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1. Introduction 
 

Steel matters.  As a material, it is critical to the infrastructure of economic 

development and the consumer durables and capital goods that fuel that 

development. As an industry, nations have used steel manufacturing as an 

instrument of economic, social, and regional policies. As an industrial base for 

regional economies, the steel industry has helped to define the character and 

identity of great cities.  By examining critical periods of restructuring in this 

industry, the role of economic geography as a competitive factor is readily 

exposed. Moreover, the consequences of industry restructuring play out 

dramatically in terms of the well being of regions. Whether examining the 

competitive factors linked to location or their consequences for regions, an 

important basis for explanation is to be found in steelmaking technology and 

related costs.  The analysis offered in this chapter links technology-based 

competition, demand patterns, and managerial agency to describe and 

explain the process of restructuring in the American and global steel 

industries in terms of their economic geography. 

 

Our analysis begins with a very brief explanation about how steel is made in 

order to help focus attention on some basic locational factors in the industry 

and provide a basis for explaining the relationship between alternative 

technologies and competition among steel firms.  With this understanding, our 

analysis is framed by reference to long trends in industry restructuring as they 

play out for the geography of production in the United States. Subsequent 

sections of the chapter address the consequences of restructuring in terms of 

its spatial and regional dimensions. Our thesis is that technology-based 

competition, demand patterns, and managerial agency have been the primary 

drivers of the steel industry’s fundamental restructuring. There are two related 

parts to our story: First, in Sections 2-6, we describe the transformation of the 

American steel industry in terms of the shift from the dominance of integrated 
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steel to that of minimills. This shift in industry dominance was accompanied 

by a geographical shift away from the historical core of steel production in the 

Midwest to new locations closer to the growing markets of the South and 

Southwest. We argue that this dual shift was driven by an interlinked set of 

drivers, with technology-enabled changes in competition and the geographic 

displacement of demand being primary. The technology effects manifested 

themselves via two distinct pathways: changes in cost structure brought about 

by scrap-based steel production, and impact on competition between 

minimills and integrated producers. However, the visible hand of managerial 

agency (Chandler 1993) also played a role, in that decisions and investments 

by minimill managers - as well as by their counterparts in the integrated mills - 

served to hasten the shift.  

 

Next, in Sections 7-9, we describe the transformation of the global steel 

industry – still under way - in terms of the shift in production and demand from 

the Triad regions (North America, Europe and Japan) to the rest of the world, 

and the rise of the steel multinational corporation (MNC) mainly through 

mergers and acquisitions (M&A) deals. This shift, in turn, was driven by the 

same set of three factors, prime among them being changes in demand 

patterns (manifested in the rise of China) and managerial innovation 

facilitated by new information technologies. The technology driver in this 

instance was not a production technology, but rather advanced information 

systems that greatly increased the geographical distance over which steel 

enterprises could be effectively managed. Managerial agency was manifested 

this time in aggressive growth-seeking by steel firm managers, as they 

engaged in global M&A and other expansion efforts, in many cases newly 

energized by worldwide liberalization and privatization trends. Thus, the 

dramatic restructuring of the steel industry in the United States and globally 

can be interpreted through the lens of technology-based competition, demand 

patterns, and managerial agency. 
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2. Making steel 
 

In many parts of the world, and certainly in the popular image, steelmaking is 

defined by massive plant complexes that process material, beginning with 

iron ore, into semi-finished steel products that are sold to other manufacturers 

or service centers for further processing. This image is true for part of the 

industry, but a competing recycling technology also helps to define the 

modern steel industry – especially in United States, where more than one-half 

of all manufactured steel results from recycling ferrous scrap. 

 

The concept of vertical integration in the steel industry was pioneered by 

Andrew Carnegie in the late nineteenth century.  In 1890, the Carnegie Steel 

Company already included substantial holdings in coal, the primary energy 

source of steelmaking at that time, and Carnegie began to move, slowly at 

first, to acquire interests in the other key raw material – iron ore (Wall 1989, p. 

587). By the end of that century, Carnegie Steel also tied materials acquisition 

to manufacturing with its own extensive railroad interests (Wall 1989, p. 623). 

 

Today, the concept of an “integrated” steel company no longer relates to 

complete ownership in materials, transportation, and manufacturing, as it did 

for Carnegie.  However, the fundamental process of integrated steelmaking 

remains largely unchanged in the sense that mill complexes include materials 

processing, iron making, and steelmaking. Figure 1 shows a simple 

schematic of the integrated steelmaking process.  The actual conversion of 

iron ore takes place in a “blast furnace” that uses coke as a reduction agent 

and basic source of energy. The ore used in the blast furnace takes one of 

two forms: (1) pellets that are produced near the iron mine or (2) “sinter” 

produced at the steel mill by heating finely crushed iron ore along with coke 

powder and limestone (Hall 1997, p. 4-5). However, iron pellets are by far the 

largest form of iron used today in integrated mills (USGS 1998). Blast 

furnaces are closed pressurized vessels that are designed to run continuously 
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for years at time.  Depending on its design, the capacity of a blast furnace 

may be 1.5 million or more than 3 million tons per year, and scale economies 

in such furnaces are critically important. The crude “pig iron” produced in this 

process is transferred in molten form to the integrated mill’s steelmaking 

operations, where carbon levels are reduced in a Basic Oxygen Furnace or 

“BOF”.  In turn, while still in molten form, steel is moved in ladles from the 

BOF to “secondary” steelmaking facilities where steel chemistries and carbon 

content can be tightly controlled for specific end uses. Steel takes its first solid 

form in continuous casting operations, where the cast product is committed to 

flat shapes (slabs used to make steel sheet or plates) or long shapes (billets 

or blooms, which have cross sections that are more nearly square or round). 

 

[Figure 1 here] 

 

The contrast between an integrated steel process and the alternative steel 

recycling process, which relies on the electric arc furnace (EAF), is dramatic, 

both in terms of complexity and, typically, the scale of operations. As shown 

in Figure 2, this alternative technology is much more direct.  EAFs use post-

consumer scrap metal such as old automobiles and appliances and scrap 

metal cast off in the manufacturing of steel products of many kinds. By 

melting the scrap metal from such sources, EAF producers recover steel that 

can be used to compete directly with ore-based mills. 

 

[Figure 2 here] 

 

The growth of electric furnace steelmaking in North America began to 

increase dramatically in the 1970’s, and this was coincident with very 

important efficiency gains in this technology.  See Barnett and Crandall (1986, 

56-57). The price of scrap metal was very low at that time, and it gave scrap-

based producers a significant cost advantage in certain product lines.  In the 

decades to follow, the scale of many electric furnaces in terms of annual 
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capacities increased to over one million tons, which approaches the low-end 

of the capacity range of integrated steelmaking. Moreover, as experience has 

increased with electric furnaces and technologies have advanced, it has 

become common for the furnace “charge” or input mix to include directly 

reduced iron (DRI) or pig iron. Input substitution between ferrous scrap and 

DRI or pig iron has greatly increased the product range of EAF producers by 

allowing them to more closely control the level of impurities in the scrap-

based steels they produce.  

 

3. Long trends in industry restructuring 
 

Perspective on developments in steel technologies, like the advancement of 

electric furnace steel production, and the competitive forces that they help to 

shape can be gained by reference to long trends in the economic geography 

of American steel production.  The historical geographic core of steel 

production in the United States is defined by three state-based districts: (1) 

Pennsylvania, including, of course, Pittsburgh, where integrated steelmaking 

began in the United States, (2) Illinois-Indiana, where Chicago-Gary is, by far, 

the largest production center, and (3) Ohio, especially areas bordering the 

Great Lakes near Cleveland.  The overriding core-periphery trend in 

American steel production is unambiguous: Table 1 shows that the historical 

core region’s share of total steel production has declined monotonically for 

many decades, as population and overall American manufacturing activity 

shifted southward and westward. However, while this trend in steel production 

is evident, the factors underlying it have evolved in terms of technology and 

the nature of competition.  

 

In the years immediately after World War II, explanation for the historical core 

region’s declining share meant, in practical terms, explaining why 

Pennsylvania, and Pittsburgh in particular, was losing its share of national 

steel production.  As indicated in Table 1, from 1940 to 1970 the historical 
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core region’s share of steel production declined from 72 percent to 62 

percent, with Pennsylvania accounting for seven points of the ten-point 

decline over this thirty-year period. 

 

[Table 1 here] 

 

Pittsburgh’s early advantage in American steelmaking in the middle- to late-

19th Century was found in its proximity to Western Pennsylvania’s coal 

resources as well as the market position that Pittsburgh enjoyed when 

railroad systems began to move westward. Pittsburgh’s distance from the 

source of the other great transferrable resource needed in steel production – 

iron ore – was of little disadvantage when integrated steelmaking began. 

North American iron ore travels primarily by boat or barge from mining areas 

in Michigan and Minnesota, and the transportation cost differentials related to 

iron ore simply did not offset the enormous advantage that Pittsburgh enjoyed 

by its proximity to metallurgical coking coal (Pittsburgh Regional Planning 

Association 1963, p. 262). The other major steel producing regions at the time 

in Ohio and Illinois-Indiana – all located on the Great Lakes – had superior 

water access to iron ore, but suffered relative to Pittsburgh in their proximity 

to sources of coking coal.  

 

Based on this historical advantage, explanations for Pennsylvania’s relative 

decline focused on two sources: (a) changes in technology that reduced 

locational cost advantage in Eastern production centers, and (b) changes in 

the spatial distribution of the market.  Isard and Capron (1948) explain the 

cost side by very substantial progress in fuel efficiencies that reduced the 

amount of coke required in blast furnaces to produce pig iron. This weakened 

the advantage of production centers, like Pittsburgh, that are located close to 

sources of coking coal.  See, also, Pittsburgh Regional Planning Association 

(1963, p. 273).  The market disadvantage of production centers in 

Pennsylvania and other Eastern regions also is recognized as an important 
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locational consideration by Isard and Capron (1948, p. 126) and by Pittsburgh 

Regional Planning Association (1963, p. 278).  Later, Hekman (1978) argues 

that changes in the geographic distribution of the market are the most 

important basis for explaining changes in the distribution of steel production 

among regions. 

 

An argument also can be made that the effect of market growth on steel plant 

capacities in the Midwest was enhanced by the weakening and ultimate 

demise of basing-point pricing in the steel industry.  Under basing-point 

pricing, steel customers pay the F.O.B price at a given steel plant plus 

transportation costs from a pre-determined geographic basing point to the 

customer’s plant location. Pittsburgh pricing, which prevailed until an F.T.C. 

ruling in 1924, set the transport costs on the basis of the customer’s distance 

from Pittsburgh – regardless of where the steel was actually produced. After 

that date the number of basing points used by the industry expanded to 

include Chicago and other cities (Rogers 2009, p. 66), but the practice was 

not entirely eliminated until 1948 (Marengo 1955, p. 509). The ability of 

Pittsburgh mills to compete in markets located at the periphery of its market 

region was eroded when other cities were included in the multiple basing-

point system.  As the system was eliminated those other cities also lost the 

implicit market protection offered by this system.  Consequently, the 

competitive position of steel plants located in distant regions was enhanced in 

geographic markets adjacent to their operations because of lower 

transportation costs, and the lower cost of delivered steel in these markets 

facilitated growth in steel consuming operations. 

 

While these geographic shifts were taking place after World War II, major 

investment decisions were undertaken by steel makers in the United States 

and abroad that would profoundly affect the competitive balance among firms 

in years to come.  The Basic Oxygen Furnace (BOF) – which is today 

standard technology – emerged in the 1950s to compete with the dominant 
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technology of that time, the Open Hearth (OH) furnace.  Major expansions in 

steelmaking capacity were made in the United States, Europe, and Japan in 

the immediate post-war period. Throughout the 1950s, investments in new 

capacity in the United States were being made in OH furnaces – over thirty-

nine million net tons of OH capacity were added during that decade out of a 

total U.S. capacity of 139 million tons (Hall 1997, p. 40). In contrast, European 

and Japanese steel makers invested in the emerging technology, BOF. A 

decade later, it was apparent that the BOF was superior, and OH furnaces 

began to be phased out of production worldwide. 

 

Many factors, including investments in OH furnaces, combined during the 

1950’s and the 1960’s to weaken the competiveness of integrated steel 

makers in the United States, and this long saga is well documented 

elsewhere. See, for example, Tiffany (1988).  Among these factors, labor 

issues were very important. In effect, the large integrated steel firms 

purchased labor peace at a very high price in the sense that negotiated labor 

settlements built-in substantial cost disadvantages based on hourly rates, 

work rules, and retirement benefits (Hoerr 1988, 77-81; Hall 1997, 45-49).  

“Big steel” emerged from all of this as being especially vulnerable to 

competition from foreign producers, and in 1960, the United States – still a 

major world producer – became a net importer of raw steel.  In addition, 

anemic growth in steel demand after World War II along with the maturation 

of infrastructure investment in the United States limited the opportunity to 

build new plants embodying new technology, without the closure of existing 

integrated mills. See Barnett and Crandall (1986, p. 97) for documentation 

concerning steel demand during this period. 

 

Ironically, the replacement of OH furnaces with BOF’s also helped to spur the 

growth of a new set of domestic competitors for U.S. integrated steel 

producers. The OH technology, which accounted for the largest share of steel 

production in the United States through the 1960s, could accept up to fifty 
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percent ferrous scrap in the furnace charge. While superior in other ways, 

BOF’s by comparison could accept only much smaller amounts of scrap 

metal, and relied much more heavily on the pig iron generated by blast 

furnaces. Thus, replacement of OH furnaces by BOF’s in the 1960’s drove 

down the market price of ferrous scrap.  Small, independent steel producers 

emerged in the United States to take advantage of low scrap prices by using 

EAF technology, and these American “minimills” would reshape the economic 

geography of steel production in North America. 

 

Also in the 1950’s, concern by integrated steel firms with the depletion of 

high-grade iron ore deposits stimulated major investments that further tied 

integrated firms to ore-based technologies.  Costly investments were made in 

“pelletizing” operations that could bring low-grade ores up to the high iron 

content levels necessary for steelmaking.  In addition, integrated firms 

invested heavily to secure access to high-grade ores, especially in Canada 

and South America (Hall 1997, p. 39). As a consequence of these locationally 

fixed investments integrated firms were less able to respond to opportunities 

presented by emerging scrap-based furnace production.  

 

In addition to the technological and economic factors discussed so far, 

managerial factors also played a key role. Christensen (2000) has provided 

rich analysis of key managerial factors that may have differentiated between 

minimills and integrated producers in terms of their response to EAF 

technology. In Christensen’s (2000) account, EAF technology was a 

“disruptive technology” – one key characteristic of which is that, at its 

inception, it is markedly inferior to prevailing technologies. In the case of EAF 

steelmaking, as indicated earlier, it was initially hard to control the chemical 

qualities of the steel produced, because the scrap that went into the furnace 

often varied in its metallurgical composition. Thus, the only markets open to 

EAF products were low-end applications, such as construction re-bar. In 

contrast, more demanding applications such as automotive steel required 
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more precise control of chemical qualities. Focusing on their high-value 

added customers, integrated producers chose to cede the lower-end markets 

to minimills employing EAF technology. Given their lower cost structure, 

minimill companies were able to serve even the lower end markets profitably.  

 

However, a crucial characteristic of disruptive technology is that it gets better 

over time (Christensen, 2000). Bolstered by their profits, and incentivized by 

the prospect of moving upmarket, minimills like Nucor and Chaparral worked 

hard to improve steel quality, as well as invested in the equipment to make 

larger shapes. By the mid-1980s, they had captured not only the entire rebar 

market, but also the lion’s share of the market for bars, rods and angles. 

Once again, constrained by their cost disadvantages and by the preferences 

of their existing customers, integrated producers retrenched from those 

markets, now reduced to flat steel products that demanded the highest levels 

of purity, Christensen’s (2000) analysis brings to light the process through 

which rational managerial decisions in response to real technological, 

economic and customer pressures led to the ascendancy of the minimill.  

 

4. Technology-based competition and industry restructuring 
 

The profound effect of the minimill phenomenon on the economic geography 

of American steel manufacturing is revealed by reference to the long trends 

shown in Table 1. In the thirty-year period from 1970 to 2000, the historical 

core region’s share of national steel production declined by a further 10 

percentage points, just as it had in the previous thirty-year period. In the more 

recent period, however, integrated steel makers were challenged by 

competitors on two fronts, domestic and foreign, and Pennsylvania’s declining 

share shows the consequences. By the end of the 20th Century, a steel era 

had ended, as Pennsylvania’s share of national steel production declined 

from 23 percent to seven percent, and at the same time, rough parity in 
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regional shares between the historical core and other regions made moot the 

very concept of core-periphery distinctions. 

 

The ascendance of EAF technology is evident in Table 2, which shows 

average annual steel production in the United States by furnace type for 

recent decades. EAF steel production doubled from the decade of the 1960s 

to the 1970s, and has continued a trajectory of steady growth to the present 

day – now accounting for well over fifty percent of raw steel production in the 

United States.  Open Hearth (OH) technology – which was the focus of 

immediate post-war investments by US integrated steel producers – was 

phased out rapidly and replaced by BOF technology in the 1960s and 1970s. 

By the 1980s, OH furnaces were clearly obsolete.   Perhaps the most 

dramatic change revealed by Table 2 is the major decline observed in total 

steel production from the 1970s to the 1980s – all of which is accounted for 

by integrated steel firms. 

 

[Table 2 here] 

 

The restructuring in the steel industry that is implied by these data – decline 

by ore-based integrated firms and growth by scrap-based EAF firms – has 

had a profound effect on the economic geography of steel production in the 

United States. The 1981-1982 economic recession experienced in the United 

States triggered a series of major plant closures and capacity adjustments 

that reflected long-term strategic decisions by integrated steelmakers.  In 

1974 forty-five ore-based plants produced non-specialty steel in the United 

States, and by 1991, ore-based capacity had been eliminated in twenty-two of 

these plants (Beeson and Giarratani 1998, p. 425).  Most of the plants 

involved were permanently closed; four remained open, but only with EAF 

capacity.    Mirroring the production data presented in Table 2, the capacity of 

ore-based steel plants in the United States also has dropped very 

substantially in recent periods.  From 1974 to 1991, total ore-based furnace 
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capacity in the United States decreased from 140.5 million tons per year to 76 

million tons per year, a decline of 45.9 percent (Beeson and Giarratani 1998, 

p. 435). 

 

Figure 3 shows the way that these reductions played out in terms of the 

spatial distribution of ore-based steelmaking capacity in United States by 

focusing on total BOF capacity in state-based regions during the 1970s, 

1980s, and 1990s.  Sharp declines in northeastern regions (Region 4 and 

Region 10) and in the West (Region 9) contrast vividly with relatively stable 

capacity in other places, especially in the upper Midwest (Region 1, Region 2, 

and Region 3).  

 

[Figure 3 here.] 

 

The observed geographic patterns of ore-based capacity change are best 

understood in terms of a partitioning of the product markets for steel. As 

explained by Ahlbrandt, Fruehan and Giarratani (1996) in the process of 

restructuring, ore-based integrated producers largely focused the capacity of 

their plants toward flat products (steel slabs) and eliminated their capacities to 

produce long products (steel billets and blooms).   At the time of this 

partitioning, with a very small number of exceptions, the product range of EAF 

plants was limited to the billets and blooms necessary to fashion products like 

construction beams, steel rods, and reinforcement bars.   The cost advantage 

of EAF producers forced ore-based integrated producers out of these 

markets, except in circumstances where the ore-based firm produced bars or 

other long products with special characteristics in term of hardness or other 

attributes that were beyond the metallurgical range of EAF mills.  Also recall 

the previous discussion of EAF technology as a “disruptive” force 

(Christensen 2000) that triggered managerial responses eventually leading to 

such partitioning. See Barnett and Crandall (1986) as well for corroborative 

detail.  Inter-firm competition is not static, however, and the relentless 



 13 

incursion of EAF producers into the markets served by integrated firms 

continues to the present day. 

 

The location of automobile plants and auto parts suppliers was an important 

consideration in restructuring by integrated steelmakers.  In the 1980’s, EAF 

producers had limited or no access to the markets for automotive steel, and 

BOF producers made capacity decisions accordingly. Plant locations in 

Illinois-Indiana and Ohio served the strategic needs of integrated producers 

and the evidence for this is clear in Figure 3.  The very dramatic declines in 

BOF capacities in Pennsylvania and other states are a consequence of exit 

by integrated firms from the markets for long products, and growth or stability 

in BOF capacities elsewhere are a consequence of the focus by integrated 

firms on the markets for flat products – especially, steel sheet that is shipped 

in coils to manufacture automobiles and other goods (Beeson and Giarratani 

1998). 

 

5. Steel minimills and industry restructuring 
 

While transport costs on materials and finished products are important in 

determining the profitability of steel minimills in the same way that these 

factors are important to integrated mills, the basic transferrable input used by 

minimills – ferrous scrap – is much more widely distributed than the iron ore 

and coking coal required by integrated mills. This suggests that regions where 

ferrous scrap is in surplus would be especially attractive minimill locations, 

given the proximity of a plant location to product markets. It also suggests that 

transportation infrastructure – rail networks and barge access for scrap, 

trucking for finished steel – will be important factors in plant location. 

Substantial electricity is required for scrap-based steel production, and the 

price of electricity also is a key locational factor.  
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Figure 4 shows the capacity of scrap-based steel production (EAF producers) 

in state-based regions during the 1970s, 1980s, and 1990s. In sharp contrast 

to the pattern observed for ore-based steel production (BOF producers), 

scrap-based plant capacity is widely dispersed and steady or growing in most 

regions.  Very substantial decade-to-decade growth is found several regions, 

and especially in the southern and southeastern states. See Region 7 and 

Region 8. 

 

[Figure 4 here.] 

 

The contrast in locational patterns for ore-based and scrap-based producers 

is displayed vividly in Figure 5, which maps specific plant locations for each 

technology in 2003. 

 

[Figure 5 here.] 

 

One remarkable implication of EAF capacity growth is that it has changed the 

very concept of a “steel” region in the United States.  For most readers, the 

fact that the northeast corner of Arkansas, a very rural state, is home to one 

of the largest steel producing counties in the United States would come as a 

great surprise. Yet, this location along the Mississippi River can claim two 

large scrap-based EAF steel mills and has a total steelmaking capacity that is 

greater than the current steelmaking capacity in all of Pennsylvania. 

Moreover, the plant capacity in Arkansas was built on two green field sites 

with one start-up in 1987, Nucor-Yamato Steel Company in Blytheville AR, 

and a second start-up in 1992, Nucor Steel’s facility in Hickman AR. In order 

to understand this phenomenon fully, it is important to appreciate the process 

by which scrap-based EAF producers emerged as formidable competitors 

with ore-based integrated mills. 
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Although electric furnace steel production has a much longer history, the 

beginning of the market insurgence by steel minimills in the United States can 

be dated to late 1950s and early 1960s when a small number of firms used 

the cost advantages they enjoyed from scrap-based manufacturing to 

produce reinforcement bars for concrete used in the construction industry 

(Hall 1997, p. 154-157).  The plants involved were often at the periphery of 

market areas served by integrated steel producers and were buffered from 

competition by advantage in transportation costs (Barnett and Crandall 1886, 

p. 19). In these locations, minimills enjoyed very significant advantage in 

production cost: ferrous scrap was abundant, easily accessible, and available 

at low prices; EAF mills had very low capital costs relative to integrated mills; 

and electricity costs were low (Ahlbrandt, Fruehan, and Giarratani 1996) in 

the peripheral locations.  These advantages, most particularly low capital 

costs, allowed minimills to exploit highly local markets for steel products in 

small scale plants. 

 

The most formidable challenges to ore-based producers began in the latter 

part of the 1960s and the 1970s, when minimill producers began taking 

advantage of their success by reinvesting profits to replicate successful mills 

within a multi-plant firm structure.  Florida Steel Corporation began this 

pattern, while retaining its focus on producing steel products for local 

construction markets (Hall 1997, p. 158-159). Nucor Steel was among the 

market entrants that followed the multi-plant pattern, but along with several 

other minimill producers, Nucor began to scale up plant capacities, extend its 

product range beyond construction steels, and serve much wider market 

areas (Barnett and Crandall 1986, p. 19).  Expansion in scale, product range, 

and geographic markets placed EAF producers like Nucor in direct 

competition with integrated firms, and continuously improving EAF 

technologies added to the advantage of these insurgent firms over time.  

Beeson and Giarratani (1998) provide statistical evidence linking reductions in 
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ore-based capacities across space and the closure of integrated plant directly 

to this minimill challenge.  

 

The transformation of minimills from small scale plants serving local markets 

to larger scale plants serving broad markets explains the patterns observed in 

Figure 4, and is plainly evident in Table 3, which documents the size 

distribution of minimills in 1978 and 2003. Over this period, the number of 

minimills increased by nearly fifty percent and total minimill capacity tripled.  

Median plant capacity ratchets up from 350 thousand tons per year in 1978 to 

750 thousand tons per year in 2003, and average plant capacity begins to 

approach one million tons by the end of the period. Indeed, in 2003, nearly 

one-third of existing “minimills” have an annual capacity of one million or more 

tons. 

 

[Table 3 here.] 

 

6. Minimill cost advantage 
 

An important part of the cost advantage enjoyed by minimills was their early 

adoption of continuous casting technology.  In most modern mills, steel takes 

its first solid form only as it passes from secondary steelmaking operations in 

a mill through a continuous caster.  The earlier technology required pouring 

molten steel into casts to create “ingots” that could be placed in inventory for 

later use.  Transforming ingots into billets, blooms, or slabs required re-

melting before further processing in separate rolling mills. The costs of capital 

and energy required for ingot casting and re-melting are very substantial, and 

continuous casting is much more cost effective.  

 

Scrap-based minimills began adopting continuous casting in the early 1960s, 

and the technology quickly became standard for minimills as EAF capacity 

expanded. By comparison, integrated mills adopted the technology only with 
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a very substantial time lag, due, in part, to the challenges imposed by casting 

slabs at large volume (Warren 2001, p. 256). Further, integrated producers 

may have experienced “lock-in” effects from the geometry of their prior 

commitments: e.g., at its Mon Valley plant, US Steel was constrained by the 

need to work with a furnace and a rolling mill situated ten miles apart – a 

configuration consistent with existing casting technology (Ghemawat 1997). 

The net result of this difference in adoption rates was a direct cost savings for 

minimills that may have approached $40-$50 per ton of steel (Rogers 2009, 

p. 132).  

 

Beyond this direct cost-savings per ton, continuous casting technology also 

was a linchpin for the introduction of modern manufacturing techniques to the 

American steel industry.  Ahlbrandt, Fruehan, and Giarratani (1996, 89-90) 

explain that by investing simultaneously in continuous casting technology, 

human capital, and human resource practices that encourage the 

decentralization of decision making on the shop floor, steel manufacturers 

were taking advantage of important complementarities that had a tremendous 

impact on productivity. The basis for these gains was laid out clearly by 

Womack, Jones, and Roos (1990). In this widely read book on the automobile 

industry, the authors show how the elimination of inventories in production 

lines enables a process of “lean manufacturing” that provides a basis for 

substantial efficiency gains and quality improvements.  The introduction of 

continuous casting in the steel industry had exactly these effects, and by 

doing so it enhanced the importance of human resource considerations in 

plant location decisions. 

 

The importance of human resources in the link between technology and 

production efficiency is highlighted by the experience of Nucor Steel, which 

has served as a model for many other firms in the way that it ties together 

technology, human resources, and the process of production to enhance its 

competitiveness (Ghemawat 1995, 1997).  The heart of Nucor’s labor model 
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is a pay-for-performance system keyed to quality-based production, but this is 

imbedded in a much larger corporate culture that decentralizes decision 

making and encourages a get-it-done approach to problem solving 

(Ahlbrandt, Fruehan, and Giarratani 1996, 74-78). Nucor is not the only 

steelmaker with these characteristics, but its influence on the industry has 

been very important, and the kind of “high-performance” workplace that Nucor 

and other firms apply can result in substantial productivity gains (Ichniowski, 

Shaw and Prennushi, 1997). 

 

Minimill producers striving to implement Nucor-like work systems place a 

premium on labor flexibility in terms of cross-skilling. For example, most of 

these firms rely on a very limited number of job categories so that workers in 

a given category have and use a number of different skills across a wide 

range of tasks.  On a given day one worker might spend part of the day 

monitoring process controls and another part of the same day in maintenance 

activities.  Because of the emphasis on decentralization in decision making, 

problem solving is valued and encouraged. This labor model encourages 

minimills to seek locations for new plants where workers could be trained in a 

flexible work environment.  While many minimills are non-union and others 

are unionized, the spatial distribution of these producers strongly favors right-

to-work states. 

 

The management of human resources was not the only area in which 

minimills followed sophisticated approaches that enhanced their competitive 

advantage. Staying with the example of Nucor, another key factor was 

efficient management of capital, which was critical in the capital-intensive 

steel industry (Ghemawat 1997). During its period of growth, Nucor 

demonstrated a cadence of building or rebuilding one plant a year, acting as 

its own general contractor in each instance. This approach provided not only 

significant knowledge spillovers in between plant construction and operations, 

but also superior capital efficiency – allowing Nucor to build its first thin-slab 
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caster for an investment estimated to be 25% less than it would have cost 

rivals, and to achieve operating break-even a year and half sooner 

(Ghemawat 1997).   

 

In addition to labor factors, the locational cost advantage of EAF mills 

depends especially on the availability and price of ferrous scrap – the primary 

transferrable input for EAF steel making. Figure 6 shows clearly the cost 

advantage enjoyed by minimills away from the core Northeast and Midwest. 

Along with lower electricity prices – pointed out earlier – this factor further 

reinforced the attractiveness of production locations in what was previously 

the periphery.  

[Figure 6 here.] 

 

A summary of our key arguments is appropriate as we conclude this part of 

the chapter. Over the decades, the regional structure of the American steel 

industry changed drastically as a result of three interacting drivers. The 

evolution of EAF technology changed the relative cost positions of industry 

players, propelling significant growth for mini-mills. Economic growth in the 

South led to new markets for steel in areas away from the traditional industrial 

clusters of the Midwest, and minimills were able to situate themselves closer 

to those markets. Managerial agency intervened in the form of aggressive 

growth-seeking by minimill firms such as Nucor, and a corresponding 

tendency on the part of integrated producers to retrench away from markets 

that were targeted by the minimills. Thus, technology-based competition, 

demand shifts and managerial agency worked jointly to bring about the 

regional shifts we described in the American steel industry. 

 

In order to provide the global context to our story, we now turn to the 

restructuring of the world steel industry. In addition to merely providing 

context, however, we find that the same three drivers may explain the global 

restructuring that is currently under way. Demand shifts away from the Triad 
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markets (US, Japan and the European Community), new information 

technologies that facilitate worldwide managerial coordination, and 

aggressive managers seeking to reconfigure the industry to their own 

advantage – our analysis shows these to be drivers of the steel industry’s 

globalization, much as they were in the case of the American steel industry. 

 

7. The global dispersion of demand 

 

Observers have noted three eras in the history of the global steel industry 

(e.g., Laplace Conseil 2003) – the pre-War national era, the period from the 

Second World War to the 1970s oil crisis, and the period since 1973, which is 

often viewed as culminating in the globalization of the steel industry. Two key 

developments underlying the globalization of the industry were liberalization 

(the freeing of political and strategic restrictions) and the attendant 

privatization of steel companies. Historically, governments around the world 

tended to heavily support their domestic steel producers, reflecting both 

concerns about preserving employment in a sector with powerful labor 

unions, and the entrenched view that the steel industry was “strategic” for 

industrial and military reasons. In the 1980s, 60% of the world’s steelmaking 

capacity was government-owned (Wall Street Journal 2005). Subsequently, 

however, reflecting the zeitgeist of liberalization as well as inability to continue 

to bear the economic costs of inefficient government-owned plants, much of 

this capacity was privatized – bringing government ownership down to 40% of 

capacity by 2005 (Wall Street Journal 2005). In the Triad nations, where 

government ownership was less of a factor, bankruptcy restructuring 

facilitated the shedding of legacy costs, such as pension obligations, leading 

quickly to the emergence of a robust global market for steel assets. 

 

While the large-scale liberation of steel companies from government 

ownership and/or political strictures that kept them domestic was an important 

factor, however, the globalization of the industry is most apparent if we 
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examine changes in the global demand pattern. In 1960, the United States 

accounted for 26% of world steel markets, and the Triad nations  for 56% 

(Old, 1985). Parallel to the “core to periphery” shift noted earlier within the 

American steel industry, the world industry has undergone a massive 

structural shift in terms of the geographic location of steel production. (See 

Figures 7 and 8]. 

 

[Figures 7 and 8 here] 

 

Two observations are worth making here. Figure 7 demonstrates compellingly 

that Asia is now the center of gravity of steel production, accounting for over 

60% of all steel produced. Figure 8 breaks down the Asia numbers even 

further, pinpointing simultaneously, the relatively stable role of Japan, the 

massive growth in China, and the significant room for growth in India. The 

well-known geo-economic shifts that comprise the slowing of growth in the 

Triad and the emergence of growth markets elsewhere (e.g., the BRIC 

nations) are clearly the fundamental drivers of the shift toward regions that 

were hitherto peripheral. In particular, it is useful to note one factor that is 

here to stay: steel intensity declines in the developed world. Crude steel 

consumption has stabilized at 400 kg per capita in the developed world – with 

low population growth and the shift to service-based economies, this steel 

intensity is not expected to increase. In contrast, however, China’s steel 

consumption in 2010 was 450 kg per capita, and rising, driven by huge 

investments in infrastructure. Nor is China’s hunger for steel expected to slow 

down any time soon, as suggested by two yardsticks (BHPBilliton 2012): 

First, China’s car penetration density in 2010 was 32 cars per thousand 

persons, compared to 423 in the United States. Second, China has only 32 

square meters of urban residential floor space per capita, compared to 73 in 

the United States. 
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The second observation is that, important as China is, this is not entirely a 

China story: the rest of the developing world (ex-China) consumed over 400m 

tones of steel in 2010, and the 2000-2010 CAGR was 5.6%. (Arcelor Mittal 

2011). That there is even more room for growth outside China is illustrated by 

comparing steel intensity numbers. India, lagging behind China on 

infrastructure investment and industrialization, consumed 60 kg per capita. 

The comparable number for other developing countries (apart from China and 

India) was 102 kg per capita. With a population base of nearly 5.5 billion, and 

driven by industrialization and urbanization, thus, the emerging markets are 

where the demand and demand growth are expected to be. For a firm-level 

illustration: At Arcelor Mittal, which is the world’s largest steel producer, over 

1/3 of current shipments go to the emerging markets (Arcelor Mittal 2011). 

 

8. The emergence of the steel MNC 

 

Accompanying the demand and production shifts from the Triad nations to the 

emerging markets noted above is the emergence of the steel MNC. Unlike 

similar or related industries such as Aluminum or mining, both of which 

witnessed the emergence of MNCs decades ago, steel companies are 

latecomers to multinational operations. In fact, it was the merger of three 

European national steelmakers to create Arcelor in 2001 that heralded the 

rise of the large-scale MNC in the steel industry.  The adoption of the MNC 

form can be seen as a natural response to the industry dynamics noted 

earlier: The large increased demand in China/ Asia combined with the 

importance of operating on a global scale (global customers and global 

competition) led to the pressure for consolidation in a fragmented industry 

(IBM 2007). Given the powerful economic rationale against creating new 

capacity in many regions of the world, M&A were the primary means of global 

expansion for the established steelmakers. Figures 9 and 10 lay out the 

extent and impact of M&A activity in the global steel industry. 
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[Figures 9 and 10 here] 

 

At its peak in 2006-2007, the steel industry witnessed a total of 323 M&A 

transactions over the two years, with a peak in dollar value of close to US$ 79 

billion in 2006 (Figure 9). Although the number and size of deals has declined 

since then, the pace of consolidation continues. Figure 10 demonstrates that 

the rankings of the top steel producers have been routinely upset by 

consolidation deals. For example, Arcelor became the world’s Number One 

steelmaker in 2001 as a direct result of the merger that created it.  Similarly, 

NKK of Japan climbed from the 8th position in 2002 to 4th (as JFE) upon its 

merger with Kawasaki Steel. The appearance of new Chinese steelmakers on 

the Top Ten list is also directly attributable to M&A transactions. 

  

Figure 10 also reminds us that, despite the considerable consolidation that 

has taken place, the steel industry remains highly fragmented. The total share 

of production accounted for by the Top Ten (i.e., C10) has barely changed 

during this period, in fact declining slightly to 0.24 in 2010 from 0.25 in 2000. 

By way of a rough comparison, the top five iron ore producers accounted for 

over 40% of the iron ore market (PwC 2004).   

 

One important implication of the cross-border M&A phenomenon was that 

foreign ownership of steelmaking assets became reality, a far cry from the 

past preoccupation with domestic ownership of an industry that was widely 

held to be strategic in nature. At one point, it was estimated that foreign 

steelmakers owned 42% of steel capacity in the NAFTA region (Blume, 

2008). 

 

Thus, M&A played a critical role as an instrument of corporate initiative that 

fundamentally reshaped the industry and impelled the emergence of the steel 

MNC. We view the prevalence of M&A in this context as an expression of 

managerial agency that took place in the context of demand shifts, but was 
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distinct from it. A counterexample serves to make this point: Tiffany (1987) 

has noted that US Steel did not pursue the clear opportunity to expand in 

Europe when that continent’s steel plants lay in shambles at the end of the 

First World War. Tiffany (1987) attributes this to a judgment on the part of 

Wall Street financiers, the potential providers of expansion capital, that there 

were greater profits to be made by lending directly to Europeans to rebuild 

their own industry than by supporting US Steel’s expansion. In such a view, 

managerial judgment may have led to the path not taken (of 

internationalization). However, in the late 1990s and then the 2000s, steel 

industry managers arrived at a different conclusion, and that has clearly led to 

a different set of outcomes. 

 

It should also be noted that the M&A transactions did not emerge only from 

established steel companies from the prior core, i.e., developed world 

companies. In fact, arguably, one of the key instigators of the industry 

consolidation wave was a virtual outsider, Laxmi Nivas Mittal, who got his 

start running a small mini-mill in Indonesia (Ghemawat & Madhavan 2011). 

Developed world steelmakers have indeed accounted for many large cross-

border deals. However, steel producers from the emerging markets have also 

been active players – e.g., Tata Steel’s acquisition of Corus in 2007, and 

Gerdau’s transactions in North America. Kumar & Chadha (2009) provide a 

useful comparative analysis of Indian and Chinese outward FDI in the steel 

industry. The trend in domestic M&A is also similarly represented across the 

key nations. In China, for example, the fragmentation of the steel industry, 

with its implications for efficiency and competitiveness, is a matter of great 

concern to policy makers. In 2008, China’s top ten domestic steelmakers 

accounted for 42.5% of total output (i.e., C10 = 42.5). According to the 

Chinese government’s 2005 Development Policies for the Iron and Steel 

Industry, the target C10 for 2020 is over 70 (KPMG 2009).  
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One key aspect of the evolution of the steel industry relates to its interface 

with the mining industry. With the growth in demand for steel inputs such as 

iron ore and coal, as well as the increasing concentration in the mining sector, 

it’s clear that ensuring access to raw materials is a key concern for 

steelmakers. One outcome has been vertical integration: Indeed, much of the 

value that Mittal saw in acquiring post-Soviet steel mills may have been in the 

captive mines that came with the factories rather than in their steelmaking 

capacity Ghemawat (2007). This dialectical dynamic comprising concentrated 

market power on the part of the miners and the search for mineral self-

sufficiency on the part of steelmakers will have interesting results – e.g., more 

direct attempts to buy up mines, such as Arcelor Mittal’s 2011 attempt to gain 

control of Macarthur Coal, and the emergence of “haves” and “have-nots” in 

the steel industry in terms of mineral self-sufficiency (Lichtenstein, 2011) - 

with attendant implications for valuation differentials that may in turn drive 

further merger activity. 

 

In our description of structural changes in the US steel industry, technology 

played a key role – minimills employed scrap-based production technology to 

direct great competitive pressure at integrated producers. Interestingly, 

technology plays a parallel role in the ongoing restructuring of the global steel 

industry, although with an important difference. The US domestic story 

recounted earlier was driven by production technology, i.e., the rise of EAF 

production. In the globalization case, we propose that it was not production 

technology, but rather supporting organizational technologies that mattered – 

specifically, sophisticated information technology tools that triggered 

managerial innovations and in turn facilitated the creation and ongoing 

management of the MNC form. Two examples serve to illustrate: 

ThyssenKrupp’s use of networked computer systems to bring about global 

integration, Arcelor Mittal’s coordination of inter-regional demand patterns 

through advanced information systems. 
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In ThyssenKrupp’s case, we see how high-technology communication tools 

make possible a production chain that is dispersed over three continents 

(Wall Street Journal 2010). ThyssenKrupp is a pioneer in stitching together a 

truly global steel supply chain, with a plant in Sepetiba, Brazil making steel 

slabs, which are then rolled and treated in Alabama for higher-value added 

applications. A small team based in Rotterdam uses networked computer 

systems to coordinate customer orders, slab production, and further 

processing efficiently. ThyssenKrupp sees itself as a “virtual integrated steel 

mill” (Wall Street Journal 2010). Industry accounts suggest that the company 

has been able to create significant efficiencies in production and logistics cost 

by virtue of this networking technology. 

 

In Arcelor Mittal’s case, evidence suggests that significant managerial 

attention and the effective use of information systems (including knowledge 

transfer) have allowed it to leverage its resources globally as well as to 

respond in nuanced ways to regional differences market needs. At the time of 

their merger in 2006, there was a significant difference in technological 

capability between Arcelor and Mittal Steel. While Arcelor and Mittal Steel 

were roughly the same size, Arcelor’s annual R&D outlay was more than 10 

times that of Mittal Steel, with the result that Mittal mills tended to lag their 

Arcelor counterparts in efficiency, reliability, and quality of steel 

(BusinessWeek 2010). When you have a global company that demonstrates 

such stark differences in technology levels, leveraging advanced technology 

from the better units to the other units represents “low hanging fruit,” as 

compared to developing new technology. As evidence, consider how Arcelor 

Mittal’s 2006 Activity Report (Arcelor Mittal 2006) opens its description of 

R&D accomplishments (page 61): “The merger has added a new dimension 

to the R&D effort by widening the range of potential applications for existing 

technical know-how and permitting the better use of this expanded R&D 

resource in order to accelerate project work.” A more graphic explanation of 

the technology transfer process is provided by Business Week (2010): 
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“To tap into that expertise, Burns Harbor recently dispatched a team of 

engineers to Sidmar, Arcelor's crown jewel, in Ghent, Belgium. The idea 

was to figure out why, with the exact same inputs, the Europeans were 

able to squeeze about 7% more steel out of their mills than the U.S. plants 

could. The Americans relished the candlelight dinners in the old quarter of 

Ghent, but they were even more wowed by the advanced technology and 

shop-floor know-how they saw in Belgium. Now, they're gearing up to use 

a Sidmar device called a bomb that can be plunged into molten steel to 

sample its chemical properties and detect imperfections early on. The 

Mittals are pushing for just that sort of knowledge exchange across the 

company's global network, from Brazil to Kazakhstan. The many cultures 

now under the Arcelor Mittal flag provide "an inexhaustible source of 

competitive advantage," says Greg Ludkovsky, the company's chief 

technology officer for the Americas.””  

 

The main point here is that the Arcelor Mittal merger resulted in a much larger 

platform of application sites over which existing technologies could be 

leveraged. In other words, absent the merger, each of these technologies 

would have suffered from a much smaller scope of application, thus reducing 

the return on investment for that particular technology.  

 

A second aspect with regard to technology in the case of Arcelor Mittal is 

represented by the company’s approach to balancing global scale with 

responsiveness to local pressures. One specific instance: Demand and 

product requirements for steel vary across markets, and Arcelor Mittal needed 

to view demand regionally in order to optimize production and customer 

service. However, internal data on approx. 200,000 customers were scattered 

across  30+ systems. With IBM’s help, Arcelor Mittal developed an integrated 

system that provides managers with a unified view of regional patterns in 

demand. (IBM 2010). 
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To summarize the second part of our story, we propose that the geographic 

restructuring of the global steel industry should be understood in terms of the 

rise of steel production and consumption in the emerging markets as well as 

the rise of the steel MNC. The drivers of this fundamental shift, it turns out, 

are the same three drivers we noted earlier in the American industry’s case: 

technology-based competition (although this time with a focus on information 

technology, not steel production techniques), demand shifts, and managerial 

agency. 

 

9. Patterns in the restructuring of the industry. 

 

Before concluding the Chapter, we would like to point out two features of the 

regional restructuring that we have described in the US steel industry and in 

the global industry. The first feature can be summarized as a shift from the 

“Core-Periphery” model to one of “multipolarity.” The second feature can be 

summarized as a regional model of globalization. Below, we briefly discuss 

each in turn. 

 

In both the US domestic industry and at the global level, our analysis 

suggests the relative decline of the hitherto core and the ascendancy of the 

periphery. However, even more fundamentally, the data and trends perhaps 

suggest the irrelevance of the core-periphery model itself. Specifically, what 

we see is not merely a switch in the roles or the emergence of new cores and 

new peripheries, but rather a new structure in which different regions are 

much more equally balanced. Although it might appear that China is the new 

core and all other regions are peripheries, the steel intensity trends noted 

earlier suggest that this is not sustainable beyond the medium term. As 

emerging nations other than China gain speed on their own industrialization 

trajectories, we are likely to see greater balance across the regions. More 

important, assessed through the lens of global reach and strategic capability 
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of its steel companies, it is hard to describe China as the core. As a rough 

illustration, the companies in the list of Top ten steel producers in 2010 (see 

Figure 10) represent China (3 companies), Japan (2 companies) and Europe, 

South Korea, India, United States, and Brazil (1 company each). This raises 

the intriguing possibility that, rather than the core-periphery model, 

multipolarity may be more suitable as a descriptor of the global steel industry 

of the future. 

 

Experience also suggests that the globalization of the steel industry has not 

followed a “flat earth” model, in which patterns of competition are uniform, but 

rather a “semiglobalization” model (Ghemawat 2007) that is much more 

nuanced and complex. Despite the growth of China and importance of steel 

MNCs, steel markets continue to be regional rather than frictionlessly global. 

A significant portion of steel exports consists of regional exports, and a steel 

producer in Germany is more likely to be in direct competition with a rival in 

Poland rather than in Brazil. Ghemawat (2007) points out that regionally 

focused strategies are a discrete family of strategies that need to complement 

local and global initiatives. From the steel industry’s standpoint, this 

exacerbates the organizational complexity associated with global footprints – 

in that strong regional hubs need to be created, with technological and 

managerial support for extensive knowledge-sharing both regionally and inter-

regionally. Policymakers should take note as well – keeping up with the 

industry’s restructuring implies developing new global approaches as well as 

closer regional coordination. 

 

10. Summary and conclusions 

 

In this chapter, we proposed technology-based competition, demand patterns, 

and managerial agency as explanatory variables for the process of 

restructuring in the American steel industry in terms of its economic 

geography and in the context of sweeping changes in the industry’s global 
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structure. After World War II and leading through the 1960’s, the industrial 

structure of the American steel industry was dominated by large integrated 

steel producers. During this period, competition was primarily among 

integrated firms and the location decisions taken during the period concerned 

individual production units within those firms.  Subsequently, in the 1970’s 

and on through the 1990’s, steel minimills emerged in the United States to 

challenge the market share of integrated producers.  Finally, with the turn of 

the century, world steel markets began to reshape based on globalization.  

Energized by industry liberalization and privatization in many parts of the 

world, and supported by information technology and managerial innovations 

that increased spans of control, managerial agency manifested itself in the 

form of aggressive M&A to create the first large-scale steel MNCs. By 

examining these critical periods of restructuring in the American industry as 

well as in the industry globally, the role of economic geography as a 

competitive factor is exposed. In the process, we hope to have provided 

context for understanding the regional and spatial implications of competitive 

adjustment. 
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Figure 1 

Integrated Steelmaking Schematic 
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Figure 2 

Electric Arc Furnace Steelmaking Schematic 
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Table 1 

 

Regional Percentage Shares of U.S. Steel Production, 1940 – 2008 

 

  

 

OH 

 

 

PA 

 

 

IL-IN 

Historical 

Core Region 

Sub-total 

 

All Other 

States 

 

 

Total 

 

1940 21 30 21 72 28 100% 

1950 19 28 20 68 32 100% 

1960 17 24 22 64 36 100% 

1970 16 23 23 62 38 100% 

1980 14 21 26 61 39 100% 

1990 17 12 29 58 42 100% 

2000 16 7 29 52 48 100% 

2008 15 6 29 50 50 100% 

 

Source: American Iron and Steel Institute (various years), Annual Statistical Report, 
Washington, D.C., USA: American Iron and Steel Institute. 
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Table 2 
 

Steel Production by Furnace Type: 
Average Annual Production for Each Decade, 1960s - 2000s 

 
(Millions of Net Tons) 

 
  

Open Hearth 

 

Basic Oxygen 

 

Electric Arc 

Total 

(All Furnaces) 

1960-69   82.3* 24.4 13.0 119.7 

1970-79 30.0 76.3 26.3 132.6 

1980-89   6.9 56.0 31.3   94.2 

1990-99   0.5 59.1 41.8 101.4 

2000-08   0.0 49.7 55.7 105.4 

*Note: Includes a small amount of production from Bessemer furnaces, which 
were completely decommissioned in the United States by 1968. 
 
Source: American Iron and Steel Institute (various years), Annual Statistical 
Report, Washington, D.C., USA: American Iron and Steel Institute. 
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Figure 3 
 

Basic Oxygen Furnace (BOF) Capacity in State-based Regions: 
Annual Average Capacity in each Decade, 1970s, 1980s, and 1990s 

 
(Millions of Tons) 

 
 

 
 
Source: Center for Industry Studies, US Steel Plant Database, Pittsburgh, PA, 
USA: University of Pittsburgh. 
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Figure 4 
 

Electric Arc Furnace  (EAF) Capacity in State-based Regions: 
Annual Average Capacity in each Decade, 1970s, 1980s, and 1990s 

 
(Millions of Tons) 

 

 
 
Source: Center for Industry Studies, US Steel Plant Database, Pittsburgh, PA, 
USA: University of Pittsburgh. 
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Figure 5 
 

Location of Steel Plants in the United States, 2003 
 
 
 

 
 
Source: Center for Industry Studies, US Steel Plant Database, Pittsburgh, PA, 
USA: University of Pittsburgh. 
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Table 3 

 

Size Distribution of U.S. Steel Minimills  
by Plant Capacity, 1978 and 2003 

 
 

Plant Capacity 
(Thousands of Tons) 

1978 
(Number of  

Minimill Plants) 

2003 
(Number of  

Minimill Plants) 

1,000 or more 3 22 

800 – 999 4 10 

600 – 799 4 15 

400 – 599 9 13 

200 – 399 13 4 

Less than 200 11 1 

   

Total number of minimill 

plants 

44 65 

Total minimill plant capacity 20,293 61,089 

Average minimill plant 

capacity 

461 940 

Median minimill plant 

capacity 

350 750 

 

Source: Center for Industry Studies, US Steel Plant Database, Pittsburgh, PA, 
USA: University of Pittsburgh. 
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Figure 6 
 

Regional Price Differentials Based on the RMDAS™ Ferrous Scrap Price Index: 
Monthly Price for Prompt Industrial Composite, 2006 

 
(Delivered Price – U.S. Weighted Average) 

 

 
 
Source: Management Science Associates’ (MSA) Raw Material Data 
Aggregation Service™ (RMDAS): http://rmdasindex.msa.com/ 
 

http://rmdasindex.msa.com/�
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 Figure 7 
 

The Shift to Asia:  
Crude Steel Production Share Across World Regions 

 
 

Source: World Steel Association 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 46 

Figure 8 
 

The Rise of China: 
Crude Steel Production Share in Key Markets 

 

Source: World Steel Association 
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Figure 9 
 

M&A Deal Activity in the Global Steel Industry 
 

 
 
 
Source: pwc Metal Deals: Forging Ahead, various annual issues 



 

 
Figure 10 

 
How Megadeals Reshaped Industry Leadership:  
Top 10 Steel Producers (Million Metric Tonnes)  

* indicates a steelmaker that improved its Top 10 standing by means of major 
acquisition(s) in that year 

 
 

Source: World Steel Association 
 


