dynamically inert and not included in the Ĥsp.
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6.3 DMRG STUDY IN ONE DIMENSIONAL SYSTEM

First we consider the pairing problem in the simplest case of 1D (t⊥ = 0), which is schemat-

ically shown in Fig. 15(a). The two relevant Fermi momenta are kF↓ (for s-band ↓ fermions)

and kF↑ (for p-band ↑ fermions). From a weak coupling point of view, to pair fermions

of opposite spin near their respective Fermi surfaces, the Cooper pairs have to carry finite

CMM due to Fermi surface mismatch. Furthermore, in order for all Cooper pairs to have

roughly the same CMM, the only choice is to pair fermions of opposite chirality. Note that

the dispersion of p band is inverted with respect to the s band, so pairing occurs between

fermions with momenta of the same sign but opposite group velocities. These elementary

considerations show that the CMM of the pair should be approximately the sum of two

Fermi momenta,

Q ≈ kF↑ + kF↓ . (6.5)

This result differs from that of the usual 1D spin imbalanced fermions within the same

band, where the FFLO pair momentum is the difference, Q ≈ |kF↑ − kF↓|, as found in a

two-leg-ladder system [92].

Mean-field theory and weak coupling consideration can provide only a qualitative picture

for 1D problems. To unambiguously identify the nature of the ground state, we use density

matrix renormalization group (DMRG) [93] to compute the pair correlation function. In the

numerical calculations, we used parameters t
∥
s = 1 as the unit of energy, t

∥
p = 8, µs = 1.7,

µp − ωb = −11, in which the ratio between ts and tp is chosen according to typical tight-

binding bandwidth ratio. Usp is tunable with Feshbach resonance. We have tried various

parameters in the DMRG and mean field calculations for 1D and quasi-one-dimensional

cases respectively, and consistently found the p-orbital pair condensate. In the following

calculation we will focus on Usp = −9. The truncation error is controlled in the order of

10−7 or less. Eq. (6.5) predicts Q ≈ kF↑ + kF↓ = 0.435π/a. Fig. 15(b) shows the pairing

correlation function in real space Cij = ⟨Ŝ†
i P̂

†
i P̂jŜj⟩ as a function of x = |i − j| for a chain

of N = 60 sites with open boundary condition, where the indices i and j are real space

positions. Since the system only has algebraic order, C(x) decays with x according to a

power law. On top of this, however, there is also an obvious oscillation. A curve fit with
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Figure 15: (a) A schematic illustration showing the pairing between s- and p-band fermions.

The s band is also fully occupied with ↑ fermions (not shown). (b) The spatial variation of

the pairing correlation C(x) for Ns = 49, Np = 15 according to DMRG. The blue scatters

are the DMRG result and the solid line is the fitting using function a cos(qx + b)/xη + c.

The inset in (b) shows the s- and p-wave Wannier functions in momentum space, which

are elongated in the transverse direction (in real space they are compressed in transverse

direction). The s-wave Wannier function has even parity while the p-wave Wannier function

has odd parity.

formula C(x) = a cos(qx + b)/xη + c, shown in Fig. 15(b), yields a period of q = 0.438π/a,

which is in good agreement with the wave number given by Eq. (6.5) before. We also get

η = 1.62 from the fit. The Fourier transform of the pair correlation function

Cq =
1

N

∑
i,j

eiq(i−j)Cij (6.6)

is peaked at q = 0.426π/a (to be plotted in Sec. 6.6). These features of the pair correlation

function are the signature of the existence of the 2kF CMM pairing in our system [94, 95].
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6.4 MEAN FIELD THEORY IN QUASI-ONE-DIMENSIONAL SYSTEM

Now we move on to the quasi-one-dimensional system where a weak transverse hopping

t⊥ ≪ t∥ is added. We carry out a mean-field analysis of Hamiltonian Ĥsp by introducing the

s-p pairing order parameter

∆r = Usp⟨ŜrP̂r⟩, (6.7)

where ⟨...⟩ means the ground-state expectation value. Two different trial ground states

are investigated, the exponential wave ∆r = ∆eiQ·r, which is analogous to the FF phase

and the cosine wave ∆r = ∆cosQ · r, which is analogous to the LO phase. Q and ∆

are determined self-consistently by minimization of ground-state energy ⟨Ĥsp⟩. Transverse

hopping introduces a small Fermi surface curvature and spoils the perfect nesting condition

as in the pure 1D problem above. However, the curvature is small for weak t⊥. Thus, we

expect Q pointing almost along the parallel direction, Q = Q(1, 0, 0), in order to maximize

the phase space of pairing.

The mean-field Hamiltonian for the exponential wave can be diagonalized in momentum

space by standard procedure as follows. We rewrite the interaction term in Eq. (6.4) as

Usp
∑
r

n̂srn̂
p
r = Usp

∑
r

[(
P̂ †
r Ŝ

†
r − ⟨P̂ †

r Ŝ
†
r⟩
)
+ ⟨P̂ †

r Ŝ
†
r⟩
] [(

ŜrP̂r − ⟨ŜrP̂r⟩
)
+ ⟨ŜrP̂r⟩

]
. (6.8)

By assuming that P̂ †
r Ŝ

†
r − ⟨P̂ †

r Ŝ
†
r⟩ and ŜrP̂r − ⟨ŜrP̂r⟩ are small (mean field approximation)

and ignoring the product of them, we obtain

Usp
∑
r

n̂srn̂
p
r ∼ −

∑
r

P̂ †
r Ŝ

†
r∆r + h.c.+

|∆r|2

Usp
. (6.9)

With the exponential ansatz ∆r = ∆eiQ·r, we can rewrite Eq. (6.4) and Eq. (6.9) in momen-

tum space by Fourier transform. It leads to

Ĥsp =
∑
k

(ξskŜ
†
kŜk + ξpkP̂

†
kP̂k)−∆

∑
k

(P̂ †
Q−kŜ

†
k + h.c.)− N3∆2

Usp
. (6.10)

Here we have the dispersion

ξsk = −2t∥s cos kxa− 2t⊥ cos kya− 2t⊥ cos kza− µs,

ξpk = 2t∥p cos kxa− 2t⊥ cos kya− 2t⊥ cos kza− µp + ωb, (6.11)
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and Ŝk (P̂k) is the momentum space annihilation operator at lattice momentum k for s-band

↓ (p-band ↑) fermion, which is the Fourier transform of Ŝr (P̂r). N
3 is the total number of

sites.

By introducing Nambu Spinor Ψ̂†
k = (Ŝ†

k, P̂Q−k), we can rewrite the Hamiltonian as

Ĥsp =
∑
k

Ψ̂†
kHkΨ̂k +

∑
k

ξpk −
N3∆2

Usp
(6.12)

where

Hk =

 ξsk −∆

−∆ −ξpQ−k

 . (6.13)

Eq. (6.12) is in quadratic form and can be diagonalized. At T = 0, we get the ground

state energy

⟨Ĥsp⟩ =
∑

k,γ=±

Θ(−λ(γ)k )λ
(γ)
k +

∑
k

ξpk −
N3∆2

Usp
. (6.14)

Here Θ is a step function, and

λ
(±)
k =

1

2
[ξsk − ξpQ−k ±

√
4∆2 + (ξsk + ξpQ−k)

2] (6.15)

is the eigenenergy of the Bogoliubov quasiparticles. As evident from these formulas, the pair-

ing occurs between an s-band fermion of momentum k and a p-band fermion of momentum

Q− k. The order parameter ∆ can be solved self-consistently from Eq. (6.7), yielding

1 =
Usp
N3

∑
k

Θ(−λ(+)
k )−Θ(−λ(−)

k )√
4∆2 + (ξsk + ξpQ−k)

2
. (6.16)

The cosine wave ansatz ∆r = ∆cosQ · r is spatially inhomogeneous at each lattice site,

and we need to to numerically diagonalize the full Hamiltonian Eq. (6.4) for a finite size

lattice. We introduce a vector of dimension 2N

α̂†
kykz

= (Ŝ†
k1xkykz

...Ŝ†
kNx kykz

, P̂k1x,−ky,−kz ...P̂kNx ,−ky ,−kz), (6.17)
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Figure 16: The energy per site of the FF phase (green) and the LO phase (red) as function

of the pair wave vector Q for transverse hopping (a) t⊥ = 0.05 and (b) t⊥ = 0.1. For each

Q, the ∆ is determined self-consistently. Energy at −Q is the same as that at Q.

where knx = 2πn/Na is the discrete momentum in the x direction. The components of α obey

anticommutation relation {α̂†(m1)
kykz

, α̂
(m2)
kykz

} = δm1m2 , where m1,m2 labels the corresponding

operator component of α. The Hamiltonian takes the compact form

Ĥsp =
∑
kykz

α̂†
kykz

Hkykz α̂kykz +
∑
k

ξpk −
(1 + δQ,−Q)N

3∆2

2Usp
. (6.18)

Since Hkykz is real and symmetric, it can be diagonalized by an orthogonal transforma-

tion α̂kykz = Dkykz β̂kykz to yield 2N eigenvalues El
kykz

. Here Dkykz is an orthogonal matrix

that makes D−1
kykz

HkykzDkykz diagonalized. The new operators β̂kykz automatically obey the

fermionic anticommutation relationship {β̂†(m1)
kykz

, β̂
(m2)
kykz

} = δm1m2 . We get the ground state

energy,

⟨Ĥsp⟩ =
∑
ky ,kz

2N∑
l=1

El
kykzΘ(−El

kykz) +
∑
k

ξpk

−N
3∆2

2Usp
(1 + δ−Q,Q) , (6.19)
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and the gap equation,

∆ =
2Usp

N3(1 + δ−Q,Q)

∑
k

∑
l

Dm1,l
kykz

Dm′
1,l

kykz
Θ(El

kykz). (6.20)

Here, l labels the eigenenergy, and m1, m
′
1 labels the matrix elements corresponding to the

original S, P operators in the gap equation.

The parameters used in the mean-field calculations are the same as in the 1D case with

small t⊥’s added, and we still expect that the order parameter has the momentum around

0.435π/a as before. In our calculation, we test all the possible Q’s, and for each Q we self-

consistently solve for ∆ and get the energy. Afterward, we compare the energies for all the

Q’s, and the minimum one is the true ground state. We choose N = 60 the same as before,

which means the quasi-one-dimensional optical lattice has N3 = 603 lattice sites. In the case

t⊥ = 0.05, the ground state is the cosine wave phase with Q = 0.433π/a and ∆ = 0.822.

The ground state energy per site is −2.5927, lower than the noninteracting value −2.5896.

When t⊥ = 0.1, the ground state is also the cosine wave phase with Q = 0.433π/a and

∆ = 0.542. The ground state energy per site is −2.5955, lower than the noninteracting value

−2.5949. Fig. 16 shows the calculated energy for different Q’s (Q has discretized values on

a finite size lattice) and transverse hoppings, and we can see that the LO phase has lower

energy than FF phase. These results confirm that (i) the cosine wave state has lower energy

than the exponential wave state, (ii) the order parameter has the momentum close to the

prediction of Eq. (6.5), and (iii) larger transverse hopping tends to destroy the p-orbital pair

condensate, which is indicated by the fact that the energy gain for larger transverse hopping

is smaller than for smaller transverse hopping.

An interesting feature of the p-orbital pair condensate in quasi-one-dimensional is the

possible existence of Fermi surfaces with gapless energy spectrum. We monitor the fermion

occupation numbers, i.e. ⟨Ŝ†
kŜk⟩ and ⟨P̂ †

kP̂k⟩ for increasing transverse hopping. The results

are shown in Fig. 17. For the small t⊥, they take the usual BCS form and vary continuously

from 1 (red) to 0 (blue) across the bare free Fermi surfaces (the black dashed curves), as

shown in Figs. 17(a) and (c) for t⊥ = 0.05. One can see that the color near Fermi surfaces

changes from red to blue continuously in both Figs. 17(a) and (c). For larger transverse

hopping, sharp Fermi surfaces characterized by a sudden jump in ⟨Ŝ†
kŜk⟩ and ⟨P̂ †

kP̂k⟩ appear.
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Figure 17: The occupation of s and p band within the paired state for different transverse

hopping t⊥. Only the first quadrant of the Brillouin zone in the kx − ky plane is shown,

kz = π/a. The black dashed lines indicate the “bare” Fermi surfaces for corresponding

noninteracting fermions (Usp = 0). (a) ⟨Ŝ†
kŜk⟩ for t⊥ = 0.05; (b) ⟨Ŝ†

kŜk⟩ for t⊥ = 0.1; (c)

⟨P̂ †
kP̂k⟩ for t⊥ = 0.05; (d) ⟨P̂ †

kP̂k⟩ for t⊥ = 0.1.

This is clearly shown in Figs. 17(b) and (d) for t⊥ = 0.1 as the occupation number changes

discontinuously from 1 (red) to 0 (blue). One can see that the color near Fermi surfaces

changes from red to blue suddenly for ky roughly in between 0.5 and 1 in both Figs. 17(b)

and (d). It can be understood qualitatively as follows. As t⊥ increases, the original Fermi

surfaces acquire a larger curvature in the transverse directions and the pairing condition in

Eq. (6.5) cannot be satisfied everywhere anymore. Therefore in some regions fermions are

not paired and Fermi surfaces survive. One should also note that the calculation is based

on the assumption that t⊥ ≪ t∥, which predicts that Q is in the parallel direction. This

prediction should fail as t⊥ increases beyond certain critical values.

75



6.5 PHASE DIAGRAM

Now, we systematically explore the phases of our system for general band filling and spin

imbalance. Since we have s- and p- bands with different bandwidths, we introduce two

dimensionless quantities for the chemical potentials µs and µp

µ̃s =
µs
2ts

=
µs
2
,

µ̃p =
µp − ωb
2tp

=
µp − ωb

16
. (6.21)

Thus, for a non-interacting system, −1 < µ̃s, µ̃p < 1 control the filling for the s and p-band

fermions respectively. We then define the quantities

µ =
µ̃s + µ̃p

2
,

h =
µ̃s − µ̃p

2
, (6.22)

as the parameters controlling the average filling and polarization in the phase diagram. The

phase at−µ,−h is the same as the state at µ, h, since the transformation µ, h→ −µ,−h gives

µs, µp → −µs,−µp, and the mean-field Hamiltonian with µs, µp is identical to Hamiltonian

with −µs,−µp via a particle-hole transformation up to a constant.

We have four possible phases in such a system as shown in Fig. 18. As before, we ignored

the inert fully filled s band of spin ↑ fermions. We consider the p band of spin ↑ fermions

and s band of spin ↓ fermions. When one of these two bands is empty and the other is filled,

the pairing does not happen and we call it normal phase I (N1) as in Fig. 18(a). When one

of these two bands is fully filled and the other is partially filled, the pairing also does not

happen since the fully filled band is inert. We call it normal phase II (N2) as in Fig. 18(b).

When both of them are partially filled, fermions near Fermi surfaces from the two bands

will be paired and the system is in superfluid phases as shown in Figs. 18(c) and 18(d).

In the superfluid regime, when h is small, the pairing momentum prefers Q = π/a and we

call it commensurate p-orbital pair condensate (CpPC). It is a special case of the p-orbital

pair condensate, where the occupation numbers of s-band spin ↓ fermions and p-band spin ↑

fermions are the same. It is similar to the conventional unpolarized pairing (BCS), where the

76



(a) (b) (c) (d)

Figure 18: Band occupation for the four possible phases in the system. The band colored

in red represents the s band occupied by spin ↓ fermions and the band colored in green

represents the p band occupied by ↑ fermions. The spin ↑ fermions in the s band are not

shown since they are inert. (a) Normal phase I (N1) with one band empty and the other

partially filled. Here we only show the case with s band empty. We can also have the case

with p band empty, which is not shown. (b) Normal phase II (N2) with one band fully

filled and the other partially filled. Here we only show the case with p band full. We can

also have the case with s band full, which is not shown. (c) Commensurate p-orbital pair

condensate (CpPC) with both bands partially filled. The occupation numbers are the same.

(d) Incommensurate p-orbital pair condensate (IpPC) with both bands partially filled. The

occupation numbers are different.

spin ↑ fermions and spin ↓ fermions have the same population. However, in BCS pairing the

CMM of the pair has the propertyQ = 0, while hereQ = π/a. To understand the momentum

π/a preference, note that in conventional BCS case, the two species of fermions have the

same energy spectrum and the pairing is between two fermions with opposite momenta,

which leads to the CMM of pair Q = 0. Here, the structure of energy spectrum of p band is

different from s band. The equal occupation numbers mean kF↑ = π/a − kF↓, which gives

rise to Q = kF↑ + kF↓ = π/a, as shown in Fig. 18(c). At last, when h is large, the pairing

momentum stays at a general Q ≈ kF↑+ kF↓ and the occupation number for the two species

of fermions differ. We call it incommensurate p-orbital pair condensate (IpPC) as shown in
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Fig. 18(d).

To determine the phases, we minimize the energy as a function of the pairing amplitude

∆ and pairing momentum Q by mean-field analysis using the cosine wave function as outlined

in the previous section. When the minimum is realized at ∆ = 0, it is normal phase. When

∆ is finite, there are two possibilities. When Q = π/a, it is CpPC. When Q ̸= π/a, it is

IpPC. For the transition between superfluid and normal phase, and the transition between

CpPC and IpPC, the behaviors of energy show that the phase transitions are first order in

a lattice system. Between the superfluid and normal phases, near the phase transition, ∆

changes suddenly from 0 to finite, and the energy shows two local minima at ∆ = 0 and

∆ ̸= 0. Between CpPC and IpPC, the pairing momentum changes from Q = π/a to Q ̸= π/a

discontinuously, and the energy as a function of Q also has two local minima at Q = π/a and

Q ̸= π/a. Thus, they are first-order phase transitions according to our mean field analysis.

Therefore, we can determine the phase boundaries between normal phase and superfluid

phase by monitoring ∆ changing from zero to finite. We can also monitor Q changing from

Q = π/a to Q ̸= π/a to determine the phase boundaries between CpPC and IpPC.

In Fig. 19, we present a phase diagram for t⊥ = 0.05. An illustrative physical understand-

ing about this phase diagram is as follows. In Fig. 19, when chemical potential difference h

is small and the two bands are still partially filled to ensure the pairing, the system tends

to stay in CpPC where Q = π/a. It is similar to the conventional BCS superfluid case.

As h becomes larger, as long as the average filling µ is not too large or small and the two

bands are still both partially filled, the pairing persists despite the spin imbalance and the

system is in IpPC. If µ gets more and more negative, the average filling becomes smaller

and smaller, and at certain µ, h, p band of spin ↑ fermions will be empty and the system

will become N1 without pairing. Similarly, when µ is large and positive, the average filling

is very high and at certain µ, h, the s band of spin ↓ fermions will be fully occupied, and

the system becomes N2 without pairing. The almost straight phase boundaries in Fig. 19

between IpPC and normal phases indicate that these phase transitions are due to the change

of band occupation as empty ↔ partially filled ↔ fully filled. In Fig. 19, the phase boundary

between IpPC and N1 corresponds to the critical condition that the s band of spin ↓ fermions

is partially filled while the p band of spin ↑ fermion becomes empty, and the almost straight
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Figure 19: The phase diagram of the p-orbital pair condensate for t⊥ = 0.05. µ and h are

defined in the main text. The crosses show the data points for the phase boundary obtained

from the numerical procedure, and by connecting them we get the phase boundaries. CpPC:

the s band of spin ↓ fermions and the p band of spin ↑ fermions have the same occupation

numbers. IpPC: the s band of spin ↓ fermions and the p band of spin ↑ fermions have

different occupation numbers. N1 with the p band of spin ↑ fermions empty and the s band

of spin ↓ fermions partially filled. N2 with the p band of spin ↑ fermions partially filled and

the s band of spin ↓ fermions fully filled.

phase boundary corresponds to the condition that µ̃p = µ − h = −1 (but, as before, this

is only an approximate argument due to the presence of interaction). Similarly, the almost

straight phase boundary between IpPC and N2 corresponds to the condition that the s band

of spin ↓ fermions becomes fully filled, while the p band of spin ↑ fermions is partially filled,

or µ̃s = µ + h = 1. All the phase transition lines in Fig. 19 are mean field results, and

these straight lines are expected to be corrected by quantum critical fluctuations. The phase

diagram shows that the p-orbital pair condensate happens in large parameter regimes and
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Figure 20: (a) The momentum distribution function nq of projected molecules for a quasi-

one-dimensional system with t⊥ = 0.05 (all other parameters are same as before) according

to mean field theory. Here, q = qx, qy = qz = 0. (b) Pair correlation function Cq for a 1D

chain of N = 60 sites obtained by DMRG. The peak is located at 0.433π/a in both figures,

which corresponds to the value kF↑ + kF↓ = (Ns +N −Np)π/Na for Ns = 49 and Np = 15.

The time-of-flight experiment is predicted to show the momentum peak at 0.433π/a in this

case.

is closely related to the band and orbital properties in the optical lattice systems.

6.6 TIME-OF-FLIGHT EXPERIMENTS

The p-orbital pair condensate phase can inspire important experimental signatures for finite

momentum condensation of bosonic molecules in higher orbital bands. By fast sweeping the

magnetic field (and thus the interaction) from the BCS region to the deep BEC region across

a Feshbach resonance [41, 42, 43, 44] as mentioned in Sec. 3.2, the BCS pairs are projected

onto Feshbach molecules, which can be further probed for example by time-of-flight images

[12]. The bosons produced effectively reside in p band and are stable, since by Pauli blocking

the filled s-band fermions will prevent the the p-wave bosons from decaying [12]. Here, we use
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a simple model [43, 44] to evaluate the momentum distribution of molecules after projection

nq =
∑
k,k′

f ∗
kfk′⟨Ŝ†

k+q/2P̂
†
−k+q/2P̂−k′+q/2Ŝk′+q/2⟩, (6.23)

where fk is the molecular wave function, and the correlation function can be evaluated

within mean field theory [44]. For fast sweeps, the molecular size is small compared to

lattice constant, and the molecular wave function can be approximated by a delta function

in real space (a constant
√
1/N in momentum space). By this assumption, nq is the same

quantity as Cq in Eq. (6.6). Fig. 20(a) shows the nq of p-wave Feshbach molecules and

a peak is located at 0.433π/a. Fig. 20(b) shows Cq from Eq. (6.6), based on the DMRG

results shown in Fig. 15(b). The time-of-flight experiment is predicted to distribute peaks

corresponding to that in Fig. 20. Note that for the 1D problem (Fig. 20(b)), the delta-

function peak is replaced by a cusp characteristic of power law due to the lack of long range

order, and there is no singularity in Cq.
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7.0 ORBITAL DENSITY WAVES AND LIQUID CRYSTAL PHASES

In this chapter, we will study the interacting single-species p-orbital fermionic atoms in 2D

square optical lattices with both attractive and repulsive interactions [36]. We find that

the quasi-one-dimensional feature of the Fermi surfaces of the double degenerate px and py

orbital bands gives rise to the following interesting orderings. For attractive interactions, it

induces charge density wave (CDW) ordering in a wide filling regime where the superfluidity

is greatly suppressed. For repulsive interactions, orbital density wave (ODW) ordering is

induced. Both CDW and ODW show stripe or checkerboard patterns in space, depending

on the filling. We further show that our system is a simple, clean, and highly tunable system

to realize possible nematic and smectic liquid crystal phases, which is a topic of great current

interest in correlated condensed matter physics [96, 97, 98, 99]. In this chapter, we will call

the single-species fermions spinless fermions, as the commonly used terminology in cold atom

context.

7.1 SYSTEM AND MODEL

Consider a system of spinless fermions with atomic mass ma filled up to degenerate px and

py orbital bands in a 2D square lattice. Such a system can be realized by considering an

anisotropic 3D optical lattice with lattice potential Vop =
∑

ν=x,y,z Vν sin
2(kLrν), where kL

is the wave vector of the laser beams and the lattice constant is a = π/kL. By setting

Vz ≫ Vx = Vy, we realize dynamically decoupled 2D square lattice layers in xy plane, each

being a 2D system. The 2D system is then filled with spinless fermions such that the lowest

s band is fully occupied and two degenerate px and py orbital bands are partially filled.
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In general, the band gap between s and p bands is much larger than the interaction, and

the s-band fermions are dynamically inert. By expanding the fermionic field operators in

Wannier basis and using tight-binding approximation, we obtain the p-band Fermi Hubbard

model

Ĥ =
∑
rαβ

tαβ(Ĉ
†
α,r+eβ

Ĉα,r + h.c.)− µ
∑
rα

n̂α,r + g
∑
r

n̂x,rn̂y,r (7.1)

to describe the system with chemical potential µ. Eq. (7.1) only contains nearest-neighbor

hopping and onsite interaction, since in typical ultracold atom experiments next-nearest-

neighbor hopping and nearest-neighbor interaction are negligible. In Eq. (7.1), Ĉα,r is the

annihilation operator of Wannier state pα at site r, and n̂α,r = Ĉ†
α,rĈα,r is the number

operator for pα orbital state at site r. The subscripts α and β run over x and y. The

hopping term tαβ is given by tαβ =
[
t∥δαβ − t⊥(1− δαβ)

]
, where the parallel (transverse)

hopping t∥ (t⊥) means the hopping of pα orbital fermions at site r to the nearest neighbor

r + eβ, with β = α (β ̸= α). Here, eα is the lattice unit vector in α direction. The

last term is the onsite interaction between px and py orbital fermions induced by p-wave

scattering, with g the coupling constant. In the harmonic approximation, a standard tight-

binding calculation gives the transverse hopping t⊥ = e−(η/2)2Vx/2, and the parallel hopping

t∥ = |η2/2 − 1|t⊥. The parameter η = αxa is typically a large number (≫ 1) and therefore

t∥ ≫ t⊥. Here, αν = (Vν/ER)
1/4kL, where we define a physical constant ER = ~2k2L/2m

named the recoil energy. The onsite interaction is given by g = gpα
2
xαz(22α

2
x+α

2
z)/32(2π)

3/2

in the pseudopotential approach with coupling constant gp [85].

7.2 FERMI SURFACE INSTABILITIES

It is well known that nesting Fermi surfaces are crucial to realize some spontaneously

translational-symmetry breaking phases [100], e.g., CDW, spin density wave (SDW), and

FFLO. Here, nesting Fermi surfaces mean that for the fermionic pairs (particle-particle pair

in the superconductive channel, and particle-hole pair in the density channel), there is a

way to pair all the fermions near Fermi surfaces while keeping all the pairs have roughly

the same center-of-mass momentum [100]. For the lowest s band in a 2D square lattice, the
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Figure 21: A schematic diagram illustrating how the (2kF , 2kF ) momentum of density fluctu-

ation satisfies the nesting Fermi surface condition. Red (Green) solid curve: Fermi surfaces

of px (py) orbital band. Blue dashed line: Fermi momenta of px and py orbital bands. Black

solid arrow: the (2kF , 2kF ) momentum of density fluctuation simultaneously satisfying the

nesting Fermi surface condition for both px and py orbital bands.

nesting Fermi surfaces for particle-hole pairs only occur at half filling assuming only nearest-

neighbor hopping. In contrast, in our system the nesting of quasi-one-dimensional px and py

Fermi surfaces as shown in Fig. 21 is independent of filling for a wide range of µ, as long as

t⊥ ≪ t∥. In Fig. 21, px and py Fermi surfaces are perpendicular to each other, which greatly

suppresses the Cooper instability from particle-particle channel scattering. The reason is

that in order to induce Cooper instability, all the fermion pairs need to have almost the

same CMM, which is impossible here with each particle-particle pair composed by one px

and one py orbital fermions, given only onsite interaction in Eq. (7.1). In contrast, each px

(py) particle-hole pair is composed by one particle and one hole within the px (py) orbital
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band, which benefits from the nesting Fermi surface condition. To simultaneously satisfy

the nesting Fermi surface condition for both px and py orbital bands in the density channel,

the momentum of density fluctuation should be

Q1,2 ≈ (2kF ,±2kF ), (7.2)

as shown by the black arrow in Fig. 21, where kF is Fermi momentum for each band.

To illustrate the above statement quantitatively, we study different instabilities in our

system by random phase approximation (RPA) as follows. RPA is the summation of all the

ring diagrams as a many-body approach, which is used to calculate the linear response to

an external potential [52, 60], and it yields the same result as the response of a free particle

system to the self-consistent field as a single-particle approach [101].

First we discuss the validity of RPA. Our system can be viewed as two sets of non-

interacting 1D spinless Fermi chains perpendicular to each other, as one set in x-direction

and the other in y-direction. The x-chains (y-chains) are weakly coupled by small transverse

interchain hopping in the y (x) direction, and show quasi-one-dimensional Fermi surfaces

(Fig. 21). The inter-orbital interaction between px and py fermions is then turned on, which

couples the motion of particles in the x-direction and that in the y-direction.

In general, weakly coupled 1D Fermi chains with intrachain interaction cannot be studied

by RPA [102] because of the Luttinger liquid behavior in such quasi-one-dimensional systems.

The well defined (fermionic) single-particle excitations, which are required by RPA, are

absent in Luttinger liquids.

To understand the difference between Luttinger liquid (1D) and Fermi liquid (2D and

3D), we consider the scattering process between two particles in different dimensions. An

elastic scattering process in 1D between two particles with equal mass cannot change the

momentum distribution of the two identical particles, because the particles are confined

in one direction. This unique feature makes the excitations in 1D systems be collective,

i.e., single-particle fermionic excitations are not well defined, and Landau’s Fermi liquid

description cannot apply [103]. In contrast, in a 2D or 3D system, the direction of the

particles can be changed during the scattering, which leads to the change of the momentum

distribution of the two particles. Single-particle fermionic excitations are well-defined in
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this case, where the Landau Fermi-liquid theory can apply. RPA requires the validity of

Landau’s Fermi liquid description, or in other words, the well-defined single-particle fermionic

excitations must present in the system. Therefore, RPA is valid in 2D or 3D, but not in 1D.

The key ingredient in our system is the existence of the inter-orbital interaction that

couples px and py fermions, which is a 2D scattering process. The momentum distribution

of the two scattering particles can be changed by such scattering process in our system.

As a result, although our system appears to be composed of 1D chains of weak interchain

tunneling, its dynamics is fundamentally 2D. As mentioned above, at high temperature, a

2D system is in a Fermi liquid phase with well defined single-particle fermionic excitations,

where RPA is valid.

Notice that, the interspecies interaction also induces higher order effective intraspecies

interactions. The induced intraspecies interaction is dynamically 1D, but they are much

weaker since they are higher order processes. With the effect of the intraspecies interaction

on the interspecies interaction neglected, for such a 2D system with one single dominant

interspecies interaction, RPA is well justified [104].

For the density channel, we define the density operator ρ̂α,q =
∑

k Ĉ
†
α,k+qĈα,k in momentum-

Matsubara frequency space for pα orbital band where α = x, y. The 2+1 momenta k and

q are defined as k ≡ (k, iωm) and q ≡ (q, iωn), where ωm = (2m + 1)πT and ωn = 2nπT

are fermionic and bosonic Matsubara frequencies. The density-density correlation function

in our system without interaction has the form

Π0
αβ(q) =

T

N2
⟨ρ̂α,qρ̂β,−q⟩0 = −δαβ

N2

∑
k

nF (ξα,k)− nF (ξα,k+q)

iωn − ξα,k+q + ξα,k
, (7.3)

where ⟨...⟩0 means thermal average without interaction. The spectrum of px orbital fermions

is ξx,k = 2t∥ cos kx − 2t⊥ cos ky − µ, and ξy,k has a similar form. The Fermi distribution

function nF is given by nF (ξk) = 1/(eξk/T + 1). At q = Q = (2kF ,±2kF ), t⊥ → 0 (perfect

nesting) and iωn = 0 (static limit), Eq. (7.3) reduces to

χ0 ≡ Π0
xx = Π0

yy ∼ D(EF )ln

(
ωD
kBT

)
(7.4)
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Figure 22: Feynman diagrams of density-density correlation functions of the same orbital

band Πxx and different orbital bands Πxy, and the pair-pair correlation function Π
PP
. Red

and green lines are the propagators of free px and py fermions.

in the continuous limit. In Eq. (7.4), D(EF ) is the density of states at Fermi surface, which

is approximately a constant for the whole Fermi surface in our p-band model, and ωD is

some energy cutoff.

When the interaction is turned on, the density-density correlation function Παβ(q) =

T
N2 ⟨ρ̂α,qρ̂β,−q⟩ can be evaluated by RPA as shown in Fig. 22, where ⟨...⟩ means thermal

average with interaction. Here we assume the interaction g is the small parameter for the

expansion. The reason for summarizing only the ring diagrams to infinite order in RPA

is that these ring diagrams are most divergent to all orders. For Coulomb interaction, the

justification of RPA is due to the 1/|q|2 form of interaction in momentum space [52]. Here

RPA is justified because each ring in Fig. 22 is a pair of Fermi propagators with divergence

at Q. Meanwhile, there are less such divergent pairs of Fermi propagators at Q in other

types of diagrams. Therefore, RPA captures the most dominant (divergent) terms in our

system.

We then evaluate the following correlation functions

Π± =
T

N2
⟨ρ̂±(q)ρ̂±(−q)⟩, (7.5)
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where ρ̂±(q) = ρ̂x,q ± ρ̂y,q are the total density and density difference between px and py

fermions, i.e., the CDW and ODW instability channels. Given that t⊥ → 0, q = Q =

(2kF ,±2kF ), and iωn = 0, Eq. (7.5) reduces to

Π± =
2χ0

1± gχ0
. (7.6)

Since χ0 ∼ Dln
(
ωD

T

)
, any arbitrarily small attractive (repulsive) interaction g < 0 (g > 0)

can induce divergence of Π+ (Π−) at sufficiently low temperature. Such divergence indicates

phase transition to the corresponding symmetry breaking phase.

In experiments, a small but finite t⊥ is inevitable, which makes the Fermi surface nesting

not perfect. Density waves do not exist even at T = 0 if the interaction is too small, since

χ0 is not guaranteed to diverge for non-perfect nesting even at T = 0. However, for a

non-perfect nesting, the same density wave ordering is generally expected to exist if the

interaction strength exceeds a certain critical value, i.e., if we increase g in Eq. (7.6). For

example, even if the Fermi surfaces between spin up and down fermions are Zeeman split

in the presence of a field, it is well known that the BCS superfluidity or superconductivity

persists up to a critical Zeeman splitting for a given interaction strength. The latter is known

as Chandrasekhar-Clogston limit [90, 91]. Increasing |g| is experimentally feasible due to the

high tunability of the interaction in optical lattices, e.g., by increasing the lattice potential.

Fig. 23 shows the phase transition temperatures from CDW instability evaluated by

RPA with small transverse hoppings t⊥ = 0, 0.04, and 0.08. We set the system size to be

N2 = 3002. The parallel hopping is set to be t∥ = 1 as the energy unit, and we choose

the interaction strength g = −2. Here we choose a finite g which is not small, in order

to obtain a relatively large phase transition temperature. It can be seen that although a

small t⊥ = 0.04 weakens the (stripe) density wave ordering, at a finite interaction g = −2

the (stripe) density wave still occurs. However, a stronger t⊥ = 0.08 destroys the (stripe)

density waves over a certain range of the effective chemical potential µ′. Here the effective

chemical potential µ′ includes the Hartree term correction to the original chemical potential

µ, which can be solved numerically.
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Figure 23: Phase transition temperature for CDW instability at g = −2 from RPA calcula-

tion. (a) t⊥ = 0. (b) t⊥ = 0.04. (c) t⊥ = 0.08. Red line: instability towards checkerboard

density wave ordering. Blue line: instability towards stripe density wave ordering. The tran-

sition temperature towards checkerboard density wave ordering with the effective chemical

potential (including Hartree term) µ′ near 0 is much higher than that towards stripe density

wave ordering with µ′ away from 0, which indicates that the former is more experimentally

feasible than the latter. This feature comes from the Umklapp process at half filling. Be-

sides, the phase transition temperature towards checkerboard density wave ordering does not

show any noticeable change as t⊥ increases from 0 to 0.08, which suggests the checkerboard

density wave ordering is not affected by t⊥.

The particle-particle (Cooper) channel can be studied in a similar way by evaluating the

correlation function of the pair operator ∆̂q =
∑

k Ĉx,−k+qĈy,k. The pair-pair correlation

function in our system without interaction reads

Π0
PP
(q) =

T

N2
⟨∆̂†

q∆̂q⟩0 = − 1

N2

∑
k

1− nF (ξx,−k+q)− nF (ξy,k)

iωn − ξx,−k+q − ξy,k
. (7.7)

Recall that for the density-density correlation function without interaction, by choosing

q = Q = (2kF ,±2kF ), Eq. (7.3) has logarithmic divergence as shown in Eq. (7.4). In

contrast, no logarithmic divergence is found in Eq. (7.7) at any value of q. Therefore, the

pair-pair correlation with interaction

Π
PP

=
T

N2
⟨∆̂†

q∆̂q⟩ =
Π0

PP
(q)

1 + gΠ0
PP
(q)

(7.8)

89



evaluated by RPA as shown in Fig. 22 will not diverge at any temperature, different from

the density-density correlation functions in Eq. (7.6). This means that the instability of

the particle-particle channel is greatly suppressed, and there is no phase transition towards

superconductivity.

7.3 MEAN FIELD THEORY AT T = 0

The above consideration only shows that phase transitions towards density waves can happen

in our system. In order to find ground state properties, i.e., the order parameter, we apply

a real space mean field analysis at T = 0 for both g > 0 and g < 0. The interaction part of

the Hamiltonian Eq. (7.1) can be decoupled in the density channel such that

∑
r

n̂x,rn̂y,r ≈
∑
r

(n̂x,rMy,r + n̂y,rMx,r −Mx,rMy,r), (7.9)

where ⟨n̂α,r⟩ =Mα,r is the self-consistent condition and ⟨...⟩ means the expectation value of

the ground state at T = 0. Terms of order (n̂x,r − ⟨n̂x,r⟩) (n̂y,r − ⟨n̂y,r⟩) have been neglected.

Eq. (7.1) reduces to

Ĥ
MF

=
∑
rαβ

tαβ(Ĉ
†
α,r+eβ

Ĉα,r + h.c.)− µ
∑
rα

n̂α,r + g
∑
r

(n̂x,rMy,r + n̂y,rMx,r −Mx,rMy,r),

(7.10)

which is in quadratic form and can be solved self-consistently. We set the parameters the

same as before in Sec. 7.2, with t⊥ = 0 to simplify the calculation. For attractive interaction

g = −2, we find CDW ordering where the densities of px and py fermions are the same. When

µ = 0, the total density of the ground state exhibits a stripe pattern in real space as shown in

Fig. 24(a), and the energy per site is −2.0295, lower than that of the homogeneous-density

state −2.0282. Although the energy gain is not large, we have repeated the calculation

several times with randomized initial condition, and consistently found the stripe pattern

and the same ground state energy. When µ = −1, the total density exhibits a checkerboard

pattern as shown in Fig. 24(b), and the system is at half filling at this µ. In this case, the
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Figure 24: The density patterns in real space (showing 16 × 16 out of 300 × 300) obtained

from real space mean field analysis. (a) The total density pattern with attractive interaction

where µ = 0. (b) The total density pattern with attractive interaction where µ = −1. (c)

The density difference pattern with repulsive interaction where µ = 0. (d) The density

difference pattern with repulsive interaction where µ = 1.

ground state energy per site is −0.7826, lower than that of the homogeneous-density state

−0.7731. Fourier series Mα,r = a0+
∑∞

n=1 [an cos(nq · r) + bn sin(nq · r)] are then used to fit

Fig. 24(a) and (b). It can be seen that the chemical potential is modified to µ′ = µ− a0g by

the background density a0 (Hartree term), and the filling is determined by µ′ instead of µ.

We find q ≈ (0.42π, 0.42π) by fitting Fig. 24(a). Higher order harmonics (the n > 1 Fourier

components) are found non-vanishing in this case as expected in CDW, but are very weak

compared to the first order terms (an ≪ a1, bn ≪ b1, n > 1). The checkerboard pattern in

Fig. 24(b) has momentum q = (π, π). The q’s in both cases agree with Eq. (7.2) very well,

with kF determined by the effective chemical potential µ′.
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For repulsive interaction g = 2, we find ODW ordering, where the densities of px and

py orbital fermions are no longer the same, and the difference between them (ODW order

parameter) oscillates in space. When µ = 0 and µ = 1, the density difference shows stripe and

checkerboard patterns in Fig. 24(c) and (d), respectively. The Neel orbital ordering found in

Ref. [85] at half filling and strong coupling limit g → +∞, where px and py Wannier orbitals

alternate in space, can be understood as the extreme case of checkerboard ODW shown in

Fig. 24(d), with density difference ±1 alternating in space.

There are some general properties of the density wave ordering. (1) The checkerboard

ordering at half filling has much higher transition temperature than the stripe ordering with

other fillings due to the Umklapp process, which greatly enhances density waves at half filling

[104]. (2) In general, increasing transverse hopping t⊥ weakens the nesting Fermi surface

condition and tends to destroy the stripe ordering. However, the checkerboard ordering

at half filling is not affected by the Fermi surface curvature. It is because that a (π, π)

momentum of checkerboard ordering always satisfies perfect nesting condition, independent

of t⊥ [104].

In experiments, a shallow harmonic trap V (r) is present in addition to the optical lattice,

and a spatial phase separation is expected due to the additional trapping potential [33].

With local density approximation µ(r) → µ(r)− V (r), a schematic phase diagram is shown

in Fig. 25. At the center region of the trap where the local chemical potential is the highest,

the stripe ordering exists due to large filling (region I). As one moves towards the edge of

the trap, the filling decreases, and when the effective local chemical potential µ′(r) ≈ 0, the

checkerboard ordering appears and this region is at half filling (region II). As one moves

towards the edge further, the filling becomes low and the stripe ordering emerges again

(region III). Therefore, our theory predicts a spatial density profile of phase separation

with stripe core → checkerboard shell → stripe edge. The phase coexistence here is due

to the spatial varying trap potential, which modifies the local chemical potential. It is not

the phase coexistence of degenerate ground states with domain walls separating different

patterns. Therefore, the phase coexistence in Fig. 25 is stable.
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Figure 25: A schematic phase diagram in the presence of a trap with local density approxi-

mation. Here |r| is the distance from the center of the trap. I, II, and III are the regions of

stripe, checkerboard, and stripe density waves, respectively.

7.4 LIQUID CRYSTAL PHASES AT T ̸= 0

The above mean field analysis shows the existence of density wave ordering at T = 0. As one

raises the temperature, thermal melting effect may drive the system to different nematic and

smectic liquid crystal phases before it becomes normal Fermi liquid. Here the liquid crystal

phases refer to the electronic liquid crystal phases [105], where the nematic and smectic

liquid crystal phases here have the same symmetry breaking as the traditional definition of

liquid crystal phases.

In this section, we will first define the liquid crystal phases in our system [105]. Afterward

we will present a field theory which incorporates the thermal melting effect to study the liquid

crystal phases in square lattice systems. Finally, we will comment on the advantages of our

system to study liquid crystal phases.

For simplicity, we only consider liquid crystal phases from stripe CDW with attractive
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interaction, where the densities of px and py orbital fermions are the same. The stripe CDW

breaks the C4 rotational symmetry of the square lattice down to C2 (a Z2 phase transition),

and also breaks lattice translational symmetry, as shown in Fig. 24(a). As a result, two

types of topological defects can occur at finite temperature: the Z2 domain walls and the

(edge) dislocations of stripes. The dislocations of stripes may drive the system to smectic

or nematic liquid crystal phases. The smectic liquid crystal phase breaks both translational

symmetry and C4 rotational symmetry, which is essentially the same as the stripe order, while

the nematic liquid crystal phase only breaks C4 rotational symmetry and can be viewed as

melted smectic stripes [105, 106].

The total density fluctuations associated with momenta Q1,2 can be parameterized as

δρ =
[
ϕ1e

iQ1·r + ϕ2e
iQ2·r + c.c.

]
. For the incommensurate case, by keeping only up to quartic

terms, the effective action reads

S = 1
T

∫
d2r

∑
σ=1,2 (j|∇ϕσ|2 + r|ϕσ|2 + u|ϕσ|4)+v|ϕ1|2|ϕ2|2 + St + ..., (7.11)

where St denotes topological defects of stripe dislocations, similar to the vortex term in

XY model. Eq. (7.11) is invariant under C4 rotations of π/2, π, and 3π/2, which yields

(ϕ1, ϕ2) → (ϕ∗
2, ϕ1), (ϕ

∗
1, ϕ

∗
2), and (ϕ2, ϕ

∗
1), respectively. Besides, Eq. (7.11) also has two U(1)

symmetries, i.e., ϕ1,2 → ϕ1,2e
iφ1,2 , where φ1 and φ2 are arbitrary global phases.

The coupling constants j, r, u, v can be derived from the microscopic model Eq. (7.1) as

shown in Appendix B. We have found v = 4u, which strongly suppresses the coexistence of

ϕ1 and ϕ2. Without loss of generality, we assume ϕ2 is suppressed, i.e., the saddle point is

at |ϕ1| = Φ and |ϕ2| = 0, and write ϕ1 = Φeiφ. Neglecting the gapped amplitude fluctuation

of Φ, the low energy theory is described by φ as Sφ = 1
T

∫
d2r jΦ2(∇φ)2, which reproduces

the 2D XY model. A brief introduction of the 2D XY model is given in Appendix C.

The smectic and nematic order parameters can be defined as ⟨ϕ1−ϕ2⟩ and ⟨|ϕ1|2−|ϕ2|2⟩,

respectively. At T = 0, ⟨ϕ1 − ϕ2⟩ ∼ ⟨ϕ1⟩ ∼ Φeiφ0 ̸= 0 with φ0 an arbitrary global phase,

and the system is smectic. The correlation function ⟨ϕ1(r)ϕ1(0)⟩ yields finite value as |r| →

∞. At arbitrary small temperature, the gapless U(1) mode of φ restores the translational

symmetry, causing ⟨ϕ1⟩ = ⟨ϕ2⟩ = 0. The system is algebraic smectic, with algebraic order

of ϕ1. Here the algebraic order means the correlation function has a power law decay, i.e.,
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⟨ϕ1(r)ϕ1(0)⟩ ∼ |r|−η. As the temperature increases, the stiffness J defined as J/2 ≡ jΦ2/T

decreases from infinity according to microscopic calculation. When J reaches 2/π, the system

undergoes a Kosterlitz-Thouless transition and the algebraic order (the power law decay of

the correlation function) of ϕ1 is destroyed by proliferation of stripe dislocations, similar to

the destroy of superfluidity by vortices in the XY model. The system becomes nematic with

only short range correlation of ϕ1, i.e., the correlation function exhibits exponential decay

such that ⟨ϕ1(r)ϕ1(0)⟩ ∼ e−|r|/ξ with ξ the correlation length. In this nematic phase, the

C4 rotational symmetry remains broken such that ⟨|ϕ1|2 − |ϕ2|2⟩ is still non-zero. Further

increasing of temperature eventually drives a second order Ising-nematic phase transition (2D

Ising universality class), above which the C4 rotational symmetry is restored with ⟨|ϕ1|2⟩ =

⟨|ϕ2|2⟩, and the system becomes normal. In 3D, the above analysis does not apply, since

the fluctuation only reduces the strength of the density wave ordering in 3D, and we are not

expecting liquid crystal phases from our model.

For the commensurate case with momentum 2kF = 2πp′/p, where p′ and p are rel-

atively prime integers, an additional term w cos(pφ) is allowed in Eq. (7.11). The U(1)

symmetry of ϕ1 is reduced to Zp here, which means the action is invariant under translation

φ → φ + 2πp′′/p, with non-negative integer p′′ < p. With this additional cosine term, the

action for φ naturally reduces to the Zp compact clock model. According to the renormal-

ization group analysis of the compact clock model as discussed in Appendix C, our system

undergoes the smectic−nematic−normal transition as one increases the temperature when

1 < p ≤ 4, and the smectic−algebraic smectic−nematic−normal transition when p > 4. As

p→ ∞ where the system approaches incommensurate, the smectic−algebraic smectic phase

transition temperature reduces to zero, which is consistent with the incommensurate case

discussed before.

As a specific, non-trivial example to make connections between the field theory Eq. (7.11)

and the microscopic model Eq. (7.1), a system with commensurate 1/5 filling (p = 5) is stud-

ied. We focus on the temperature regime near the Ising-nematic phase transition point, so

that in Eq. (7.11) the approximation Φ2 = −r/2u for the saddle point is applicable. In order

to obtain the coefficients in Eq. (7.11) by the procedure in Appendix B, the chemical potential

is adjusted to make the filling 1/5 (kF = 4/5π), with CDW momentum Q = (8π/5, 8π/5). A
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Figure 26: Phase diagram at 1/5 filling where p = 5. Red dashed line: determining the

smectic−algebraic smectic phase transition temperature at J = p2/8π = 25/8π. Blue dashed

line: determining the algebraic smectic−nematic phase transition temperature at J = 2/π.

term w cos(5φ) produced by (ϕα)
5 + c.c. also exists. In general w is small, because this term

arises from higher order diagrams and is suppressed at finite temperature. The exact value

of w is not important, but the existence of this term is crucial in the commensurate filling.

After obtaining the coefficients r, j, u, v by Eq. (B.7), the phase transition temperature can

be determined from the value of J according to the previous discussion. The phase diagram

is shown in Fig. 26.

Our system has the following advantages to study liquid crystal phases. (1) There are

no other competing orderings. A similar spinful condensed matter system was studied [107],

which showed that a stripe CDW ordering of momentum (2kF , 2kF ) competes with a checker-

board CDW ordering of coexisting momenta (2kF , π) and (π, 2kF ). This checkerboard or-

dering from interplay of (2kF , π) and (π, 2kF ) orderings is different from the previous (π, π)

checkerboard ordering in our system. Also, a similar spinful ultracold atomic system that

has much more complicated interaction [108] may have many competing phases such as su-

perconductivity, which is not as clean and simple as the proposed spinless system to study

the liquid crystal phases. (2) The 2kF momentum dependence of density wave ordering is

highly tunable by changing the fillings, which makes it easy to adjust the commensurability.
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7.5 EXPERIMENTAL REALIZATION

Our system can be realized by loading fermionic atoms such as 40K or 6Li of a single hyperfine

state on square optical lattices. The fermions will automatically occupy p-orbital bands after

the s band is fully filled. The interactions between spinless fermions can be tuned by p-

wave Feshbach resonance, together with controlling the lattice spacing and potential depth.

The cold gas is not required to be so close to the resonance, so the atom loss rate can be

kept relatively low. The momenta of density waves Q1,2 can be detected by optical Bragg

scattering [109]. Alternatively, in-situ imaging can directly show the density pattern δρ.

As discussed before, at half filling the checkerboard density waves are greatly enhanced by

Umklapp process, and are not affected by the Fermi surface curvature caused by transverse

hopping. Therefore, in experiments one should first search for the checkerboard density

waves at half filling, which has the phase transition temperature Tc ∼ 0.2t∥ based on RPA

(a mean-field-level estimate) as shown in Sec. 7.2, given that |g/t∥| = 2. In addition, the

hopping t∥ of p-band fermions is in general an order of magnitude larger than the s-band

hopping, which also enhances the phase transition temperature. With typical experimental

parameters such that λ ∼ 500 nm, Vx ∼ 5ER, and using 40K, the estimated phase transition

temperature for the checkerboard density waves at half filling is Tc ∼ 20 nk.
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8.0 ONE-DIMENSIONAL P -ORBITAL BOSONS IN OPTICAL LATTICES

Comparing with ultracold fermions, ultracold bosons are easier to study in both numerical

and experimental aspects. The sign problem in quantum Monte Carlo methods, i.e. the

unphysical negative probability appearing in the simulation due to the Fermi statistics,

restricts the simulation scale of fermions [110]. At current experimental stage, people are

still working hard on cooling fermions to quantum degeneracy regime. In contrast, bosonic

systems are easy to simulate on computers and cool in experiments.

Bosons on higher orbital bands [88, 10] have been introducing great interest in recent

years. Unlike fermions on higher orbital bands that can be stabilized by Pauli exclusion prin-

ciple, bosons tends to occupy the lowest band to minimize the system energy, and therefore

all the theoretical proposals [11, 12, 13, 14, 111, 37] regarding bosons on higher orbital bands

are discussing meta-stable states of the system. There are two interesting features of bosons

condensate on higher orbital bands. One is that induced by the onsite interaction, these

condensate bosons may have complex ordering and form staggered angular momentum from

site to site [88], similar as anti-ferromagnetism. Secondly, the bosons are condensed at finite

momentum, because for example, p bands of square lattices have minima at the edge of the

first Brillouin zone. In recent years, several experiments have been carried on to study this

subject, and showing evidence of condensate bosons on higher orbital bands [16, 112, 17].

However, concrete experimental proof of the complex ordering has not been achieved yet.

In this chapter, we will discuss bosons loaded in px and py orbits of a 1D optical lattice

with locally 2D isotropy at zero temperature [37], where the locally 2D isotropy means that

at each lattice site the lattice potential is isotropic in x and y directions. We find two super-

fluid phases distinguished by an orbital order—an anti-ferro-orbital (AFO) superfluid and a

para-orbital (PO) superfluid, and two Mott insulating phases—an AFO Mott and a px Mott
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phase. The AFO order is characterized by ordering in the staggered orbital current (px±ipy)

order [11, 12]. In the AFO superfluid phase, the inter-band phase difference is locked at ±π/2

and the spontaneous AFO (px± ipy) order in this phase breaks the time reversal symmetry,

whereas the fluctuations of the relative phase restore the time reversal symmetry in the PO

superfluid phase. We also propose an experimental method to distinguish different phases

by measuring momentum distribution, instead of directly measuring the local current flow

resulting from time reversal symmetry breaking. The finite momentum peaks in the momen-

tum distribution of the AFO superfluid phase make it distinguishable from the conventional

1D superfluid phases. In the AFO Mott phase the quantum noise measurement will be able

to provide a concrete evidence of spontaneous time reversal symmetry breaking.

8.1 SYSTEM AND MODEL

We design the 1D system such that for each site, the local lattice potential is two-dimensionally

isotropic. Consider a 2D lattice potential

V = Vx sin
2(kxx) + Vy sin

2(kyy), (8.1)

where Vx, kx (Vy, ky) are the potential strength and wave vector of the laser beams in the x

(y) direction. To make px and py orbitals locally degenerate, in harmonic approximation of

tight-binding model, local isotropy requires

Vxk
2
x = Vyk

2
y. (8.2)

Meanwhile, we also want to make the system behave one-dimensionally, i.e, the hopping

in y direction is much smaller than that in x direction. It can be realized by imposing a

relatively larger laser strength and larger lattice constant in the y direction than those in

the x direction, while satisfying Eq. (8.2). From Sec. 5.2, the ratio t
∥
x/t

∥
y is estimated by

t
∥
x

t
∥
y

=
αx − 6

αy − 6
e−

1
4
(αx−αy) (8.3)
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Figure 27: A schematic figure showing the parallel and transverse hoppings tx and ty in the

1D system along x direction. The green circles are used to denote the requirement of the

approximate locally 2D isotropy of the lattice potential at each site.

with αx = π2
√
Vx/ER,x and αy = π2

√
Vy/ER,y. The recoil energy ER,x is defined as

~2k2x/2ma and ER,y is defined in the same way. If we take Vx/ER,x = 6, Vy/ER,y = 24

and ay/ax =
√
2 (ky/kx = 1/

√
2, see Sec. 5.2), we get a locally isotropic system, while the

hopping of py orbital in the y direction is smaller than one percent of the hopping of px

orbital in the x direction. Therefore, the system is dynamically 1D.

In the rest of the chapter, we will work on the 1D system. The Hamiltonian describing

bosons loaded on px and py orbits reads [12]

H =
∑
⟨jj′⟩

[
−txâ†x(j)âx(j′)− tyâ

†
y(j)ây(j

′)
]
−

∑
j

µn̂(j)

+
U

2

∑
j

[
n̂(j)

(
n̂(j)− 2

3

)
− 1

3
L̂2
z(j)

]
. (8.4)

Here âx(j) (ây(j)) is the annihilation operator for px (py) orbital at site j. The discrete

variable j labels the sites of the 1D chain, with the lattice constant ax. The local particle

number operator n̂(j) is defined as
∑

α=x,y â
†
α(j)âα(j), and the local angular momentum

operator L̂z(j) is defined as −i
[
â†x(j)ây(j)− â†y(j)âx(j)

]
. We have U > 0 as the repulsive

Hubbard interaction. The average number of bosons per site is fixed by chemical potential

µ. In Eq. (8.4), tx < 0 is the longitudinal hopping of px bosons, and ty > 0 is the transverse

hopping of py bosons. Fig. 27 shows the hopping process of tx and ty. Due to anisotropy

of the p-orbits, the longitudinal hopping of px-orbital fermions (“σ bond”) is typically much
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larger than the transverse hopping of py-orbital fermions (“π bond”) [11, 13, 12]. In the

following part, the ratio |tx/ty| is taken as 9, which corresponds to Vx ≈ 6ER,x (based on the

estimation |tx/ty| ≈ 1
2
(π2

√
Vx
ER,x

− 6) under harmonic approximation).

The presence of L̂2
z is the key ingredient for the complex ordering, which comes from the

term â†xâ
†
xâyây+h.c. in Eq. (5.13). Such terms are forbidden for fermions by Pauli-exclusion

principle, but are allowed for bosons. Intuitively, we consider a single-site problem with

degenerate px and py orbitals, and ignore the hopping between sites for now. Suppose there

arem particles at each site. This L̂2
z term prefersm particles to condense at the single-particle

state
a†x±ia†y√

2
|0⟩, which yields the largest expectation value of L̂2

z as m
2, i.e., the lowest energy

in Eq. (8.4). In contrast, the energy gain of particles condensed at other single-particle state,

such as a†x|0⟩, is smaller and not preferred with Eq. (8.4). For example, if we have m = 2

particles at each site, L̂2
z has expectation value 4 in the former case compared to 2 in the

latter case. When the hopping is turned on, the spatial configuration of alternating
a†x+ia

†
y√

2
|0⟩

and
a†x−ia†y√

2
|0⟩ is energetically favorable by the hopping term, and yields a staggered angular

momentum or AFO pattern [88].

In Eq. (8.4), the hopping term has a U(1)×U(1) symmetry, which is given by âα(j) →

[eiσ0θeiσzϕ]αβâβ(j), with σ0 =

 1 0

0 1

 and σz =

 1 0

0 −1

. However the pair hopping term
â†yâ

†
yâxâx from L̂2

z does not conserve Nx and Ny separately, and thus breaks the U(1)×U(1)

symmetry. Only the total particle number N = Nx + Ny is conserved. The U(1)×U(1)

symmetry is reduced to U(1)×Z2 defined as âα(j) → [eiσ0θeiσz
π
2 ]αβâβ(j).

8.2 PHASE DIAGRAM FROM NUMERICAL CALCULATION

Numerical approaches using matrix product state such as the density matrix renormalization

group [93] and the time-evolving block decimation [113, 114] can be implemented to study the

ground state of 1D systems. Here the ground state is obtained by iterative optimization [93,

37]. The phase diagram is shown in Fig. 28. We will discuss the features of each phases in

the rest of this section.
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Figure 28: Phase diagram of a 1D lattice Bose gas with px and py orbital degrees of freedom.

The lowest Mott lobe with filling ν = 1 is dominated by px bosons. The Mott state with

ν > 1 has an AFO order (see text). We do not claim another phase for the tiny tip of the

second Mott lobe beyond the red line because of numerical errors from the truncation in the

matrix product state method. For sufficiently large hopping tx or for low filling, the Bose gas

has a crossover from a PO superfluid to a px superfluid phase, which will not be discussed

here.

8.2.1 Mott Phases

Similar as the ordinary Bose-Hubbard model, for Mott phases in Fig. 28, the occupation

number ν = ⟨n̂(j)⟩ at each site is integer. However, for each px and py orbitals, the occupation

number is fractional. In Fig. 28, the px Mott phase corresponds to ν = 1, which is similar

to the ordinary Mott phase. The expectation value of the local angular momentum ⟨L̂z(j)⟩

is zero in this case. In contrast, the AFO Mott phase features a symmetry breaking of
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U(1)×Z2 to U(1), and the local angular momentum establish an staggered order ⟨L̂z(j)⟩ =

(−1)j|⟨L̂z(j)⟩| or (−1)j+1|⟨L̂z(j)⟩|, corresponding to the two degenerate ground states from

the broken Z2 symmetry. We can thus define the order parameter as the Fourier transform

of the local angular momentum that L̃z ≡ 1
L

∑
j⟨eiπjL̂z(j)⟩, which is finite in the AFO Mott

phase and vanishes in the px Mott phase. Here L is the number of lattice sites. The time

reversal symmetry is also broken in the AFO Mott phase since a finite L̂z can be viewed as

a finite local vortex-like current flow.

8.2.2 Superfluid Phases

By increasing the hopping magnitude, a phase transition from Mott insulator to superfluid

occurs as discussed in Sec. 5.4. Here we find two different superfluid phases, where the AFO

superfluid phase breaks the Z2 symmetry and the other PO superfluid phase does not. The

physical quantity characterizing the superfluid phase is the off-diagonal correlation function

defined as Gαβ(j, j
′) = ⟨â†α(j)âβ(j′)⟩. In a 3D superfluid this correlation function is finite

when |rj − rj′| → ∞ as the long range order. Here in the 1D superfluid at T = 0, the true

long range order is absent, but a quasi-long-range order with power low decay still exists.

We first consider the AFO superfluid phase. The off-diagonal correlation functions are

given by Gxx(j, j
′) ∼ eiQ(j−j′)|j − j′|−K/2, Gxy(j, j

′) ∼ ieiQj|j − j′|−K/2 and Gyy(j, j
′) ∼

|j − j′|−K/2. The time reversal is broken in this phase, because the off-diagonal correlation

Gxy(j, j
′) is complex. The key feature is that the power law decay (|j − j′|−K/2) correlations

of Gxx, Gxy, and Gyy exhibit the same power exponent K/2.

Now we consider the PO superfluid phase. Here we have the off-diagonal correlation

functions Gxx(j, j
′) ∼ eiQ(j−j′)|j − j′|−Kx/2, and Gyy(j, j

′) ∼ |j − j′|−Ky/2, while Gxy(j, j
′)

does not have such quasi-long-range order in this phase. We also have Kx ≪ Ky in this

phase. Another difference of this PO superfluid phase from the AFO phase is that here the

Z2 symmetry is not broken.

103



8.3 QUANTUM PHASE TRANSITIONS FROM AFO TO PO

SUPERFLUIDS

To understand the quantum phase transitions from AFO to PO superfluids, a low energy

field theory can be used to describe the system. We use φx and φy to denote the phases of

of the px and py superfluid components, and the Lagrangian describing the relative phase

φ− = φx − φy is given by

L[φ−] =
1

2πK−

[
v−1
− (∂τφ−)

2 + v−(∂xφ−)
2
]
+m cos(2φ−), (8.5)

where all the coefficients can be obtained from microscopic calculations. The ground state of

this sine-Gordon model Eq. (8.5) depends on the magnitude of m. If m is greater than some

critical value mc, the cosine term is relevant in the sense of renormalization group, which

means φ− will choose π/2 or 3π/2 (Z2 symmetry breaking) to minimize Eq. (8.5). In other

words, the relative phase between px and py superfluid components is locked and the system

is at the AFO superfluid phase. On the other hand, if m < mc, the cosine term becomes

irrelevant and the φ− is not locked to particular values. In other words, the Z2 symmetry is

restored in this case, and therefore the system is in the PO superfluid phase.

8.4 EXPERIMENTAL SIGNATURES

Due to the difference of the correlation functions of quantum phases discussed before, the

time-of-flight imaging can be used to distinguish different phases. We first consider the two

superfluid phases. From the orbital configuration as shown in Fig. 27, the non-interacting

px bosons have p-band energy spectrum structure and tend to condense at momentum kx =

±π/a, while py bosons still have s-band energy spectrum structure and tend to condense

at momentum kx = 0. Therefore, in the superfluid regimes with interactions turned on, in

the time-of-flight experiments we should check momentum peak near kx = π/a for the px

bosons, and kx = 0 for the py bosons. For the PO superfluid, the momentum distribution

peak at kx = 0 (py component) is weak and broad, while for the AFO superfluid, this peak
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Figure 29: The schematic sketch of 2D momentum distributions ñ(k) in different phases

(PO superfluid, AFO superfluid and AFO Mott from right to left). In three subgraphs the

horizontal (vertical) axis is kyay/π (kxax/π). The purple wiggles along each subgraph shows

ñ1d(kx). In the AFO superfluid phase, the py peaks which are broad in PO SF, are replaced

by sharp peaks. In the AFO Mott phase, there are no sharp peaks.

of py component is as strong and narrow as that of kx = ±π/a peaks (px component).

This feature comes from the fact that in the PO superfluid phase, the correlation of the py

component decays much faster than px component, while in the AFO superfluid phase, the

correlations of px and py components obey the same power law decay [37]. For the Mott

phase, the condensate vanishes and the momentum peaks are smoothed out. A schematic

sketch of 2D momentum distributions of different phases is shown in Fig. 29, as increasing

lattice depth can enhance the onsite interaction, while it reduces the hopping, which means

we should expect phase transitions from PO superfluid → AFO superfluid → Mott insulator,

according to the phase diagram Fig. 28.

Inside Mott phases, we can use quantum noise measurement to determine whether it

is a AFO or px Mott insulator. The AFO order in the Mott phase will have experimental

signatures in the quantum noise measurement [115]. The quantum noise is defined as C(d) =∫
d2Rg(R,d) with

g(R,d) = ⟨ntof(R+
1

2
d)ntof(R− 1

2
d)⟩ − ⟨ntof(R+

1

2
d)⟩⟨ntof(R− 1

2
d)⟩,
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where we have R = (Rx, Ry), d = (dx, dy). We can also understand C(d) as the conditional

probability of finding two particles separated by d with averaged over all such positions by

integrating over R. The brackets ⟨...⟩ denote statistical averages of independently acquired

time-of-flight images in experiments. For the Mott phases in our proposed 2D optical lattice,

g(R,d) is given by

g(R,d) = L

{∑
K

δ(2)
(ma

~t
d−K

)
(ζxxnx + ζyyny)

2

+
∑
K

δ(2)
(ma

~t
d−K+Qx +Qy

) ∣∣ζxyGxy + ζyxG∗
xy

∣∣2} , (8.6)

where t is the time of flight. Here, Gxy = Gxy(0, 0), ζαβ ∼ (Rα+
1
2
dα)(Rβ− 1

2
dβ), Qx = ( π

ax
, 0),

Qy = (0, π
ay
) and K = 2j1Qx + 2j2Qy (j1 and j2 are integers), where ax and ay are lattice

constants along x and y directions.

In Eq. (8.6) the smooth Gaussian part of Wannier functions ϕα(k) is approximated

by a constant function, which is typical in quantum noise measurement [115]. The center

of the trapped gas is taken as the origin of coordinates here. The sharp peaks of C(d)

at d = d0 ≡ ~t
ma

(K−Qx −Qy) signify that the off-diagonal term Gxy is finite, which

distinguishes the AFO Mott state from the px Mott. The experimental signature of an

imaginary Gxy is predicted to be that g(R,d) exhibits nodal lines at R ∥ d0. Gxy being

imaginary indicates a local vortex-like current flow, which is a concrete evidence for the time

reversal symmetry breaking.
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9.0 CONCLUSION

In this concluding chapter, I will first summarize all the results from my graduate research. In

Chapter 4 we discussed the damping phenomena of bulk Fermi gases in BCS-BEC crossover.

We have found that the damping peak in the superfluid regime on the BCS side of the

crossover is due to the coupling between the phonons of collective oscillations and thermally

excited Bogoliubov quasi-fermions. Our results are compared quantitatively with the exper-

iments, showing a good agreement. We also provide a general explanation to the damping

phenomena discovered in other previous experiments. Such BCS-BEC crossover physics is

quite unique in ultracold atomic physics and different from the traditional condensed matter

physics, because it requires the tuning of the interaction using Feshbach resonance and the

internal energy levels of the atom. Also, exciting collective modes of the trapped gases is

experimentally feasible and widely used by releasing, contracting, or rotating the trap in

ultracold quantum systems, which may be difficult to implement in materials.

In Chapter 6 we studied the ultracold fermionic atoms in a quasi-one-dimensional optical

lattice system. We have presented our work of multi-band superconductivity induced from

polarized fermions with one species occupied up to the p-orbital band and the other on s band

in a quasi-one-dimensional optical lattice. We have found that, the formed Cooper pairs have

center-of-mass momentum the sum of the two Fermi momenta, and have p-orbital center-of-

mass motion. Ultracold quantum systems have the advantage to study the superconductive

phases with finite center-of-mass momentum such as our p-orbital superconductivity or the

FFLO phase, because a simple and clean quasi-one-dimensional lattice system can be easily

engineered by laser beams [33], and such quasi-one-dimensional systems are shown to be

very promising of sustaining FFLO states [79]. In condensed matter physics, in recent year

people have found experimental signatures of FFLO phases in heavy fermion compound
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CeCoIn5 [73, 74, 116]. However, due to the complexity of the material, people are still trying

to understand the physics there.

In Chapter 7 we studied the possible density wave orderings for single-species fermions

on p-orbital bands in a 2D square optical lattice, and discussed the possible liquid crystal

phases at finite temperature in such systems. Due to the quasi-one-dimensional structure of

the Fermi surfaces, the density waves are robust and the wave vector of the density waves

can be tuned by the fillings. Ultracold quantum systems provide an easier way to realize the

platforms for such single-species fermionic problem.

In Chapter 8, we discussed a p-orbital bosonic system in 1D optical lattices with local

isotropy. We have found that in such a system, the Mott insulator phase and the superfluid

phase may break time reversal symmetry and induce anti-ferro-orbital patterns. The problem

of bosonic particles with lattice potentials is also a unique feature of ultracold quantum gases,

since in traditional material electrons are the elementary particles, and introducing bosons

into the system seems not easy.

In my understanding, the most important feature of this new field of ultracold quantum

gases focusing on many-body effects is that we can manipulate the spatial potential and

inter-particle interaction in a relatively easy way to engineer the system we want. In other

words, in the traditional condensed matter physics, nature provides us very rich and different

kinds of materials. In ultracold atomic and molecular physics, human imagination allows

us to utilize electric and magnetic fields, lasers, atoms and molecules to create numerous

unconventional systems. Ultracold quantum systems can also be viewed as quantum simu-

lators [117], i.e., highly controllable ultracold quantum systems that can be used to simulate

the behavior of other complex quantum systems. For example, as a first step to simulate

high Tc superconductors, people are working on realizing antiferromagnetism of the Fermi-

Hubbard model in optical lattices. Ultracold quantum systems also provide very clean and

highly controllable systems for testing fundamental theoretical concepts, e.g., the realization

of BEC. Moreover, new physics which can only be realized in ultracold quantum gases so far

is also developing, e.g., BCS-BEC crossover.

Finally, to conclude my graduate research, I have explored some physical problems such

as damping phenomena in ultracold quantum systems, and also proposed some new ultracold
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quantum systems to realize unconventional quantum phases.
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APPENDIX A

FESHBACH RESONANCE

We will discuss Feshbach resonance in this appendix [118, 38, 64]. An effective two-channel

Hamiltonian [119, 120] describing both the fermionic atomic and bosonic molecular contri-

butions reads

Ĥ =
∑
k,σ

(ϵak − µ)â†k,σâk,σ +
∑
q

(ϵmq − 2µ+ ν)b̂†qb̂q

+g
∑
q,k

(b̂†qâk+qâ−k + â†−kâ
†
k+qb̂q), (A.1)

where we set the Planck constant ~, the volume V , and the Boltzmann constant kB equal

to unity here. In Eq. (A.1), ϵak = k2/2ma and ϵmq = q2/2mm are the kinetic energy for

fermionic atoms and bosonic molecules with masses mm = 2ma. The chemical potential is

µ. We have ignored the bare fermionic interaction (background scattering) for now, since it

is unessential for the resonance physics [118]. The detuning parameter ν = µM(B − Bbare)

tells the energy difference between the bare closed channel (weakly bound state) and the

bare open channel (free scattering state) in an external magnetic field. Here, Bbare is the

bare resonance magnetic field at which the energies of the two bare channels are the same,

where µM is the difference between the magnetic moments of the close and open channel.

Since we are interested in the scattering between fermions, we can write Eq. (A.1) in

path integral form and integrate out the bosonic field [64]. The effective interaction between

fermions becomes

Veff (q) =
g2

iωn − ϵmq − 2µ− ν
. (A.2)
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Here ωn = 2nπT is the bosonic Matsubara frequency with n integers.

The corresponding interaction U in the Hamiltonian form of a two-body scattering prob-

lem can be obtained by setting T = 0 and µ = 0 in Eq. (A.2) as

U(q) =
g2

−ϵmq − ν
. (A.3)

With such an interaction, the scattering length of two fermionic atoms in the low energy

limit is [118]
ma

4πa
=

1

U0

+
∑
k

1

2ϵak
, (A.4)

where we define

U0 ≡ U(q = 0) = −g
2

ν
= − g2

µM(B −Bbare)
. (A.5)

The summation term in Eq. (A.4) needs an ultraviolet cutoff, since we are in the low

energy limit. This cutoff is from that in our original Hamiltonian Eq. (A.1), we also need to

set an ultraviolet cutoff for the Fermi-Bose coupling term, since it is unphysical to keep this

coupling g a constant for large momentum.

Eq. (A.4) can be rewritten as

ma

4πa
= −µM(B −Bbare)

g2
+
∑
k

1

2ϵak
≡ −µM(B −B0)

g2
. (A.6)

In Eq. (A.6),

B0 = Bbare +
g2

µM

∑
k

1

2ϵak
(A.7)

is the resonance magnetic field [118], which is shifted from the bare resonance Bbare. As

a result, the scattering length will diverge and change sign when B reaches the resonance

magnetic field B0.

Eq. (A.4) provides a simple contact interaction U0, which can be applied in a so-called

single-channel model. In a single-channel model, only fermionic atoms are present and the

interaction is simply the contact interaction U0. Eq. (A.4) also provides the connection

between this contact interaction U0 and the scattering length a, which is also called a reg-

ularization procedure [23, 45]. It can be shown that the ultraviolet momentum cutoff we

mentioned before can be safely extended to infinity, when we evaluate the gap equation of
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the single-channel model [51]. The justification of this regularization procedure is discussed

in Ref. [121].

To reproduce the resonance formula Eq. (2.23), an intuitive and simple way is to consider

the background scattering length abg of the bare fermions. By adding this abg to Eq. (A.6),

we get

a = abg

(
1− ∆B

B −B0

)
, (A.8)

with the resonance width ∆B = mag2

4πabgµM
. More detailed and rigorous derivations of the

scattering length are discussed in Ref. [122, 123].

As shown in Ref. [118], we can associate a length scale r∗ = 1
2maabgµM∆B

. When kF r∗ ≪ 1

with kF the Fermi momentum as defined in Sec. 3.2, it is a broad resonance. The above

procedure reducing the two-channel model to a single-channel model can be applied in BCS-

BEC crossover problem for broad resonance cases [118]. In most experiments, the system is

in the broad resonance regime, where the single-channel model is applicable [123].
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APPENDIX B

FIELD THEORY OF LIQUID CRYSTAL PHASES

To relate a fermionic microscopic Hamiltonian to a field theory of the order parameter, a

general procedure is to introduce Hubbard-Stratonovich fields and then integrate out the

fermionic field. This method is introduced in Ref. [60] to derive the theory of BCS order

parameter in the fermionic superconductive problem. Here we follow this procedure to derive

the theory for the density wave ordering. The Fermi Hubbard model Eq. (7.1) can be written

in path integral form, where the partition function is given by e−SF and the effective action

reads

SF =

∫
dτ

∑
r,α

ψ∗
α(r, τ)(∂τ − µ)ψα(r, τ) +

∑
rαβ

tαβ(ψ
∗
α(r+ eβ, τ)ψα(r, τ) + h.c.)

+g
∑
r

ψ∗
x(r, τ)ψ

∗
y(r, τ)ψy(r, τ)ψx(r, τ). (B.1)

In Eq. (B.1), the interaction term can be rewritten as

ψ∗
xψ

∗
yψyψx =

(ψ∗
xψx + ψ∗

yψy)
2 − (ψ∗

xψx − ψ∗
yψy)

2

4
. (B.2)

Consider two auxiliary Hubbard-Stratonovich fields
∫
D(ρ1,2)e

Sρ1,2 , where we have Sρ1,2 =∫
dτ g

4

∑
r ρ

2
1,2(r, τ). By shifting ρ1,2 → ρ1,2 − (ψ∗

xψx ± ψ∗
yψy), ρ1 and ρ2 denote total density

field and density difference field, respectively. Multiplying
∫
D(ρ1,2)e

Sρ1,2 with shifted ρ1,2

to e−SF , the quartic interaction between fermions in Eq. (B.2) is eliminated. According to

the mean field analysis of CDW, the density difference has the mean field value zero. It
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means we can ignore the density difference field ρ2 in the CDW case here. As a result, the

interaction term in Eq. (B.1) is replaced by

−g
4

∫
dτ

∑
r

ρ21 − 2ρ1(ψ
∗
xψx + ψ∗

yψy). (B.3)

From mean field analysis, the total density ρ1 is fluctuating around momenta 0,±Q1, and

±Q2. The fluctuation around zero momentum is the fluctuation of the average density,

which tends to zero in thermodynamic limit. By ignoring such contribution, ρ1 reduces to

δρ, which reproduces the total density fluctuation δρ around Q1,2. In the long wavelength

limit, the density fluctuations around Q1,2 can be rewritten as

δρ(r, τ) =
T

N2

∑
|q|<Λ,ω,σ

[δρσ(Qσ + q, ω)ei(Qσ+q)·re−iωτ + c.c.] (B.4)

by Fourier transform, where Λ is some momentum cutoff of the long wavelength limit, and

σ = 1, 2. Recall that the ϕ fields are defined through

δρ(r, τ) =
∑
σ

[
ϕσ(r, τ)e

iQσ ·r + c.c.
]
. (B.5)

By Fourier transform

ϕσ(r, τ) =
T
N2

∑
|q|<Λ,ω e

i(q·r−ωτ)ϕσ(q, ω), (B.6)

and comparing Eq. (B.4) with Eq. (B.5), we reach the relationship δρ(Qσ + q, ω) = ϕσ(q, ω).

The effective action is then written in momentum space, where δρσ can be replaced by ϕσ.

Finally, the fermionic fields are integrated. The ϕ fields are kept up to quartic terms, and

we reach the expression Eq. (7.11). The coefficients in Eq. (7.11) are

r = − g

2T
− g2

4N2T

∑
k

1− 2nF (ξk)

2ξk
,

j =
g2

16N2T

∑
k

∂2nF
∂ξ2k

(t∥ sin kx)
2

ξk
,

u =
g4

32N2T

∑
k

(
1− 2nF
4ξ3k

+
∂nF
∂ξk

1

2ξ2k

)
,

v = 4u, (B.7)

in static limit. We do not consider quantum fluctuations in the present work. Here, ξk is

the spectrum of free px orbital fermions.
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APPENDIX C

THE 2D XY MODEL AND CLOCK MODEL

In this appendix we briefly introduce the 2D XY model and clock model. A full derivation

that we follow in this appendix can be found in Ref. [124, 100], and here we only outline the

procedure and present the results.

A classical XY model is defined as a classical spin model in a 2D square lattice with

Hamiltonian [124]

H = −J
∑
⟨ij⟩

Ii · Ij = −J
∑
⟨ij⟩

cos(θi − θj), (C.1)

where Ii = (cos θi, sin θi) is the unit 2D classical spin at lattice site i with position Ri, and J

is the coupling constant. Here ⟨ij⟩ indicates nearest-neighbor sites. As shown in Ref. [124],

for this lattice model, at low temperature the correlation function has a power-law decay

⟨Ii · Ij⟩ ∼ |Ri −Rj|−T/2πJ , (C.2)

where ⟨...⟩ means the expectation value. At high temperature, the correlation function has

an exponential decay

⟨Ii · Ij⟩ ∼ e−|Ri−Rj |/ξ, (C.3)

where ξ is the correlation length. We call the situation with power law decay the alge-

braic order, or quasi-long-range order, where the true long range order is absent. For the

exponential decay, it is a disordered phase.
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We are more interested in the continuum limit of Eq. (C.1). Assume that θi−θj is small,

i.e., the spin varies very smoothly in space, and expand Eq. (C.1) to second order. The

Hamiltonian after switching from lattice summation to spatial integration is [124]

H =
J

2

∫
d2R [∇θ(R)]2 . (C.4)

In Eq. (C.4), we need to keep in mind that a short distance (large momentum) cutoff is

inherent, which is the lattice constant in this case.

If we simply calculate the correlation function between θ from Eq. (C.4), at high tempera-

ture the correlation function is still power-law decay [100]. The reason is that the singularity

contribution from the θ field [124] must be considered. As a result, we can write θ = θr+ θs,

where the θr and θs are the regular and singular parts. For a vortex configuration, if θs has

the value as the angle of R = (x, y) (the argument of the complex number z = x + iy that

θs = arg(z)), the Hamiltonian Eq. (C.4) yields

Evortex =
J

2

∫ Rc

a

dR 2πR
1

R2
+ Ecore = πJ ln

Rc

a
+ Ecore, (C.5)

where Rc measures the size of the system, and a is the lattice constant. The vortex core

energy Ecore is the energy for the |R| < a part of a vortex, which is a finite value compared

with divergent lnRc/a and will be ignored.

On the other hand, if only one of such vortices occurs in the system, the possibility of

placing the vortex center in the 2D system is ∼ R2
c/a

2. Therefore, the entropy of a single

vortex is

Svortex = ln

(
Rc

a

)2

= 2 ln
Rc

a
. (C.6)

From Eq. (C.5) and (C.6), we get the free energy of a single vortex

Fvortex = E − TS = (πJ − 2T ) ln
Rc

a
. (C.7)

In Eq. (C.7), if πJ > 2T , a single vortex will cost free energy, which is not favored. The

behavior of the system is then determined by the regular part θr, which yields a power-law

decay of the correlation function [100]. In contrast, if πJ < 2T , a single vortex will gain free

energy, which is favored. The creations of such vortices will change the correlation function
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to a short-range correlation, i.e., the system becomes disordered. Thus the phase transition

temperature from this consideration is

Tc = πJ/2. (C.8)

However, the above argument is incomplete. It is possible that at low temperature,

the vortices appear in pair with opposite winding numbers, i.e., two vortices with θs =

±arg(z) can appear simultaneously. Therefore, a more rigorous description is to apply a

renormalization group (RG) study. For the RG method, there is a very classical introductory

review article [104]. One can also refer to Ref. [60]. The basic idea of RG is to keep integrating

out the fast fields sector (larger momentum) and renormalizing the theory of the remaining

slower fields (smaller momentum). During this process, some terms in the Hamiltonian (or

Lagrangian in a path-integral description) will become smaller and smaller, which means

these terms are less and less important in the long wavelength limit. These terms are called

irrelevant or marginal irrelevant, depending on how they become smaller in RG process. We

also have marginal terms, which are unchanged in RG process. For the terms becomes larger

and more important, we call them relevant or marginal relevant, depending on how they

become larger in RG process.

To apply the RG study on the 2D XY model, a commonly used approach is to first

map the 2D XY model with vortices to a 2D clock model without vortices (or sine-Gordon

model, Potts model). We first rewrite Eq. (C.4) in the classical action form to incorporate

the temperature and get [100]

S =
J

2T

∫
d2R [∇θ(R)]2 . (C.9)

Meanwhile, we consider the following action for the clock model without vortices

Sclock =

∫
d2R

[κ
2
(∇θc)2 − g cos(nθc)

]
, (C.10)

which is called the non-compact clock model [100]. It can be shown that Eq. (C.10) is

equivalent to the XY model Eq. (C.9) via the following connection. The κ is connected with

J through the relation [100]
1

2πκ
=

2πJ

T
. (C.11)
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Therefore, the cosine term in the non-compact clock model Eq. (C.10) corresponds to the

vortex contribution in the XY model Eq. (C.9), with n corresponding to the winding number

of vortices that z = narg(z). The factor g is related to the energy of vortex core.

It can be shown from RG analysis [100, 60] that for a small g → 0 case, when κ >

n2/8π (κ < n2/8π), the g term is relevant (irrelevant), i.e., the cosine term will become

more and more important (unimportant) in RG process. From Eq. (C.11), the correspond-

ing XY model has the following property: when J/T < 2/n2π (J/T > 2/n2π), the vortex

contribution is relevant (irrelevant). Obviously the n = 1 yields the lowest phase transition

temperature, i.e., Tc = πJ/2, above (below) which the vortex contribution is relevant (irrele-

vant). Surprisingly, the Tc obtained from this RG process is the same as the result Eq. (C.8)

from a simple free energy argument we discussed before.

We can extend the above discussion to the compact clock model, which allows vortex

fluctuation of θ in Eq. (C.10). We know that the cosine term is relevant as κ > n2/8π. We

also know that given a XY model with J/T ≡ κ, the vortex contribution is relevant when

κ < 2/π. Therefore, we have the following conclusion for the compact clock model.

(a) n > 4. For κ > n2/8π, the cosine term is relevant and the vortex contribution is

irrelevant, which means the ground state is determined by the cosine term. The ground

state will choose a particular θ as a symmetry-breaking phase. For κ < 2/π, the cosine

term is irrelevant and the vortex contribution is relevant, which means the ground state is

determined by the vortex contribution, i.e., a disordered phase. For 2/π < κ < n2/8π, both

cosine term and vortex contribution are irrelevant, which means the system is in algebraic

order.

(b) n = 4. For κ > 2/π, the cosine term is relevant and the vortex contribution is

irrelevant, where the system is in symmetry breaking phase. For κ < 2/π, the cosine term

is irrelevant and the vortex contribution is relevant, where the system is in the disordered

phase. There is no algebraic order in the system.

(c) n < 4. For κ > 2/π, the cosine term is relevant and the vortex contribution is

irrelevant, where the system is in symmetry breaking phase. For κ < n2/8π, the cosine term

is irrelevant and the vortex contribution is relevant, where the system is in the disordered

phase. However, for n2/8π < κ < 2/π, both terms are relevant, and the phase transition in
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this regime is described by Ginzburg-Landau theory [100].
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[115] Simon Fölling et al. Spatial quantum noise interferometry in expanding ultracold atom
clouds. Nature, 434:481, March 2005.

[116] K. Kumagai, H. Shishido, T. Shibauchi, and Y. Matsuda. Evolution of paramagnetic
quasiparticle excitations emerged in the high-field superconducting phase of cecoin5.
Phys. Rev. Lett., 106:137004, Mar 2011.

[117] Immanuel Bloch. Ultracold quantum gases in optical lattices. Nat. Phys, 1(1):23–30,
October 2005.

[118] R. B. Diener and T.-L. Ho. The Condition for Universality at Resonance and Di-
rect Measurement of Pair Wavefunctions Using rf Spectroscopy. eprint arXiv:cond-
mat/0405174, May 2004.

[119] M. Holland, S. J. J. M. F. Kokkelmans, M. L. Chiofalo, and R. Walser. Resonance
superfluidity in a quantum degenerate fermi gas. Phys. Rev. Lett., 87:120406, Aug
2001.

[120] G. M. Bruun and C. J. Pethick. Effective theory of feshbach resonances and many-body
properties of fermi gases. Phys. Rev. Lett., 92:140404, Apr 2004.

[121] Mohit Randeria, Ji-Min Duan, and Lih-Yir Shieh. Superconductivity in a two-
dimensional fermi gas: Evolution from cooper pairing to bose condensation. Phys.
Rev. B, 41:327–343, Jan 1990.

[122] A. J. Moerdijk, B. J. Verhaar, and A. Axelsson. Resonances in ultracold collisions of
6Li, 7Li, and 23Na. Phys. Rev. A, 51:4852–4861, Jun 1995.

[123] Cheng Chin, Rudolf Grimm, Paul Julienne, and Eite Tiesinga. Feshbach resonances in
ultracold gases. Rev. Mod. Phys., 82:1225–1286, Apr 2010.

[124] N. Nagaosa. Quantum Field Theory in Condensed Matter Physics. Texts and Mono-
graphs in Physics. Springer, 1999.

128


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	1. Energy levels of hyperfine states of the 6Li atom with I=1 and L=0 in external magnetic field. Here h is the Planck constant. Notice that, in a large magnetic field where ms and mI are approximately good quantum numbers, the states from top to bottom correspond to |ms,mI"526930B =|12,1 "526930B , |12,0 "526930B , |12,-1 "526930B ,|-12,-1 "526930B ,|-12,0 "526930B ,|-12,1 "526930B .
	2. A schematic plot of the two bare channels in the scattering process. Red (Green) solid curve: the potential energy between the two scattering atoms in bare open (closed) channel. Red dashed line: the energy of the free scattering fermions in the open channel. Green dashed line: the energy of the weakly bound fermions in the closed channel. The energy difference of the free scattering and the weakly bound cases, i.e., the difference between the red and green dashed lines, can be tuned by external magnetic field.
	3. The scattering length (blue solid lines) of 6Li from Eq. (2.23). Here we use the experimental data from Ref. PhysRevLett.94.103201 that B0=834G (red dashed line), abg=-1405a0 with a0 the Bohr radius, and B=-300G.
	4. Scheme of the MOT. The spatially inhomogeneous magnetic field causes the Zeeman splitting as shown. We can see that for z<0, the energy difference between |F,mF"526930B =|0,0"526930B  and |1,1"526930B  is closer to the frequency of the laser beam, which means in this regime a + photon coupling |0,0"526930B  and |1,1"526930B  propagating from left to right is more likely to be absorbed by the atom. Similarly, for z>0 a - photon propagating from right to left is more likely to be absorbed.
	5. A schematic illustration of the BCS-BEC crossover. Blue dashed lines: the bare open (horizontal) and closed (tilted) channels. Red solid lines: the energy states with coupling between the open and closed channels. Bbare: the magnetic field at which the energy is the same for the bare open and closed channels. B0: the resonance magnetic field at which the scattering length diverges, and a bound state emerges. The black arrow indicates the electron spins of the two interacting atoms. For example, for the two lowest states of 6Li in Fig. 1, on the BCS side, the electron spins of the two atoms are the same (spin triplet). On the BEC side, the electron spins inside a tightly bound molecule are opposite (spin singlet).
	6. Mean field solution of Eq. (3.3) at T=0. Here  is the gap order parameter and  is the chemical potential.
	7. Three types of collective modes in experiments. Red lines indicate the shape of the ultracold gas in space. Blue lines indicate the equilibrium position of the ultracold gas in the presence of a trap. Black arrows indicate the direction of the collective oscillations. (a) Breathing mode. (b) Quadrupole mode. (c) Scissor mode.
	8. (a) Superfluid sound velocity compared with Fermi velocity vs/vF in superfluid regime. (b) Superfluid density compared with the total density ns/n. The superfluid sound velocity from our effective field theory Eq. (4.29) reproduces the result Eq. (3.12) in Chapter 3 from hydrodynamic approach, which verifies the validity of our theory. We also see that the superfluid density portion of total density decreases with increasing temperature, which is expected.
	9. Two separate damping channels. The blue curves are the fermionic quasiparticle spectrum. At T=0, the lower branch is fully occupied and the higher branch is empty. The green arrow is the incident phonon. The black arrow indicates the excitation of a fermionic quasiparticle. The red straight line is the linear spectrum of the phonon, where the slope is the sound velocity. The two black dashed lines are the changes of momentum and energy of fermionic quasiparticle, as indicated. (a) A phonon scatters an existing (at finite temperature) fermionic quasiparticle to a different state in the same energy branch. Such a process is similar as Landau damping in Fermi liquid. This process can also happen in the lower branch at finite temperature, which is not shown here. (b) A phonon creates a quasi-particle-hole pair across the lower and upper bands, equivalent to Cooper pair breaking in the representation of original fermions.
	10. Damping rate of collective excitations in superfluid regime showing dependence on T/TF and 1/kF a. When T is close to Tc, the results from our approximation are no longer reliable since the damping rate  is already very large compared with 0. This regime is indicated by the plateau. Also, when the system is no longer superfluid (T>Tc), our effective field theory does not apply, and the damping rate is then not plotted there. The phase transition temperature Tc/TF is indicated by the boundary of the plateau beyond which there are no data points shown.
	11. Damping rate of collective excitations by interpolating results from our effective field theory in low temperature and the classical Boltzmann equation in high temperature. Red crosses are the prediction from our calculation in low temperature superfluid regime, and green crosses are calculated from the classical Boltzmann equation approach we adopt from Ref. PhysRevA.76.045602. The blue solid line is the interpolation. The black squares are the experimental data of damping rgdata. (a) 1/kF a=-0.45; (b) 1/kF a=-0.55. The first peak moves toward higher temperature when the system gets closer to the resonance (i.e., smaller |1/kF a|).
	12. An illustrative phase diagram adapted from Ref. PhysRevLett.99.150403 showing the damping mechanism in the relative experiments. Red arrow: the evolution of system when we fix the magnetic field and vary the temperature. Blue arrow: the evolution of system when we fix the temperature and vary the magnetic field.
	13. Mean field result of Bose-Hubbard model. (a) The phase diagram showing the value of the order parameter "426830A  "526930B = with varying chemical potential and hopping. (b) The corresponding particle number per site. (c) The contour showing the transition where  changes from zero to non-zero value. (d) The contour showing the transition where the particle number per site changes from integer to non-integer value. 
	14. (a) The Fermi surfaces and pairing in BCS case where "3222378 ="3223379 , and the Fermi surfaces are the same for the two species. Green circle indicates the matched Fermi surfaces and the arrows denote the paired fermions k "3222378  and k "3223379 . (b) The Fermi surfaces in isotropic 3D FFLO case where "3222378 ="3223379 , and the Fermi surfaces are mismatched. Red (Blue) circle: the Fermi surface for spin "3222378  ("3223379 ) fermions. There is no way to make all the pairs have the same CMM. (c) The Fermi surfaces and pairing in quasi-one-dimensional FFLO case where "3222378 ="3223379 . By pairing the k"3222378  fermion with -k+q"3223379  fermion, all the pairs can have roughly the same CMM.
	15. (a) A schematic illustration showing the pairing between s- and p-band fermions. The s band is also fully occupied with "3222378  fermions (not shown). (b) The spatial variation of the pairing correlation C(x) for Ns=49, Np=15 according to DMRG. The blue scatters are the DMRG result and the solid line is the fitting using function acos(qx+b)/x+c. The inset in (b) shows the s- and p-wave Wannier functions in momentum space, which are elongated in the transverse direction (in real space they are compressed in transverse direction). The s-wave Wannier function has even parity while the p-wave Wannier function has odd parity.
	16. The energy per site of the FF phase (green) and the LO phase (red) as function of the pair wave vector Q for transverse hopping (a) t=0.05 and (b) t=0.1. For each Q, the  is determined self-consistently. Energy at -Q is the same as that at Q. 
	17. The occupation of s and p band within the paired state for different transverse hopping t. Only the first quadrant of the Brillouin zone in the kx-ky plane is shown, kz=/a. The black dashed lines indicate the ``bare" Fermi surfaces for corresponding noninteracting fermions (Usp=0). (a) "426830A k†k "526930B  for t=0.05; (b) "426830A k†k "526930B  for t=0.1; (c) "426830A k†k "526930B  for t=0.05; (d) "426830A k†k "526930B  for t=0.1.
	18. Band occupation for the four possible phases in the system. The band colored in red represents the s band occupied by spin "3223379  fermions and the band colored in green represents the p band occupied by "3222378  fermions. The spin "3222378  fermions in the s band are not shown since they are inert. (a) Normal phase I (N1) with one band empty and the other partially filled. Here we only show the case with s band empty. We can also have the case with p band empty, which is not shown. (b) Normal phase II (N2) with one band fully filled and the other partially filled. Here we only show the case with p band full. We can also have the case with s band full, which is not shown. (c) Commensurate p-orbital pair condensate (CpPC) with both bands partially filled. The occupation numbers are the same. (d) Incommensurate p-orbital pair condensate (IpPC) with both bands partially filled. The occupation numbers are different.
	19. The phase diagram of the p-orbital pair condensate for t=0.05.  and h are defined in the main text. The crosses show the data points for the phase boundary obtained from the numerical procedure, and by connecting them we get the phase boundaries. CpPC: the s band of spin "3223379  fermions and the p band of spin "3222378  fermions have the same occupation numbers. IpPC: the s band of spin "3223379  fermions and the p band of spin "3222378  fermions have different occupation numbers. N1 with the p band of spin "3222378  fermions empty and the s band of spin "3223379  fermions partially filled. N2 with the p band of spin "3222378  fermions partially filled and the s band of spin "3223379  fermions fully filled.
	20. (a) The momentum distribution function nq of projected molecules for a quasi-one-dimensional system with t=0.05 (all other parameters are same as before) according to mean field theory. Here, q=qx, qy=qz=0. (b) Pair correlation function Cq for a 1D chain of N=60 sites obtained by DMRG. The peak is located at 0.433 /a in both figures, which corresponds to the value kF"3222378 +kF"3223379 =(Ns+N-Np)/Na for Ns=49 and Np=15. The time-of-flight experiment is predicted to show the momentum peak at 0.433 /a in this case. 
	21. A schematic diagram illustrating how the (2kF, 2kF) momentum of density fluctuation satisfies the nesting Fermi surface condition. Red (Green) solid curve: Fermi surfaces of px (py) orbital band. Blue dashed line: Fermi momenta of px and py orbital bands. Black solid arrow: the (2kF, 2kF) momentum of density fluctuation simultaneously satisfying the nesting Fermi surface condition for both px and py orbital bands.
	22. Feynman diagrams of density-density correlation functions of the same orbital band xx and different orbital bands xy, and the pair-pair correlation function PP. Red and green lines are the propagators of free px and py fermions.
	23. Phase transition temperature for CDW instability at g=-2 from RPA calculation. (a) t=0. (b) t=0.04. (c) t=0.08. Red line: instability towards checkerboard density wave ordering. Blue line: instability towards stripe density wave ordering. The transition temperature towards checkerboard density wave ordering with the effective chemical potential (including Hartree term) ' near 0 is much higher than that towards stripe density wave ordering with ' away from 0, which indicates that the former is more experimentally feasible than the latter. This feature comes from the Umklapp process at half filling. Besides, the phase transition temperature towards checkerboard density wave ordering does not show any noticeable change as t increases from 0 to 0.08, which suggests the checkerboard density wave ordering is not affected by t.
	24. The density patterns in real space (showing 16 16 out of 300 300) obtained from real space mean field analysis. (a) The total density pattern with attractive interaction where =0. (b) The total density pattern with attractive interaction where =-1. (c) The density difference pattern with repulsive interaction where =0. (d) The density difference pattern with repulsive interaction where =1.
	25. A schematic phase diagram in the presence of a trap with local density approximation. Here |r| is the distance from the center of the trap. I, II, and III are the regions of stripe, checkerboard, and stripe density waves, respectively.
	26. Phase diagram at 1/5 filling where p=5. Red dashed line: determining the smectic-algebraic smectic phase transition temperature at J=p2/8=25/8. Blue dashed line: determining the algebraic smectic-nematic phase transition temperature at J=2/.
	27. A schematic figure showing the parallel and transverse hoppings tx and ty in the 1D system along x direction. The green circles are used to denote the requirement of the approximate locally 2D isotropy of the lattice potential at each site.
	28. Phase diagram of a 1D lattice Bose gas with px and py orbital degrees of freedom. The lowest Mott lobe with filling =1 is dominated by px bosons. The Mott state with >1 has an AFO order (see text). We do not claim another phase for the tiny tip of the second Mott lobe beyond the red line because of numerical errors from the truncation in the matrix product state method. For sufficiently large hopping tx or for low filling, the Bose gas has a crossover from a PO superfluid to a px superfluid phase, which will not be discussed here.
	29. The schematic sketch of 2D momentum distributions (k) in different phases (PO superfluid, AFO superfluid and AFO Mott from right to left). In three subgraphs the horizontal (vertical) axis is ky ay/ (kx ax/). The purple wiggles along each subgraph shows 1d (kx). In the AFO superfluid phase, the py peaks which are broad in PO SF, are replaced by sharp peaks. In the AFO Mott phase, there are no sharp peaks.

	PREFACE
	1.0 INTRODUCTION
	1.1 Overview

	2.0 ATOMIC STRUCTURE
	2.1 Zeeman Splitting
	2.2 Stark Effect
	2.2.1 DC Stark Effect
	2.2.2 AC Stark Effect

	2.3 Scattering and Feshbach Resonance

	3.0 BULK FERMI GASES
	3.1 Trapping and Cooling
	3.1.1 Magneto-Optic Trap
	3.1.2 Far-Off Resonance Trap
	3.1.3 Evaporative Cooling

	3.2 BCS-BEC Crossover
	3.3 Sound Velocity and Collective Modes
	3.3.1 Sound Velocity
	3.3.2 Collective Modes


	4.0 DAMPING OF ULTRACOLD FERMI GASES
	4.1 Mean Field Solution of Effective Field Theory
	4.2 Quantum Fluctuations
	4.3 Sound Velocity
	4.4 Damping of Collective Modes
	4.4.1 Formalism of the Damping Rate
	4.4.2 Comparison with Experiments


	5.0 OPTICAL LATTICE AND HUBBARD MODEL
	5.1 From Three Dimensional to Zero Dimensional
	5.2 Theory of the Hubbard Model
	5.2.1 From Field theory to Hubbard Model
	5.2.2 Harmonic Approximation

	5.3 Time-of-Flight Imaging
	5.4 Bose Hubbard Model

	6.0 MULTI-BAND FERMIONIC SUPERCONDUCTIVITY
	6.1 Fulde-Ferrell-Larkin-Ovchinnikov Superconductivity
	6.2 Quasi-One-Dimensional Optical Lattice System and Theoretical Model
	6.3 DMRG Study in One Dimensional System
	6.4 Mean Field Theory in Quasi-One-Dimensional System
	6.5 Phase Diagram
	6.6 Time-of-Flight Experiments

	7.0 ORBITAL DENSITY WAVES AND LIQUID CRYSTAL PHASES
	7.1 System and Model
	7.2 Fermi Surface Instabilities
	7.3 Mean Field Theory at T=0
	7.4 Liquid Crystal Phases at T =0
	7.5 Experimental Realization

	8.0 ONE-DIMENSIONAL P-ORBITAL BOSONS IN OPTICAL LATTICES
	8.1 System and Model
	8.2 Phase Diagram from Numerical Calculation
	8.2.1 Mott Phases
	8.2.2 Superfluid Phases

	8.3 Quantum Phase Transitions from AFO to PO Superfluids
	8.4 Experimental Signatures

	9.0 CONCLUSION
	APPENDIX A. FESHBACH RESONANCE
	APPENDIX B. FIELD THEORY OF LIQUID CRYSTAL PHASES
	APPENDIX C. THE 2D XY MODEL AND CLOCK MODEL
	BIBLIOGRAPHY

