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The equilibrium solubility (C*) and liquid-side mass transfer coefficient (kLa) were measured for 

H2 in four liquids, two vacuum residues (A and B); and two mixtures (vacuum residue B + liquid 

paraffins and vacuum residue B + liquid paraffins + molten wax). The data were measured in the 

presence and absence of solid particles (activated carbon) in one-liter agitated autoclave 

operating in a gas-inducing mode. The effect of operating variables, including pressure (27.5–

55bar), temperature (423–623K), mixing speed (20–33Hz), and activated carbon concentration 

(0-40wt.%) on kLa and C* values were statistically investigated using the Central Composite 

Statistical Design technique. The kLa values were obtained using the Transient Physical Gas 

Absorption technique and the C* values were calculated at the thermodynamic equilibrium.  

The experimental data showed that C* values of hydrogen in the four liquids increase 

linearly with pressure at constant temperature following Henry’s law. The C* values also 

increased with temperature at constant pressure and the temperature effect was modeled using an 

Arrhenius-type equation. 

The kLa values of H2 in the four liquids strongly increased with temperature and mixing 

speed, and slightly increased with H2 partial pressure. The kLa values, however, decreased with 

increasing solid concentrations in the vacuum residues A and B. Statistical correlations and 
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empirical correlations, using dimensionless numbers, were developed to predict kLa values of H2 

in the liquids used in the presence and absence of solid particles in the gas-inducing slurry 

agitated reactor. 

The kinetic rate constants proposed by Sanchez at al.[1] for hydrocracking of vacuum 

residue at 380, 400 and 420oC  were used in a simple kinetic model using a series of CSTRs to 

calculate the residue conversion and the VGO, distillate, naphtha and gaseous products 

concentrations and molar flow rates. For a series arrangements of 4-CSTRs(3-m inside diameter 

and 3-m height), operating at 400 oC with an LHSV of 0.33h-1 corresponding to an inlet liquid 

superficial velocity of 0.99 m s-1, the residue conversion reached 91.8%. However, for the same 

arrangement at 400oC with an LHSV of 1.5h-1 corresponding to an inlet liquid superficial 

velocity of 4.5m s-1, the residue conversion was only 50.36%.  
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1.0  INTRODUCTION AND BACKGROUND 
 

 
 
 

Crude oil is a complex mixture of hydrocarbons and non-hydrocarbons.  The major hydrocarbon 

groups in the crude oil are straight-chain paraffins and their isomers, naphthenes and aromatics; 

and the non-hydrocarbons are mainly sulfur-, nitrogen-, and oxygen-containing compounds. It 

could also contain metals, such as nickel, iron, and vanadium. The hydrocarbon components can 

range from those with low molecular weights and boiling points, such as methane, to those with 

high molecular weights and boiling points, such as asphaltenes. In fact, it is impossible to 

identify all the components present in the crude oil [2].  

Liquid hydrocarbons “conventional oil,” which flow easily through reservoirs is usually 

produced using conventional oil production methods; whereas heavy oil, extra heavy oil or 

bitumen “unconventional oil,” would not flow through reservoirs and would require the use of 

unconventional production methods. Thermal recovery, steam stimulation, or even mining are 

among such unconventional production methods of those heavy hydrocarbons.  

It has been forecasted that fossil fuels will continue to be the main source of energy for at 

least 50 years[2]. Figure 1.1 shows the current oil reserve by country which totals about 1.5 

trillion barrels. The countries with the largest reserve are Saudi Arabia, Venezuela, Canada, Iran, 

and Iraq. 
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Figure 1.1. Conventional oil reserves by country[3] 

 
 
The world’s demand for oil has been steadily increasing over the last decades [4]. As a 

consequence, there has been a continuous decrease in the world’s conventional oil reserve, 

making the energy supply for the future decades a major concern around the world. In recent 

years, however, new reserve of unconventional oil, representing 70% of the total reserve[5], has 

been discovered as shown in Figure 1.2. This unconventional oil reserve is estimated to be at 

least about 4 trillion barrels; with the largest reserves in Venezuela and then Canada[2]. If only 

10% to 15% of the total unconventional heavy oil reserve were recovered, it would represent 

approximately 600 billion barrels; and given the current world consumption of about 30 billion 
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barrels/year, this means that unconventional oil could meet the world’s oil needs for about 20 

years. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.2. Major global reserves of conventional vs. unconventional oil[5] 

 
 
The conventional oil often contains about 10-30% heavy residue and when it is refined in 

atmospheric and vacuum distillation towers, it produces useful products, such as liquefied 

petroleum gases, gasoline, kerosene, jet fuel, gas oil, diesel, residual fuel, lubricants, and asphalt, 

as illustrated in Figure 1.3. Since many useful products derived from crude oil are used as 

transportation fuels (see Figure 1.4), it is important to recover as many of these products as 

possible. The unconventional oil, which often contains 40-85% residue, is more difficult to refine 

than the conventional oil as it requires more severe conditions due to its high percentage of 
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asphaltenes and non-hydrocarbon impurities. Table 1.1 and 1.2 compare some properties of 

various oils. 

Table 1.1. Range of properties of various types of oil[6] 

 
 Extra-Light 

Crude Oil 
Light 

Crude Oil
Heavy 

Crude Oil 
Extra-Heavy 

Crude Oil 
API gravity >50 22-32 10-22 <10 
Hydrocarbons (wt. %): 
- Asphaltenes 
- Resins 
- Oils 

 
0-<2 

0.05-3 
- 

 
<0.1-12 

3-22 
67-97 

 
11-25 
14-39 
24-64 

 
15-40 

Impurities (wt. %): 
- Total sulfur 
- Total nitrogen 
- Ni+V(wppm) 

 
0.02-2 

0.0-0.01 
<10 

 
0.05-4.0 
0.02-0.5 
10-200 

 
0.1-5.0 
0.2-0.8 
50-500 

 
0.8-6.0 
0.1-1.3 
200-600 

 
 

  Table 1.2. Properties of various crude oils[6] 

 
Crude Oil Lagrave Isthmus Maya Lloydminster Athabasca

Country France Mexico Mexico Canada Canada 
API gravity 43 33.34 21.31 15.0 8.0 
Sulfur (wt. %) - 1.46 3.57 - 1.25 
Nitrogen (wt. %) - 0.1467 0.32 4.30 7.95 
Insoluble in nC7 (wt. %) 4 1.65 11.32 12.9 15.0 

 
 
Typically, the residue from atmospheric distillation is sent to vacuum distillation towers in order 

to recover any remaining light cuts in the form of heavy distillates. The properties of some 

atmospheric residues are shown in Table 1.3. The residue from the vacuum distillation towers, 

known as vacuum residue, is further sent for processing, as discussed in the following sections.  

Figure 1.5 shows a schematic of a process for processing vacuum residue in order to produce 

coke and other useful products. 
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Figure 1.3. Refined products 
 
 

Table 1.3. Properties of various atmospheric residues (AR), 343 °C+ 
 

Crude Oil Origin API 
gravity

Sulfur 
(wt. %)

Ni+V 
(wppm)

Carbon residue 
(wt. %) 

Yield of AR
(vol. %) 

Ekofisk North Sea 20.9 0.4 6 4.3 25.2 
Arabian Light Arabia 17.2 3.1 50 7.2 44.6 
West Texas Sour United States 15.5 3.4 29 9.0 41.6 
Isthmus Mexico 15.5 2.9 82 8.1 40.4 
Export Kuwait 15.0 4.1 75 - 45.9 
North Slope Alaska 14.9 1.8 71 9.2 51.5 
Arabian Heavy Arabia 13.0 4.3 125 12.8 53.8 
Bachaquero Venezuela 9.4 3.0 509 14.1 70.2 
Maya Mexico 7.9 4.7 620 15.3 56.4 
Hondo United States 7.5 5.8 489 12.0 67.2 
Cold Lake Canada 6.8 5.0 333 15.1 83.7 
Athabasca Canada 5.8 5.4 374 - 85.3 
Ku-Maloob-Zaap Mexico 3.7 5.8 640 20.4 73.7 

 

 

Feed 

Low boiling point 

High boiling point 

Gas 
LPG 
Propane 
Butanes 

Light Distillate Gasoline 

Medium Distillate 

Kerosene 
Jet fuel 
Gas oil 
Diesel 

Heavy Distillate Residual fuel 
Lubricants 

  Atmospheric  

Distillation 

343-371 °C 

      Vacuum 

    Distillation 

378-380°C 

20-40 mmHg 

Asphalt 
Coke 

Vacuum residue 

Atmospheric residue 
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Figure 1.4. Primary energy consumption worldwide by source and sector, 2008[7] 

 
 
Vacuum residue (low-value product) has an API gravity on the order of 5 to 10°, high viscosity, 

boiling point over 525+ ºC, high coke-forming potential, and it also contains high concentrations 

of heteroatoms. The main technologies used for processing vacuum residue involve carbon 

rejection (the most common method used commercially) or hydrogen addition. The main goal of 

both technologies is to remove impurities and produce more distillates.  

 
 
 

1.1 CARBON REJECTION TECHNOLOGY 
 
 
Carbon rejection technology, which is carried out at moderate pressures and temperatures 

between 480 and 550 °C [6], produces a small amount of distillates, and a high yield of gases such 

as methane, ethane, propene, and butane, as well as coke. The carbon-rejection technology 

includes two main processes: (1) removal of carbon in the form of coke; and (2) removal of 

Coal 
22.5 

Petroleum 
37.1 

Residencial 
and Commercial 

10.8

Supply Sources Demand Sectors 

Percent 
of source 

Percent  
of sector 

71 

23 

5 

1 

95 

42 

16 

1 

2 

40 

9 

76 

1 

17 

51 

1

3 

10 

7 

9 

3 

34 

34 
29 

100 

51 

10 

28 

11 

91 

<1 
8 

Natural Gas 
23.8 

Nuclear 
Electric Power 

8.5

Electric Power 
40.1 

Transportation 
27.8 

Industrial 
20.6 

Renewable 
Energy 

7.3 



 7 

carbon in the form of asphalt (in the case of deasphalting). The first includes thermal cracking 

processes such as coking (i.e., delayed coking, fluid coking, and flexicoking), visbreaking, and 

catalytic cracking of residue [R].   

 

 

 

 

 

 

 

 

 

 
Figure 1.5. Processing of vacuum residue 

 
 
The second includes solvent deasphalting[6], in which the vacuum residue is physically separated 

into various fractions using a solvent as an absorption medium in order to obtain high quality 

products. Although this technology enjoys high feedstock flexibility, it produces uneconomical 

large amounts of coke [2] and generates low quality distillates and large amount of by-products, 

such as fuel oil and pet-coke, which are currently of decreasing demand.  
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1.2 HYDROGEN ADDITION TECHNOLOGY: HYDROCRACKING OF VACUUM 
RESIDUE 

 
 

Hydrocracking or hydrogenation of vacuum residue is used to convert high molecular weight 

feedstocks into more valuable low molecular weight products. Also, hydrogenation removes any 

heteroatoms, such as sulfur, oxygen or nitrogen which are present in the feedstock, thus 

producing cleaner products. Depending on the nature of the feedstock to be treated, different 

catalysts, reactors, and reactor configurations are used.  

Hydrocracking of vacuum residue is carried out at elevated pressures (35 – 200 bar), 

temperatures (260 - 425 °C) and liquid hourly space velocities (LHSV) of 0.3 – 2.0 h-1 [8]. In this 

process, a large amount of hydrogen is required to hydrogenate the feed in order to prevent the 

formation of coke (H2/oil: 505 – 1685(NPT)  m3/m3), which is an undesirable product [9]. The 

major components of vacuum residue are asphaltenes, which can undergo different reactions to 

produce mainly coke. It was reported that heavy oils containing more than 5% asphaltenes and 

150 wppm metals will produce coke and the metal will deposit on the catalyst surface, causing 

deactivation and serious plugging problems[2].  

The chemical reactions which take place during the hydrocracking of vacuum residue 

involve hydrogen transfer[2]. The high temperatures used helps cracking the residue molecules 

and cause the formation of radicals in the presence of a catalyst. The high hydrogen partial 

pressure leads to the hydrogenation of the radicals, which both stabilize the products and prevent 

condensation, which lead to coke formation. Therefore, the higher the hydrogen partial pressure 

is, the better the hydrocracking performance will be. Besides hydrocracking of heavy feed, the 

heteroatoms are also hydrogenated, producing hydrogen sulfide (H2S), ammonia (NH3), and 

water (H2O) as secondary products, which could be removed from the products. The elimination 
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of these heteroatoms is critical because sulfur-containing fuels do not meet environmental fuel 

specifications, nitrogen-containing compounds have a pronounced negative effect on the storage 

stability of products and can poison the catalyst, and oxygen-containing compounds are 

corrosive and can promote gum formation. Therefore, hydrocracking of vacuum residue not only 

allows better product selectivity, but can also produces cleaner fuels. The degree of residue 

conversion and, consequently, the cost of the process are strongly affected by the amount of low-

value by-products produced and the amount of hydrogen required [10]. 

The hydrogen-addition technology, which includes hydrovisbreaking (non-catalytic), 

hydrotreating and hydrocracking, produces a high yield of upgraded products and requires the 

extensive use of catalysts due to metal, carbonaceous material deposition, and/or sintering which 

produce permanent catalyst deactivation. In addition, the removal of heteroatoms and metals is 

expensive. Thus, this technology requires a large capital investment and huge quantities of 

natural gas in order to produce the required hydrogen and steam. Despite its disadvantages, 

however, the hydrogen-addition technology is preferred for processing vacuum residue as it 

produces greater yields of high-value products than the carbon-rejection technology. In the 

following sections, only hydrocracking, a type of hydrogen-addition technology used to upgrade 

vacuum residue will be discussed. 

 
1.2.1 Hydrocracking catalyst 
 

 
The catalysts used for the hydrocracking of vacuum residue are specifically designed to fit the 

nature of the feedstock and the desired end-product. Usually a combination of several catalysts is 

used to carry out hydrocracking (HDC) or hydrodemetallization (HDM), hydrodesulfurization 

(HDS), hydrodenitrogenation (HDN) or hydrogenation to prevent coke formation. The catalysts 
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commercially used in the hydroprocessing of heavy feedstocks are sulfide of cobalt-

molybdenum, nickel-molybdenum, or nickel-tungsten, supported by either coke, alumina, or 

mixed oxides (Al2O3-TiO2, Al2O3-SiO2, Al2O3-MgO, Al2O3-ZrO2); or a finely dispersed catalyst, 

which forms an emulsion with the residue (catalytic emulsions)[2]. The use of such dispersed 

catalysts has been reported to be very effective in preventing coke formation and insuring good 

control of the sediments with only minimal fouling[2]. The criteria used to choose the metal 

function in the supported catalysts for hydrocracking of vacuum residue strongly depends on the 

feed composition, while the criteria used to choose the support strongly depends on the metal-

phase to be used, and on the textural and extrusion properties, stability and cost [2]. 

 
1.2.2 Hydrocracking kinetics 
 

 
There are only few studies on the reaction kinetics of hydrocracking of heavy feedstocks 

available in the literature. This can be attributed to the fact that during hydrocracking there are 

many different reactions that simultaneously occur making it difficult to obtain an accurate 

understanding of the overall reaction kinetics of the process. Also, during the hydrocracking of 

vacuum residue, catalytic and thermal cracking can occur due to the high process temperature. 

Jacob et al.[11] developed two lumped kinetic schemes for catalytic and thermal cracking, 

respectively as shown in Figure 1.6. 
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Figure 1.6. Kinetic reaction schemes[12] 

 
 

Each pseudo-component can be cracked catalytically or thermally to produce lighter 

components. The kinetic expressions for both catalytic and thermal cracking, where the reactant i 

is converted in the product j can be express as follow [12]: 
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where i = A, B, C, D;  j = A, B, C, D; i is heavier than j; and k = k0e
-E/RT (Arrhenius law). 

The formation rate of each component can be written as follows: 
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Thermal cracking: 
)( t
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t
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t
D rrrr    

The assumptions made for the equations written above were: (1) the reaction rate follows 

a power law kinetics; (2) the stoichiometric coefficient of hydrogen for the whole set of catalytic 

reactions is 3; (3) a heavier cut could be converted only to lighter cuts; (4) the reaction orders are 

the same for all reactions; and (5) the HDO, HDS, HDN, and HDM reactions are not included[12]. 

The reported optimized values of the dimensionless kinetic constant for the catalytic process at 

the operating conditions are: kc
AB = 8x108, kc

AC = kc
AD= kc

CD =2x108, kc
BC = kc

BD=3x108; and the 

activation energy was 200 kJ/mol[13].  

Sanchez et al.[1] proposed a kinetic model for a moderate hydrocracking of heavy oils 

with a Ni/Mo catalyst at 380-420 °C, as shown in Figure 1.7. The model includes five lumps 

(unconverted residue, VGO, distillates, naphtha, and gases) reactions, and they estimated the 

kinetic parameters shown in Table 1.4 for the following kinetic expressions from their 

experimental results obtained in a fixed-bed downflow reactor: 

  RR ykkkkr 4321    

  VGORVGO ykkkykr 7651    

  DVGORD ykkykykr 9852    

NDVGORN ykykykykr 10863    

NDVGORG ykykykykr 10974    
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Figure 1.7. Proposed kinetic models by Sanchez[1] 
 
 

Table 1.4. Kinetic parameters of Satchez’s model[1] 

 

Kinetic constant  
(h-1) 

Temperature  Activation energy 
 EA (kcal/mol) 

380 °C 
380 
°C 

400 
°C 

420°C

Residue 
k1 0.042 0.147 k1 0.042 
k2 0.008 0.022 k2 0.008 
k3 0.008 0.020 k3 0.008 
k4 0.041 0.098 k4 0.041 

VGO 
k5 0.018 0.057 k5 0.018 
k6 0 0.007 k6 0 
k7 0 0 k7 0 

Distillate 
k8 0 0.003 k8 0 
k9 0 0 k9 0 

Naphtha 
k10 0 0 k10 0 

 
 

Sanchez et al.[1] found that at higher the temperature and lower the space velocity, the conversion 

and products yields increase; and as the operation conditions severity increases, the conversion 

was greater than 50%. 

Residue 
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Also, Loria et al.[14] proposed a kinetic model for ultra-dispersed catalytic 

hydroprocessing of bitumen and they adapted the high severity hydrocracking of heavy oils 

proposed by Sanchez et al.[1] Their new kinetic model and kinetics constants are shown in Figure 

1.8 and Table 1.5, respectively. 

 

 

 

 

 

 
 

 
Figure 1.8. Proposed kinetic models by Loria et al.[14] 

 
 

Table 1.5. Rate constants of Loria et al. model[14] 

 

T, °C k1, h
-1 k2, h

-1 k3, h
-1 k4, h

-1 k5, h
-1 k6, h

-1 k8, h
-1 

320 0.00214 0.00131 0.00030 0.00006 0.00670 0.00491 0.00105
350 0.00845 0.00610 0.00113 0.00073 0.00282 0.00141 0.00046
360 0.01324 0.00951 0.00251 0.00085 0.00181 0.00073 0.00032
380 0.02650 0.03093 0.1130 0.00902 0.00045 0.00014 0.00007

 
 
1.2.3 Technologies for hydrocracking of heavy feedstocks 
 

 
Table 1.6 shows several hydroprocessing technologies for heavy feedstocks. At present, few are 

in the pilot-stage, and others have been used on an industrial-scale [9].  
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Table 1.6. Processes for hydrocracking of heavy feedstocks 
 

Process Licensor/Inventor Operating conditions Catalyst/Reactor 
Hydrocracking/HDS[2] - Low temperatures Catalytic process / Fixed-bed 
RESIDFINING[2] Exxon-Mobil 380-430 ºC, 100-200 bar Catalytic process / Fixed-bed 
HYVAHL-S Process[2] IFP/Axens 380-430 ºC, 100-200 bar Dual catalyst/Swing Fixed-bed 
HYCON[10] Shell 380-430 ºC, 100-200 bar Catalytic process / Moving-bed 
Chevron RDS Isomax and ARDS/VRDS[2] Chevron 380-430 ºC, 100-200 bar Catalytic process/Fixed-bed 
RCD UNIBON[2] UOP 380-430 ºC, 100-200 bar Catalytic process / Fixed-bed 
Hydrovisbreaking (HYCAR)[2] Showa Shell Sekiyu 380-430 ºC, 100-200 bar Catalytic process / Fixed-bed 
H-Oil[2] 
 

IFP/Axen 410-450 ºC, 100-210 bar 
LHSV 0.15-1.3 h-1 

0.8 mm catalyst diameter 

Catalytic-process/Ebullated-bed 

LC-Fining[2] Chevron Lummus Global 410-450 ºC, 100-210 bar Catalytic-process /Ebullated- bed 
(HC)3 technology[10] Canada Alberta Research Co. 410-450 ºC, 100-210 bar Iron pentacarbonyl or 

Molybdenum 2-ethyl (liquid catalyst) 
hexanoate catalyst /Ebullated-bed reactor 

VEBA COMBI CRACKING[2] Veba Oel 440 to 485 ºC, 150-270 
bar 

Iron/fine coke powder catalyst /Slurry-
phase reactor 

HDH Plus[10] PDVSA Intevep 420-480 ºC, 130-300 bar Catalytic-process /Slurry-phase reactor 
EST, Eni slurry technology[10] Eni Technologies 

Snamprogetti 
420-480 ºC, 130-300 bar Molybdenum-based catalyst / Slurry-

phase reactor 
CASH[10] Chevron 420-480 ºC, 130-300 bar Catalytic-process /Slurry-phase reactor 
MRH[2] Idemitsu / Kellog 420-480 ºC, 130-300 bar Fine-powder catalyst / Slurry-phase 

reactor 
CANMET [2] Petrocanada/Lavalin 420-480 ºC, 130-300 bar FeSO4 (no catalytic, additive) / Slurry-

phase reactor 
Micro-cat[2] ExxonMobil 440 ºC, 170 bar 

10-6 m catalyst diameter 
Phosphomolydic acid and 
Molybdenum naphthenate / Slurry-phase 
reactor 
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1.2.4 Vacuum residue hydrocracking reactors 
 

 
Depending on the nature of the feedstock, different types of reactors are used for hydrocracking 

vacuum residue. The reactors used for this process are fixed-bed reactors (FBRs), moving-bed 

reactors (MBRs), expanded- or ebulating-bed reactors (EBRs), and slurry-phase reactors (SPRs) 

or some combination of these rectors [2]. Figure 1.9 shows a schematic of these types of reactors. 

Vacuum residue feed with a high degree of impurities is usually processed in a moving-bed, 

ebulating-bed, or slurry-phase reactor since in these reactors, the catalyst can continuously be 

regenerated, thus maintaining the activity and selectivity of the reaction and reaching a minimum 

conversion of 60% and coke production of less than 8 wt.%. The operating conditions for each 

hydroprocessing technologies are given in Table 1.7. 

The use of fixed-bed reactors for hydrocracking of vacuum residue is very limited 

because the catalyst deactivates very quickly; this is why in some cases, a dual or triple catalyst 

system or a combination of different reactors is used[2]. The advantages of fixed-bed reactors are: 

low back-mixing, low catalytic attrition, no moving parts, flexible operation at high pressure and 

temperature, and low investment and operation cost. The disadvantages of fixed-bed reactors, 

however, include low catalyst effectiveness due to the use of large catalytic particles, high 

pressure drop, possibility of liquid mal-distribution, hot spots, and short catalyst lifecycle[2].  
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Figure 1.9. Types of reactors used to process heavy oil[2] 

 
 

Table 1.7. Operating conditions for residue hydrocracking[2] 

 
 FBR SFB* MBR EBR SPR 

Pressure, bar 100-200 100-200 100-200 100-200 100-300 
Temperature, ºC 380-420 380-420 380-420 400-440 420-480 
Unit LHSV, h-1 0.1-0.5 0.1-0.5 0.1-0.5 0.2-1.0 0.2-1.0 
Max. Conv. at 550 ºC, 
wt% 

50-70 60-70 60-70 70-80 80-95 

Unit cycle length, 
month 

6-12 Continuous  
operation 

12 Continuous  
operation 

Continuous  
operation 

*SFB: Swing Fixed Bed 
 
 
Moving-bed reactors have the advantage that deactivated catalyst can continuously be withdrawn 

from the reactor while fresh catalyst can be added, thus keeping the conversion and selectivity 

constant for a longer period of time [2]. The main disadvantage of moving-bed reactors, however, 

is that the co-current and counter-current movement of the gas-phase and slurry-phase (liquid + 

solid) is difficult to control. 
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In the ebulating-bed and slurry-phase reactors, the deactivated catalyst can continuously 

be withdrawn from the reactor while fresh catalyst can be added online in order to keep the 

hydrogen conversion constant; however, when the conversion of residue exceeds 50%, the 

sediment formation and equipment fouling becomes important. In order to avoid these problems, 

the hydrocracking of vacuum residue units are often operated at low conversion. The catalyst 

fluidization and mixing in SPRs mainly occurs as a result of the gas-phase (hydrogen) sparged 

from the bottom of the bed, whereas catalyst fluidization and mixing in EBRs occurs primarily as 

a result of the recycled oil and, and to a lesser extent to the sparged hydrogen. Also, EBRs allow 

the use of larger catalyst particles (0.8 mm) than those used in SPRs. The advantages of using 

EBRs or SPRs over FBRs and MBRs in processing vacuum residue are [2]: (1) constant 

withdrawal and addition of catalyst, thus maintaining a steady level of catalytic activity, (2) 

lower pressure drop since bed plugging and channeling are eliminated, (3) high reaction rate due 

to the small size of the catalyst particles, and (4) better temperature control. The disadvantages of 

EBRs or SPRs, however,  are: (1) strong back-mixing, (2) high catalyst attrition, (3) sediment 

formation, and (4) difficulty in scaling up. 

The product composition of three different ebullating bed processes (H-Oil, LC-fining 

and T-Star) is summarized in Table 1.8. Table 1.7 indicates that SPRs provide the maximum 

conversion (80-95%) of all reactors.  Therefore, the focus of this study is on SPRs operating with 

actual heavy residue. 

 

 

 



 19 

Table 1.8. Product composition resulting from H-Oil, LC-fining and T-Star processes[15] 

 

Parameter H-Oil LC-Fining T-Star 

C1-C4 3.5 C4                  2.35 C1-C5                          10.74 
C4-204°C 17.6 C5-177°C      12.6 C6-182°C         14.6 
204-371°C 22.1 177-371°C    30.6 182°C-343°C     35.68 

371-565°C 34.0 371-550°C   21.5 343-380°C        3.01 
565°C+ 22.8 550°C+        32.9 380-566°C         23.72 

- - - 566°C+              11.63 
 

 
 
 

1.3 GAS-LIQUID-SOLID MASS TRANSFER IN SLURRY REACTORS 
 

 
In multiphase reactors, there are several transport steps which must be followed before the 

reaction can take place on the active catalyst sites. The reaction may take place in the liquid-

phase, as is the case with some hydrogenation processes[16], or in the liquid-phase which may 

improve the heat and mass transfer between species, such as in Fischer-Tropsch synthesis in 

Slurry Bubble Column Reactors (SBCRs). 

In general, for 3-phase systems, such as the hydrocracking process, the following steps, 

schematically illustrated in Figure 1.10, have to be followed before the reaction takes place on 

the active catalyst sites. 
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Figure 1.10. Schematic of concentration profile for 3-phase system, film model 
 
 

1. Transport of hydrogen within the gas bulk.  

2. Transport of hydrogen from the gas-phase bulk to the gas-liquid interface through the gas 

film. 

3. Transport of hydrogen from the gas-liquid interface to the liquid bulk through the liquid 

film.  

4. Transport of hydrogen within the liquid bulk. 

5. Transport of hydrogen from the liquid bulk to the liquid-solid interface through a liquid 

film. 

6. Transport of hydrogen through the catalyst pores. 

7. Adsorption, reaction, and desorption of hydrogen on the active catalyst sites. 

If the products are not accumulated in the catalyst pores, they have to travel back to the gas 

bulk, and the following steps have to be considered: 

8. Transport of the products from the catalyst pores to the solid-liquid interface. 

Gas Bubble 

CG 

CL
* 

Gas/Liquid Film 

CL 

Liquid Bulk 

Catalyst Particle 

Liquid/Solid Film 

Interface Interface 
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9. Transport of the products from the solid-liquid interface to the liquid bulk. 

10. Transport of the products within the liquid bulk 

11. Transport of the products from the liquid bulk through the liquid film to the liquid-gas 

interface. 

12. Transport of the gaseous products from the liquid-gas interface to the gas bulk through 

the gas film. 

13. Transport of the light products within the gas bulk. 

In Steps 1 and 2, if pure hydrogen is used and the vapor pressure of the liquid (heavy 

residue) is low, the resistance due to the gas-film can be considered negligible. 

Step 3: representing the non-negligible resistance in the liquid-film can be described by 

the following equation: 

 iLiLiL
iL CCak

dt

dC
,,,

, *   (1-3)

For step 4, Fick’s law can be applied as: 

z
C

D- = J
iL

iji 
 ,  (1-4)

where DAB can be estimated using Equation (4-6). There is no resistance in the liquid bulk and 

liquid-solid interface due to mixing.  

Step 5: since the solid particles used are generally of the micron-size, the specific 

interfacial area of the particle (as), which is inversely proportional to its diameter, becomes 

significant and, accordingly, the resistance to mass transfer (1/ksas) becomes negligible. 

Step 6 and 8: is determined by surface diffusivity, Knudsen diffusivity, DK (Equation 

(1-5), molecular diffusivity (Equation (1-6)) and the effective diffusion, Deff (Equation (1-7) in 

the catalyst particle [17]. 
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L
pK MW

T
rD 97  (1-5)

totalP

T
D

3

  (1-6)

where rp represents the catalyst particle radius, and MWL is the molecular weight of the fluid 

phase.  

cat
cateff

D
D


  (1-7)

where cat is the catalyst void fraction, cat is the tortuosity of the particle. 

Usually reactions in these two steps are quantified through catalyst studies by the Thiele 

module (Equation(1-8), and the effectiveness factor  (Equation (1-9)) as: 

)( effDf  (1-8)


 tanh

  (1-9)

For practical purposes, the effectiveness factor  is considered to be close to unity [18].  

Step 7: represents the chemical reaction (adsorption, reaction, and desorption) of 

hydrogen on the surface of the catalyst. This chemical reaction could be slow, rapid or 

instantaneous, depending on the system used. A typical type of a first order reaction (usually 

found in hydrogenation process) is [18]: 

2,exp HL
app

i C
RT

E
Ar 







 
   (1-10)

Considering all the above steps, it can be concluded that the steps affecting the overall reaction 

rate of the process are the gas-liquid mass transfer (step 3) and the chemical reaction (step 7). 
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Thus, the factors affecting the gas-liquid mass transfer and the reaction kinetics must be 

carefully considered in the selection, design and scale-up of the reactor to be used for the 

hydrocracking process.  

As mentioned above, the focus of this study is on the use of SPRs for the hydrocracking 

process; unfortunately, literature data on the liquid-side mass transfer coefficient and reaction 

kinetics of hydrogen in vacuum residue or even in heavy oil are scanty, which makes the proper 

design and scale-up of SPRs for such a process somewhat difficult.   

 
 
 

1.4 STIRRED REACTORS 
 

 
Stirred reactors are commonly used for gas/liquid/solid system applications. Their initial costs 

are not high, and they provide great flexibility and control of the degree of mixing through the 

use of particular type of the impellers and mixing speeds. The type of impeller can be changed, 

and the liquid circulation can also be altered from radial to axial by changing the impeller 

configuration. The use of stirred reactors in large throughput processes, however, is limited due 

to the restriction on the L/D ratio. As the volume of the reactor increases, its diameter (D) should 

also increase. Few stirred reactors have large L/D ratios; however, these ratios are kept close to 

unity. It is worth mentioning that the larger the diameter of the reactor is, the thicker the vessel 

wall should be and that multiple impellers are required. Also, the level of conversion in stirred 

tank reactors is lower when compared with that of plug flow reactors for most of the kinetics and 

mass transfer coefficients of different processes. In spite of these limitations, several applications 

routinely employ stirred reactors, such as the manufacture of polypropylene, polyvinylchloride 

(PVC), oxidation of cyclohexane, and synthesis of specialty chemicals[19]. 
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The performance of the processes carried out in stirred reactors depends on a number of 

specific variables which control the degree of mixing and hydrodynamics within the reactor. 

Such variables include: the size, number, shape, and axial/radial position of the impeller, and 

number, size, and position of the baffles, etc... Thus, one can expect that the implementation of 

the studies conducted in these reactors is limited since the results obtained are often reactor- 

and/or process-dependent. 

 
 
 

1.5 EFFECT OF OPERATING PARAMETERS ON THE SOLUBILITY 
 

 
As can be seen in Equation (1-3), the equilibrium solubility, C* is of prime importance for 

determining the rate of mass transfer in gas-liquid and gas-liquid-solid processes. Different 

studies showed that, for most of these gas-liquid systems, the gas solubility values increase 

linearly with pressure and therefore follow Henry’s Law within the pressures investigated. The 

C* of gases in organic liquids was also reported[20, 21] to decrease with increasing the molecular 

weight/carbon number of organic liquid in homologous hydrocarbon series. Depending on the 

gas-liquid system considered as well as the temperature range studied, C* values were found to 

either increase or decrease with increasing temperature. For example, the solubilities for Ar, H2, 

N2, He and CO in n-paraffins were reported[22-30] to increase with increasing temperature, 

whereas those for CO2, CH4, C2H6, C2H4, and C3H8 were reported to decrease[21, 22, 27, 29]. Several 

investigators[27, 29, 31-35] measured the solubility of different gases in the same organic liquid 

(mostly in n-paraffins) and reported the following order for the solubility values: 

C*
He<C*

H2<C*
N2<C*

CO<C*
CH4<C*

CO2<C*
C2H4<C*

C2H6<C*
C3H8 
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1.6 MASS TRANSFER IN STIRRED REACTORS 
 

 
Several studies were conducted in stirred reactors to determine the effect of different operating 

variables on kLa values. A literature review on the mass transfer studies in stirred reactors is 

given in Appendix A. The only common finding of these studies is that kLa values increase with 

the mixing speed of the impeller used[36, 37]. Generally, kLa values were correlated with the solute 

diffusivity (DA) and power consumption per unit liquid or slurry volume. A number of 

investigators found that the effect of diffusivity is related to the kL values [38-40] and others 

reported relations between kL and DA in the form of kL  DA
m, as given in Table 1.9. It is 

important to mention that based on the definition of kL, the diffusivity exponent should ranges 

between 0.5 and 1.0, based on the Film theory (Equation (1-11)), The Penetration theory 

(Equation (1-12)), or Surface-renewal theory (Equation (1-13)) as follow: 

L

BA
L

D
k


,  (1-11)

5.0

,2 










BA

L

D
k  (1-12)

  2
1

, sDk BAL   (1-13)
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Table 1.9. Relationships between kL and diffusivity 
 

Author Variable Diffusivity 

Exponent 

System 

Versteeg et al.[41] kL 0.33-0.5 Gases in water 

Davies et al. [42] kL 0.46-0.60 H2, He, O2, CO and CO2 in protein and 

water 

Kuthan and Broz [43] kL 0.51-0.64 He, N2, and C3H8 in ethylene glycol 

Kozinski and King [44] kL 0.5-0.6 He, H2, Ar, and CO2 in distilled water 

Linek et al. [45] kL 0.46-0.66 O2, N2, Ar, and He in water and water 

solutions of Na2SO4, KI and Na2SO3 

 
 
1.6.1 Effect of pressure and temperature on gas-liquid mass transfer 
 

 
The effect of pressure on kLa in agitated reactors has been shown in the literature to be system-

dependent. A number of authors reported that kLa values increase with pressure[28, 39, 46, 47], while 

others showed either no effect or a decreasing trend[39, 40, 48, 49]. Similar situations concerning the 

effect of temperature on kLa were also reported. It certain cases, kLa values were found to be 

independent of temperature[39, 50] while in other cases, an increasing trend[28, 39, 46, 47] or a 

decreasing trend[39, 40, 47, 49] was reported. In addition, one study[51] used a statistical approach to 

obtain kLa values, however, the correlations obtained were only applicable to the data obtained in 

is study. 

 
1.6.2 Effect of solids on gas-liquid mass transfer  
 

 
The effect of solid concentrations on mass-transfer characteristics was studied in stirred reactors. 

Small concentration of certain solids were found to increase kLa values by as much as two- to 

three- fold[52-55]. The general trend, however, is that kLa values decrease with increasing the solid 
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concentration[46, 56]. The initial increase of kLa values with solid concentrations was attributed to 

the intermittent adhesion of some particles to the gas/liquid interface[57]. These particles carried 

the adsorbed solute into the liquid bulk, enhancing the kLa value. Particles with high adsorption 

characteristics were found to show such behavior. For instance, activated carbon appeared to 

increase the mass transfer of oxygen in the oxidation of SO2
[58].  

 
1.6.3 Effect of mixing speed on gas-liquid mass transfer in gas inducing reactors 
 

 
Increasing mixing speed in gas inducing stirred tank reactors, was reported[20, 35, 47, 59-72] to 

strongly enhance the volumetric liquid-side mass transfer coefficient. This behavior can be 

explained by the increased amount of gas induced into the liquid and therefore higher gas holdup 

and gas-liquid interfacial area were obtained with increasing mixing speed. Also, increasing 

mixing speed increases the shear rate applied at the gas-liquid interface which can reduce the 

liquid film thickness and, according to the two-film model (Equation (1-11), it will increase kL. 

Several investigators[35, 59, 60, 62], however, noticed that no significant kLa enhancement was 

provided when reaching high mixing speeds (> 1200 rpm) in small size reactors. This observed 

asymptotic trend of kLa at high mixing speed in those systems was attributed to the fact that the 

pumping capacity of the impeller reached a maximum and would not produce further change in 

gas holdup and therefore no further enhancement of kLa values. 
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2.0  OBJECTIVES 
 

 
 
 

The main objectives of this study are: 

1.  To obtain the volumetric liquid-side mass transfer coefficient (kLa) and solubility (C*) 

for hydrogen (H2) in four liquids, two vacuum residues (A and B); and two mixtures 

(vacuum residue B + liquid paraffins and vacuum residue B + liquid paraffins + molten 

wax). All the liquids will be tested in a one-liter, high-pressure, high-temperature, 

agitated slurry reactor. The effect of the main process variables, including pressure, 

temperature, solid loading, and mixing speed, on both kLa and C* for H2 in the two 

vacuum residues and the mixture will be investigated. 

2. To develop statistical and empirical correlations that model kLa with the main process 

variables. 

3. To build a kinetic model using a series of CSTRs to calculate the residue conversion and 

the VGO, distillate, naphtha and gaseous products concentrations and molar flow rates, 

using the kinetic rate constants proposed by Sanchez at al. [1] for hydrocracking of 

vacuum residue at 380, 400 and 420 oC. 
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3.0  EXPERIMENTAL 
 
 
 
 

3.1 GAS-PHASE 
 

 
The gas-phase used in this study was H2 (99% purity), which was purchased from Valley 

National Gases LLC (USA). Some relevant thermodynamics properties of H2 are given in Table 

3.1. 

Table 3.1. Thermodynamic properties of hydrogen [73] 

 

Gas 
MW 

(kg kmol-1) 
Tb 
(K) 

TC 
(K) 

PC 
(bar) 

VC 
(m3 kmol-1)

ZC 
 - 

 
 
- 

H2 2.016 20.39 33.18 13.13 0.0642 0.305 -0.220 

 
 
The viscosity () of H2 in kg m-1 s-1 is calculated using the following equation[73]: 

2CTBTAG   (3-1)

The parameters used in this equation are given in Table 3.2. 

 
Table 3.2. Parameters for correlation of gas viscosity in Equation (3-1)[73] 

 
Gas A B C μ298K (kg m-1 s-1) 
H2 27.76 2.12x10-1 -3.28x10-5 8.80x10-5
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It should be mentioned that Equation (3-1) shows the pressure has a negligible effect on H2 

viscosity within the range of the applicability of this equation. Figure 3.1 shows the viscosity of 

H2 as a function of temperature.  

Figure 3.1. Viscosity of H2 as function of temperature 

 
3.2 LIQUID-PHASE 

 
 

The four liquids used in this study were vacuum residues A (1.3 API 530+ ºC), and B (4.4 API 

500+ ºC), C12-C13 paraffins mixture, and C17-C79, wax produced by Sasol, South Africa using the 

Fischer Tropsch process. The vacuum residues A and B as well as mixtures of 60 wt. % vacuum 

residue B + 40 wt. % paraffins mixture, and 20 wt. % vacuum residue B + 40 wt. % paraffins 

mixture + 40 wt. % Sasol wax were used in this study. The residues were obtained from vacuum 
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distillation and their composition appeared to depend on the feedstock used and the cut point. 

The vacuum residues A and B compositions, elemental analysis, and metal content are shown in 

Table 3.3 through 3.5, respectively; the composition of the paraffins mixture composition 

provided by Sasol is shown in Table 3.6. The Sasol wax consisted mainly of saturated and 

straight chains of hydrocarbons with almost no branches which is a solid at room temperature 

and has a melting point around 83 °C. 

 
Table 3.3. Composition of vacuum residues A and B 

 
SAR (HPLC) Residue B, % Residue A, %

Saturates 10.0 4.8 
Aromatics 31.0 28.2 

Resins 38.4 43.6 
Asphaltenes 17.6 20.8 

Loss 3.0 2.7 
Total 97.0 97.4 

Sat/As 0.57 0.23 
Aro/As 1.76 1.36 
Resi/As 2.18 2.10 

 
 

Table 3.4. Elemental analysis of vacuum residues A and B 

Element 
wt.% 

Residue B Residue A 
C 84.96 84.03 
H 10.18 9.73 
N 0.85 1.00 
O 0.70 0.72 
S 3.22 3.91 

H/C(at) 1.438 1.390 
N/C(at) 0.009 0.010 
O/C(at) 0.006 0.006 
S/C(at) 0.101 0.124 

at = atomic 
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Table 3.5. Metal content of residues A and B 

 Residue B Residue A 
Nickel(mg kg-1) 125 164 

Vanadium(mg kg-1) 468 726 
Ni/V 0.23 0.20 

 
 

Table 3.6. Composition of paraffins mixture 

C11 and lighter 3 wt.% 
C12 50 wt.% 
C13 47 wt.% 
C14+ 1 wt.% 

 
 
3.2.1 Thermodynamic properties of paraffins mixture and Sasol wax 
 

 
The thermodynamic properties of the paraffins mixture, estimated from its composition[74], as 

well as the thermodynamic properties of Sasol wax are given in Table 3.7. 

 
Table 3.7. Thermodynamic properties of paraffins mixture and Sasol wax 

 MW, kg kmol-1 Tb, K Tc, K Pc, bar Zc, - , - 
Paraffins mixture 176 224 666 17.8 0.25 0.6 

Sasol wax 568 794 883 4.2 0.21 1.5 
 
 
3.2.2 Molecular weight distribution of vacuum residues A and B, Sasol wax, and liquid 

mixtures 
 

 
The averaged molecular weights if the vacuum residues A and B were about 5000 kg/kmol and 

the molecular weight distribution of Sasol wax was 568 kg/kmol. The average molecular weight 

of the mixtures of 60 wt. % vacuum residue B + 40 wt. % paraffins mixture, and 20 wt. % 

vacuum residue B + 40 wt. % paraffins mixture + 40 wt. % Sasol wax along with the product 

composition for three different types of hydrocracking of vacuum residue technologies were 

calculated using appropriate mixing rules.  
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3.2.3 Liquid density and specific gravity 
 

 
The liquid density (L) for the vacuum residues A and B, and the density of Athabasca bitumen 

vacuum found in the literature are presented in Figure 3.2.  Both residues A and B densities were 

modeled with regression coefficient > 0.99 using Equations ((3-2) and ((3-3). It should be noted 

that the data obtained for residue B are very close to the data reported for Athabasca bitumen 

vacuum residue[75]. 

TAL 40.01.1199)(   ((3-2)

)15.273(56.07.1062)(  TBL  ((3-3)

 

 

 

 

 

 

Figure 3.2. Effect of temperature on density of vacuum residues A and B and Athabasca bitumen 
vacuum residue 
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The specific gravity (60/60 ºF) values for vacuum residues A and B were calculated using 

Equation (3-4)[2].  

5.131

5.141
60




gravityAPI
FatSG  (3-4)

Since, the (API) gravity for residues A and B are 1.3 and 4.4, respectively, the corresponding 

specific gravity for vacuum residues A and B are 1.07 and 1.04, respectively, which indicates 

that the vacuum residue A is slightly heavier than vacuum residue B. 

The density of the paraffins mixture and Sasol wax were measured in our laboratory at 

different temperatures, from 290 K to 500 K for paraffins mixture and 400 K to 480 K for Sasol 

wax, and correlated as a function of temperature using the following equations with a regression 

coefficient equal to 1: 

TmixtureparaffinsL 71.08.958)(   (3-5)

TwaxSasolL 51.01.959)(   (3-6)



 35 

T, K

300 400 500 600 700

,
 k

g
 m

-3

500

550

600

650

700

750

800

850

Paraffins mixture 

Sasol wax

The density of the paraffins mixture and Sasol wax are shown as a function of temperature in 

Figure 3.3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3. Effect of temperature on density of paraffins mixtures and Sasol wax 

 
The liquid mixtures densities, ρL mixture, were estimated using Equations (3-7) and (3-8), 

respectively: 
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The liquid density for residue B, paraffins mixture, and Sasol wax were calculated from 

Equations ((3-3) through (3-6), respectively. Figure 3.4 shows different density values for liquid 

mixtures.  

 

 

 

 

 

 

Figure 3.4. Effect of temperature on liquid mixture density 

 
3.2.4 Liquid viscosity 
 

 
The viscosity values for molten vacuum residues A and B at 398 K and 423 K are given in Table 

3.8 below. The liquid kinematic viscosity (L) for both residues were correlated as a function of 

temperature using Equation (3-9)[76]. This type of equation is often used to calculate the viscosity 

of vacuum residues. The corresponding dynamic viscosity (μL) was then calculated using 

Equation (3-10).  
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Table 3.8. Viscosity of vacuum residues A and B 

A Vacuum Residue 

Kinematic viscosity at 398 K, m2 s-1 21527.2x10-6 

Kinematic viscosity at 423 K, m2 s-1
 

3176.9 x10-6 

B Vacuum Residue 

Kinematic viscosity at 398 K, m2 s-1 
2356.3 x10-6 

Kinematic viscosity at 423 K, m2 s-1
 

516.0 x10-6 

 

7.0)))]ln(*[exp(exp(  TBAL  (3-9)

LLL    (3-10)

Using the two viscosity measurements for 398 and 423 K, it was possible to determine the 

constants in Equation (3-9), and the following equations for kinematic viscosity were obtained 

for vacuum residues A and B.  

6)10(}7.0)))]ln(*3.4923.22{[exp(exp(
)(

 xT
AL  (3-11)

6
)( )10(}7.0)))]ln(*3.5723.42{[exp(exp(  xTBL  (3-12)

The kinematic viscosity in the above equations is in m2/s.  
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Figure 3.5 shows the effect of temperature on the viscosity of the vacuum residues A and 

B and includes the values available in the  literature[75] for the Athabasca bitumen vacuum 

residue. 

Figure 3.5. Effect of temperature on viscosity of the vacuum residues A and B 

 
The viscosity of the paraffins mixture was measured in our laboratory for a wide range of 

temperatures (290 to 500 K) using Cannon-Fenske routine viscometers and was correlated as a 

function of temperature using the following equation:   

1000
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(3-13)

For Sasol wax, the liquid viscosity was calculated using the following equation from Soriano[77]: 
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The liquid viscosity for paraffins mixture and Sasol wax are shown in Figure 3.6 as a function of 

temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6. Effect of temperature on viscosity of paraffins mixture and Sasol wax  

 
The ideal mixing rule, Equation (3-15), was used to predict the viscosities, μ

L
, of both liquid 

mixtures. 

i

k

i
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1

 
(3-15)
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In this equation, Y represents the property to be predicted and yi is the mole fraction of 

component i. The effect of temperature on viscosity is presented in Figure 3.7 for the paraffins 

mixture, Sasol wax, vacuum residue B, and the two liquid mixtures. 

Figure 3.7. Effect of temperature on liquid-mixture viscosity 

 
3.2.5 Vapor pressure 
 

 
At low temperatures, the vapor pressures of heavy residues are negligible when compared with 

hydrogen partial pressures employed in the hydrocracking process. The vapor pressure of 

vacuum residues B and A, were measured in our laboratory from 423 K to 673 K in a one liter 

reactor (described in the experimental set-up section) equipped with a 5.45 bar pressure 

transducer.  
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Figure 3.8 and 3.9 illustrate the vapor pressure and temperature as a function of time for 

vacuum residue A, respectively.  As can be seen in these figures for 423 K, 473 K, 523 K and 

573 K, the vapor pressure for each temperature remains independent of time, indicating that the 

gas and liquid phases are in thermodynamic equilibrium. However, at 623 and 673 K, the 

pressure in the reactor continues to increase with time, suggesting that thermal cracking and/or 

hydroconversion of the residue is taking place under these high temperatures. In fact, at these 

temperatures, the pressure in the reactor continued to increase until it reached approximately the 

207 bar, and then the system was shut down and cooled for safety reasons. This is not surprising 

since Gentzis and Rahimi[78] had reported thermal cracking of heavy feedstock into a wide range 

of gaseous, liquid and solid products to occur above 623 K. Cai et al.[79] also found that hydrogen 

appears to react significantly with heavy virgin gas-oil and atmospheric residue at temperatures 

greater than 603 K.  

Thermal cracking of petroleum residue was reported to follow a free-radical chain 

reaction mechanism, in which the molecules either break down into products with a desirable 

H/C ratio or condense to form undesirable coke products. Although most of the molecules are 

initiated by heating or are attacked by free radicals to produce new free radicals, some may react 

in a slightly different manner, as with hydrogen transfer reaction between cycloalkyl aromatics 

and aromatic nucleus under mild thermal treatment. Such a reaction, however, represents a more 

molecular nature rather than a free radical one [80]. 

In order to further investigate this behavior, during the vapor pressure measurement at 

673 K, a portion of the vapor-phase was condensed using a dry-ice trap (-78.5 °C), and the 

resulting gas and liquid samples were analyzed using a mass spectrometer. As can be seen in 

Figure 3.10, the mass spectrum of the gas-phase indicates the presence of methane, ethane, 
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propane and n-butane, as evidenced by the presence of high intensity peaks at the amus of 16, 28, 

29, and 43 m/z, respectively, which correspond to these components. The other high intensity 

peaks, at 55 and 57, could also be due to the presence of other unknown light hydrocarbon 

components. The liquid mass spectrum depicted in Figure 3.11 shows a number of high intensity 

peaks between 119.3 and 564.7 m/z, which indicate the presence of liquid hydrocarbons. 

Unfortunately, such hydrocarbons could not be identified in this study due to the complexity of 

the liquid mixture. It should be mentioned that even though quantitative analysis of the gas and 

liquid phases at 673 K was not possible, the qualitative results are consistent with the fact that 

thermal cracking and/or hydroconversion has occurred at such high temperatures. 

Thus, as shown in Figure 3.9, only the vapor-phase pressure (PS) values of the vacuum 

residues A and B for temperatures between 423 K and 573 K were correlated using Equations 

(3-16) and (3-17), respectively, where PS is in bar and T is in K, with a regression coefficient R2 

> 0.99.  Figure 3.12 represents the vapor pressure as a function of temperature for A and B 

residues. 

  94.2)(003.0ln  TP A
S

 
(3-16)

  80.9)(02.0ln  TP B
S  (3-17)
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a) Pressure as a function of time at 423, 473, 523 and 573 K 

 

 

 

 

 

 

 

b) Pressure as a function of time at 623 K 

 

 

 

 

 

 

 

c) Pressure as a function of time at 673 K 

Figure 3.8. vacuum residue A vapor pressure as a function of time 
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a) Temperature as a function of time at 423, 473, 523 and 573 K 

 

 

 

 

 

 

b) Temperature as a function of time at 623 K 

 

 

 

 

 

 

 

c) Temperature as a function of Time at 673 K 

Figure 3.9. vacuum residue A temperature as a function of time 
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Figure 3.10. Mass spectrum of gas sample taken from vacuum residue A at 673 K 
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Figure 3.11. Mass spectrum of liquid sample taken at 673 K from vacuum residue A 
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Figure 3.12. Effect of temperature on vapor-phase pressure of vacuum residues A and B 
 
 

The vapor pressure of the paraffins mixture was predicted using the Asymptotic Behavior 

Correlations (ABC) developed by Marano and Holder[81, 82]. The vapor pressure was correlated 

as a function of temperature using the following equation: 

  98.3
5.1439107.2

log
2

5

10 
TT

x
PS  

(3-18)

The vapor pressure for Sasol Wax was estimated from literature data for C
17 

to C
79 

linear 

hydrocarbons reported by Kudchadker et al.[83]
 
and using their corresponding molar composition 

in the Sasol wax, the resulting vapor pressure-temperature relation can be written as: 

  39.6
4.51653.164347

log
210 

TT
PS  

(3-19)
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The vapor pressure of the paraffins mixture and Sasol wax are shown as a function of 

temperature in Figure 3.13. 

 

. 

Figure 3.13. Effect of temperature on vapor-phase pressure of paraffins mixture and Sasol wax 
 
 

The vapor pressures for the liquid mixtures were determined experimentally in our laboratory. 

the effect of temperature on the vapor pressure for the two liquid mixtures is presented in Figure 

3.14. 
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Figure 3.14. Effect of temperature on vapor-phase pressure of liquid mixtures 
 
 
3.2.6 Surface tension 
 

 
The surface tension of the vacuum residues A and B were estimated using Equation (3-20)[75]  

)(1048.203.0 5 T  (3-20)

where σ is in N m-1 and T is in degrees K. 

A plot of the liquid surface tension as a function of temperature for vacuum residues A 

and B is presented in Figure 3.15. 
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Figure 3.15. Effect of temperature on surface tension of vacuum residues A and B 
 
 

The surface tension of the paraffins mixture was predicted by Marano and Holder[81, 82] using the 

Asymptotic Behavior Correlations (ABC) developed. Also, the surface tension of Sasol wax as a 

function of temperature was obtained using the following equation: 

251050.511.032.57 TTL    (3-21)

The surface tension of the paraffins mixture and Sasol wax are shown as a function of 

temperature in Figure 3.16. 
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Figure 3.16. Effect of temperature on surface tension of paraffins mixture and Sasol wax 
 

 
The ideal mixing rule Equation (3-15) was used to predict the surface tension (

L
) of liquid 

mixtures. The effect of temperature on the surface tension is presented in Figure 3.17 for 

paraffins mixture, Sasol wax, vacuum residue B and the liquid mixtures. 
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 Figure 3.17. Effect of temperature on surface tension of liquid mixtures 
 
 
3.2.7 Specific heat and heat of combustion 
 

 
The specific heat, in BTU lb-1 °F-1 and heat of combustion, in cal g-1 were calculated using 

Equations (3-22) and (3-23) respectively[2].  

)105.439.0(60

1
4 TxFSGat

C



  (3-22)

2)60(210012400 FatSGQ   (3-23)

C is the specific heat, T is the temperature in Fahrenheit, and SG is the specific gravity at 60 ºF. 

The heat of combustion (Q) for vacuum residues A and B were found to be 10,123 cal g-1 and 

10,016 cal g-1, respectively. Figure 3.18 shows the effect of the temperature on the specific heat 

of vacuum residues B and A. 
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Figure 3.18. Effect of temperature on specific heat of vacuum residues A and B 
 
 
3.2.8 Heat capacity 
 

 
The heat capacities of both residues were calculated using Kesler and Lee’s Equation[76]: 

 41842cTbTaC p   (3-24)

in which: 

)080809.0084773.0(02678.032646.0 SGCFKa W   (3-25)

  42 10)0826.21773.2(0383.02122.13892.1  xSGCFKKb WW  (3-26)

  710)70423.078649.0(5393.1  xSGCFc  (3-27)

2
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  
(3-29)

In these equations, Tb is the mean average boiling point in ºR. 

The calculated heat capacity for vacuum residues A and B at T = 573.15 K are 2,241 and 

2,343 J kg-1 K-1, respectively. 

 
 
 

3.3 SOLID-PHASE 
 

 
The solid-phase used was activated carbon (Carbsorb 20x50 WW) purchased from Calgon 

Carbon Corporation (Pittsburgh, PA, USA). The specific gravity and particle size, provided by 

Calgon Carbon, were 0.4-0.7 and 297-841 m, respectively. The solid skeletal density (S) for 

the activated carbon was measured in our laboratory and was found to be 1,539 5% kg m-3. 

 
 
 

3.4 SLURRY PROPERTIES  
 

 
3.4.1 Slurry density 
 

 
The slurry density, ρSL, was estimated using the following equation: 

Where ρL was calculated from Equations ((3-2) and ((3-3) for residues A and B, respectively, 

and the activated carbon density, ρs, was 1,539 kg m-3. Figure 3.19 and 3.20 show different 






















L

L

cat

cat

Lcat
SL

mm

mm



  
(3-30)



 55 

Vacuum residue A

T, K

400 450 500 550 600 650


 k

g
 m

-3

700

800

900

1000

1100

1200

1300

0%wt Solid 

20%wt Solid 

40%wt Solid 

values for slurry densities as a function of temperature at different solid concentrations for the 

vacuum residues A and B, respectively 

Figure 3.19. Effect of temperature on slurry density of vacuum residue A 
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Figure 3.20. Effect of temperature on slurry density of vacuum residue B 

 
3.4.2 Slurry viscosity 
 

 
The equation proposed by Barnea et at.[84] (Equation (3-31)) was used to calculate the viscosity 

of the slurry since this equation had been developed using data for several different liquids (with 

densities from 848 to 1,585 kg m-3 and viscosities from 0.628 to 713 mPa.s), and it contains a 

wide range of solid concentrations and particle types (with densities from 1,603 to 10,792 kg m-3 

and particle diameters from 0.0136 to 5.2 mm). Figure 3.21 shows the viscosity of residues A 

and B as a function of temperature with different activated carbon concentrations. 
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Figure 3.21. Effect of temperature on slurry viscosity of vacuum residues A and B 
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3.5 EXPERIMENTAL SETUP 
 

 
The experimental setup used in this study, shown schematically in Figure 3.22, consists of the 

following main units: reactor, preheater, vacuum system, and data acquisition system. Details of 

these units are provided below. 

Reactor: 

The reactor is a 1-liter bolted autoclave manufactured by Autoclave Engineers, Inc. USA with an 

effective volume of 1.0310-3 m3 operating in a gas-inducing mode. The reactor is rated for a 

maximum working pressure of 375.76 bars at a maximum temperature of 728 K. The reactor 

dimensions are given in Table 3.9 and Figure 3.23. The reactor is equipped with four baffles 

located symmetrically in order to minimize or eliminate vortex formation. An internal cooling 

coil and an external heating jacket as well as heating tape and thermal insulation wrapped around 

the upper part of the reactor are used to achieve good temperature control. A hollow shaft 

connected to a 6 flat-blade impeller (Rushton Turbine) is used for mixing the liquid phase. Four 

holes 2.4 mm in diameter and drilled at both ends of the hollow shaft enable the reactor to be 

operated in a gas-inducing mode. The agitator is driven by a magnetic drive with enough 

capacity to avoid any eccentricity. Two thermocouples (K-type) and a Setra pressure transducer 

(model 205-2: 0-1000 psia) were used to measure and record the change of temperature and 

pressure in both the liquid and gas phases. 

Preheater: 

The preheater is a high-pressure bomb with an effective volume of 5.4710-4 m3. It is used to 

heat the gas to a desired temperature before it is charged into the reactor. It was maintained at the 

desired temperature by a furnace with an automatic temperature controller manufactured by 

Lindberg, USA. A radiation shielded K-type thermocouple was used to measure the temperature, 
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and a pressure transducer (model 205-2: 0-1000 psia) from Setra Inc. was used to record the 

pressure. 

 
Table 3.9. Reactor dimensions 

 
Reactor’s inside diameter, dT 76(*) 
Reactor’s outer diameter 111 
Impeller diameter 31.75 
Baffle width (1/10th of dT) 7.6 
Number of baffles 4 
Reactor’s construction material 316 SS 
Shape Cylindrical 
Lower impeller clearance from the bottom 45 
Length of hollow shaft 178 
Number of impellers 1 
Number of blades 6 
Impeller type Flat blade disk turbine 
Diameter of shaft hole” 2.4 
Reactor’s internal depth 238 
Reactor volume  1.03 Liter 

 (*) all dimensions are in mm unless stated otherwise 
 
 

The Vacuum System: 

A HYVAC-14, 2-stage mechanical vacuum pump from CENCO, Chicago, Illinois, USA was 

used to vacuum the entire system. The vacuum pump was used to degas the reactor and the entire 

system before the start of the experiment. A Jerguson sight-window liquid trap was placed 

between the reactor and the vacuum pump to prevent liquid from entering into the vacuum 

system and to be able to monitor any possible liquid loss. The outlet of the vacuum pump was 

vented directly into a fume hood. 

Data Acquisition System: 

Data on the temperatures and pressures from the thermocouples and pressure transducers was 

acquired online using National Instrument data acquisition modules NI cDAQ-9172 (NI9211 and 

NI9215) connected to a personal computer (PC). The National Instrument LabView 8.2 software 
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was also used to monitor the entire process and record the temperatures and pressures within the 

system. Figure 3.24 shows a photograph of the complete set-up. 
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Figure 3.22. Schematic diagram of experimental setup 
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Figure 3.23. Reactor dimensions and details of impeller 
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Figure 3.24. Photograph of experimental set-up 
 



 64 

3.6 OPERATING CONDITIONS 
 

 
The gas-liquid-solid system and the operating conditions used in this study are tabulated below. 

 
Table 3.10. Range of the operating conditions 

 
Gas H2

Liquids Vacuum residues A and B, paraffins mixture,  
and Sasol wax 

Solid Activated carbon 
Pressure 27.5-55 bar 
Temperature 423-623 K 
Mixing speed 1200-2000 rpm 
Solid concentration 0-40 wt.% 

Reactor 
operating mode 

GIR 

 
 
 

 
3.7 OPERATING THE REACTOR IN 3-PHASE SYSTEM GAS- INDUCING MODE 

 
 

The reactor was operated in the presence of two-phase (gas-liquid) and 3-phase (gas-liquid-solid) 

systems. As mentioned above, the shaft in the reactor has two holes in both the liquid-phase and 

the gas-phase, allowing the gas to be induced in the liquid or at certain mixing speeds. Under 

these conditions, the reactor is operating as a Gas-Inducing Reactor (GIR) as depicted in Figure 

3.25. 
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Figure 3.25. Gas-Inducing Reactor (GIR) 
 

When mixing speed is gradually increased, the local pressure created underneath the impeller 

steadily decreases, eventually reaching the critical mixing speed for gas induction. At this 

specific mixing speed, the gas bubbles overcome the hydrostatic head of the liquid or slurry and 

are induced through the holes on the hollow shaft into the slurry. Thus, the knowledge of the 

critical mixing speed for gas induction, NCRI, is essential to operate the reactor in a gas-inducing 

mode. 

Using 2-phase systems, Lemoine et al.[85] proposed the following correlation to predict 

the critical mixing speed for gas induction: 

Gas-Inducing

QG
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The physical properties in this correlation are measured at the actual operating temperature for 

the liquid, but at the ambient temperature for water. This correlation was developed using 

various reactor sizes (up to 1.5 m) and for different gas-liquid systems. 

In 3-phase systems,  Zwietering[86]  proposed the following correlation to predict the 

critical mixing speed necessary for solid suspension. This critical mixing speed is defined as the 

speed needed for no particles to remain settled at the bottom of the reactor for more than 2 

seconds. 

 
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imp
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Cgds
N

 
  

(3-33) 

In this correlation, ν is the kinematic viscosity, Δρ is the density difference between the solid 

phase and the liquid phase, and s is a dimensionless coefficient that depends on the reactor 

design (dT/dimp. ratio). 

Zwietering’s correlation has been modified by several researchers [87-91] to account for 

different reactor and impeller geometries, including different liquid-solid systems or for multiple 

impellers. However, this correlation was developed for liquid-solid systems only and does not 

account for any effects of the gas phase induced into the liquid. Recent work by Murugesan[92] 

suggests that gas bubbles might increase the critical mixing speed for solid suspension. 

 
 
 

3.8 EXPERIMENTAL PROCEDURE 
 

 
The multi-step transient physical gas absorption (TPGA) method was used to obtain the 

equilibrium solubility (C*) and the volumetric liquid-side mass transfer coefficient (kLa) for H2 
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in vacuum residues A and B, as well as in the liquid mixtures within the operating conditions 

listed earlier. This experimental method was similar to that previously employed by Chang et 

al.[93-95], Tekie et al. [96, 97], Fillion [98], Martinez [99], Alghamdi [100], Lemoine [101], and Soriano 

[77]. The experimental procedure is described below: 

1. A predetermined amount of vacuum residue or liquid mixture was charged into the 

reactor at 393 K (the temperature at which the residues became a viscous liquid). 

2. The reactor was closed and the system was checked for leaks. Then the entire system was 

degassed using the vacuum pump. 

3. The temperature in the reactor was kept at 393 K, and it was again degassed to remove 

the gas trapped in the liquid residue. 

4. Hydrogen was charged into the preheater. 

5. Both the reactor and preheater were heated to the desired temperature to eliminate any 

thermal gradient between the liquid and gas phases. 

6. The data acquisition system recorded and stored the pressure and temperature of the gas 

and liquid phases in the reactor and the preheater as a function of time. 

7. Hydrogen was then charged into the reactor until the desired pressure was reached 

without any mixing. 

8. The reactor content was stirred at a predetermined mixing speed until the thermodynamic 

equilibrium was reached, indicated by a constant final reactor pressure. The decrease in 

reactor pressure was recorded as a function of time. 

9. The data acquisition for the reactor and preheater was stopped. 

10. Steps 5 through 8 were repeated to collect multiple data points at different pressure 

ranges under the same temperature, as shown in Figure 3.26. 
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This experimental procedure was followed for each set of operating conditions. 

 
 
 

3.9 CENTRAL COMPOSITE STATISTICAL DESIGN OF EXPERIMENTS 
 

 
A statistical design of experiments similar to that employed earlier by Tekie et al.[102] and 

Alghamdi[100] was used in this study. The advantage of the current approach is that it allows 

reliable investigation of the effect of the operating variables on the parameter studied, in this case 

on the liquid-side mass transfer coefficient (kLa), using a small number of experiments. Also, the 

statistical correlations produced with this method generally warrant a high degree of confidence. 

In this study, the effect of 4 variables (temperature, pressure, mixing speed and solid 

concentration) at three levels on kLa was investigated. In this technique, for k independent 

variables at 3 levels, the total number of experiments is 2k factorial points, augmented by 2k 

axial points, and with a number of replicates at the central point based on Equation (3-34) in 

order to create a design with uniform precision. 

  k2N2NγN F

2

FCentral   (3-34)

NCentral is the number of replicates at the central point, NF the number of factorial points, and  is 

defined by the following equation: 

 
 2k4

714k9k3k
γ

2




  (3-35)

The factorial and axial points are equidistant from the central point to offer the property of 

rotatability to the design. 
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Figure 3.26. Schematic of multi-step procedure at constant temperature 
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The central composite matrix design is made rotatable by setting the axial point values as 

follows: 

 4 k2α   (3-36)

In which k = 4, NCentral = 7, NF = 16 and . 

The coded variables xi (i = 1, 2, 3, 4) as defined by Equation (3-37) were used in the 

distribution and analysis of the experiments. 
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where Xi is the value of the i
-th variable, Xi, L, and Xi, H are the lowest and highest levels of Xi. The 

distribution of experiments for k = 4 can be mathematically represented by equation:  

  22
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1i

2
i 2NX 



 (3-38)

Table 3.11 shows the coded values for the variables. The distribution of experiments over the 

range of the study is shown in Figure 3.27.  

Conventionally, experimental data obtained using the 2k central composite design is 

correlated using the quadratic response surface model given in Equation (3-39): 
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where xi is the coded variable, 0, i and ij are constants, and n is the number of variables.  
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Table 3.11. Values and coded variables for statistical composite design 
 

Variable 
Coded 

Variable 
(xi) 

Value of Coded Variables 

1 0 1 
P, bar x1 27 41 55 
N, rpm x2 1200 1600 2000 
T, C x3 200 250 300 

Cs, wt.% x4 0 20 40 
 

 

 

 

 

 

 

 

 

 

 

Figure 3.27. Distribution of experiments based on central composite statistical design 
 
 
 

 
3.10 CALCULATION PROCEDURE 

 
 

The equilibrium solubility (C*) for hydrogen in the vacuum residues A and B and liquid 

mixtures were calculated from the steady-state portion of the pressure decline (pressure vs. time) 

curve, whereas the volumetric liquid-side mass transfer coefficient, kLa, was obtained from the 

P: Pressure 

T: Temperature 

N: Mixing speed 

CS: Solid concentration 
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transient portion of the same curve. The calculations were performed by mass balances on the 

preheater and the reactor and using the Peng-Robinson Equation of State (PR-EOS).  

The following assumptions were made in order to calculate C* and kLa: 

1. The gas-phase (H2) in the preheater and reactor behaves as a non-ideal gas and the Peng-

Robinson Equation of State (PR-EOS) is applicable. 

2. The gas and liquid (molten vacuum residues A or B and liquid mixtures) phases are well 

mixed, resulting in homogeneous concentrations for each phase. 

3. No gas absorption occurs prior to mixing. 

4. The liquid volume is constant. 

5. The vapor-phase pressure exerted by the liquid is negligible when compared with the 

total pressure in the reactor, and accordingly, the mass transfer resistance in the gas 

phase (kG) is negligible. 

 
3.10.1 Peng-Robinson Equation of State 
 
 
The Peng-Robinson Equation of State was used to calculate the number of moles of gas in the 

preheater before and after the reactor was charged, and to calculate the number of moles 

remaining in the reactor after gas absorption. A general form of the PR-EOS is written as:  

b)-b(v+b)+v(v

a(T)
 - 

b-v

RT
 = P  (3-40)

This equation can be expressed in terms of the compressibility factor, Z as:  

0= )B-B-(AB-2B)Z-3B-(A+B)Z-(1- Z
32223  (3-41)

where: 
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22TR

aP
A   (3-42)

RT

bP
B   

(3-43)

For a single-component, one-phase system, the solution of Equation (3-41) results in three real 

roots or one real and two imaginary roots. The real root is represents the gas-phase. At the 

critical point:  

P

TR0.45724 = )PTa(
C

2
C

2

CC ,  (3-44)

P

TR
 0.07780 = )PTb(

C

C
CC ,  

(3-45)

At any temperature: 

),(,  rCC T)PTa( = a(T)  (3-46)

)b(T = b(T) C  (3-47)

where: 

)(+ = // T11α 21
r

21   (3-48)

and Tr = T / Tc 

2ωω 26992.0 5422.1+37464.0 = κ   (3-49)

Equation (3-41) was used to calculate the number of moles of gas before and after absorption in 

the liquid-phase in order to calculate the gas solubility. 
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3.10.2 Calculation of equilibrium solubility, C* 
 

 
The equilibrium gas solubility (C*) is defined as the number of moles of gas (H2) absorbed into 

the liquid (molten vacuum residues B or A), or liquid mixtures at equilibrium, and can be defined 

as: 

L

i
i V

n
C *

 
(3-50)

The solubility of H2 in the liquid phase was calculated using the initial and final moles of 

hydrogen in the gas phase as follow: 

L

FiIi
i V

nn
C ,,* 

  (3-51)

where ni,I is the initial number of moles of the gaseous species (i) in the reactor prior to 

absorption and ni,F is the number of moles of the gaseous species (i) remaining in the reactor at 

thermodynamic equilibrium. ni, I and ni, F are calculated as follows: 

1,
,

1, )()( stepIi
IIi

G
stepIi P

RTZ

V
n   (3-52)

 (3-53)

where TI is the initial temperature before the absorption begins and TF is the final temperature of 

the gas phase after thermodynamic equilibrium is reached.  

When the multi-step procedure is used, any new step will have to take into account the 

number of moles of gas already absorbed during the preceding steps. For example for step 2, 

Equations (3-52) and (3-53) are modified as follows: 

1,,2,
,

2, )()(
.

)( stepFiIistepIi
IIi

G
stepIi nnP

TRZ

V
n   (3-54)
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2,
,

2, )(
.

)( stepFi
FFi

G
stepFi P

TRZ

V
n   

(3-55)

The volume of the gas phase, VG, is calculated by subtracting the liquid volume from the total 

reactor volume as follows: 

)(
L

L
RG

m
VV


  (3-56)

In the above equation, mL and ρL are the mass and density of the liquid, respectively. The 

solubility, C*, is then obtained by substituting Equations (3-52) or (3-53) and (3-54) into 

Equation (3-51). 

 
3.10.3 Calculation of the volumetric liquid-side mass transfer coefficient, kLa 
 

 
The hydrogen volumetric mass-transfer coefficient (kLa) was calculated using the Transient 

Physical Gas Absorption technique. During the absorption of hydrogen into the liquid (molten 

residues A, B, or liquid mixtures), the decline of reactor pressure was recorded as a function of 

time until equilibrium was reached.  

The rate of mass transfer of H2 into the residue can be calculated using the two-film 

model as: 

LLiiL
Li VCCak

dt

dn
)*( ,

,   (3-57)

The rate of solute gas uptake by the liquid can be related to the decline in pressure as a 

function of time using a differential form of the general gas law shown in Equation (3-58) below: 

dt

dP

ZRT

V

dt

dn tiGLi ,,   (3-58)

Ci,L, the bulk concentration of the solute gas in the liquid, can be expressed as follows: 
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)( ,,, tiIi
L

G
Li PP

RTZV

V
C   (3-59)

When the gas solubility at constant temperature is a linear function of pressure, Henry’s law can 

be applied as: 

*
,

C

P
He ti  (3-60)

Substituting Equations (3-58), (3-59), and (3-60) into Equation (3-57) yields the following 

equation: 

adtk

ZRT

PV

ZRT

V

He

V
P

dP

ZRT

V
L

IiGGL
ti

tiG 



,

,

,

)(

 
(3-61)

Let 
ZRT

PV

ZRT

V

He

V
PY IiGGL

ti
,

, )(  ; this gives )(, ZRT

V

He

V
dPdY GL

ti   

By integrating between the limits of PI at t = 0 and Pi, t at any time (t), the following relationship 

can be obtained: 

tak
HeV

ZRTV

He

VP
ZRT

PV

ZRT

V

He

V
P

L
G

L

LIi

IiGGL
ti

.]1[
)(

ln
,

,
,






















 (3-62)

By multiplying the numerator and denominator on the left-hand-side of Equation (3-62) by 

(ZRT/VG) and then rearranging the equation, the following relationship can be obtained: 

tak
P

PP
L

I

Iiti .]1[
)1(

ln ,, 






 





 (3-63)

The function ψ is defined as  = (VL ZRT/VG He). 

At equilibrium, the final equilibrium concentration, C*
eq,, is defined as follows: 
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)( ,,
*

FiIi
L

G
eq PP

ZRTV

V
C   (3-64)

C*eq can also be expressed as: 

He

P
C Fi

eq
,*   (3-65)

By equating Equations (3-64) and (3-65), one can obtain: 




G

L

Fi

FiIi

HeV

ZRTV

P

PP

,

,,  (3-66)

By substituting Equation (3-66) into (3-63) and multiplying the left-hand-side of Equation (3-63) 

by (Pi, F/Pi,I), the following working equation can be obtained: 

atk
PP

PP

P

P
L

Fiti

FiIi

Ii

Fi 
















,,

,,

,

, ln  (3-67)

If kLa is a constant, Equation (3-67) becomes a linear function of time and can be written as: 

atktF L)(  (3-68)

If the left side of Equation (3-68) is plotted against time, and a linear relationship is obtained, the 

slope of the line will be kLa. 
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4.0  RESULTS AND DISCUSSION 
 

 
 
 

The solubility (C*) and the liquid-side volumetric mass transfer coefficients (kLa) for H2 were 

measured in the following four liquids: 1. vacuum residue A; 2. vacuum residue B; 3. mixtures 

of vacuum residue B + paraffins; and 4. vacuum residue B + paraffins + wax.  The measurements 

were based on Central Composite Statistical Design (CCSD). The experiments were performed 

under the following operating conditions: temperature (473 K to 573 K), pressure (27.5 bars to 

55.0 bar), mixing speed (1200 rpm to 2000 rpm), and solid concentration (0 wt. % to 40 wt. %.). 

The error analysis of C* and kLa as well as some numerical examples are provided in Appendix 

B. 

 
 
 

4.1 EQUILIBRIUM SOLUBILITY OF H2 IN A AND B VACUUM RESIDUES AND 
LIQUID MIXTURES 

 
 

In this section, the solubilities for H2 in the four liquids, expressed in mol kg-1 are presented as a 

function of equilibrium H2 partial pressure (Pi,F). Figure 4.1 and 4.2 show the reproducibility of 

C* for H2 in the residues A and B; and liquid mixtures, respectively; with an AAER of less than 

12%. 
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Figure 4.1. Reproducibility of C* values for residues A and B 
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Figure 4.2. Reproducibility of C* values for liquid mixtures 
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4.1.1 Effect of pressure and temperature on C* 
 

 
Within the range of operating conditions used, the H2 solubilities in the four liquids appear to 

increase linearly with pressure at a constant temperature; as can be seen in Figure 4.3 and 4.4. 

Similar result were obtained by both Cai et al.[79] in heavy virgin gas oil, bitumen, vacuum 

bottoms and atmospheric residue, as well as by Lal et al. [103] in bitumen. The obtained solubility 

data can be modeled using Henry’s law, expressed as: 

He

P
C Fi,* 

 
(4-1)

Where He is the Henry’s law constant and Pi,F is the partial pressure of H2 in the reactor at 

thermodynamic equilibrium.  

This increase of H2 solubility with pressure can be related to the increase in the 

concentration difference (driving force) between the gaseous and the liquid phases when the 

system pressure increases. This solubility behavior is consistent with a number of earlier findings 

available in the literature[103, 104]. Also, similar results were reported in the literature[23, 95, 100, 105-

107] for different gas-liquid systems. This behavior is not surprising since the mass fraction of 

hydrogen in the liquid-phase is low even at elevated pressures. Typical reported values range 

from 0.001 moles of hydrogen/kg of liquid/100 kPa at room temperature to 0.01 moles of 

hydrogen/kg of liquid/100 kPa under processing conditions [104]. 

Table 4.1 includes the calculated values of Henry’s Law constant, listed as a function of 

temperature, along with their corresponding regression coefficients (R2).   
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Figure 4.3. Effect of pressure and temperature on solubility of H2 in vacuum residues A and B 
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Figure 4.4. Effect of pressure and temperature on solubility of of H2 in liquid mixtures 
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Table 4.1. Henry’s Law constants of H2 as a function of temperature 
 

 
 

T, K He, bar kg mol-1 R2 

 
 
 

          Residue A 

425 500 0.98 

474 455 0.95 

523 385 0.98 

574 333 0.99 

620 303 0.99 

 
 

Residue B 

472 476 0.99 

525 400 0.99 

575 357 0.99 

 
60 wt. % B/ 

40 wt. % paraffins 

473 250 0.99 

523 238 0.99 

573 238 0.88 

 
20 wt. % B/ 

40 wt. % paraffins/ 
40 wt. % Sasol wax 

473 196 0.99 

523 185 0.99 

573 169 0.96 

 
 

Figure 4.3 and 4.4 also indicate the effect of temperature on the H2 solubility in vacuum residues 

A and B, and the two liquid mixtures, respectively. As can be seen in these figures, the C* values 

increase with temperature for the four liquids. Several authors found similar results under 

different conditions for H2 solubilities in soybean oil [108], Sasol wax [77], PSS-8, heavy virgin gas 

oil, bitumen vacuum bottoms, and atmospheric residue [79, 103].  

The effect of temperature on C* values, is generally described using the Henry’s Law 

constant and the heat of solution due to absorption. Within a small temperature range, an 
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Arrhenius-type equation [29, 95, 96, 100, 102], Equation (4-2), is used to predict the effect of 

temperature on He, assuming that the heat of solution, ΔH0, is constant [29, 95, 96, 100, 102]. 

RT

H

eHeHe

0

0



  (4-2)

Within a relatively wide temperature range, however, ΔH0 may become temperature dependent 

and Equation (4-3) [109, 110] should be used. 
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 (4-3)

Figure 4.5 shows ln(He) as a function of 1/T for the four liquids studied, paraffins mixture, and 

Sasol wax from Soriano[77], and as can be observed, Equation (4-2) models the experimental data 

with a regression coefficient (R2) > 0.97 for the four liquids studied, indicating that ΔH0  is 

constant.  

For vacuum residue A, however, when ln(He) was correlated as a function of 1/T using 

Equation (4-4) the resulting regression coefficient was (R2) = 0.99, suggesting that ΔH 0 could be 

temperature dependent. The coefficients of this equation are listed in Table 4.2 suggesting that 

ΔH 0  is dependent on the temperature.  

 
2

ln
T

C

T

B
AHe   (4-4)

Table 4.2. Coefficients in Equation (4-4) 
 

 A B C 

- K K2 

Residue A 3.09 2246.6 -3.9x105 
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The calculated heats of solution of H2 absorption in the vacuum residues B and A and in the two 

liquid mixtures are listed in Table 4.4. Also, Soriano[77] correlated the effect of temperature on 

Henry’s law constant for paraffins mixture and Sasol wax using the following equation: 






















T

B

T
A

eHHe

2
1

0  
(4-5)

The coefficients for Equation (4-5) are listed in Table 4.3. 

 
Table 4.3. Coefficients in Equation (4-5) from Soriano[77] 

 
 A B H0 

Parafins mixture -3.56x104 607.60 97.71 

Sasol wax -1.93x105 1345 42.18 

 

It should be noted that a similar behavior of Henry’s Law as a function of temperature was 

reported by Himmelblau [109] for six different gases (O2, N2, H2, He, Xe and CH4) in water from 

273 to 647 K.  Table 4.5 shows Henry’s Law constant of H2 as a function of temperature for the 

four liquid studied calculated using Equation (4-2).  
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Figure 4.5. Effect of temperature on Henry’s Law constants for residues A and B and liquid 
mixtures 

 
 
Table 4.4. Apparent standard enthalpy of solution for H2 in vacuum residues A and B and liquid 

mixtures from 425 K to 620 K 
 

Liquid H0, kJ mol-1 

Residue A 5,849 

Residue B 6,291 

60 wt. % B/40 wt. % paraffins 1,644 

20 wt. % B/40 wt. % paraffins/40 wt. % Sasol wax 3,551 
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Table 4.5. Henry’s Law constants of H2 as a function of temperature 
 

 
 

T, K He, bar kg mol-1 

 
 
 

       Residue A 

653 290 

673 281 

693 274 

 
 

Residue B 

653 304 

673 294 

693 284 

 
60 wt. % B/ 

40 wt. % paraffins 

653 229 

673 228 

693 227 

 
20 wt. % B/ 

40 wt. % paraffins/ 
40 wt. % Sasol wax 

653 157 

673 154 

693 152 

 
 
4.1.2 Effect of solid concentration on C* 
 

 
Even though the gas solubility, as a thermodynamic parameter, depends on the temperature and 

pressure, Cai et al.[111] found an effect of solids addition on the apparent solubility of hydrogen in 

hydrocarbon liquids. Figure 4.6 and 4.7 show the effect of activated carbon concentration on the 

solubility of hydrogen in vacuum residues A and B; and as can be seen, the presence of the 

activated carbon did not affect C* values for hydrogen in both residues within the operating 

conditions used.  
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4.1.3 Effect of liquid nature on C* 
 

 
Figure 4.5, 4.8 and 4.9 show the effect of liquid nature on H2 solubility and Henry’s Law 

constant in the four liquids used. As can be observed, the H2 solubilities are almost the same in 

the two residues under similar operating conditions. This is because the vacuum residues A and 

B have almost similar molecular weights. The addition of paraffins and wax to the vacuum 

residue B, however, changed the H2 solubility in the following order:  C* in vacuum residue B + 

paraffins + wax > C* in vacuum residue B + paraffins > C* in the vacuum residue B. This 

behavior could be due to the fact the three different liquids have different molecular weights 

compositions, and viscosity since the addition of paraffins to the vacuum residue decreased its 

viscosity. 
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Figure 4.6. Effect of solid concentration on C* for H2 in vacuum residue A at 473, 523 & 573 K 
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Figure 4.7. Effect of solid concentration on C* for H2 in vacuum residue B at 473, 523 & 573K 
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Figure 4.8. Effect of liquid nature on C*, vacuum residuesA and B 
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Figure 4.9. Effect of liquid nature on C* , vacuum residue B and liquid mixtures
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4.2 VOLUMETRIC MASS TRANSFER COEFFICIENTS OF H2 IN VACUUM 
RESIDUES A AND B AND LIQUID MIXTURES 

 
 

Literature search revealed the lack of data on the volumetric liquid-side mass transfer 

coefficients of H2 in vacuum residues and heavy oils using gas-inducing reactors.  In the 

following section, the effects of pressure, temperature, mixing speed, and solid concentration as 

well as the liquid nature on H2 mass transfer coefficients in the vacuum residues A and B, and 

liquid mixtures is discussed.  

Figure 4.10 shows the reproducibility of H2 kLa data in vacuum residues A and B, and 

Figure 4.11 shows the reproducibility for H2 kLa data in the liquid mixtures; and as can be 

reported the  kLa data were obtained with an AAER < 15%. 
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Figure 4.10. Reproducibility of kLa values at 1600RPM with 0 wt. % of solid at 523K vacuum 
residues 
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Figure 4.11. Reproducibility of kLa values at 1600RPM with 0 wt.% of solid at 523K liquid 
mixtures 
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4.2.1 Effect of mixing speed on kLa 
 

 
Figure 4.12 through 4.19 show the effect of mixing speed on the volumetric liquid-side mass 

transfer coefficients of H2 in the two vacuum residues and the two liquid mixtures. As can be 

observed, increasing the mixing speed from 1200 rpm to 2000 rpm leads to an increase of kLa 

values, which is consistent with various earlier studies for comparable gas-liquid systems [16, 97, 

102]. This increase of H2 mass transfer coefficients with mixing speed can be attributed to the 

increase in the pumping capacity of the impeller, which induces more gas bubbles into the liquid 

phase through the hollow shaft, resulting in increasing the gas-liquid interfacial area, a. Also, 

increasing the mixing speed increased the turbulence and shear rate, which decreases the liquid 

film thickness () and increases the mass transfer coefficient (kL), since kL = DAB/. Thus, the 

combined effects of mixing speed on the gas-liquid interfacial area (a) and the mass transfer 

coefficient (kL) led to the increase of kLa. 

Figure 4.12 through 4.19 also show that when increasing mixing speed from 1200 rpm to 

2000 rpm, kLa values increase by 60% to 500%. On the other hand, in some case, increasing 

mixing speed from 1600 to 2000 rpm, a small increase in kLa was observed. This small increase 

in kLa values at such mixing speeds can be related to the effect of mixing speed on the induced 

gas flow rate through the hollow shaft, QGI. As reported by Lemoine et al.[85], at mixing speeds 

greater than the critical mixing speed for gas induction, QGI increases with mixing speed until a 

fully developed hydrodynamic regime is reached, and after that QGI is not affected by mixing 

speed any longer. Thus, increasing the mixing speed after reaching the fully developed 

hydrodynamic regime did not significantly increase QGI and subsequently kLa. 
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Figure 4.12. Effect of mixing speed on kLa, 0 wt. % solid, residue A 
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Figure 4.13. Effect of mixing speed on kLa, 20 wt. % solid, residue A 
 

 

 

 

 

 

 

 

Figure 4.14. Effect of mixing speed on kLa, 40 wt. % solid, residue A 
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Figure 4.15. Effect of mixing speed on kLa, 0 wt. % solid, residue B 
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Figure 4.16. Effect of mixing speed on kLa, 20 wt. % solid, residue B 
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Figure 4.17. Effect of mixing speed on kLa, 40 wt. % solid, residue B 
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Figure 4.18. Effect of mixing speed on kLa, 0 wt. % solid, 60 wt. % vacuum residue B + 40 wt. % paraffins mixture 
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Figure 4.19. Effect of mixing speed on kLa, 0 wt. % solid, 20 wt. % vacuum residue B + 40 wt. % paraffins mixture + 40 wt. % Sasol 

wax 
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4.2.2 Effect of temperature on kLa 
 

 
The effect of temperature on the volumetric liquid side mass transfer coefficient for H2 in the 

vacuum residues A and B, and the two liquid mixtures are presented in Figure 4.20 through 4.27. 

As can be observed, increasing the temperature increase kLa for H2 in the four liquids used. This 

kLa behavior is consistent with that reported earlier by other investigators [28, 48, 49, 100, 112]. This 

increase of kLa with temperatutre could be attributed to the resultant its effect on both kL and a, 

which is usually related to the alteration of the liquid physico-chemical properties with 

increasing temperature. 

Increasing temperature decreases the liquid viscosity and increases the gas diffusivity in 

the liquid according to the Wilke-Chang, [9] Equation (4-6).  This increase of diffusivity leads to 

the inctesae of kL; since the latter is directly related to diffusivity to the power 0.5 to 1 according 

to the Penetration Theory and the Two-film Model, respectively, as can be seen in Equation 

(4-7). Also, inceasing temepratyure decrease liquid surface tension which decreases the gas 

bubble Sauter mean diameter (dS) and increases the gas holdup [101, 113]. As a result, the gas-iquid 

interfacial area, a, increases according to Equation (4-8). Thus, increasing temeprtaure should 

increase kL and a  and consequently kLa. 
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Figure 4.20 through 4.27 show that increasing temperature from 423 to 623 K results in up to 

two orders of magnitude increase of kLa values. 
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Figure 4.20. Effect of temperature on kLa for H2 in vacuum residue A at 0 wt.% 
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Figure 4.21. Effect of temperature on kLa for H2 in vacuum residue A at 20 wt.% 
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Figure 4.22. Effect of temperature on kLa for H2 in vacuum residue A at 40 wt.% 
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Figure 4.23. Effect of temperature on kLa for H2 in vacuum residue B at 0 wt.% 
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Figure 4.24. Effect of temperature on kLa for H2 in vacuum residue B at 20 wt.% 
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Figure 4.25. Effect of temperature on kLa for H2 in vacuum residue B at 40 wt.% 
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Figure 4.26. Effect of temperature on kLa for H2 in 60 wt. % vacuum residue B + 40 wt.% paraffins 
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Figure 4.27. Effect of temperature on kLa for H2 in 20 wt. % vacuum residue B + 40 wt. % paraffins + 40 wt. % Sasol wax
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4.2.3 Effect of pressure on kLa 
 

 
The effect of pressure on kLa is strongly system-dependent since increasing pressure may result 

in an increase[47-49, 95, 100, 102, 112, 114], a decrease[115], or no change[28, 63, 64, 106, 116, 117] in kLa values. 

Figure 4.10 through 4.27 show the effect of the mean pressure on H2 kLa in vacuum residues A 

and B; and in the two liquid mixtures. As as can be seen in these figures, kLa values increase 

slightly with increasing the H2 mean pressure. This effect can be realted to the alteration of the 

physico-chemical properties of the gas-liquid system with increasing pressure. Increasing 

pressure increases the gas solubility, which decreases the liquid surface tension and viscosity. 

Decreasing liquid viscosity increases the diffusivity of H2 in the four liquids since DAB is 

inversely proportional to the liquid viscosity, as shown in the Wilke-Chang correlation (Equation 

(4-6)). The increase of pressure can also influence the interfacial area (a) by affecting the gas 

holdup and the gas bubble Sauter mean bubble diameter (dS), as can be deduced from Equation 

(4-8).  

The decrease of the liquid surface tension and viscosity, reportd to decrease the size of 

gas bubbles and increase the gas holdup[101, 118], should increase the gas-liquid interfacial area 

(a). Thus, the increase of both kL and a with increasing pressure led to the increase of kLa for H2 

in the four liquids used.  

  
4.2.4 Effect of solid concentration on kLa 
 

 
The addition of solid particles to the liquid can lead to different effects on kLa. Several studies 

showed that when a small amount of solid particles are added to the liquid, there is either little 

effect [117, 119] or even an increase [63, 64, 100, 112, 120-123] of kLa values, whereas when large amount  
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of solids (high solid concentrations) is used, kLa values appeared to dramatically decrease [49, 63, 

64, 100, 112, 120].  

Figure 4.28 through 4.33 show the effect of the solid concentration on kLa for H2 in 

vacuum residues A and B. The addition of solid particles decreased kLa values under most of the 

operating conditions studied; however, at 473 K for 1200 and 1600 rpm, kLa did not change, 

probably due to the high viscosity of the vacuum residues. Kluytmans [121] reported that the 

addition of small solid particles adsorb gas from the gas-liquid diffusion layer and desorb it into 

the liquid bulk, which is referred to as the shuttle or grazing effect, thereby increasing the mass 

transfer rate. Also, small solid concentrations were found to create turbulence at the gas-liquid 

interface, which decreases the effective diffusion layer and increases the mass transfer 

coefficient kL, and subsequently kLa. On the other hand, high concentrations of small particles 

were found to greatly increase the slurry viscosity, as can be seen in Figure 3.21, where 

increasing solid loadings from 0 to 20 wt.% and from 20 to 40 wt.% increases the slurry 

viscosity by 39% and 75%, respectively. This increase in slurry viscosity decreases the gas 

diffusivity and therefore kL, which is related to the diffusivity as stated previusly. Also, the 

increase of slurry viscosity promotes gas-bubble coalescence, which decreases the gas-liquid 

interfacial area a. Thus, increasing solid concentration to high values decreases both kL and a, 

and consequently, kLa.  

 
4.2.5 Effect of liquid nature on kLa 
 

 
Figure 4.34 through 4.42 show that under similar operating conditions, the volumetric mass-

transfer coefficients for H2 in the vacuum residues A and B are almost the same. On the other 

hand, Figure 4.43 through 4.45 show that when vacuum residue B is compared to the two liquid 
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mixtures, the mass transfer coefficient change in the following order: kLa in vacuum residue B + 

paraffins + wax > kLa in vacuum residue B + paraffins > kLa in vacuum residue B. It can also be 

seen that, as the temperature increases at constant mixing speed, the difference in the mass-

transfer coefficient for the three liquids at constant pressure decreases. This behavior can be  

related to the fact that at higher temperatures, the viscosity difference among the three liquids 

decreases.  

Figure 4.46 compares the mass transfer coefficient  for vacuum residues A and B with 

those in the tow liquid mixtures at different viscosities, and as can be seen, as the liquid viscosity 

increases, the mass transfer coefficient decreases. When comparing kLa values in the four liquids, 

there is no clear trend. This is because for vacuum residues A and B at similar viscosities, the 

mass transfer coefficient for vacuum residue A is greater than that in the vacuum residue B, 

whereas for the liquid mixtures, at similar visosities, the mass transfer coefficient for vacuum 

residue B + paraffins is lower than that in the vacuum residue B + paraffins + wax.  
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Figure 4.28. Effect of solid concentrations on kLa at 473K in residue A 



 118 

1200rpm

Pm, bar

20 30 40 50 60

k
L
a

, 
s

-1

10-4

10-3

10-2

10-1

100

 0%wt Solid 
20%wt Solid 

1600rpm

Pm, bar

20 30 40 50 60

k
L
a,

 s
-1

10-4

10-3

10-2

10-1

100

 0%wt Solid 
20%wt Solid 
40%wt Solid 

2000rpm

Pm, bar

20 30 40 50 60

k
L
a

, 
s

-1

10-4

10-3

10-2

10-1

100

 0%wt Solid 
20%wt Solid 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29. Effect of solid concentrations on kLa at 523K in residue A 
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Figure 4.30. Effect of solid concentrations on kLa at 573K in residue A 
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Figure 4.31. Effect of solid concentrations on kLa at 473K in residue B 
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Figure 4.32. Effect of solid concentrations on kLa at 523K in residue B 
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Figure 4.33. Effect of solid concentrations on kLa at 573K in residue B 
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Figure 4.34. Effect of liquid nature on kLa at 0 wt% solid and 1200 rpm 
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Figure 4.35. Effect of liquid nature on kLa at 0 wt% solid and 1600 rpm 
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Figure 4.36. Effect of liquid nature on kLa at 0 wt% solid and 2000 rpm 
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Figure 4.37. Effect of liquid nature on kLa at 20 wt% solid and 1200 rpm 
 

 

 

 

 



 127 

473K

Pm, bar

20 30 40 50 60

k
L
a,

 s
-1

10-4

10-3

10-2

10-1

100

523K

Pm, bar

20 30 40 50 60

k
L
a,

 s
-1

10-4

10-3

10-2

10-1

100

573K

Pm, bar

20 30 40 50 60

k L
a

, 
s-1

10-4

10-3

10-2

10-1

100

Vacuum residue A 

Vacuum residue B 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.38. Effect of liquid nature on kLa at 20 wt% solid and 1600 rpm 
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Figure 4.39. Effect of liquid nature on kLa at 20 wt% solid and 2000 rpm 
 

 

 

 

 

 

 

 

Figure 4.40. Effect of liquid nature on kLa at 40 wt% solid and 1200 rpm 
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Figure 4.41. Effect of liquid nature on kLa at 40 wt% solid and 1600 rpm 

 

 

 

 

 

 

 

 

Figure 4.42. Effect of liquid nature on kLa at 40 wt% solid and 2000 rpm 
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Figure 4.43. Effect of liquid nature on kLa , liquid mixtures 1200 rpm 

60 wt. % B/ 40 wt. % paraffins/ 

40 wt. % wax 
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Figure 4.44. Effect of liquid nature on kLa , liquid mixtures 1600 rpm 

60 wt. % B/ 40 wt. % paraffins/ 

40 wt. % wax 

60 wt. % B / 40 wt. % paraffins 
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Figure 4.45. Effect of liquid nature on kLa, liquid mixtures 2000 rp

60 wt. % B/ 40 wt. % paraffins/ 

40 wt. % wax 

60 wt. % B/ 40 wt. % paraffins 

Vacuum residue B  
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Figure 4.46. Effect of liquid viscosity on kLa 

 
 
 
 

4.3 STATISTICAL CORRELATIONS OF THE H2  VOLUMETRIC LIQUID-SIDE 
MASS TRANSFER COEFFICIENTS 

 
 

The kLa values of H2 in the four liquid used, obtained using the Central Composite Statistical 

Design, were correlated using the following empirical statistical correlation: 

   
  


4

1

4

1

4

0ln
i i ij

jiijiiL xxxak  (4-9) 

Where xi and xj are the coded variables (Table 3.11); and β0, βj, βij are constants. 
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The constants in Equation (4-9), listed in Table 4.6, were calculated, with an R2 > 90% 

using the least square method. A comparison between the experimental and predicted kLa values 

for H2, in vacuum residues A and B is given in Figure 4.47. As can be observed in this figure, 

these correlations fit the experimental data with an average deviation of 45%. It should be 

mentioned that this statistical correlation is restricted to the gas-liquid system and valid only 

within the operating conditions used in this study and therefore it should not be used for other 

systems under different operating conditions. 

 
Table 4.6. Coefficients in Equation (4-9) 

 
Vacuum residue A Vacuum residue B

β0 -4.4369 -3.544 
β1 0.9857 1.1331 
β2 -0.7738 -1.0013 
β3 1.1549 1.3412 
β4 0.1711 0.2861 
β11 -0.1585 -0.1049 
β22 0.6839 -0.3765 
β33 -0.0757 -0.2198 
β44 -0.0104 0.0362 
β12 -0.769 -0.5811 
β13 -0.1139 -0.0282 
β14 9.74x10-2 1.05x10-4 
β23 -0.1663 -0.0354 
β24 -0.0988 0.0108 
Β34 -0.0143 -0.0302 
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Figure 4.47. Comparison of experimental and predicted kLa values for vacuum residues A 

and B using statistical correlation 
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4.4 EMPIRICAL CORRELATIONS OF H2 VOLUMETRIC LIQUID-SIDE MASS 
TRANSFER COEFFICIENTS 

 
 

The kLa values obtained for H2 in vacuum residues A and B and for the two liquid mixtures were 

also correlated using dimensionless numbers following Soriano’s empirical correlation[77] as 

follows: 

)36.877.11(51.021.255.05.08 2

1024.1 ss CCeReWeEuScSh  (4-10)

With this correlation, it is possible to predict the experimental Sherwood Number (Sh) with a 

regression coefficient, R2 > 57% which seems to be a poor correlation, as can be seen in Figure 

4.48. Again, the above correlation is only valid within the ranges of dimensionless numbers 

given in Table 4.7. 

 
Table 4.7. Lower and upper limits of the dimensionless numbers in Equation (4-10) 

Variable Minimum Maximum
Sc 24 5,129,279 
Eu 1986 19,368 
We 648 3,248 
Re 47 50,504 
Cs 0 0.4 
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Figure 4.48. Comparison between predicted and experimental Sh values 

 
 
 
 

4.5 MODELING OF HYDROCRACKING OF VACUUM RESIDUE IN A SERIES OF 
CSTRS 

 
 

Sanchez et al.[1]  proposed the following scheme (Figure 4.49) to describe hydrocracking of 

vacuum residue at three different temperatures 380, 400 and 420 oC with the corresponding 

kinetic rate constants shown in Table 4.8.  
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Figure 4.49. Proposed kinetic models by Sanchez[1] 
 
 

Table 4.8. Kinetic parameters of Sanchez’s model[1] 

 

Kinetic constant  
(h-1) 

Temperature  Activation energy 
 EA(kcal/mol) 380°C 400°C 420°C

Residue 
k1 0.042 0.147 0.362 48.5 
k2 0.008 0.022 0.057 44.2 
k3 0.008 0.020 0.043 38.0 
k4 0.041 0.098 0.137 27.3 

VGO 
k5 0.018 0.057 0.104 39.5 
k6 0 0.007 0.016 37.1 
k7 0 0 0 - 

Distillate 
k8 0 0.003 0.010 53.7 
k9 0 0 0 - 

Naphta 
k10 0 0 0 - 

 
 

In our study, a series of CSTRs was used to model the hydrocracking of vacuum residue in a 

slurry process as depicted in Figure 4.50 using the reaction rate constants given by Sanchez at al. 

[1]. Each CSTR is equipped with one impeller, a gas distributor, baffles, and gas as well as liquid 

Residue 

VGO 
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Naphtha 

Gases 
k4 
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inlets and outlets. The gas is sparged at the bottom of the reactor into the liquid through a multi-

orifices gas distributor. The gas/liquid mixing is insured using the impeller. The gas and liquid 

phases are fed continuously to the CSTRs in a co-current scheme. The gas and liquid exiting the 

nth
 reactor represent the feed for the (n+1)th

 reactor. The “standard” geometrical ratios accepted in 

the literature [124]
 for CSTRs are given in Table 4.9. 

 
Table 4.9. Geometrical ratios of agitated reactors 

 
Ratios Ranges 

H/dT 1 

dimp/dT 1/4 - 1/2 

HL/dT 1/2 - 5/6 

dw/dimp 1/4 - 1/6 

W/dT 1/10 – 1/12 

 
 
In order to formulate the model, the following assumptions were made: (1) hydrogen in excess is 

flown through the reactors and consequently the kinetics of the reaction is independent of 

hydrogen concentration and the resistance to gas-liquid mass transfer for hydrogen is negligible, 

(2) the mass transfer resistance for the gaseous products is negligible, (3) the gas-phase is in 

thermal equilibrium with the liquid phase and the process occurs isothermally, (4) the liquid and 

gas superficial velocities are constants, (5) all the hydrocracking reactions take place in the 

liquid-phase, and (6) the CSTRs operate under steady state conditions. The mass balance 

equations for the residue and the reaction products are given in the following: 
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The residue mass balance is: 

0
)( ,,,,,, 


 

R

RLRRLRLRRL
r

H

CUCU
iniioutii

 (4-11)

where  RR Ckkkkr )( 4321  [1]
 

The VGO mass balance is: 

0
)( ,,,,,, 


 

VGO

RLVGORLRLVGORL
r

H

CUCU
iniioutii

 (4-12)

where  VGORVGO CkkCkr )( 651  [1]
 

The distillate mass balance is: 

0
)( ,,,,,, 


 

D

RLDRLRLDRL
r

H

CUCU
iniioutiouti

 (4-13)

where  DVGORD CkCkCkr )( 852  [1]
 

The naphtha mass balance is: 

0
)( ,,,,,, 


 

N

RLNRLRLNRL
r

H

CUCU
iniioutii

 (4-14)

where  DVGORN CkCkCkr 863  [1] 

The gaseous products mass balance is: 

0
)( ,,,,,, 


 

GP
RLGPRLRLGPRL r

H

CUCU
iniioutii  (4-15)

where RGP Ckr 4 [1] 

These equations were solved numerically using Excel and the results are discussed 

below. 
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Figure 4.50. Arrangement of n-GSRs in series.
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In order to calculate the residue conversion in the series of CSTRs considering a first order 

reaction according to Sanchez et al. [1], the following analysis was made. 

 For a first order reaction: A → B, the reaction rate in a CSTR can be expressed as: 

AA
R

A kCr
V

x
F 








0  (4-16)

In this equation, FAo is the molar flow rate (mol/h), x is the conversion and VR is the reactor 

volume (m3), k is the reaction rate constant (h-1), and rA is the reaction rate (mol/m3.h). 

 The conversion for reactant (A) is defines as: 

0

1
A

A

C

C
x   (4-17)

The reaction rate in each reactor can be written as: 

00 ALA CQF   (4-18)

Combining Equations (4-16) through (4-18) gives: 

)()1( LHSVxxk   (4-19)

The above equation can be rearranged as: 

LHSVk

k
x


  (4-20)

In the above equation, LHSV is the liquid hourly space velocity (h-1) which can be expressed as: 

L

L

R

L

H

U

V

Q
LHSV   (4-21)

Note that the reactor volume (VR) is actually the liquid volume (VL), QL is the liquid volumetric 

rate fed to the reactor, UL is the liquid superficial velocity, and HL is the liquid height in the 

reactor. 
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4.5.1 MODEL RESULTS 
 

 
The operating conditions used in the model are shown in Table 4.10. For a series of CSTRs, 

different conversions can be reached as the numbers of reactors increases. Table 4.11 and 4.12 

show the residue conversion (x) as well as the residue, liquid and gaseous products 

concentrations, for four CSTRs in series at 0.99 m h-1, and 4.5 m h-1 superficial liquid velocity, 

respectively. These LHSVs were selected because they were specified in the work by Sanchez et 

al. [1]. As can be seen in Figure 4.51, as the number of reactors increases, the conversion 

increases for the two liquid velocities, however, for the same reactor number, the conversion is 

higher at 0.99 m h-1 which is the lowest liquid velocity due to the longer residence time of the 

residue in the reactor at this small velocity. 

 
Table 4.10. Operating conditions used for scaling up the hydrocracking reactor 

 
Conditions Values 

Reactor diameter, m 3.0 
Liquid height, m 3.0 
Temperature, K 673.15 

LHSV, h-1 0.33 and 1.5
Liquid velocity, m h-1 0.99 and 4.5

 
 

Table 4.11. Residue conversion,  and residue, liquid products, and gas final concentrations, at 
0.99 m h-1 liquid velocity for a series of CSTRs 

 
n 1 2 3 4 

Residue conversion, % 46.52 71.39 84.70 91.82 
CR,f, mol m-3 90.92 48.63 26.00 13.91 

CVGO,f, mol m-3 33.92 18.14 9.70 5.19 
CD,f, mol m-3 11.81 6.32 3.38 1.81 
CN,f, mol m-3 6.34 3.39 1.81 0.97 
CGP,f, mol m-3 27.00 14.44 7.72 4.13 
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Table 4.12. Residue conversion,  and residue, liquid products, and gas final concentrations, at 4.5 
m h-1 liquid velocity for a series of CSTRs 

 
n 1 2 3 4 

Residue conversion, % 16.06 29.54 40.86 50.36 
CR,f, mol m-3 142.70 119.80 100.54 84.39 

CVGO,f, mol m-3 13.41 11.26 9.45 7.93 
CD,f, mol m-3 2.60 2.18 1.83 1.54 
CN,f, mol m-3 1.97 1.65 1.39 1.17 
CGP,f, mol m-3 9.32 7.83 6.57 5.51 

 

 

 

 

 

 

 

 

 

 

Figure 4.51. Residue conversion vs. number of reactors. 
 
 
Figure 4.52 and 4.53 show the molar flow rate of the residue, liquid and gas products at 0.99 m 

h-1 and 4.5 m h-1 liquid velocity, respectively, and as can be seen, the residue molar flow rate 

decreases in the reactor as the number of reactors increases, while the molar flow rates of the 

VGO, distillate, naphtha, and gaseous products appears to increase. 
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Figure 4.52. Residue, liquids, and gas product mole flowrate vs. number of reactors at 0.99 m h-

1liquid velocity 
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Figure 4.53. Residue, liquids, and gas product mole flowrate vs. number of reactors at 4.5 m h-

1liquid velocity. 
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5.0  CONCLUSIONS 
 

 
 

 
The equilibrium solubility (C*) and liquid-side mass transfer coefficient (kLa) for H2 were 

measured in four liquids, two vacuum residues (A and B) and two mixtures (vacuum residue B + 

liquid paraffins and vacuum residue B + liquid paraffins + molten wax). The data were measured 

in the presence and absence of solid particles (activated carbon) in one-liter agitated reactor 

operating in a gas-inducing mode.  The effect of operating variables, including pressure (27.5–55 

bar), temperature (423–623 K), mixing speed (20–33 Hz), and activated carbon concentration (0 

– 40 wt %) on kLa and C* values were statistically investigated using the Central Composite 

Statistical Design technique. The Transient Physical Gas Absorption technique was employed to 

obtain kLa; and C* was calculated at the thermodynamic equilibrium. A simple model to predict 

the performance of a vacuum residue hydrocracker operating at 400 oC was also introduced. 

From this study, the following concluding remarks can be made: 

1. The C* values for H2 in the four liquids increased linearly with pressure at constant 

temperature, and the values were modeled using Henry’s Law over the pressure and 

temperature ranges studied.  

2. The C* values for H2 in the vacuum residues A and B were nearly identical. The C* values 

for H2 in the four liquids followed the order:  C* in the vacuum residue B  C* in the 

vacuum residue B + paraffins liquid  C* in the vacuum residue B + paraffins + wax. 
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3. The C* values for H2 in the four liquids were found to increase with the temperature at 

constant pressure; and the effect of temperature was modeled using an Arrhenius-type 

equation, where the heat of solution appeared to be constant. 

4. The kLa values of H2 in the four liquids were found to strongly increase with increasing 

temperature and mixing speed, and to slightly increase with increasing H2 partial pressure. 

The kLa values of H2, however, decreased in the vacuum residues A and B with increasing 

the solid concentrations (activated carbon). Under similar operating conditions, kLa values 

of H2 in the vacuum residues A and B were nearly identical. The kLa values for H2 in the 

four liquids followed the order:  kLa in the vacuum residue B  kLa in the vacuum residue B 

+ paraffins liquid  kLa in the vacuum residue B + paraffins + wax. 

4. Statistical correlations were developed to predict the kLa values of H2 in the vacuum 

residues A and B. Also, empirical correlations using dimensionless numbers were 

developed to predict kLa values of H2 in the four liquids used in the presence and absence 

of solid particles in the gas-inducing slurry agitated reactor. 

5. The kinetic rate constants proposed by Sanchez at al. [1] for hydrocracking of vacuum 

residue at 380, 400 and 420 oC  were employed in a simple kinetic model using a series of 

CSTRs to calculate the residue conversion and the VGO, distillate, naphtha and gaseous 

products concentrations molar flow rates. 

6.  For a series arrangements of 4-CSTRs (3-m inside diameter and 3-m height), operating at 

400 oC with an LHSV of 0.33 h-1 corresponding to an inlet liquid superficial velocity of 

0.99 m s-1, the residue conversion reached 91.8%. However, for the same arrangement at 

400 oC with an LHSV of 1.5 h-1 corresponding to an inlet liquid superficial velocity of 4.5 

m s-1, the residue conversion was only 50.36%.  
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APPENDIX A 
 
 
 
 

STUDIES OF MASS TRANSFER IN GAS-INDUCING REACTORS 
 
 
 
 

Table A.1. Studies of mass transfer in gas-inducing reactors 
 

Reference Gas Liquid Operating 
Conditions 

Findings 

Pawlowski and 

Kricsfalussy[53]  

H2 DNT 41 bar 

393-433 K 

kLa was found to be a function of  P*/VL. 

Kara et al.[125] H2 tetralin, coal 

liquid 

70-135 bar 

606-684 K 

kLa increased with  N and decreased with 

H/dT. Coal particles decreased (kLa)Tetralin. 

Karandikar[40] CO, CH4 F-T liquids 10-50 bar kLa increased with P, N, P*/VL, decreased 

with H/dT. 

Karandikar et al.[47, 

48] 

CO2, H2 contained water 373-573 K Effect of T on kLa was unclear;  

kLa: H2>CO>CH4>CO2. 
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Table A.1 (cont.)     

Eiras [36] H2, C2H4, 

C3H6 

n-Hexane 1-40 bar 

313-353 K 

kLa: H2>C2H4>C3H6 , kLa increased with N. 

Effect of T was not clear. Effect of P on kLa 

depended on system and operation conditions. 

 

Lee and Foster[126] O2, CH4 silicon fluid 

perfluoroalkyl 

polyether 

10-70 bar 

293-573 K 

kLa increased with N, P and T, (kLa) O2 > 

 (kLa) CH4. 

Zlokamik[127] O2,N2 water, Na2SO4, 

NaCl 

2 bar 

293 K 

kLa increased with (P*/VL)0.8. 

Topiwala and Hamer 

[128] 

air K2SO4 (aq) 303 K kLa increased with N. 

Chang et al.[38, 129-131]

  

H2, N2, 

H2O, 

CO, CH4 

n-C6H14, n-

C10H22, 

n-C14H30, c-C6H12 

1-60 bar 

328-528 K 

kLa increased with N, decreased with H. 

Effect of P on kLa, was system dependent. 

Effect of T was not clear kLa: 

H2>N2>CO>CH4, kLa decreased with Cv. 
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TableA.2. Mass transfer correlations for gas-inducing reactors 
 

Reference Gas Liquid Operating 
Conditions 

Remarks 

Kara et al.[125] H2 tetralin 

SRCII 

70-135 bar, 606-684 K 

0.8-6.7 Hz, 

P*/VL<119 W/m3 

kLa=C(P*/VL)C1(HL/Dt)
C2. 

C=(3.42+_1.13)10-4. 

C1=0.8+_0.009, C2=-1.9+_0.66. 

Karandikar et al.[47] CO, H2 F-T wax 

F-T wax+ H2O 

7-45 bar, 423-498 K 

11.7-16.7 Hz 

kLa=0.1607 (N/1000)3.42 exp (0.108Pm)-0.046. 

CO2, CH4 F-T wax 

F-T wax+ H2O 

7-45 bar, 423-498 K 

11.7-16.7 Hz 

kLa=0.0171(N/1000)6.05 exp(0.380 Pm)+0.00525. 

Chang[38] N2, 

CO 

CH4 

n-C6, n-C10 

n-C14 

546<Eu<11320 

8<Sc<491 

31101<Re<338409 

1.2<Fr<2.6 

Sh=5.114 x 10-12 Eu0.28 Sc1.63 Re2.18 Fr1.73. 

H2 n-C6, n-C10 

n-C14 

569<Eu<10468 

1676<We<7721 

10<Sc<151 

68926<Re<264882 

Sh = 2.74 x 10-18 Eu-0.42 We1.29 Sc2.21 Re3.00. 
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APPENDIX B 
 
 
 
 

ERROR ANALYSIS, CRITICAL MIXING SPEED FOR GAS INDUCING AND SOLID 
SUSPENSION, AND EXAMPLE CALCULATION 

 
 
 
 

Error Analysis: 
The error (ΔF) in a function (F) can be calculated as follows:  

Let xi be the i-th independent variable to be considered and Δxi the error in xi. 

Let F be a function of those independent variables: F = ƒ(x1, x2,…, xi… xn) 

The differential of this function can be obtained as follows: 









n

1i

d
F

dF i

xi

x
x

ij  
(A-1)

The error in this function can be estimated as: 











n

1i

F
F i

xi

x
x

ij  

(A-2)

Also, the relative error (RE) can be calculated as: 

)/( FFRE   (A-3)

Similarly, the expressions of the errors for equilibrium gas solubility (C*) can be derived as 

follows: 

The solubility is calculated using the following equation: 
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ni,I and ni,F can be calculated from: 
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Z is the root of the cubic equation (modified PR-EOS); Vpre and VG are the pre-heater and gas-

phase volumes, respectively; and the subscripts I and F represent the initial and final conditions. 

Gas-phase volume is determined from the reactor and liquid volumes: 

catLRG VVVV   (A-7)

Thus, independent variables in the solubility equation, C*, are: 

 precatLRFRFRFRFpreFpreFpreIpreIpreIpreL VVVVZTPZTPZTPmfC ;;;;;;;;;;;;;* ,,,,,,,,,
 

(A-8)

The error in the experimental solubility value can then be estimated from: 

L
L

L
L

pre
pre

R
R

cat
cat

FR
FR

FR
FR

FR
FR

Fpre
Fpre

Fpre
Fpre

Fpre
Fpre

Ipre
Ipre

Ipre
Ipre

Ipre
Ipre

m
m

C
V

V

C
V

V

C

V
V

C
V

V

C
Z

Z

C
T

T

C
P

P

C
Z

Z

C

T
T

C
P

P

C
Z

Z

C
T

T

C
P

P

C
C































































***

**

,
,

*

,
,

*

,
,

*

,
,

*

,
,

*

,
,

*

,
,

*

,
,

*

,
,

*
*

 

(A-9)

The relative error in C* can be also calculated as: 

)/( ** CCRE   (A-10)

The needed partial derivatives in Equation (A-9) can be obtained as: 
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The volume of the liquid and catalyst phase in the reactor is given by: 

L

L
L

m
V


  (A-20)
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
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The errors in the liquid and solid volumes are: 



 154 

L
L

L
L

L

L
L

V
m

m

V
V 











  (A-22)

cat
cat

cat
cat

cat

cat
cat

V
m

m

V
V 











 .  (A-23)

The partial derivatives are: 
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Volumetric Mass-Transfer Coefficients; kLa values are calculated using Equation (3-67): 
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The independent variables used in this expression are: 

kLa = ƒ(PR,F, PR,I, PR,t, t) (A-29)

Therefore, the error for the volumetric mass-transfer coefficient is calculated from Equation 

(3-67) as follows: 
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The needed partial derivatives are: 
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In calculating the error (ΔC*) and relative error (ΔC*/C*) in the solubility (C*), and the (ΔkLa) 

and relative error (ΔkLa/kLa) in the solubility (kLa), the following values of the parameters from 

the equations given above were used: 

ΔPpre, = 0.075 bar ΔmL = 0.0001 kg ΔL = 0 kg m-3 
ΔPR, = 0.075 bar Δmcat = 0.0001 kg Δcat = 0 kg m-3 
ΔTpre = 0.1 K ΔVpre = 0 m3 ΔZ = 0 
ΔTR = 0.1 K ΔVR = 0 m3 Δt = 0 s 
 

An example of error calculation for C* and kLa is provided in Table B.. 

System: Gas: H2 

 Liquid: vacuum residue A 

 Solid: activated carbon 

Operating conditions: 

CS = 0 wt% VL = 0.000531 m3 ρcat = 1539 kg/m3 

N = 2000 rpm Vcat. = 0 m3 mL = 0.5262 kg 

VR = 0.00103 m3 ρL = 1011.86 kg/m3 mcat = 0 kg 
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Table B.1. Sample error calculation 
 

PR,I TR,I PR,F TR,F PR,mean t C* ΔC*/C* kLa ΔkLa/kLa 
bar K bar K bar s kmol/m-3 % s-1 % 

27.64 527 24.54 30 25.73 13.2 0.07 5.09 0.18 24.98 

47.60 527 45.27 30 46.08 9.0 0.12 3.06 0.19 17.69 

55.00 527 54.67 31 54.39 0.0 0.12 2.92 0.34 7.00 
 
 
Critical Mixing Speed for Gas Inducing and Solid Suspension: 
 
The critical mixing speeds for gas induction and for solid suspension were calculated using 

Equation (3-32), proposed by Lemoine et al.[85], and Equation (3-33), proposed by Zwietering[86].  
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It should be mentioned that Equation (3-32) was proposed for gas-liquid systems in gas-inducing 

reactors, whereas Equation (3-33) was proposed for gas-slurry systems in surface aeration 

reactors rather than gas-inducing reactors. Table B. compares the calculated critical mixing 

speeds for gas induction at Cs = 0 wt. %, and the minimum mixing speeds used in the 

experiments at various temperatures. As can be seen from this table, all the experiments with 

vacuum residue A were conducted above the critical mixing speed for gas induction, and  all the 

experiments with vacuum residue B, with the exception of the one conducted at 473 K, were 

carried out above the critical mixing speed for gas induction. 
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Table B.2. Critical mixing speed for gas induction 
 

 Vacuum residue A Vacuum residue B 
T, 
K 

NCRI, 
rpm 

N experiment 
rpm 

NCRI, 
rpm

N experiment 
rpm 

473 1157 1200 1242 1200 
523 1084 1200 1151 1200 
573 1033 1200 1110 1200 

 
 

Equation (3-33) was applied to predict the critical mixing speed for solid suspension using a 

worst-case scenario included in the statistical design of the experiments (CS = 40 wt. % and T = 

473K) with a shape factor value equal to 5.4. The critical mixing speeds for solid suspension for 

vacuum residues A and B were 1868 rpm and 1998 rpm, respectively; whereas the minimum 

mixing speed used for vacuum residues A and B under this temperature was 1200 rpm. These 

predicted and actual mixing speeds indicate that under these specific conditions, some particles 

were not suspended in vacuum residues A and B. It should be mentioned, however, that Equation 

(3-33) does not account for the presence of induced gas bubbles, which were reported by 

Murugesan[92] to increase the suspension of the solid particles, and accordingly, the solid 

particles were suspended under the experimental conditions employed, as shown in Figure 3.27. 
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System: H2/residue A

T= 523 K
Cs= 20 wt.%

N=1200 rpm

t, s
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Example Calculation: 

 

 

Figure B.1. Experimental P(t) curve showing Transient Gas-Absorption behavior 
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Slope = 0.007225 s-1

System: H2/residue A
T= 523 K
Cs= 20 wt.%

N=1200 rpm

t, s
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Figure B.2. F(P) vs. time (3-67) 
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Slope= 0.007225 s-1

System: H2/residue A
T= 523 K

Cs= 20 wt.%
N=1200 rpm
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Figure B.3. Comparison of calculated and experimental P vs. t curves 
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