
 i

ANALYSIS OF PARALLEL SOC ARCHITECTURAL CHARACTERISTICS FOR

ACCELERATING FACE IDENTIFICATION

by

Ralph Sprang

B.S.E.E, Ohio State University, 1982

M.S.E.E, The Johns Hopkins University, 1989

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2012

 ii

Copyright © by Ralph Sprang

2011

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Ralph Sprang

It was defended on

April 4, 2012

and approved by

Alex P. Jones, PhD, Associate Professor, Department of Electrical and Computer Engineering

Steven P. Levitan, PhD, Professor, Department of Electrical and Computer Engineering

Marlin H. Mickle, PhD, Professor, Department of Electrical and Computer Engineering

Mark P. Mooney, PhD, Professor, Departments of Oral Biology, Anthropology, Surgery-

Plastic Surgery, Orthodontics, and Communication and Speech Disorders

Raymond R. Hoare, PhD, CEO, ConcurrentEDA, Inc.

 Dissertation Director: James T. Cain, PhD, Professor Emeritus, Department of Electrical and

Computer Engineering

 iii

Copyright © by Ralph Sprang

2012

 iv

ANALYSIS OF PARALLEL SOC ARCHITECTURAL CHARACTERISTICS FOR

ACCELERATING FACE IDENTIFICATION

Ralph Sprang, PhD

University of Pittsburgh, 2012

Growing worldwide concerns about terrorism have increased interest in rapidly and accurately

identifying individuals such as potential terrorists. The ability to quickly screen an individual

against the more than one million entries on the Terrorist Watch List using face identification

could significantly improve national security and other security screening applications.

Top accuracy face identification algorithms are not real-time. The top face identification

algorithms evaluated in National Institutes of Standards (NIST) testing achieve 95% or greater

identification accuracy but require several minutes to complete identification on a 1,196 member

gallery set of 100 kilopixel resolution images. Recent testing shows that face identification

algorithms are significantly slower for current NIST test sets with a 14,365 member gallery set of

4 megapixel images. Significant performance improvement is needed to match a one million

member gallery set.

The International Technology Roadmap for Semiconductors projects Systems on a Chip

with more than one thousand processors will be available within ten years. However, it’s not

clear how face identification algorithms can use these massively parallel SOCs to improve

performance or which architectural characteristics are important for these algorithms.

 v

This research specifies key architectural characteristics for a massively parallel SOC to

enable real-time face identification. A set of face identification benchmarks has been created to

guide this research and includes small and large image data sets. This research contributes a

method to explore the SOC design space to evaluate the final SOC performance. Specifically,

this research is focused on the impact of processor instruction set architecture performance, the

external memory bandwidth, the quantity of processing cores, the on-chip communication

network, and the mapping of the face identification benchmarks.

 vi

TABLE OF CONTENTS

PREFACE ... XV

1.0 INTRODUCTION ..1

1.1 FACE IDENTIFICATION IS NOT REAL-TIME ...2

1.2 THOUSANDS OF PROCESSORS ON A CHIP WITHIN A DECADE4

1.3 DESIGN SPACE FOR MASSIVELY PARALLEL SOCS5

2.0 STATEMENT OF THE PROBLEM ...7

2.1 PERFORMANCE ANALYSIS AND BENCHMARK EXTRACTION............. 11

2.2 INSTRUCTION SET ARCHITECTURE IMPROVEMENT 11

2.3 EXTERNAL MEMORY BANDWIDTH IMPROVEMENT 12

2.4 PARALLEL MAPPING, COMPUTATION, AND COMMUNICATION

ANALYSIS AND IMPROVEMENT .. 13

3.0 BACKGROUND .. 15

3.1 FACE IDENTIFICATION .. 15

3.1.1 Evaluation of face identification algorithms .. 16

3.1.2 Face identification algorithm background ... 17

3.2 ACCELERATION OF FACE IDENTIFICATION ... 26

3.2.1 Networked Computers .. 27

3.2.2 Specialized Processors .. 32

 vii

3.2.3 Custom Hardware ... 35

3.2.4 Conclusion .. 41

3.3 FACE IMAGE DATA SETS .. 42

4.0 PERFORMANCE ANALYSIS AND BENCHMARK EXTRACTION 46

4.1 FACE IMAGE DATA SETS .. 47

4.2 PERFORMANCE ANALYSIS METHOD SELECTION.................................. 48

4.2.1 Complexity analysis .. 49

4.2.2 Code Profiling .. 50

4.2.3 Computational Analysis Method ... 52

4.3 EIGENFACE ALGORITHM ANALYSIS .. 57

4.3.1 Eigenface Algorithm Computational Analysis ... 60

4.4 BAYESIAN ALGORITHM ANALYSIS .. 63

4.4.1 Bayesian Algorithm Computational Analysis .. 67

4.5 EIGENFACE AND BAYESIAN ALGORITHM COMPARISON 71

4.6 ELASTIC BUNCH GRAPH MATCHING ALGORITHM ANALYSIS 73

4.6.1 EBGM Algorithm Computational Analysis ... 77

4.7 CONCLUSION .. 81

5.0 INSTRUCTION SET ARCHITECTURE ANALYSIS .. 83

5.1 ISA ANALYSIS METHOD .. 84

5.2 EIGENFACE BENCHMARK ISA ANALYSIS ... 89

5.3 EBGM BENCHMARK ISA ANALYSIS ... 98

5.4 CONCLUSION .. 108

6.0 MEMORY ANALYSIS .. 110

 viii

6.1 EXTERNAL OR OFF-CHIP MEMORY BANDWIDTH ANALYSIS 111

6.2 MEMORY BANDWIDTH ANALYSIS METHOD .. 113

6.3 EIGENFACE MEMORY BANDWIDTH ANALYSIS 115

6.4 EBGM MEMORY BANDWIDTH ANALYSIS ... 118

6.5 CONCLUSION .. 121

7.0 BENCHMARK MAPPING AND ANALYSIS ... 122

7.1 PARALLEL SOC SYSTEM MODEL .. 125

7.1.1 Processor Model ... 128

7.1.2 External Memory Model ... 130

7.1.3 Communication Model ... 133

7.2 MAPPING ANALYSIS METHOD... 136

7.3 EIGENFACE MAPPING ANALYSIS .. 143

7.4 EBGM MAPPING ANALYSIS .. 158

7.5 CONCLUSION .. 171

8.0 CONCLUSIONS AND FUTURE WORK .. 173

8.1 CONTRIBUTIONS .. 176

8.2 FUTURE WORK.. 179

8.2.1 Algorithm Research .. 179

8.2.2 Develop Real-Time Mappings for GPU Architectures 179

8.2.3 Develop Real-Time Mappings for 3D Face Identification 180

BIBLIOGRAPHY ... 181

 ix

LIST OF TABLES

Table 1: Required Speedup for Real-Time Face Identification. ..8

Table 2: Subspace Methods ... 25

Table 3: Wavelet Methods... 25

Table 4: Uncategorized Methods ... 25

Table 5: Calculation of Identification Time ... 39

Table 6: Face Identification Data Sets and Parameters ... 45

Table 7: Face Data Set Parameters .. 48

Table 8: Performance Estimates and Required Speedup. ... 81

Table 9: Eigenface and Bayesian Speedup Summary. .. 97

Table 10: EBGM ISA Speedup Summary.. 107

Table 11: ISA Speedup.. 109

Table 12: Memory Bandwidth Analysis Summary. ... 121

Table 13: Required Computational Speedup .. 123

Table 14: Local Memory Capacity. ... 129

Table 15: Benchmark Memory Bandwidth Requirements. ... 132

Table 16: On-chip Communication Latency and Bandwidth. ... 134

Table 17: Requirements for Real-Time Face Identification. ... 171

 x

Table 18: Real Time Benchmark Mappings ... 176

 xi

LIST OF FIGURES

Figure 1: ITRS projects thousands of processors on a chip within ten years.4

Figure 2: A probe image is encoded and compared to the gallery set. .. 16

Figure 3: A local binary pattern is formed by sampling pixels in a rotational sequence. 30

Figure 4: Instruction tabulation example.. 53

Figure 5: Eigenface algorithm overview. ... 58

Figure 6: Eigenface face identification algorithm. ... 59

Figure 7: Eigenface algorithm computational analysis. .. 61

Figure 8: Eigenface benchmark and computational analysis. ... 62

Figure 9: Bayesian face identification algorithm overview. ... 65

Figure 10: Bayesian face identification algorithm. ... 66

Figure 11: Bayesian computational analysis. ... 68

Figure 12: Bayesian benchmark and computational analysis. ... 70

Figure 13: Eigenface and Bayesian computation comparison... 71

Figure 14: The jet is the encoded representations of one image region. 74

Figure 15: EBGM overlays a bunch graph on the face image and extracts a face graph. 75

Figure 16: Top level EBGM pseudo code. ... 76

Figure 17: C code for the EBGM algorithm. .. 78

 xii

Figure 18: EBGM algorithm computational analysis. .. 79

Figure 19: EBGM benchmark and computational analysis. .. 80

Figure 20: Eigenface benchmark instruction level analysis. ... 90

Figure 21: Eigenface benchmark line 3 data flow graph... 91

Figure 22: Eigenface benchmark fused multiply-add MADD instruction for line 3. 92

Figure 23: Eigenface benchmark line 6 data flow graph... 93

Figure 24: Eigenface benchmark fused diff-squared instruction DFSQ for line 6. 94

Figure 25: Eigenface ISA speedup with fused instructions... 95

Figure 26: Eigenface benchmark speedup with multiple function units. 97

Figure 27: Eigenface ISA speedup and register file ports. .. 98

Figure 28: EBGM benchmark instruction level analysis. ... 100

Figure 29: EBGM benchmark line 4.4 data flow graph. ... 101

Figure 30: EBGM benchmark fused move-index MOVIDX for line 4.4. 102

Figure 31: EBGM 100K, 1K benchmark ISA speedup with fused instruction. 104

Figure 32: EBGM 100 KP, 1K speedup and register file ports. .. 105

Figure 33: EBGM 4 MP, 1M benchmark ISA speedup with fused instruction. 106

Figure 34: EBGM 4 MP, 1M speedup and register file ports.. 107

Figure 35: Memory bandwidth analysis for the Eigenface subspace matrix. 114

Figure 36: Eigenface 100 KP, 1K memory bandwidth analysis. ... 116

Figure 37: Eigenface 4 MP, 14K memory bandwidth analysis. .. 117

Figure 38: Eigenface 4 MP, 1M memory bandwidth analysis. ... 118

Figure 39: EBGM 100 KP, 1K memory bandwidth analysis. ... 119

Figure 40: EBGM 4 MP, 14K memory bandwidth analysis. .. 120

 xiii

Figure 41: EBGM 4 MP, 1M memory bandwidth analysis.. 120

Figure 42: System Architecture Model. ... 124

Figure 43: Basic parallel SOC system model. .. 126

Figure 44: Multichannel parallel SOC system model. .. 127

Figure 45: Collective on-chip communication messages. ... 135

Figure 46: UML Activity diagram. .. 137

Figure 47: The extended UML Activity diagram. ... 138

Figure 48: Data movement and communication operations added to the code. 140

Figure 49: Eigenface benchmark row-column mapping. .. 144

Figure 50: Memory capacity analysis, Eigenface row-column mapping. 145

Figure 51: Eigenface benchmark segment mapping. .. 147

Figure 52: Memory requirements for Eigenface segment mapping. ... 148

Figure 53: Eigenface algorithm in equation form. .. 148

Figure 54: Eigenface benchmark code. .. 149

Figure 55: Sequential code with S segments. ... 150

Figure 56: Sequential pseudo code with P PEs and S segments.. 152

Figure 57: Parallel code with explicit data movement. ... 154

Figure 58: Eigenface benchmark segment mapping analysis. ... 155

Figure 59: Eigenface segment mapping analysis with ten memory banks and ten PEs. 157

Figure 60: EBGM filter mask mapping. ... 159

Figure 61: EBGM 4 MP, 1M Memory Capacity Requirements. ... 160

Figure 62: EBGM benchmark top level pseudo code. .. 161

Figure 63: EBGM simplified pseudo code. .. 162

 xiv

Figure 64: EBGM further simplified pseudo code. .. 163

Figure 65: Calcjet function definition. ... 164

Figure 66: CalcJetPart function integrated into benchmark pseudo code. 164

Figure 67: EBGM benchmark pseudo code with filter loop parallelization. 165

Figure 68: EBGM benchmark pseudo code with explicit data movement operations. 166

Figure 69: EBGM filter mapping analysis. .. 167

Figure 70: EBGM mapping with two distributed loops. ... 169

Figure 71: EBGM analysis for the two distributed loops mapping. .. 170

 xv

PREFACE

Words cannot sufficiently express my gratitude for all the help and support provided by my

advisors. I have been tremendously blessed to study and research under the careful guidance of

truly wise and gifted men, and I am truly grateful for the support, encouragement, insight, and

wisdom they shared with me over the many years of research that ultimately led to this

dissertation. Thank you, Dr. Cain and Dr. Hoare.

I am also grateful for the knowledge and support shared by my committee members. Dr.

Mickle’s Computer Architecture class inspired a quest for further knowledge, helped lead to my

topic, and his thoughtful discussion and guidance led me to my dissertation advisors. Dr.

Levitan’s SOC class, direct feedback on my work, and further discussions with him helped focus

my topic on SOC applications. Dr. Jones graciously provided office and lab space and support

for much of this work and inspired an interest in design automation. Dr. Mooney introduced me

to the breadth of applications for Principal Component Analysis and his insights helped me

understand that the applications of this work extend beyond the field of face identification.

Thank you all for your support, wisdom, and encouragement.

I am grateful to Dr. Pierre LaFrance, my Master’s advisor, who nurtured my budding

curiosity into a research interest. It has taken many years to complete this journey, but the

journey would have never begun without his encouragement and support.

 xvi

I am deeply grateful to my wife for the patience and support she has extended to me over

these many years. It has been a long and challenging journey, and she has been my constant

supporter, encourager, and cheerleader. Thank you, my love.

Finally, to the One who set me on this path, opened the door to make all this possible,

and is my constant encouragement and hope, I offer my humble praise and gratitude.

 1

1.0 INTRODUCTION

Terrorism and other threats to national security are increasing worldwide [1]. This growth in

terrorism motivates efforts to develop effective technologies to identify terrorists before they can

attack. The means to quickly and accurately identify potential terrorists posing as airline

passengers is one critical requirement to increase the safety of air travel.

Airline passenger safety can be improved if passengers can be quickly screened against

lists of terrorists. The Terrorist Watch List contains more than one million names [2] and

screening airline passengers against databases of known terrorists could prevent terrorists from

boarding airplanes. If the ability to quickly screen an individual against lists of known terrorists

can be developed, airline passenger safety can be improved.

Face identification algorithms determine the identity of an individual from a

photographic image of their face. Acquiring an image of a person’s face is a simple process that

requires minimal cooperation from the individual and does not require physical contact with the

subject. This face image can be used to identify the individual, perhaps even if they are wearing

a disguise or otherwise attempting to avoid identification [3, 4].

 Face identification compares a probe or unknown face image against a gallery set of

known face images to determine whether the unknown face is contained in the gallery set and, if

so, which gallery member best matches the probe. Face identification is a technology that could

be used to screen airline passengers against the Terrorist Watch List.

 2

Current computer-based face identification algorithms can identify a probe with greater

accuracy and with larger gallery sets than a human observer. Current face identification

algorithms can achieve 87% to 96% accuracy in selecting the best match for the probe face from

a large gallery set, while a human observer performing a pair comparison between two images

achieves accuracy in the range of 75%, even for “easy” matches [5, 6]. Computer-based face

identification algorithms can compare a probe face to a gallery set of thousands of images, while

human observers are limited to a gallery with a few tens of images [5]. Furthermore, the

accuracy of machine identification is 25% greater than the accuracy humans can achieve for

difficult matching tasks [5]. For nearly all security applications, computer-based face

identification algorithms provide better accuracy and can perform identification with a larger

gallery set than a human observer.

1.1 FACE IDENTIFICATION IS NOT REAL-TIME

Identification time in the range of two minutes is required for real-time identification.

Identification time, the elapsed time required to compare one probe image to each member in a

gallery set and determine the best match, must be in the range of a few minutes for humans to

consider it “real time”. A real-time goal of two minutes can be inferred from the airport

passenger screening example. The elapsed time for a passenger to complete the screening

process is a minimum of three minutes for a small airport during off-peak times [7], and can be

much longer for busier airports at peak times. Photographing each passenger as they enter the

screening area and identifying them within two minutes would ensure the reporting of results to

 3

security personnel before the passenger completed the screening process. The real-time goal is

therefore set at two minutes for this research.

 Computer-based face identification algorithms that achieve top accuracy in NIST testing

are not real-time for one million member gallery sets of high resolution images. NIST Face

Recognition Technology (FERET)
1
 [8] testing used a relatively small gallery set of 1,196 faces

with 98,304 pixel resolution and several algorithms did not achieve real-time performance even

for this small gallery set [8]. Furthermore, the top face identification algorithm achieved

accuracy in the range of 87% to 96% [8] but required 6.6 minutes to identify a single probe [9].

Identification time increases with both image resolution and gallery size, and top accuracy face

identification algorithms are not real-time for large gallery sets such as the one million name

Terrorist Watch List [2] with the four megapixel images in current NIST test sets [10].

Face identification algorithms can achieve greater identification accuracy with higher

resolution face images but identification time also increases. Increasing the resolution of face

images from the 100 kilopixel images used in NIST FERET [8] testing to the four megapixel

images in current NIST testing [10] can increase identification accuracy by 20% to 30% [11] but

substantially increases the amount of computation required, further compounding the real-time

problem.

1
 Portions of the research in this paper use the FERET database of facial images collected under

the FERET program, sponsored by the DOD Counterdrug Technology Development Program

Office.

 4

1.2 THOUSANDS OF PROCESSORS ON A CHIP WITHIN A DECADE

A System on a Chip (SOC) with a thousand cores could be available within the next

decade. Within the next ten years, technology advances will allow fabrication of hundreds to

thousands of processor cores on a chip according to the Semiconductor Industry Association’s

International Technology Roadmap for Semiconductors (ITRS), an annual report that projects

trends in the semiconductor industry (Figure 1) [12]. A thousand cores on an SOC could

potentially provide the performance improvement necessary to make face identification real-time

for one million member gallery sets of four megapixel images, if techniques to use these

processor cores can be developed.

Figure 1: ITRS projects thousands of processors on a chip within ten years.

 5

1.3 DESIGN SPACE FOR MASSIVELY PARALLEL SOCS

To achieve the acceleration required to make face identification real-time, five key questions

must be answered:

1. What Instruction Set Architecture will decrease program execution time for face

identification?

2. What external memory bandwidth is required to avoid data starvation on the

SOC processor cores?

3. How many processor cores can a face identification algorithm use to improve

performance?

4. What on-chip communication latency and bandwidth are required to avoid

creating bottlenecks or data starving the processor cores?

5. How can algorithms be mapped to thousands of processors?

According to David Patterson, the problem of how to automatically map sequential algorithms to

architectures with hundreds or thousands of processors is currently unsolved and may require

decades of research to solve [13, 14]. However, some specific problems have been successfully

accelerated using parallel architectures and Patterson thinks that other specific problems can be

solved in the near term [14]. If design techniques can be developed to map sequential face

 6

identification algorithms to thousand core SOCs, real-time face identification for one million

member gallery sets of four megapixel images becomes possible.

If parallelism in face identification algorithms can be exposed and exploited, real-time

identification may be achievable. A speedup of at least 100 times should be achievable with a

thousand processors and a speedup of 512 times or more may be possible for some algorithms

[15]. For example, current architectures such as the Graphics Processor Unit (GPU) achieve

acceleration of 100 to 1,000 times for certain specific types of algorithms [16, 17], and the

Tile64, a research architecture containing 64 processors, achieves a 100 times speedup for some

applications [18]. If enough processors are available, real time face identification with a one

million member gallery set of four megapixel images may be possible.

 7

2.0 STATEMENT OF THE PROBLEM

Real-time face identification is possible on sequential processors for small gallery sets of low

resolution images. When image resolution and gallery size increase, however, real-time

performance is not achieved.

The goal of this research is to determine how thousands of processor on a chip can be

used to make face identification real-time for high-resolution images and large gallery sets. For

many applications such as passenger screening at airports, identification time in the range of two

minutes is required. While sequential algorithms achieve identification time of less than a

minute for small gallery sets of low resolution images, Table 1 shows these algorithms cannot

identify large gallery sets of high resolution images in real-time. To achieve real-time

identification for a million member gallery set of four megapixel images requires a speedup

ranging from 36 to 748 times.

This research explores the design space for massively parallel processors on a chip for

face ID algorithms to answer four key questions:

 Which types of processors are needed?

 How much external memory bandwidth is needed?

 How many processors can be used to accelerate the three top face id algorithms?

 What type of on-chip communication is required?

 8

Table 1: Required Speedup for Real-Time Face Identification.

BENCHMARK
IMAGE

RESOLUTION

GALLERY

SIZE

EXECUTION TIME

ESTIMATE

(MINUTES)

REQUIRED

SPEEDUP

 Eigenface 100 KP, 1K 100 kilopixel 1,196 0.0015 -

 Eigenface 4 MP, 14K 4 megapixel 14,365 0.6800 -

 Eigenface 4 MP, 1M 4 megapixel 1,000,000 75.7150 38

 Bayesian 100 KP, 1K 100 kilopixel 1,196 0.00146 -

 Bayesian 4 MP, 14K 4 megapixel 14,365 0.6791 -

 Bayesian 4 MP, 1M 4 megapixel 1,000,000 71.169 36

 EBGM 100 KP, 1K 100 kilopixel 1,196 3.70 2

 EBGM 4 MP, 14K 4 megapixel 14,365 1,495.16 748

 EBGM 4 MP, 1M 4 megapixel 1,000,000 1,496.16 748

Face identification is a computationally intensive process that is not real-time for a one

million member gallery set of four megapixel images. Performance estimates show that

identification time for four megapixel probe image with a gallery set of one million members can

range from 1.18 to 24.9 hours. For many applications, identification time in the range of two

minutes is required to be considered real-time and top accuracy sequential face identification

algorithms do not achieve this goal for one million member gallery sets of four megapixel

images.

Face identification requires two steps, encoding of the probe and comparison of the probe

to the gallery set. The probe is first encoded to reduce the data storage requirements and

emphasize the data required to differentiate face images, and then compared to each encoded

gallery member through a series of pair comparisons.

 9

The pair comparison process is obviously parallel, but the encoding process consumes

more than 80% of the identification time for one million member gallery sets of four megapixel

images. The probe to gallery comparison process is a series of comparisons between probe-

gallery pairs and is obviously parallel. As a result, each probe-gallery pair comparison could be

executed in parallel on a different processor to achieve acceleration, but the probe-gallery

comparison is only one of the time consuming tasks in face identification. While intuition

suggests the probe-gallery comparison would consume most of the execution time, analysis

shows probe encoding consumes 80% to 99% of the execution time for one million member

gallery sets of four megapixel images. As a result, acceleration of the comparison process alone

cannot achieve real-time identification for these gallery sets [19, 20].

Speedup in the range of 36 to 748 times is required to achieve real-time identification as

shown in Table 1. Mapping top accuracy face identification algorithms to thousand core parallel

SOCs can potentially enable real-time identification with one million member gallery sets of four

megapixel images. Five key architectural characteristics significantly impact performance and

must be determined to enable real-time face identification:

Processor Instruction Set Architecture (ISA). The ISA defines the Cycles Per

Instruction (CPI), the number of system clock cycles required to execute a particular

instruction [21]. Optimizing the ISA to reduce CPI for heavily used instructions can

improve performance.

External memory bandwidth. External memory bandwidth, the rate at which data can

be transferred from off-chip System Memory to on-chip Local Memory, impacts

 10

computational performance. To achieve maximum computational performance, the

memory bandwidth must be sufficient to supply data at the rate needed by the processor.

Optimizing the memory bandwidth to protect the processors from data starvation can

improve system performance.

Algorithm mapping. The mapping of the algorithm to multiple processors can create or

remove performance bottlenecks. An inefficient mapping can create new bottlenecks and

degrade performance while an optimal mapping can achieve best use of SOC resources

[22].

Number of Processors. The number of processor cores on the SOC directly impacts

performance. If all other bottlenecks can be eliminated and sufficient resources are

available, speedup proportional to the number of processor cores can be achieved [23].

On-chip communication. The time required to transfer control data between processor

cores as well as the time required to communicate data once it is on-chip can add

significant overhead to parallel processed [23], and optimizing communication can

improve performance.

These architectural characteristics must be optimized to enable real-time face identification.

This research shows how to analyze these characteristics to quantify the impact on performance

and to develop a mapping that can enable real-time face identification for a one million member

gallery of four megapixel face images. The main contributions of this research are performance

 11

analysis and benchmark extraction, instruction set architecture improvement, external memory

bandwidth improvement, and parallel mapping and computation improvement.

2.1 PERFORMANCE ANALYSIS AND BENCHMARK EXTRACTION

Performance analysis of the sequential algorithms provides a baseline for quantifying

performance improvement and provides a way to locate the bottleneck processes that form the

benchmarks. Three face identification algorithms that achieved top accuracy in NIST testing

were selected for analysis and three data sets were developed from NIST facial recognition data

sets. The execution time for each algorithm and each data set was estimated by profiling and

counting instructions. Bottleneck processes were selected based on the execution time estimates

and extracted to form nine benchmarks. The profiling and instruction counting process was

repeated to quantify sequential execution time for the benchmarks. Execution of an

implementation of the benchmarks was timed on a current PC architecture with a 1,200 member

gallery set of 100 kilopixel images to validate the execution time estimates.

2.2 INSTRUCTION SET ARCHITECTURE IMPROVEMENT

Analysis of the instruction set architecture quantifies the performance improvement resulting

from optimizing the instruction set architecture for face identification algorithms. Code

implementing the benchmarks was first compiled to produce assembly language code listings.

The instruction mnemonics from these code listings were tabulated and counted to quantify the

 12

instructions used and the number of times each instruction was executed for each line of high

level language code. Execution time was then estimated based on published CPI measurements

[24]. Assembly language instructions were sorted by execution count and CPI, and heavily used

instructions with CPIs greater than one were selected. Fused instructions were develop to

improve performance for these instructions. Execution time was estimated with the ISA

improvements to quantify the performance impact.

2.3 EXTERNAL MEMORY BANDWIDTH IMPROVEMENT

The time required to transfer data from off-chip System Memory to on-chip Local Memory was

estimated to expose memory bandwidth bottlenecks for the sequential benchmarks. The average

data transfer rate for external System Memory was determined from JEDEC specifications [25]

and ITRS projections [26]. The volume of data transferred from off-chip System Memory to on-

chip Local Memory was calculated from analysis of the algorithm and the average transfer rate

was used to estimate memory transfer time. The memory transfer time was then compared to the

computational execution time for the algorithm. For memory bound benchmarks the average

transfer rate was increased to future values based on ITRS projections [26] to determine if future

memory is fast enough to mitigate the bottleneck.

 13

2.4 PARALLEL MAPPING, COMPUTATION, AND COMMUNICATION ANALYSIS

AND IMPROVEMENT

The time required for computation and communication for mappings of the face identification

algorithms to a 2D mesh parallel SOC architecture was estimated to determine if real-time

performance can be achieved for each benchmark and mapping. An initial mapping was

developed for each benchmark and expressed as an extended UML Activity diagram. The

computation time was estimated using average CPI and cycle counts from the sequential

software benchmarks, and the time required for parallel computation was estimated by dividing

the sequential computation by the number of processor cores. The benchmark pseudo code was

updated to show the data transfer and communication operations and Chan’s collective

communication model [27] was used to estimate communication time based on communication

latency and bandwidth values from the Tile64 architecture [18] and ITRS projections [28].

This research develops techniques to analyze these performance characteristics to

develop a high performance mapping of top accuracy face identification algorithms to thousand

core 2D Mesh parallel SOC architectures. Chapter 3.0 explores the state of the art in face

identification and discusses prior work to accelerate face identification. Chapter 4.0 explains the

method used to estimate execution time and develops the benchmarks used to characterize face

identification algorithms. Chapter 5.0 explains the analysis of the processor Instruction Set

Architecture to determine what changes to the processor ISA can improve performance for face

identification. Chapter 6.0 explains the process used to analyze external memory bandwidth and

locate and mitigate memory bandwidth bottlenecks. Chapter 7.0 describes the process used to

develop a mapping of a sequential face identification algorithm to a parallel 2D mesh SOC

 14

architecture and explains how the mapping is analyzed to estimate performance and re-designed

to eliminate bottlenecks. Finally, Chapter 8.0 summarizes conclusions and discusses future

work.

 15

3.0 BACKGROUND

 This chapter explains prior work that provides the background and basis for the novel work in

this dissertation. Section 3.1 provides an overview of face identification and explains how the

algorithms studied in this dissertation were selected. Section 3.2 reviews the methods used by

other researchers to accelerate face identification and discusses the results they achieved.

3.1 FACE IDENTIFICATION

Face identification is a two-step process as shown in Figure 2. The first step encodes the probe

face image to prepare it for comparison and the second step compares the encoded probe to each

encoded gallery face through a series of pair comparisons.

The probe and gallery face images are encoded to reduce the volume of data required to

represent the images, eliminate redundant data, filter out extraneous information and to

emphasize the information that differentiates the images from each other. The encoding methods

used in top face identification algorithms reduce the data volume to 33% or less of the image

resolution with minimal impact on identification accuracy.

 16

Figure 2: A probe image is encoded and compared to the gallery set.

3.1.1 Evaluation of face identification algorithms

The National Institute of Standards and Technology (NIST) is devoting considerable resources to

sponsoring and supporting a number of face recognition programs [6, 8, 10, 29]. The initial

NIST evaluation, the Face Recognition Technology (FERET) program, accepted and tested

proposals for face identification and conducted an initial evaluation in 1993 [8, 30]. Following

the initial evaluation, NIST funded further research to improve the accuracy of the most

promising face identification algorithms. Several tests of the algorithms resulting from this

funded research were conducted from 1993 through 1996 to document improvements in

accuracy. The final official FERET test in 1996 objectively and independently tested face

identification algorithms with a standardized test set and documented the results. These test

results are the de facto standard for quantifying accuracy of face identification methods.

Although the last official test was conducted in 1996, NIST has conducted unofficial

FERET testing to document accuracy improvements in face identification [31]. Overall, the

 17

FERET test results show that as of 2001, identification accuracy in the range of 82% to 96% is

achievable by face identification algorithms tested with the FERET methodology.

Following the FERET tests, NIST shifted focus to face verification. While face

identification is a one-to-many comparison of one probe to a gallery set, face verification is a

one-to-one comparison of a probe to one gallery member to confirm a claimed identity. This

shift to face verification has further emphasized NIST’s focus on accuracy rather than

performance. As a result of this focus on accuracy, NIST has funded research to improve

accuracy with apparently minimal concern about identification time.

The NIST-sponsored Face Recognition Grand Challenge (FRGC) funded research and

established accuracy goals for a broader range of test scenarios than the FERET test [32]. In

2006, the testing component of this effort, the Face Recognition Vendor Test (FRVT), quantified

the improvements in verification accuracy resulting from the FRGC and tested both research and

commercial systems [6]. The later Multiple Biometric Grand Challenge (MBGC) evaluated face

verification in combination with other biometric verification approaches [33], and the current

Multiple Biometric Evaluation (MBE) reported test results in 2010 [10] and is an ongoing

evaluation of both still face identification and face verification algorithms with degraded and

compressed images .

3.1.2 Face identification algorithm background

Interest in automatic face identification followed the invention of practical electronic computers.

While it would take several decades to develop viable identification methods, earlier research

established the foundation for this later work. Research prior to the 1970’s investigated how the

human brain identifies face images [34] and how this process might be automated [35, 36].

 18

However, the complexity of the process and limited understanding of processes in the human

brain limited progress.

In the early 1970’s, Kanade [37] and Kelly [38] published “seminal works” [39]

exploring feature extraction-based face identification methods. Feature extraction methods use

particular characteristics of a face, such as eye spacing, nose size, or other observable

characteristics of the face for identification.

An automated feature extraction-based system requires a means to automatically locate

and measure features. However, this technology had not been developed at the time of this early

research. Although the term “automatic face recognition” was used, these early methods

required manual intervention and thus were not truly automatic. Reliable methods of locating

the face, normalizing it, and extracting the features had to be developed before automatic face

identification could progress with feature based approaches. For example, while Bledsoe was

the first to claim semi-automated face recognition [35, 40], his method relied on fiducial marks

manually hand-drawn on the photographs. These obstacles prompted some researchers to

conclude as late as 1989 that face identification by computer was not possible [41, 42].

Feature extraction-based methods are also limited by the tolerance of measurements. It is

difficult to set the measurement tolerance large enough to allow for normal photographic

variations while still maintaining the precision needed to detect different individuals. For

example, to measure eye spacing one might use the center of the pupils as the reference points.

However, if the subject is photographed from a slightly different angle or the subject is looking

in a different direction, the measurement between the pupils will be different. For individuals

with similar faces the variation in pupil distance may be small, so if the measurement tolerance is

increased to accommodate for photographic variations, the ability to differentiate between

 19

similar individuals may be lost. As a result, the measurement tolerance cannot be set large

enough to accommodate photographic variations while maintaining the precision required for

accurate identification.

As a result of these issues, much of the work in the late 1970’s and early 1980’s focused

on determining if a face is present in an image, and if so, determining where in the image a face

is located [38, 43, 44]. Other researchers continued their work on feature-based methods and

proposed alternatives by the late 1980’s [45-47]. While some of the limitations of feature based

methods had been mitigated, the fundamental issues remained.

Subspace-based methods were developed in response to these issues. Subspace-based

methods transform the face image to a subspace and then calculate similarity, a scalar number

representing how well two images match. Turk proposed one of the earliest subspace-based

methods in 1991 [48]. Turk’s Eigenface method applies Principal Component Analysis (PCA), a

technique originally developed to extract statistical information from a data set [49] and later

used to reduce a data set to its intrinsic dimensionality [50]. This approach seeks to extract

image information that captures the unique differences between images while discarding image

information that is duplicative or unnecessary for identification. This approach is known as the

Eigenface method and signals the beginning of “modern” face identification methods.

The Eigenface method decomposes a face into whole-image sized components

representing a portion of the information contained in the whole image. For the Eigenface

method, these components are termed Eigenfaces and are the eigenvectors of the covariance of

the training images. A library of Eigenfaces is created during training and a particular face can

then be expressed as a weighted linear combination of Eigenfaces.

 20

Subspace-based methods overcame the limitations of feature extraction-based methods

and effectively ended most feature extraction-based work. Efforts to improve accuracy of

subspace-based methods continued through the 1990’s and beyond. In subspace-based methods,

the component faces are separated based on the amount of unique information they contain.

However, often the most significant differences between images are the result of different

lighting and orientation rather than unique differences between images of different individuals

[51], and Linear Discriminant Analysis (LDA) methods were developed to overcome this

sensitivity to lighting [52-54].

LDA based methods alter the training process to construct a different subspace than the

Eigenface method, while leaving the Eigenface identification process unchanged. The Eigenface

method seeks to maximize the distance between all pairs of training images, including those

representing the same individual. In contrast, LDA methods cluster different images of the same

individual together to minimize separation between these images while still maximizing the

distance between images representing different individuals. This clustering tends to minimize

sensitivity to lighting changes, since images of the same individual with different lighting will be

clustered together, while images of different individuals are spread farther apart. The component

faces determined from these clusters of faces are intended to better represent the differences

between individuals.

Other researchers investigated whether selectively removing particular Eigenfaces from

the subspace might reduce the bias caused by lighting differences [55]. However, while both

LDA-based methods and the selective removal of Eigenfaces improved identification accuracy

for some gallery sets, a consistent overall increase in accuracy was not achieved [8].

 21

Some researchers theorized that higher order statistics could improve accuracy over the

second order statistics used for the Eigenface method. Kernel-based methods represent the

covariance matrix calculation of the Eigenface method as a higher order function, resulting in a

higher order mapping into the face space [56, 57]. A similar method, Independent Component

Analysis (ICA), also maps images to the face space using higher order statistics [58, 59].

Unfortunately, these methods have not resulted in significant improvement in accuracy over the

Eigenface method [57].

The basic Eigenface method as defined by Turk has become the de facto baseline for

comparison of face identification systems [8]. The identification accuracy of the Eigenface

method improves when similarity is calculated as Mahalinobis distance instead of Euclidean

distance [8, 60].

Another approach calculates similarity using Bayesian statistics. The Bayesian method

differs from the Eigenface method in two primary ways. First, the comparison measure is a

Bayesian conditional probability rather than a vector distance calculation and secondly,

difference images are used for comparison rather than single images. A difference image is

calculated as a pixel-by-pixel subtraction between two images [61-64].

The Bayesian method uses two subspaces. The training set is divided into two groups,

the intrapersonal group containing different images of the same individual and the extrapersonal

group containing images of different individuals. Within these two groups, difference images

are formed by selecting image pairs and subtracting the second image of the pair from the first.

This calculation is repeated for image pairs in both groups to build a set of difference images,

one set for each group. Two separate PCA subspaces are then constructed, one for the

intrapersonal group and one for the extrapersonal group [61].

 22

For identification, difference images must be calculated between the probe image and

each gallery image in the intrapersonal group. These difference images are then mapped into

both subspaces. Bayesian conditional statistics are used to calculate the probability that two

difference images represent the same pair of individuals. This process is repeated for each

probe-gallery difference image and the difference image with the highest probability indicates

the best match [61].

While the Bayesian method did increase identification accuracy over the Eigenface and

LDA methods, the computational requirements increased significantly due to the difference

image calculation. To resolve this issue, Moghaddam proposed a simplification of the method to

reduce the computational requirements and reported less than 3% reduction in identification

accuracy with the simplified method [61].

This simplified method performs a whitening transformation on the images and then

projects the images into two PCA subspaces, one for the extrapersonal set and one for the

intrapersonal set. The difference image can then be calculated as a vector distance in the

subspace. If the Bayesian Maximum Likelihood (ML) comparison function is used, only one

subspace is required and identification is analogous to the Eigenface method with Mahalinobis

distance.

A third method was inspired by earlier feature extraction-based research. The Elastic

Bunch Graph Matching (EBGM) method locates feature points by elastically adjusting a fixed

undirected bunch graph generated during training. A series of two-dimensional filters are

applied to the image region surrounding the feature point and the filter response values at the

feature point are used as an encoded representation of that feature. A face graph is formed

where the edges of the graph contain the distance between features and the vertices of the graph

 23

contain the encoded representation of the feature. Vector distance is calculated between the

encoded representations of the features and the resulting distances are averaged to calculate a

scalar similarity [65, 66].

These three classes of methods, including the subspace, Bayesian, and EBGM methods,

remain subjects of current research. Recent research on subspace methods has explored

improving subspace projections [67], addressing the image misalignment problem [68],

improving discriminant analysis methods [69, 70], and combining methods from different

classes [71].

Pang increases the accuracy of subspace projections and therefore identification accuracy

by altering the subspace comparison process [67]. Pang’s method forms feature lines between

pairs of projected image points representing the same individual. The distance from the

projected probe image to the nearest point on the line is used for comparison.

Conventional subspace methods linearly transform an image vector to a point in the

subspace. Pang’s process adds the feature lines to the subspace, effectively estimating a

continuous set of additional training images and providing some of the benefit of a gallery set

with multiple images of each individual. A nearest feature line (NFL) comparison then finds the

Euclidean distance to the nearest feature line rather than the nearest projected image as in the

Eigenface method.

Pang reports a 21% increase in identification accuracy for the NFL comparison with

conventional subspaces [72]. In his more recent work, he also changed the subspace generation

process to gain an additional 11% increase in identification accuracy [67].

 24

As with the LDA method, Pang’s method alters the way the subspace is formed during

training and thus forms a different transform matrix for the subspace. However, the process to

project an image vector into the subspace is unchanged, so no additional computation is required.

Pang tested his method on the FERET data set by selecting his own set of 1,394 images

rather than using one of the standard NIST defined test sets. For his test set, he reports

identification accuracy of 45% for the Eigenface method. When the NFL comparison is used

alone, identification accuracy is 66%, and identification accuracy increases to 77% when the

feature line subspace and NFL comparison are combined.

Recent Bayesian research includes efforts to improve identification accuracy by

subdividing the subspace [73] and applying PCA to further reduce computational requirements

[74]. Research on EBGM-based methods has explored improving the sampling of image regions

[75] and increasing identification accuracy [76, 77]. In addition, research into overcoming

orientation and expression differences [4], occlusions [48], and illumination [78] has also

continued.

Face identification research has also broadened to include 3D and video-based face

identification [6, 79, 80]. Some video-based methods extract still images from the video [39,

79], and some 3D methods form the 3D image from a set of 2D images or a 2D distance from

plane representation [39]. For these formats still image-based methods are used for identification

and thus further research on still image identification remains relevant.

Table 2 through Table 4 summarizes face identification algorithms by type. Table 2

summarizes PCA-based subspace methods, Table 3 shows methods based on the Gabor wavelet

transform, and Table 4 lists methods that fall outside this categorization.

 25

Table 2: Subspace Methods

AUTHOR SUBSPACE METHODS DATE ACCURACY

UMD Linear Discriminant Analysis (umd_97) LDA [53, 54] 1997 0.96

Moon Eigenface with Mahalinobis distance [81] 1997 0.96

MIT Media Lab Bayesian Matching (BM) [82] 1996 0.95

UMD umd_96 LDA [83] 1996 0.95

MSU LDA [54, 84] 1996 0.86

Liu PCA Gabor (PCAG) [85] 2003 0.85

MIT Media Lab mit_mar_95 [8] 1996 0.83

ARL arl_ef [48, 81] 1997 0.80

Pang Feature Line Method [67, 72] 2009 0.77

NIST ef_hist_dev_ml2 [8] 1997 0.77

NIST ef_hist_dev_l1[8] 1997 0.77

NIST ef_hist_deb_anm [8] 1997 0.77

NIST ef_hist_dev_md [8] 1997 0.74

NIST ef_hist_dev_ml1 [8] 1997 0.73

NIST ef_hist_dev_l2 [8] 1997 0.72

NIST ef_hist_dev_ang [8] 1997 0.70

Yang Supervised Subspace Learning [68] 2009 0.70

Table 3: Wavelet Methods

AUTHOR WAVELET METHODS DATE ACCURACY

USC Elastic Bunch Graph Matching [65] 1997 0.95

Du Nonuniform Gabor [75] 2009 0.94

Shin Generalized EBGM (GEBGM) [76] 2007 0.91

Tan Recognition under occlusion [4] 2009 0.88

Kepenekci Gabor Wavelet (GW) [86] 2002 0.70

Table 4: Uncategorized Methods

AUTHOR OTHER METHODS DATE ACCURACY

Excalibur Inc Excalibur [8] 1997 0.22

Rutgers Rutgers [87] 1994 0.18

ARL arl_cor [8] 1997 0.05

 26

The top accuracy algorithms from each category were selected for this research. The top

subspace algorithms include Linear Discriminant Analysis, Eigenface with Mahalinobis distance,

and Bayesian Matching. These algorithms are shown as shaded lines in Table 2. The LDA

algorithms differ from the Eigenface algorithm only in the training process and perform

identification in the same way, so the Eigenface and Bayesian algorithms are selected for this

research and the LDA algorithms are not separately analyzed.

The top accuracy wavelet algorithm is the Elastic Bunch Graph Matching algorithm,

shown as a shaded line in Table 3. While similar accuracy was reported for the Nonuniform

Gabor algorithm, this algorithm was not tested with a standard FERET test set, preventing

objective comparison of accuracy. Since a Gabor wavelet-based algorithm is already included in

the research set, the Nonuniform Gabor algorithm was not added to the set.

None of the uncategorized algorithms, shown in Table 4, achieved higher than 22%

identification accuracy. Given the low accuracy, these algorithms are not considered further.

3.2 ACCELERATION OF FACE IDENTIFICATION

Much of the prior work in the field of face identification investigates how to increase

identification accuracy [39, 40, 88-90]. The NIST FERET [8] and FRVT [6] tests evaluated

identification accuracy while imposing only minimal constraints on execution time, motivating

the emphasis on identification accuracy. As a result of the emphasis on identification accuracy,

identification time has not been a primary topic of research until fairly recently [91, 92].

In the last decade, researchers have begun to explore identification time constraints and

solutions. Identification accuracy of 95% or better is achievable with the top face identification

 27

methods, but these methods are not real-time for large gallery sets of high resolution face

images. In effort to accelerate face identification toward the goal of real-time identification,

researchers have investigated a range of solutions. Much of the existing research seeks to exploit

the obvious parallelism of the comparison process [19, 91, 93-95]. However, the preliminary

research for this dissertation shows that the encoding time is significant for most face

identification methods and is often the primary constraint on identification time. As a result,

research that investigates how to accelerate either the encoding process [96] or both the encoding

and comparison processes [92, 97-99] is particularly relevant to the dissertation work.

The research reviewed in this section uses a range of techniques to accelerate a variety of

face identification methods. Several researchers used clusters consisting of networked PCs to

accelerate the comparison [19, 93] or encoding processes [98]. Other researchers applied special

processors such as the GPU [91, 99] or custom hardware optimized for a particular process [92,

94-97] to provide the needed acceleration. Changes to the identification algorithms to reduce

computation [95] and reduction of image resolution to reduce the amount of computation

required [92, 95, 97, 98] were also investigated.

3.2.1 Networked Computers

Interfacing multiple computers with a common communication network forms a MIMD system

termed a cluster [21]. The communication network provides the means for the computers to

exchange data and control information, while each computer has a separate CPU and can

therefore independently execute a unique program in parallel with other CPUs.

A client-server architecture interfaces one or more clients to the network. The client is a

device that submits requests to the server, the computer or computers that perform or facilitate

 28

the actions required to respond to the client request. The server can be a single computer but

more commonly is a cluster of networked computers. A host computer, a central control node in

the cluster, communicates with the clients to receive and respond to queries. The host manages a

group of networked slave computers, sending requests to the slave computers, receiving results

from the slave computers, and then communicating responses back to the client.

A client-server cluster can be used to accelerate the comparison process in face

identification methods [19]. The gallery set of known faces is divided into five equal segments

and distributed among the Host and the four Slave computers [19]. The Host computer accepts

the queries from the Clients, broadcasts the query data to each Slave computer, and combines the

results from each Slave to select the gallery face that best matches the probe face.

This system was tested with 100,000 and 200,000 image
2
 galleries [19]. The gallery set

was subdivided into equal segments that were distributed among five computers and therefore

each segment contains either 20,000 or 40,000 faces, depending on the test set. The system

accelerates the comparison process four times and compares one encoded probe to a 100,000

member gallery set within 40 seconds. The author does not report either image resolution or the

identification method used.

Meng used a similar network configuration but added an additional slave computer [93].

Faster PCs with 2.4 GHz dual core Xeon CPUs and 1 GB of memory were used, and the MMX

instructions in the Xeon CPUs provided additional acceleration [93]. Meng used the Multimodal

Part PCA (MMP-PCA) face identification method, an extension of the baseline Eigenface

method [93]. The baseline Eigenface method converts the entire face image to a vector and

2 Chunhong states in the introduction that the database contains “1,000 thousands human faces” while the

Results section lists comparison times for 100,000 and 200,000 image gallery sets.

 29

projects it into an Eigenvector subspace. In contrast, the MMP-PCA method also projects the

entire face image into the subspace but projects an additional four segments of the face image

into the subspace. These four segments are extracted regions of the image that contain the

eyebrow, eye, nose, and mouth features. The encoded face is therefore represented by five

weight vectors, one encoding the entire face as in the baseline Eigenface method and the other

four encoding the extracted feature segments of the face.

As in Chunhong’s method [19], the encoding of the probe image is performed by the host

and the encoded probe image is submitted by a Client to the Host for comparison [93]. Meng

does not specify how the database is distributed among the slave computers, but it appears the

database is equally distributed in the same manner as Chunhong [19].

In addition to the four times acceleration achieved by performing the comparison process

in parallel on the cluster, the MMX instructions in the Xeon CPUs were exploited to provide

additional acceleration. These SIMD instructions allow multiple results to be calculated with a

single operation and provided an additional acceleration of 14.5 times [93].

Meng used the TH-FACE face database to test his system. The TH-FACE database

contains 19,289 images of 750 individuals and these images were cropped to 172 kilopixel

resolution. Identification accuracy ranging from 50% to 85% is reported for sequential software

implementations of the MMA-PCA method and the TH-FACE database [100], while Meng

reports 62.70% accuracy when the five best matching images are selected. Accuracy results for

selection of the single best match are not provided, precluding direct comparison of accuracy

results with the other methods reviewed [93].

Meng also tested the system with a 2,560,000 face database but does not indicate the

source of these images [93]. Only the TH-FACE database is referenced in the paper, so the

 30

database may have been formed from the images in that database. For the 2.5 million member

gallery set and the six PC cluster, Meng reports a comparison time of 1.094 seconds but does not

quantify the encoding time [93]. For a database of this magnitude the encoding time will be

significant and will likely preclude real-time encoding.

A cluster where control is distributed among the nodes rather than centralized in a Host

computer is termed a peer network. Distributing control among the nodes can improve

performance if the process can be partitioned to exploit the autonomy of the nodes. Yang

distributed both the encoding and comparison process among the nodes in a peer network [98].

The cluster consists of ten PCs networked together as peers rather than in a host-slave

configuration. Each PC contains a 2.2 GHz Core 2 Duo processor and 2 GB of RAM, and the

dual cores in the CPUs are configured as separate nodes, providing a 20 node parallel system

[98].

Yang used a face identification method derived from the Local Binary Pattern (LBP)

method [98]. The LBP method encodes local regions of an image by sampling and quantizing

characteristics of the pixels in that local region. The samples are combined to form the binary

pattern representation for the local region as shown in Figure 3.

Figure 3: A local binary pattern is formed by sampling pixels in a rotational sequence.

 31

The LBP is generated by sampling characteristics of the pixels in a local region. The image is

subdivided into local regions of consistent size as shown in Figure 3. The pixels are then

quantized to one or zero based on the relationship with the adjacent pixels. Starting with a

specified pixel, a specified path is traversed through the local region to form the binary pattern.

In Figure 3, the middle right pixel is the starting location and the pattern is traversed in a

clockwise direction, generating the local binary pattern of 11010101 [97]. Combining LBPs that

represent the same pattern in rotated and shifted forms allows the total number of LBPs to be

reduced to 30 for a nine pixel local region and the LBP can therefore be represented with a five

bit binary number [97].

Yang used the Local Gabor Binary Pattern Histogram Sequence (LGBPHS) method for

face identification. This method enhances the Local Binary Pattern (LBP) method by using

Gabor filters to encode the regions of the image rather than the simple magnitude comparison of

adjacent pixels used in LBP. The LGBPHS method convolves a set of Gabor filters with the

entire image and then stores the magnitude response from the set of convolution results as a set

of Gabor Magnitude Pictures (GMP). Local binary patterns are then generated for the local

regions in each GMP. LBPs corresponding to adjacent local image regions are grouped together

and a histogram is calculated for each region. The histograms are combined to form a vector that

is the encoded representation of the face [98].

The probe encoding process is performed in parallel on the cluster nodes. The probe

image is first broadcast to each of C CPU cores, where C=20 for the test system. The probe

image is then filtered with a set of R Gabor filters, each expressed as a filter mask Fr. Each CPU

performs the convolution operations required to apply an R C subset of the R Gabor filters to the

probe image, generating an R C set of GMPs. The LBPs are then calculated for each local

 32

region in each GMP to form an R C set of LBGP maps. Finally, histograms are extracted and

concatenated to complete encoding of the probe image [98].

The probe-gallery comparison process is also distributed among the C nodes in the

network. The set of pair comparisons is equally distributed among the C CPU cores as in the

other cluster-based methods [19, 93, 98]. Each CPU calculates similarity scores for a subset of

the gallery. When all CPUs have completed calculation similarity calculations, a reduction

operation selects the best similarity score, corresponding to the probe-gallery pair that is the best

match [98].

The parallel LGBPHS system was evaluated with both the ORL and FERET databases

[98]. For the ORL database, 200 images cropped to 2.5 kilopixels were selected for the gallery

set and the identification time of 12.8 seconds includes both encoding and comparison time. The

FERET images were cropped to 16 kilopixel resolution and identification time of 561 seconds

was achieved with a 1,698 image gallery set. For both the ORL and FERET database testing, the

acceleration achieved with ten CPUs is approximately nine times and increased to the range of

sixteen times when 20 processors were used [98].

3.2.2 Specialized Processors

General purpose processors trade-off computational performance for the ability to perform

complex instructions and execute complex control sequences [16]. Processors optimized for

specific types of operations can improve performance by using more chip area for the specialized

function while sacrificing the complexity and flexibility of the CPU [16]. As a result,

specialized processors can substantially increase performance for the specialized function if the

process can be implemented within the constraints and limitations of the specialized processor.

 33

The Graphics Processor Unit (GPU) is a specialized processor designed to improve the

performance of mathematical operations [16, 17]. To achieve this performance increase, the

GPU restricts communication and data exchange between executing processes and implements

only the most fundamental control instructions [17]. If a program can be structured to execute

within these constraints, however, a substantial increase in performance is possible.

General Purpose Computing on Graphic Processor Units (GP-GPU) uses the specialized

graphics hardware on a GPU to accelerate programs that are not strictly graphical. GPUs have

parallel architectures and high memory bandwidth in the range of 40GB/s [91], but many GPUs

do not support integer and double-precision arithmetic data types or bitwise logical operations

[91]. In addition, GPUs are more difficult to program than a CPU, due the complexity of the

model [91]. As a result, some algorithms are better suited to a GPU-based implementation than

others [91].

Abate applied GP-GPU techniques to accelerate 3D face identification [91]. A 3D model

of a probe image is sampled and projected to form a 2D normal map and a filter or flesh mask,

where each matrix is 128 by 128 elements. This preliminary processing is performed on the

CPU.

The filter or flesh mask is animated on the GPU to compute the expression mask [91].

The expression mask incorporates multiple facial expressions into the mask and improves

identification accuracy by decreasing the sensitivity to expression. The expression mask is

combined with the filter mask and normal map to produce the normal planes map, the 128 by

128 element encoded representation of the probe image.

The probe is compared to the gallery set with a series of pair comparisons. The normal

planes maps for the probe and one gallery member are subtracted element by element using the

 34

GPU. The GPU then normalizes these results to form the difference map corresponding to that

probe-gallery pair. The difference map is then sent to the CPU and the CPU calculates a

histogram for the grey levels represented in the difference map. The CPU calculates a weighted

sum of the histogram and a Gaussian function to calculate a scalar similarity score for the probe-

gallery pair. A difference map, histogram, and similarity score is calculated for each probe-

gallery pair. The CPU then ranks the similarity scores for all probe-gallery pairs to select the

best similarity score and therefore the gallery member that best matches the probe face.

Abate implemented the difference map calculation on the GPU and used the system CPU

to compute the similarity score. This partitioning enabled the GPU to perform the functions that

fit well with the GPU architecture while implementing processes requiring significant memory

interaction on the CPU. Abate tested his system with a set of 16 kilopixel images consisting of

135 face images of photographed individuals and 10,000 computer-generated face images. The

combination of a quad GPU with a CPU achieved 75,000 pair comparisons per second, while a

CPU-only implementation achieved 200 pair comparisons per second, showing that the GPU

provided a 375 times speedup of the comparison process for 16 kilopixel face images [91].

Other face identification methods can be functionally modeled on a GPU. Optical

correlation face identification methods provide high accuracy and performance, but the physical

size of the equipment and high cost limit portability and applicability of these methods [99]. To

overcome these limitations, Ouerhani applied the functional approach of the optical correlation

face identification method to a GP-GPU system [99].

An optical correlation system for face identification contains three planes and two

convergent lenses. The first lens generates the Fourier transform of the probe image, and the

Fourier transforms of the probe and one gallery member are optically multiplied at the Fourier

 35

plane. A second lens generates the inverse Fourier transform to generate the correlation, which

is analogous to a similarity measure [99].

Optical correlation methods achieve high performace, but the hardware required is

prohibitively expensive and the devices are too large to be portable [99]. Ouerhani proposed a

GPU-based correlation method to provide a more cost practical and portable system. In this

approach, the Fourier transform of the probe is calculated with an FFT algorithm executing on a

GPU. The Fourier transform of the probe is multiplied by the FFT mask for one gallery image

and the inverse FFT is computed on the result. Finally, the peak of the correlation is quantified

to form the similarity score.

Ouerhani compared a Matlab implementation of this method executing on a 2.4 GHz dual

core PC with an NVIDIA GeForce 8400 GS GPU-based implementation of this algorithm.

Using an image resolution of 65 kilopixels and a four member gallery set, a pair comparison time

of 10 ms was achieved with the GPU, while the Matlab implementation executing on the CPU

required 25 ms, a speedup of 2.5 times. This result suggests that this system could perform 100

pair comparisons per second and thus would require 2.7 hours to compare one probe to a one

million member gallery set.

3.2.3 Custom Hardware

Custom hardware specifically designed to accelerate a particular task is likely to achieve the best

performance. Two approaches dominate the field, full custom transistor level hardware designs

and Field Programmable Gate Arrays (FPGA). A full custom design offers the best

performance but is very expensive to develop and implement. The FPGA, a chip that can be

 36

programmed to implement digital logic functions, is more cost-effective but does not achieve the

same level of performance as the full custom option.

Lahdenoja used full custom hardware to accelerate face identification using the LBP face

identification method previously described (Figure 3) [97]. A face image is encoded by dividing

the image into regions, forming the LBP for the sub-regions within each region, and then

encoding the face image as an occurrence map. The occurrence map is a matrix that indicates

which sub-regions of the image contain a particular LBP, and thirty LBPs will generate 30

occurrence maps [97]. The thirty occurrence maps are then combined to form a feature vector.

Using 130 by 150 pixel images (20 kilopixels) requires a 126 by 146 by 5 bit feature vector, a

total of 91,980 bits [97]. A nearest neighbor classifier is then used to compare probe-gallery

pairs of vectors.

The CSU FaceID software and the FERET database were used for algorithm verification

and simulation. The 100 kilopixel FERET images were cropped, scaled, and normalized to

produce the 20 kilopixel images used for testing. Several classifiers were evaluated, and

identification accuracy of 86% was the best accuracy measured for the FERET FC test set.

A 130 by 150 array of custom parallel processors were used to sample and encode the

LBPs and occurrence maps. The processor array encodes the probe image but does not perform

the comparison. This implementation achieved identification accuracy up to 80% with the

FERET images and identification time of 40 ms with a 100 member gallery set [97].

Arya proposed using associative memories operating in parallel to accelerate the

comparison process [94]. An N pixel probe image is encoded by first subdividing the image into

256N sub-regions, each 16 by 16 pixels. The rows of each sub-region are concatenated to form

a vector, and the vector for each sub-region is encoded as a one-byte Hebbian weight [101]. The

 37

weight bytes are then combined to form one vector, the encoded representation of the probe

image.

The probe is then compared to the gallery set through a series of pair comparisons. The

encoded vectors for each probe-gallery pair are compared in parallel using one associative

memory for each vector element and therefore one set of 256N associative memories for the

vector comparison [94]. The outputs from the set of associative memories are combined into a

match vector that represents the similarity between probe-gallery pair. After the match vectors

are calculated for each probe-gallery pair, these vectors are compared to select the best match

[94].

Arya used one image of each of the 40 individuals
3
 contained in the ORL face database to

train the system and provide the information needed to calculate the Hebbian weights [94]. The

remaining nine faces per individual were used for testing, providing both the 390 member gallery

set and the probe images. Arya reports identification accuracy of 96.9% for this method and

89.5% for his testing of the baseline Eigenface method with the ORL database, but does not

report timing results [94]. Arya plans future work to determine whether improved accuracy

improvement can be achieved with large databases and higher resolution images such as the

FERET database.

Sotiropoulos [96] noted that multiplication of large matrices constrains identification time

in the Eigenface, Linear Discriminant Analysis, and Bayesian methods. He analyzed the CSU

Face ID application [102] as a baseline sequential software implementation and determined that

3
 In the introduction to the paper, Arya states he used “six face images of the same person” for training. In

the Experimental Results section, he states he used one image of each individual for training and the results are

consistent with that interpretation.

 38

80% of the execution time is consumed by matrix multiplication for these methods in this

application [96].

Sotiropoulos used a Xilinx Virtex-5 FPGA to implement a Parallel Matrix Multiplication

Unit (PMMU) [96]. FPGAs have limited on-chip memory and multiplier resources, and the

partitioning of the problem to fit within the FPGA resources can have a significant impact on

performance. Sotiropoulos found that the best performance was achieved with 64 by 64 word

multipliers [96].

The matrix multiplication is performed by segmenting the input image and basis matrices

into 64 by 64 sub-matrices. The matrix multiplication is then performed on each sub-matrix with

a series of pipelined multipliers. To perform the matrix multiplication, the first sub-matrix from

both the probe image and the matrix of subspace basis vectors is multiplied. The results of this

calculation are provided to the next multiplication block, which integrates the results from the

first block with the multiplication results for a different set of sub-matrices. This process is

repeated until all sub-matrices have been multiplied and combined, generating the encoded probe

[96].

Sotiropoulos states he achieved a 50 to 500 times speedup for the matrix multiplication

with the PMMU in relation to the software implementation [96]. This research is focused on

accelerating the multiplier and therefore overall identification time is not reported. However,

from the multiplier configurations provided, we can infer a 19 kilopixel image resolution and a

gallery size in the range of 200 images. Combining this information with the author’s

measurement of 80% of execution time for the matrix multiplication in the encoding process

enables estimation of encoding time at 2.83 seconds as shown in Table 5.

 39

Table 5: Calculation of Identification Time

Reported multiplication time for software implementation  MMT 10.59 s

Estimated encoding time for software implementation  0.8ID MMT T 13.23 s

Software overhead  OH ID MMT T T  2.64 s

Multiplication time for PMMU  PMMUT 0.19 s

Estimated encoding time with PMMU  OH PMMUT T 2.83 s

Cheong integrates the face detection and recognition process with the goal of creating a

“smart camera” capable of detecting and recognizing human faces [92]. Citing the emphasis on

identification accuracy rather than computation time in the literature, Cheong selected the

Eigenface method and focused on accelerating the entire process of detecting and recognizing a

face.

Cheong tested his method with 12 megapixel images but does not report gallery size or

identification accuracy [92]. From the results reported and screen captures from the system, it

appears the gallery size was in the range of ten images. Identification time for a 12 megapixel

image is reported as “more than one minute” [92]. Cheong enables real-time identification by

“optimizing” or down-sampling the image to 300 kilopixels and reports an identification time of

22 seconds for the down-sampled image. Identification time for 19 kilopixel video-captured

images is reported as 0.5 seconds.

Sajid [95] proposes a different encoding method and a new classifier to reduce

comparison time relative to the Eigenface method [48]. Sajid’s approach calculates a frequency

distribution curve instead of performing the computationally intensive matrix operations required

by the Eigenface method [48, 95]. During an off-line training process, the gray level distribution

 40

in each known image
4
 is calculated and the number of pixels with each of the 256 possible eight-

bit gray scale values is tabulated for each training image. The resulting M by 256 element matrix

is normalized by N and sorted to form a reference pattern vector for each known image and the

Euclidean normalization length for each pattern vector is calculated and stored [95].

For identification, the probe is first encoded as a pattern vector by tabulating the pixel

gray scale distribution and normalizing it by the image resolution [95]. The Euclidean

normalization length is calculated for the probe pattern vector and a set of difference pairs is then

calculated by subtracting the probe normalization length from the normalization length for each

known image. The resulting set of vector distances is sorted to select the sequence in which to

compare the probe to the known images such that the most probable match will be compared

first.

Sajid encodes the probe image on the host PC to avoid transferring and storing the entire

image in an FPGA, since the time required to transfer the entire six kilopixel image would

exceed the comparison time [95]. After the probe is encoded, the probe pattern vector is

transferred to an FPGA, where custom hardware compares the probe pattern vector to the known

image pattern vector most likely to match [95]. If the known image pattern vector does not

match the probe pattern vector, the next most likely known image pattern vector is compared.

This process continues until a match is found or the set of known image pattern vectors is

exhausted. Sajid reports that on average, 12 pattern vectors are compared [95].

Sajid tested his system with the ORL database, which contains 400 six kilopixel images

of 40 unique individuals, and reported identification accuracy of 99% [95]. A similar

4 Sajid’s method combines the training and gallery sets so that the set of known images is both the training set and

the gallery set.

 41

comparison on a PC-based system required 500 ms per pair comparison [95], while Sajid reports

a pair comparison time of 421 ns to 4689 ns, depending on the image and architecture used [95].

These comparison times can be extrapolated to 421 ms and 4.7 s respectively for a one million

member gallery set of low resolution images. However, increasing the resolution to the 100

kilopixel resolution of the FERET images will increase the time required substantially and will

likely preclude real-time operation.
5

3.2.4 Conclusion

Real-time face identification with large gallery sets of high resolution face images remains an

elusive goal. The research reviewed applies a wide range of techniques and approaches to

solving this problem. This research shows that the comparison process can be accelerated

relatively easily as a result of the inherently parallel probe-gallery pair comparison process.

However, the more complex parallelism of the probe encoding process is more difficult to

expose and exploit.

The reviewed research shows that real-time performance can be achieved for small

gallery sets of low resolution images. Real-time performance can also be achieved for larger

gallery sets if image resolution is reduced or lower identification accuracy is acceptable.

However, when the top accuracy face identification methods are used with large gallery sets of

high resolution images, identification is not real-time.

5 Sajid did not explore the effect of image resolution on comparison time and therefore it is unclear how much

computation will increase for higher resolution images.

 42

3.3 FACE IMAGE DATA SETS

Standardized tests sets, parameter sets, and architectures are used for this research to provide

objective results. The image sets used in official NIST face recognition tests provide a range of

image resolutions and gallery sizes. Standard sets of algorithm parameters can be derived from

these test sets and provide consistent parameter sets for the research. Selected architectures

provide a basis to evaluate both current performance and to project performance ten and twenty

years into the future.

Several tests sets of face images are in current use. These test sets consist of

photographic images of a subject’s head and include the entire head and background. These

images are tightly cropped to the sides of the face, the forehead, and the chin to prepare the

image for face identification. In these test sets, the cropped image resolutions ranging from 35

kilopixels to 1.25 megapixels and the number of subjects ranges from 1,199 to 6.1 million.

The surveillance camera database SCface contains 4,160 images of 130 subjects.

Cropped images of 590 kilopixel resolution are produced from 1.9 megapixel photographic

images [103].

The 2006 NIST Face Recognition Vendor Technology High Resolution test set contains

7,192 images of 257 subjects. Cropped images of 1.25 megapixels are produced from 4

megapixel photographic images [6].

The 2006 FRVT High Computational Intensity test set contains 108,000 images of

36,000 subjects. Cropped images of 25 kilopixel resolution are produced from 75 kilopixel

photographic images [6]. The FRVT test set is a subset of the images collected for the Visa

Database by the Visa Services Directorate, Bureau of Consular Affairs. The full Visa Database

contains 6.8 million images of 6.1 million subjects [104].

 43

Four test data sets were developed for the 1997 NIST Face Recognition Technology

(FERET) test. The test sets contain either 864 or 1,196 images drawn from a set of 14,126 total

images of 1,199 subjects. Cropped images of 35 kilopixel resolution are produced from 100

kilopixel photographic images [30].

Four face identification algorithms achieved highest accuracy in NIST FERET and FRVT

testing [8, 105]. The Eigenface algorithm [48] converts the cropped image data to a column

vector and treats the vector as a random variable. Principal Component Analysis (PCA)

techniques are used to reduce the vector to its intrinsic dimensionality. This process determines

the eigenvectors of the covariance matrix of the set of training images, and the Eigenface

algorithm draws its name from these eigenvectors, each of which is one face image sized vector

that represents a component part of a training image. For comparison, vector distance is

calculated between probe-gallery pairs, and the smallest vector distance represents the best

match.

The Linear Discriminant Analysis algorithm [52] improves accuracy of the Eigenface

algorithm by clustering multiple cropped training images of the same subject to decrease vector

distance between images of the same subject while increasing vector distance between images of

different subjects. When training is completed and the system is initialized, it processes and

compares probe and gallery images in the same way as the Eigenface algorithm.

The Bayesian Matching algorithm [62, 63] forms difference images by subtracting each

gallery image from the probe image. To reduce the required computation, PCA techniques are

used to reduce vector dimension before the difference images are calculated. The Bayesian

maximum likelihood is calculated to quantify the probability that a difference image is a member

 44

of the class of difference images representing the same subject, and the greatest probability

represents the best match.

The Elastic Bunch Graph Matching algorithm (EBGM) [65] overlays one bunch graph

representing all the training images on the probe face, elastically adjusts the vertices of the graph

to overlay features of the probe face, and then constructs a face graph for the probe face. Each

node of the face graph is labeled with a jet, a sampled wavelet transform of the corresponding

facial feature. Two images are compared by calculating a the similarity, a scalar measure of how

well two jets match, between each pair of jets at each node in the graph. The node similarities

are then averaged over the graph to find the graph similarity, and the greatest similarity

represents the best match.

 45

Table 6: Face Identification Data Sets and Parameters

 TEST SET

PARAMETER WISKOTT
FERET

1996

FRVT 2002 FRVT 2006 AND MBE 2010

RESEARCH

DATA

HCINT MCINT
NOTRE

DAME
SANDIA

DEPT.

OF

STATE

COMMON

PARAMETERS
Image
Resolution

 N (pixels)

16,384

98,304

75,600

76,800 6 x 106 4 x 106

75,600 6 x 106

Distance

Between

Eye Centers

O (pixels)

 24

77

75

45

400

350

75

400

Gallery Size

G (images)

 250

1,196

121,589

7,722

7,496

14,365

108,000 1 x 106

EIGENFACE

ALGORITHM

Number of

Training

images

[M=G]

M (images)

 250

1,196

121,589

7,722

7,496

14,365

108,000 1 x 106

Number of

Retained
Eigenvectors

M’

(Eigenvectors)

 150

718

72,953

4,633

4,498

8,619

64,800

600,000

EBGM

ALGORITHM

Number of

Training

images

M (images)

250

1,196

121,589

7,722

7,496

14,365

108,000 1 x 106

Mask

Dimension

W (pixels)

 16

51

50

30

267

233

50

267

Search Region

Dimension

R (pixels)

 16

51

50

30

267

233

50

267

BAYESIAN

ALGORITHM

Number of

Training

images
M (images)

 250

1,196

121,589

7,722

7,496

14,365

108,000 1 x 106

Number of

Retained

Eigenvectors

M’

(Eigenvectors)

150

718

72,953

4,633

4,498

8,619

64,800

600,000

 46

4.0 PERFORMANCE ANALYSIS AND BENCHMARK EXTRACTION

A performance analysis method will be developed to provide a means to estimate execution time

and the percentage of time consumed by each line of a C code program for a face identification

algorithm. Execution time will be estimated to quantify the time consumed by each code

segment and calculating the percentage of total time consumed by a code segment will provide a

means to expose the bottleneck processes that constrain identification time.

The performance analysis method will integrate complexity analysis and profiling

techniques to estimate execution time. A technique based on complexity analysis will be used to

determine the number of times each part of the algorithm will be executed. The algorithm will

then be implemented in C code to verify functional correctness and to generate code for

profiling. The C code will be profiled to determine the number of clock cycles required for

execution of each line of C code and execution time will be estimated by dividing the cycle

count by the system clock frequency.

The performance analysis method will be applied to the sequential face identification

algorithms to provide a baseline for quantifying performance improvement and to provide a way

to locate the bottleneck processes that limit performance in the algorithms. The execution time

estimate for each C code line will be divided by the total execution time and expressed as a

percentage to quantify the portion of execution time consumed by each code line. Code lines

that consume a majority of the execution time represent the bottlenecks or processes that limit

 47

computational performance in the algorithm and therefore are the processes that must be

accelerated to make the algorithm real-time.

4.1 FACE IMAGE DATA SETS

The three data sets selected to represent the range of data used in NIST testing are summarized

inTable 7. The 100 KP, 1K data set is a NIST FERET [106, 107] test set, a de facto standard for

algorithm comparison in the face identification field. This data set includes a gallery G of 1,196

face images with 384 rows and 256 columns for a resolution N of 98,304 pixels as shown in

Table 7. The entire gallery set is used for training so the training set size is also 1,196 images.

The number of retained eigenvectors M’ is set to 60% of G to maximize identification accuracy

[55]. The face images in the 100 KP, 1K data set contain 77 pixels between the centers of the

eyes, and the EBGM mask dimension and search region dimension are calculated as 2/3 of the

spacing between the eyes or 52 pixels.

The 4 MP, 14K data set represents the current NIST MBE2010 test set [10]. This data set

includes a gallery of 14,365 face images with 2,272 rows and 1,704 columns for a resolution of

3,871,488 pixels as shown in Table 7. The training set contains 14,365 images and the retained

eigenvectors are set to 8,620 which is 60% of the gallery set. The face images in the 4 MP, 14K

data set contain 350 pixels between the centers of the eyes and the EBGM mask dimension and

search region dimension are calculated as 2/3 of the spacing between the eyes or 234 pixels.

 48

Table 7: Face Data Set Parameters

BENCHMARK IMAGE SIZE
IMAGE

RESOLUTION

GALLERY

SIZE

SUBSPACE

VECTORS

MASK AND

SEARCH

REGION

DIMENSION

Eigenface 100 KP, 1K 384 x 256 100 kilopixel 1,196 718 52

Eigenface 4 MP, 14K 2,272 x 1,704 4 megapixel 14,365 8,620 234

Eigenface 4 MP, 1M 2,272 x 1,704 4 megapixel 1,000,000 600,000 234

Bayesian 100 KP, 1K 384 x 256 100 kilopixel 1,196 718 52

Bayesian 4 MP, 14K 2,272 x 1,704 4 megapixel 14,365 8,620 234

Bayesian 4 MP, 1M 2,272 x 1,704 4 megapixel 1,000,000 600,000 234

EBGM 100 KP, 1K 384 x 256 100 kilopixel 1,196 718 52

EBGM 4 MP, 14K 2,272 x 1,704 4 megapixel 14,365 8,620 234

EBGM 4 MP, 1M 2,272 x 1,704 4 megapixel 1,000,000 600,000 234

The 4 MP, 1M data set represents a larger gallery set such as the Terrorist Watch List,

with image resolution in the range of current NIST test sets. This data set includes a gallery of

one million face images with the same resolution as the 4 MP, 14K data set as shown in Table 7.

The training set contains one million images and the retained eigenvectors are set to 60% of the

gallery set or 600,000. The EBGM mask dimension and search region are based on image

resolution and spacing between the eyes and are therefore set to 234 pixels as in the 4 MP, 14K

data set.

4.2 PERFORMANCE ANALYSIS METHOD SELECTION

The performance analysis method will combine complexity analysis and code profiling

techniques to estimate execution time. Computational analysis techniques based on complexity

 49

analysis will determine the number of iterations for each code line, and code profiling will be

used to estimate the time required for a single execution of each line of code. Multiplying the

number of iterations for each code line by the single execution time for each line and totaling the

results will provide a means to estimate execution time.

4.2.1 Complexity analysis

Complexity analysis is an objective analysis technique that can be performed on an algorithm or

program to determine the rate of computational growth of the algorithm [108]. Complexity

analysis expresses the order of magnitude of the computation required for the algorithm as a

function of variables in the algorithm such as the image resolution or gallery size. Since the

purpose of complexity analysis is to determine the relative rate of growth for an algorithm rather

than the execution time or the exact number of loop iterations for an algorithm, constants are

neglected so that characteristics of the algorithm that change as a result of variables are included

in the complexity analysis, while characteristics based on constants are discarded.

Complexity analysis implicitly assumes unit instruction execution time for groups of

instructions. If execution time is estimated based only on complexity analysis, the unit time

assumption introduces estimation error, since the time required for execution of assembly

language instructions for contemporary processors varies with the particular instruction and

processor. For example, the average Cycles Per Instruction (CPI) for the instruction set of the

AMD 10H processor ranges from 0.33 to 150 cycles [24]. As a result, the error in execution

time estimates based only on complexity analysis for this processor could understate the

execution time by up to 150 times, and therefore a more accurate estimation method is required

to develop usable execution time estimates.

 50

As noted, complexity analysis ignores constant-valued loop iterations and, therefore,

tends to under-estimate the number of iterations. For example, the feature search process for the

EBGM face identification algorithm iterates KVR
2
W

2
 times. R and W are calculated from

variable algorithm parameters derived from the image resolution but K=40 and V=25 and these

values are constants that are independent of algorithm parameters. As a result, in Big-O

complexity analysis the constant terms K and V would be dropped and the complexity would be

expressed as O(R
2
W

2
). For the 100 KP, 1K data set, the number of loop iterations based on the

complexity result is therefore (52
2
)(52

2
) or 7.3E6, while the actual number of loop iterations is

(40)(25)(52
2
)(52

2
)=7.3E9, one thousand times the value from the complexity analysis. As a

result, estimates of execution time based solely on complexity analysis would contain significant

error due to difference in the number of loop iterations.

Retaining the constant valued loop iterations as well as the parameter-based loop

iterations provides a more accurate iteration count and therefore a more accurate execution time

estimate. Rather than dropping constant valued loop iterations, the computational analysis

method developed for this research will keep these constant values, resulting in a more accurate

estimate of the actual number of loop iterations. The computational analysis method will use a C

code implementation of the algorithm to quantify the number of iterations for each line of code.

Each and every loop will be analyzed whether the number of iterations is based on algorithm

parameters or constants, resulting in an accurate iteration count for each line of code.

4.2.2 Code Profiling

Existing code profiling tools provide some but not all of the information needed to estimate

execution time based on instruction execution counts. Gprof [109] is a statistical profiler that

 51

instruments the code and counts the number of times each code line is executed, then expresses

the execution counts in terms of time and percentage of time. As a statistical tool, Gprof

produces more accurate results when more measurements are available and therefore provides

more accurate measurements expressed in smaller time resolution units for code that iterates

many times. However, Gprof only provides time measurements for functions within a program

and does not generate information per line of code or on the relative time required for execution

of different assembly language instructions. The Valgrind Cachegrind tool [110] provides cycle

execution counts but assumes each instruction requires one CPI. As noted previously, actual CPI

per instruction varies widely for contemporary processors and assuming unit CPI will not

produce an accurate execution time estimate. Cachegrind does not expose the specific

instructions or provide a way to scale the CPI for different instructions, so there is no practical

way to incorporate the actual CPI into the Cachegrind results. The ConcurrentAnalytics tool

[111] does provide both cycle and execution counts, but expresses these results for groups of

instructions and does not break it down to the level of individual assembly language instructions.

This tool provides the needed information for groups of instructions, but information per

instruction is needed to analyze the ISA. Each tool provides a piece of the needed information,

but none of these tools provide all of the information needed to accurately estimate execution

time from instruction counts and to relate the execution counts to individual assembly language

instructions. The computational analysis method described in the next section was therefore

developed to provide the information needed to estimate execution time.

 52

4.2.3 Computational Analysis Method

The execution time for a face identification algorithm will be estimated with the following

method:

Step 1: Code and verify the algorithm. The face identification algorithm is coded in C and

compiled using the gcc compiler. Functionality for the C code is verified by running the

program with the 100 KP, 1K data set and comparing the identification results with the results of

the CSU FaceID software [60], a research software application that implements verified versions

of the Eigenface, Bayesian, and EBGM algorithms.

Step 2: Evaluate code optimizations. The C code is separately compiled three times with the

GNU gcc compiler [112] with the optimization level set to O0, O1, and O2. Code listings

showing the assembly language code interleaved with the C code are produced for each

compilation using the Objdump application [113]. The code produced for each line of C code is

then compared across the optimization levels and the assembly language code segment that uses

the fewest instructions for each line of C code is selected.

Step 3: Tabulate assembly instructions. Each line of the C code and the assembly language

code generated from that C code line is pasted into a spreadsheet. The assembly language

instructions are counted to determine the total number of executions for each instruction type for

each line of C code line as shown in the light gray shaded area in Figure 4. The number of times

each instruction is executed is shown in the Execution Count row in Figure 4.

 53

Figure 4: Instruction tabulation example

Step 4: Use CPI measurements to estimate total cycles per line and instruction. The number

of cycles required to execute a C code line is calculated from the Execution Counts and the

average Cycles Per Instruction (CPI) for each instruction as shown in Equation (4.1) and the

light gray shaded area in Figure 4.

   
All Instructions

Exec k k

k

C ExecutionCount CPI


  (4.1)

The CPI for a given instruction is determined by the Instruction Set Architecture (ISA) and

hardware architecture of the processor. However, CPI for a particular instruction can vary for

different executions of that same instruction as a result of processor resource sharing, pipeline

operation, and data dependencies [21]. For example, two successive instructions that do not

share resources or data can be pipelined, reducing the number of cycles for the executions of

addsd mulsd movsd Totals

Percentage

Time

p_curl[k]=p_curl[k]+U[j][k]*p_bar[j]

400652 	f2 0f 10 8d 28 ff ff 	movsd -0xd8(%rbp),%xmm1 1 1 25.0%

400659 	ff

40065a 	f2 0f 10 95 e8 fc ff 	movsd -0x318(%rbp),%xmm2 1 1 25.0%

400661 	ff

400662 	f2 0f 10 85 90 fe ff 	movsd -0x170(%rbp),%xmm0 1 1 25.0%

400669 	ff

40066a 	f2 0f 59 c2 	mulsd %xmm2,%xmm0 1 1 25.0%

40066e 	f2 0f 58 c1 	addsd %xmm1,%xmm0 1 1 25.0%

400672 	f2 0f 11 85 28 ff ff 	movsd %xmm0,-0xd8(%rbp) 1 1 25.0%

400679 	ff

1 1 4

1.0 1.0 0.5

1.00 1.00 2.00 4.00

2.02E-11 100%

AMD 10H CPI:

Execution Time (minutes)

Total Cycles:

Execution Count:

 54

those instructions and therefore the total execution time for those two instructions. However, if

an input to the second instruction is an output of the first instruction, the first instruction must

produce the data before the second instruction can use it, increasing the number of cycles and

therefore the total execution time for the two instructions.

Accurate values for CPI are required to estimate execution time, but the CPI values

provided by the manufacturer are the latency values [114, 115] and are the worst case number of

cycles required to execute a particular instruction. For example, AMD uses the term static

execution latency, defined as “the number of clock cycles it takes to execute the serially

dependent sequence of micro-ops that comprise the instruction” [114]. This definition expresses

that the latency is quantified for instruction execution that does not take advantage of resources

and optimizations to reduce the execution time. As a result, the CPI specified as static execution

latency is higher than the average CPI expected when a code segment is executed. Therefore, an

execution time estimation based on the static execution latency would significantly over-estimate

execution time.

More accurate CPI values for executing programs can be determined experimentally.

Agner Fog performed experiments to quantify average CPI for several contemporary processors

[24]. Fog wrote sets of benchmarks and timed execution of these benchmarks to quantify

average CPI values for each instruction. Instructions that operate on input data require two

benchmarks to measure both the data dependent and data independent average CPI. The

benchmarks were executed on the target architecture and timed using the hardware clock cycle

counters in the CPU to measure the actual number of clock cycles required for execution of each

benchmark. These experiments were repeated multiple times and the results averaged to

calculate an average data dependent and data independent CPI for each instruction.

 55

Fog reports two values for each instruction, which he terms latency and reciprocal

throughput. Latency is “the number of clock cycles it takes to execute the serially dependent

sequence of micro-ops that comprise the instruction” [24] while reciprocal throughput is “the

maximum number of instructions of the same kind that can be executed per clock cycle when the

operands of each instruction are independent of the preceding instructions” [24]. Fog’s latency

is therefore the CPI for data dependent execution of an instruction and represents the largest

average CPI for an instruction. The reciprocal throughput is the CPI for data independent

execution of an instruction and represents the lowest average CPI and therefore the best

performance for an instruction.

The average CPI values used to estimate execution time in this analysis method are the

reciprocal throughput values reported by Fog [24]. The purpose of estimating execution time for

this research is to determine the best case performance to quantify whether a face identification

algorithm could execute in real-time. Using the reciprocal throughput values for the estimate

will estimate best case performance and therefore will accomplish this goal. As noted

previously, using static latency values would overstate actual execution time and therefore would

not a good basis for an accurate estimate. The best case average CPI may tend to understate

execution time in some cases, but contemporary compilers are expected to generate efficient

code that can approach the best case execution time, so actual execution time should approach

the estimate. This assumption was validated by estimating execution time for the face

identification processes used for this research using Fog’s reciprocal throughput values and then

timing execution of the same processes on a reference architecture, a PC with an AMD 10H

processor. This procedure showed that the estimated execution time was within 1% of the

measured execution time.

 56

The number of cycles required to execute a line of code is estimated based on the

execution count and the CPI. The total number of cycles required for a single execution of one

line of C code is calculated by multiplying the Execution Count by the average CPI for each

instruction as shown in the lightest gray shaded area in Figure 4 and Equation (4.1) and summing

for all instructions.

Step 5: Estimate the number of loop iterations. The complexity of the C code is analyzed to

quantify the number of iterations for each line of code for each data set. Constant iteration

counts as well as variable iteration counts are retained, and the iteration counting process is

repeated for each data set.

Step 6: Estimate execution time and percentage time for each code line. The total number of

cycles required for execution of each C code line is calculated by multiplying the single iteration

cycle count by the number of iterations for that code line. The number of cycles required for

each code line is summed over the algorithm to determine the number of cycles for the

algorithm.

The execution time for the algorithm TExecAllLines is estimated by dividing the total number

of cycles required to execute all lines of code CAllLines by the system clock frequency fSysClk as

shown in Equation (4.2) and on the bottom line of the spreadsheet in Figure 4, where it is listed

as “Execution Time” and expressed in minutes.

 ExecAllLines AllLines SysClkT C f (4.2)

 57

The percentage of time required for execution of each line is calculated as the ratio of the cycles

per line divided by the total number of cycles for the entire algorithm Equation (4.3) as shown in

the line labeled Total Cycles in Figure 4. The system clock period is common to both the

numerator and denominator and therefore drops out of the Equation as shown in Equation (4.3),

allowing calculation of percentage of time as the ratio of the clock counts.

OneLine SysClk OneLine

Percentage
AllLines SysClk AllLines

C T C
T

C T C
  (4.3)

Step 7: Extract benchmarks. The percentage time results are analyzed to determine which

lines of high level code consume the majority of the execution time and are therefore the

bottleneck code segments, and the bottleneck code segments are extracted to form the

benchmarks. Code lines with an execution time of less than 0.1 second for all data sets are

removed to simplify the benchmarks.

4.3 EIGENFACE ALGORITHM ANALYSIS

The Eigenface algorithm [48, 116] applies Principal Component Analysis (PCA)

techniques [50] to encode the probe image and then compares the encoded probe to a set of

previously encoded gallery images to find the best match as shown in Figure 5. The probe

image, I, is first converted to a probe vector, p, by appending the columns. The mean image

vector, a , contains a mean value for each pixel calculated during the training process by

averaging the pixel over all the training images. The mean subtracted probe vector, p , is then

 58

projected into the Eigenvector subspace by multiplying the probe vector by the transpose of the

subspace matrix, U
T
. The resulting vector, p , is the encoded probe vector.

Comparison is performed as a series of pair comparisons between encoded probe vector,

p , and the matrix of encoded gallery members, Z. The pair comparison metric is a vector

distance calculation such as Euclidean vector distance. While Turk used Euclidean vector

distance in the original Eigenface paper [48], subsequent research showed that using

Mahalinobis vector distance significantly improved identification accuracy [55] and Mahalinobis

distance will therefore be used for this research.

Figure 5: Eigenface algorithm overview.

 59

The Eigenface algorithm is shown in equation form in Figure 6. The conversion of an N

pixel probe image, I, to an N element probe vector, p, is shown as a function named

ConvertImageToVector. The subtraction of the mean vector, a , from probe vector, p, to form

the mean-subtracted probe vector, p , is shown in the second line in Figure 6, and the projection

of p into the Eigenvector subspace is shown on line 3.

 

 

 

EFId ,

1 =ConvertImageToVector

2 = // Subtract mean from probe pixels

3 = // Project probe inT

BestMatch 



I Z

p I

p p a

p U p

   

1: ',

2 21 1
1 1 1, ' ' ',

1: ',

to subspace

4 For each encoded gallery face in

5

6 Keep best match and corresponding

M g

g g M M M g

g M g

d p Z p Z

d

      

Z Z

Z

Figure 6: Eigenface face identification algorithm.

The subspace matrix U
T
 contains M’ rows, where each row is an Eigenvector calculated from the

training images and M’ represents the number of retained Eigenvectors. During training,

Eigenvalues and Eigenvectors are calculated in the same quantity as the number of training

images. The Eigenvalue corresponds to the amount of information the Eigenvector contributes

to the image, and the Eigenvectors corresponding to smaller valued Eigenvalues can be discarded

with minimal loss of information. Given M training images, M’ is the number of Eigenvectors

that are retained from the original M member set of Eigenvectors and is typically set to 60% to

maintain the highest identification accuracy [55].

The comparison of the encoded probe vector to each member of gallery set, Z, is shown

as lines 4 through 6 in Figure 6. The loop on line 4 iterates through each encoded gallery vector,

1: ',M gZ , and calculates Mahalinobis distance, gd , between the encoded probe and gallery

 60

vectors. The Mahalinobis distance calculation is similar to a Euclidean vector distance and

quantifies the difference between the two vectors, and the probe-gallery pair with the smallest

Mahalinobis distance is the best match.

4.3.1 Eigenface Algorithm Computational Analysis

Computational analysis of the Eigenface algorithm is shown in Figure 7. The first column

numbers each code line and lists the corresponding C code. Three sets of computational analysis

results are shown, one for each data set. For each data set, the Computation Cycles column lists

the total number of cycles for each line of code for all assembly language instructions and

iterations for that line. The Percent column lists the percentage of total execution time required

for that code line.

The Total Cycles row in Figure 7 lists the number of cycles required for the algorithm,

and the Total Time row shows the total execution time in minutes. The computational analysis

shown in Figure 7 indicates that the probe projection process, line 3 through line 6, iterates M’N

times and consumes 62.0% to 99.1% of the execution time, depending on the data set. This code

segment is therefore the primary bottleneck. However, the comparison process, line 9 through

line 12, consumes 0.9% to 38.0% of the execution time and therefore must also be included in

the benchmark.

The Eigenface benchmark is shown in Figure 8. The computational analysis of the

Eigenface benchmark shows that the difference between the benchmark execution time and the

execution time for the full algorithm (Figure 7) ranges from 1.6 x 10
-6

 minute to 0.00034 minute,

or 0.09 ms to 20.35 ms, and can therefore be neglected when evaluating real-time performance.

 61

Figure 7: Eigenface algorithm computational analysis.

C
o
m

p
u

ta
ti

o
n

c
y
c
le

s
P

e
r
c
e
n

t

C
o
m

p
u

ta
ti

o
n

c
y
c
le

s
P

e
r
c
e
n

t

C
o
m

p
u

ta
ti

o
n

c
y
c
le

s
P

e
r
c
e
n

t

E
ig

e
n

fa
c
e
 A

lg
o
r
it

h
m

1 2
2
.5

E
+

0
5

<
0
.1

%
9
.7

E
+

0
6

<
0
.1

%
9
.7

E
+

0
6

<
0
.1

%

3 4
p

_
c
u

rl
[k

]=
0

3
.6

E
+

0
2

<
0
.1

%
4
.3

E
+

0
3

<
0
.1

%
3
.0

E
+

0
5

<
0
.1

%

5
fo

r
e
a
c
h

 p
ro

b
e
 e

le
m

e
n

t
in

d
e
x

j
in

 N

6
p

_
c
u

rl
[k

]
=

 p
_

c
u

rl
[k

]
+

 U
[j

][
k
]

*
 p

_
b

a
r[

j]
2
.8

E
+

0
8

9
7
.1

%
1
.3

E
+

1
1

9
9
.1

%
9
.3

E
+

1
2

6
2
.0

%

7
d

_
s
a
v

e
=

9
9
9
9

5
.0

E
-0

1
<

0
.1

%
5
.0

E
-0

1
<

0
.1

%
5
.0

E
-0

1
<

0
.1

%

8
b

e
s
tm

a
tc

h
=

0
5
.0

E
-0

1
<

0
.1

%
5
.0

E
-0

1
<

0
.1

%
5
.0

E
-0

1
<

0
.1

%

9
fo

r
e
a
c
h

 g
a
ll
e
ry

 m
e
m

b
e
r

in
d

e
x

g
 i
n

 G

1
0

d
_

s
u

m
=

0
6
.0

E
+

0
2

<
0
.1

%
7
.2

E
+

0
3

<
0
.1

%
5
.0

E
+

0
5

<
0
.1

%

1
1

fo
r

e
a
c
h

 c
o

e
ff

ic
ie

n
t

in
d

e
x

k
 i
n

 M
'

1
2

d
_

s
u

m
=

d
_

s
u

m
 +

 (
Z

[k
][

g
]

-
p

_
c
u

rl
[k

])
2

 *
 (

c
o

n
s
t[

k
])

8
.2

E
+

0
6

2
.8

%
1
.2

E
+

0
9

0
.9

%
5
.7

E
+

1
2

3
8
.0

%

1
3

d
=

s
q

rt
(d

_
s
u

m
)

6
.1

E
+

0
4

<
0
.1

%
7
.3

E
+

0
5

<
0
.1

%
5
.1

E
+

0
7

<
0
.1

%

1
4

if
 d

<
d

_
s
a
v

e
 t

h
e
n

 d
_

s
a
v

e
=

d
;

b
e
s
tm

a
tc

h
=

g
6
.8

E
+

0
3

<
0
.1

%
8
.1

E
+

0
4

<
0
.1

%
5
.7

E
+

0
6

<
0
.1

%

T
o
ta

l
C

y
c
le

s
2
.9

E
+

0
8

1
.3

E
+

1
1

1
.5

E
+

1
3

T
o
ta

l
T

im
e
 (

m
in

u
te

s
)

0
.0

0
1
5

0
.6

8
0
1

7
5
.7

1
5
3

4
 M

P
,
1
M

fo
r

e
a
c
h

 p
ro

b
e
 e

le
m

e
n

t
in

d
e
x

j
in

 N

p
_

b
a
r[

j]
 =

 p
[j

]
-

a
[j

]

fo
r

e
a
c
h

 E
ig

e
n

v
e
c
to

r
in

d
e
x

k
 i
n

 M
'

1
0
0
 K

P
,
1
K

4
 M

P
,
1
4
K

N
=

1
E

5
,
G

=
1
E

3
,
M

'=
6
E

2
N

=
4
E

6
,
G

=
1
4
E

3
,
M

'=
9
E

3
N

=
4
E

6
,
G

=
1
E

6
,
M

'=
6
E

5

 62

Figure 8: Eigenface benchmark and computational analysis.

C
o
m

p
u

ta
ti

o
n

c
y
c
le

s
P

e
r
c
e
n

t

C
o
m

p
u

ta
ti

o
n

c
y
c
le

s
P

e
r
c
e
n

t

C
o
m

p
u

ta
ti

o
n

c
y
c
le

s
P

e
r
c
e
n

t

E
ig

e
n

fa
c
e
 B

e
n

c
h

m
a
r
k

1 2
fo

r
e
a
c
h

 p
ro

b
e
 e

le
m

e
n

t
in

d
e
x

j
in

 N

3
p

_
c
u

rl
[k

]
=

 p
_

c
u

rl
[k

]
+

 U
[j

][
k
]

*
 p

_
b

a
r[

j]
2
.8

E
+

0
8

9
7
.2

%
1
.3

E
+

1
1

9
9
.1

%
9
.3

E
+

1
2

6
2
.0

%

4
fo

r
e
a
c
h

 g
a
ll
e
ry

 m
e
m

b
e
r

in
d

e
x

g
 i
n

 G

5
fo

r
e
a
c
h

 c
o

e
ff

ic
ie

n
t

in
d

e
x

k
 i
n

 M
'

6
d

_
s
u

m
=

d
_

s
u

m
 +

 (
Z

[k
][

g
]

-
p

_
c
u

rl
[k

])
2

 *
 (

c
o

n
s
t[

k
])

8
.2

E
+

0
6

2
.8

%
1
.2

E
+

0
9

0
.9

%
5
.7

E
+

1
2

3
8
.0

%

T
o
ta

l
C

y
c
le

s
2
.9

E
+

0
8

1
.3

E
+

1
1

1
.5

E
+

1
3

T
o
ta

l
T

im
e
 (

m
in

u
te

s
)

0
.0

0
1
5

0
.6

8
0
0

7
5
.7

1
5
0

fo
r

e
a
c
h

 E
ig

e
n

v
e
c
to

r
in

d
e
x

k
 i
n

 M
'

1
0
0
 K

P
,
1
K

4
 M

P
,
1
4
K

4
 M

P
,
1
M

N
=

1
E

5
,
G

=
1
E

3
,
M

'=
6
E

2
N

=
4
E

6
,
G

=
1
4
E

3
,
M

'=
9
E

3
N

=
4
E

6
,
G

=
1
E

6
,
M

'=
6
E

5

 63

Figure 8 further shows that the execution time for the Eigenface benchmark is 0.0015 minute for

the 100 KP, 1K and 0.68 minute for the 4 MP, 14K data set and is therefore real-time for both

data sets. However, the Eigenface 4 MP, 1M benchmark requires 75.7 minutes for execution and

is therefore not real-time, but a speedup of 38 times would reduce execution time to 1.99 minutes

and enable real-time identification.

4.4 BAYESIAN ALGORITHM ANALYSIS

The original Bayesian face identification algorithm used a Bayesian probability to determine

how well a difference vector represents two images of the same face. Two image vectors such as

the probe and one gallery member were subtracted pixel by pixel to form the difference vector,

which therefore represents the differences between the two images [61]. During training,

difference vectors were calculated between all pair combinations of the training images and the

difference vectors were grouped into an interpersonal set and an extrapersonal set. The

intrapersonal set consisted of difference vectors calculated from two images of the same person

while the extrapersonal set contained difference vectors calculated from two images representing

different people. For identification, difference vectors were calculated for all probe-gallery pairs

and the Bayesian Maximum a posteriori (MAP) probability was calculated to determine the

probability that a given probe-gallery difference vector was in the intrapersonal set and therefore

represented a gallery image that matches the probe image. The MAP probability was calculated

for all probe-gallery pairs, and the highest probability indicated the best match.

The “efficient” Bayesian algorithm mitigates the computational constraints of the original

Bayesian algorithm. The original Bayesian algorithm requires significant computation to

 64

calculate the difference vectors for the entire gallery set. Furthermore, estimation of the prior

probabilities needed for the Bayesian conditional probability calculations is problematic. These

issues motivated application of PCA techniques and the development of the “efficient” Bayesian

algorithm [63]. This algorithm projects the image vector into a PCA subspace and calculates the

Bayesian Maximum Likelihood (ML) probability to quantify the likelihood that the probe image

matches the gallery image. The ML probability requires less calculation because only the

intrapersonal set is required, eliminating the need for the calculations involving the extrapersonal

set. The PCA process reduces the required computation and provides a way to estimate the prior

probabilities, and using only the intrapersonal set further reduces the required computation.

The efficient Bayesian algorithm is shown in Figure 9. The probe image is first

converted to a vector, mean-subtracted, and projected into the PCA subspace as in the Eigenface

algorithm. However, the Bayesian subspace matrix, U
T
, differs from the Eigenface subspace

matrix in that during training, the Eigenvectors in the subspace matrix are divided by the square

root of the corresponding Eigenvalue. This division during training avoids the need to perform

the division during identification.

For comparison, the Bayesian ML probability that the probe-gallery pair represents the

same individual,  :,prob gp Z , is calculated as an exponential function of the Euclidean

distance between the probe-gallery vectors scaled by S_I, a subspace constant calculated during

training. A probe-gallery pair is formed for each gallery member and the probe-gallery pair with

the highest probability represents the best match.

This process is expressed in algorithm form in Figure 10. Lines 1 and 2 convert the

probe to a vector and subtract the mean in the same way as the Eigenface algorithm. Line 3

multiplies Bayesian intrapersonal subspace matrix U
T
 by the mean-subtracted probe vector p and

 65

Figure 9: Bayesian face identification algorithm overview.

 66

divides by the square root of the Eigenvalue. This division by the Eigenvalue is shown explicitly

in Figure 10, but in practice the division will be performed during training and subspace matrix

U
T
 will contain pre-divided values to reduce computation by avoiding the need to perform this

division at run time.

 

 

 

 
'

,1 ,

1

BAYId ,

1 =ConvertImageToVector

2 = // Subtract mean from probe pixels

3 = , , ,
TM

Tk
k k k N

k k

BestMatch

U U








I Z

p I

p p a

U p
p U

   

:,

:, :,

4 For each encoded gallery face in

5 // S_I is a subspace constant calculated during training

6 prob =S_I * exp 0.5

7 Keep best match indicated by highest probabilit

g

g g  

Z Z

p Z p Z

:,

y

8 Retain probability and gZ

Figure 10: Bayesian face identification algorithm.

The loop on line 4 in Figure 10 iterates through each of the gallery vectors in gallery set,

Z, calculating an ML probability  :,prob gp Z for each probe gallery pair. However, the

comparison process only needs to determine the relative similarity between the various probe-

gallery pairs and this relative value can be calculated with fewer operations than required to

calculate the numerical probability value. The comparison between two probabilities

   :,1 :,2prob prob p Z p Z can be expressed as the ratio of the two exponential terms and, in

addition, the constant divides out for both terms, simplifying the probability calculation to

       :,1 :,2 :,1 :,2prob prob exp 0.5 exp 0.5      p Z p Z p Z p Z . Since the

exponential function is performed on both the numerator and divisor, this expression can be

further simplified by removing the exponential which simplifies the expression to

 67

   :,1 :,2 :,1 :,2prob prob 0.5 0.5      p Z p Z p Z p Z . This expression can be further

rewritten as
 
 

   

   

2 2

1 1,1 ' ',1:,1

2 2
:,2

1 1,2 ' ',2

prob

prob

M M

M M

p Z p Z

p Z p Z

   



   

p Z

p Z
, which is the ratio of the

Euclidean distances between the probe and gallery vectors. Thus, Euclidean distance can be

used a comparison metric for the efficient Bayesian algorithm.

4.4.1 Bayesian Algorithm Computational Analysis

The computational analysis of the Bayesian algorithm is shown in Figure 11. As with the

Eigenface analysis in Figure 7, the first column numbers each code line and lists the C code and

three sets of computational analysis results are shown, one for each data set. For each data set,

the Computation Cycles column lists the total number of cycles for each line of code for all

instructions and iterations for that line. The Percent column lists the percentage of total

execution time required for that code line.

The computational analysis in Figure 11 shows that the probe projection, line 3 through

line 6, iterates M’N times and consumes 65.9% to 99.3% of the execution time depending on the

data set. This code segment is therefore the primary bottleneck. However, the comparison

 68

Figure 11: Bayesian computational analysis.

C
o
m

p
u

ta
ti

o
n

C
y
c
le

s
P

e
r
c
e
n

t

C
o
m

p
u

ta
ti

o
n

C
y
c
le

s
P

e
r
c
e
n

t

C
o
m

p
u

ta
ti

o
n

C
y
c
le

s
P

e
r
c
e
n

t

1 2
2
.4

6
E

+
0
5

<
0
.1

%
9
.6

8
E

+
0
6

<
0
.1

%
9
.6

8
E

+
0
6

<
0
.1

%

3 4
p

_
c
u

rl
[k

]=
0

3
.5

9
E

+
0
2

<
0
.1

%
4
.3

1
E

+
0
3

<
0
.1

%
3
.0

0
E

+
0
5

<
0
.1

%

5
fo

r
e
a
c
h

 p
ro

b
e
 e

le
m

e
n

t
in

d
e
x

j
in

 N

//
 s

u
b

s
p

a
c
e
 m

a
tr

ix
 U

 i
s
 d

iv
id

e
d

 b
y

 s
q

rt
(e

ig
v

a
l[

k
])

//
 d

u
ri

n
g

 t
ra

in
in

g
 s

o
 n

o
 d

iv
is

io
n

 i
s
 n

e
e
d

e
d

 h
e
re

6
p

_
c
u

rl
[k

]
=

 p
_

c
u

rl
[k

]
+

 U
[j

][
k
]

*
 p

_
b

a
r[

j]
2
.8

2
E

+
0
8

9
7
.5

%
1
.3

3
E

+
1
1

9
9
.3

%
9
.2

9
E

+
1
2

6
5
.9

%

7
d

_
s
a
v

e
=

0
5
.0

0
E

-0
1

<
0
.1

%
5
.0

0
E

-0
1

<
0
.1

%
5
.0

0
E

-0
1

<
0
.1

%

8
b

e
s
tm

a
tc

h
=

0
5
.0

0
E

-0
1

<
0
.1

%
5
.0

0
E

-0
1

<
0
.1

%
5
.0

0
E

-0
1

<
0
.1

%

9
fo

r
e
a
c
h

 g
a
ll
e
ry

 m
e
m

b
e
r

in
d

e
x

g
 i
n

 G

1
0

d
_

s
u

m
=

0
5
.9

8
E

+
0
2

<
0
.1

%
7
.1

8
E

+
0
3

<
0
.1

%
5
.0

0
E

+
0
5

<
0
.1

%

1
1

fo
r

e
a
c
h

 c
o

e
ff

ic
ie

n
t

in
d

e
x

k
 i
n

 M
'

1
2

d
_

s
u

m
 =

 d
_

s
u

m
 +

 (
Z

[k
][

g
]

-
p

_
c
u

rl
[k

])
2

6
.8

7
E

+
0
6

2
.4

%
9
.9

0
E

+
0
8

0
.7

%
4
.8

0
E

+
1
2

3
4
.1

%

1
3

d
 =

 e
xp

(-
1
/2

 *
 s

q
rt

(d
_

s
u

m
))

2
.0

9
E

+
0
5

<
0
.1

%
2
.5

1
E

+
0
6

<
0
.1

%
1
.7

5
E

+
0
8

<
0
.1

%

1
4

if
 d

>
d

_
s
a
v

e
 t

h
e
n

 d
_

s
a
v

e
=

d
;

b
e
s
tm

a
tc

h
=

g
6
.7

8
E

+
0
3

<
0
.1

%
8
.1

4
E

+
0
4

<
0
.1

%
5
.6

7
E

+
0
6

<
0
.1

%

T
o
ta

l
C

y
c
le

s
2
.9

E
+

0
8

1
.3

E
+

1
1

1
.4

E
+

1
3

T
o
ta

l
T

im
e
 (

m
in

u
te

s
)

0
.0

0
1
4
6

0
.6

7
9
1
7

7
1
.1

7
0
4
9

fo
r

e
a
c
h

 E
ig

e
n

v
e
c
to

r
in

d
e
x

k
 i
n

 M
'

1
0
0
 K

P
,
1
K

4
 M

P
,
1
4
K

4
 M

P
,
1
M

fo
r

e
a
c
h

 p
ro

b
e
 e

le
m

e
n

t
in

d
e
x

j
in

 N

p
_

b
a
r[

j]
=

p
[j

]-
a
[j

]

N
=

1
E

5
,
G

=
1
E

3
,
M

'=
6
E

2
N

=
4
E

6
,
G

=
1
4
E

3
,
M

'=
9
E

3
N

=
4
E

6
,
G

=
1
E

6
,
M

'=
6
E

5

B
a
y
e
s
ia

n
 A

lg
o
r
it

h
m

 69

process, line 9 through line 12, consumes 0.7% to 34.1% of the execution time and therefore

must also be included in the benchmark.

The computational analysis of the Bayesian benchmark shown in Figure 12 indicates that

the difference between the benchmark execution time and the execution time for the full

algorithm (Figure 7) ranges from 2.3 x 10
-6

 minute to 0.00094 minute or 0.14 ms to 56.10 ms and

therefore can be neglected when evaluating real-time performance. Figure 12 further shows that

the Bayesian benchmark achieves identification time of 0.00146 minute for the 100 KP, 1K data

set and 0.6791 minute for the 4 MP, 14K data set, both real-time. The Bayesian 4 MP, 1M

benchmark requires 71.169 minutes and is therefore not real-time, but a speedup of 36 times

would reduce execution time to 1.98 minutes and make the benchmark real-time.

 70

Figure 12: Bayesian benchmark and computational analysis.

C
o
m

p
u

ta
ti

o
n

C
y
c
le

s
P

e
r
c
e
n

t

C
o
m

p
u

ta
ti

o
n

C
y
c
le

s
P

e
r
c
e
n

t

C
o
m

p
u

ta
ti

o
n

C
y
c
le

s
P

e
r
c
e
n

t

1 2
fo

r
e
a
c
h

 p
ro

b
e
 e

le
m

e
n

t
in

d
e
x

j
in

 N

3
p

_
c
u

rl
[k

]
=

 p
_

c
u

rl
[k

]
+

 U
[j

][
k
]

*
 p

_
b

a
r[

j]
2
.8

2
E

+
0
8

9
7
.6

%
1
.3

3
E

+
1
1

9
9
.3

%
9
.2

9
E

+
1
2

6
5
.9

%

4
fo

r
e
a
c
h

 g
a
ll
e
ry

 m
e
m

b
e
r

in
d

e
x

g
 i
n

 G

5
fo

r
e
a
c
h

 c
o

e
ff

ic
ie

n
t

in
d

e
x

k
 i
n

 M
'

6
d

_
s
u

m
 =

 d
_

s
u

m
 +

 (
Z

[k
][

g
]

-
p

_
c
u

rl
[k

])
2

6
.8

7
E

+
0
6

2
.4

%
9
.9

0
E

+
0
8

0
.7

%
4
.8

0
E

+
1
2

3
4
.1

%

T
o
ta

l
C

y
c
le

s
2
.9

E
+

0
8

1
.3

E
+

1
1

1
.4

E
+

1
3

T
o
ta

l
T

im
e
 (

m
in

u
te

s
)

0
.0

0
1
4
6

0
.6

7
9
1
1

7
1
.1

6
9
5
5

fo
r

e
a
c
h

 E
ig

e
n

v
e
c
to

r
in

d
e
x

k
 i
n

 M
'

1
0
0
 K

P
,
1
K

4
 M

P
,
1
4
K

4
 M

P
,
1
M

N
=

1
E

5
,
G

=
1
E

3
,
M

'=
6
E

2
N

=
4
E

6
,
G

=
1
4
E

3
,
M

'=
9
E

3
N

=
4
E

6
,
G

=
1
E

6
,
M

'=
6
E

5

B
a
y
e
s
ia

n
 A

lg
o
r
it

h
m

 71

4.5 EIGENFACE AND BAYESIAN ALGORITHM COMPARISON

The use of PCA techniques in the efficient Bayesian algorithm results in an algorithm that is

quite similar to the Eigenface algorithm [117]. In the efficient Bayesian algorithm, each probe or

gallery image is divided by the square root of the Eigenvalue as part of the PCA projection

process. However, as noted previously the elements of the subspace matrix, U
T
, can be divided

by the square roots of the Eigenvalues during training, resulting in a probe projection calculation

that is identical to the Eigenface algorithm. As a result, the only difference between the

Eigenface and Bayesian probe projection processes is the numerical value of the coefficients

stored in the subspace matrix, U
T
. The probe projection process is therefore computationally

identical for the Eigenface and Bayesian algorithms as shown in the summary of the

computational analysis results in Figure 13.

Figure 13: Eigenface and Bayesian computation comparison.

The comparison process differs slightly for the Eigenface and Bayesian algorithms. When the

Mahalinobis distance is used as the comparison metric in the Eigenface algorithm, the difference

terms in the Euclidean norm calculated between the projected probe and gallery vectors is

divided by the corresponding Eigenvalue as shown for the calculation of dg in Figure 6. This

calculation is computationally equivalent to the pre-scaling by the square roots of the

Eigenvalues in the Bayesian algorithm, but in this case the terms of the Euclidean norm

Eigenface

Computation

cycles

Bayesian

Computation

cycles

Eigenface

Computation

cycles

Bayesian

Computation

cycles

Eigenface

Computation

cycles

Bayesian

Computation

cycles

Projection 2.82E+08 2.82E+08 1.33E+11 1.33E+11 9.29E+12 9.29E+12

Comparison 8.16E+06 6.87E+06 1.18E+09 9.90E+08 5.70E+12 4.80E+12

100 KP, 1K 4 MP, 14K 0

N=1E5, G=1E3, M'=6E2 N=4E6, G=14E3, M'=9E3 N=4E6, G=1E6, M'=6E5

 72

calculation for the probe-gallery difference vector are divided by the Eigenvector, so the

division cannot be factored out and performed during training. However, to reduce computation

time the division can be reduced to a multiplication as shown by multiplying by the reciprocal of

the Eigenvalues instead of dividing by the Eigenvalues.

As noted, the comparison of the Bayesian ML probability is proportional to

   
2 2

1 1, ' ',g M M gp Z p Z    , the Euclidean vector distance. The Eigenface comparison

metric is Mahalinobis distance    
2 21 1

1 1, 1 ' ', 'g g M M g Md Z p Z p       , which

multiples each squared Euclidean vector norm term by the reciprocal of the corresponding

Eigenvalue. Therefore, the computational for the Eigenvalue benchmark requires one additional

multiplication per vector term in comparison to the Bayesian benchmark. As the computational

summary in Figure 13 shows, this additional multiplication in the Eigenface comparison process

increases the number of cycles required for execution by 18% over the execution cycle count for

the Bayesian comparison.

Improvements that increase performance for the Eigenface benchmark will also improve

performance for the Bayesian benchmark. Since the probe projection is the same for both

benchmarks and the Eigenface comparison process requires 18% more cycles than the Bayesian

comparison process, accelerating the Eigenface benchmark to achieve real-time performance will

also accelerate the slightly less computationally intensive Bayesian benchmark to achieve real-

time performance. The analysis in the following chapters will therefore be performed on the

Eigenface benchmark and the Bayesian results will be shown in summary form with the

application of the same performance improvements as the Eigenface benchmark.

 73

4.6 ELASTIC BUNCH GRAPH MATCHING ALGORITHM ANALYSIS

The Elastic Bunch Graph Matching (EBGM) face identification algorithm encodes both the

probe and gallery images as graphs where the vertices represent facial features. The probe and

gallery face graph pairs are then compared to select the gallery face that best matches the probe

face [65, 66].

The vertices of the face graph are labeled with the coordinates of the facial feature such

as the center of the eye or tip of the nose in addition to an encoded representation of the feature

called a jet. The jet is formed by convolving an image region surrounding a feature with a set of

40 Gabor wavelet filters, implemented as a set of 80 real Gabor wavelet filter masks representing

the real and imaginary parts of the filter [118, 119], and the response is a function of the

coordinates of the feature of the pixel values as well as the filter frequency, phase, and

orientation [65]. The filter responses are sampled at the feature coordinates and one complex

value from each of the 40 filters is stored in the jet as the real and imaginary coefficients and the

jet is thus a 40 by two element vector.

The jet captures the feature and texture information needed for identification of a face. As

shown in Figure 14, a region of the face image is first filtered with the set of 40 Gabor filters

and the center points of these filter responses are combined into a vector to form the jet.

The coefficients of the real and imaginary parts of the filter response are calculated as

real operations using two masks, Fk to calculate the real coefficient for the k
th

 filter and Hk to

 74

calculate the imaginary coefficient. The filter responses are then sampled at the center points and

combined to form a vector of complex numbers in polar form.

Figure 14: The jet is the encoded representations of one image region.

A single “bunch” graph combining face graphs from all of the training images is overlaid on the

probe face and the vertices are elastically adjusted to locate the probe features as shown in Figure

15. The vertices in the bunch graph are labeled with a bunch, a set of jets representing models of

the corresponding feature, one from each training image. The bunch graph vertices are also

labeled with a single coordinate pair representing the average of the coordinates for the feature

from all the training images. These average coordinates are used to make an initial estimate of

 75

the feature coordinates in a new face image and a model for the feature is selected from the

bunch and used to determine the feature coordinates in the new face.

Identification is performed through a series of pair comparisons of the probe face graph

with each encoded gallery face graph. The similarity, a scalar measure of the how well two jets

match, is calculated between the probe and gallery jets at each vertex in the pair of face graphs.

The similarities for all the vertices are averaged to calculate a scalar similarity for the graph, and

the probe-gallery pair with the best similarity is the best match.

Figure 15: EBGM overlays a bunch graph on the face image and extracts a face graph.

The EBGM algorithm performs face identification with the three-step process shown as

pseudo code in Figure 16. The LocateFeatures process overlays the bunch graph on the face

graph, aligning the coordinates of the left eye with the left eye coordinates in the probe image.

The left eye coordinates for the probe image are determined during image preprocessing. The

coordinates of the probe features are iteratively estimated using the average coordinates in the

bunch graph to elastically adjust the bunch graph to overlay the probe features. A model for

 76

each feature is then selected from the bunch, and jets are calculated at each point in the image

region surrounding the estimated feature coordinates and compared to the model jet to find the

true feature coordinates.

  

 
    

  

S EBGMid , , ,

, , ,

, , , ,

,

BEST e e

LeftEye LeftEye

x y

x y



P G

I B

LocateFeatures I B

MakeFaceGraph I F H x y

Comparison J J

Figure 16: Top level EBGM pseudo code.

A jet is calculated at the coordinates of each feature and at the midpoints of selected graph edges

and the face graph contains a total of 80 jets representing 25 features and 55 edge midpoints.

The probe face graph is represented as a matrix PJ that contains the coordinates of each feature

and edge vertex and the jet calculated at those coordinates.

The probe face graph PJ is compared to each gallery face graph in a set of gallery graphs

 GJ to find the best match. Similarity scores analogous to a vector distance are calculated

between pairs of feature vertices, one from the probe graph and one from the gallery graph. The

vertex similarities are averaged over the graph to calculate a scalar similarity for the graph pair.

The graph pair with the best similarity indicates the gallery graph that is most like the probe

graph.

 77

4.6.1 EBGM Algorithm Computational Analysis

The C code implementation for the EBGM algorithm is shown in Figure 17. Only the

LocateFeatures code is shown in detail as the computational analysis shown in Figure 18

indicates that this is the computation intensive section.

The computational analysis in Figure 18 shows that the feature search process, line 7

through line 8.9, consumes 98.4% to nearly 100% of the execution time, depending on the data

set. Note that these lines are within the vertex iteration loop on line 2 and that lines 8.4 and 8.5

iterate KVR
2
W

2
 times, where K=40 and V=25 so that KV=1,000 and the number of iterations is

1000R
2
W

2
.

The computational analysis of the EBGM benchmark shown in Figure 19 shows that the

benchmark execution time is within 0.02 minute or 1.006 second of the execution time for the

full algorithm shown in Figure 18. Figure 19 further shows that the EBGM benchmark is not

real-time for any of the data sets. The 100 KP, 1K data set requires 3.70 minutes and a speedup

of two times would reduce execution time to a real-time 1.85 minutes. The 4 MP, 14K data set

requires 1,495.16 minutes and the 4 MP, 1M data set requires 1,496.16 minutes. A speedup of

748 times would reduce execution time to 1.99 minutes and 2.00 minutes respectively and make

the EBGM benchmark real-time with both data sets.

 78

Figure 17: C code for the EBGM algorithm.

EBGM Algorithm

//LocateFeatures

// Estimate image feature coordinates from the left eye and bunch graph coordinates

1 ({x},{y})=EstimateCoordinates(B, l_eye_x, l_eye_y)

2 for each feature vertex v, v=1 to 25

// Calculate an image jet

3 j=CalcJet({F}, {H}, I, dx, dy)

// Select the best model from the bunch for the image jet

4 for each jet b in the bunch, b=1 to M

// compare bunch jet b to the image jet j

5 s=CalcMagnitudeSimilarity(j, b)

6 keep model jet b with best similarity

// Search for the coordinates of the feature in the image

7 for each half-point (dx, dy) in an R by R region centered at (x,y)

8 // j=CalcJet({F}, {H}, I, dx, dy)

Sample 40 filter responses centered at one coordinate pair to calculate one jet j

8.1 for each filter k in the set of wavelet filters, k=1 to 40

// Calculate filter response at integer coordinates close to the decimal coordinates (x,y)

8.2 for each row r in the image region centered at (int[x],int[y]), r=1 to W

8.3 for each column c in the image region centered at (int[x],int[y]), c=1 to W

// Multiply the mask coefficient by the image pixel and accumulate the result

8.4 real_part = real_part + FaceImage[r][c] * RealMask[k][r][c]

8.5 imag_part = imag_part + FaceImage[r][c] * ImagMask[k][r][c]

// Adjust the phase to move the response to the decimal coordinates

8.6 dx = x - int(x)

8.7 dy = y - int(y)

// fx[k] and fy[k] are precalculated constants for the k
th

 filter

8.8 real_part = sqrt(real_part
2

+ imag_part
2)

 * cos(atan(imag_part / real_part) + fx[k] * dx+fy[k] * dy)

8.9 imag_part = sqrt(real_part
2

+ imag_part
2
] * sin(atan(imag_part / real_part) + fx[k] * dx+fy[k] * dy)

9 s=CalcPhaseSimilarity(j, b)

10 keep coordinates (x, y) of the best match

11 MakeFaceGraph

12 Comparison

 79

Figure 18: EBGM algorithm computational analysis.

EBGM Algorithm
Computation

Cycles Percent

Computation

Cycles Percent

Computation

Cycles Percent

//LocateFeatures

1 ({x},{y})=EstimateCoordinates(B, l_eye_x, l_eye_y) 1.47E+05 <0.01% 1.47E+05 <0.01% 1.47E+05 <0.01%

2 for each feature vertex v, v=1 to 25

// Calculate an image jet

3 j=CalcJet({F}, {H}, I, dx, dy) 2.22E+06 <0.01% 3.43E+07 <0.01% 3.43E+07 <0.01%

// Select the best model from the bunch for the image jet

4 for each jet b in the bunch, b=1 to M

// compare bunch jet b to the image jet j

5 s=CalcMagnitudeSimilarity(j, b) 2.39E+08 0.03% 2.87E+09 <0.01% 2.00E+11 0.07%

6 keep model jet b with best similarity

// Search for the coordinates of the feature in the image

7 for each half-point (dx, dy) in an R by R region

8 // j=CalcJet({F}, {H}, I, dx, dy)

8.1 for each filter k in the set of wavelet filters

8.2

8.3

8.4

3.61E+11 49.2% 1.48E+14 50.0% 1.48E+14 49.9%

8.5
3.61E+11 49.2% 1.48E+14 50.0% 1.48E+14 49.9%

// Adjust the phase

8.6 dx = x - int(x) 8.11E+07 0.0% 1.64E+09 <0.01% 1.64E+09 <0.01%

8.7 dy = y - int(y) 8.11E+07 0.0% 1.64E+09 <0.01% 1.64E+09 <0.01%

8.8

2.93E+09 0.4% 5.94E+10 0.02% 5.94E+10 0.02%

8.9

2.93E+09 0.4% 5.94E+10 0.02% 5.94E+10 0.02%

9 s=CalcPhaseSimilarity(j, b) 4.76E+09 0.6% 9.63E+10 0.03% 9.63E+10 0.03%

10 keep coordinates (x, y) of the best match

11 MakeFaceGraph 4.90E+04 <0.01% 4.90E+04 <0.01% 4.90E+04 <0.01%

12 Comparison 4.92E+07 <0.01% 5.91E+08 <0.01% 4.11E+10 0.0%

Total Cycles 7.3E+11 3.0E+14 3.0E+14

Total Time (minutes) 3.70 1,495.18 1,496.18

for each row r in the image region centered

 at (int[x],int[y]), r=1 to W

real_part + = FaceImage[r][c] *

 RealMask[k][r][c]

imag_part + = FaceImage[r][c] *

 ImagMask[k][r][c]

real_part = sqrt(real_part
2

+ imag_part
2)

 *

 cos(atan(imag_part / real_part) +

 fx[k] * dx+fy[k] * dy)

imag_part = sqrt(real_part
2

+ imag_part
2
] *

 sin(atan(imag_part / real_part) +

 fx[k] * dx+fy[k] * dy)

for each column c in the image region

 centered at (int[x],int[y]), c=1 to W

100 KP, 1K 4 MP, 14K 4 MP, 1M

N=1E5, G=1E3, M'=6E2 N=4E6, G=14E3, M'=9E3 N=4E6, G=1E6, M'=6E5

 80

Figure 19: EBGM benchmark and computational analysis.

C
o
m

p
u

ta
ti

o
n

C
y
c
le

s
P

e
r
c
e
n

t

C
o
m

p
u

ta
ti

o
n

C
y
c
le

s
P

e
r
c
e
n

t

C
o
m

p
u

ta
ti

o
n

C
y
c
le

s
P

e
r
c
e
n

t

1
fo

r
e
a
c
h

 f
e
a
tu

re
 v

e
rt

e
x

v
,
v

=
1
 t

o
 2

5

2
fo

r
e
a
c
h

 j
e
t

b
 i
n

 t
h

e
 b

u
n

c
h

,
b

=
1
 t

o
 M

3
s
=

C
a
lc

M
a
g

n
it

u
d

e
S

im
il
a
ri

ty
(j

,
b

)
2
.3

9
E

+
0
8

0
.0

3
%

2
.8

7
E

+
0
9

<
0
.0

1
%

2
.0

0
E

+
1
1

0
.0

7
%

4
fo

r
e
a
c
h

 h
a
lf

-p
o

in
t

(d
x,

 d
y

)
in

 a
n

 R
 b

y
 R

 r
e
g

io
n

 c
e
n

te
re

d
 a

t
(x

,y
)

4
.1

fo
r

e
a
c
h

 f
il
te

r
k
 i
n

 t
h

e
 s

e
t

o
f

w
a
v

e
le

t
fi

lt
e
rs

,
k
=

1
 t

o
 4

0

4
.2

4
.3

4
.4

3
.6

1
E

+
1
1

4
9
.3

%
1
.4

8
E

+
1
4

5
0
.0

%
1
.4

8
E

+
1
4

4
9
.9

%

4
.5

3
.6

1
E

+
1
1

4
9
.3

%
1
.4

8
E

+
1
4

5
0
.0

%
1
.4

8
E

+
1
4

4
9
.9

%

4
.6

2
.9

3
E

+
0
9

0
.4

%
5
.9

4
E

+
1
0

0
.0

2
%

5
.9

4
E

+
1
0

0
.0

2
%

4
.7

2
.9

3
E

+
0
9

0
.4

%
5
.9

4
E

+
1
0

0
.0

2
%

5
.9

4
E

+
1
0

0
.0

2
%

5
s
=

C
a
lc

P
h

a
s
e
S

im
il
a
ri

ty
(j

,
b

)
4
.7

6
E

+
0
9

0
.6

%
9
.6

3
E

+
1
0

0
.0

3
%

9
.6

3
E

+
1
0

0
.0

3
%

T
o
ta

l
C

y
c
le

s
7
.3

E
+

1
1

3
.0

E
+

1
4

3
.0

E
+

1
4

T
o
ta

l
T

im
e
 (

m
in

u
te

s
)

3
.7

0

1
,4

9
5
.1

6

1
,4

9
6
.1

6

im
a
g

_
p

a
rt

 =

s
q

rt
(r

e
a
l_

p
a
rt

2
 +

 i
m

a
g

_
p

a
rt

2
]

*

s
in

(a
ta

n
(i

m
a
g

_
p

a
rt

 /
 r

e
a
l_

p
a
rt

)
+

fx

[k
]

*
 d

x+
fy

[k
]

*
 d

y
)

fo
r

e
a
c
h

 r
o

w
 r

 i
n

 t
h

e
 i
m

a
g

e
 r

e
g

io
n

 c
e
n

te
re

d

a
t

(i
n

t[
x]

,i
n

t[
y

])
,
r=

1
 t

o
 W

fo
r

e
a
c
h

 c
o

lu
m

n
 c

 i
n

 t
h

e
 i
m

a
g

e
 r

e
g

io
n

c
e
n

te
re

d
 a

t
(i

n
t[

x]
,i
n

t[
y

])
,
c
=

1
 t

o
 W

re
a
l_

p
a
rt

 +
 =

 F
a
c
e
Im

a
g

e
[r

][
c
]*

R

e
a
lM

a
s
k
[k

][
r]

[c
]

im
a
g

_
p

a
rt

 +
 =

 F
a
c
e
Im

a
g

e
[r

][
c
]*

Im

a
g

e
M

a
s
k
[k

][
r]

[c
]

re
a
l_

p
a
rt

 =

s
q

rt
(r

e
a
l_

p
a
rt

2
 +

 i
m

a
g

_
p

a
rt

2
) *

c
o

s
(a

ta
n

(i
m

a
g

_
p

a
rt

 /
 r

e
a
l_

p
a
rt

)
+

fx

[k
]

*
 d

x+
fy

[k
]

*
 d

y
)

1
0
0
 K

P
,
1
K

4
 M

P
,
1
4
K

4
 M

P
,
1
M

E
B

G
M

 B
e
n

c
h

m
a
r
k

N
=

1
E

5
,
G

=
1
E

3
,
M

'=
6
E

2
N

=
4
E

6
,
G

=
1
4
E

3
,
M

'=
9
E

3
N

=
4
E

6
,
G

=
1
E

6
,
M

'=
6
E

5

 81

4.7 CONCLUSION

Three data sets were used to develop three benchmarks for each algorithm. Table 8 shows the

benchmarks, the estimated execution time, and the speedup required for real-time identification.

The “100 KP, 1K” data set represents the 1,196 member gallery set of NIST 100 kilopixel

FERET images, a de facto standard. The “4 MP, 14K” data set represents the NIST MBE2010

data set and contains a 14,365 member gallery set of four megapixel images. The “4 MP, 1M”

data set extends the NIST MBE2010 data set to a one million member gallery set of four

megapixel images to simulate a large gallery set such as the Terrorist Watch List.

Table 8: Performance Estimates and Required Speedup.

Benchmark
Image

Resolution

Gallery

Size

Execution

Time

Estimate

(Minutes)

Required

Speedup

 Eigenface 100 KP, 1K 100 kilopixel 1,196 0.0015 -

 Eigenface 4 MP, 14K 4 megapixel 14,365 0.6800 -

 Eigenface 4 MP, 1M 4 megapixel 1,000,000 75.7150 38

 Bayesian 100 KP, 1K 100 kilopixel 1,196 0.00146 -

 Bayesian 4 MP, 14K 4 megapixel 14,365 0.6791 -

 Bayesian 4 MP, 1M 4 megapixel 1,000,000 71.169 36

 EBGM 100 KP, 1K 100 kilopixel 1,196 3.70 2

 EBGM 4 MP, 14K 4 megapixel 14,365 1,495.16 748

 EBGM 4 MP, 1M 4 megapixel 1,000,000 1,496.16 748

Each algorithm has a primary bottleneck. For the Eigenface and Bayesian algorithms the process

of projecting the probe into the vector subspace is the bottleneck, but the comparison process is a

 82

secondary bottleneck for some data sets. For the EBGM algorithm, the convolution in the

filtering process of the feature search is the bottleneck as a result of the large number of

iterations.

Table 8 shows that the Eigenface 100 KP, 1K, Eigenface 4 MP, 14K, and Bayesian 100

KP, 1K data sets and algorithms complete identification within the two minute real-time goal and

are therefore real-time. However, the Eigenface 4 MP, 1M data benchmark requires a 38 times

speedup for real-time identification, while the Bayesian 4 M, 1M benchmark requires a 36 times

speedup to become real-time. As noted, the Eigenface and Bayesian benchmarks are similar and

the computation required differs only in the comparison process within the benchmark.

The EBGM 100 KP, 1K benchmark requires 3.7 minutes for identification and a two

times speedup to meet the time goal, and both the EBGM 4 MP, 14K and EBGM 4 MP, 1M data

sets require 1,495.16 to 1,496.16 minutes for identification and a speedup of 748 to become real-

time.

 83

5.0 INSTRUCTION SET ARCHITECTURE ANALYSIS

The computational analysis method described in Chapter 4 estimated execution time based on

the average CPI for assembly language instructions on the reference architecture. This analysis

showed which code segments consume the largest percentage of the total execution time and

therefore must be accelerated to enable real-time face identification.

The computational bottlenecks exposed by the Chapter 4 analysis will be investigated in

this chapter. Given a computational bottleneck that prevents real-time performance,

accelerating the computation may provide enough speedup to enable real-time performance.

This speedup can potentially achieved by either increasing processor performance or by using

multiple processors. This chapter will explore how to increase the performance of a single

processor and Chapter 7 will explore how to improve performance using multiple processors.

The increased performance of one processor will be modeled by increasing the

performance of the instructions the processor executes. The Instruction Set Architecture

determines the average Cycles Per Instruction (CPI) or number of system clock cycles required

to execute each instruction [21]. The execution time is therefore directly affected by the ISA,

and improvements to the ISA can improve algorithm performance. If average CPI can be

reduced for particular instructions, code segments that use those instructions can be accelerated.

The analysis method developed in this chapter will provide a way to determine which

 84

instructions have greater impact on performance and therefore will contribute the most speedup

if average CPI for those instructions can be reduced.

The analysis method developed in this chapter will refine the computational analysis

method to guide selection of instructions for acceleration and will develop methods to reduce

average CPI for these instructions. The computational analysis results will be summarized by

instruction type to determine which instructions consume a larger percentage of the total

execution time for the benchmark. These instructions will then be accelerated to reduce average

CPI and the execution time will be estimated for a system incorporating the change to quantify

the speedup achieved.

5.1 ISA ANALYSIS METHOD

The following process will be used to analyze the ISA to determine which are heavily used and

the performance improvement if those instructions are accelerated:

Step 1: Analyze the benchmarks to locate heavily used instructions. In Chapter 4, benchmarks

were developed and the execution time for the benchmarks was estimated. This execution time

estimate exposed the code segments within the benchmarks that limit performance of the

benchmarks and therefore are the bottlenecks for the particular benchmark. These code

segments can be analyzed at the assembly instruction level to determine which particular

instructions are used in the bottleneck code segments and the percentage of execution time

consumed by each type of instruction.

 85

The computational analysis method developed in Chapter 4 counted the number of times

each instruction was executed and multiplied the execution count by the average CPI to estimate

the number of cycles required for execution. These results were calculated in a spreadsheet and

were reported in summary form to quantify the percentage of time required to execute each line

of code. Although the Chapter 4 analysis was based on assembly language instructions, the

details of those instructions were not exposed. For the ISA analysis, detailed assembly language

instruction level information is needed and the computational analysis results are expanded to

express percentage of execution time and the number of cycles consumed for each type of

assembly instruction.

Step 2: Analyze instruction usage. Amdahl’s law shows that accelerating instructions

that consume more of the total execution time will provide a better payback for the investment in

resources and chip area required to accelerate the instructions. Furthermore, accelerating

instructions that consume less of the total execution time will provide minimal reduction in

execution time and is therefore not an efficient use of resources.

The instruction level computational analysis results from Step 1 will be sorted in

descending order by the total number of cycles required for all executions of each instruction in

the benchmark. The total number of cycles will be divided by the system clock frequency to

estimate execution time, and instructions with an execution time greater than 0.1 second will be

selected for further analysis. For the instructions selected, the usage per line of code will be

analyzed to determine which lines of code use those instructions more heavily.

 86

Step 3: Accelerate heavily used instructions. The heavily used instructions exposed in Step 2

will then be analyzed to determine how these instructions can be accelerated. A data flow graph

will be generated for each line of C code in the bottleneck processes to show the data and control

flow among the assembly language instructions.

This analysis will graphically show sequences of instructions that operate on the same set

of data. These instructions that operate on common data can potentially be accelerated by

combining or fusing multiple instructions. For example, the process of multiplying a vector by a

row of a matrix performs a sequence of multiplications and additions. Adding a single fused

multiply-accumulate instruction that performs both the multiplication and the addition could

improve performance. Instruction sequences exposed by the data flow graph analysis will be

analyzed to determine if performance can be improved by fusing the instructions.

The latency for fused instructions will be several cycles. Instructions can be

implemented in combinational logic. but the propagation delay of combinational logic is in the

range of the system clock period. As a result, the propagation delay of the combinational logic

gates limits performance to one level of logic or one gate delay per system clock cycle.

However, since fused instructions combine simpler instructions they require multiple levels of

combinational logic and therefore the latency for the fused instructions will be a minimum of

two clock cycles.

The average CPI for fused instructions can be reduced to one cycle with pipelining

techniques. Pipelining divides a multiple cycle instruction such as a fused instruction into a set

of simpler, faster operations or stages that can complete within one clock cycle [21]. The

pipeline stages are then executed in sequence to perform the fused instruction. The latency or

time required to complete the first execution of the fused instruction still requires multiple

 87

cycles, but the throughput or time to complete successive repeated operations is reduced to one

cycle and therefore average CPI can be reduced to one cycle, given enough repetitions of the

instruction. As a result, average CPI can be reduced to a single cycle if enough pipeline stages

are added and therefore, pipelining can be used to reduce the average CPI for a fused instruction

to a single clock cycle.

If greater acceleration is required, the average CPI for the fused instruction can be

reduced to less than one cycle by using multiple function units. Given a pipelined function unit

that can complete a fused instruction within one clock cycle on average, adding a second

function unit operating in parallel can reduce the average CPI for that operation to (1 CPI)/(2

function units) or 0.5 CPI. Adding more function units proportionally reduces average CPI,

provided all function units can execute in parallel and the code allows the function units to be

used in this way. For example, adding one pipelined multiply-accumulate instruction for a

vector multiplication reduces average CPI to one cycle, but adding two multiply-accumulate

instructions reduces average CPI to 0.5 cycles.

As fused instructions and multiple function units are added, the data pathway to the

register file can become a bottleneck that limits performance. The processor register file is

configured to source two input operands and store one result within one cycle in a common

processor architectures such as the X86 [21]. If the added fused instruction requires three input

operands rather than the two operands required by each of the original instructions, the number

of register file ports must be increased to provide the additional input operand. In the same way,

if a second function unit is added, the register file must then provide six operands rather than the

original two. As a result, the resources required for the register file increase as function units are

added and therefore the resource cost increases. For this analysis, the number of register file

 88

ports will be used as a metric to quantify the resource cost and evaluate the cost/performance

tradeoff for increasing the number of function units.

The average CPI for the accelerated instructions is used to estimate the performance

improvement. To estimate the execution time with the ISA changes, average CPI is calculated

for each instruction. The execution counts for each instruction are multiplied by the new average

CPI to calculate the execution time with the accelerated instructions, in the same way execution

time was calculated for the original instructions and CPI. This calculation is repeated for the

addition of one, two, four, and eight function units for the fused instructions to quantify the cost

performance tradeoff for adding function units.

The average CPI for data movement instructions will also be adjusted to accommodate

the increase in the number of register file ports. The registers in the register file are loaded from

Local Memory with explicit move instructions. Increasing the number of register file ports will

potentially cause the move instructions to become a bottleneck and limit performance. To avoid

this bottleneck, the average CPI for the move instructions will be scaled proportionally to adjust

for the increase in the number of register file ports to avoid this bottleneck. For example, if one

register port is added for a total of three ports, the move instruction average CPI will be reduced

by 1/3.

The CPI reduction for move instructions could be implemented by increasing the memory

bandwidth. Memory bandwidth can be increased by widening the data bus. DRAM modules

increase net memory bandwidth by combining several DRAM chips to form a module with a

wider data bus [120]. Given a DRAM chip with a 3.6 GB/s data rate, combining eight chips on a

module with a 64 bit parallel data bus provides net bandwidth of 28.8 GB/s. This principle can

be applied to the processor architecture to widen the data bus between on-chip memory and the

 89

register file to increase net bandwidth. Increasing the bandwidth overcomes the memory to

register file bottleneck and reduces the time required to transfer a constant sized set of data. In

this way, the average CPI for move instructions can be reduced, and this memory bandwidth

effect will be modeled in this analysis as a reduction in average CPI for the move instructions.

5.2 EIGENFACE BENCHMARK ISA ANALYSIS

The analysis in Chapter 4 showed that the Eigenface 100 KP, 1K and 4 MP, 14K benchmarks

achieve real-time performance on sequential architectures and do not require additional

acceleration. However, the Eigenface 4 MP, 1M benchmark requires a 38 times acceleration to

achieve real-time performance.

The Chapter 4 analysis also showed that the Eigenface and Bayesian benchmarks are

quite similar and that applying techniques that achieve real-time performance for the Eigenface

benchmarks will also ensure real-time performance for the Bayesian benchmarks. Therefore,

analysis of the Eigenface 4 MP, 1M benchmark is sufficient, and this section will analyze the

Eigenface 4 MP, 1M benchmark.

The instruction level analysis for the Eigenface 4 MP, 1M benchmark is shown in Figure

20. This figure shows that five different instructions are needed to execute the bottleneck code

in the benchmark, sorted by the number of cycles required for execution on the reference

architecture. The number of cycles required for all five instructions is within an order of

magnitude and all five instructions will therefore be analyzed.

 90

Figure 20: Eigenface benchmark instruction level analysis.

m
o

v
s
d

m
u

ls
d

a
d

d
s
d

s
u

b
s
d

m
o

v
a
p

d
T

o
ta

ls

E
ig

e
n

fa
c
e
 B

e
n

c
h

m
a
r
k

1 2
fo

r
e
a
c
h

 p
ro

b
e
 e

le
m

e
n

t
in

d
e
x

j
in

 N

3
p

_
c
u

rl
[k

]
=

 p
_

c
u

rl
[k

]
+

 U
[j

][
k
]

*
 p

_
b

a
r[

j]
9
.2

9
E

+
1
2

2
.3

2
E

+
1
2

2
.3

2
E

+
1
2

1
.3

9
E

+
1
3

4
fo

r
e
a
c
h

 g
a
ll
e
ry

 m
e
m

b
e
r

in
d

e
x

g
 i
n

 G

5
fo

r
e
a
c
h

 c
o

e
ff

ic
ie

n
t

in
d

e
x

k
 i
n

 M
'

6
d

_
s
u

m
=

d
_

s
u

m
 +

 (
Z

[k
][

g
]

-
p

_
c
u

rl
[k

])
2

 *
 (

c
o

n
s
t[

k
])

4
.2

E
+

1
2

1
.2

E
+

1
2

6
E

+
1
1

1
.2

E
+

1
2

1
.2

E
+

1
2

8
.4

0
E

+
1
2

N
u

m
b
e
r
 o

f
e
x
e
c
u

ti
o
n

s
:

1
.3

5
E

+
1
3

3
.5

2
E

+
1
2

2
.9

2
E

+
1
2

1
.2

0
E

+
1
2

1
.2

0
E

+
1
2

2
.2

3
E

+
1
3

0
.5

1
.0

1
.0

1
.0

0
.5

6
.7

5
E

+
1
2

3
.5

2
E

+
1
2

2
.9

2
E

+
1
2

1
.2

0
E

+
1
2

6
.0

0
E

+
1
1

1
.5

E
+

1
3

7
5
.7

2

4
 M

P
,
1
M

T
o
ta

l
C

y
c
le

s

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
in

u
te

s
):

fo
r

e
a
c
h

 E
ig

e
n

v
e
c
to

r
in

d
e
x

k
 i
n

 M
'

A
M

D
 1

0
H

 C
P

I:

N
=

4
E

6
,
G

=
1
E

6
,
M

'=
6
E

5

 91

Figure 21: Eigenface benchmark line 3 data flow graph.

The data flow graph for the probe projection (line 3 in Figure 20) is shown in Figure 21.

This process loads U[j][k] and p_bar[j] from local memory into the register file with movsd

instructions, multiplies the two registers with a mulsd instruction, loads p_curl[k] with a movsd

instruction and adds it to the result of the mulsd with an addsd instruction, and then stores the

result back to local memory with a movsd instruction. Figure 21 shows that three data values are

loaded, operated upon, and then a single result is returned.

A pipelined fused multiply and add instruction could be added to accelerate the probe

projection as shown in Figure 22 with mnemonic MADD. This fused instruction would transfer

three register values from the register file, perform the multiply and add operation, and return

one result to the register file. Since the standard register file can transfer only two input registers

and store one result in an instruction cycle, the register file would need to be modified to add one

port for a total of three ports. If the register file change can be implemented, the fused multiply

and add instruction could provide a two times speedup for the computation in this operation.

 92

Figure 22: Eigenface benchmark fused multiply-add MADD instruction for line 3.

The data flow graph for the comparison calculation (line 6 in Figure 20) is shown in Figure 23.

This process loads Z[k][g] and p_curl[k] from local memory with movsd instructions, subtracts

the registers with a subsd instruction, squares the result with a mulsd instruction, multiplies that

result by the constant with another mulsd instruction, loads d_sum with a movsd instruction and

accumulates the result with a addsd instruction, then stores the result with a movapd instruction

in aligned packed double precision format.

A new difference and square fused instruction DFSQ can be added to calculate the

squared difference of Z[k][g] and p_curl[k] as shown in Figure 24. The MADD instruction can

then be used to multiply by the constant and the DFSQ result.

The instruction analysis is updated to show the speedup achieved with the fused

instructions in Figure 25. In this table the instruction columns have been rearranged to group

instructions by function, including data movement and computation instructions. This analysis

shows a speedup of 1.38 times is obtained with the fused instructions.

 93

Figure 23: Eigenface benchmark line 6 data flow graph.

 94

Figure 24: Eigenface benchmark fused diff-squared instruction DFSQ for line 6.

 95

Figure 25: Eigenface ISA speedup with fused instructions.

m
o

v
s
d

m
o

v
a
p

d
m

u
ls

d
a
d

d
s
d

s
u

b
s
d

M
A

D
D

D
F

S
Q

T
o
ta

ls

E
ig

e
n

fa
c
e
 B

e
n

c
h

m
a
r
k

1 2
fo

r
e
a
c
h

 p
ro

b
e
 e

le
m

e
n

t
in

d
e
x

j
in

 N

3
p

_
c
u

rl
[k

]
=

 p
_

c
u

rl
[k

]
+

 U
[j

][
k
]

*
 p

_
b

a
r[

j]
9
.2

9
E

+
1
2

2
.3

2
E

+
1
2

1
.1

6
E

+
1
3

4
fo

r
e
a
c
h

 g
a
ll
e
ry

 m
e
m

b
e
r

in
d

e
x

g
 i
n

 G

5
fo

r
e
a
c
h

 c
o

e
ff

ic
ie

n
t

in
d

e
x

k
 i
n

 M
'

6
d

_
s
u

m
=

d
_

s
u

m
 +

 (
Z

[k
][

g
]

-
p

_
c
u

rl
[k

])
2

 *
 (

c
o

n
s
t[

k
])

4
.2

0
E

+
1
2

1
.2

0
E

+
1
2

6
.0

0
E

+
1
1

6
.0

0
E

+
1
1

6
.6

0
E

+
1
2

N
u

m
b
e
r
 o

f
e
x
e
c
u

ti
o
n

s
:

1
.3

5
E

+
1
3

1
.2

0
E

+
1
2

2
.9

2
E

+
1
2

6
.0

0
E

+
1
1

1
.8

2
E

+
1
3

6
.7

5
E

+
1
2

6
.0

0
E

+
1
1

2
.9

2
E

+
1
2

6
.0

0
E

+
1
1

1
.0

9
E

+
1
3

5
4
.8

9

1
.3

8

E
x
e
c
u

ti
o
n

 T
im

e
 (

m
in

u
te

s
):

D
a
ta

 M
o
ve

m
e
n

t
C

o
m

p
u

ta
ti

o
n

4
 M

P
,
1
M

N
=

4
E

6
,
G

=
1
E

6
,
M

'=
6
E

5

fo
r

e
a
c
h

 E
ig

e
n

v
e
c
to

r
in

d
e
x

k
 i
n

 M
'

T
o
ta

l
C

y
c
le

s
:

IS
A

 S
p
e
e
d
u

p
:

 96

The modest 1.38 times speedup achieved with the fused instructions as shown in Figure

25 reflects the local memory bottleneck caused by the move instructions. The move instructions

 require 2.09 times the number of cycles required for the computation and therefore limit

performance. To overcome this bottleneck, additional local memory channels could be added.

Adding three channels to the data path between local memory and the register file would allow

the three input move instructions to be executed in 0.5 cycles, the number of cycles required for

one move in the original ISA. Adding this local memory bandwidth increase results in a total

speedup of 2.51 times for the 4 MP, 1M data set. This speedup reduces benchmark execution

time to 30.16 minutes but real-time performance is not achieved.

Figure 26 shows the speedup achieved with multiple function units and Table 9 shows the

number of register file ports required to achieve that speedup. The graph in Figure 27 shows the

relationship between the number of register ports and the speedup achieve. Adding two function

units for both fused instructions increases speedup to 5.02 but requires six register ports.

Execution time is still not real-time at 15.08 minutes. Four function units increases speedup to

10.25 and requires 12 register ports an execution time drops to 7.39 minutes, still not real-time.

Eight function units increases speedup to 20.08 and achieves execution time of 3.77 minutes, but

real-time performance is still not achieved.

 97

Figure 26: Eigenface benchmark speedup with multiple function units.

Table 9: Eigenface and Bayesian Speedup Summary.

Benchmark FUSED

INSTRUCTIONS

NUMBER OF

FUNCTION

UNITS

NUMBER OF

REGISTER FILE

PORTS SPEEDUP

IDENTIFICATION

TIME

Eigenface 4 MP, 1M 2 1 3 2.51 30.16

Eigenface 4 MP, 1M 2 2 6 5.02 15.08

Eigenface 4 MP, 1M 2 4 12 10.25 7.39

Eigenface 4 MP, 1M 2 8 24 20.08 3.77

Bayesian 4 MP, 1M 2 1 3 2.21 32.18

Bayesian 4 MP, 1M 2 2 6 4.04 17.60

Bayesian 4 MP, 1M 2 4 12 6.90 10.32

Bayesian 4 MP, 1M 2 8 24 10.66 6.67

movsd movapd mulsd addsd subsd MADD DFSQ Totals

Eigenface Benchmark

1

2 for each probe element index j in N

3 p_curl[k] = p_curl[k] + U[j][k] * p_bar[j] 9.29E+12 2.32E+12 1.16E+13

4 for each gallery member index g in G

5 for each coefficient index k in M'

6
d_sum=d_sum + (Z[k][g] - p_curl[k])

2

* (const[k]) 4.20E+12 1.20E+12 6.00E+11 6.00E+11 6.60E+12

Number of executions: 1.35E+13 1.20E+12 2.92E+12 6.00E+11 1.82E+13

New CPI, one function unit: 0.17 0.17 1.00 1.00 1.00

2.25E+12 2.00E+11 2.92E+12 6.00E+11 5.97E+12

30.16

2.51

New CPI, two function units: 0.08 0.08 1.00 0.50 0.50

1.12E+12 1.00E+11 1.46E+12 3.00E+11 2.99E+12

15.08

5.02

New CPI, four function units: 0.04 0.04 1.00 0.25 0.20

5.62E+11 5.00E+10 7.31E+11 1.20E+11 1.46E+12

7.39

10.25

New CPI, eight function units: 0.02 0.02 1.00 0.13 0.13

2.81E+11 2.50E+10 3.65E+11 7.50E+10 7.46E+11

3.77

20.08

Total Cycles:

Execution Time with ISA Speedup (minutes)

ISA Speedup:

ISA Speedup:

Total Cycles:

Execution Time with ISA Speedup (minutes)

ISA Speedup:

ISA Speedup:

Total Cycles:

Execution Time with ISA Speedup (minutes)

Total Cycles:

Execution Time with ISA Speedup (minutes)

4 MP, 1M

N=4E6, G=1E6, M'=6E5

Data Movement Computation

for each Eigenvector index k in M'

 98

Figure 27: Eigenface ISA speedup and register file ports.

5.3 EBGM BENCHMARK ISA ANALYSIS

The computational analysis in Chapter 4 showed that the EBGM benchmark requires

acceleration for all three data sets. The EBGM 100K, 1K benchmark requires a two times

speedup, but the EBGM 4 MP, 14K and 4 MP, 1M benchmarks require a 748 times speedup.

Given the 0.06% difference in execution time and the common 748 speedup required, the two

EBGM benchmarks with 4 MP images will not need to be analyzed separately. Therefore, in this

section the EBGM 100K, 1K and EBGM 4 MP, 1M benchmarks will be analyzed.

The instruction level analysis for the EBGM 100 KP, 1K benchmark is shown in Figure

28. Thirty-one different instructions are used for this benchmark and the columns in the table in

Figure 28 are sorted by the number of cycles required for execution on the reference architecture.

 99

The integer multiply instruction IMUL consumes the largest number of cycles, and only the nine

instructions shown in the table consume within 100 times the cycles required by IMUL. As a

result, only the nine instructions shown in the table will impact performance by 1% or more and

can provide a sufficient cost-performance tradeoff to warrant analysis. Furthermore, only the

primary bottleneck process, lines 4.4 and 4.5, consume enough total cycles to warrant analysis.

The data flow graph for the real filter multiplication in line 4.4 is shown in Figure 29.

While line 4.5 multiplies the imaginary mask, the instructions used are the same and thus do not

need to be analyzed separately. The data flow graph shows that calculating the memory address

for the matrix requires multiple instructions and consumes a significant number of cycles. The

row and column indices r and c are loaded from local memory into registers edx and eax with

mov instructions. The cltq instruction sign extends eax to rax, and movslq instruction moves and

sign extends edx to rdx. The imul instruction calculates the offset and the lea instruction

calculates the memory address. A movsd instruction then moves the FaceImage[r][c] data

 100

Figure 28: EBGM benchmark instruction level analysis.

im
u

l
m

o
v

s
d

m
o

v
m

u
ls

d
a
d

d
s
d

m
o

v
s
lq

c
lt

q
le

a
T

o
ta

ls

1
fo

r
e
a
c
h

 f
e
a
tu

re
 v

e
rt

e
x

v
,
v

=
1
 t

o
 2

5

2
fo

r
e
a
c
h

 j
e
t

b
 i
n

 t
h

e
 b

u
n

c
h

,
b

=
1
 t

o
 M

3
s
=

C
a
lc

M
a
g

n
it

u
d

e
S

im
il
a
ri

ty
(j

,
b

)
2
.5

E
+

0
7

1
.7

E
+

0
7

8
.4

E
+

0
6

6
.0

E
+

0
6

9
.6

E
+

0
6

4
.8

E
+

0
6

1
.3

E
+

0
8

4

4
.1

4
.2

4
.3

4
.4

re
a
l_

p
a
rt

 +
 =

 F
a
c
e
Im

a
g

e
[r

][
c
]*

R

e
a
lM

a
s
k
[k

][
r]

[c
]

5
.8

E
+

1
0

1
.2

E
+

1
1

1
.2

E
+

1
1

2
.9

E
+

1
0

2
.9

E
+

1
0

5
.8

E
+

1
0

5
.8

E
+

1
0

5
.8

E
+

1
0

5
.3

E
+

1
1

4
.5

im
a
g

_
p

a
rt

 +
 =

 F
a
c
e
Im

a
g

e
[r

][
c
]*

Im

a
g

M
a
s
k
[k

][
r]

[c
]

5
.8

E
+

1
0

1
.2

E
+

1
1

1
.2

E
+

1
1

2
.9

E
+

1
0

2
.9

E
+

1
0

5
.8

E
+

1
0

5
.8

E
+

1
0

5
.8

E
+

1
0

5
.3

E
+

1
1

4
.6

0
8
.7

E
+

0
7

3
.2

E
+

0
7

5
.4

E
+

0
7

3
.2

E
+

0
7

0
0

0
5
.6

E
+

0
8

4
.7

0
8
.7

E
+

0
7

3
.2

E
+

0
7

5
.4

E
+

0
7

3
.2

E
+

0
7

0
0

0
5
.6

E
+

0
8

5
s
=

C
a
lc

P
h

a
s
e
S

im
il
a
ri

ty
(j

,
b

)
0

3
.1

E
+

0
8

2
.6

E
+

0
8

9
.8

E
+

0
7

6
.5

E
+

0
7

0
1
.3

E
+

0
8

6
.5

E
+

0
7

1
.9

E
+

0
9

N
u

m
b
e
r
 o

f
e
x
e
c
u

ti
o
n

s
:

1
.2

E
+

1
1

2
.3

E
+

1
1

2
.3

E
+

1
1

5
.9

E
+

1
0

5
.9

E
+

1
0

1
.2

E
+

1
1

1
.2

E
+

1
1

1
.2

E
+

1
1

1
.1

E
+

1
2

A
M

D
 1

0
H

 C
P

I:
2
.0

0
.5

0
.5

1
.0

1
.0

0
.5

0
.3

0
.3

T
o
ta

l
C

y
c
le

s
2
.3

E
+

1
1

1
.2

E
+

1
1

1
.2

E
+

1
1

5
.9

E
+

1
0

5
.9

E
+

1
0

5
.8

E
+

1
0

3
.9

E
+

1
0

3
.9

E
+

1
0

7
.3

E
+

1
1

2
.8

8
IS

A
 S

p
e
e
d
u

p
:

E
B

G
M

 B
e
n

c
h

m
a
r
k

1
0
0
 K

P
,
1
K

N
=

1
E

5
,
G

=
1
E

3
,M

'=
6
E

5

fo
r

e
a
c
h

 h
a
lf

-p
o

in
t

(d
x,

 d
y

)
in

 a
n

 R
 b

y
 R

 r
e
g

io
n

fo
r

e
a
c
h

 f
il
te

r
k
 i
n

 t
h

e
 s

e
t

o
f

w
a
v

e
le

t
fi

lt
e
rs

fo
r

e
a
c
h

 c
o

lu
m

n
 c

 i
n

 t
h

e
 i
m

a
g

e
 r

e
g

io
n

c
e
n

te
re

d
 a

t
(i

n
t[

x]
,i
n

t[
y

])
,
c
=

1
 t

o
 W

re
a
l_

p
a
rt

 =

s
q

rt
[r

e
a
l_

p
a
rt

2
 +

 i
m

a
g

_
p

a
rt

2
]

*

 c

o
s
(a

ta
n

(i
m

a
g

_
p

a
rt

 /
 r

e
a
l_

p
a
rt

)
+

fx

[k
]

*
 d

x+
fy

[k
]

*
 d

y
)

im
a
g

_
p

a
rt

 =

s
q

rt
[r

e
a
l_

p
a
rt

2
 +

 i
m

a
g

_
p

a
rt

2
]

*

s
in

(a
ta

n
(i

m
a
g

_
p

a
rt

 /
 r

e
a
l_

p
a
rt

)
+

fx

[k
]

*
 d

x+
fy

[k
]

*
 d

y
)

fo
r

e
a
c
h

 r
o

w
 r

 i
n

 t
h

e
 i
m

a
g

e
 r

e
g

io
n

 c
e
n

te
re

d

a
t

(i
n

t[
x]

,i
n

t[
y

])
,
r=

1
 t

o
 W

 101

Figure 29: EBGM benchmark line 4.4 data flow graph.

 102

element from the calculated address to the register. This process is repeated to calculate the

index for the RealMask and to load the mask data element. A mulsd instruction multiplies the

image pixel and mask coefficient, and an addsd instruction accumulates the real_part result.

Finally, a movsd instruction transfers the data back to local memory.

A fused instruction to calculate the index and move the data to the register file could be

added to accelerate the filter process as shown in Figure 30. This fused MOVIDX could

calculate the index and load the data within one cycle. This calculation could be implemented

with combinational logic to complete within in 0.5 cycle, and the 0.5 cycle time for other mov

instructions suggests that the move could be completed within 0.5 cycle, reducing the total to one

cycle for the fused instruction.

Figure 30: EBGM benchmark fused move-index MOVIDX for line 4.4.

 103

The instruction analysis is updated to show the speedup achieved with the fused

instructions in Figure 31 for the EBGM 100 KP, 1K benchmark. The graph in Figure 32shows

the relationship between the number of register ports required and the speedup. Figure 31 shows

the MOVIDX instruction in the next to the last column and uses this instruction for lines 4.4 and

4.5. This analysis shows a speedup of 1.70 is achieved for the 100K, 1K benchmark, reducing

execution time to a near real-time 2.18 minutes. Adding two function units increases speedup to

3.24 and achieves real-time performance of 1.14 minutes, but requires four register file ports as

shown Figure 31.

Figure 33 shows the analysis for the 4 MP, 1M benchmark and the graph in Figure 34

shows the resource cost for the speedup achieved. The 4 M, 1M benchmark speedup is 2.46 with

one function unit but performance is not real-time at 607.80 minutes. Figure 33 shows that

identification time is 77.61 minutes with an unrealistic eight function units, but even the addition

of eight function units does not enable real-time performance.

Table 10 summarizes the EBGM speedup results and shows that the ISA speedup enables

real-time performance only for the EBGM 100 KP, 1K benchmark.

 104

Figure 31: EBGM 100K, 1K benchmark ISA speedup with fused instruction.

imul movsd mov mulsd addsd movslq cltq lea MOVIDX Totals

1 for each feature vertex v, v=1 to 25

2 for each jet b in the bunch, b=1 to M

3 s=CalcMagnitudeSimilarity(j, b) 2.5E+07 1.7E+07 8.4E+06 6.0E+06 9.6E+06 4.8E+06 1.3E+08

4

4.1

4.2

4.3

4.4

 5.8E+10 1.2E+11 2.9E+10 2.9E+10 5.8E+10 2.9E+11

4.5

 5.8E+10 1.2E+11 2.9E+10 2.9E+10 5.8E+10 2.9E+11

4.6

 8.7E+07 3.2E+07 5.4E+07 3.2E+07 5.6E+08

4.7

 8.7E+07 3.2E+07 5.4E+07 3.2E+07 5.6E+08

5 s=CalcPhaseSimilarity(j, b) 3.1E+08 2.6E+08 9.8E+07 6.5E+07 0 1.3E+08 6.5E+07 1.9E+09

Number of executions: 0 1.2E+11 2.3E+11 5.9E+10 5.9E+10 0 1.4E+08 7.0E+07 1.2E+11 5.9E+11

New CPI, one function unit: 2.0 0.5 0.5 1.0 1.0 0.5 0.3 0.3 1.0

Total Cycles 0 5.9E+10 1.2E+11 5.9E+10 5.9E+10 0 4.6E+07 2.3E+07 1.2E+11 4.3E+11

2.18

1.70

New CPI, two function units: 2.00 0.25 0.25 0.50 0.50 0.50 0.33 0.33 0.50

Total Cycles 0 2.9E+10 5.9E+10 2.9E+10 2.9E+10 0 4.6E+07 2.3E+07 5.8E+10 2.3E+11

1.14

3.24

New CPI, four function units: 2.00 0.13 0.13 0.25 0.25 0.50 0.33 0.33 0.25

Total Cycles 0 1.5E+10 2.9E+10 1.5E+10 1.5E+10 0 4.6E+07 2.3E+07 2.9E+10 1.2E+11

0.62

5.94

New CPI, eight function units: 2.00 0.06 0.06 0.13 0.13 0.50 0.33 0.33 0.13

Total Cycles 0 7.3E+09 1.5E+10 7.3E+09 7.3E+09 0 4.6E+07 2.3E+07 1.5E+10 7.2E+10

0.36

10.18

100 KP, 1K

EBGM Benchmark

Execution Time (minutes):

ISA Speedup:

N=1E5, G=1E3, M'=6E2

imag_part + = FaceImage[r][c]*

 ImagMask[k][r][c]

real_part = sqrt[real_part
2

+ imag_part
2
]

*

 cos(atan(imag_part / real_part) +

 fx[k] * dx+fy[k] * dy)
imag_part = sqrt[real_part

2
+ imag_part

2
]

*

 sin(atan(imag_part / real_part) +

 fx[k] * dx+fy[k] * dy)

for each half-point (dx, dy) in an R by R region

for each filter k in the set of wavelet filters

for each row r in the image region

centered

 at (int[x],int[y]), r=1 to Wfor each column c in the image

 region centered at (int[x],int[y]),

 c=1 to W

real_part + FaceImage[r][c]*

 RealMask[k][r][c]

Execution Time (minutes):

ISA Speedup:

Execution Time (minutes):

ISA Speedup:

Execution Time (minutes):

ISA Speedup:

 105

Figure 32: EBGM 100 KP, 1K speedup and register file ports.

 106

Figure 33: EBGM 4 MP, 1M benchmark ISA speedup with fused instruction.

imul movsd mov mulsd addsd movslq cltq lea MOVIDX Totals

1 for each feature vertex v, v=1 to 25

2 for each jet b in the bunch, b=1 to M

3 s=CalcMagnitudeSimilarity(j, b) 0 2.1E+10 1.4E+10 7.0E+09 5.0E+09 0 8.0E+09 4.0E+09 1.1E+11

4

4.1

4.2

4.3

4.4

 2.4E+13 1.2E+13 1.2E+13 2.4E+13 7.2E+13

4.5

 2.4E+13 1.2E+13 1.2E+13 2.4E+13 7.2E+13

4.6

0 1.8E+09 6.6E+08 1.1E+09 6.6E+08 0 0 0 1.1E+10

4.7

0 1.8E+09 6.6E+08 1.1E+09 6.6E+08 0 0 0 1.1E+10

5 s=CalcPhaseSimilarity(j, b) 0 6.4E+09 5.3E+09 2.0E+09 1.3E+09 0 2.6E+09 1.3E+09 3.8E+10

Number of executions: 0 4.8E+13 2.1E+10 2.4E+13 2.4E+13 0 1.1E+10 5.3E+09 4.8E+13 1.4E+14

New CPI, one function unit: 2.0 0.5 0.5 1.0 1.0 0.5 0.3 0.3 1.0

Total Cycles 0 2.4E+13 1.0E+10 2.4E+13 2.4E+13 0 3.5E+09 1.8E+09 4.8E+13 1.2E+14

607.80

2.46

New CPI, two function units: 2.00 0.25 0.25 0.50 0.50 0.50 0.33 0.33 0.50

Total Cycles 0 1.2E+13 5.2E+09 1.2E+13 1.2E+13 0 3.5E+09 1.8E+09 2.4E+13 6.0E+13

304.83

4.91

New CPI:, four function units 2.00 0.13 0.13 0.25 0.25 0.50 0.33 0.33 0.25

Total Cycles 0 6.0E+12 2.6E+09 6.0E+12 6.0E+12 0 3.5E+09 1.8E+09 1.2E+13 3.0E+13

153.35

9.76

New CPI, eight function units: 2.00 0.06 0.06 0.13 0.13 0.50 0.33 0.33 0.13

Total Cycles 0 3.0E+12 1.3E+09 3.0E+12 3.0E+12 0 3.5E+09 1.8E+09 6.0E+12 1.5E+13

77.61

19.28

4 MP 1M

ISA Speedup:

Execution Time (minutes):

ISA Speedup:

Execution Time (minutes):

ISA Speedup:

N=4E6, G=1E6, M'=6E5

EBGM Benchmark

Execution Time (minutes):

ISA Speedup:

Execution Time (minutes):

for each half-point (dx, dy) in an R by R region

for each filter k in the set of wavelet filters

for each row r in the image

region centered at (int[x],int[y]), r=1 to W

for each column c in the image

 region centered at (int[x],int[y]),

 c=1 to W

real_part + FaceImage[r][c]*

 RealMask[k][r][c]

imag_part + = FaceImage[r][c]*

 ImagMask[k][r][c]

real_part = sqrt[real_part
2

+ imag_part
2
] *

 cos(atan(imag_part / real_part) +

 fx[k] * dx+fy[k] * dy)

imag_part = sqrt[real_part
2

+ imag_part
2
] *

 sin(atan(imag_part / real_part) +

 fx[k] * dx+fy[k] * dy)

 107

Figure 34: EBGM 4 MP, 1M speedup and register file ports.

Table 10: EBGM ISA Speedup Summary.

BENCHMARK
FUSED

INSTRUCTIONS

NUMBER OF

FUNCTION

UNITS

NUMBER OF

REGISTER FILE

PORTS
SPEEDUP

IDENTIFICATION

TIME

EBGM 100 KP, 1K 1 1 2 1.70 2.18

EBGM 100 KP, 1K 1 2 4 3.24 1.14

EBGM 100 KP, 1K 1 4 8 5.94 0.62

EBGM 100 KP, 1K 1 8 16 10.18 0.36

EBGM 4 MP, 14K 1 1 2 2.46 606.80

EBGM 4 MP, 14K 1 2 4 4.92 303.91

EBGM 4 MP, 14K 1 4 8 9.81 152.47

EBGM 4 MP, 14K 1 8 16 19.48 76.74

EBGM 4 MP, 1M 1 1 2 2.46 607.80

EBGM 4 MP, 1M 1 2 4 4.91 304.83

EBGM 4 MP, 1M 1 4 8 9.76 153.35

EBGM 4 MP, 1M 1 8 16 19.28 77.61

 108

5.4 CONCLUSION

The ISA analysis results in this chapter are summarized in Table 11. This analysis shows

that while a 2.51 times ISA speedup can be achieved for the Eigenface and Bayesian 4 MP, 1M

benchmarks, it is insufficient to make them real-time. Even the addition of eight function units

and the resulting 20 times speedup is insufficient to enable real-time performance, even if an

unrealistic 24 register file ports could be implemented. For further analysis in the later chapters,

a single function unit and a 2.51 ISA speedup will be used.

The ISA analysis further shows that real-time performance can be achieved for the

EBGM 100K, 1K data set by adding two function units to implement a fused index instruction.

Adding two function units to the EBGM benchmark allows the two indexes to be calculated in

parallel. Both index results are needed for the next operation and adding two function units will

therefore provide a good performance tradeoff.

For the EBGM benchmark with the 4 MP, 14K and 4 MP, 1M benchmarks, the two

function units provide a 4.9 speedup as shown in Table 11. However, this speedup is insufficient

to achieve real-time performance. Therefore, for further analysis in the later chapters, two

function units and a 4.9 times ISA speedup will be used.

 109

Table 11: ISA Speedup.

BENCHMARK
FUSED

INSTRUCTIONS

NUMBER OF

FUNCTION

UNITS

NUMBER OF

REGISTER FILE

PORTS

SPEEDUP
IDENTIFICATION

TIME

Eigenface 4 MP, 1M 2 1 3 2.51 30.16

Eigenface 4 MP, 1M 2 2 6 5.02 15.08

Eigenface 4 MP, 1M 2 4 12 10.25 7.39

Eigenface 4 MP, 1M 2 8 24 20.08 3.77

Bayesian 4 MP, 1M 2 1 3 2.21 32.18

Bayesian 4 MP, 1M 2 2 6 4.04 17.60

Bayesian 4 MP, 1M 2 4 12 6.90 10.32

Bayesian 4 MP, 1M 2 8 24 10.66 6.67

EBGM 100 KP, 1K 1 1 2 1.70 2.18

EBGM 100 KP, 1K 1 2 4 3.24 1.14

EBGM 100 KP, 1K 1 4 8 5.94 0.62

EBGM 100 KP, 1K 1 8 16 10.18 0.36

EBGM 4 MP, 14K 1 1 2 2.46 606.80

EBGM 4 MP, 14K 1 2 4 4.92 303.91

EBGM 4 MP, 14K 1 4 8 9.81 152.47

EBGM 4 MP, 14K 1 8 16 19.48 76.74

EBGM 4 MP, 1M 1 1 2 2.46 607.80

EBGM 4 MP, 1M 1 2 4 4.91 304.83

EBGM 4 MP, 1M 1 4 8 9.76 153.35

EBGM 4 MP, 1M 1 8 16 19.28 77.61

 110

6.0 MEMORY ANALYSIS

The analysis methods developed in Chapters 4 and 5 analyzed computational performance limits

without regard for limitations of external memory. Simplifying assumptions were made for the

computational analysis method to enable determination of computational constraints. Data

movement instructions such as the “mov” instruction were assumed to reference on-chip

memory. The access time for on-chip memory was assumed to be less than the experimentally

determined average CPI for the data movement instruction, allowing the total time for an

instruction to be estimated with the average CPI. The on-chip memory capacity was assumed to

be sufficient to store the required data. Finally, off-chip memory transfer time was assumed to

be less than total computation time, so that the sum of the average CPIs for the instructions

represented the net time required for the operations and the external memory transfers were

masked by the computation time. These assumptions provided a means to analyze the

computational performance limitations on the face identification algorithms.

The time required for transferring data between external memory and the SOC can limit

performance. Data must be transferred from off-chip to on-chip memory before it can be

accessed by the processor, and the bandwidth for off-chip memory is less than the bandwidth of

on-chip memory. If the bandwidth of off-chip memory is insufficient to meet processor

 111

demands, the processor may stall while waiting for data, resulting in reduced performance. As a

result, the external memory bandwidth may limit SOC performance.

6.1 EXTERNAL OR OFF-CHIP MEMORY BANDWIDTH ANALYSIS

An analysis method will be developed in this chapter to explore whether performance of a

perfectly mapped program is constrained by external memory bandwidth. This analysis will

estimate the total time required to transfer data between external memory and the SOC to

determine if the transfer time prevents real-time identification. This analysis will provide a

means to expose the performance limitations of external memory bandwidth as well as evaluate

whether a particular mapping is not feasible due to memory constraints.

The time required for transferring data between external and on-chip memory is a

function of the external memory bandwidth. Future memory bandwidth specifications must

therefore be determined to support this analysis. Bandwidth specifications for the 2019 and 2022

technology points will be developed from JEDEC specifications and projections. JEDEC

memory bandwidth projections for DDR4L DRAM [121] show 2,932 Mbps transfer rates in

2019 and project an average increase per year of 200 Mbps. The JEDEC data rates are transfer

rates, the bandwidth for a transfer from a single RAM chip with an eight bit wide data path.

DRAM modules combine eight chips to form a 64 bit word, so the data rate in bytes for the word

transfer is eight times the data rate per module. Multiplying the 2,932 Mbps module data rate by

eight and scaling to GB/s shows the 2019 bandwidth based on JEDEC projections is 23.5 GB/s.

 112

Projecting into the future from this point with the 200 Mbps growth rate estimates 2022

bandwidth as 3,600 Mbps per chip or 28.8 GB/s per module.

The JEDEC projected transfer rates are maximum data rates for continuous streaming of

data from consecutive memory addresses at the maximum burst rate. DRAM chips support a

burst mode where eight bytes at consecutive addresses are read from the chip. This burst mode

infers addressing rather than requiring each address to be set on the DRAM chip and therefore

the time required to transfer multiple address words is eliminated [25]. In addition, accessing

sequential data in the DRAM requires less time than a random access as a result of the structure

of the DRAM [25], further increasing performance.

Face identification algorithms consist of large blocks of vector and matrix data, which the

C language stores in consecutive memory locations. Face identification algorithms therefore

require transfer of large blocks of data from consecutive memory locations and meet the

requirements for sustained maximum length burst mode transfers.

The memory analysis will analyze the sequential benchmarks to expose data movement

bottlenecks. Each face identification benchmark and data set requires a particular set of data

containing the probe image, gallery set, and information needed for the encoding process. The

size of these data sets is independent of the on-chip implementation of the algorithm and will be

the same for both sequential and parallel implementations of an algorithm, so performing the

analysis on the sequential implementation will expose memory performance constraints that will

impact both sequential and parallel implementations.

A single memory channel is provided to move data from external memory to on-chip

memory and this analysis will initially estimate performance for that one memory channel. Once

the data is on-chip, it must be transferred to the parallel processors, and this aspect of

 113

performance is a function of the mapping and will be analyzed in Chapter 7, while this chapter

will analyze only the time required to move data across the single memory channel and onto the

SOC chip.

6.2 MEMORY BANDWIDTH ANALYSIS METHOD

The impact of external memory bandwidth on execution time will be analyzed with the following

process:

Step 1: Determine the required volume of data. The volume of data that must be transferred

to and from external memory is calculated based on the benchmark code. Each data element is

counted one time when first loaded from external memory and subsequent references to the same

data are assumed to be accessed from on-chip memory. For example, Figure 35 shows the

analysis for transferring the Eigenface subspace matrix U from off-chip memory. The data

transferred is listed under the “Data” heading and the “Read or Write” column indicates data

direction. The symbolic data size is listed in the next column and is shown as M’N for this

example, indicating that the M’ Eigenface vectors each have N elements.

 114

Figure 35: Memory bandwidth analysis for the Eigenface subspace matrix.

The volume of data transferred is calculated by multiplying the number of data words transferred

by the word size. In this example, M’=600,000, N=3,871,488, and 64 bit words are used, so the

volume of data is 600,000*3,871,488*8 or 1.86 x 10
13

 bytes.

Step 2: Estimate the transfer time. The time required to transfer the data is calculated by

dividing the volume of data transferred by the memory bandwidth as shown in Equation (6.1).

 MemoryTransfer

NumberOfBytesTransferred
T

MemoryBandwidth
 (6.1)

The subspace matrix example shown in Figure 35 requires 1.86 x 10
13

/23.5 x 10
9
 seconds, which

totals 791.5 seconds or 13.20, minutes to transfer the data with the 2019 bandwidth.

Step 3: Calculate required number of memory banks. If the total transfer time exceeds the

real-time goal of two minutes, memory bandwidth must be increased to enable real-time

identification. The increase in memory bandwidth will be modeled by adding additional banks

of memory, separate blocks of external memory that are accessed through parallel data channels.

Data Read or Write

Data Volume

Expressed

Symbolically

Volume

(bytes)

Required On-chip

Memory (bytes)

2019 Transfer

Time (minutes)

2022 Transfer

Time (minutes)

Subpace matrix U Read M'N 1.86E+13 1.86E+13 13.20 10.75

1.86E+13 13.20 10.75

 18,583.14 18,583.14

7 6

 1.89 1.79 Transfer time with additional banks (minutes):

Totals:

Data volume (Gigabytes):

Number of memory banks required:

 115

For example, adding a second memory bank will double the bandwidth and therefore halve the

time required to transfer a fixed size block of data. The analysis assumes that memory coherence

between the banks is separately maintained and does not require additional time or resources.

The number of banks required is calculated by dividing the data transfer time by the real-

time goal and rounding up to an integer value as shown in Equation (6.2).

DataTransferTime

NumberOfBanks ceiling
TwoMinutes

 
  

 
 (6.2)

The new memory bandwidth can then be calculated by multiplying the single bank memory

bandwidth by the number of banks as shown in Equation (6.3) and the new data transfer time can

be calculated with Equation (6.1).

   TotalMemoryBandwidth NumberOfBanks MemoryBandwidth (6.3)

6.3 EIGENFACE MEMORY BANDWIDTH ANALYSIS

The memory bandwidth analysis for the 100 KP, 1K data set is shown in Figure 36. The

Eigenface benchmark data includes an N element probe image, the N element mean image, the

M’ by N element subspace matrix, the M’ element projected probe image p_curl, and the GM’

element encoded gallery set. These variables are listed in the left column in Figure 36, and the

 116

data direction is indicated by the “Read” or “Write” notation in the column to the right of the

variable name. The third column in Figure 36 expresses the volume of data symbolically and

the fourth column shows the numeric value. For example, the probe image p shown in the first

row has N elements and N is 98,304 for the 100 KP, 1K data set. Each data word consists of

eight bytes, so 8N bytes or 786 KB of data are required as shown. The 2019 data transfer time is

calculated by dividing by the module bandwidth of 23.5 GB/s and then dividing by 60 to express

the result in minutes as shown in the figure. These calculations show that 5.59 x 10
-7

 minutes are

required to transfer one probe as shown in Figure 36. The analysis shows that total data transfer

time is 0.00041 minutes in 2019 and 0.00033 minutes in 2022 and therefore memory bandwidth

does not limit performance for this benchmark and data set.

Figure 36: Eigenface 100 KP, 1K memory bandwidth analysis.

The memory bandwidth analysis for the 4 MP, 14K data set is shown in Figure 37. The

transfer time is again real-time at 0.16 minutes and no additional memory banks are required.

Data Read or Write

Data Volume

Expressed

Symbolically Volume (bytes)

2019

Transfer

Time

(minutes)

2022

Transfer

Time

(minutes)

Probe image p Read N 7.86E+05 5.59E-07 4.55E-07

Mean image a Read N 7.86E+05 5.59E-07 4.55E-07

Subpace matrix U
T

Read M'N 5.65E+08 4.01E-04 3.27E-04

Projected probe image p_curl Write M' 5.74E+03 4.08E-09 3.32E-09

Encoded gallery set Read GM' 6.87E+06 4.88E-06 3.98E-06

Projected probe image p_curl Read M' 5.74E+03 4.08E-09 3.32E-09

Eigenvalue constant vector eigvalue[] Read M' 5.74E+03 4.08E-09 3.32E-09

0.00041 0.00033

Eigenface 100 KP, 1K

Totals:

Comparison

Encoding

 117

The 4 MP, 1M data set, however, is constrained by memory bandwidth. Figure 38 shows the

data transfer time is 16.61 minutes in 2019 and 13.53 minutes in 2022 and therefore memory

bandwidth prevents real-time identification for both technology points.

Memory banks can be added to overcome the memory bandwidth constraints on the

Eigenface 4 MP, 1M mapping as shown in Figure 38. Adding nine memory banks for the 2019

technology point reduces transfer time to 1.85 minutes and resolves the memory bandwidth

constraint. Given the greater bandwidth available for the 2022 technology point, seven memory

banks are enough to reduce the data transfer time to 1.93 minutes and remove the memory

constraint on real-time identification.

As discussed in Chapter 4, the data volume and therefor data transfer times for the

Bayesian benchmarks are approximately the same as for the Eigenface benchmarks. Therefore

adding nine memory banks in 2019 and seven memory banks in 2022 will also resolve the

memory bandwidth limitations for the Bayesian benchmarks.

Figure 37: Eigenface 4 MP, 14K memory bandwidth analysis.

Data Read or Write

Data Volume

Expressed

Symbolically Volume (bytes)

2019

Transfer

Time

(minutes)

2022

Transfer

Time

(minutes)

Probe image p Read N 3.10E+07 2.20E-05 1.79E-05

Mean image a Read N 3.10E+07 2.20E-05 1.79E-05

Subpace matrix U
T

Read M'N 2.67E+11 1.90E-01 1.54E-01

Projected probe image p_curl Write M' 6.90E+04 4.90E-08 3.99E-08

Encoded gallery set Read GM' 9.90E+08 7.04E-04 5.73E-04

Projected probe image p_curl Read M' 6.90E+04 4.90E-08 3.99E-08

Eigenvalue constant vector eigvalue[] Read M' 6.90E+04 4.90E-08 3.99E-08

0.19 0.16

Eigenface 4 MP, 14K

Totals:

Comparison

Encoding

 118

Figure 38: Eigenface 4 MP, 1M memory bandwidth analysis.

6.4 EBGM MEMORY BANDWIDTH ANALYSIS

The memory bandwidth analysis for the EBGM 100 KP, 1K benchmark is shown in Figure 39.

The encoding process loads bunch B containing one jet for each of 25 features vertices and each

of M training images or 25M. Each jet contains 80 elements and the bunch therefore totals

2,000M words or 16,000M bytes. The probe jet adds another 2000 words or 16,000 bytes, one

jet at each of 25 feature vertices. Each probe image region is W by W pixels, and one region is

needed for each of the 25 vertices, requiring 25WW words or 2000WW bytes. Eighty filter

masks are required, each W by W, requiring 80WW words or 6400 bytes. The resulting face

graph has one jet at each of 25 feature vertices and 55 edge midpoints and therefore totals 6400

Data Read or Write

Data Volume

Expressed

Symbolically Volume (bytes)

2019

Transfer

Time

(minutes)

2022

Transfer

Time

(minutes)

Probe image p Read N 3.10E+07 2.20E-05 1.79E-05

Mean image a Read N 3.10E+07 2.20E-05 1.79E-05

Subpace matrix U
T

Read M'N 1.86E+13 1.32E+01 1.08E+01

Projected probe image p_curl Write M' 4.80E+06 3.41E-06 2.78E-06

Encoded gallery set Read GM' 4.80E+12 3.41E+00 2.78E+00

Projected probe image p_curl Read M' 4.80E+06 3.41E-06 2.78E-06

Eigenvalue constant vector eigvalue[] Read M' 4.80E+06 3.41E-06 2.78E-06

16.61 13.53

9 7

 1.85 1.93

Eigenface 4 MP, 1M

Transfer time with additional banks (minutes):

Totals:

Comparison

Encoding

Number of memory banks required:

 119

words or 512,000 bytes. For comparison, the 6,400 word probe face graph is required as well a

G gallery face graphs of the same dimensions.

Figure 39 shows the transfer time for the 100KP, 1K data set is 5.36 x 10
-5

 minutes for

the 2019 technology point and 4.36 x 10
-5

 minutes for the 2022 technology point. Both times

meet the real-time data transfer requirement and therefore memory bandwidth is not a

performance limit for the EBGM 100 KP, 1K data set.

The analysis also shows that memory bandwidth is not a performance constraint for the

EBGM 4 MP, 14K and 4 MP, 1M benchmarks. Figure 40 shows the 4 MP, 14K data set requires

transfer time of 6.57 x 10
-4

 minutes in 2019 and 5.35 x 10
-4

 minutes in 2022, and Figure 41

shows the 4 MP, 1M data set requires transfer time of 4.32 x 10
-2

 minutes in 2019 and 3.52 x 10
-2

minutes in 2022, all well within the two minute real-time goal.

Figure 39: EBGM 100 KP, 1K memory bandwidth analysis.

Data Read or Write

Data Volume

Expressed

Symbolically

Volume

(bytes)

2019

Transfer

Time

(minutes)

2022

Transfer

Time

(minutes)

bunch B Read 2000M 1.15E+07 8.16E-06 6.65E-06

probe jets Read 2000 1.60E+04 1.14E-08 9.26E-09

probe image region Read 25WW 8.11E+05 5.76E-07 4.69E-07

filter masks Read 80WW 1.73E+06 1.23E-06 1.00E-06

probe face graph Write 6400 5.12E+04 3.64E-08 2.96E-08

probe face graph Read 6400 5.12E+04 3.64E-08 2.96E-08

gallery face graphs Read 6400G 6.12E+07 4.35E-05 3.54E-05

5.36E-05 4.36E-05

EBGM 100 KP, 1K

Encoding

Comparison

Totals:

 120

Figure 40: EBGM 4 MP, 14K memory bandwidth analysis.

Figure 41: EBGM 4 MP, 1M memory bandwidth analysis.

Data Read or Write

Data Volume

Expressed

Symbolically

Volume

(bytes)

2019

Transfer

Time

(minutes)

2022

Transfer

Time

(minutes)

bunch B Read 2000M 1.38E+08 9.80E-05 7.98E-05

probe jets Read 2000 1.60E+04 1.14E-08 9.26E-09

probe image region Read 25WW 1.64E+07 1.17E-05 9.51E-06

filter masks Read 80WW 3.50E+07 2.49E-05 2.03E-05

probe face graph Write 6400 5.12E+04 3.64E-08 2.96E-08

probe face graph Read 6400 5.12E+04 3.64E-08 2.96E-08

gallery face graphs Read 6400G 7.35E+08 5.23E-04 4.26E-04

6.57E-04 5.35E-04

EBGM 4 MP, 14K

Encoding

Comparison

Totals:

Data Read or Write

Data Volume

Expressed

Symbolically

Volume

(bytes)

2019

Transfer

Time

(minutes)

2022

Transfer

Time

(minutes)

bunch B Read 2000M 9.60E+09 6.82E-03 5.56E-03

probe jets Read 2000 1.60E+04 1.14E-08 9.26E-09

probe image region Read 25WW 1.64E+07 1.17E-05 9.51E-06

filter masks Read 80WW 3.50E+07 2.49E-05 2.03E-05

probe face graph Write 6400 5.12E+04 3.64E-08 2.96E-08

probe face graph Read 6400 5.12E+04 3.64E-08 2.96E-08

gallery face graphs Read 6400G 5.12E+10 3.64E-02 2.96E-02

4.32E-02 3.52E-02

EBGM 4 MP, 1M

Encoding

Comparison

Totals:

 121

6.5 CONCLUSION

The results of the memory bandwidth analysis are summarized in Table 12 and show data

transfer is real-time for the Eigenface and Bayesian 100 KP, 1K and 4 MP, 14K data sets. The

Eigenface 4 MP, 1M and Bayesian 4 MP, 1M benchmarks require nine memory banks in 2019

and seven memory banks in 2022 to remove the memory bandwidth bottleneck as a constraint on

real-time performance. Memory bandwidth does not constrain real-time performance for any of

the EBGM benchmarks.

Table 12: Memory Bandwidth Analysis Summary.

BENCHMARK
NUMBER OF

BANKS IN

2019

NUMBER OF

BANKS IN 2022

TRANSFER TIME

2019 (MINUTES)

TRANSFER

TIME 2022

(MINUTES)

Eigenface 100 KP, 1K 1 1 <0.001 <0.001

Eigenface 4 MP, 14K 1 1 0.19 0.16

Eigenface 4 MP, 1M 9 7 1.85 1.93

Bayesian 100 KP, 1K 1 1 <0.001 <0.001

Bayesian 4 MP, 14K 1 1 0.19 .016

Bayesian 4 MP, 1M 9 7 1.85 1.93

EBGM 100 KP, 1K 1 1 <0.001 <0.001

EBGM 4 MP, 14K 1 1 0.001 0.001

EBGM 4 MP, 1M 1 1 0.043 0.035

 122

7.0 BENCHMARK MAPPING AND ANALYSIS

Chapter 4 analyzed performance of the Eigenface, Bayesian, and EBGM face identification

algorithms. This analysis showed that the Eigenface and Bayesian algorithms are very similar

and that if the Eigenface algorithm can be made real-time, the Bayesian algorithm would be real-

time if implemented in the same way. The bottleneck code was extracted to form benchmarks

and the performance of the benchmarks was estimated. The performance estimates showed that

Eigenface and Bayesian 4 MP, 1M benchmarks were not real-time, and that all three EBGM

benchmarks were not real-time.

Chapter 5 analyzed performance of the ISA and developed fused instructions to improve

single PE performance. This analysis showed that the EBGM 100 KP, 1K benchmark could be

made real-time with ISA speedup alone as shown in Table 13. However, for the other

benchmarks that require computational speedup, the ISA speedup was insufficient to completely

resolve the bottleneck. The Chapter 5 analysis summarized in Table 13 showed that the

Eigenface and Bayesian benchmarks with the 4 MP, 1M data set could be accelerated 2.2 to 2.5

times by adding a fused multiply and add instruction MDADD and a fused difference squared

instruction DFSQ. The EBGM benchmarks with the 4 MP, 14K and 4 MP, 1M data sets can be

accelerated 2.46 times by adding a fused indexed move instruction MOVIDX, and adding two

MOVIDX function units made the EBGM 100 KP, 1K benchmark real-time. This resulted in an

 123

improved PE for the Eigenface and Bayesian benchmarks that includes one function unit that

implements the MDADD instruction and one function unit for the DFSQ instruction. The

improved PE for the EBGM benchmark includes two function units that implement the

MOVIDX instruction to meet the input data requirements of the multiply instruction that follows

the index instructions.

Table 13: Required Computational Speedup

BENCHMARK
SEQUENTIAL

SPEEDUP

REQUIRED

ISA SPEEDUP
ADDITIONAL

SPEEDUP

REQUIRED

Eigenface 100 KP, 1K - - -

Eigenface 4 MP, 14K - - -

Eigenface 4 MP, 1M 38 2.51 15.14

Bayesian 100 KP, 1K - - -

Bayesian 4 MP, 14K - - -

Bayesian 4 MP, 1M 38 2.21 17.19

EBGM 100 KP, 1K 2 3.24 -

EBGM 4 MP, 14K 748 4.92 151.96

EBGM 4 MP, 1M 748 4.91 152.42

External memory bandwidth was analyzed in Chapter 6. ITRS and JEDEC project

memory bandwidth of 23.46 GB/s in 2019 and 28.80 GB/s in 2022. The analysis in Chapter 6

showed that memory bandwidth did not create a bottleneck for the Eigenface and Bayesian 100

KP, 1K and 4 MP, 14K data sets, but that the 4 MP, 1M data set is memory bound. However,

using 9 memory banks in 2019 and 7 in 2022 was sufficient to reduce the data transfer time

below the two minute real-time goal and these memory banks are used for subsequent analysis.

The EBGM benchmark was not memory bound for any of the data sets and no additional

memory banks are required.

 124

The prior chapters independently analyzed key components that can limit performance of

the face identification benchmarks and did not consider interaction between the components. In

this chapter, the components will be integrated into an SOC system architecture and the

performance of this system architecture will be analyzed to determine if real-time performance

can be achieved.

Two system models for SOC system architectures will be developed. Both models will

consist of an SOC and an external memory block as shown in Figure 42, but the interface

between external memory and the SOC will be different for the two architectures. The first or

“basic” architecture will contain a single channel between external memory and the SOC. In this

model, only one processor will have direct access to external memory. In the second or

“multichannel” model, multiple external memory banks will be provided, and each memory bank

will be interfaced to one processor. In this model, given n memory banks, n processors will each

have direct access to memory. The multichannel model will be used for the benchmarks that

require multiple memory banks based on the Chapter 6 analysis, and the basic model will be

used for benchmarks that do not require multiple memory banks.

Figure 42: System Architecture Model.

Given an SOC model, this chapter will explore how the benchmarks can be mapped to

the SOC in a way that improves performance while keeping within the constraints of on-chip

 125

memory capacity, number of processing elements, and limitations of on-chip communication. A

benchmark mapping analysis method will be developed to quantify the impact of mapping, on-

chip memory capacity, memory transfer time, the number of PEs, and on-chip communication on

performance. An analysis method to evaluate performance will be developed and this analysis

method will include a graphical representation of the mapping that will expose communication

operations and transfers between external memory and the SOC. An estimation method to

quantify the time required for each component of system performance will also be developed.

This estimation method will be used in conjunction with the previously developed computational

analysis and memory bandwidth analysis methods to estimate performance for the benchmark

mapping to the SOC system model and therefore provide a method to estimate overall system

performance for the parallel SOC.

7.1 PARALLEL SOC SYSTEM MODEL

System models for a parallel SOC architecture are needed to support development of a method to

estimate system performance. Performance of a benchmark mapped to a parallel SOC is

impacted by the time required for data movement, computation, and communication. Estimation

of the time required for each of these components requires definition of the characteristics of the

components as well as the architecture. For example, to estimate communication performance,

the message type, network topology, routing method, latency, and bandwidth must be determined

and a set of equations to estimate the communication time based on these characteristics is

 126

required. Two system models for parallel SOC architectures will be developed in this section to

specify the characteristics required to estimate performance for the SOCs.

Two parallel SOC models will be defined. The first or “basic” system architecture

consists of one SOC and one external memory system as shown in Figure 43. The external

memory provides main storage for large data sets and is characterized by memory bandwidth and

storage capacity. The external memory bandwidth was analyzed in Chapter 6 and the bandwidth

estimates and time estimation method from that chapter will be used to estimate external memory

transfer time for the system model.

Figure 43: Basic parallel SOC system model.

The “multichannel” system architecture provides multiple channels to access multiple

memory banks as shown in Figure 44. The Chapter 6 analysis showed that some Eigenface and

 127

Bayesian benchmarks are memory bandwidth limited and require more than one external

memory bank to avoid a bottleneck. The multichannel model incorporates the multiple memory

banks by connecting each external memory bank to a different processor. As in the basic model,

only one processor can directly access a particular external memory bank and therefore each

processor can transfer only one data word at a time. However, the several processors can

operation in parallel and transfer multiple data words simultaneously, on word per processor, and

thus increase the total memory bandwidth for the SOC.

Figure 44: Multichannel parallel SOC system model.

 128

7.1.1 Processor Model

Both the basic and multichannel SOC models contain multiple processors as shown in

Figure 43 and Figure 44. Each processor block contains one Processing Element (PE), a

hardware element that executes a stream of instructions [122], and one Local Memory that can

be directly accessed only by the one PE within the block. Each PE is an improved x86 processor

that executes the instructions defined by the improved ISA developed in Chapter 5 and the

average CPI quantifies the number of cycles required to execute each instruction. The execution

time estimation method described in Chapter 4 will be used to estimate execution time for each

PE in the SOC model.

The minimum number of cycles required to execute a process in parallel on multiple PEs,

ParallelC , is calculated by dividing the single PE execution cycle count, SequentialC , by the number

of parallel PEs, P, expressed in equation form as Parallel SequentialC C P . This calculation

assumes that the register file and Local Memory can provide data to the PE as required to avoid

stalling.

The processor blocks in both the basic and multichannel SOC models contain one Local

Memory connected to only one PE. This memory configuration in the SOC models therefore

forms a distributed memory model [21], where each PE has access its own Local Memory but

cannot directly access the Local Memory of any other PE.

The storage capacity of Local Memory is a function of the technology used for the SOC.

One model in the ITRS projects a constant per PE storage capacity for Local Memory for the

range of future technology projections [123]. This model accounts for increasing transistor

density by increasing the number of PEs on the SOC rather than increasing the Local Memory

 129

size for each PE. As a result, the memory per PE is constant but the total on-chip memory grows

from 1.45 GB of on-chip memory in the 2019 thousand PE SOC to 2.9 GB in the 2022 two

thousand PE SOC. For the basic and multichannel SOC models, Local Memory capacity is set to

1.45 GB for the 2019 technology point and 2.9 GB for the 2022 technology point as projected by

the ITRS [123] and as shown in Table 14.

Table 14: Local Memory Capacity.

TECHNOLOGY POINT NUMBER OF PES LOCAL MEMORY PER PE TOTAL SOC MEMORY

2019 1,000 1.45 MB 1.45 GB

2022 2,000 1.45 MB 2.90 GB

2022 20 356.86 MB 7.14 GB

The parallel SOC system models being specified for this research assumes PEs can be

traded for memory. If a benchmark mapping does not require all 1,000 PEs for the 2019

technology point or 2,000 PEs for the 2022 technology point, the unused PEs can be exchanged

for increased Local Memory storage capacity as shown in Table 14. The ITRS estimates 40

million transistors are required to implement one general purpose PE and that dynamic memory

requires chip area equivalent to two transistors per bit [123]. Therefore the chip area required for

one PE can be exchanged for (40 x 10
6
)/2=20 x 10

6
 bits of dynamic memory or 2.5 MB. In

addition, the 1.45 MB of local memory previously allocated to the PE that was exchanged is no

longer used and therefore is also available for allocation to other PEs. The total additional

memory provided by exchanging one PE for memory is therefore 1.45 MB+2.5 MB or 3.95 MB.

Dividing the total on-chip memory capacity by the number of PEs on the chip calculates

the Local Memory storage capacity per PE. For example, if a mapping requires 1,000 PEs and

the 2,000 PE SOC projected for 2022 is used, the 1,000 PEs on the 2022 SOC that are not needed

 130

for the mapping could be exchanged for 1,000*3.95 MB=3,950 MB of total additional memory

on the SOC, adding 3,950 MB/1,000 = 3.95 MB of Local Memory for each PE for a total Local

Memory of 5.4 MB per PE.

7.1.2 External Memory Model

The basic SOC model has a single external memory bank that interfaces only to PE0 as shown in

Figure 43. When another PE needs to move data between its own Local Memory and external

memory, it sends a message to PE0 to request the transfer. If the request is an external memory

read, PE0 first transfers the data to its own Local Memory, then sends a message containing the

data to the destination PE. If the request is an external memory write, PE0 receives a message

containing the data from the source PE, stores the data in its own Local Memory, and then moves

the data to the external memory.

The time to transfer data between PE0 and the external memory bank is characterized by

the memory bandwidth and can be estimated with the analysis method developed in Chapter 6.

Memory bandwidth is assumed to increase with technology and time and the 2019 bandwidth of

23.46 GB/s and 2022 bandwidth of 28.80 GB/s determined in Chapter 6 from ITRS projections

[123] is used to estimate data transfer time.

A single memory channel creates a bottleneck for some benchmarks. The Chapter 6

analysis showed that the Eigenface and Bayesian benchmarks are memory bound for some data

sets and require additional memory banks. Multiple memory banks could be connected to PE0 to

increase the average memory bandwidth. As in the basic SOC model, in this model PE0 would

move data between external memory and its own Local Memory and communicate the data with

 131

other PEs over the communication network. However, the average communication bandwidth

would be less than the accelerated memory bandwidth and would likely create a communication

bottleneck. While the communication performance could be increased to mitigate the new

bottleneck, the additional resources required in addition to the resources required to improve the

memory bandwidth suggests this approach would be inefficient.

Interfacing each memory bank to a separate PE could improve performance while

minimizing the requirements for additional resources. If the added memory banks are interfaced

to separate PEs, those PEs can access the external memory directly without the need to

communicate messages over the network, thus avoiding the bottleneck of the communication

bandwidth. Figure 44 shows the multichannel SOC architecture with multiple memory banks

and multiple channels. This example shows the addition of (k+1) memory banks, and each bank

interfaces to one PE in the range of PE0 to PEk. Although the memory banks are shown as

separate blocks of memory, this model assumes that coherence is maintained independently and

does not increase the workload of the PEs.

The performance analysis method will model the multiple memory banks as a single

higher bandwidth channel. As in the Chapter 6 analysis method, the additional memory channels

are modeled by multiplying the memory bandwidth for a single channel by the total number of

channels to calculate the total memory bandwidth. The data transfer time can then be estimated

by dividing the number of data words transferred by the total memory bandwidth, effectively

modeling the multiple memory banks as a single, higher bandwidth external memory. The

bandwidth for each benchmark and data set as calculated in Chapter 6 is summarized in Table

15.

 132

Table 15: Benchmark Memory Bandwidth Requirements.

BENCHMARK
NUMBER OF

BANKS IN 2019
NUMBER OF

BANKS IN 2022
2019 BANDWIDTH

(GB/S)
2022 BANDWIDTH

(GB/S)

Eigenface 100 KP, 1K 1 1 23.5 28.8

Eigenface 4 MP, 14K 1 1 23.5 28.8

Eigenface 4 MP, 1M 9 7 211.1 201.6

Bayesian 100 KP, 1K 1 1 23.5 28.8

Bayesian 4 MP, 14K 1 1 23.5 28.8

Bayesian 4 MP, 1M 9 7 211.1 201.6

EBGM 100 KP, 1K 1 1 23.5 28.8

EBGM 4 MP, 14K 1 1 23.5 28.8

EBGM 4 MP, 1M 1 1 23.5 28.8

Two operations are defined to access external memory, Localize and Globalize. The

Localize operation transfers data from the external memory to the Local Memory of the PE

connected to that external memory bank. Conversely, the Globalize operations transfers data

from the Local Memory of the PE connected to the memory bank to the off-chip memory bank

[122]. These two operations are the only operations that can be used to directly access external

memory.

The size of the Local Memory associated with PE0 in the basic model can impose a

performance constraint. Since only PE0 has access to external memory in the basic system

model, all data must first be loaded to the Local Memory associated with PE0, then transferred to

other PEs with communication operations. If a large block of data such as the U
T
 matrix for the

Eigenface benchmark is Localized on PE0 first and then scattered to the other PEs, PE0 will

require greater Local Memory capacity than the other PEs since it has to store the entire matrix.

Alternatively, if one segment of U
T
 is loaded, then transferred to the target PE, and this process

is repeated for each PE, the memory requirement for PE0 is the same as the other PEs. Thus, the

 133

benchmark mapping for the basic SOC system model will affect the required capacity for PE0

Local Memory, and Local Memory capacity must be considered when designing a mapping.

7.1.3 Communication Model

For both the basic and multichannel SOC models, the communication network is defined as a 2D

mesh topology interconnecting the PEs. The PEs are configured as a square grid with P rows

and P columns, where P is the total number of PEs on the SOC. The 2D mesh is selected as

the network topology because it maps well to the two dimensions of the SOC and is considered

to be one of the most efficient topologies for on-chip networks [124].

The PEs communicate over the network using standard MPI collective communication

messages [125]. The MPI collective communication standard defines a complete set of messages

that efficiently support communication of data and control information between PEs. These

messages can be used to transfer data between PEs with external memory access and the other

PEs as well as to exchange synchronization and control information between PEs.

The time required to communicate a message on the network is estimated using Chan’s

model for collective on-chip communication [27]. The time required to communicate a message

is based on the latency, the time required to initiate a message, and the bandwidth, the rate at

which each data word is communicated. In Chan’s model, the symbol α represents the latency

while the symbol β represents the time to transfer one byte, the inverse of bandwidth [27].

Latency and bandwidth were estimated for the 2019 and 2022 SOCs based on the Tile64

SOC [18] and ITRS projections [123] as shown in Table 16. The 2D mesh communication

network on the Tile64 has a latency of 45.5 ns and a bandwidth of 325 MB/s and was produced

 134

in 2009. The ITRS projects an increase of 1.154 times per year, and scaling the 2009 latency of

the TILE64 by the ITRS growth rate projects latency of 10.85 ns in 2019 and 7.06 ns in 2022.

In the same way, bandwidth is projected as 1.36 GB/s in 2019 and 5.70 GB/s in 2022.

Table 16: On-chip Communication Latency and Bandwidth.

Six types of messages are defined for the SOC system models as shown in Figure 45.

The BCAST message sends the same block of data to multiple destination PEs. The SCATTER

message divides the data block into equal size segments and sends one segment to each

destination PE. The GATHER message receives equal size segments from each PE and

combines the segments to form one block of data. The REDUCE message receives a data word

from each PE and combines the data with a specified operation such as SUM, MIN, or MAX.

The SUM operation adds the data words, the MIN operation selects the smallest data word, and

the MAX operation selects the largest data word. The SEND message transmits a point-to-point

message from the transmitting PE and the RECV message receives the message on the

destination PE.

Communication Tile64 2009 ITRS Projection 2019 ITRS Projection 2022

Latency α 7.58E-10 1.81E-10 1.18E-10 minutes

Data Time β 5.13E-11 1.22E-11 2.92E-12 minutes/B

Data Rate (Bandwidth) 0.33 1.36 5.70 GB/s

 135

 COLLECTIVE COMMUNICATION EQUATIONS [27]

COMMUNICATION

OPERATIONS [125] DESCRIPTION

SMALL MESSAGE LONG MESSAGE

STARTUP TIME

(LATENCY)

TRANSFER TIME

FOR N WORDS

(BANDWIDTH)

STARTUP TIME

(LATENCY)

TRANSFER

TIME FOR N

WORDS

(BANDWIDTH)

BCAST(data, size,

number PE)

Send data to

each PE

Ceiling[logP]3α Ceiling[logP](nβ) 2α+

Ceiling[logP](3α)

[2(P-1)/P]nβ

SCATTER(data,
size, number PEs)

Send data
segment to

each PE

Ceiling[logP](3α) [(P-1)/P]nβ 3(P-1)α [(P-1)/P]nβ

GATHER(data,
segment size,

number PEs)

Retrieve data
segment from

each PE

Ceiling[logP](3α) [(P-1)/P]nβ 3(P-1)α [(P-1)/P]nβ

REDUCE(OP,

data, segment size,
number PEs)

Retrieve data

segment from
each PE,

reduce to one

output

Ceiling[logP](3α) Ceiling[logP](nβ) 2α+

Ceiling[logP](3α)

[2(P-1)/P]nβ

SEND(data, size,

receiving PE)

Send one

message

α nβ α nβ

RECV(data, size,

send PE)

Receive

message

α nβ α nβ

Figure 45: Collective on-chip communication messages.

 136

7.2 MAPPING ANALYSIS METHOD

Given a mapping of a face identification benchmark to either the basic or multichannel parallel

SOC architectures, the performance of the mapping and the benchmark will be analyzed with the

following process:

Step 1: Express the parallel mapping. The analysis method described in this chapter analyzes

the performance of a particular mapping of a particular face identification benchmark to the

improved parallel SOC architecture. The first step in the analysis process is to express the

mapping as an extended UML diagram and then use the UML diagram to amend the benchmark

code to include memory transfers and on-chip communications.

The standard UML Activity diagram [126, 127] expresses control flow of a process as

shown in Figure 46. The black solid circle at the top of the diagram represents the entry point of

the process and the similar circle enclosed within a second circle shown at the bottom of the

figure represents the exit point of the process. Operations are represented by Action blocks,

rectangles with rounded corners containing a text description of the operation or task performed.

The bold horizontal bars represent Fork, a control flow operation to separate one process into

multiple processes, and Join, a control flow operation that combines multiple processes into one

process. The thin lines with arrows drawn between Action symbols show the control flow

between Actions. The diamond symbol represents a decision block and therefore shows two

control flow lines leaving the symbol, one for each binary decision outcome. In this example,

 137

the control flow from Action D goes to the decision block, which either continues with Action A

or exits the process based on the outcome of the decision.

Figure 46: UML Activity diagram.

The standard UML diagram can be extended to explicitly show external memory

transfers and on-chip communication as shown in Figure 47. Separate Action blocks are added

to show the external memory transfers as Localize and Globalize operations. For example, in

Figure 47 the first block labeled “Localize(vector x[N]” indicates that N elements of vector x

will be transferred from external memory to on-chip Local Memory. The last block labeled

“Globalize vector y_local[N]” indicates that the N elements of the vector y_local will be

transferred from on-chip Local Memory to external memory.

 138

Figure 47: The extended UML Activity diagram.

The extended UML diagram adds labels to show on-chip communication operations to

the Fork and Join bars defined in the standard UML Activity diagram. Figure 47 shows that the

fork bar near the top of the diagram is labeled “Fork” and “SCATTER(x_local[N],N/P,P)” on the

left side. The “Fork” label indicates the process will split into multiple processes, and

“SCATTER” label indicates that [N] elements of the vector x_local will be segmented into N/P

element groups and each of P PEs will receive on segment.

 139

The join bar at the bottom of Figure 47 is similarly labeled to show the “Join” and also

“GATHER(y_local[N],N/P,P)” to indicate that P segments, each with N/P elements, of the [N]

element vector y_local are collected from P PEs.

The extended UML diagram shows parallel processes as a horizontal row of Action

blocks as shown in Figure 47. Standard UML does not provide a notation to indicate a large

number of parallel processes in an Activity diagram, so the ellipsis notation is added as an

obvious extension to indicate many parallel processes as shown in Figure 47. Action blocks for

the first and last parallel process are explicitly shown, and an ellipsis labeled “P PEs” between

the first and last Action blocks indicates that there are P Action blocks and that these processes

are performed in parallel on P PEs.

The explicit data movement and on-chip communication operations shown in the

extended UML diagram are then added to the benchmark code. Figure 48 shows example

pseudo code for the extended UML diagram shown in Figure 47. Line 1 indicates that lines 2

through 4 are executed only on PE0. The Localize operation in the first block in the extended

UML diagram is shown on line 3 in the pseudo code, and line 4 shows the SCATTER operation.

The PARDO on line 5 indicates that lines 6 through 8 are executed in parallel on P PEs. Line 5

therefore corresponds to the fork bar in Figure 47 and lines 7 and 8 correspond to the parallel

Action blocks in the UML diagram. Line 7 iterates through the elements of x_local, which have

indices 1 through N/P on each PE. While these indexes are the same on each PE, the segment of

x_local that was scattered to each processor is a different segment and therefore the data

accessed by the index on each PE is different. Line 8 multiplies the element of x_local by two

and stores the result to y_local.

 140

The Join is shown implicitly in Figure 48 by the end of the PARDO loop. Line 9 causes

only PE0 to execute lines 10 and 11. Line 10 corresponds to the GATHER label on the join bar

in Figure 47 and combines the segments of y_local received from each PE into the vector

y_local[]. Line 10 then transfers y_local back to external memory as the vector y.

Figure 48: Data movement and communication operations added to the code.

Step 2: Estimate required memory capacity. The required on-chip memory capacity is

calculated based on the largest set of data that must reside on-chip simultaneously. The

benchmarks use multiple data structures but a particular mapping may not require all the data to

be in on-chip memory simultaneously. For example, to subtract the mean image from the probe

image in the Eigenface benchmark requires both the probe image and the mean image input data

to be on-chip simultaneously, and the mean-subtracted probe vector that will be generated as an

output will be stored on-chip as well. However, the subspace matrix, U
T
, is not required for the

mean subtraction process and therefore does not have to be on-chip simultaneously.

The basic SOC model requires all data to be moved through PE0 and PE0 may therefore

require larger Local Memory storage capacity than the other PEs. The storage capacity for PE0

1

2

3

4

5 for p=1 to P PARDO

6

7 for each element j in N/P

8

9

10 GATHER(y_local[0:N-1],N/P, P)

11 y[0:N-1]=Globalize(y_local[0:N-1])

If PE0

x_local[0:N-1]=Localize(x[0:N-1])

y_local[j]=2*x_local[j]

// transfer x to PE0 Local Memory

SCATTER(x_local[0:N-1], N/P, P)

// iterate through the N/P elements on processor p

If PE0

 141

must therefore be sufficient to temporarily store all the data that will be transferred to other PEs

as well as the data required for PE0. For example, if PE0 is loading the Eigenface matrix U
T

from external memory in preparation for distributing it to the other PEs, it will be necessary to

store the entire Eigenface matrix on PE0. If the all of the data will be broadcast to the other PEs,

every PE will receive the same volume of data and the storage capacity requirement for PE0 does

not increase. However, if the matrix is scattered to the other PEs, each PE will receive a segment

of the matrix but PE0 will require enough Local Memory capacity to store the entire matrix.

Therefore, the code developed in Step 1 must be analyzed to determine the largest volume of

data that must be on-chip simultaneously for both PE0 and the other PEs, and these data volumes

set the requirement for Local Memory capacity for the SOC.

Step 3: Estimate data movement time. The data movement time can then be estimated using

the memory analysis method developed in Chapter 6 and the amended benchmark code. For

each Localize and Globalize operation added to the code, the total number of bytes transferred

can be calculated based on the size of the data structure. Given a data structure containing B

bytes of data and a memory bank with bandwidth 1  , the time required to transfer that data

structure is the number of bytes divided by the bandwidth, TransferT B as shown in Chapter 6.

Step 4: Estimate computation time. The number of cycles required for parallel computation is

estimated based on the sequential computation estimation results developed in Chapter 4 and

improved with the ISA speedup developed in Chapter 5. As discussed in Section 7.1.1, the

 142

number of cycles required for parallel execution is the number of cycles for sequential execution

on one improved PE divided by the number of PEs.

Step 5: Estimate on-chip communication time. The number of cycles required for each

communication operation is estimated using Chan’s communication model as described in

Section 7.1.3.

Step 6: Estimate performance. The components of execution time were calculated in the prior

steps. The required storage capacity for Local Memory was estimated in Step 2, and Step 3

estimated the time required to move data on and off the chip. Step 4 calculated the time for both

sequential and parallel computation and Step 5 estimated the time for the required

communication operations. These results are accumulated in this step to calculate the execution

time for the current mapping of the algorithm.

The number of cycles required for external memory transfers, computation, and on-chip

communication are summed to estimate the total number of cycles for the parallel mapping. The

percentage of total cycles required for data movement, computation, and on-chip communication

is then calculated and expressed as a percentage per line of pseudo code and as a percentage for

each component operation, including external memory transfers, computation, and

communication.

The number of cycles is converted to minutes to evaluate whether the performance is

real-time. If real-time identification is not achieved with a particular mapping, the benchmark

can be re-mapped to mitigate the bottleneck operation and the performance can be re-estimated.

 143

7.3 EIGENFACE MAPPING ANALYSIS

The analysis in Chapter 4 showed that an overall speedup of 38 times is required to make the

Eigenface 4 MP, 1M benchmark real-time. The ISA speedup achieved with a single set of

function units provided a speedup of 2.5 times, reducing the additional speedup requirement to

15.2 times for this data set. The analysis in Chapter 6 showed that the bandwidth of external

memory also constrains performance for this data set, so nine memory banks were added for the

2019 technology point and seven memory banks were added for the 2022 technology point to

mitigate this bottleneck. The goal in this section is therefore to determine a mapping that will

provide the remaining 15.2 times speedup required to make this benchmark real-time.

The initial mapping for the Eigenface benchmark is shown in Figure 49. This mapping

broadcasts the projected probe vector, p_bar, to each PE core and scatters M’/P rows of subspace

matrix, U
T
, across the PE cores, where P is the number of PEs on the SOC. Each PE calculates

M’/P elements of the projected probe vector p_curl in parallel, and the elements are gathered on

one PE to form the p_curl vector.

 144

Figure 49: Eigenface benchmark row-column mapping.

 145

The projected probe vector, p_curl, is then broadcast to the P PEs and the matrix of

projected gallery members, Z, is scattered to the P PEs. Each PE calculates the vector distance

between the probe and each of G/P gallery members, producing G/P distance values d_sumg.

The minimum d_sum value from all of the PE is calculated on one PE with a Reduce operation

and this d_sum value is the gallery member that best matches the probe.

Given this mapping, the next step is to determine the required Local Memory capacity. A

15.2 times computational speedup is required, so 20 PEs should be sufficient to provide this

speedup and the additional PEs can be traded for memory. Estimating for the 2,000 PE 2022

technology point shows the total on-chip memory capacity is 7,137.2 MB as shown in Figure 50.

However, this mapping requires on-chip memory capacity of 18,583.15 MB, orders of magnitude

greater than the SOC memory capacity. Therefore, this mapping is not viable and another

mapping must be developed. To be feasible, the new mapping will have to segment the data into

smaller units that can fit in the on-chip memory capacity.

Figure 50: Memory capacity analysis, Eigenface row-column mapping.

Data Read or Write

Data Volume

Expressed

Symbolically Volume (bytes)

Required

On-chip

Memory

(bytes)

Probe image p Read N 3.10E+07

Mean image a Read N 3.10E+07

Subpace matrix U Read M'N 1.86E+13

Projected probe image p_curl Write M' 4.80E+06 1.86E+13

Encoded gallery set Read GM' 4.80E+12

Projected probe image p_curl Read M' 4.80E+06

Eigenvalue constant vector eigvalue[] Read M' 4.80E+06 4.80E+12

1.86E+07 MB

356.86 MB

Required SOC Memory Capacity

Available SOC Memory Capacity

4 MP, 1M

Encoding

Comparison

 146

A mapping that uses the on-chip memory resources efficiently is needed to practically

map the Eigenface benchmark to the parallel SOC. The revised mapping shown in Figure 51

segments the subspace matrix and gallery set matrix to enable them to fit within the on-chip

memory. The projection process divides U
T
 into S segments by rows and distributes groups of R

rows across the PEs. Each PE calculates the elements of p_curl that correspond to the rows of

U
T
 stored in the Local Memory for that PE, then globalizes the result to consolidate the p_curl

segments in external memory. The comparison process is performed in a similar way, with C

columns of Z distributed to each PE and one set of C Mahalinobis distances calculated on each

PE.

The memory capacity analysis for this mapping is shown in Figure 52. This analysis

confirms that this mapping will fit in the on-chip memory when 20 PEs are used. In addition,

this mapping uses the memory efficiently and uses 96% of the available memory, with the 4%

unused resulting from defining the segments in terms of multiples of the dimensions of U
T
.

The benchmark is next modified in a series of incremental revisions to add the explicit

data movement instructions and to parallelize the sequential code. Figure 53 shows the

Eigenface algorithm in equation form, as previously described in Chapter 4. The benchmark

pseudo code is shown in Figure 54 with loop index variables simplified to expose the numerical

values.

Lines 1 through 3 in Figure 54 express the probe projection process. Line 1 iterates

variable k through the M’ Eigenfaces, and M’ is 600,000 for the 4 MP, 1M benchmark data set.

Line 2 iterates variable j through the N=3.87 x 10
6
 image pixels and line 3 multiplies and

accumulates one probe projection coefficient, p_curl[k].

 147

Figure 51: Eigenface benchmark segment mapping.

 148

Figure 52: Memory requirements for Eigenface segment mapping.

 

 

 

EFId ,

1 =ConvertImageToVector

2 = // Subtract mean from probe pixels

3 = // Project probe inT

BestMatch 



I Z

p I

p p a

p U p

   

1: ',

2 21 1
1 1 1, ' ' ',

1: ',

to subspace

4 For each encoded gallery face in

5

6 Keep best match and corresponding

M g

g g M M M g

g M g

d p Z p Z

d

      

Z Z

Z

Figure 53: Eigenface algorithm in equation form.

Number of PEs 20

Projection Segment Size R 10

Gallery Segment Size C 72

Data Read or Write

Data Volume

Expressed

Symbolically Volume (bytes)

Required

On-chip

Memory

(bytes)

Mean subtracted probe p_bar Read M' 3.10E+07

Subpace matrix U segment Read RNP 6.19E+09

Projected probe image p_curl Write M' 4.80E+06 6.23E+09

Gallery Segment Read CM'P 6.91E+09

Projected probe image p_curl Read M' 4.80E+06

Eigenvalue constant vector eigvalue[] Read M' 4.80E+06 6.92E+09

 6,921.6 MB

7,137.2 MB

4 MP, 1M

Encoding

Comparison

Required SOC Memory Capacity

Available SOC Memory Capacity

 149

1 for k= 0 to M' -1

2 for j=0 to (N-1)

3 p_curl[k]=p_curl[k] + UT[k][j] * p_bar[j]

4 for g=0 to G-1

5 for k=0 to (M’-1)

6 d_sum[g]=d_sum + (Z[k][g] - p_curl[k]) * (Z[k][g] - p_curl[k]) * (const[k])

Figure 54: Eigenface benchmark code.

Lines 4 through 6 in Figure 54 express the comparison process. Line 4 iterates variable g

through the G gallery members, and G is one million for the 4 MP, 1M benchmark data set. Line

5 iterates through the M’ elements of the encoded probe vector and M’ is 600,000. Line 6

calculates and accumulates the Mahalinobis distance to generate a scalar difference value d_sum

for each probe gallery pair. As line 6 shows, the distance value is stored in a vector d_sum

which has G elements, representing one distance result for each probe-gallery pair.

As the initial mapping for the Eigenface benchmark showed, the on-chip local memory is

not large enough to store the entire subspace matrix, U
T
, or the entire gallery set, Z, on-chip at

one time. As a result, these matrices must be segmented into pieces that can fit in on-chip

memory. Figure 55 shows the sequential pseudo code revisions to perform the probe projection

and comparison processes on S segments of U
T

and Z. Note that the lines in the pseudo code are

renumbered for clarity and do not directly match up with the line numbers in the prior figures.

The pseudo code in Figure 55 includes additional loops on lines 3 and 11 to iterate loop

index s through the S segments of the data structures. Lines 1 through 8 contain the probe

projection process and correspond to lines 1 through 3 in Figure 54. Line 1 calculates the

number of columns of UT that will fit in memory at one time, R. The number of segments S is

then the total number of rows in UT or M’ divided by the number of segments as shown on line

2. Line 3 is the newly added loop that iterates through the S segments. Line 4 calculates the

 150

lower index for the k iteration loop in line 6, k_min. The loop limits k_min and k_max will

differ for each segment S, since each segment contains a different range of data from the UT.

For example, if UT had five segments of 20 lines, the first segment would have index range 0 to

19, the indices for the second segment would range from 20 to 39, and so forth. The lower index

k_min and the upper index k_max, calculated in line 7, represent the index range for the s
th

segment. The range of the “for” loop in 6 is expressed with k_min and k_max, but the code

within the loop on lines 7 and 8 is identical to the code in Figure 54.

// UT has M’ rows and N columns

// Segment Size = number of rows of UT that can be stored in local memory

1 R = (LocalMemSize-M’-N)/(N)

// S=Number of segments = total number of rows/rows in segment

2 S = M’ / R

3 for s= 0 to (S-1)

4 k_min = s *(R)

5 k_max = (s+1)*(R) – 1

6 for k= k_min to k_max

7 for j=0 to (N-1)

8 p_curl[k] = p_curl[k] + UT[k][j] * p_bar[j];

// Z has M’ rows and G columns, segment across columns

// C=Number of columns of Z that can be stored in local memory

9 C = (LocalMemSize-2M’)/(M’)

// S=Number of segments = number of C columns

10 S = G / C

11 for s= 0 to S

12 g_min = s *(C)

13 g_max = (s+1)*(C) - 1

14 for g= g_min to g_max

15 for k=0 to (M’-1)

16 d_sum[g]=d_sum[g] + (Z[k][g] - p_curl[k]) * (Z[k][g] - p_curl[k]) * (const[k])

Figure 55: Sequential code with S segments.

The comparison process shown in lines 9 through 16 of Figure 55 corresponds to lines 4

through 6 in Figure 54. Line 11 iterates index variable s through the segments in the same

 151

manner as line 3 in the projection process. The segments of Z represent columns, and line 9

calculates segment size as C columns of Z, and line 10 calculates the number of segments, S.

Line 11 iterate through the segments, and lines 12 and 13 calculate g_min and g_max, the index

range for the current segment. Line 14 iterates k through this range, and the lines 15 and 16 are

again identical to the sequential code in Figure 54.

Another loop with index variable p is added to the probe projection process as line 3 in

Figure 56. This loop represents the forking of the process into P separate threads that could be

executed on P PEs. Lines 1 and 2 again calculate the segment size and number and are identical

to lines 1 and 2 in Figure 55. Line 3 shows the added loop that iterates P times. The number of

iterations in the next loop is now the produce of S and P, so the loop index range must be

calculated differently. Line 4 expresses the loop with index variable q, which iterates through

the number of segments on one PE. Line 5 calculates the new value of index s from the PE

number and segment index q. The remaining lines 6 through 10 are identical to the prior version.

Another loop is added to represent the forking of the comparison process as shown in

Figure 56. Lines 11 and 12 are again the same as the corresponding lines in the prior figure, and

line 13 indexes through the P PEs. Line 14 iterates through the segments on a particular PE, and

line 15 calculates index s in terms of the processor number p and segment index q. As with the

projection process, the remaining lines 16 through 20 are unchanged.

The last step in the parallelization process adds explicit data movement operations,

represented as Localize and Globalize operations in Figure 57. The code is again renumbered for

clarity, and the only changes between Figure 56 and Figure 57 are the addition of Localize,

Globalize, and Initialize instructions. The Initialize operation in line 8 reserves memory for the

variable p_curl_local. Line 9 Localizes the p_bar variable, transferring it from external memory

 152

to on-chip memory. As discussed previously, this benchmark is memory bound and memory

banks were added to overcome this bottleneck. Each added memory bank interfaces to a

different PE and each PE therefore has access to its own external memory bank.

// UT has M’ rows and N columns

// Segment Size = number of rows of UT that can be stored in local memory

1 R = (LocalMemSize-M’-N)/(N)

// S=Number of segments = total number of rows/rows in segment

2 S = M’ / R

3 for p=0 to P-1 PARDO

4 for q= 0 to (S/P – 1)

5 s = p*(S/P) + q

// s = 0 to S

6 k_min = s *(R)

7 k_max = (s+1)*(R) – 1

8 for k= k_min to k_max

9 for j=0 to (N-1)

10 p_curl[k] = p_curl[k] + UT[k][j] * p_bar[j];

// Z has M’ rows and G columns, segment across columns

// C=Number of columns of Z that can be stored in local memory

11 C = (LocalMemSize-2M’)/(M’)

// S=Number of segments = number of C columns

12 S = G / C

13 for p=0 to (P-1)

14 for q= 0 to (S/P-1)

// s = 0 to S

15 s = p*(S/P) + q

16 g_min = s *(C)

17 g_max = (s+1)*(C) – 1

18 for g=g_min to g_max

19 for k=0 to (M’-1)

20 d_sum[g]=d_sum[g] + (Z[k][g] - p_curl[k]) * (Z[k][g] - p_curl[k]) * (const[kj])

Figure 56: Sequential pseudo code with P PEs and S segments.

This architectural configuration achieves higher performance by allowing memory

accesses to be performed in parallel and also eliminates the communication time that would be

required to move the data from PE0 if there were only one memory bank. After a segment of

 153

p_curl_local is calculated, line 14 in Figure 57 performs a Globalize operation to transfer the

p_curl results back to the external system memory. In the same way, lines 22 through 25

initialize the result variable and localize the input variables for the comparison process, and line

29 globalizes the result back to external memory.

The computational analysis for the Eigenface segmented mapping is shown in Figure 58.

The memory analysis in Chapter 6 showed that this benchmark is memory bound and required

seven additional memory banks for the 2022 technology point. As discussed earlier, these

memory banks will be interfaced to separate PEs, and the mapping will therefore only support

one PE per memory bank and therefore seven PEs were selected for the initial analysis.

The computational analysis is Figure 58 shows that the benchmark with these changes

achieves identification time of 2.60 minutes. While this is near real-time, the real-time goal has

not been achieved. The analysis further shows that data movement still consumes 74.3% of the

total time and remains a bottleneck, but the computation time is still significant at 25.7%.

The Eigenface segment mapping does not achieve real-time performance with seven

memory banks as shown in Figure 58. However, the analysis shows that data movement requires

74.3% of the execution time and this mapping is still memory bound with seven memory banks.

Therefore, increasing the number of memory banks should improve performance to achieve rea-

time operation.

 154

// UT has M’ rows and N columns

// Segment Size = number of rows of UT that can be stored in local memory

1 R = (LocalMemSize-M’-N)/(N)

// S=Number of segments = total number of rows/rows in segment

2 S = M’ / R

3 for p=0 to P-1 PARDO

4 for q= 0 to (S/P – 1)

5 s = p*(S/P) + q;

// s = 0 to S

6 k_min = s *(R)

7 k_max = (s+1)*(R) – 1

8 Initialize(p_curl_local[0:M’/P-1])

9 p_bar_local [0:N-1]= Localize (p_bar[0:N-1]);

10 UT_local[k_min: k_max] [0:N-1] = Localize (UT[k_min: k_max] [0:N-1]);

11 for k= k_min to k_max

12 for j=0 to (N-1)

13 p_curl_local[k] = p_curl_local[k] + UT_local[k][j] * p_bar_local[j];

14 p_curl[k_min:k_max]=Globalize(p_curl_local[k_min:k_max]

// Z has M’ rows and G columns, segment across columns

// C=Number of columns of Z that can be stored in local memory

15 C = (LocalMemSize-2M’)/(M’)

// S=Number of segments = number of C columns

16 S = G / C

17 for p=0 to (P-1)

18 for q= 0 to (S/P-1)

// s = 0 to S

19 s = p*(S/P) + q

20 g_min = s *(C)

21 g_max = (s+1)*(C) – 1

22 Initialize(d_sum_local[1:G/P])

23 p_curl_local [0:M’-1]= Localize (p_curl[0:M’-1]);

24 const [0:M’-1]= Localize (const[0:M’-1]);

25 Z_local[0:M’-1][g_min:g_max]=Localize(Z[0:M’-1][g_min:g_max]

26 for g=g_min to g_max

27 for k=0 to (M’-1)

28 d_sum[g]=d_sum[g]+ (Z[k][g] - p_curl[k]) * (Z[k][g] - p_curl[k]) * const[kj])

29 d_sum[g_min:g_max]=Globalize(d_sum_local[g_min:g_max])

Figure 57: Parallel code with explicit data movement.

 155

Figure 58: Eigenface benchmark segment mapping analysis.

L
a
te

n
c
y

B
a
n

d
w

id
th

T
o
ta

l
P

e
r
c
e
n

ta
g

e

R
1
=

(L
o

c
a
lM

e
m

S
iz

e
-M

'-
N

)/
N

S
=

M
'/
R

1 s
=

p
*

(S
/P

)+
q

3
.1

0
E

+
0
7

3
.1

0
E

+
0
7

7
2
.5

6
E

-0
6

0
.0

0
<

0
.0

1
%

1
.8

6
E

+
1
3

9
.6

0
E

+
0
8

7
1
.5

4
E

+
0
0

1
.5

4
5
9
.0

%

p
_

c
u

rl
_

lo
c
a
l[

k
]

=
 p

_
c
u

rl
_

lo
c
a
l[

k
]

+
 U

[k
][

j]
 *

 p
_

b
a
r_

lo
c
a
l[

j]
;

3
.8

7
E

+
1
2

7
4
.3

4
E

-0
1

0
.4

3
1
6
.7

%

4
.8

0
E

+
0
6

7
3
.9

7
E

-0
7

0
.0

0
<

0
.0

1
%

4
.8

0
E

+
0
6

4
.8

0
E

+
0
6

7
3
.9

7
E

-0
7

0
.0

0
<

0
.0

1
%

4
.8

0
E

+
0
6

4
.8

0
E

+
0
6

7
3
.9

7
E

-0
7

0
.0

0
<

0
.0

1
%

4
.8

0
E

+
1
2

1
.0

1
E

+
0
9

7
3
.9

7
E

-0
1

0
.4

0
1
5
.2

%

d
_

s
u

m
_

lo
c
a
l[

g
]=

d
_

s
u

m
_

lo
c
a
l[

g
]

+

 (

Z
_

lo
c
a
l[

j]
[g

]
-

p
_

c
u

rl
_

lo
c
a
l[

j]
)2

 *
 (

c
o

n
s
t[

j]
)

2
.1

0
E

+
1
2

7
2
.3

5
E

-0
1

0
.2

4
9
.0

%

8
.0

0
E

+
0
6

7
6
.6

1
E

-0
7

0
.0

0
<

0
.0

1
%

T
o
ta

ls
 (

m
in

u
te

s
)

0
.6

7
1
.9

3
2
.6

0
1
0
0
.0

%

P
e
r
c
e
n

ta
g

e
 T

im
e

2
5
.7

%
7
4
.3

%
1
0
0
.0

%

fo
r

p
=

0
 t

o
 P

-1
 P

A
R

D
O

k
_

m
in

 =
s
*

(R
1
)

k
_

m
a
x

=
 (

s
+

1
)*

(R
1
)-

1

In
it

ia
li
ze

 (
p

_
c
u

rl
_

lo
c
a
l[

1
:N

])
;

2
D

 M
e
s
h

 T
o
p
o
lo

g
y

C
o
m

m
u

n
ic

a
ti

o
n

C
o
m

p
u

ta
ti

o
n

C
y
c
le

s
 P

e
r

li
n

e

T
o
ta

l

N
u

m
b
e
r

o
f

B
y
te

s

N
u

m
b
e
r
 o

f

B
y
te

s
 p

e
r

P
E

N
u

m
b
e
r

o
f

P
E

s

2
0

2
2

C
o
m

p
u

ta
ti

o
n

T
im

e

(m
in

u
te

s
)

2
0

2
2

M
e
m

o
r
y

T
im

e

(m
in

u
te

s
)

p
_

b
a
r_

lo
c
a
l
[0

:N
-1

]=
 L

o
c
a
li
ze

 (
p

_
b

a
r_

lo
c
a
l
[0

:N
-1

])
;

U
T

_
lo

c
a
l[

k
_

m
in

:
k
_

m
a
x]

[0
:N

-1
]=

 L
o

c
a
li
ze

 (
U

T
[k

_
m

in
:
k
_

m
a
x]

[0
:N

-1
])

;

fo
r

k
=

 k
_

m
in

 t
o

 k
_

m
a
x

fo
r

j=
0
 t

o
 (

N
-1

)

fo
r

q
 =

 0
 t

o
 S

/P
-1

d
_

s
u

m
[g

_
m

in
:g

_
m

a
x]

=
G

lo
b

a
li
ze

(d
_

s
u

m
_

lo
c
a
l[

g
_

m
in

:g
_

m
a
x]

)

p
_

c
u

rl
[k

_
m

in
:k

_
m

a
x]

=
G

lo
b

a
li
ze

(p
_

c
u

rl
_

lo
c
a
l[

k
_

m
in

:k
_

m
a
x]

p
_

c
u

rl
_

lo
c
a
l
[0

:M
’-

1
]=

 L
o

c
a
li
ze

 (
p

_
c
u

rl
[0

:M
’-

1
])

c
o

n
s
t

[0
:M

’-
1
]=

 L
o

c
a
li
ze

 (
c
o

n
s
t[

0
:M

’-
1
])

;

Z
_

lo
c
a
l[

1
:M

’]
[g

_
m

in
:g

_
m

a
x]

=
L

o
c
a
li
ze

(Z
[1

:M
’]

[g
_

m
in

:g
_

m
a
x]

fo
r

g
=

g
_

m
in

 t
o

 g
_

m
a
x

fo
r

j=
0
 t

o
 (

M
’-

1
)

fo
r

q
=

 0
 t

o
 S

/P
-1

s
 =

 p
*

(S
/P

)
+

 q
;

g
_

m
a
x=

(s
+

1
)*

R
2
-1

g
_

m
in

=
s
*

R
2

In
it

ia
li
ze

(d
_

s
u

m
_

lo
c
a
l[

1
:G

/P
])

R
2
 =

 (
L

o
c
a
lM

e
m

S
iz

e
-2

M
’)

/(
M

’)

S
 =

 G
 /

R
2

S
e
g

S
iz

e
 =

 R
2

fo
r

p
=

0
 t

o
 P

-1
 P

A
R

D
O

 156

Figure 58 shows that execution time is 2.6 minutes with seven memory banks and that an

additional 1.3 times speedup is required. Given that the mapping is memory bound, increasing

the number of memory banks should provide a proportional speedup. Scaling the seven memory

banks by the 1.3 speedup required shows that 9.1 memory banks are required, and rounding up to

an integer value shows that 10 memory banks should resolved this bottleneck.

The analysis of the segmented mapping with ten memory banks and ten PEs is shown in

Figure 59. As expected, this mapping improves performance enough to achieve real-time

identification of 1.83 minutes.

 157

Figure 59: Eigenface segment mapping analysis with ten memory banks and ten PEs.

L
a
te

n
c
y

B
a
n

d
w

id
th

T
o
ta

l
P

e
r
c
e
n

ta
g

e

R
1
=

(L
o

c
a
lM

e
m

S
iz

e
-M

'-
N

)/
N

S
=

M
'/
R

1 s
=

p
*

(S
/P

)+
q

3
.1

0
E

+
0
7

3
.1

0
E

+
0
7

1
0

1
.7

9
E

-0
6

0
.0

0
<

0
.0

1
%

1
.8

6
E

+
1
3

6
.5

0
E

+
0
8

1
0

1
.0

8
E

+
0
0

1
.0

8
5
9
.0

%

p
_

c
u

rl
_

lo
c
a
l[

k
]

=
 p

_
c
u

rl
_

lo
c
a
l[

k
]

+
 U

[k
][

j]
 *

 p
_

b
a
r_

lo
c
a
l[

j]
;

3
.8

7
E

+
1
2

1
0

3
.0

4
E

-0
1

0
.3

0
1
6
.7

%

4
.8

0
E

+
0
6

1
0

2
.7

8
E

-0
7

0
.0

0
<

0
.0

1
%

4
.8

0
E

+
0
6

4
.8

0
E

+
0
6

1
0

2
.7

8
E

-0
7

0
.0

0
<

0
.0

1
%

4
.8

0
E

+
0
6

4
.8

0
E

+
0
6

1
0

2
.7

8
E

-0
7

0
.0

0
<

0
.0

1
%

4
.8

0
E

+
1
2

7
.0

6
E

+
0
8

1
0

2
.7

8
E

-0
1

0
.2

8
1
5
.2

%

d
_

s
u

m
_

lo
c
a
l[

g
]=

d
_

s
u

m
_

lo
c
a
l[

g
]

+

 (

Z
_

lo
c
a
l[

j]
[g

]
-

p
_

c
u

rl
_

lo
c
a
l[

j]
)2

 *
 (

c
o

n
s
t[

j]
)

2
.1

0
E

+
1
2

1
0

1
.6

5
E

-0
1

0
.1

6
9
.0

%

8
.0

0
E

+
0
6

1
0

4
.6

3
E

-0
7

0
.0

0
<

0
.0

1
%

T
o
ta

ls
 (

m
in

u
te

s
)

0
.4

7
1
.3

5
1
.8

2
1
0
0
.0

%

P
e
r
c
e
n

ta
g

e
 T

im
e

2
5
.7

%
7
4
.3

%
1
0
0
.0

%

fo
r

p
=

0
 t

o
 P

-1
 P

A
R

D
O

k
_

m
in

 =
s
*

(R
1
)

k
_

m
a
x

=
 (

s
+

1
)*

(R
1
)-

1

In
it

ia
li
ze

 (
p

_
c
u

rl
_

lo
c
a
l[

1
:N

])
;

2
D

 M
e
s
h

 T
o
p
o
lo

g
y

C
o
m

m
u

n
ic

a
ti

o
n

C
o
m

p
u

ta
ti

o
n

C
y
c
le

s
 P

e
r

li
n

e

T
o
ta

l

N
u

m
b
e
r

o
f

B
y
te

s

N
u

m
b
e
r
 o

f

B
y
te

s
 p

e
r

P
E

N
u

m
b
e
r

o
f

P
E

s

2
0

2
2

C
o
m

p
u

ta
ti

o
n

T
im

e

(m
in

u
te

s
)

2
0

2
2

M
e
m

o
r
y

T
im

e

(m
in

u
te

s
)

p
_

b
a
r_

lo
c
a
l
[0

:N
-1

]=
 L

o
c
a
li
ze

 (
p

_
b

a
r_

lo
c
a
l
[0

:N
-1

])
;

U
T

_
lo

c
a
l[

k
_

m
in

:
k
_

m
a
x]

[0
:N

-1
]=

 L
o

c
a
li
ze

 (
U

T
[k

_
m

in
:
k
_

m
a
x]

[0
:N

-1
])

;

fo
r

k
=

 k
_

m
in

 t
o

 k
_

m
a
x

fo
r

j=
0
 t

o
 (

N
-1

)

fo
r

q
 =

 0
 t

o
 S

/P
-1

d
_

s
u

m
[g

_
m

in
:g

_
m

a
x]

=
G

lo
b

a
li
ze

(d
_

s
u

m
_

lo
c
a
l[

g
_

m
in

:g
_

m
a
x]

)

p
_

c
u

rl
[k

_
m

in
:k

_
m

a
x]

=
G

lo
b

a
li
ze

(p
_

c
u

rl
_

lo
c
a
l[

k
_

m
in

:k
_

m
a
x]

p
_

c
u

rl
_

lo
c
a
l
[0

:M
’-

1
]=

 L
o

c
a
li
ze

 (
p

_
c
u

rl
[0

:M
’-

1
])

c
o

n
s
t

[0
:M

’-
1
]=

 L
o

c
a
li
ze

 (
c
o

n
s
t[

0
:M

’-
1
])

;

Z
_

lo
c
a
l[

1
:M

’]
[g

_
m

in
:g

_
m

a
x]

=
L

o
c
a
li
ze

(Z
[1

:M
’]

[g
_

m
in

:g
_

m
a
x]

fo
r

g
=

g
_

m
in

 t
o

 g
_

m
a
x

fo
r

j=
0
 t

o
 (

M
’-

1
)

fo
r

q
=

 0
 t

o
 S

/P
-1

s
 =

 p
*

(S
/P

)
+

 q
;

g
_

m
a
x=

(s
+

1
)*

R
2
-1

g
_

m
in

=
s
*

R
2

In
it

ia
li
ze

(d
_

s
u

m
_

lo
c
a
l[

1
:G

/P
])

R
2
 =

 (
L

o
c
a
lM

e
m

S
iz

e
-2

M
’)

/(
M

’)

S
 =

 G
 /

R
2

S
e
g

S
iz

e
 =

 R
2

fo
r

p
=

0
 t

o
 P

-1
 P

A
R

D
O

 158

7.4 EBGM MAPPING ANALYSIS

The computational analysis in Chapter 4 showed that a speedup of two times is required to make

the EBGM 100 KP, 1K benchmark real-time, and a speedup of 748 times is required to make the

EBGM 4 MP, 14K and 4 MP, 1M benchmarks real-time. Chapter 5 showed that adding two

function units improved performance for the 100 KP, 1K benchmark to a real-time 1.14 minutes.

The 4.92 times speedup achieved with the two function units improved performance for the 4

MP, 14K and 4 MP, 1M benchmarks to 304.83 minutes or less, a significant improvement but

still not real-time, and showed that an additional 152.4 times speedup is required for real-time

performance with these two data sets. The analysis in Chapter 6 showed that memory bandwidth

does not limit performance for the EBGM benchmarks, and that computational performance is

the primary performance limit for real-time identification with the EBGM benchmark. The goal

in this section is to find a mapping that will provide the 152.4 times speedup required to make

the two EBGM 4 MP benchmarks real-time. Given that the identification time for the 4 MP,

14K and 4 MP, 1M benchmarks differs by 0.92 minutes and that this difference would reduce to

an insignificant 0.006 minute if the 152.4 times acceleration can be achieved, the following

analysis will use the 4 MP, 1M data set.

The initial mapping for the EBGM benchmark is shown in Figure 60. This mapping

distributes the 40 filters across the PEs to calculate one filter response on each PE. The filter

masks are first localized and scattered in an initialization step that executes one time. An outer

loop iterates through the 25 vertices to find the coordinates of each vertex. Within the vertex

loop, the image is localized and compared to the bunch graph to select the model jet, B_kept.

The image is broadcast to the PEs and convolved with the filter masks in parallel on P PEs with

 159

Figure 60: EBGM filter mask mapping.

 160

each PE calculating one jet element. The resulting jet is gathered on PE0 and compared to the

model jet, and the best jet and coordinates are updated if the phase similarity with the newly

calculated jet is better. This process is repeated for all points in the search region and then the

best jet found is retained on PE0.

Given this mapping, the next step is to determine the required Local Memory capacity.

Figure 61 shows the memory capacity analysis for the EBGM 4 MP, 1 M benchmark. This

analysis shows that 35.8 MB of on-chip memory is required and 2.9 GB is available on-chip in

2022 if 2,000 PEs are used. Therefore on-chip memory capacity is not a constraint for this

mapping.

Figure 61: EBGM 4 MP, 1M Memory Capacity Requirements.

As with the Eigenface benchmark, the EBGM benchmark code can incrementally revised

to incorporate the parallelization and data movement operations. The top level pseudo code for

the EBGM benchmark, originally described in Chapter 4, is included for reference as Figure 62.

The detailed pseudo code for the EBGM benchmark is shown in Figure 63. As in the previous

examples, the pseudo code is renumbered for clarity.

Data Read or Write

Data Volume

Expressed

Symbolically

Volume

(bytes)

Required

On-chip

Memory

(bytes)

Required On-

chip Memory

(bytes)

probe jets Read 2000 1.60E+04

probe image region Read WW 6.57E+05

filter masks Read 80WW 3.50E+07

probe face graph Write 6400 5.12E+04 3.58E+07 3.58E+07

35.8 MB

2,900.0 MB

Required SOC Memory Capacity

Available SOC Memory Capacity

EBGM 4 MP, 1M

Encoding

 161

  

 
    

  

S EBGMid , , ,

, , ,

, , , ,

,

BEST e e

LeftEye LeftEye

x y

x y



P G

I B

LocateFeatures I B

MakeFaceGraph I F H x y

Comparison J J

Figure 62: EBGM benchmark top level pseudo code.

The pseudo code in Figure 63 describes the bottleneck process within the EBGM

algorithm but includes additional code to place the bottleneck in context. Line 1 iterates index

variable v through the 25 feature vertices of the face image. Line 2 initializes variable s_kept,

the similarity for the best model jet found so far. Line 3 iterates bunch jet index b through the M

bunch graph jets associated with vertex v, and for the 4 MP, 1M data set M=600,000. Line 4

compares the b
th

 bunch graph jet with J[0:79], a jet previously calculated at the probe image

feature location, to calculate the similarity between the bunch jet and the probe jet. If the

similarity between the jets is greater than s_kept, s_kept as well as model jet B_kept is updated

in line 5.

 When the loop in lines 2 through 5 in Figure 63 completes, B_kept[0:79] contains the model jet,

the jet from the bunch graph that best matches the probe jet, J[0:79], calculated at the estimated

feature coordinates. Lines 6 through 17 then search an R by R region of the probe image in half-

pixel steps to find the jet and coordinates in the probe image that best match the model jet

B_kept[0:79]. Lines 6 and 7 iterate the coordinate pair (dx, dy) through the R by R pixel search

region in half-pixel steps, where R is 234 for the 4 MP, 1M data set, so dx and dy each iterate

468 times. Line 8 iterates through the K=40 Gabor wavelet filters. Lines 9 and 10 iterate

through the rows r and columns c of the W by W filter masks and probe image region, and

W=234 for the 4 MP, 1M data set. Line 11 multiplies and accumulates the real filter mask

 162

response at the integer coordinate pair, (int(dx), int(dy)), and stores the result in an even-

numbered index of vector filt_part[], thus convolving the real filter mask and image region. Line

12 repeats the convolution for the imaginary filter mask and stores the results in the odd-

numbered indexes of filt_part[].

1 for v=1 to 25

2 s_kept=0;

3 for b=1 to M // 600k

4 s=CalcMagnitudeSimilarity(J[0:79], B[b] [0:79])

5 if s>s_kept then s=s_kept, B_kept[0:79]=B[b] [0:79]

6 for dx=0 to (R-1) in 0.5 steps //468

7 for dy= 0 to (R-1) in 0.5 steps //468

8 for k=0 to K-1 //40

9 for r=1 to W

10 for c=1 to W

11 filt_part[2k] =filt_part[2k] +Image[r][c]*Mask[2*k][r][c]

12 filt_part[2k+1] =filt_part[2k+1] +Image[r][c]*Mask[2*k+1][r][c]

13 J[2k]=sqrt(filt_part[2k]
 2
+filt_part[2k+1]

2
)*cos(atan(filt_part[2k+1] /

 filt_part[2k]) + fx[k] * dx+fy[k] * dy)

14 J[2k+1]=sqrt(filt_part[2k]
 2

 + filt_part[2k+1]
2
)*sin(atan(filt_part[2k+1] /

 filt_part[2k]) +fx[k] * dx+fy[k] * dy)

15 s=CalcPhaseSimilarity(J[0:79], B_kept[0:79])

16 keep coordinates (dx, dy) and jet J[0:79] for the best match

Figure 63: EBGM simplified pseudo code.

Lines 13 and 14 in Figure 63 adjust the filter response calculated at the integer

coordinates to estimate the filter response at the real coordinates, (dx, dy). Line 13 converts the

real and imaginary values to polar form, offsets the phase response by scaling constants fx and fy

with dx and dy respectively, then converts the response back to real form. Line 14 similarly

adjusts the imaginary coefficient of the complex filter response.

 163

Line 15 in Figure 63 calculates the phase similarity between the model jet, B_kept[0:79],

and the jet calculated at the current coordinates (dx, dy). Line 16 retains the probe jet that best

matched the model jet in the R by R image region along with the coordinates.

The EBGM pseudo code is further simplified in Figure 64. This pseudo code is

functionally equivalent to the code in Figure 63, but variable names are changed for clarity and

readability. The filt_part variable name is changed to fp to shorten the lines and avoid word

wrap, and the names of constant variables fx[] and fy[] are changed to cx[] and cy[] to better

reflect that these variables are constants calculated during training.

1 for v=1 to 25

2 s_kept=0;

3 for b=1 to M // 600k

4 s=CalcMagnitudeSimilarity(J[0:79], B[b] [0:79])

5 if s>s_kept then s=s_kept, B_kept[0:79]=B[b] [0:79]

6 for dx=0 to (R-1) in 0.5 steps //468

7 for dy= 0 to (R-1) in 0.5 steps //468

8 for k=0 to K-1 //40

9 for r=1 to W

10 for c=1 to W

11 fp[2k] =fp[2k] +Image[r][c]*Mask[2*k][r][c]

12 fp[2k+1] =fp[2k+1] +Image[r][c]*Mask[2*k+1][r][c]

13 J[2k]=sqrt(fp[2k]
 2
+ fp[2k+1]

2
)*cos(atan(fp[2k+1] / fp[2k]) +cx[k]*dx+cy[k]*dy)

14 J[2k+1]=sqrt(fp[2k]
 2
+fp[2k+1]

2
)*sin(atan(fp[2k+1]/ fp[2k])+cx[k]*dx+cy[k]*dy)

15 s=CalcPhaseSimilarity(J[0:79], B_kept[0:79])

16 keep coordinates (dx, dy) and jet J[0:79] for the best match

Figure 64: EBGM further simplified pseudo code.

A function is then defined to represent the calculation of the response for one Gabor filter

as shown in Figure 65. The function CalcJetPart contains the code from lines 9 through 14 in

Figure 64 and returns the response to the real filter mask, J[2k], and the response to the

imaginary filter mask, J[2k+1].

 164

[J[2k], J[2k+1]] = CalcJetPart (image, dx, dy, k) =apply one filter to image at dx, dy

 1 for r=1 to W

 2 for c=1 to W

 3 fp[2k] =fp[2k] +Image[r][c]*Mask[2*k][r][c]

 4 fp[2k+1] =fp[2k+1] +Image[r][c]*Mask[2*k+1][r][c]

 5 J[2k]=sqrt(fp[2k]
 2
 + fp[2k+1]

2
)*cos(atan(fp[2k+1] / fp[2k]) + cx[k] * dx+cy[k] * dy)

 6 J[2k+1]=sqrt(fp[2k]
 2
 + fp[2k+1]

2
)*sin(atan(fp[2k+1] / fp[2k]) + cx[k] * dx+cy[k] * dy)

Figure 65: Calcjet function definition.

The EBGM pseudo code is shown with the CalcJetPart function call in Figure 66. Lines

9 through 14 in Figure 64 are replaced with the function call and the lines are then renumbered as

shown in Figure 66.

1 for v=1 to 25

2 s_kept=0;

3 for b=1 to M // 600k

4 s=CalcMagnitudeSimilarity(J[0:79], B[b] [0:79])

5 if s>s_kept then s=s_kept, B_kept[0:79]=B[b] [0:79]

6 for dx=0 to (R-1) in 0.5 steps //463

7 for dy= 0 to (R-1) in 0.5 steps //468

8 for k=0 to K-1 //40

9 [J[2k], J[2k+1]]= CalcJetPart (image, dx, dy, k)

10 s=CalcPhaseSimilarity(J[0:79], B_kept[0:79])

11 keep coordinates (dx, dy) and jet J[0:79] for the best match

Figure 66: CalcJetPart function integrated into benchmark pseudo code.

The computational analysis in Chapter 4 showed that the convolution required to filter

the image region is the primary bottleneck in the EBGM algorithm, and the CalcJetPart function

encapsulates the filtering process. The K iteration loop can be forked into 40 threads to execute

on 40 different PEs and would be expected to provide speedup in the range of 40 times. Figure

 165

67 shows the pseudo code with the loop variable on line 8 changed from k to p to reflect the

change to P PEs and the addition of the PARDO notation to indicate parallel execution.

1 for v=1 to 25

2 s_kept=0;

3 for b=1 to M // 600k

4 s=CalcMagnitudeSimilarity(J[0:79], B[b] [0:79])

5 if s>s_kept then s=s_kept, B_kept[0:79]=B[b] [0:79]

6 for dx=0 to (R-1) in 0.5 steps //463

7 for dy= 0 to (R-1) in 0.5 steps //468

8 for p=0 to P-1 PARDO

9 [J[2p], J[2p+1]]= CalcJetPart (image, dx, dy, p)

10 s=CalcPhaseSimilarity(J[0:79], B_kept[0:79])

11 keep coordinates (dx, dy) and jet J[0:79] for the best match

Figure 67: EBGM benchmark pseudo code with filter loop parallelization.

The pseudo code shown in Figure 68 adds the explicit data movement and

communication operations. Line 6 causes lines 7 and 8 to execute only on PE0. Line 7 transfers

the image from external memory into the local memory of PE0, and line 8 broadcasts the image

to all of the PEs. Lines 11 and 12 execute the filtering process in parallel on P PEs. The filter

masks are constants for each PE and are assumed to already reside in Local Memory on each PE.

Line 13 gathers the two probe jet elements from each PE to build the jet J[0:79]. Line 14 limits

execution of lines 15 and 16 to PE0. Line 15 calculates the similarity and line 16 retains the jet

and coordinates of the best matching jet.

The analysis for the EBGM filter mask mapping is shown for the 4 MP, 1M data set in

Figure 69. The analysis shows identification time of 9.0 minutes is achieved with this mapping

and the ISA speedup with the addition of two function units for the fused instructions. The

 166

analysis shows that nearly 100% of the execution time is spent on computation and this mapping

is therefore computationally bound. Performance should improve if more PEs can be used.

1 for v=1 to 25

2 s_kept=0;

3 for b=1 to M // 600k

4 s=CalcMagnitudeSimilarity(J[0:79], B[b] [0:79])

5 if s>s_kept then s=s_kept, B_kept[0:79]=B[b] [0:79]

6 if PE0

7 image_local[0:233][0:233]=Localize(image[0:233][0:233])

8 BCAST(image_local[0:233][0:233])

9 for dx=0 to (R-1) in 0.5 steps //463

10 for dy= 0 to (R-1) in 0.5 steps //468

11 for p=0 to P-1 PARDO

12 [J_local[2p], J_local[2p+1]]= CalcJetPart (image, dx, dy, p)

13 J[2p:2p+1]=GATHER(J_local[2p:2p+1])

14 if PE0

15 s=CalcPhaseSimilarity(J[0:79], B_kept[0:79])

16 keep coordinates (dx, dy) and jet J_group[p][0:79] for the best match

Figure 68: EBGM benchmark pseudo code with explicit data movement operations.

One way to use more PEs is to convolve each filter mask on a separate PE. The EBGM

algorithm uses 40 filters and each filter is represented by a real and an imaginary mask. The 40

PE mapping convolved both masks for one filter on one PE, but the convolution could be

performed separately on two PEs. If each mask convolution were performed on a separate PE,

80 PEs could be used. Given that essentially all of the execution time is computation, as speedup

of approximately two times would be achieved with this mapping. However, given that the

execution time for the 40 PE mapping was nine minutes, an additional two times speedup would

reduce the execution time to 4.5 minutes but would still not achieve real-time performance. A

mapping that provides better speedup is required.

 167

Figure 69: EBGM filter mapping analysis.

L
a
te

n
c
y

B
a
n

d
w

id
th

T
o
ta

l
P

e
r
c
e
n

ta
g

e

L
o

c
a
li
ze

({
F

}
)

1
.7

5
E

+
0
7

1

0
.0

0
0
0
1

1
.0

1
E

-0
5

<
0
.0

1
%

L
o

c
a
li
ze

({
H

}
)

1
.7

5
E

+
0
7

1

0
.0

0
0
0
1

1
.0

1
E

-0
5

<
0
.0

1
%

S
C

A
T

T
E

R
({

H
}
)

4
.3

8
E

+
0
5

4
0

2
.4

E
-0

9
6
.8

E
-0

6
6
.8

1
E

-0
6

<
0
.0

1
%

S
C

A
T

T
E

R
({

F
}
)

4
.3

8
E

+
0
5

4
0

2
.4

E
-0

9
6
.8

E
-0

6
6
.8

1
E

-0
6

<
0
.0

1
%

1
fo

r
e
a
c
h

 f
e
a
tu

re
 v

e
rt

e
x

v
,
v

=
1
 t

o
 2

5

2
s
_

k
e
p

t=
0

3
fo

r
e
a
c
h

 j
e
t

b
 i
n

 t
h

e
 b

u
n

c
h

,
b

=
1
 t

o
 M

4
s
=

C
a
lc

M
a
g

n
it

u
d

e
S

im
il
a
ri

ty
(j

,
b

)
1
.8

5
E

+
1
1

1
0
.9

3
5
4

0
.9

4
1
0
.4

1
%

7
L

o
c
a
li
ze

(I
[]

)
3
.1

0
E

+
0
7

1
0
.0

0
0
0
2

1
.7

9
E

-0
5

<
0
.0

1
%

8
B

C
A

S
T

(I
[]

)
4
.3

8
E

+
0
5

4
0

2
.4

E
-0

9
6
.8

1
E

-0
6

6
.8

1
E

-0
6

<
0
.0

1
%

9
,1

0
fo

r
e
a
c
h

 h
a
lf

-p
o

in
t

(d
x,

 d
y

)
in

 a
n

 R
 b

y
 R

 r
e
g

io
n

1
1

fo
r

p
=

0
 t

o
 P

-1
 P

A
R

D
O

4
0

1
2

4
0

1
2

4
0

1
2

3
.0

0
E

+
1
3

4
0

3
.7

8
5
6

3
.7

9
4
2
.1

3
%

1
2

3
.0

0
E

+
1
3

4
0

3
.7

8
5
6

3
.7

9
4
2
.1

3
%

1
2

5
.7

9
E

+
1
0

4
0

0
.0

0
7
3

7
.3

1
E

-0
3

0
.0

8
%

1
2

5
.7

9
E

+
1
0

4
0

0
.0

0
7
3

7
.3

1
E

-0
3

0
.0

8
%

1
3

G
A

T
H

E
R

(j
)

1
.6

0
E

+
0
4

4
0

1
.3

8
E

-0
8

2
.4

9
E

-0
7

2
.6

2
E

-0
7

<
0
.0

1
%

1
5

s
=

C
a
lc

P
h

a
s
e
S

im
il
a
ri

ty
(j

,
b

)
9
.1

8
E

+
1
0

1
0
.4

6
3
5

0
.4

6
5
.1

6
%

1
6

k
e
e
p

 c
o

o
rd

in
a
te

s
 (

x,
 y

)
o

f
th

e
 b

e
s
t

m
a
tc

h
1

9
.0

3
.8

2
E

-0
5

2
.0

8
E

-0
8

2
.0

7
E

-0
5

9
.0

1
0
0
.0

0
0
%

1
0
0
.0

%
<

0
.0

1
%

<
0
.0

1
%

<
0
.0

1
%

1
0
0
.0

%

E
B

G
M

 4
M

P
,
1

M

C
o
m

p
u

ta
ti

o
n

C
y
c
le

s
 P

e
r

li
n

e

N
u

m
b
e
r

o
f

B
y
te

s

N
u

m
b
e
r

o
f

P
E

s

C
o
m

p
u

ta
ti

o
n

T
im

e

(m
in

u
te

s
)

O
n

e
 b

a
n

k
 2

0
2

2

M
e
m

o
r
y
 T

im
e

(m
in

u
te

s
)

2
D

 M
e
s
h

 T
o
p
o
lo

g
y

C
o
m

m
u

n
ic

a
ti

o
n

2
0

2
2

P
e
r
c
e
n

ta
g

e
 T

im
e

T
o
ta

ls
 (

m
in

u
te

s
)

a
d

ju
s
t

re
a
l
p

a
rt

a
d

ju
s
t

im
a
g

in
a
ry

 p
a
rt

fo
r

e
a
c
h

 r
o

w
 r

fo
r

e
a
c
h

 c
o

lu
m

n
 c

a
c
c
u

m
u

la
te

 r
e
a
l
p

a
rt

a
c
c
u

m
u

la
te

 i
m

a
g

in
a
ry

 p
a
rt

 168

More PEs can be used to further reduce computation time. Since distributing the 80 filter

mask convolutions across 80 PEs does not provide enough speedup, the next loop level must be

parallelized to allow more PEs to be used. The mapping shown in Figure 70 separates each

column of dx, dy coordinate pairs in the search region into 24 coordinate segments. Each

coordinate pair within each segment is then distributed to a different set of 80 PEs for filtering.

This mapping therefore uses 80*24 PEs, and the 1,920 PEs will use nearly all the PEs on the two

thousand PE 2022 technology point SOC.

The computational analysis for two distributed loop mapping is shown in Figure 71. This

analysis shows that identification time with this mapping is a real-time 1.6 minutes. The analysis

further shows that the benchmark remains computationally bound. Given that the search region

loop is not fully parallelized in this mapping, further speedup could be achieved with more PEs,

suggesting real-time identification could be achieved for larger gallery sets if SOCs with more

than 2,000 PEs become available.

 169

Figure 70: EBGM mapping with two distributed loops.

 170

Figure 71: EBGM analysis for the two distributed loops mapping.

L
a
te

n
c
y

B
a
n

d
w

id
th

T
o
ta

l
P

e
r
c
e
n

ta
g

e

L
o

c
a
li
ze

({
F

}
)

1
.7

5
E

+
0
7

1

0
.0

0
0
0
1

1
.0

1
E

-0
5

<
0
.0

1
%

L
o

c
a
li
ze

({
H

}
)

1
.7

5
E

+
0
7

1

0
.0

0
0
0
1

1
.0

1
E

-0
5

<
0
.0

1
%

S
C

A
T

T
E

R
({

H
}
)

4
.3

8
E

+
0
5

9
6
0

3
.8

E
-0

9
7
.0

E
-0

6
6
.9

8
E

-0
6

<
0
.0

1
%

S
C

A
T

T
E

R
({

F
}
)

4
.3

8
E

+
0
5

9
6
0

3
.8

E
-0

9
7
.0

E
-0

6
6
.9

8
E

-0
6

<
0
.0

1
%

1
fo

r
e
a
c
h

 f
e
a
tu

re
 v

e
rt

e
x

v
,
v

=
1
 t

o
 2

5

2
s
_

k
e
p

t=
0

3
fo

r
e
a
c
h

 j
e
t

b
 i
n

 t
h

e
 b

u
n

c
h

,
b

=
1
 t

o
 M

4
s
=

C
a
lc

M
a
g

n
it

u
d

e
S

im
il
a
ri

ty
(j

,
b

)
1
.8

5
E

+
1
1

1
0
.9

3
5
4

0
.9

4
6
0
.0

8
%

7
L

o
c
a
li
ze

(I
[]

)
3
.1

0
E

+
0
7

1
0
.0

0
0
0
2

1
.7

9
E

-0
5

<
0
.0

1
%

8
B

C
A

S
T

([
I]

)
4
.3

8
E

+
0
5

1
9
2
0

4
.1

E
-0

9
6
.9

8
E

-0
6

6
.9

8
E

-0
6

<
0
.0

1
%

9
,1

0
fo

r
r=

0
 t

o
 (

2
/2

4
)*

R
,
fo

r
c
=

0
 t

o
 2

*
R

1
1

fo
r

p
=

0
 t

o
 P

-1
 P

A
R

D
O

1
9
2
0

1
2

3
.0

0
E

+
1
3

1
9
2
0

0
.0

7
8
9

0
.0

8
5
.0

7
%

1
2

3
.0

0
E

+
1
3

1
9
2
0

0
.0

7
8
9

0
.0

8
5
.0

7
%

1
2

5
.7

9
E

+
1
0

1
9
2
0

0
.0

0
0
2

1
.5

2
E

-0
4

0
.0

1
%

1
2

5
.7

9
E

+
1
0

1
9
2
0

0
.0

0
0
2

1
.5

2
E

-0
4

0
.0

1
%

1
3

G
A

T
H

E
R

(j
)

1
.6

0
E

+
0
4

1
9
2
0

6
.7

8
E

-0
7

2
.5

5
E

-0
7

9
.3

2
E

-0
7

<
0
.0

1
%

1
5

s
=

C
a
lc

P
h

a
s
e
S

im
il
a
ri

ty
(j

,
b

)
9
.1

8
E

+
1
0

1
0
.4

6
3
5

0
.4

6
2
9
.7

7
%

1
6

k
e
e
p

 c
o

o
rd

in
a
te

s
 (

x,
 y

)
o

f
th

e
 b

e
s
t

m
a
tc

h
1

1
.6

3
.8

2
E

-0
5

6
.8

9
E

-0
7

2
.1

2
E

-0
5

1
.6

1
0
0
.0

0
0
%

1
0
0
.0

%
<

0
.0

1
%

<
0
.0

1
%

<
0
.0

1
%

1
0
0
.0

%

T
o
ta

ls
 (

m
in

u
te

s
)

P
e
r
c
e
n

ta
g

e
 T

im
e

a
c
c
u

m
u

la
te

d
 i
m

a
g

in
a
ry

 p
a
rt

a
c
c
u

m
u

la
te

 r
e
a
l
p

a
rt

a
d

ju
s
t

re
a
l
p

a
rt

a
d

ju
s
t

im
a
g

in
a
ry

 p
a
rt

E
B

G
M

 4
M

P
,
1

M

C
o
m

p
u

ta
ti

o
n

C
y
c
le

s
 P

e
r

li
n

e

N
u

m
b
e
r

o
f

B
y
te

s

N
u

m
b
e
r

o
f

P
E

s

C
o
m

p
u

ta
ti

o
n

T
im

e

(m
in

u
te

s
)

O
n

e
 b

a
n

k
 2

0
2

2

M
e
m

o
r
y
 T

im
e

(m
in

u
te

s
)

2
D

 M
e
s
h

 T
o
p
o
lo

g
y

C
o
m

m
u

n
ic

a
ti

o
n

2
0

2
2

 171

7.5 CONCLUSION

The mapping analysis shows that real-time performance can be achieved for all three face

identification algorithms with all three data sets as shown in Table 17. The Eigenface and

Bayesian 100 KP, 1K and 4 MP, 14K benchmarks are real-time on a sequential processor and no

acceleration is required. The Eigenface and Bayesian 4 MP, 1M benchmarks can be made real-

time with an SOC based on the 2022 technology point. Ten banks of external memory are

required and each bank is interfaced to one PE. This multiple memory bank architecture avoids

creating communication bottlenecks and maximizes performance for the memory interface.

Table 17: Requirements for Real-Time Face Identification.

BENCHMARK ISA SPEEDUP MEMORY BANKS MAPPING
EXECUTION TIME

(MINUTES)

Eigenface 100 KP, 1K - 1 Sequential 0.0015

Eigenface 4 MP, 14K - 1 Sequential 0.68

Eigenface 4 MP, 1M 2.51 10 Parallel Memory 1.82

Bayesian 100 KP, 1K - 1 Sequential 0.0015

Bayesian 4 MP, 14K - 1 Sequential 0.68

Bayesian 4 MP, 1M 2.21 10 Parallel memory 1.82

EBGM 100 KP, 1K 3.24 1 Sequential 1.14

EBGM 4 MP, 14K 4.92 1 Two distributed loops 1.56

EBGM 4 MP, 1M 4.91 1 Two distributed loops 1.56

All of the EBGM benchmarks require acceleration to achieve real-time performance.

The EBGM 100 KP, 1K benchmark can be made real-time by adding two function units to

implement a fused index instruction, but the 4 MP, 14K and 4 MP, 1M benchmarks require a

parallel architecture to achieve real-time performances. A parallel architecture based on the

 172

2022 technology point can provided the 1,920 PEs needed to distribute two algorithm loops

across these PEs to accelerate computation to a real-time 1.56 minutes.

The analysis of on-chip communication shows that Broadcast, Scatter, Gather, and

Reduce operations are used in the face identification benchmarks. The analysis further shows

that on-chip communication over the 2D mesh architecture is not needed for the Eigenface or

Bayesian benchmarks. Communication consumes 0.1% or less of execution time for all of the

EBGM data sets and is therefore not a constraint.

 173

8.0 CONCLUSIONS AND FUTURE WORK

This research analyzed performance for top accuracy face identification algorithms to determine

how real-time performance can be achieved using a parallel System-on-a-Chip in 2019 or 2022

for a one million member gallery set of four megapixel images.

Three top accuracy face identification algorithms were selected for study. The published

results from objective NIST FERET tests [8] were reviewed to select the top accuracy face

identification algorithms. The algorithms selected for study were the Eigenface algorithm, the

Bayesian algorithm, and the Elastic Bunch Graph Matching algorithm.

Sequential computational performance for each algorithm was first analyzed to expose

bottleneck processes that constrain execution time and these bottlenecks were extracted to form

benchmarks. Three data sets were developed, including a 1,200 member gallery set of 100

kilopixel images developed from the NIST FERET test set [8], a 14,365 member gallery set of

four megapixel images developed from the Sandia test set used in the NIST MBE2010

evaluation [10] and a one million member gallery set of four megapixel images developed to

represent the Terrorist Watch List [2].

Three critical architectural components that can significantly impact performance were

analyzed separately, and then evaluated together with for each of the three algorithms. The

components analyzed include:

 174

Computational Performance. The computation required for each benchmark and each

data set were analyzed to establish baseline performance. This analysis showed that the

Eigenface and Bayesian 100 KP, 1K and 4 MP, 14K benchmarks achieved real-time

performance on sequential architectures and required no speedup. Speedup of 38 times is

required to make the Eigenface and Bayesian 4 MP, 1M benchmarks real-time. The

EBGM 100 KP, 1K benchmark requires a two time speedup for real-time performance,

and the EBGM 4 MP, 14K and 4 MP, 1M benchmarks require a 748 times speedup for

real-time performance.

Processor Instruction Set Architecture (ISA). The ISA for the processors on the SOC

was analyzed to determine whether instructions could be accelerated or fused to improve

performance. An improved ISA was developed that included fused instructions to

accelerate the Eigenface, Bayesian, and EBGM benchmarks.. The ISA changes provided

a speedup of 2.21 to 2.51 times for the Eigenface and Bayesian benchmarks, but an

additional 15 times speedup is required for real-time performance. The 3.24 times

speedup was sufficient to make the EBGM 100 KP, 1K benchmark real-time, but an

additional speedup of 152 time is required for real-time performance for the 4 MP, 14K

and 4 MP, 1M benchmarks.

External memory bandwidth. External memory bandwidth was analyzed to determine

whether this bandwidth is a constraint on real-time performance. Additional memory

banks can mitigate this constraint, provided the number of banks required is within

 175

practical limits. The analysis showed that nine memory banks are required for real-time

identification for the sequential Eigenface and Bayesian 4 MP, 1M benchmarks in 2019,

but the required number of memory banks drops to 7 by 2022. However, none of the

EBGM benchmarks are constrained by memory bandwidth.

Algorithm mapping. How an algorithm is mapped to a parallel SOC architecture

significantly impacts performance, and real-time mappings were developed for all the

benchmarks as shown in Table 18. Two mappings were evaluated for the Eigenface and

EBGM benchmarks and one mapping for each benchmark was shown to be higher

performance. For the Eigenface and Bayesian 4 MP, 1M benchmarks, a mapping that

segments the subspace matrix by rows and scatters them across the PEs was needed to fit

within the capacity of on-chip memory. The mapping analysis showed that these

benchmarks are memory bound, and an architecture with multiple external memory banks

was required to overcome this bottleneck. Real-time performance was achieved with 10

PEs, but 10 external memory banks and an architecture that connected the 10 PEs directly

to the 10 external memory banks was required.

 For the EBGM 4 MP, 14K and 4 MP, 1M algorithms, a mapping that scattered the

filter masks across sets of 80 PEs and also filtered multiple search points in parallel used

1,920 PEs and achieved real-time performance. This mapping remains computationally

bound, suggesting that higher resolution images could be identified in real-time if SOCs

with more PEs become available.

 Communication between PEs is not required for the Eigenface and Bayesian

benchmarks, and consumes less than 0.01% of execution time for the EBGM mappings.

 176

The Broadcast, Scatter, Gather, and Reduce messages are the only messages used in these

mappings of face identification algorithms.

Table 18: Real Time Benchmark Mappings

BENCHMARK
ISA

SPEEDUP

MEMORY

BANKS
PROCESSORS MAPPING

SEQUENTIAL

EXECUTION

TIME

(MINUTES)

PARALLEL

EXECUTION

TIME

(MINUTES)

Eigenface 100 KP, 1K - 1 1 Sequential 0.0015 0.0015

Eigenface 4 MP, 14K - 1 1 Sequential 0.6800 0.68

Eigenface 4 MP, 1M 2.51 10 10 Parallel Memory 75.7150 1.82

Bayesian 100 KP, 1K - 1 1 Sequential 0.00146 0.0015

Bayesian 4 MP, 14K - 1 1 Sequential 0.6791 0.68

Bayesian 4 MP, 1M 2.21 10 10 Parallel memory 71.169 1.82

EBGM 100 KP, 1K 3.24 1 1 Sequential 3.70 1.14

EBGM 4 MP, 14K 4.92 1 1920 Two distributed loops 1,495.16 1.56

EBGM 4 MP, 1M 4.91 1 1920 Two distributed loops 1,496.16 1.56

8.1 CONTRIBUTIONS

The research described in this dissertation makes the following contributions:

1. Analysis methods to estimate performance for sequential and parallel mappings

of face identification algorithms. This research developed methods to estimate

performance for computation, data movement, and communication on a 2D mesh SOC

with multiple processors.

 177

2. Computational analysis of top accuracy face identification algorithms and a set

of benchmarks. Top accuracy face identification algorithms were selected and analysis

methods were used to estimate performance for these algorithms and this analysis

exposed the bottleneck processes in these algorithms.

3. Determination that probe encoding rather than comparison is the primary

bottleneck for face identification algorithms. The analysis shows that the probe

encoding process is the primary computational bottleneck for the three top face

identification algorithms. Within the face identification community, the comparison

process is generally considered to be the bottleneck. As a result, most of the prior

research to accelerate face identification algorithms has explored various ways to

accelerate the obvious parallelism of the pair comparison process. However, this analysis

shows that even if the execution time of the comparison process could be reduced to zero,

the algorithms would not achieve real-time performance due to the time required to

encode the probe. This analysis further shows that while the encoding process does

contain parallelism, the parallelism is not obvious and requires considerable effort to

expose and exploit.

4. Determination that communication is not a primary bottleneck for face

identification algorithms. The analysis shows that communication is not a constraint

for the EBGM algorithm and that the Eigenface and Bayesian algorithms do not require

communication for real-time performance. The EBGM benchmark mappings use c

communication to transfer data segments from processors with direct memory access to

 178

processors that do not have direct access to external memory, and no communication is

required between processors while executing the computationally intensive code

segments. As a result, face identification algorithms would map well to architectures that

provide increased computational performance but restrict communication during

execution such as the Graphics Processor Unit (GPU) and stream processors.

5. Determination that on-chip memory capacity is a significant limitation for the

Eigenface and Bayesian face identification algorithms. The analysis shows that the

volume of data required for large gallery sets is huge and will not fit within on-chip

memory in the SOC models, thus requiring segmentation of the data and multiple

memory banks. However, algorithm parameters such as the number of retained

Eigenvectors have a significant impact on the size of the data set, and changing the

parameter values could help mitigate this issue. The parameter values have been

correlated to accuracy for current data sets, but it is unclear whether the parameters can

be changed for larger gallery sets without negatively impacting accuracy, and this

remains a topic for further study.

6. Real-time mappings for top accuracy face identification algorithms. Mappings

that achieve real-time performance were developed for each of the top accuracy face

identification algorithms for data sets that are not real-time on sequential processors.

These mappings show a set of architectural requirements for face identification

algorithms to achieve real-time performance on future parallel SOC architectures.

 179

8.2 FUTURE WORK

8.2.1 Algorithm Research

The large data storage requirement for the Eigenface and Bayesian algorithms tend to make large

gallery sets impractical. Published research suggests that 60% of the Eigenvectors must be

retained to achieve the best identification accuracy, but the data sets studied were relatively small

and were not in the range of one million members. Further research to determine whether

accuracy can be maintained for a smaller percentage of retained Eigenvectors when the gallery

set is very large could provide a way to reduce the data storage requirements without sacrificing

accuracy.

Reduction of the filter mask and feature search region dimensions for the EBGM

algorithm may be possible and could significantly improve performance, but the impact on

identification accuracy is undetermined. Further research to determine whether these dimensions

can be reduced without negatively impacting identification accuracy could improve performance.

8.2.2 Develop Real-Time Mappings for GPU Architectures

The analysis results show that the face identification algorithms do not require communication

during the execution of computationally intensive processes and therefore should map well to

GPU architectures. A high performance mapping to a GPU architecture has the potential to

achieve real-time performance, but these mappings need to be developed. In addition, mapping

 180

these algorithms to a GPU may expose other performance constraints, and further research is

needed to explore these issues.

8.2.3 Develop Real-Time Mappings for 3D Face Identification

Still image face identification remains an important and active research area, but interest in 3D

facial models is increasing. Some 3D face identification algorithms are extensions of the 2D

algorithms while others use completely. The techniques developed in this research could be

extended to analyze 3D face identification algorithms to enable real-time 3D face identification.

 181

BIBLIOGRAPHY

[1] H. E. Reser, "Airline Terrorism: The Effect of Tightened Security on the Right to

Travel," Journal of Air Law and Commerce, vol. 63, 1997.

[2] U. S. Government, "Terrorist Watch List Screening," United States Government

Accountability Office, Washington, DC GAO-08-110, 2007.

[3] N. Ramanathan, et al., "Facial similarity across age, disguise, illumination and pose," in

International Conference on Image Processing, 2004, pp. 1999-2002 Vol. 3.

[4] X. Tan, et al., "Face Recognition Under Occlusions and Variant Expressions With Partial

Similarity," Information Forensics and Security, IEEE Transactions on, vol. 4, pp. 217-

230, 2009.

[5] A. J. O'Toole, et al., "Face Recognition Algorithms Surpass Humans Matching Faces

Over Changes in Illumination," Pattern Analysis and Machine Intelligence, IEEE

Transactions on, vol. 29, pp. 1642-1646, 2007.

[6] P. J. Phillips, et al., "FRVT 2006 and ICE 2006 Large-Scale Results," NIST NISTIR

7408, 2007.

[7] Transportation Security Administration. (May 23, 2009). TSA Travel Assistant. [Online].

Available: http://www.tsa.gov/travelers/airtravel/screening/index.shtm

[8] P. J. Phillips, et al., "FERET (Face Recognition Technology) Recognition Algorithm

Development and Test Results," Army Research Laboratory, Adelphi, MD ARL-TR-995,

1996.

[9] D. S. Bolme, et al., "FacePerf: Benchmarks for Face Recognition Algorithms," in

Workload Characterization, 2007. IISWC 2007. IEEE 10th International Symposium on,

Boston, MA, 2007, pp. 114-119.

[10] P. Grother, et al., "Multiple-Biometric Evaluation (MBE) 2010, Report on the Evaluation

of 2D Still-Image Face Recognition Algorithms," NIST, Washington, DC NIST

Interagency Report 7709, 2011.

http://www.tsa.gov/travelers/airtravel/screening/index.shtm

 182

[11] J. R. Beveridge, et al., "FRVT 2006: Quo Vadis face quality," Image and Vision

Computing, vol. 28, pp. 732-743, 2009.

[12] Semiconductor Industry Association. (2010). System Driver Chapter 2010 Updates

[Online]. Available:

http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_SysDrivers.pdf

[13] K. Asanovic, et al., "The Landscape of Parallel Computing Research: A View from

Berkeley," University of California at Berkeley, Berkeley, CA UCB/EECS-2006-183,

2006.

[14] D. A. Patterson, "The Trouble With Multicore," IEEE Spectr., July 2010.

[15] S. P. Levitan and D. M. Chiarulli, "Massively parallel processing: It's Deja Vu all over

again," in Design Automation Conference, 2009. DAC '09. 46th ACM/IEEE, San

Francisco, CA, 2009, pp. 534-538.

[16] J. D. Owens, et al., "GPU Computing," Proceedings of the IEEE, vol. 96, pp. 879-899,

2008.

[17] M. Pharr, GPU Gems 2: Programming Techniques for High-performance Graphics and

General-purpose Computation. Boston, MA: Addison Wesley Professional, 2005.

[18] D. Wentzlaff, et al., "On-Chip Interconnection Architecture of the Tile Processor," IEEE

Micro, vol. 27, pp. 15-31, 2007.

[19] J. Chunhong, et al., "A distributed parallel system for face recognition," in Parallel and

Distributed Computing, Applications and Technologies, 2003. PDCAT'2003.

Proceedings of the Fourth International Conference on, 2003, pp. 797-800.

[20] T. C. Deepak Shekhar and K. Varaganti, "Parallelization of Face Detection Engine," in

Parallel Processing Workshops (ICPPW), 2010 39th International Conference on, 2010,

pp. 113-117.

[21] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach,

Third ed. San Francisco: Morgan Kaufmann, 2003.

[22] J. Gunnels, et al., "A flexible class of parallel matrix multiplication algorithms," in

Parallel Processing Symposium, 1998. IPPS/SPDP 1998. Proceedings of the First

Merged International ... and Symposium on Parallel and Distributed Processing 1998,

1998, pp. 110-116.

[23] C. Lin and L. Snyder, Principles of Parallel Programming. Boston, MA: Pearson

Education, Inc., 2009.

http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_SysDrivers.pdf

 183

[24] A. Fog. (2011). Instruction tables: Lists of instruction latencies, throughputs and micro-

operations for Intel, AMD and VIA CPUs [Online]. Available:

http://www.agner.org/optimize/instruction_tables.pdf

[25] JEDEC Solid State Technology Association, "DDR3 SDRAM Specification," JEDEC

JESD79-3E, 2010.

[26] Semiconductor Industry Association. (2010). Test and Test Equipment, 2010 Tables

[Online]. Available:

http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/2010Tables_Test_FOCUS_A_I

TRS.xls

[27] E. Chan, et al., "Collective Communication: Theory, Practice, and Experience,"

Concurrency and Computation: Practice and Experience, vol. 19, pp. 1749-1783, 2007.

[28] Semiconductor Industry Association. (2009). Test and Test Equipment [Online].

Available:

http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Test.pdf

[29] P. J. Phillips, et al., "Face Recognition Vendor Test 2002 " NIST Washington, DC

NISTIR 6965, 2003.

[30] P. J. Phillips, et al., "The FERET evaluation methodology for face-recognition

algorithms," IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22,

pp. 1090-1104, 2000.

[31] NIST. (February 2, 2010). FERET Evaluation [Online]. Available:

http://www.itl.nist.gov/iad/humanid/feret/perf/eval.html

[32] P. J. Phillips, et al., "Overview of the Face Recognition Grand Challenge," in IEEE

Conference on Computer Vision and Pattern Recognition, 2005.

[33] NIST. (May 16, 2009). NIST Multiple Biometric Grand Challenge [Online]. Available:

http://face.nist.gov/mbgc/

[34] I. S. Bruner and R. Tagiuri, "The perception of people," in Handbook of Social

Psychology. vol. 2, G. Lindzey, Ed., ed Reading, MA: Addison-Wesley, 1954, pp. 634-

654.

[35] W. W. Bledsoe, "Man-Machine Face Recognition," Panoramic Research Inc., Palo Alto,

CA Technical Report PRI 22, 1966.

[36] W. W. Bledsoe, "The model method in facial recognition," Technical Report, vol.

PRI:15, Panoramic Research Inc, Palo Alto, CA, 1964.

[37] T. Kanade, Computer Recognition of Human Faces: Birkhauser, 1973.

http://www.agner.org/optimize/instruction_tables.pdf
http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/2010Tables_Test_FOCUS_A_ITRS.xls
http://www.itrs.net/Links/2010ITRS/2010Update/ToPost/2010Tables_Test_FOCUS_A_ITRS.xls
http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_Test.pdf
http://www.itl.nist.gov/iad/humanid/feret/perf/eval.html
http://face.nist.gov/mbgc/

 184

[38] M. Kelly, "Visual identification of people by computer," Stanford, CA AI 130, 1970.

[39] W. Zhao, et al., "Face Recognition: a literature survey," ACM Computing Surveys, vol.

35, pp. 399-458, December 2003.

[40] W. Zhao and R. Chellappa, Face Processing: Advanced Modeling and Methods.

Burlington: Elsevier, 2006.

[41] M. Minsky, The Society of Mind. New York: Simon and Schuster, 1986.

[42] D. Hubel, Eye, Brain, and Vision vol. No 22: W.H. Freeman and Company, 1989.

[43] T. Sakai, et al., "Processing of multilevel pictures by computer - the case of photographs

of human faces," Systems, Computers, Controls 2, vol. No. 3, pp. 47-53, 1971.

[44] L. D. Harmon, et al., "Machine Identification of human faces," Pattern Recognition, vol.

13, pp. 97-110, 1981.

[45] S. R. Cannon, et al., "A computer vision system for identification of individuals,"

Proceedings of IECON, vol. 1, pp. 347-351, 1986.

[46] I. Craw, et al., "Automatic extraction of face features," Pattern Recognition Letters, vol.

5, pp. 183-187, 1987 1987.

[47] K. Wong, et al., "A system for recognising human faces," Proceedings ICASSP, pp.

1638-1642, May 1989 1989.

[48] M. Turk and A. Pentland, "Eigenfaces for recognition," Journal of Cognitive

Neuroscience, vol. 3, pp. 71-86, 1991.

[49] R. Fisher, "The Statistical Utilization of Multiple Measurements," Annals of Eugenics,

vol. 8, pp. 376-386, 1938.

[50] I. T. Jolliffe, Principal Component Analysis, 2nd ed. New York: Springer, 2002.

[51] Y. Adini, et al., "Face recognition: The problem of compensating for changes in

illumination direction," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 19, pp. 721-732, 1997 1997.

[52] P. N. Belhumeur, et al., "Eigenfaces vs. Fisherfaces: recognition using class specific

linear projection," IEEE Trans. Pattern Anal. Mach. Intell., vol. 19, pp. 711-720, 1997.

[53] K. Etemad and R. Chellappa, "Discriminant analysis for recognition of human face

images," Journal of the Optical Society, pp. 1724-1733, 1997.

 185

[54] W. Zhao, et al., "Discriminant analysis of principal components for face recognition," in

Third IEEE International Conference on Automatic Face and Gesture Recognition, 1998,

pp. 336-341.

[55] W. S. Yambor, et al., "Analyzing PCA-based Face Recognition Algorithms: Eigenvector

Selection and Distance Measures," Colorado State University, Fort Collins, CO July 1,

2000.

[56] M. H. Yang, et al., "Face recognition using kernel eigenfaces," in International

Conference on Image Processing, Vancouver, BC, 2000, pp. 37-40 vol.1.

[57] M. H. Yang, "Kernel Eigenfaces vs. Kernel Fisherfaces: Face Recognition Using Kernel

Methods," in Fifth IEEE International Conference on Automatic Face and Gesture

Recognition, Washington, D.C., 2002, pp. 215-220.

[58] M. S. Bartlett, et al., "Independent component representation for face recognition," in

SPIE Symposium on Electronic Imaging: Science and Technology, 1998, pp. 528-539.

[59] C. Liu, "Enhanced independent component analysis and its application to content based

face image retrieval," IEEE Trans. Syst. Man Cybern. B, Cybern, vol. 34, pp. 1117-1127,

2004.

[60] R. Beveridge, et al., "The CSU face identification evaluation system: Its purpose,

features, and structure," Machine Visions and Applications, January 2005.

[61] B. Moghaddam and A. Pentland, "Probabilistic matching for face recognition," in IEEE

Southwest Symposium on Image Analysis and Interpretation, 1998, pp. 186-191.

[62] B. Moghaddam, et al., "Beyond eigenfaces: probabilistic matching for face recognition,"

in Proceedings, Third IEEE International Conference on Automatic Face and Gesture

Recognition, 1998, pp. 30-35.

[63] B. Moghaddam, et al., "Bayesian Face Recognition," Pattern Recognition, vol. 33, pp.

1771-1782, November 2000.

[64] B. Moghaddam, et al., "Bayesian Face Recognition," Mitsubishi Electric Research

Laboratories TR2000-42, 2002.

[65] L. Wiskott, et al., "Face recognition by elastic bunch graph matching," IEEE Trans.

Pattern Anal. Mach. Intell., vol. 19, pp. 775-779, 1997.

[66] L. Wiskott, et al., "Face Recognition by Elastic Bunch Graph Matching," in Intelligent

Biometric Techniques in Fingerprint and Face Recognition, L. C. Jain, Ed., ed: CRC

Press, 1999, pp. 355-396.

[67] Y. Pang, et al., "Iterative Subspace Analysis Based on Feature Line Distance," IEEE

Trans. Image Process., vol. 18, pp. 903-907, 2009.

 186

[68] J. Yang, et al., "Ubiquitously Supervised Subspace Learning," IEEE Trans. Image

Process., vol. 18, pp. 241-249, 2009.

[69] Z. Li, et al., "Nonparametric Discriminant Analysis for Face Recognition," IEEE Trans.

Pattern Anal. Mach. Intell., vol. 31, pp. 755-761, 2009.

[70] I. Kotsia, et al., "Novel Multiclass Classifiers Based on the Minimization of the Within-

Class Variance," IEEE Trans. Neural Netw., vol. 20, pp. 14-34, 2009.

[71] L. Zhang and Y. Zhang, "Face Recognition Based on the Statistics Methods," in 3rd

International Conference on Bioinformatics and Biomedical Engineering ICBBE 2009. ,

2009, pp. 1-4.

[72] Y. Pang, et al., "Generalised nearest feature line for subspace learning," Electronics

Letters, vol. 43, pp. 1079-1080, 2007.

[73] Y. Zhang and T. Zhang, "Combining Variation in the Bayesian Face Recognition," in 2nd

International Congress on Image and Signal Processing, CISP '09. , 2009, pp. 1-4.

[74] L. Chunming, et al., "A Statistical PCA Method for Face Recognition," in Second

International Symposium on Intelligent Information Technology Application, IITA '08

2008, pp. 376-380.

[75] S. Du and R. K. Ward, "Improved Face Representation by Nonuniform Multilevel

Selection of Gabor Convolution Features," IEEE Trans. Syst. Man Cybern. B, Cybern,

vol. 39, pp. 1408-1419, 2009.

[76] H. Shin, et al., "Generalized elastic graph matching for face recognition," Pattern

Recognition Letters, pp. 1077-1082, 2007.

[77] R. Senaratne and S. Halgamuge, "Optimised landmark model matching for face

recognition," in 7th International Conference on Automatic Face and Gesture

Recognition, FGR 2006 2006, pp. 6 pp.-125.

[78] T. Zhang, et al., "Face Recognition Under Varying Illumination Using Gradientfaces,"

IEEE Trans. Image Process., vol. 18, pp. 2599-2606, 2009.

[79] B. Li and R. Chellappa, "Face verification through tracking facial features," Journal of

the Optical Society of America, vol. 18, 2001.

[80] L. Hongliang, et al., "FaceSeg: Automatic Face Segmentation for Real-Time Video,"

IEEE Trans. Multimedia, vol. 11, pp. 77-88, 2009.

[81] H. Moon and P. J. Phillips, "Analysis of pca-based face recognition algorithms," in

Empirical Evaluation Techniques in Computer Vision, K. Boyer and P. J. Phillips, Eds.,

ed: IEEE Computer Society Press, 1998.

 187

[82] B. Moghaddam, et al., "Bayesian face recognition using deformable intensity surfaces,"

in IEEE Computer Society Conference on Computer Vision and Pattern

Recognition,CVPR '96 1996, pp. 638-645.

[83] W. Zhao, et al., "Subspace linear discriminant analysis for face recognition," Center for

Automation Research University of Maryland, College Park, MD. CAR-TR-914, 1999.

[84] D. L. Swets and J. J. Weng, "Using discriminant eigenfeatures for image retrieval," IEEE

Trans. Pattern Anal. Mach. Intell., vol. 18, pp. 831-836, 1996.

[85] C. Liu and H. Wechsler, "Independent component analysis of Gabor features for face

recognition," IEEE Trans. Neural Netw., vol. 14, pp. 919-928, 2003.

[86] B. Kepenekci, et al., "Occluded face recognition based on Gabor wavelets," in

International Conference on Image Processing 2002, pp. 293-296.

[87] J. Wilder, "Face Recognition Using Transform Coding of Grayscale Projections and the

Neural Tree Network," in Artificial Neural Networks with Applications in Speech and

Vision, R. J. Mammone, Ed., ed: Chapman Hall, 1994, pp. 520-536.

[88] R. Chellappa, et al., "Human and machine recognition of faces: a survey," Proceedings of

the IEEE, vol. 83, pp. 705-741, 1995.

[89] K. W. Bowyer, et al., "A survey of approaches and challenges in 3D and multi-modal

3D+2D face recognition," Computer Vision and Image Understanding, vol. 101, pp. 1-

15, 2006.

[90] A. F. Abate, et al., "2D and 3D face recognition: A survey," Pattern Recognition Letters,

vol. 28, pp. 1885-1906, 2007.

[91] A. F. Abate, et al., "Ultra fast GPU assisted face recognition based on 3D geometry and

texture data," in Image Analysis and Recognition. Third International Conference, ICIAR

2006. Proceedings, Part II (Lecture Notes in Computer Science Vol. 4142), Povoa de

Varzim, Portugal, 2006, pp. 353-64.

[92] W. L. Cheong, et al., "Building a computation savings real-time face detection and

recognition system," in 2nd International Conference on Signal Processing Systems,

ICSPS pp. V1-815-V1-819.

[93] K. Meng, et al., "A high performance face recognition system based on a huge face

database," in Proceedings of 2005 International Conference on Machine Learning and

Cybernetics 2005, pp. 5159-5164 Vol. 8.

[94] K. V. Arya, et al., "Face recognition using Parallel Associative Memory," in IEEE

International Conference on Systems, Man and Cybernetics, SMC 2008, pp. 1332-1336.

 188

[95] I. Sajid, et al., "Hardware-Based Speed Up of Face Recognition Towards Real-Time

Performance," in 13th Euromicro Conference on Digital System Design: Architectures,

Methods and Tools, DSD pp. 763-770.

[96] I. Sotiropoulos and I. Papaefstathiou, "A fast parallel matrix multiplication reconfigurable

unit utilized in face recognitions systems," in International Conference on Field

Programmable Logic and Applications, FPL Prague, Czech Republic, 2009, pp. 276-281.

[97] O. Lahdenoja, et al., "A massively parallel face recognition system," EURASIP J.

Embedded Syst., vol. 2007, pp. 31-31, 2007.

[98] Q. Yang and C. Guo, "Parallel face recognition approach based on LGBPHS with

homogeneous PC cluster," Journal of Information and Computational Science, vol. 7, pp.

637-648, March 2010.

[99] Y. Ouerhani, et al., "Fast Face Recognition Approach Using a Graphical Processing Unit

"GPU"," in 2010 IEEE International Conference on Imaging Systems and Techniques

(IST 2010), Piscataway, NJ, USA, 2010, p. 5 pp.

[100] D. Zhang, et al., "Technology Evaluations on the TH-FACE Recognition System," in

Advances in Biometrics. vol. 3832, ed: Springer Berlin / Heidelberg, 2005, pp. 589-597.

[101] D. O. Hebb, The organization of behavior. New York: Wiley & Sons, 1949.

[102] R. Beveridge, et al., "The CSU face identification evaluation system: Its purpose,

features, and structure," Machine Visions and Applications, January 2005.

[103] M. Grgic, et al., "SCface - surveillance cameras face database," Multimedia Tools and

Applications, vol. 51, pp. 863-879.

[104] P. J. Phillips, et al., "Face Recognition Vendor Test 2002, Technical Appendices,"

National Institute of Standards and Technology (NIST) NISTIR 6965, March 2003.

[105] P. J. Phillips, et al., "FRVT 2006 and ICE 2006 Large-Scale Experimental Results,"

IEEE Trans. Pattern Anal. Mach. Intell., vol. 32, pp. 831-846, 2010.

[106] P. J. Phillips, et al., "The FERET evaluation methodology for face-recognition

algorithms," Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol. 22,

pp. 1090-1104, 2000.

[107] P. J. Phillips, et al., "The FERET database and evaluation procedure for face recognition

algorithms," Image and Vision Computing J, vol. 16, pp. 295-306, 1998.

[108] D. Knuth, The Art of Computer Programming vol. Vol. 3 Reading, Massachusetts:

Addison-Wesley, 1998.

 189

[109] J. Osier. (Published 1993, Accessed November 19, 2011). GNU gprof. Available:

http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html

[110] N. Nethercote and J. Seward, "Valgrind: A Framework for Heavyweight Dynamic Binary

Instrumentation," in ACM SIGPLAN 2007 Conference on Programming Language

Design and Implementation (PLDI 2007), San Diego, California, 2007.

[111] ConcurrentEDA Inc. Concurrent Analytics. Available:

http://www.concurrenteda.com/index.php?option=com_content&view=category&layout=

blog&id=47&Itemid=83

[112] R. M. Stallman and GCC Developer Community, Using the GNU Compiler Collection.

Boston, MA: GNU Press, a division of the Free Software Foundation, 2003.

[113] Free Software Foundation Inc. (2011, February 10, 2012). GNU Binutils. Available:

http://www.gnu.org/software/binutils/

[114] Advanced Micro Devices, "Software Optimization Guide for AMD Family 10h

Processors, Publication Number 40456, Revision 3.13," February 2011.

[115] Intel Corporation, "Intel 64 and IA-32 Architectures Optimization Reference Manual,"

Document number: 248966-025, 2011.

[116] M. Turk and A. Pentland, "Face Recognition Using Eigenfaces," in IEEE Conference on

Computer Vision and Pattern Recognition, Maui, Hawaii, 1991, pp. 586-591.

[117] S. Z. Li and A. K. Jain, Handbook of Face Recognition. New York: Springer

Science+Business Media, Inc., 2005.

[118] D. Gabor, "Theory of Communication," J. IEE, vol. 93, pp. 429-459, 1946.

[119] J. Daugman, "Complete Discrete 2D Gabor Transform by Neural Networks for Image

Analysis and Compression," IEEE Transactions on Acoustics, Speech, and Signal

Processing, vol. 36, pp. 1169-1179, July 1988.

[120] JEDEC, "DDR2 SDRAM Specification," JEDEC Solid State Technology

Association2009.

[121] R. D. Williams, et al., "Server Memory Road Map," presented at the Memory Forum,

Shenzhen, China, 2012.

[122] H. F. Jordan and G. Alaghband, Fundamentals of Parallel Processing. Upper Saddle

River, NJ: Pearson Education, Inc., 2003.

[123] Semiconductor Industry Association. (2009). 2009 Update, System Drivers [Online].

Available:

http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_SysDrivers.pdf

http://www.cs.utah.edu/dept/old/texinfo/as/gprof.html
http://www.concurrenteda.com/index.php?option=com_content&view=category&layout=blog&id=47&Itemid=83
http://www.concurrenteda.com/index.php?option=com_content&view=category&layout=blog&id=47&Itemid=83
http://www.gnu.org/software/binutils/
http://www.itrs.net/Links/2009ITRS/2009Chapters_2009Tables/2009_SysDrivers.pdf

 190

[124] N. D. Enright Jerger, On-chip Networks. San Rafael, CA: Morgan & Claypool Publishers,

2009.

[125] M. Snir, et al., MPI-The complete reference Second ed. vol. 1: The MPI Core.

Cambridge, MA: The MIT Press, 1998.

[126] M. Fowler, UML Distilled: A Brief Guide to the Standard Object Modeling Language,

Third ed. Boston, MA: Pearson Education, Inc., 2004.

[127] Object Management Group, "OMG Unified Modeling Language (OMG UML),

Infrastructure," 2010.

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT

	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1: Required Speedup for Real-Time Face Identification.
	Table 2: Subspace Methods
	Table 3: Wavelet Methods
	Table 4: Uncategorized Methods
	Table 5: Calculation of Identification Time
	Table 6: Face Identification Data Sets and Parameters
	Table 7: Face Data Set Parameters
	Table 8: Performance Estimates and Required Speedup.
	Table 9: Eigenface and Bayesian Speedup Summary.
	Table 10: EBGM ISA Speedup Summary.
	Table 11: ISA Speedup.
	Table 12: Memory Bandwidth Analysis Summary.
	Table 13: Required Computational Speedup
	Table 14: Local Memory Capacity.
	Table 15: Benchmark Memory Bandwidth Requirements.
	Table 16: On-chip Communication Latency and Bandwidth.
	Table 17: Requirements for Real-Time Face Identification.
	Table 18: Real Time Benchmark Mappings

	LIST OF FIGURES
	Figure 1: ITRS projects thousands of processors on a chip within ten years.
	Figure 2: A probe image is encoded and compared to the gallery set.
	Figure 3: A local binary pattern is formed by sampling pixels in a rotational sequence.
	Figure 4: Instruction tabulation example
	Figure 5: Eigenface algorithm overview.
	Figure 6: Eigenface face identification algorithm.
	Figure 7: Eigenface algorithm computational analysis.
	Figure 8: Eigenface benchmark and computational analysis.
	Figure 9: Bayesian face identification algorithm overview.
	Figure 10: Bayesian face identification algorithm.
	Figure 11: Bayesian computational analysis.
	Figure 12: Bayesian benchmark and computational analysis.
	Figure 13: Eigenface and Bayesian computation comparison.
	Figure 14: The jet is the encoded representations of one image region.
	Figure 15: EBGM overlays a bunch graph on the face image and extracts a face graph.
	Figure 16: Top level EBGM pseudo code.
	Figure 17: C code for the EBGM algorithm.
	Figure 18: EBGM algorithm computational analysis.
	Figure 19: EBGM benchmark and computational analysis.
	Figure 20: Eigenface benchmark instruction level analysis.
	Figure 21: Eigenface benchmark line 3 data flow graph.
	Figure 22: Eigenface benchmark fused multiply-add MADD instruction for line 3.
	Figure 23: Eigenface benchmark line 6 data flow graph.
	Figure 24: Eigenface benchmark fused diff-squared instruction DFSQ for line 6.
	Figure 25: Eigenface ISA speedup with fused instructions.
	Figure 26: Eigenface benchmark speedup with multiple function units.
	Figure 27: Eigenface ISA speedup and register file ports.
	Figure 28: EBGM benchmark instruction level analysis.
	Figure 29: EBGM benchmark line 4.4 data flow graph.
	Figure 30: EBGM benchmark fused move-index MOVIDX for line 4.4.
	Figure 31: EBGM 100K, 1K benchmark ISA speedup with fused instruction.
	Figure 32: EBGM 100 KP, 1K speedup and register file ports.
	Figure 33: EBGM 4 MP, 1M benchmark ISA speedup with fused instruction.
	Figure 34: EBGM 4 MP, 1M speedup and register file ports.
	Figure 35: Memory bandwidth analysis for the Eigenface subspace matrix.
	Figure 36: Eigenface 100 KP, 1K memory bandwidth analysis.
	Figure 37: Eigenface 4 MP, 14K memory bandwidth analysis.
	Figure 38: Eigenface 4 MP, 1M memory bandwidth analysis.
	Figure 39: EBGM 100 KP, 1K memory bandwidth analysis.
	Figure 40: EBGM 4 MP, 14K memory bandwidth analysis.
	Figure 41: EBGM 4 MP, 1M memory bandwidth analysis.
	Figure 42: System Architecture Model.
	Figure 43: Basic parallel SOC system model.
	Figure 44: Multichannel parallel SOC system model.
	Figure 45: Collective on-chip communication messages.
	Figure 46: UML Activity diagram.
	Figure 47: The extended UML Activity diagram.
	Figure 48: Data movement and communication operations added to the code.
	Figure 49: Eigenface benchmark row-column mapping.
	Figure 50: Memory capacity analysis, Eigenface row-column mapping.
	Figure 51: Eigenface benchmark segment mapping.
	Figure 52: Memory requirements for Eigenface segment mapping.
	Figure 53: Eigenface algorithm in equation form.
	Figure 54: Eigenface benchmark code.
	Figure 55: Sequential code with S segments.
	Figure 56: Sequential pseudo code with P PEs and S segments.
	Figure 57: Parallel code with explicit data movement.
	Figure 58: Eigenface benchmark segment mapping analysis.
	Figure 59: Eigenface segment mapping analysis with ten memory banks and ten PEs.
	Figure 60: EBGM filter mask mapping.
	Figure 61: EBGM 4 MP, 1M Memory Capacity Requirements.
	Figure 62: EBGM benchmark top level pseudo code.
	Figure 63: EBGM simplified pseudo code.
	Figure 64: EBGM further simplified pseudo code.
	Figure 65: Calcjet function definition.
	Figure 66: CalcJetPart function integrated into benchmark pseudo code.
	Figure 67: EBGM benchmark pseudo code with filter loop parallelization.
	Figure 68: EBGM benchmark pseudo code with explicit data movement operations.
	Figure 69: EBGM filter mapping analysis.
	Figure 70: EBGM mapping with two distributed loops.
	Figure 71: EBGM analysis for the two distributed loops mapping.

	PREFACE
	1.0 INTRODUCTION
	1.1 FACE IDENTIFICATION IS NOT REAL-TIME
	1.2 THOUSANDS OF PROCESSORS ON A CHIP WITHIN A DECADE
	1.3 DESIGN SPACE FOR MASSIVELY PARALLEL SOCS

	2.0 STATEMENT OF THE PROBLEM
	2.1 PERFORMANCE ANALYSIS AND BENCHMARK EXTRACTION
	2.2 INSTRUCTION SET ARCHITECTURE IMPROVEMENT
	2.3 EXTERNAL MEMORY BANDWIDTH IMPROVEMENT
	2.4 PARALLEL MAPPING, COMPUTATION, AND COMMUNICATION ANALYSIS AND IMPROVEMENT

	3.0 BACKGROUND
	3.1 FACE IDENTIFICATION
	3.1.1 Evaluation of face identification algorithms
	3.1.2 Face identification algorithm background

	3.2 ACCELERATION OF FACE IDENTIFICATION
	3.2.1 Networked Computers
	3.2.2 Specialized Processors
	3.2.3 Custom Hardware
	3.2.4 Conclusion

	3.3 FACE IMAGE DATA SETS

	4.0 PERFORMANCE ANALYSIS AND BENCHMARK EXTRACTION
	4.1 FACE IMAGE DATA SETS
	4.2 PERFORMANCE ANALYSIS METHOD SELECTION
	4.2.1 Complexity analysis
	4.2.2 Code Profiling
	4.2.3 Computational Analysis Method

	4.3 EIGENFACE ALGORITHM ANALYSIS
	4.3.1 Eigenface Algorithm Computational Analysis

	4.4 BAYESIAN ALGORITHM ANALYSIS
	4.4.1 Bayesian Algorithm Computational Analysis

	4.5 EIGENFACE AND BAYESIAN ALGORITHM COMPARISON
	4.6 ELASTIC BUNCH GRAPH MATCHING ALGORITHM ANALYSIS
	4.6.1 EBGM Algorithm Computational Analysis

	4.7 CONCLUSION

	5.0 INSTRUCTION SET ARCHITECTURE ANALYSIS
	5.1 ISA ANALYSIS METHOD
	5.2 EIGENFACE BENCHMARK ISA ANALYSIS
	5.3 EBGM BENCHMARK ISA ANALYSIS
	5.4 CONCLUSION

	6.0 MEMORY ANALYSIS
	6.1 EXTERNAL OR OFF-CHIP MEMORY BANDWIDTH ANALYSIS
	6.2 MEMORY BANDWIDTH ANALYSIS METHOD
	6.3 EIGENFACE MEMORY BANDWIDTH ANALYSIS
	6.4 EBGM MEMORY BANDWIDTH ANALYSIS
	6.5 CONCLUSION

	7.0 BENCHMARK MAPPING AND ANALYSIS
	7.1 PARALLEL SOC SYSTEM MODEL
	7.1.1 Processor Model
	7.1.2 External Memory Model
	7.1.3 Communication Model

	7.2 MAPPING ANALYSIS METHOD
	7.3 EIGENFACE MAPPING ANALYSIS
	7.4 EBGM MAPPING ANALYSIS
	7.5 CONCLUSION

	8.0 CONCLUSIONS AND FUTURE WORK
	8.1 CONTRIBUTIONS
	8.2 FUTURE WORK
	8.2.1 Algorithm Research
	8.2.2 Develop Real-Time Mappings for GPU Architectures
	8.2.3 Develop Real-Time Mappings for 3D Face Identification

	BIBLIOGRAPHY

