
JOURNAL OF TRANSACTIONS ON MOBILE COMPUTING 1

Detection of Selfish Manipulation of Carrier Sensing
in 802.11 Networks

Konstantinos Pelechrinis, Guanhua Yan, Stephan Eidenbenz,
and Srikanth V. Krishnamurthy, Senior Member, IEEE

Abstract—Recently, tuning the clear channel assessment (CCA) threshold in conjunction with power control has been considered for
improving the performance of WLANs. However, we show that, CCA tuning can be exploited by selfish nodes to obtain an unfair share of
the available bandwidth. Specifically, a selfish entity can manipulate the CCA threshold to ignore ongoing transmissions; this increases the
probability of accessing the medium and provides the entity a higher, unfair share of the bandwidth. We experiment on our 802.11 testbed
to characterize the effects of CCA tuning on both isolated links and in 802.11 WLAN configurations. We focus on AP-client(s) configurations,
proposing a novel approach to detect this misbehavior. A misbehaving client is unlikely to recognize low power receptions as legitimate
packets; by intelligently sending low power probe messages, an AP can efficiently detect a misbehaving node. Our key contributions are: (a)
We are the first to quantify the impact of selfish CCA tuning via extensive experimentation on various 802.11 configurations. (b) We propose
a lightweight scheme for detecting selfish nodes that inappropriately increase their CCAs. (c) We extensively evaluate our system on our
testbed; its accuracy is 95% while the false positive rate is less than 5%.

Index Terms—Wireless Networks, Carrier Sensing, Clear Channel Assessment threshold, Denial of Service, Selfish behavior, Experimenta-
tion, Analysis.

✦

1 INTRODUCTION

It is well known that the distributed coordination function
(DCF) of the IEEE 802.11 MAC protocol provides long term
fairness to users that are in the proximity of one another
and share the wireless medium [1]. Recently, there have
been many approaches that advocate the joint tuning of
the transmission power and the clear channel assessment
(CCA) threshold to improve spatial reuse and thereby, the
achievable capacity in a WLAN [2][3]. Tuning the CCA
threshold opens the door for a new kind of selfish or
malicious behavior. By increasing the CCA threshold, a
“misbehaving” user1 will cause the carrier sensing at the
MAC layer to ignore the transmissions of other users with
which it shares the medium. As a consequence, (a) it
may initiate transmissions when other transmissions are
in progress thereby increasing collisions and, (b) it will
not freeze its back-off counter while other nodes are trans-
mitting packets; as a consequence it is able to access the
medium much more frequently than other users and thus,
enjoy a higher unfair share of the bandwidth. Given these
adverse effects, it is critical to understand and quantify the

• Konstantinos Pelechrinis is with the Department of Information Sciences of
University of Pittsburgh.
E-mail: kpele@pitt.edu.

• Guanhua Yan is with the Los Alamos National Laboratories.
E-mail: ghyan@lanl.gov.

• Stephan Eidenbenz is with the Los Alamos National Laboratories.
E-mail: eidenben@lanl.gov.

• Srikanth V. Krishnamurthy is with the Department of Computer Science and
Engineering of University of California, Riverside.
E-mail: krish@cs.ucr.edu.

This work is supported in part by the US Army Research Office under the Multi-
University Research Initiative (MURI) grants W911NF-07-1-0318 and the NSF
NeTS:WN / Cyber trust grant 0721941.

1. We use the terms misbehaving, cheating, greedy and selfish inter-
changeably. We also use the terms user, node and client interchangeably.

extent to which fairness suffers from CCA manipulations
in 802.11 networks. For this reason, we first examine the
effects of such behavior on isolated links. This provides a
fundamental understanding of the behavioral nuances of
carrier sensing on real hardware.

Having acquired the above basic understanding we focus
on AP-client configurations and we further examine such
scenarios in more detail. As our main contribution, we
propose a novel approach for detecting misbehaving clients
with high accuracy. There are two observations that drive
our approach. First, a misbehaving node that increases
its CCA threshold is likely to have a good “link” to the
AP to begin with. If this is not the case increasing the
CCA can compromise the connectivity of the node. Sec-
ond, by increasing the CCA threshold towards gaining
an unfair share of the throughput, the misbehaving node
implicitly raises the bar with regards to the RSSI (Received
Signal Strength Indicator) required for correct decoding.
The receiver circuitry only tries to decode packets that
are received with an RSSI that is higher than the CCA
threshold.

Based on the above observations, we design the Carrier
sensing Misbehavior Detection (CMD) system. The key
insight, evident from the above observations, is that a node
that has increased its CCA threshold is likely to ignore
low power transmissions from the AP. Thus, by sending low
power probes, the AP can potentially detect such nodes
with high accuracy. In order to reduce the overhead that
will be incurred due to such probes, CMD first identifies
a set of possible badly behaving nodes. This set consists of
those nodes that are enjoying a significantly higher share
of the throughput than their counterparts that are within
the same cell. The probe messages are then only sent to
the members of this set. Note here that, under saturated
conditions where this problem is likely to be most critical,

this set naturally excludes nodes that are at the periphery
of the cell or nodes with poor links.

In more detail our contributions in this paper are as
follows:

• We experimentally characterize the operation of
CSMA/CA on commodity wireless NICs, by examin-
ing the effects of CCA tuning on isolated links. We
further quantify the impact of selfish CCA tuning on
the overall network performance of a WLAN. This
is the first study that quantifies the extent to which,
fairness suffers if this functionality were to be used
inappropriately.

• We design and implement CMD for detecting such mis-
behaving clients in WLANs. CMD consists of two sub-
components: (a) The Throughput Monitoring Module
(TMM), which identifies a candidate set of possible
misbehaving nodes and (b) The Low power Probing
Module (LPM), which transmits the low power probes
to effectively detect the real misbehaving nodes from
among this candidate set. The implementation of CMD
does not require any modifications to the IEEE 802.11
driver or firmware and can be implemented in the user
space in its entirety.

• We analytically compute system parameters for CMD
such that low false positive (wrongly classifying a well-
behaved node) and false negative (not recognizing a mis-
behaving node) probabilities are achieved. We validate
our analytical results through measurements.

• We perform extensive experiments to evaluate CMD on
an indoor WLAN testbed, with various configurations.
Our experiments show that CMD detects misbehaving
nodes with extremely high accuracy (95 %) with a very
low false positive rate (< 5 %).

• We discuss possible strategies to mitigate the impact
of misbehaving nodes after detection. In particular
we propose and experimentally evaluate a simple, yet
seemingly promising technique.
We provide guidelines for possible mitigation schemes.
We further examine a technique based on transmission
power control from the AP. Our experimental results
show the applicability of the proposed approach.

Our work in perspective: Selfish behaviors that target
802.11 functionalities have been considered and addressed
previously. In particular, there have been many efforts that
try to overcome behaviors where greedy nodes manipulate
the back-off timers with 802.11 [4][5][6][7][8][9]. While a
misbehaving node can enjoy lower back-off times by ma-
nipulating the CCA threshold (fewer instances of freezing
the back-off counter), we wish to point out that the two
attacks are not the same. In particular, unlike the other at-
tacks, tuning the CCA threshold is protocol compliant; the
802.11 standard [10] does not specify a value for the CCA
threshold. In fact, different wireless network interface cards
(NICs) have slightly different CCA thresholds. Although
currently, tuning the CCA threshold is a functionality that
these cards implement in the firmware, there are ongoing
efforts towards enabling this functionality [11]. There have
already been research efforts that advocate the tuning of this
threshold for performance improvements [2][3]. In addition,
GNU software defined radios [12][13] are expected to fully

support 802.11 soon; such coexisting platforms that allow
CCA tuning could be misused to pilfer a higher share of
the throughput.

We only consider uplink traffic since one might expect
that the APs, which are usually controlled by service
providers, are unlikely or do not have the incentive to cheat;
stated otherwise, it is unlikely that downlink traffic will
be prone to such misbehaviors. Furthermore, the uplink
traffic of a WLAN is not a negligible percentage of the total
AP traffic anymore [14]. The increasing popularity of p2p
applications result in the generation of a high proportion
of uplink traffic in commercial hotspots.

The rest of the paper is organized as follows. In Section
2 we discuss relevant CSMA/CA functionalities in brief
and related work. In Section 3 we describe our testbed at
UC Riverside. Our measurements for understanding carrier
sensing and CCA tuning on isolated links are presented
in Section 4. Section 5 examines the effects of selfish CCA
tuning on WLANs. In Section 6 we present the design
and implementation of CMD; we analyze its performance
in Section 7. In Section 8 we discuss the results of our
evaluations of CMD. Possible mitigation schemes and mis-
cellaneous issues are deliberated upon in Section 9. Our
conclusions form Section 10.

2 BACKGROUND AND RELATED WORK

In this section we provide a brief description of relevant
CSMA/CA functions and describe related work.

2.1 Relevant 802.11 functions
802.11’s access policy is based on CSMA/CA. Each user
needs to sense the medium idle for a specified time prior
to transmitting data [15]. Whenever the perceived power
on the medium is higher than the CCA threshold, a node
must defer its transmission and enter the backoff state.
Upon reaching this state, a node initiates a back-off counter
with a random value. For each time slot that the medium is
free, the counter is decremented; for each time slot that the
energy on the medium is higher than the CCA threshold,
the value of the counter is left unchanged (or frozen). When
the counter value is decremented to zero, the node senses
the medium again. If the power on the medium is lower
than the CCA threshold (medium is idle) it transmits its
packet; otherwise, it re-enters the backoff state and the
expected counter value is now doubled.

When a misbehaving node increases its CCA threshold,
it can result in the following effects:

• It can now ignore those signals that it senses, but
are lower than this new increased threshold. Therefore,
many of the signals on the medium have now no effect
on the transmission opportunities of the node.

• Other nodes that use the default CCA will sense the
transmissions of the selfish node and will defer their
own transmissions for longer periods.

• If a transmission of the misbehaving node is not suc-
cessful, it will enter the backoff state. However, since
its CCA threshold is increased, it is more likely that
it will not have to freeze its backoff counter; this is a
consequence of the node sensing the medium to be idle
even if there are ongoing transmissions.

2

20

12 27

11

15

16

14

18

19

13

31

22

23

30

24

25

26

28

29

36

38

37

39

40 41

44 46
48

42

45 50

57 17 21

32

35

34 33

47

56

53

51

58

Fig. 1. The UCR wireless testbed.

2.2 Related studies

While there have been prior efforts on overcoming attacks
that manipulate 802.11 functionalities, the attack considered
in this paper has not received prior attention.

Attacks that violate the 802.11 back-off timers: Kyasanur
and Vaidya [4] consider selfish behaviors where nodes
deviate from the standard backoff mechanism of 802.11.
They propose a mitigation scheme where the receiver ex-
plicitly assigns the backoff value to the sender. Konorski [9]
proposes a misbehavior-resilient backoff mechanism. Gagalj
et al [7] use game theory to develop a simple, localized and
distributed protocol that guides multiple selfish nodes that
deviate from the backoff mechanism to a Pareto-optimal
Nash equilibrium. Radosavac et al., [5] present a framework
based on the Sequential Probability Ratio Test (SPRT) for
detecting nodes that deviate from the backoff mechanism.
Finally, Queseth [8] shows that it is hard to discourage
selfishness by punishment if we cannot quickly detect these
behaviors. All these studies however, are primarily related
to the exploitation of the backoff mechanism, which is not
the focus of our work. Note that in the considered setting,
a node only increases its CCA threshold and does not
directly violate the back-off policies; thus, these previously
considered methods will not be effective.

Detecting other selfish behaviors: Raya et al [6] propose
and implement DOMINO, a system for detecting various
selfish behaviors in WLANs. DOMINO detects nodes that
do not adhere to the standard backoff mechanism, send out
data without waiting for the standard DIFS period, use an
oversized NAV to retain the medium for a longer time, or
intentionally corrupt frames to obtain unfair access to the
wireless medium. In the attack considered, misbehaving
nodes increase their CCA; none of the above behavioral
trends are observed (as an example, the DIFS periods
followed by the selfish nodes are legitimate). DOMINO
cannot accurately detect an attack where nodes ”do not”
freeze their back off counters due to ongoing transmissions.

Consequently, DOMINO cannot detect possible CCA ma-
nipulations. Note that our approach can be complementary
to DOMINO.

To the best of our knowledge we are the first to experi-
mentally examine the selfish behaviors of nodes that try to
increase their throughput by exploiting the CCA threshold
functionality. Recently, Paul et al [16] proposed a passive
monitoring technique to detect users that do not adhere to
carrier sensing at all. They follow a centralized approach
and require the deployment of separate monitoring nodes.
Their evaluations through ns2 simulations illustrate the
potential of the approach; the approach however in its
current form relies on some simplified assumptions in its
current form.

3 EXPERIMENTAL SETUP

In this section we provide a brief description of our testbed
and the experimental methodology that is followed.

3.1 Testbed Description

Our wireless testbed (Figure 1) is located on the 3rd floor
of Engineering Building II at UC Riverside and consists of
42 Soekris net4826 nodes [17]; the nodes mount a Debian
Linux distribution with kernel v2.6, over NFS. Each node
is equipped with two miniPCI 802.11a/g WiFi cards, an
EMP-8602 6G with Atheros chipset and an Intel-2915. We
use the MadWifi driver [18] for the EMP-8602 6G cards.
We use a proprietary version of the ipw2200 AP and client
driver/firmware of the Intel-2915 card. With this version we
are able to tune the CCA threshold parameter. Up to date
information on our current testbed set up can be found in
[19].

3.2 Experimental Methodology

The misbehaving clients exclusively use our Intel cards,
since these cards allow CCA tuning. The default value for
the CCA threshold is -80dBm. All nodes use the maximum
power (18dBm). Our experiments span a large number
of communications pairs (more than 80). In addition, we
perform measurements with more than 2 clients associated
with the same AP (up to 4 clients associated with a single
AP), accounting for different levels of cross traffic. We
conduct our experiments by mainly utilizing 802.11a, in
order to be able to perform controlled experiments avoiding
interference from co-located WLANs operating at 2.4 GHz.
However, we have verified, that our findings hold with
802.11g as well (unless otherwise stated). We provide more
details on every experiment in the following sections.

4 EFFECTS OF CCA MANIPULATION ON AN ISO-
LATED LINK

Key to our study is understanding the effects of CCA tun-
ing. The way that carrier sensing operates is crucial for both
(a) inferring the effects of selfish exploitation of the CCA
tuning mechanism, as well as, (b) designing an accurate
detection scheme. We want to emphasize that providing
a detailed understanding on the real world performance
of carrier sensing is not the main focus of our work. An

3

interesting experimental study, complementary to ours and
in a different direction, of how carrier sensing works in
practice can be found in [20].

For the purposes of our study we activate one link
at a time and we progressively increase the CCA at its
two end points, monitoring at the same time the achieved
throughput. Figure 2 depicts the representative results for
two links on our testbed. The remaining links exhibited the
same qualitative performance.

 0

 5

 10

 15

 20

 25

 30

 35

-80 -70 -60 -50 -40 -30 -20

T
hr

ou
gh

pu
t (

M
bp

s)

CCA (dBm)

Link 42-12
Link 44-19

Fig. 2. Throughput as a function of CCA on isolated links.

We observe that slightly increasing the CCA, does not
have any effect on the throughput enjoyed by the link;
it remains practically constant. However, increasing the
threshold above a specific value2 - different for every link -
results in a significant and sudden throughput degradation;
eventually zero throughput is observed on the link as can
be seen from Figure 2.

In order to understand the reasons behind this perfor-
mance, we need to recall that most commodity cards set the
receiver’s sensitivity equal to the CCA threshold [2] [3] [21].
This means that at some point - when we keep increasing
the CCA value - the RSSI at the receiver’s circuitry will
be lower than its increased CCA/sensitivity, and this will
result in compromised connectivity; the receiver will ignore
the packet and regard it as noise.

From these experimental results, we conclude that we
cannot keep blindly increasing the CCA threshold on a
link; we need to take the above effect into account when
understanding the attack and designing a countermeasure.
One could argue that we could increase the CCA only at
the sender side, in order to avoid discarding the packets
at the receiver. However, successful 802.11 communications
involve MAC layer ACKs. As a result, even if only one
side of the link increases its CCA threshold, a similar
performance is observed. In fact, we have experimented
with such scenarios and we present a sample result in
Figure 3. Notice that the CCAcutoff is different depending
on which side of the link is using an increased CCA value.
This is an artifact of the asymmetry on the wireless links.
Using the terms CCAcutoff−rx and CCAcutoff−tx for the
cases where the receiver or transmitter only, respectively,
increases its threshold, we get:

CCAcutoff = min(CCAcutoff−rx, CCAcutoff−tx) (1)

As mentioned earlier the CCAcutoff value is different for
every link and depends on (i) the environment, (ii) the

2. We refer to this value as CCAcutoff .

 0

 5

 10

 15

 20

 25

 30

-80 -70 -60 -50 -40 -30 -20 -10

T
hr

ou
gh

pu
t (

M
bp

s)

CCA (dBm)

Both Ends
Receiver Only

Sender Only

Fig. 3. Increasing the CCA on one end of the link only, has
the same effect (link 22-31).

distance spanned by the link, (iii) the transmission power
and (iv) the propagation characteristics (e.g. frequency
used). Figures 4(a) and 4(b) present the empirical statistics
(CDF and PDF/histogram) of the CCAcutoff for the links on
our testbed, when the maximum power is employed and
channel 60 (5.3 GHz) is used.

In the rest of this paper we focus on selfish behaviors con-
sidering uplink traffic in WLANs. The selfish client should
not expect the AP to co-operate and increase its CCA too. As
a result, our case study involves situations where only the
sender, increases its carrier sensing threshold. The greedy
entity needs to consider the trade off between ignoring
ongoing transmissions and not being able to decode the
MAC layer ACKs from the AP, when increasing its CCA.
In the rest of the paper, we will focus on aggressive selfish
strategies, that is, greedy users will use the maximum
possible CCA that does not degrade the link quality to the
AP. In Section 9 we will briefly examine the effects and the
detection of less aggressive cheating strategies.

 0

 0.2

 0.4

 0.6

 0.8

 1

-80 -70 -60 -50 -40 -30 -20 -10

E
m

pi
ric

al
 C

D
F

CCAcutoff
(a) CDF.

0.2

0.1

0
-80 -70 -60 -50 -40 -30 -20 -10

E
m

pi
ric

al
 P

D
F

CCAcutoff
(b) PDF.

Fig. 4. Empirical statistics for the CCAcutoff .

4

 0

 0.2

 0.4

 0.6

 0.8

 1

[0,2) [2,5) >=5

F
ra

ct
io

n
of

 o
cc

ur
re

nc
es

Throughput gain (Mbps)

2 clients
3 clients
4 clients

Fig. 5. Increasing CCA can be
an effective greedy strategy.

2 4 6 8 10 12
4

6

8

10

12

14

d
C−AP

 (m)

d C
−

l (
m

)

Fig. 6. Topology affects cheating
gain.

 0

 5

 10

 15

 20

 25

 5 10 15 20 25 30

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

Client 14
Client 22

Fig. 7. Time trace for the case of
UDP traffic.

5 SELFISH CCA TUNING ON WLANS

The 802.11 MAC protocol, as discussed earlier, provides
long term max-min fairness to nodes that share a link.
Under saturated conditions all the nodes that share a link,
essentially access the medium with the same probability. By
increasing the CCA threshold, a node can pilfer a higher
share of the medium than it is entitled to, from the other
users. To reiterate, transmissions that arrive at the receiver
circuitry with an RSSI lower than the CCA threshold are
ignored. By increasing the threshold, a node can ignore
a significant fraction of the transmissions that occupy the
medium.

 0

 2

 4

 6

 8

 10

 12

 14

Selfish
 Saturated

Selfish
 Unsaturated

Benign

T
hr

ou
gh

pu
t (

M
bp

s)

Node 58
Node 32
Node 34

Fig. 8. A non-aggressive cheater is not harmful.

As described before, this not only causes an increased
number of collisions but also allows the misbehaving node
to reduce the fraction of the time that it spends in the back-
off state.

 0

 5

 10

 15

 20

 25

 30

UDP/TCP UDP/UDP TCP/TCP TCP/UDP

T
hr

ou
gh

pu
t (

M
bp

s)

Transmission Protocol Used(Selfish/Good)

S Normal
G Normal

S Abnormal
G Abnormal

Fig. 9. Impact of different transport layer protocols (S:selfish,
G:good user).

Our objective in this section is to study in more detail
the effects of this greedy behavior in a WLAN setting. We

experiment with various configurations (with varying loca-
tions of the APs and clients), different traffic patterns and
various transport protocols, and we measure the through-
put gains of the selfish clients relative to their fair share of
throughput under normal operating conditions.

Experiments with saturated traffic: We depict our first
results in Figure 5. The x-axis represents the throughput
gains of the selfish clients and the y-axis represents the
percentage of occurrences of this throughput gain (the gains
are quantized into three levels); we vary the number of
clients connected to the AP. We observe that in most cases
(more than 85% of the 90 scenarios considered in total) the
cheating user is able to gain significantly over the well-
behaved clients affiliated with the same AP - at least a
5Mbps gain from its fair share is seen.

In some scenarios though (in fewer than 5% of the
considered scenarios), the selfish client is unable to pilfer
more than 2Mbps from the other clients. These cases arise
when the selfish client is far from the AP (e.g., node 36 is the
AP and node 22 is the selfish client) and as a result cannot
increase its CCA to very high values; doing so would result
in its disassociation from the AP. These studies suggest that
a selfish node is likely to choose a location that is as close
to the AP as possible3.

In order to illustrate the effect of the cheater’s position
on the achievable throughput gains, we experiment with
two clients associated with the AP. Figure 6 presents the
throughput gain, as a function of the cheater’s distance
from the AP dc−AP , and the cheater’s distance from the
legitimate client dc−l. In this figure, the area covered from
each point is proportional to the cheating gain observed.
Thus, points that cover a larger area, correspond to higher
cheating gain. It is clear, that when dc−AP is small (e.g.,
less than 4.5 m), the cheating gain is large (∼ 11− 13Mbps).
Slightly lower gains are observed if the cheating node
resides further from the AP, but dc−l is kept large (≥ 10m).
Finally, for a larger dc−AP in conjunction with a small dc−l,
the cheating gains are diminished. We would like to empha-
size that, the above mapping is much more complicated
than it seems. There are multiple factors that affect the
cheating gain and the dependencies between these factors
are complex. Distance is important but not dominant; for

3. Note that well behaved users may also exhibit similar behaviors in
terms of the the qualities of their links to the AP; closer locations can result
in higher RSSI values and thus, higher transmission rates can be sustained.

5

example, two nodes that are physically close to each other
may have different communication channel due to envi-
ronmental factors (e.g., obstacles). In this work, we focus on
scenarios where cheating via manipulating CCA thresholds
is feasible. Providing a definitive model that predicts the
cheating gains is beyond the scope of this work.

In Figure 7 we present the temporal variations in
throughput from a representative experiment. In particular,
we use node 31 as an AP and nodes 22 and 14 as clients
(Figure 1). We initiate fully saturated uplink traffic from
both clients using iperf for 30 seconds. During the first ten
seconds, both clients enjoy the same share of the through-
put; this is a direct artifact of the fairness due to CSMA/CA.
In the period between the 10th and the 20th seconds, node 14
misbehaves by increasing its CCA threshold from -80dBm
to -50 dBm. We notice from Figure 7 that this results in a
dramatic increase in the throughput of node 14. Meanwhile,
node 22’s throughput degrades significantly.

We observe that if the misbehavior is temporary, the
effects are not long-lasting. As soon as the selfish user
restores its default settings, the throughput of the rest
of the clients quickly returns to the values under benign
conditions. To understand this effect, recall that the selfish
user follows the standard backoff mechanism with 802.11.
After the settings are restored, within a short period of time,
the greedy client enters the backoff state (senses energy on
the medium). Then, the other users begin reducing their
backoff counters; they gain access to the medium when
their counter has reached the value of zero and at this point
in time, fairness is restored4.

Note also that even during the period where there is
selfish behavior, the well-behaved nodes still obtain some
throughput; this is directly attributed to the above reason
i.e., packet losses can still occur for the misbehaving node
and it can still enter the back-off phase.

Behavior with unsaturated UDP selfish traffic: Before
examining the performance with TCP, we want to examine
the impact of the varying volume of the cheating node’s
traffic load. In particular, we are interested into scenarios
where the cheating node is not backlogged. When the
uplink traffic demand of the selfish entity is low, one
would expect that the effect (if any) on the other legitimate
clients in the cell, is minimal. In order to showcase this, we
perform experiments under different traffic conditions, but
with the same topology. Figure 8 depicts our results for a
representative experiment. Node 51 is configured as an AP
with 3 associated clients (nodes 58, 32 and 34). Node 58 is
the selfish user. We examine the following 3 scenarios. (i)
All nodes use their default CCA settings. Nodes 32 and 34
have saturated uplink traffic, while node 58 has a traffic
demand of 5Mbps. (ii) Node 58 increases its CCA threshold
to -50dBm, while the traffic patterns are the same as in (i).
(iii) Node 58 keeps the increased CCA threshold and sends
saturated traffic to the AP. As our results suggest, when
the selfish user is not backlogged, increasing its CCA does
not provide any throughput benefits as compared to that

4. The speed with which this process occurs depends on the quality of
the link between the AP and the misbehaving client. If this link is lossy,
the misbehaving client is likely to experience a packet loss quickly and
enter the back-off state.

with default settings. The reason is that the cell has enough
capacity to satisfy the user’s demands. On the contrary,
when node 58 is backlogged, more frequent medium access
is required from its part to satisfy its uplink traffic demands.
Consequently, the remaining users will suffer (nodes 32
and 34) as already seen. In general, with a higher traffic
demand, the cheating node will access the channel with
a higher frequency. Our experiments indicate that well-
behaved clients suffer from unfairness and thus, receive a
much reduced share of the throughput in such cases.

Behavior with TCP traffic: The use of TCP results in
two somewhat conflicting effects from the perspective of a
well-behaved user. On the one hand, since the selfish user
accesses the medium more often (as discussed above), the
TCP packets experience longer delays and round trip times
(RTT); thus, the TCP congestion window does not increase
as rapidly as one might expect under normal operations
and the overall throughput suffers. On the other hand, the
selfish client itself might experience loss of packets and this
causes its TCP connection to reduce its congestion window.
In other words, since with TCP the data rate is regulated
by the congestion window, the selfish user will access the
medium less often than it did in the UDP scenario when
packet losses occur.

In order to quantify the impact of CCA tuning on TCP
traffic, and in general the performance with different com-
binations of transport layer protocols, we conduct a large
number of experiments. We use 90 different topologies
using 15 different APs with 2 clients associated with each
(a selfish client S and a legitimate client G) and consider all
possible combinations of the two commonly used transport
layer protocols, TCP and UDP. The misbehaving node
employs its greedy strategy for the entire 30 second period
(abnormal operation). The results are presented in terms of
the average throughputs of the well behaved and the selfish
nodes in Figure 9; 95% confidence intervals are also shown.
We also show the performance during normal operations
where both clients are using default settings. Note here
that the measurements presented in Figure 9 encompass
a large number of different topologies. However, all these
topologies are homogeneous, in the sense of consisting of 2
clients with good quality links to the AP. Each client under
benign settings gets a fair share of the medium (around
12Mbps each).

From the above results, it is evident that when the misbe-
having client is sending UDP traffic its throughput gains are
large. As one might expect, the impact is even higher when
the well-behaved client is using TCP. The results show that
significant gains are possible even if the link between the
selfish user and the AP is lossy; this is because UDP does
not reduce its sending rate upon experiencing packet losses.
At the well behaved client, a lot of timeouts are triggered
with TCP and the application throughput is extremely low
(a few Kbps). When the misbehaving node uses TCP and
the well behaved node uses UDP, the former is unable
to achieve a significant gain in the throughput. This is a
direct consequence of two factors (a) TCP regulates the
sending rate thereby limiting the access opportunities for
the selfish client and, (b) by increasing its CCA threshold,
the selfish user can send more frequently, but when losses

6

are experienced its TCP source backs off whereas the UDP
source at the well-behaved user does not reduce its rate.
When both the well-behaved node and the selfish node use
TCP, the latter benefits. Both TCP sources back-off when
there are losses; however, the selfish node is able to recover
much faster since it is able to access the channel much more
frequently. Figure 10 depicts the number of bytes sent per
client for a representative configuration (AP-node 44, selfish
client-node 13, well behaved-node 19).

 0

 20

 40

 60

 80

 100

 120

 140

UDP/TCP UDP/UDP TCP/TCP TCP/UDP

M
B

yt
es

 s
en

t

Transmission Protocol Used(Selfish/Good)

13 Normal
19 Normal

13 Abnormal
19 Abnormal

Fig. 10. Bytes sent with different transport layer protocols
(AP:44, S:13, G:19).

To summarize, our experiments demonstrate that in-
creasing the CCA threshold can lead to significant
throughput benefits for the selfish client while hurting
the other well-behaved clients, in a majority of the cases
and with different transport layer protocols.

Network-wide experiments: It is interesting to examine
what happens when all clients competing for the medium
adopt the greedy strategy. In order to quantify the network
wide degradation or improvement from such a strategy we
perform a new set of experiments and we use the concept
of the Price of Anarchy (POA) borrowed from game theory
[22]. POA is a measure of how well/bad the players of
a game do, when they play selfishly (e.g. increasing their
CCA threshold), instead of according to a central authority
(in our case using the default CCA threshold). POA can be
defined using the following equation:

POA =

n∑
i=1

Greedy Throughputi

n∑
i=1

Default Throughputi

(2)

where Greedy Throughputi is the throughput that client i

enjoys when everyone is using the greedy strategy and
Default Throughputi is the corresponding throughput of
client i when everyone is using the default settings.

Clients POA
2 0.19
3 0.13
4 0.11

TABLE 1
POA decreases as we increase the number of clients.

We experimentally examine the network wide perfor-
mance when all clients decide to act greedily. Table 1

presents the price of anarchy as computed from Equation
2 and our experimental results for the cases of 2, 3 and 4
clients. The degradation observed is significant as compared
to the case with the default settings. In addition, we observe
that the POE decreases - and the corresponding degradation
increases - as we increase the number of clients affiliated
with the AP. All clients ignore the signals of each other, re-
sulting in many simultaneous transmissions; consequently
there is a large number of collisions at the AP and the
network performance is significantly degraded.

6 DETECTION SYSTEM

In this section, we describe our scheme for detecting
nodes that increase their CCA thresholds to gain an unfair
throughput advantage in WLANs. We call our scheme
CMD for Carrier sensing Misbehavior Detection system.

CMD is comprised of two sub-component modules: the
first module, which we call TMM for Throughput Moni-
toring Module, aims to identify the set of potential cheating
clients; note here that this set consists of those clients that
are suspected of cheating but may not necessarily be real
misbehaviors.

The second module LPM (for Low power Probing Mod-
ule) tries to identify the real misbehaving clients. The key
insight that motivates the design of LPM is that nodes that
have increased their CCA thresholds may not be able to
correctly decode low power probes. As we will see in what
follows, TMM significantly reduces the overhead that LPM can
introduce.

6.1 TMM: The Throughput Monitoring Module

As alluded to earlier, CMD sends probes in order to achieve
its goal of detecting misbehaving users. Sending probes to
all the clients associated with an AP can be prohibitive in
terms of overhead. The goal of TMM is to identify the nodes
that could be potentially cheating by increasing their CCA
thresholds. Since the IEEE 802.11 is inherently fair, a node
that gets a higher share of the available bandwidth could
be a potential cheater. Note that it is not necessary that a
node that gets a higher share of the bandwidth is essentially
a cheater since different clients might have different traffic
demands; the only conclusion that one can make is that
such a possibility exists.

In order to identify the nodes that have a higher share
of the medium, TMM monitors the volume of uplink traffic
from each and every client. A node that is able to send a
much larger volume of traffic is identified as a potential
miscreant.

In order to demonstrate the effectiveness of this approach
in terms of including misbehaving nodes in the set output
by TMM, we perform the following experiment. We set up
node 31 as an AP and include 3 associated clients (nodes 14,
22 and 37); each client sends saturated traffic to the AP. We
measure the number of packets transmitted from each client
to the AP for a period of 10 seconds under two different
scenarios: (a) when no client cheats and, (b) when client 37
cheats. The results are presented in Table 2.

These results suggest that monitoring the traffic can be
effective in identifying misbehaving nodes. However, recall

7

Client 14 22 37
Benign 9833 10521 10461

Cheating 320 521 21333

TABLE 2
TMM is effective with

saturated traffic

Client 37 22 14
Packets 1702 852 20322

TABLE 3
TMM can be mislead with

unsaturated traffic

Clients 3 5
Probing 26.1 21.8

No Probing 28.0 24.1

TABLE 4
Overhead with LPM

that in our experiments all clients have fully saturated
uplink traffic. If the clients do not have saturated traffic
they may not all have the same throughput under normal
operations. In particular, if one of the clients produces a
higher volume of uplink traffic, it will be mistakenly classi-
fied as a cheater if we were to just use TMM to identify the
misbehaving nodes. To illustrate this we perform another
experiment in which the same topology as in the previous
case is used. The clients are now all benign. However, they
have different application data rates: client 37 sends traffic
at 2 Mbps, client 22 sends at 1 Mbps and client 14 at 24
Mbps.

Table 3 presents the results from this experiment. We ob-
serve that if TMM was used to classify nodes as cheaters, it
would falsely conclude that client 14 is one. Thus, we need
to further check if the nodes that are identified by TMM
as potential cheaters are indeed cheaters or are legitimate
recipients of higher throughputs; we do this using LPM
(described later).

Implementation of TMM: We implement TMM in the
user space. We develop a C application using libpcap [23];
the application is run at the AP and captures all the packets
that arrive at its wireless interface. It internally maintains
statistics in terms of how many packets are seen from each
client in a Z second time window (we will refer to Z as
the monitoring window size). It then compares the number of
packets from each client in order to identify the potential
cheaters; if the number of packets that a client transmits,
exceeds its fair share by X percent (we will refer to X as
the deviation value), it is considered to be a possible cheater.
We defer a discussion on how to choose the values of X

and Z to Section 8.

When the potential cheaters have been identified, TMM
calls LPM (described in the next section) to determine
whether or not a “potential cheater” is indeed a “cheater”.
This implementation of TMM does not rely on an already
available network monitoring system (for example, Ethereal
or tcpdump). Instead, it computes the statistics online. In
Algorithm 1, we give the high-level pseudocode of TMM.

Data: IP addresses of the AP’s clients
Result: A potential cheater
begin

Every Z seconds do:1

for i = 1 to num clients do2

if packets(i) > (1 + X
100

) · (total packets

num clients
) then3

Invoke LPM towards Client i4

end
end

end

Algorithm 1: Pseudocode for TMM

The periodic monitoring employed by TMM, can leave
an open backdoor for short bursts of unfair access to the
cheater. As an example, if the cheater has unsaturated,
uplink traffic (which however appears in saturated bursts)
it can employ the cheating strategy for these short bursts
and potentially stay undetected. This is true, especially
when Z is large. For small values of Z (e.g., a couple of
seconds), such strategies cannot be successful, since the
period over which the average throughput is computed is
short. Nevertheless, in such cases of an undetected event,
we are assured that the node does not get more than X%
of its fair share of the medium for that period (line 3 of
Algorithm 1). Thus, monitoring the average throughput
enjoyed by the clients is seemingly sufficient as a first level
of detection, if the monitoring window is kept fairly small.
We will experimentally find the right values for Z in Section
8.

6.2 LPM: The Low Power Probing Module

The design of LPM is motivated by the observation that all
the signals that arrive at the circuitry of a receiver with a
received signal strength lower than the CCA threshold, are
treated as noise; the receiver does not attempt to reconstruct
packets from such signals [2]. Thus, a node that increases
its CCA with the objective of increasing its throughput
will not be able to correctly decode packets that are re-
ceived with low powers. Thus, by having the AP probe the
potential cheaters (determined by TMM) with low power
packet transmissions, LPM achieves its goal of accurately
identifying the real misbehaving clients.

A cheating node that increases its CCA towards obtaining
a larger share of the available bandwidth, is likely to pick
the maximum possible CCA without compromising on its
connectivity with the AP5. The larger the CCA threshold,
the higher are the number of possible ongoing transmis-
sions that the carrier sensing logic ignores. If the CCA
threshold is only increased slightly, the selfish node will not
be able to achieve significant performance gains. Note here
that due to this very reason, it is unlikely that nodes that are
either distant from the AP (or have poor quality links) will
be able to effectively launch the attack under consideration;
they will not be able to increase their CCA thresholds
significantly without compromising their connectivity to
the AP.

Design of LPM: The new CCA threshold (chosen by
a selfish node) is based on the RSSI from the AP under
default operating conditions. If the AP transmits with lower
powers (as compared with default settings), the RSSI value

5. We assume this to be the selfish behavior for now; other possible
variants are discussed in section 9.

8

at a receiver is reduced. Going further, if this transmission
power is considerably lowered, packets may arrive at the
misbehaving node’s antenna with an RSSI that is smaller
than its increased CCA threshold. This is the key idea that
drives LPM. The AP, using a reduced transmission power,
sends a probe packet to each client that has been flagged as
a potential misbehaving client by TMM. If a client node has
increased its CCA to the extent that it exceeds the RSSI of
the received probe packet, the client node cannot respond
to the AP. The latter waits for a preset period of time for the
client’s response; if no response is received, the AP flags the
client as a misbehaving node. To reduce the possibility of
false alarms, LPM challenges the potential cheaters (listed
by TMM) with successive ICMP ECHO REQUEST packets
(64 bytes), sent using a reduced transmission power. The
client is expected to reply to each probing packet that is
received from the AP. If more than W% of the reply packets
are missing from a particular client, the AP declares the
client as a misbehaving client. In Section 7 we discuss how
we choose W and the probing power such that there is a
good trade-off between the false positive rate and accurate
detection with our system.

Data: Client i which has been flagged as a potential
cheater by TMM

Result: Whether to declare it as a cheater
begin

Ping(i, 10, P owerprobe)1

if more than W% of reply packets are missing then2

Declare Client i as a cheater3

end
end

Algorithm 2: Pseudocode for LPM

TMM reduces the probing overhead due to LPM. We point out
that LPM increases the overhead by sending probe packets
on the medium. If the AP were to probe all the clients,
then the performance degradation could be significant,
especially when the number of clients is large. Table 4
shows the degradation in the aggregate throughput of an
AP when (i) all the clients had fully saturated uplink traffic
and (ii) the AP was constantly probing the clients in a round
robin fashion with 10 probe packets sent to each client
during a probe cycle.

We observe that if there are 3 clients associated with
the AP the degradation is about 7 %; when there are 5
clients, the degradation is about 9.5%. As the number of
clients increases, the degradation is higher; therefore, it is
crucial to reduce the number of clients that LPM checks for
real cheaters. Based on this, it is clear that TMM plays an
important role in our system.

Note also that currently, we use the 64 byte
ICMP ECHO REQUEST messages as probes; it is
possible to reduce the overhead by creating special
probe messages that are of smaller size. However, this will
increase the complexity of the implementation (the current
implementation is described below) and may require
modifications to the 802.11 driver/firmware.

Implementation details of LPM: We have implemented
LPM in the user space, on top of the wireless NIC’s driver.
It is run at the access point. Our implementation uses a

shell script that invokes the ping application [24] to probe
the clients. More specifically, the script consists of a loop
which parses the list of clients that are flagged as potential
cheaters by TMM. We set the transmission power of the
“ping” packets using the iwconfig command. Based on the
results of the ping trials, LPM decides on whether a client
is a cheater. This implementation is generic in that it can
be run in conjunction with most commodity wireless NIC
drivers.

For our Atheros cards, which use the MadWifi driver, we
have also implemented our own probing utility using the
Click Modular Router [25]. We use the ICMPPingSource
and ICMPPingResponder elements to implement a probe
sender and a probe receiver, respectively. The SetTXPower
element enables us to set the transmission power for each
ICMP packet sent out by LPM. This element simply sets
the Wifi TXPower Annotation flag on the packet to be sent,
and we do not need to subsequently call iwconfig to set the
power.

7 AN ANALYTICAL MODEL TO DERIVE SYSTEM
PARAMETERS

The design of LPM is based on the observation that a
cheating node with an increased CCA is unlikely to respond
to probe packets sent by the AP with a low transmission
power. There are two cases, however, where LPM may not
lead to correct diagnosis: (i) Benign clients located at the
border of the AP’s coverage area may not be able to respond
to low power probe packets sent from the AP; these packets
are likely to arrive at their circuitry with an RSSI lower than
the default threshold CCAdef . This results in what we call
false positives. (Note here that even though the links to such
clients are likely to be poor, some of these clients may be
getting a higher share of throughput in unsaturated traffic
conditions). (ii) Misbehaving nodes could be so close to
the AP that in spite of the AP using reduced transmission
powers, probe packets can still reach their circuitry with
an RSSI higher than their increased CCA value. In this
case, the misbehaving node is not identified i.e., we have a
false negative. In this section we analyze the performance of
our system to determine various parametric inputs to CMD
such that the false positive and false negative rates are kept
low.

Propagation Model: In order to analytically determine
the false positive and the false negative rates, we need
to assume a propagation model. We calculate the received
power Pr at distance r with transmission power P to be:

Pr =
P

rα
· Y, (3)

where α is the path loss exponent and Y is a random vari-
able that is log-normally distributed. The random variable
Y models the shadow fading effects and it has a mean value
of one and a standard deviation equal to the shadow fading
variation (obtained from measurements). The above model
has been shown to be fairly accurate in indoor settings [26]
[27].

False positives: We first compute the false-positive rate.
The probability f(P, r) that a probe packet from the AP

arrives at distance r with an RSSI below CCAdef is given

9

 0

 0.2

 0.4

 0.6

 0.8

 1
f(P,r)

 1.5 2 2.5 3 3.5 4 4.5 5

Tx Power (Watt x 0.001)

 40

 42

 44

 46

 48

 50

D
is

ta
nc

e
(m

)

Fig. 11. f(P, r) =

Pr{signal(P, r) < CCAdef}.

-80

-70

-60

-50

-40

-30

-20

-10

 0

 0 5 10 15 20 25 30 35 40 45 50

C
C

A
 o

f t
he

 c
he

at
er

Distance (m)

Analytical results
Measurement results

Fig. 12. The theoretical and
practical CCAcheat.

 0

 0.2

 0.4

 0.6

 0.8

 1
h(P,r)

 1 1.5 2 2.5 3 3.5 4 4.5 5

Distance (m)

 2
 3
 4
 5
 6
 7
 8
 9

 10

T
x

P
ow

er
 (

W
at

t x
 0

.0
01

)

Fig. 13. h(P, r) =

Pr{signal(P, r) > CCAch}.

by:

f(P, r) = Pr{ P

rα
· Y < CCAdef} = Pr{Y <

CCAdef

P
· rα}

=
1

2
+

1

2
· erf(

ln(
CCAdef · rα

P
)− µ

σ ·
√
2

), (4)

where µ and σ are the parameters of the log-normal
distribution (computed from the mean and the measured
standard deviation). We plot this probability in Figure 11.
In generating this probability, the following values are used
to derive the results: (i) CCAdef=−80dBm, (ii) the shadow
fading variation is 5dBm (as measured from our testbed),
and (iii) α = 5, which is a typical value for the path
loss exponent for an indoor environment [26] [28]. The
figure shows that with extreme low power operations (1.5
mW), the probability of violating the default CCA threshold
is extremely high (false positive); with moderately low
powers (3 mW), this same probability is almost zero up
to distances of 50 meters.

Equation (4) gives the probability that a packet arrives at
the client’s circuitry, after traveling distance r, with power
less than CCAdef . Let us assume that LPM transmits 10
probe packets and expects n replies. Let prpos(P, r, n) denote
the probability that fewer than n probe packets6 arrive
at a distance r with an RSSI greater than CCAdef . This
probability is given by:

pr
pos(P, r, n) =

n∑
k=1

(1− f(P, r))k−1 · f(P, r)10−k+1 (5)

In order to calculate the false detection rate at distance r

when the transmission power is P , we need the spatial
distribution of nodes s(r). As discussed in Section 5, nodes
tend to stay close to the AP in reality. In order to get
numerical results, a possible spatial distribution that can
be used based on the previous observation is s(r) = 1

ln(50)·r
,

for 1 ≤ r ≤ 50 m and zero otherwise7 (the constant 1
ln(50)

is chosen to assure that function s is a valid probability
density function). With this spatial distribution model, the
false positive rate πpos(P, r, n) at a distance r, when the
transmission power is P is given by:

π
pos(P, r, n) = pr

pos(P, r, n) · s(r) ·∆r|∆r→0 (6)

6. We assume that the channel is reciprocal and thus, if the probe mes-
sage is correctly received, the corresponding ICMP ECHO REPLY

packet will be received with very high probability; this assumption ensures
the tractability of our analysis.

7. Nodes are expected to have a minimum distance -e.g. 1m - from the
AP which in commercial hotspots are deployed mainly on ceilings. Note
that our analysis can incorporate any other spatial distribution.

We can then compute the overall false positive rate
πp(P, n) when the AP is using transmission power P and
when LPM expects n replies to its probes by integrating
over the area of the cell:

πp(P, n) =

∫
∞

0

pr
pos(P, r, n) · s(r) dr (7)

False negatives: Similar steps as above are taken in order
to compute the false negative rate. However, we first need
to estimate the CCA threshold, that a cheating node at
distance r is likely to use. The goal of the selfish client is to
avoid as many transmissions as possible by increasing its
CCA while maintaining its connectivity with the AP (note
that this is when the AP is using the default power Pdef ,
i.e., under default operations). The CCA chosen according
to this strategy can be computed by solving the following
optimization problem:

maximize CCAcheat(r) (8)

subject to Pr{Pdef

rα
· Y > CCAcheat(r)} = 1 (9)

CCAcheat(r) ∈ {−80,−79, ..., 1, 0}dBm (10)

Solving the above optimization problem for various dis-
tances r, we obtain the results shown in Figure 12. We
present in the same figure, the corresponding CCAcheat(r)

(the CCA threshold tuned as per the same strategy) mea-
sured from our testbed; for a given location of the cheater
we increase the CCA threshold to the extent possible with-
out compromising the connectivity with the AP. The results
indicate that the analytical results match reasonably well
with the measurement results; the coefficient of determina-
tion R2 [29] is calculated to be equal to 0.71.

Having computed CCAcheat(r), we now proceed to calcu-
late the false negative rate. We first calculate the probability
h(P, r) that a signal transmitted from the AP with power P

arrives at distance r with a RSSI greater than CCAcheat(r):

h(P, r) = Pr{ P

rα
· Y > CCAch(r)} = Pr{Y >

CCAch(r)

P
· rα}

=
1

2
− 1

2
· erf(

ln(
CCAch(r) · rα

P
)− µ

σ ·
√
2

) (11)

In Figure 13 we plot h(P, r) for various AP transmission
powers and distances from the AP (using the same pa-
rameters as previously) and CCAcheat(r) computed as the
solution to the optimization problem defined in (8)-(10). We
observe that if the cheater is extremely close to the AP (≈ 1
m), there is no way of detecting it with low power probes.

10

However, if the cheater is further than 1.5 meters, the use
of a transmission power that is lower than say 3.5 mW can
lead to an extremely high probability of detection, i.e., the
probability that the signal is higher than the CCA set by
the cheater is almost zero.

Given h(P, r), we now calculate the probability
prneg(P, r, n) that no fewer than n packets arrive at
distance r with an RSSI greater than CCAcheat(r):

pr
neg(P, r, n) =

10∑
k=n

h(P, r)k · (1− h(P, r))10−k (12)

Using the spatial distribution of the nodes s(r), we can
calculate πneg(P, r, n), the false negative rate at distance r

when the transmission power of the AP is P to be:

π
neg(P, r, n) = pr

neg(P, r, n) · s(r) ·∆r|∆r→0 (13)

Integrating over the whole area, we get the overall false
negative rate πn(P, n) when the AP transmits with power P

and LPM expects n responses to its probes:

πn(P, n) =

∫
∞

0

pr
neg(P, r, n) · s(r) dr (14)

Equations (7) and (14) provide the false positive and false
negative rates of our system. These results also provide
insights on the appropriate values for Powerprobe and n;
these values should be chosen so as to satisfy a spe-
cific performance criterion. In short, we seek to minimize
these probabilities; however, it is unlikely that they are
both minimized together. Hence, we minimize the sum
πp(P, n)+πn(P, n). Solving this minimization problem yields
n = 9 and Powerprobe = 3.3mW . This means that in the LPM
engine we need to set W = 10% (since 10 probes were
sent) and Powerprobe = 3.3mW . In Figure (14) we present
the ROC curve (Receiver Operating Characteristics) for the
case n = 9 and we point out the operating point which cor-
responds to Powerprobe = 3.3mW . Each point on this curve
corresponds to a different Powerprobe. Increasing Powerprobe

increases false negatives; decreasing it will increase false
positives. The operating point is the one that minimizes
the aforementioned objective function. The corresponding
false positive rate and false negative rates are: πp = 0.0053

and πn = 0.054. Note that with these settings, our detection
system is able to achieve high detection accuracy.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.01 0.02 0.03 0.04 0.05

F
al

se
 N

eg
at

iv
es

False Positives

Operating Point

Fig. 14. The analytical ROC curve of our system.

8 EVALUATION OF CMD
In this section, we evaluate CMD.

Evaluation of the TMM module: First, we perform
experiments to evaluate how TMM performs with various
combinations of its input parameters; in particular, we
consider (a) the monitoring window size Z and, (b) the
deviation value X%. Ideally, we want TMM to (i) flag all
cheating nodes as potential cheaters and (ii) minimize the
number of well-behaved nodes that are included in the set
of potential cheaters. To evaluate the performance of TMM,
we conduct the following two sets of experiments.

(a) Monitoring legitimate traffic: In this set of experi-
ments we monitor the traffic at the AP when no clients
cheat and all of them have fully saturated uplink traffic. We
vary both the monitoring window size Z and the deviation
X%. The false alert rate, which represents the probability
that a well-behaved client is flagged as a potential cheater,
is depicted in Figures 15-17; in these experiments, the
numbers of clients associated with the AP are 2, 3 and 4,
respectively.

From the results, we observe that when the deviation is
chosen to be smaller than 20% the false alert rate can be
very high, especially when the monitoring window size is
small. For instance, when the deviation is set to 10% and
the monitoring window size is 1 second, a well-behaved
client is mistakenly flagged as a potential cheater with a
likelihood higher than 30%. However, if we increase the
deviation, the false alert rate decreases. When the deviation
is set to 30% or higher, the false alert rate is very small. The
results are somewhat expected since small deviations in the
expected fair share of throughput are likely; furthermore,
transients are possible if the monitoring window size is not
sufficiently large. Reducing the false alert rate will reduce
the overhead incurred due to probing with LPM.

(b) Monitoring the cheating nodes’ traffic: In this set of
experiments we monitor the traffic at the AP under the
presence of cheating nodes. Again, all clients have fully
saturated uplink traffic. In this case, we are interested in
the false negative rates of TMM; in other words, we seek
to measure the probability that TMM does not include
a real cheater in its output set. Figures 18-20 depict the
probabilities that a cheating node is successfully identified
as a potential cheater. From the results, we observe that
when we use relatively small deviations (smaller than 30%)
the TMM module almost always flags the cheating node
as a potential cheater. If however, a deviation value higher
than 30% is used, the false negative rate increases.

The experimental results with both scenarios suggest that
there is a tradeoff between the detection accuracy and the
deviation value. Small deviation values help identify the
cheating nodes but they may lead to high false alert rates
under benign conditions; on the other hand, large deviation
values help reduce the false alert rate but may result in
missing some cheating nodes. In the current version of
TMM, we set the monitoring window size to be 1 second
and the deviation value to be 30%. Based on the experimen-
tal results, these values achieve a good balance between the
false alert rate and the false negative rate of TMM.

Evaluation of the LPM module: LPM determines
whether a potential cheater reported by TMM is indeed a

11

0

0.25

0.5

0.75

1

1 2 3

F
al

se
 A

le
rt

 R
at

e

Monitoring time (sec)

deviation 10%
deviation 20%
deviation 30%
deviation 40%
deviation 50%

Fig. 15. TMM false alert rate
when there is no selfish user (2
clients).

0

0.25

0.5

0.75

1

1 2 3

F
al

se
 A

le
rt

 R
at

e

Monitoring time (sec)

deviation 10%
deviation 20%
deviation 30%
deviation 40%
deviation 50%

Fig. 16. TMM false alert rate
when there is no selfish user (3
clients).

0

0.25

0.5

0.75

1

1 2 3

F
al

se
 A

le
rt

 R
at

e

Monitoring time (sec)

deviation 10%
deviation 20%
deviation 30%
deviation 40%
deviation 50%

Fig. 17. TMM false alert rate
when there is no selfish user (4
clients).

0

0.25

0.5

0.75

1

1 2 3

F
la

gg
in

g
R

at
e

of
 C

he
at

er
s

Monitoring time (sec)

deviation 10%
deviation 20%
deviation 30%
deviation 40%
deviation 50%

Fig. 18. TMM flagging rate of
cheaters when there is a greedy
client (2 clients).

0

0.25

0.5

0.75

1

1 2 3

F
la

gg
in

g
R

at
e

of
 C

he
at

er
s

Monitoring time (sec)

deviation 10%
deviation 20%
deviation 30%
deviation 40%
deviation 50%

Fig. 19. TMM flagging rate of
cheaters when there is a greedy
client (3 clients).

0

0.25

0.5

0.75

1

1 2 2

F
la

gg
in

g
R

at
e

of
 C

he
at

er
s

Monitoring time (sec)

deviation 10%
deviation 20%
deviation 30%
deviation 40%
deviation 50%

Fig. 20. TMM flagging rate of
cheaters when there is a greedy
client (4 clients).

cheater. We perform another set of experiments to quantify
its detection accuracy. We experiment with a variety of
configurations that take into account both saturated and
unsaturated uplink traffic. In particular we experimented
with 132 configuration tuples. We utilize iperf to generate
uplink traffic. The cheating node always has saturated
traffic and misbehaves shortly after the initiation of the
experiment (8-10 seconds approximately). Each experiment
lasts for 1 minute. We vary the transmission power of the
probe packets between 3, 4, and 5 dBm. Recall that our
analysis in Section 7 suggests a probe power of 3.3mW ;
this corresponds to approximately 5dBm. We compute the
false positive and false negative rates with the LPM module.
Note that since LPM takes the output of TMM as its input,
these rates are the false detection rates for the whole system
(the output of LPM is the output of CMD)8. The results are
presented in Table 5.

Powerprobe False positive rate False negative rate
5dBm 0.015 0.060
4dBm 0.015 0.030
3dBm 0.045 0.015

TABLE 5
Detection accuracy of CMD

From Table 5, we note that our system produces low
false positive rates and low false negative rates in real
experiments; even when the transmission power of the
probe packets is varied, the maximum false positive and
the maximum false negative rates are no higher than 4.5%

and 6%, respectively. We also observe the tradeoff between

8. We refer the reader to the Appendix for a derivation of the false
positive/negative probabilities of CMD.

false positive rates and false negative rates as we reduce
(or increase) the probing power; if we keep reducing the
probing power, the false positive rate increases while the
false negative rate decreases. From among the three prob-
ing powers used, the sum of false positive rate and the
false negative rate is minimized when Powerprobe is 4dBm.
This value is slightly lower than the one derived with
the analysis in Section 7. The reason for this is that the
assumed propagation model and its parameters (i.e., path
loss exponent) or the spatial distribution of nodes s(r) with
the analysis, may not fit with the characteristics of our
testbed with very high fidelity. Furthermore, in our analysis
we focus on the performance of LPM, without considering
the impact of TMM. It is hard, if not impossible, to model
the interactions between the two modules accurately. This
would require s(r) · ∆r to capture the probability of TMM
reporting a node, at distance r, as a potential cheater; this
is difficult because it requires the knowledge of the traffic
patterns of all clients (whether they send saturated traffic
or not and their application data rates) at each location. In
spite of these limitations, note that the false positive rate and the
false negative rate analytically derived (i.e., πp and πn in Section
7) are very close to what is observed with experimental results
on the real testbed.

In our experiments LPM mistakenly declares a few well-
behaved nodes as cheaters; this happens especially when
some of the clients have unsaturated uplink traffic. As
discussed in Section 5, clients far away from the AP cannot
gain much by applying the considered selfish strategy
because they cannot increase their CCA thresholds to a
significant extent. In the presence of unsaturated traffic,
some well-behaved clients that are far away from the AP

12

are wrongly flagged as potential cheaters by TMM if their
application data rates are higher than that of those that
are closer to the AP. Consequently with LPM, the probe
packets from the AP may reach these clients with a RSSI
below CCAdef = −80dBm. Thus, these well-behaved clients
are unable to recognize these packets and send responses to
the AP. However, our experiments demonstrate that such
occurrencies are rare given that the poor quality of the links
to such clients limits the throughput that they can achieve.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50

E
C

D
F

Throughput gain (%)

Fig. 21. A cheating node that escapes detection can gain up
to 47% of its faire share.

We observe that the false negative rate is about 6% when
the transmission power of probe packets is 5dBm. As we
reduce this power, the false negative rate decreases signif-
icantly. For instance, when probe packets are transmitted
with power 3dBm, the false negative rate drops to about
1.5%. Interestingly, if we further reduce the transmission
power of probe packets to 1dBm, all cheating nodes flagged
by TMM are successfully reported as cheaters9.

Selfish gain under false negative detection: Since there
are cases where false negatives appear, we are interested in
finding the actual gain of a cheating node that avoids de-
tection. This essentially reflects the effect of false negatives
in the network. Recall that currently CMD is configured
with X = 30% and Z = 1sec. Figure 21 presents the
empirical CDF of the selfish gain (percentile deviation from
the fair share) in the case of false negatives. The same 132
configuration tuples as above were used with the three
different Powerprobe levels (in 396 trials). We observe that the
cheating gains range between 16% and 47%. Scenarios with
gains smaller than 30% correspond to cases where LPM was
not triggered by TMM. Once TMM flags a cheating node,
LPM is responsible for detecting actual selfish users, and as
alluded to above, reducing the probing power increases the
efficiency of our system with regards to the false negatives.
Note here that, even though a cheating gain of 47% appears
to be fairly high, the occurrencies of this event are rare.
In particular, there were in total 14 scenarios (out of 396)
where false negatives were observed. TMM was responsible
for 3 of them, while LPM was responsible for the other 11
occurrences10. We defer a discussion on the effects of the
false positives on the total network throughput to the next
section, after describing possible mitigation schemes.

9. However we expect that such a low Powerprobe can lead to a high
false positive rate.

10. TMM contributes to the first term of the right hand side of Equation
2 at Appendix, while LPM contributes to the second term.

9 MISCELLANEOUS ISSUES

Mitigating the effect of selfish tuning of the CCA: The
goal of our work is to detect users that selfishly increase
their CCA thresholds in order to obtain throughput gain.
Mitigating the effects of such misbehaving nodes is not the
focus of our study; however, we deliberate on possible ways
of overcoming the adverse effects of such cheaters. The
most aggressive, yet the simplest, solution is to punish a
cheating client by disassociating it completely from the AP.
There are other mitigation approaches that are less harsh.
As an example, the AP can choose to reduce its transmission
power, which forces the cheating client to decrease its CCA
threshold if it wants to further communicate with the AP.
Alternatively the AP may intentionally drive down the
throughput of such misbehaving clients. In particular, the
AP could choose to “not send” MAC layer ACKs to the
cheating node for some of its frames. As a result, the
cheating node has to back off with a larger contention
window; this in turn, increases the opportunity of access to
the well-behaved nodes. Implementation of this approach
is challenging because currently most commodity NICs
implement MAC layer acknowledgments in the firmware.

 0

 5

 10

 15

 20

 0 5 10 15 20

T
hr

ou
gh

pu
t (

M
bp

s)

Time (sec)

Selfish
 behavior
 starts

Mitigation
 starts

Node 32
Node 34
Node 58

Fig. 22. Reducing the transmission power can restore
throughput in well behaved clients.

Clearly, all of the above proposed approaches can alle-
viate the effect of a cheating node. It is up to the network
administrator to choose the appropriate strategy. Note that
each possible strategy has its pros and cons. For example,
at one extreme is the approach of disassociating the selfish
user upon detection. A much milder approach is the filter-
ing of the MAC layer ACKs. In this case, the misbehaving
node still enjoys some throughput and more importantly is
not forced to decrease its CCA threshold. Between the two
above extreme schemes is the transmission power control
scheme. With this approach the selfish user will be forced
to decrease its CCA threshold in order to stay connected
with the AP.

We perform experiments by tuning the transmission
power of the AP. In the representative time trace presented
in Figure 22, node 51 is set as an AP, while backlogged
nodes 58 (selfish), 32 and 34 are associated with it. For
the first 6 seconds of our experiment every client uses the
default CCA thresholds, and the AP uses the maximum
transmission power (18dBm). After the 6th second, and for
the next 6 seconds, node 58 increases its CCA threshold;
during this time AP 51 still uses the maximum transmission
power. At t = 13sec, the AP, 51 reduces the transmission

13

power to 1dBm. As our results show, reducing the trans-
mission power used by the AP causes the greedy client to
disassociate from the cell. If the greedy user increases its
CCA value it will be able to re-associate with the AP and
enjoy its fair share. This scheme can be thought of as a
passive scheme because of this.

Note here that, reducing the transmission power of the
AP, can have an impact on the well behaved clients as
compared with the performance under benign settings.
This is due to the fact that the link “AP to client”, might
experience a degradation due to the lower transmission
power. If we take a closer look at the time trace for node
32, we see that despite the fact that it enjoys an improved
performance with regards to the “selfish behavior” period,
it does not obtain the throughput that is enjoyed in benign
settings. This effect can be overcome by performing power
control in a finer granularity (e.g., per client).

The effects of false positive detection: When a selfish
node is detected, the mitigation scheme will be triggered.
The same is true in the case of a false positive. The
difference is that in the latter case the mitigation system
will take action against a well behaved node. Depending
on the semantics of the scheme deployed, the effects of a
false positive detection will be different.

With the aforementioned transmission power control
scheme, the throughput of the falsely classified node will be
disassociated. However, the other nodes will not be affected
and they will enjoy at least the same throughput prior to the
activation of the mitigation scheme. In fact when there is
saturated traffic demand, the throughput that each of them
enjoys will increase. This is because they will fairly share the
spare capacity available. Note here that, the disassociated
node can possibly re-associate with the AP by decreasing
its CCA. However, this may not be possible for some of the
clients at the edge of the cell. Recall however, that given the
extremely low false positives rate, the chances of this are
extremely low.

Other cheating strategies: Throughout our study, we
have assumed that a cheating node always chooses the
maximum CCA threshold that guarantees its connectivity
with the AP. This assumption is reasonable only if the
cheating node is extremely greedy (the strategy enables the
node to ignore as many transmissions as possible). If the
misbehaving node knows that CMD has been deployed,
it might set a CCA threshold lower than that to evade
detection. A less significant increase in CCA will however
have a lower impact on the network, as seen in Figure
23. In this figure, we plot the selfish gains for 2 different
representative scenarios and for different CCA thresholds
employed by the misbehaving node. Scenario A refers to
node 51 being set as an AP and nodes 32 and 34 being the
associated clients (node 32 is the cheating node). Scenario B
refers to node 31 being the AP and nodes 37 and 22 being
its clients (node 22 is the selfish user). For scenario A, any
value different from CCAcheat (∼ −45dBm), will result in
significantly lower gain11. When we set CCA < CCAcheat,
the selfish user cannot ignore ongoing transmissions to the
extent desired; if we use CCA > CCAcheat, the link quality

11. Since our measurements are taken using steps of 5dBm, the actual
value for CCA is within 5dBm from the one measured.

to the AP is degraded. For extremely high CCA values (e.g.,
-35dBm) the connectivity is completely compromised and
thus, the throughput is nullified (translating to a negative
gain). Thus, there is an inherent trade-off between the
performance gain and the possibility of detection that the
cheater has to consider.

-15

-10

-5

 0

 5

 10

 15

 20

-80 -75 -70 -65 -60 -55 -50 -45 -40 -35

T
hr

ou
gh

pu
t g

ai
n

(M
bp

s)

CCA (dBm)

Scenario A
Scenario B

Fig. 23. Less aggressive cheating strategies result in lower
gains.

For scenario B, the cheating node can use slightly lower
values for CCA as compared with CCAcheat. The range of
these values is ∼ 15dBm. In such cases, the selfish user
might keep its CCA lower than the CCAcheat, in order to
decrease the probability of being detected. Note however
that, it is still possible to detect the misbehavior by further
reducing the transmission power of the probe packets. Of
course, this may lead to higher false positive rates. How-
ever, from Figure 14 we notice that even if we use the lowest
transmission power considered, the false positive rate is still
very low (relative to the specific spatial distribution).

From the results from Figures 6 and 23, it is clear that
a priori estimation of the CCA value that will provide the
optimal tradeoff for the cheater is extremely complicated.
Fine tuning the CCA threshold to achieve a specific selfish
gain and/or guarantee detection avoidance is hard due to
the wireless propagation effects and the dependency on
the topological properties.

Finally, we would like to point out that, a one-size-fits-
all solution is hard to design. Our system, cannot deal
with attacks that are more sophisticated than direct CCA
manipulations. For instance, a user who utilizes two differ-
ent CCA thresholds, one for data transmissions and one
for probe receptions cannot be detected. However, note
that such intelligent strategies are not easy to implement
on commodity cards. Rapid switches between thresholds
introduce large overheads. Moreover, it is difficult for the
cheater to know when probes are being sent by an AP.

10 CONCLUSIONS

In this paper we identify a new, powerful selfish behavior in
802.11 networks: a misbehaving node increases its CCA to
improve its chances of accessing the medium. CCA tuning
has been considered previously towards providing network
wide performance enhancements; this is the first study
that considers the misuse of this capability. With extensive
experimentation on a real testbed, we show that the selfish
behaviors considered can cause extremely unfair allocations
of the wireless medium. We develop a detection scheme

14

for WLANs that we call CMD for Carrier sensing Misbe-
havior Detection. We mathematically analyze its detection
accuracy. We also implement CMD on an indoor wireless
testbed. Through experiments we demonstrate that CMD
detects such selfish clients in WLANs with extremely high
accuracy and with low false positive rates.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Konstantina Papagian-
naki from Intel Research for providing the source code of
the prototype driver.

REFERENCES

[1] M.Heusse, F.Rousseau, G.Berger-Sabbatel, and A.Duda. Performance
anomaly of 802.11b. In INFOCOM, 2003.

[2] V. Mhatre, K. Papagiannaki, and F. Baccelli. Interference Mitigation
through Power Control in High Density 802.11 WLANs. In IEEE
INFOCOM, 2007.

[3] I. Broustis, K. Papagiannaki, S. V. Krishnamurthy, M. Faloutsos, and
V. Mhatre. MDG: Measurement-Driven Guidelines for 802.11 WLAN
Design. In ACM MOBICOM, 2007.

[4] P. Kyasanur and N. Vaidya. Detection and Handling of MAC layer
misbehavior in wireless networks. In DSN, 2003.

[5] S. Radosavac, J. S. Baras, and I. Koutsopoulos. A framework for MAC
protocol misbehavior detection in wireless networks. In WiSe, 2005.

[6] M.Raya, J-P.Hubaux, and I.Aad. DOMINO: A System to Detect
Greedy Behavior in IEEE 802.11 Hotspot. In MobiSys, 2004.

[7] M. Cagalj, S. Ganeriwal, I. Aad, and J.-P. Hubaux. On selfish behavior
in CSMA/CA networks. In INFOCOM, 2005.

[8] O.Queseth. The effect of selfish behavior in mobile networks using
CSMA/CA. In VTC, 2005.

[9] J. Konorski. Multiple access in ad hoc wireless LANs with noncoop-
erative stations. In NETWORKING, 2002.

[10] ANSI/IEEE 802.11-Standard. 1999 edition.
[11] Ath5k project. http://madwifi.org/wiki/About/ath5k.
[12] GNU radio trac. http://gnuradio.org/trac.
[13] USRP SDR platform. http://www.ettus.com.
[14] J.Lee, S.Choi, and H.Jung. Analysis of User Behavior and Traffic

Pattern in a Large-Scale 802.11a/b Network . In WiNMee, 2005.
[15] B. O’hara and A. Petrick. IEEE 802.11 Handbook, a Designer’s Compan-

ion. IEEE Press, Second Edition, ISBN 0-73-814449-5.
[16] U. Paul, S. R. Das, and R. Maheshwari. Detecting Selfish Carrier-Sense

Behavior in WiFi Networks by Passive Monitoring. In IEEE/IFIP DSN,
2010.

[17] Soekris-net4826. http://www.soekris.com/net4826.htm.
[18] The MAdWiFi driver. http://madwifi.org.
[19] UC Riverside Wireless Testbed. http://networks.cs.ucr.edu/testbed/.
[20] K.Jamienson, B.Hull, A.Miu, and H.Balakrishnan. Understanding

the Real-World Performance of Carrier Sense. In ACM SIGCOMM
Workshops, 2005.

[21] J. Zhu, B. Metzler, X. Guo, and Y. Liu. Adaptive CSMA for Scalable
Network Capacity in High-Density WLAN: A Hardware Prototyping
Approach. In IEEE INFOCOM, April 2006.

[22] E. Koutsoupias and C. Papadimitriou. Worst-Case Equilibria . In 16th
Annual Symposium on Theoretical Aspects of Computer Science, 1999.

[23] PCAP Unix man page. http://www.tcpdump.org/pcap3 man.html.
[24] Ping Linux Man Page. http://linux.die.net/man/8/ping.
[25] Click Modular Router. http://read.cs.ucla.edu/click/.
[26] S. Zvanovec, P. Pechac, and M. Klepal. Wireless LAN Networks

Design: Site Syrvey or Propagation Models? In Radioengineering, Vol.
12, No. 4, Dec. 2003.

[27] T. S. Rappaport. Wireless communications principles and practices,.
Prentice Hall, 2002.

[28] Path-loss. http://en.wikipedia.org/wiki/Path loss.
[29] N.R. Draper and H. Smith. Applied Regression Analysis. Wiley-

Interscience. ISBN 0-471-17082-8.

APPENDIX

CMD consists of two concatenated sub-systems, TMM and
LPM. In order for CMD to result in a false positive, two
conditions need to be satisfied. First, TMM must flag a well

behaved user as a potential cheater (i.e., a false positive
must occur with TMM). Second LPM must result in a false
positive as well. Since the above events are independent, the
total false positive proabitlity of CMD, πp(CMD) is given
by:

πp(CMD) = πp(TMM) · πp(LPM) (15)

In order to express the total false negative probabitlity of
CMD, πn(CMD), we need to calculate the probabilities of
the following two events: (i) TMM fails to identify a cheater
and (ii) TMM flags the selfish user as a potential cheater but
LPM fails to detect it (i.e., false negative occurs with LPM).
Event (ii) is composed of two independent events and thus,
P (event(ii)) = (1−πn(TMM))·πn(LPM). Since, events (i) and
(ii) are mutually exclusive we have:

πn(CMD) = πn(TMM) + (1− πn(TMM)) · πn(LPM) (16)

Konstantinos Pelechrinis Konstantinos Pelechri-
nis received his PhD from the Computer Science
department of University of California, Riverside, in
2010. Previously he obtained his MSc degree from
the Computer Science department of University of
California, Riverside in 2008 and the diploma of
Electrical and Computer Engineering from the Na-
tional Technical University of Athens, Greece, in
2006. He is an Assistant Professor at the SIS faculty
of the University of Pittsburgh since Fall 2010. He
has also held research positions at LANL, Thomson

Research Labs Paris and MSR Cambridge. He was a visiting researcher at
the University of Thessaly during Fall 2008. His research interests include
wireless networking, especially security - related issues that span the full
protocol stack. He is involved in protocol design, real world experimentation
and performance analysis. He is also interested in mathematical founda-
tions of communication networks.

Guanhua Yan Guanhua Yan obtained his Ph.D.
degree in Computer Science from Dartmouth Col-
lege, USA, in 2005. From 2003 to 2005, he was a
visiting graduate student at the Coordinated Science
Laboratory in the University of Illinois at Urbana-
Champaign. He is now working as a Technical Staff
Member in the Information Sciences Group (CCS-3)
at the Los Alamos National Laboratory. His research
interests are cyber-security, networking, and large-
scale modeling and simulation techniques. He has
contributed about 30 articles in these fields.

15

Stephan Eidenbenz Stephan Eidenbenz received
his Ph.D. degree in Computer Science from the
Swiss Federal Institute of Technology (ETH) in
Zurich in 2000. He is now a team leader in the
Information Sciences Group (CCS-3) at the Los
Alamos National Laboratory, where he leads the
Multi-scale Integrated Information and Telecommu-
nications System (MIITS) project that models and
simulates large-scale com- munication networks.
His research interests are in wire-line and wireless
networking, sensor networks, selfish networking,

infra-structure modeling, discrete event simulation, computational geometry,
and algorithms. He has published about 50 articles in these fields.

Srikanth V. Krishnamurthy Srikanth V. Krishna-
murthy received his Ph.D degree in electrical and
computer engineering from the University of Califor-
nia at San Diego in 1997. From 1998 to 2000, he
was a Research Staff Scientist at the Information
Sciences Laboratory, HRL Laboratories, LLC, Mal-
ibu, CA. Currently, he is a Professor of Computer
Science at University of California, Riverside. His re-
search interests are primarily in wireless networks,
network security and Internet technologies. Dr. Kr-
ishnamurthy is the recipient of the NSF CAREER

Award from ANI in 2003. He has also co-edited the book “Ad Hoc Networks:
Technologies and Protocols” published by Springer Verlag in 2005. He
served as the editor-in-chief for ACM MC2R between 2007 and 2009 and is
a senior member of the IEEE.

16

