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ABSTRACT
Plan recognition, cognitive workload estimation and human
assistance have been extensively studied in the AI and hu-
man factors communities, resulting in many techniques be-
ing applied to domains of various levels of realism. These
techniques have seldom been integrated and evaluated as
complete systems. In this paper, we report on the devel-
opment of an assistant agent architecture that integrates
plan recognition, current and future user information needs,
workload estimation and adaptive information presentation
to aid an emergency response manager in making high qual-
ity decisions under time stress, while avoiding cognitive over-
load. We describe the main components of a full implemen-
tation of this architecture as well as a simulation developed
to evaluate the system. Our evaluation consists of simulat-
ing various possible executions of the emergency response
plans used in the real world and measuring the expected
time taken by an unaided human user, as well as one that
receives information assistance from our system. In the ex-
perimental condition of agent assistance, we also examine
the effects of different error rates in the agent’s estimation
of user’s stat or information needs.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

General Terms
Human Factors, Management

Keywords
Proactive Assistance, Emergency Management, Plan Recog-
nition

1. INTRODUCTION
Planning for complex activities often involves consulting

multiple information sources in order to reduce uncertainty
associated with their decision making. As humans interleave
planning, execution and re-planning, managing information
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to meet the changing requirements becomes a cognitively
demanding task. Consequently, users who must make time-
critical decisions are cognitively overloaded due not only to
the planning activities but also to the information require-
ments of the planning and re-planning. In this context, we
develop the Anytime Cognition (ANTICO) concept to assist
cognitively overloaded users through an assistant agent.

Our approach to minimize user cognitive overload is to
anticipate user’s tasks before one actually needs to carry
them out. By recognizing a user’s plan for future activi-
ties, the assistant agent can act proactively to help the user
balance her workload over time. ANTICO envisions a net-
worked system of humans and software agents where the
agents enhance human user performance by adaptively aid-
ing in efficient and accurate decision-making. Assistance
from ANTICO consists of proactive information gathering,
and subsequent presentation of this information in a suit-
able form that takes into consideration a user’s cognitive
workload as well as the time available.

In order to transition the ANTICO concept to a real-world
scenario, we develop a proof of concept application to assist
a disaster response manager. This manager must deal with
a chemical attack against a large civilian facility in a ma-
jor US city, while dealing with uncertainty throughout the
response. Uncertainty stems primarily in the diagnosis of
the symptoms reported at the scene of the attack (and thus
in the determination of the chemical used), and later from
the various second-order effects. Here, the agent assists an
emergency response manager who must make decisions un-
der time-pressure, analyzing a stream of information arriv-
ing from various localized sources while keeping track of the
big picture in order to effectively coordinate multiple agen-
cies that must be directed to perform activities around the
affected areas. Most crucially, since response managers must
make decisions within tight deadlines, information needed
for decision making must be presented in ways that facilitate
quick action. For example, in the case of a chemical attack
involving the sarin gas, the first responders should reach
the site within 10 − 15 minutes of attack (as per Depart-
ment of Homeland Security (DHS) guidelines). Assuming
some travel time required for the first responders to reach
the event site, the operator has about 5 minutes to diag-
nose the attack and contact the relevant authorities, e.g.,
Hazardous Materials (HazMat) unit and emergency medical
services. Delays or misdiagnoses can be fatal not only for
the population under attack but also for first responders.

In this paper, we introduce the Anytime Cognition (AN-



TICO) concept for a hybrid team of humans and software
agents. ANTICO’s contributions are threefold: first, we ex-
tend prior work on a proactive assistive agent architecture
[5]; second, we deploy it in a concrete application domain;
and third, we provide a simulation-based evaluation high-
lighting the circumstances in which gains could be obtained
by our approach. We develop an emergency response sce-
nario based on the standard disaster scenarios planning doc-
ument [1], and present an application of ANTICO using this
scenario, which has been fully implemented. Since potential
gains from using ANTICO are closely associated to the ac-
curacy of the agent in presenting relevant information, we
evaluate the potential effectiveness of the approach through
simulations of the assistance under various success rates for
both intention prediction and information presentation.

We start the paper describing the emergency response sce-
nario in Section 2, followed by a brief introduction of ADDL,
an object-oriented domain description language in Section 3.
We proceed to describe the agent architecture that supports
the ANTICO concept in Section 4, and the software design
and implementation using a step-through example in Sec-
tion 5. This implementation is then evaluated in Section 6
by a simulation developed using the ADDL specification of
the problem domain. We summarize related work in Section
7 and conclude the paper in Section 8.

2. SCENARIO DESCRIPTION
To demonstrate the applicability of the ANTICO approach

to the real world, we develop a scenario based on the Na-
tional Planning Scenarios created by the Department of Home-
land Security (DHS)[1].1 According to [1], planning the
response for these scenarios encompasses 10 mission areas,
which are more or less equivalent to phases in the response.
ANTICO focuses on six of these areas, namely:

1. Emergency Assessment/Diagnosis;

2. Emergency Management/Response;

3. Incident/Hazard Mitigation;

4. Public Protection;

5. Evacuation/Shelter; and

6. Victim Care.

One major source of uncertainty in the early stages of many
emergency response regards the identification of the nature
of the disaster, i.e. diagnosing the emergency. This is par-
ticularly crucial when the disaster in question involves an
invisible source of casualties, such as in the case of industrial
accidents or attacks involving chemical, radiological and bi-
ological agents. In such cases, the wrong response might be
more damaging than no response at all, since, for example,
one may turn first responders into casualties if these are not
prepared with appropriate protection. As a consequence,
we have designed a response that considers the possibility
of two different chemical agents from among the 15 pos-
sible disaster scenarios included in the DHS report, namely
Sarin and the (fictitious) Yellow (Lewisite) chemicals. These
two chemical agents were chosen because they have a small
number of common symptoms and are colorless, creating a

1https://www.llis.dhs.gov/docdetails/details.do?
contentID=13712

degree of initial uncertainty during the initial stages of the
emergency response. Managing a response for a chemical
attack involves complex workflow and information require-
ments for the operator. Although we have taken these two
chemical agents as representative of the initial uncertainty,
in a full deployment of ANTICO, dozens of similar chemical
agents would need to be considered in a complete workflow.

The attack scenario utilized in the demo consists of the si-
multaneous release of multiple canisters of Sarin gas within a
crowded public building in Washington DC, namely Union
Station, by elements of a militant cell. Sarin is a chemi-
cal warfare agent classified as a nerve agent, and as such,
is among the most toxic and rapidly acting chemical war-
fare agents currently known. These toxic agents act in a
way similar to pesticides, but have a much stronger effect
on human physiology. Sarin is expected to kill 95% of the
people exposed to it in a confined environment, as well as
affect a significant portion of the first responders, if not pro-
tected adequately. Since Sarin is a liquid that can be easily
evaporated, once released, it will affect not only the people
within the building, but it will also be released into the envi-
ronment through the rooftop ventilation system within the
building, creating a hazardous poison cloud that will affect
people downwind from the original attack site.

In our simulation, the operator plays the role of an emer-
gency management coordinator who receives messages from
the field, tries to develop situation awareness for the develop-
ing incidents and dispatches/provides information to other
human teams, such as police and medical services, to resolve
the incidents. Notice that the operator has no prior knowl-
edge of the actual chemical agent used in the attack. Since
Sarin and Lewisite have somewhat similar symptoms, extra
care must be taken that the correct chemical is identified and
the appropriate responses are made, especially since the two
chemicals have different time horizons and damaging effects.
In order to provide assistance for operators in charge of co-
ordinating response for these scenarios, we have developed
detailed response workflows encoding the relevant actions,
constraints and needed information for the various possibili-
ties of these chemical attacks. To accomplish these tasks the
operator must combine pushed information (e.g., messages
from units in the field or the ANTICO agent) with actively
pulled information from various sources, such as contact tele-
phone numbers of needed units (e.g., HazMat) or reports of
preparedness levels.

3. ANTICO DOMAIN DESCRIPTION LAN-
GUAGE

ANTICO is designed as a generic agent architecture that
can be applied to various problem domains. When devel-
oping a specific application, a software designer needs to
engineer domain specific information such as user workflows
and information sources. To facilitate this task, we designed
the ANTICO Domain Description Language (ADDL) as an
XML-based language for the problem domain. ADDL is not
only a language to design a new application but also a well-
structured medium used within the ANTICO components.
An example fragment of ADDL is shown in Table 1.

An ADDL object consists of a set of user activities. An ac-
tivity element specifies the significant factors for determining
the user’s current planning state, i.e.the activity currently
being executed by the user. Each user activity has a unique

https://www.llis.dhs.gov/docdetails/details.do?contentID=13712
https://www.llis.dhs.gov/docdetails/details.do?contentID=13712


1 <?xml version="1.0" encoding="UTF-8"?>
2 <anticoDomain>
3 <activity name="S0">
4 <observation name="START" prob="1"/>
5 <infoObject class="S0Plan/>
6 <transition>
7 <dest name="S1" prob=".25"/>
8 <dest name="S2" prob=".25"/>
9 <dest name="S3" prob=".25"/>

10 <dest name="S4" prob=".25"/>
11 </transition>
12 </activity>
13 <activity name="S1">
14 <observation name="yellow_symptom" prob=".7"/>
15 <observation name="yellow_symptom_loc" prob=".2"/>
16 <observation name="crowd_panic" prob=".1"/>
17 <infoObject class="S1Plan/>
18 <transition>
19 <dest name="S2" prob=".6"/>
20 <dest name="S15" prob=".4"/>
21 </transition>
22 </activity>
23 ...
24 <activity name="S48">
25 <observation name="traffic_info" prob=".2"/>
26 <observation name="click_police_info" prob=".56"/>
27 <observation name="click_dispatch_police" prob=".24"

/>
28 <infoObject class="S48Plan/>
29 <transition>
30 <dest name="S24" prob=".3"/>
31 <dest name="S26" prob=".7"/>
32 </transition>
33 </activity>
34 ...
35 </anticoDomain>
36 </xml>

Table 1: Fragment of an ADDL specification.

name and three main elements associated with it, observa-
tions, infoObject and transitions. In order for the agent to
properly infer the planning state of the user, it must have a
model of the observable features for each activity. An obser-
vation element represents an event observed at the specified
user activity, associated with a prob attribute – the prob-
ability of the named observation occurring during the exe-
cution of a user activity. Although domain engineers might
provide initial estimates of the probabilities of these observa-
tions, in realistic deployments, these values must be learned
using data collected from previous episodes. Techniques
for learning these probabilities include various Expectation-
Maximization (EM) methods, such as the Baum-Welch al-
gorithm [9]. The infoObject element points to the class that
contains the information plan for a given activity. This class
encodes the logic for extracting relevant information and ba-
sic instructions on its presentation to the user. The set of
possible activity transitions are represented by the transi-
tion XML element. For each activity the transition element
contains a list of possible destination activities represented
by dest element with a unique name and probability of tran-
sition from the parent state. For example, Line 20 in Table
1 informs that the transition probability from activity S1 to
activity S15 is 0.4.

In our deployment, we derive the parameters of the ADDL
specification using a Hidden Markov Model (HMM) [9] with
states representing the user activities. Here, an advantage of

using a well structured language is that it could be extracted
from any HMM description, and conversely, we can gener-
ate an HMM from the ADDL description, in order to apply
learning algorithms over gathered data. When a new type of
instruction is needed, ADDL can be extended to support the
new instruction. Subsequently, appropriate handling meth-
ods must also be implemented to support the new instruc-
tion in the Information Presenter module.

4. ANYTIME COGNITION ARCHITECTURE
Concrete implementations of the ANTICO concept for

proactive assistance are created following the generic AN-
TICO architecture. This architecture comprises multiple AI
components including probabilistic plan recognition and in-
telligent information management. Figure 1 shows a mod-
ularized view of the ANTICO components and how those
components are interconnected. The rectangles represent
the main components; the third-party components are drawn
in dotted lines; an ADDL document specifying a problem
domain is provided as an input to the system; and the infor-
mation object is the communication medium representing a
user’s information needs.

Here, we specifically focus on the following two desider-
ata for the assistant agent. First, the agent must be able to
recognize a user’s current and future activities. Second, the
agent’s interaction with the user must be unobtrusive and
adaptive to user cognitive workload. The User Observer
module is responsible for monitoring various parameters in-
dicating a user’s current activities and her environment.
When a change is observed, the Intent Predictor module
analyzes the new observation to identify the user’s intention
and makes predictions for the user’s future activities accord-
ing to a workflow model specified in ADDL. Subsequently,
the Information Gatherer communicates with a set of infor-
mation sources to meet the information requirements rele-
vant to the predicted future user activities. Concurrently,
the agent maintains an estimated user cognitive workload
based on a set of observed temporal parameters in order to
determine the appropriate level of detail in presenting infor-
mation to the user.

The functions of each main component are described in
the following subsections. We note that a more detailed
description of the AI techniques underlying each of these
components is provided in our previous work [5]. In this
paper, we focus on the design, deployment and evaluation
of the architecture.

4.1 User Observer
The User Observer module obtains and interprets user ac-

tivities and messages that arrive from team members in the
field. This module includes multiple observer objects, re-
sponsible for collecting and interpreting observations from
different sources, e.g. user interface, input devices, exter-
nal communication. Each observer object must implement
the following three main methods: monitor, interpret, and
notify. For instance, the mouse observer monitors a user’s
mouse clicks on a map, or scrolling up and down actions and
interprets them into a set of predefined observation terms.
The User Observer notifies the intent recognition module of
new observations so that the agent’s belief about the user’s
current and future intent can be updated accordingly.

4.2 Intent Predictor
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According to the workflow model (specified in ADDL),
the Intent Predictor analyzes a series of observations col-
lected from the User Observer to recognize the user’s current
state and the most likely sequences of future user activities.
A user’s current state (which the agent cannot observe di-
rectly) is represented as a probability distribution over a set
of possible states, known as a belief state vector ; and the
most likely sequences of user actions are represented in a
tree structure, a plan-tree, where each node of the tree spec-
ifies a user activity.

We update the belief state vector as follows. For each
state s ∈ S, element b(s) of belief state vector represents
the probability of a user being in state s given a sequence of
observations z1, ..., zt, denoted by b(s) = p(st = s|z1, ..., zt).
We can rewrite this probability as a fraction of seeing the
particular state s after the series of observations over all
possible cases as follows:

b(s) =
p(z1, ..., zt ∧ st = s)∑

s′∈S

p(z1, ..., zt ∧ st = s′)
,

where p(z1, ..., zt ∧ st = s) can be efficiently computed us-
ing a dynamic programming technique as shown in [9]. For
instance, after observing the user opening an event message
and clicking on a certain area of map, the agent updates its
belief state to reflect that the user is assessing the event.

The updated belief state triggers two agent functions.
First, the belief state is passed to the Information Presenter
to determine if the agent has relevant information to present
to the user. Second, the agent recomputes the plan-tree of
predicted user activities likely to follow from the updated
current user state, using a sampling method. Based on the
assumption that the user will act according to the workflow
model, a node is added for each action such that the in-
formation requirements associated with actions with higher
expected utilities is assigned higher priorities. We note that
the user’s choice of action is not assumed to be necessarily
optimal, but rather close to optimal, as has been shown by
our previous work [5]. In addition, an activity is associated
with the task deadline constraint specified in the workflow
model, by which the data must be fetched since the user will
need the information before executing the action.

As a result, a plan-tree node contains a predicted user-
action (e.g., Dispatch ambulance), queries specifying asso-
ciated information requirements (which is annotated in the
workflow model), priority, and deadline. For instance, based
on the belief state that there is a toxic gas attack in a pop-
ulous region, the agent recognizes that the user will need
contact information of HazMat group as well as police for
crowd control and orderly evacuation. The updated plan-
tree is then supplied to the Information Gatherer to revise
information gathering plan.

4.3 Cognitive Workload Estimator
The Cognitive Workload Estimator (CWE) uses inputs

from the cognitive workload model2 and the deadline speci-
fied in the workflow model. We use a queuing network based
model for computing the workload of the user [3, 6, 7]. A
standard queue-based model of mental workload treats the
user’s attention as the server and tasks as jobs (see [10] for
details). As jobs arrive they are placed on the queue. Typi-
cally some simple discipline such as first in first out (FIFO)
or priority-FIFO is used to manage the queue. The user’s
capacity is considered to have been exceeded when jobs on
the queue exceed the user’s ability to process them while
avoiding tardiness. Based on the predicted plan-tree, the
arriving tasks are determined, and the CWE maintains a
running estimate of the probability that an operator will
fail to complete a task by deadline. In the prototype im-
plementation, we use a binary indicator such that the user
cognitive workload is overloaded if the estimated probabil-
ity of activity failure exceeds a certain threshold. Otherwise,
the workload estimator returns normal.

4.4 Information Gatherer
Given a plan-tree of predicted information-gathering tasks,

the Information Gatherer determines (or schedules) when
and which information sources to use in order to satisfy the
information needs of the user as well as coping with resource
constraints (e.g., network bandwidth) imposed by the prob-
lem domain; specifically, the agent should not interfere with
the user’s planning activities by over-consuming computing
resources. Initially, the information-gathering tasks are or-
dered by the priorities and the deadlines, ensuring not only
the acquisition of the most useful information, but also a
timely acquisition of data to meet the deadline constraints.
To accommodate changing information requirements, the In-
formation Gatherer must optimize its current schedule incre-
mentally to satisfy newer (thus more relevant) information-
gathering constraints. The retrieved data is stored locally
until used by the Information Presenter.

4.5 Information Adapter
The Information Adapter determines the level of detail

when presenting the data received from the Information
Gatherer to the user, considering both the user cognitive
workload and the estimated time available to the user for
the activity. Obtaining precise quantitative relationships
between cognitive workload of a user and the information
content in a document that can be processed by her is an
open problem. Thus we design the Information Adapter to
present the information at various levels of granularity so
that the user has a choice of the kind of content she wants

2The model development is outside the scope of this paper.
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to read. In the current implementation, we classify informa-
tion sources according to the granularity of data stored in
the sources.

4.6 Information Presenter
Given a belief state representing the user’s current state,

the Information Presenter selects relevant information in the
local storage and presents it to the user. In order to avoid
information overload, the Information Presenter must only
present data in temporal proximity to the actual need, with
a sufficient time for the information to be intelligible to the
user to meet her decision deadlines for the action at hand.
Finally, user feedback (e.g., whether the presented informa-
tion has been used) is collected and is provided for the agent
as reinforcement in order to allow future improvements on
the quality of supplied data.

5. APPLICATION DESCRIPTION
This section illustrates the prototype application of AN-

TICO in the emergency response scenario described in Sec-
tion 2 using a working example.

5.1 Graphical User Interface (GUI)
Figure 2 shows a snapshot of the operator interface anno-

tated to explain the purpose of each panel. To display an
interactive map, we integrate Google Maps3 in our GUI.

The messages arriving from the field or other groups are
shown in the Event Messages panel. In a real situation, these
messages will arrive to the agent from actual sources (e.g.
electronic messages from 911 operators). Here, the messages
are introduced into the environment in order to simulate the
real-time scenario. The time left to deal with the overall
emergency situation is displayed in the top left part of the
interface. The panels in the bottom of the interface display
the following types of information:

• Contact information for organizations employed in emer-
gency situations, e.g., fire stations, local police, and
facility security forces;

3http://code.google.com/apis/maps/

• Diagnostics for particular events;

• Affected areas and vulnerable populations such as schools
and nurseries; and

• Weather : Weather information is useful since (a) it
may affect the ability of response units to get to the
emergency site, and (b) for certain types of events, for
example during chemical attacks, winds can distribute
the toxic chemical to large downstream areas, affected
areas and vulnerable populations.

In addition, the Reminder panel (the leftmost in the bot-
tom) provides reminders to the operator regarding special
equipment or required capabilities for operation units. For
example, the unit that evacuates vulnerable populations re-
quires special training for evacuating handicapped people.
Note that the user may access information sources directly
at any time using the organization panel on the right.

Finally, although not necessarily part of the interface seen
by a human operator, our implementation also includes a
“debugging” interface (shown in Figure 3) that allows one to
visualize the internal belief state of the information agent.
This visualization shows the workflow currently being used
by the agent, including all activities and transitions between
activities, as well as the agent’s current belief state expressed
as probabilities associated with each user activity. These
probabilities represent the degree of belief possessed by the
agent that a user is currently carrying out the activity in the
workflow. Thus, the excerpt of a workflow shown in Figure 3
shows that the agent believes with .88 probability that the
user is currently carrying out the Dispatch Ambulance ac-
tivity in the Sarin partition of the workflow. At the same
time the agent believes with .12 probability that the user is
carrying out the same activity in the Yellow partition of the
workflow (reflecting a small degree of uncertainty over the
diagnostics performed earlier).

5.2 Working example
To illustrate the working of ANTICO agent, we use a sim-

ple example to describe in detail what the user sees in the
GUI, what the agent performs in the background, and how
the user makes decisions.

During peak hour at Union Station in Washington DC, a
chemical attack takes place. The expected size of crowd in
the proximity of attack is approximately 20, 000 with heavy
traffic in the roads surrounding the station. For this par-
ticular scenario, we have created a workflow containing two
similar partitions: one for responding to a Sarin Gas Attack;
and one for responding to a Yellow Gas Attack. Although
at a higher level these workflows are quite similar, the spe-
cific information and reminders that will be provided for
the user differ, since the symptoms and treatment for these
two chemical agents are different. After reading the event
messages regarding toxic gas, the user clicks on an area in
the map. This observation triggers the Intent Recognizer
module and the agent’s belief state indicates that the user
is determining the type of gas whether it is Sarin or Yellow.
At this point, with limited information, the intent recog-
nizer will have probabilities distributed more or less evenly
among the states in the various partitions of the workflow.
This reflects the uncertainty at the diagnostics phase of the
response, since Sarin and Yellow have a certain amount of
similar symptoms. Thus, as represented in the workflow of

http://code.google.com/apis/maps/
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Figure 3, the first activities the agent infers that a user will
be carrying out relate to the determination of the nature of
the attack and the symptoms reported from the scene. Ac-
cordingly, the type of information that the agent provides
to the user at this point include a description of the symp-
toms of these chemical agents. Upon receiving a new set of
event messages the agent’s belief about Sarin gas is corrobo-
rated, and the agent immediately prefetches the diagnostics
information of Sarin gas. Moreover, as the user peruses this
information (which the agent detects as the user interacts
with the information interface), the agent concludes that
the user will soon want to dispatch a Hazardous Materials
unit to the scene. Thus, the HazMat information nearby the
affected area is retrieved.

At the same time, the agent presents HazMat informa-
tion to the user as follows. Based on the workflow model,
the optimal time for using HazMat information is calculated
as two minutes. ANTICO presents the HazMat information
in three levels of granularity (short, medium and long) clas-
sified by content size, and suggests the a level of granularity
compatible with the predicted cognitive workload.

Figure 3 shows a visualization of the workflow available
to the agent. Each activity is represented by a rectangle
in the graph. Activities are connected by arrows in differ-
ent directions; the numbers along the arrows represent the
probabilities of the next activities. The number below each
activity represents the estimated probability of the user per-
forming the activity, e.g., from the the agent’s current belief
state, the operator is mostly likely to be dealing with a Sarin
gas attack. It also predicts that the operator’s next action
should be to “Dispatch Police” for crowd control, within the
Sarin gas branch of the workflow.

Based on the actions taken by the user with the current in-
formation on the interface, the agent updates its belief state
and keeps presenting the required information to the user
in a new state within the time constraints imposed by the

new events. For instance, as the emergency simulation pro-
gresses, ANTICO brings up information for live weather and
traffic updates, vulnerable population and hospitals near the
emergency site4.

6. EVALUATION
In real disaster scenarios within the United States, emer-

gency management is conducted by following an Emergency
Operations Plan (EOP). Each major urban center in the US
is expected to have EOPs available to key civilian person-
nel involved in managing disaster response. Consequently,
when responding to a disaster by following the EOP, an un-
aided human user must look up the required information in
the EOP and read a number of pages of text, for each step
of the plan. In this setting, ANTICO proactively looks up
the required information on behalf of the user, and summa-
rizes this information to a degree appropriate with the time
available and the level of cognitive workload experienced by
the user. One of the key research questions regarding the
effectiveness of ANTICO is the degree to which the agent
can shorten reaction time. More importantly, we wanted to
study how sensitive this time gain is affected by the accu-
racy with which the intent predictor infers the user current
intention. Intuitively, if the agent always infers the user’s
current intention correctly and presents the correct infor-
mation in summarized form, a human user should see large
gains in terms of reaction time. Conversely, if the agent al-
ways misses the current intention and displays incorrect in-
formation, a user not only must refer to the EOP document,
but also suffer the time penalty of reading the irrelevant in-
formation.

Given the difficulty in obtaining access to trained emer-
gency management personnel, we have devised a simula-
tion of a user managing an emergency scenario following the

4ANTICO demo video: <omitted>



workflow illustrated in Figure 3. This simulation allows us to
evaluate the potential effectiveness of the ANTICO concept
under various hypothetical error rates by the agent. The
simulation consists of random walks through the workflow,
following its transition probabilities, while accumulating the
time taken by a human user to read the information needed
to complete the task. Since we consider the amount of infor-
mation actually read by the user during emergency manage-
ment to be the main driver for the time spent carrying out
a task, the main parameters of each step in the simulation
are the best and worst-case scenario for the number of pages
required to be read to complete an activity. Each activity
in the workflow is associated with a particular section (or
chapter) within the EOP document5, and the amount of in-
formation needed at each task varied from none (for tasks
where the emergency manager is expected to know the in-
formation) to six pages. In order to estimate the expected
time spent by a human user reading this information, we
took the standard average of 250 words per page, and used
reading rates obtained from the human factors literature
[4] that state that the mean number of words per minute
(WPM) for human readers is 290 with a standard deviation
of 49.3 WPM. As a result, in our simulation each task takes a
number of seconds equal to time(t, h) = Pt∗250

Wh∗60
to complete,

where: i) Pt is the number of pages actually read to com-
plete task t, sampled from a uniformly random distribution
between 0 and the size of the EOP section associated with
task t; and ii) Wh is the reading rate of a human h, sam-
pled from a gaussian random distribution. When the user is
assisted by the agent, Pt varies depending on the accuracy
of the agent. If the agent correctly predicts the information
needs of the user, and the information presented is at the
right level of granularity, Pt takes a random value between
0 and the values in the set {0.25, 0.5, 2}, representing the
amount of information, in pages, summarized by the agent
to low, medium and high levels of granularity. Conversely,
if the agent has incorrectly predicted the user’s information
needs, not only must the user read the irrelevant informa-
tion presented by the agent, it must also revert to consulting
the EOP, and read the appropriate section, as if unassisted.
Thus, when the agent fails in providing relevant assistance,
the presented information becomes a penalty to the time
taken by the user.

We generated 100000 samples with the simulator mea-
suring the amount of time taken to execute the emergency
management workflow for both the agent-assisted and un-
aided user. Within this set, subsets of 10000 samples were
taken for assistance with an accuracy probability p varying
from 0 to 1.0 in 0.1 increments. Using the resulting times
of our simulations, we calculated the performance ratio be-
tween the agent-assisted and the unaided user. These results
are illustrated in the graph of Figure 4.a, which shows the
various accuracy values along the X axis, as well as the per-
formance ratios (with standard deviation) along the Y axis.
This performance ratio represents the fraction of time taken
by the agent-assisted user to complete the workflow in re-
lation to the unaided user, consequently, if the performance
ratio is .5, the assisted user took half of the time taken by
the unassisted user to complete the exact same sequence of
activities. As expected, the time taken by a user to complete

5We had access to the table of contents of the EOP for a
major US city, from which data size estimates were derived.
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Figure 4: Simulation analysis

the tasks diminishes monotonically as the agent’s intention
recognition improves, at around 0.2 accuracy, the aided user
starts performing similarly to the unaided user. Further-
more, we illustrate in more detail the specific number of
samples associated with each performance ratio in the his-
tograms of Figure 4.b-4.d for p equal to 0, 0.4 and 1. Bars
to the left side of each histogram show samples in which the
agent led to improved performance. Notice that at p = 0.1
the user’s performance tends to be worse than the unaided
user (since most samples have a ratio greater than 1). How-
ever, already at p = 0.4, most of the samples indicate an
improvement in user performance.

7. RELATED WORK
In this section, we review three state of the art emergency

response systems used today and point out the differences.

7.1 Google Crisis Response
Google crisis response manager6 is an online tool that col-

lects fresh high-resolution imagery plus other event-specific
data, and then publishes this information on a dedicated
landing page. Different users are also allowed to add infor-
mation related to the disaster at a given geographic location,
making this tool a wiki-like disaster response tool. Although
having updated information is an important element of ef-
fective disaster response, this kind of application can easily
overwhelm a responder by a deluge of information coming
from user updates. On the one hand, the plethora of infor-
mation can result in the operator spending too much time in
obtaining and absorbing the information; thus leaving less
time to accomplish coherent response tasks. On the other
hand, spending too little time in acquiring the information
may lead to inferior task performance. Whereas Google cri-
sis response aggregates large amounts of data, possibly jeop-
ardizing user’s responsiveness, ANTICO avoids this problem
by monitoring the user’s cognitive workload and providing

6 http://www.google.com/crisisresponse/

http://www.google.com/crisisresponse/


an amount of information proportional to the user’s ability
to deal with it.

7.2 WIPER
WIPER provides emergency response managers with an

integrated system that detects possible emergencies from
cellular communication data, attempts to predict the de-
velopment of emergency situations, and provides tools for
evaluating possible courses of action in dealing with emer-
gency situations [8]. WIPER conveys three distinct pieces
of information to responders via a web-based console:

• near-real time information on the location of cell phone
users in an area, plotted on a GIS-based map of the
area;

• potential anomalies, such as traffic jams, roving crowds
and call patterns indicative of a crisis; and

• customized mitigation strategies, such as potential evac-
uation routes or barricade placement, suggested by
computer simulations.

In order to provide such unobtrusive aid in context and in
a timely manner, ANTICO signals to the user choices of in-
formation granularity that are likely to satisfy the effective-
ness/timeliness tradeoff. WIPER, on the other hand, is an
assistance system that helps a user plan to deal with a dis-
aster. However, similarly to Google crisis response, WIPER
does not deal with user information overload, and can pro-
vide too much information to the user. Thus, WIPER’s
capabilities for information gathering could be integrated in
ANTICO’s information gatherer module.

7.3 SOFER
Instead of providing proactive assistance, the Simulation-

based Optimization of Fire and Emergency Response (SOFER)
system [2] provides guidance on optimal allocation and place-
ment of disaster response units to satisfy a set of service
quality and availability criteria. SOFER uses a history of
911 requests to simulate future requests and determine how
to distribute existing resources and the need to deploy ad-
ditional resources in order to meet specific optimization cri-
teria. It does not, however, provide on-demand assistance
as disasters are occurring, but could be used in the con-
text of an assistant to provide deployment suggestions for
a user having to deal with multiple simultaneous disaster
situations. Although SOFER is not an assistant per se, it
provides optimal resource placement strategies that could
be used to help mitigate a user’s cognitive workload by sug-
gesting deployment configurations as a disaster evolves.

8. CONCLUSIONS AND DISCUSSION
In this paper, we introduced the Anytime Cognition (AN-

TICO) concept, a generic information assistance architec-
ture that employs probabilistic plan recognition techniques
and a model of cognitive workload to proactively gather and
present information to a human user such that the user is
able to absorb the given information in order to perform the
activity (with acceptable quality) within time. To realize
the ANTICO concept, we integrated several AI technolo-
gies including probabilistic plan recognition (intent predic-
tion module), Bayesian reasoning (information adapter and
information presenter modules), and constraint optimization

(information gatherer module). The agent architecture pre-
sented in this paper has two additional advantages. First,
our approach is domain independent so that various types
of applications can be developed from it. As a proof of con-
cept application, we demonstrated the ANTICO concept in
the context of emergency response scenario. Second, our
modular agent architecture provides flexibility in choosing
the main algorithms used in each module without affecting
the rest of the system. For instance, we plan to enhance
the information adapter module by exploiting meta-data to
dynamically adjust the granularity of the data presented to
the user, e.g., extracting title, the first sentence, or abstract
only. Such enhancements are transparent to other compo-
nents since the specific algorithms used inside each module
are independent.

To demonstrate the practicality of the approach, we pre-
sented the design and development of an agent-based system
that assists a user in making decisions for time critical tasks
in an emergency response scenario. This implementation has
been evaluated through simulation, showing that even in sit-
uations where the agent’s plan recognition and information
adaptation fail more than half of the time, the potential per-
formance improvements are significant. As future work, we
intend to perform larger scale studies using actual human
subjects. To accomplish this, we are integrating ANTICO
to a mission management user interface in wide use among
the US armed forces, which should allow us to carry out
tests with experts in the use of this interface.
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