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Annunciator driven supervisory control (ADSC) is a widely used technique for directing human 

attention to control systems otherwise beyond their capabilities.  ADSC requires associating abnormal 

parameter values with alarms in such a way that operator attention can be directed toward the involved 

subsystems or conditions.  This is hard to achieve in multirobot control because it is difficult to distinguish 

abnormal conditions for states of a robot team.  For largely independent tasks such as foraging, however, 

self-reflection can serve as a basis for alerting the operator to abnormalities of individual robots.  While the 

search for targets remains unalarmed the resulting system approximates ADSC.  The described experiment 

compares a control condition in which operators perform a multirobot urban search and rescue (USAR) task 

without alarms with ADSC (freely annunciated) and with a decision aid that limits operator workload by 

showing only the top alarm.  No differences were found in area searched or victims found, however, 

operators in the freely annunciated condition were faster in detecting both the annunciated failures and 

victims entering their cameras' fields of view.  

 

INTRODUCTION 

Over the past 50 years annunciator driven supervisory 

control (ADSC) has evolved as the standard solution for 

human control over systems too complex for humans to 

monitor. In ADSC a complex system is analyzed to identify 

parameter set points that, if exceeded, would be an indication 

of an off-normal state and diagnostic with respect to the 

subsystem(s) involved. The set point is typically alarmed, 

through a flashing legend tile indicating the parameter, set 

point and system involved. The alarms serve to direct the 

operator’s attention from the complexity of the entire system 

which exceeds human cognitive capacity to the particular 

subsystem and condition needing to be scrutinized. By 

reducing the scope of what the operator must consider, ADSC 

brings the problem back within the operator’s cognitive 

capacity enabling her to control a system that she could not 

otherwise direct. ADSC essentially converts a complex 

dynamic control problem into a queuing system in which 

discrete jobs (alarmed problems) are presented to an operator 

(server). 

The effectiveness of ADSC depends on two things:  1) the 

decomposability of the system into relatively independent 

subsystems that can be considered in isolation and 2) the 

definition of set points that can reliably cue the operator to 

developments requiring human attention.   In conventional 

applications such as nuclear power plants, refineries, or 

chemical reactors the lack of independence among subsystems 

has caused the greatest difficulty. Although ADSC has 

successfully managed complex systems throughout the world 

for over half a century, accidents such as the loss of cooling at 

Three Mile Island (IEEE, 1979) still occur because of the 

tunnel vision the technique promotes.  Where interaction 

across subsystem boundaries is involved, ADSC leads 

operators to conclude that things have gone haywire without 

providing any idea of where to start unraveling the problem.   

Thrown unexpectedly into dealing with the full complexity of 

the systems under their direction operators have neither the 

experience nor intuitions needed to perform their role.  

Proposed solutions such as encouraging operators to reason 

about system evolutions at multiple levels of abstraction 

(Rasmussen, 1986; Vicente, 2002) or displaying global system 

state (O’Hara, Higgins, & Kramer, 1996) are not widespread 

because of the complexity of the problems and the difficulty in 

analysis of considering the potential failure modes. 

While applying ADSC to complex industrial processes 

presents formidable challenges, multirobot control is 

significantly more difficult because of the difficulty in defining 

set points. While industrial processes can have clear ranges 

over which we expect parameters to vary, robot teams do not.  

For mobile robots the geographical region where they are 

deployed, separation (dependent on obstacles), execution 

times (dependent on terrain), etc. all will vary from mission to 

mission making constant set points infeasible. The alternative 

of making set points dependent on mission, terrain, adversary, 

etc. is also infeasible because of the complexity of re-

analyzing/re-specifying alarm parameters for every mission. 

Research in robot self-reflection (Scheutz & Kramer, 

2007) has progressed to the point that it is reasonable to 

presume robots capable of reliably reporting their own off 

normal conditions such as an inability to move, unsafe attitude, 

or other failure inferable from sensed data.  For tasks such as 

foraging in which robots operate with relative independence 

these individual reports could provide a basis for alarms 

focusing operator attention on robot(s) in need of interaction.   

Because of the complexity of the operator’s task in 

identifying robots in need of assistance and choosing among 

them, a decision aid assisting the operator in the choice of 

which robot to service next might decrease mental workload 

and improve performance.  Direction of operators at this level 
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Figure  2. Alarm condition  

of specificity, however, has often met with resistance (Kirlik, 

1993).  Fielded ADSC systems typically leave the selection of 

problems from those alarmed to the operator or provide a 

priori prioritization scheme distinguishing between major and 

minor problems.  Despite early results suggesting that dictating 

the choice of robot to control may fare poorly in human-

machine systems (Crandall et al., 2010), the potential gains 

warrant further investigation and development of effective 

means for conveying recommendations. 

The present study addresses these issues by comparing a 

control condition in which operators perform a multirobot 

urban search and rescue (USAR) task without alarms with an 

ADSC condition in which self-reported faults are freely 

annunciated and a decision aid showing only the highest 

priority alarm. 

Method 

USARSim and MrCS 

The experiment reported in this paper was conducted 

using the USARSim robotic simulation with 6 simulated 

Pioneer P3-AT robots performing Urban Search and Rescue 

(USAR) foraging tasks. USARSim is a high-fidelity simulation 

of urban search and rescue (USAR) robots and environments 

developed as a research tool for the study of human-robot 

interaction (HRI) and multi-robot coordination. USARSim 

supports HRI by accurately rendering user interface elements 

(particularly camera video), accurately representing robot 

automation and behavior, and accurately representing the 

remote environment that links the operator’s awareness with 

the robot’s behaviors. Other sensors including sonar and audio 

are also accurately modeled. Many validation studies have 

shown close agreement in behavior and sensing between 

USARSim models and the robots being modeled.  

MrCS (Multi-robot Control System), a multi-robot 

communications and control infrastructure with accompanying 

user interface, developed for experiments in multirobot control 

and RoboCup competition (Balakirsky et al., 2007) was used 

in this experiment. MrCS provides facilities for starting and 

controlling robots in the simulation, displaying multiple 

camera and laser output, and supporting inter-robot 

communication through Machinetta which is a distributed 

multi-agent coordination infrastructure.   

 

Figure1. Control condition display  

Figure 1 shows the control condition with the elements of 

the conventional MrCS.  The operator selects the robot to be 

controlled from the colored thumbnails at the top of the screen.  

To view more of the selected scene shown in the large video 

window the operator uses pan/tilt sliders to control the camera. 

The current locations and paths of the robots are shown on the 

Map Data Viewer (bottom left). Robots are tasked manually 

by assigning waypoints on the map or through a teleoperation 

widget (bottom right). 

The two experimental displays augment the standard 

MrCS with alarms resulting from simulated robot self-

reflection.  

1) Alarm (ADSC): The team status window shows each 

robot’s current condition in different colors and briefly 

summarizes it. Green color indicates the robot is in 

autonomous condition, yellow shows the robot is in an 

abnormal condition, such as stuck at a corner or flipped, and 

when a robot is manually controlled its tile turns white.  
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 2) Decision Aid: This display shows the highest priority 

alarm for a robot in an abnormal state.  Additional alarms can 

only be reviewed after the presenting problem is resolved. 

 

Figure 3. Decision Aid condition display 

USAR Foraging task 

When an operator detects a victim in a thumbnail a 

complex sequence of actions is initiated. The operator first 

needs to identify the robot and select it to see the camera view 

in a larger window and to gain the ability to stop or teleoperate 

the robot. After the user has successfully selected a robot, it 

must be located on the map by matching the window border 

color or numerical label.  Next the operator must determine the 

orientation of the robot and its camera using cues such as prior 

direction of motion and matching landmarks between camera 

and map views.  To gain this information the operator may 

choose to teleoperate the selected robot to locate it on the map, 

determine its orientation through observing the direction of 

movement, or simply to get a better viewing angle. The 

operator must then estimate the location on the map 

corresponding to the victim in the camera view.  If “another” 

victim is marked nearby the operator must decide whether the 

victim she is preparing to mark has already been recorded on 

the map.  

Detecting and restoring a failed robot follows a similar 

time course with the act of teleoperating the rescued robot to 

the next waypoint substituting for marking the victim.   

 

Experimental Conditions 

A large USAR environment previously used in the 2010 

RoboCup Rescue Virtual Robots competition (Robocup 

Rescue VR, 2010) was selected for use in the experiment.  The 

environment was an office like hall with many rooms and full 

of obstacles like chairs, desks, and bricks. Victims were evenly 

distributed within the environment. Maps were rotated by 90º 

and robots entered the environment from different locations on 

each of the three trials. Because the laser map is built up 

slowly as the environment is explored and the office like 

environment provides few distinctive landmarks there was 

little opportunity for participants to benefit from prior 

exposure to the environment. Robots followed fixed paths 

from each set of entry points simulating the autonomous 

navigation used in earlier (Chien, Wang, & Lewis, 2010) 

studies.  The map contained 20 points at which failures were 

injected.  Upon reaching a failure point the robot experienced 

a failure, such as becoming entangled with a chair. The 

operator then needed to assume manual control to teleoperate 

the robot out of its predicament to its next waypoint. The 

experiment followed a three condition repeated measures 

design comparing the conventional MrCS displays with MrCS 

augmented by alarm panels. Conditions were fully 

counterbalanced for Map/starting points and display with 5 

participants run in each of the six cells 

 

Participants and Procedure 

31 paid participants were recruited from the University of 

Pittsburgh community balanced among conditions for gender. 

None had prior experience with robot control although most 

were frequent computer users. Due to a system crash data was 

lost for one participant. 

After providing demographic data and completing a 

perspective taking test, participants read standard instructions 

on how to control robots via MrCS. In the following 15 minute 

training session, participants practiced control operations.  

Participants were encouraged to find and mark at least one 

victim in the training environment under the guidance of the 

experimenter. After the training session, participants began the 

first 15 minute experimental session in which they performed 

the search task controlling 6 robots in the first assigned 

condition. At the conclusion of the session participants were 

asked to complete the NASA-TLX workload survey (Hart & 

Staveland, 1988). After brief breaks, the next two conditions 

were run accompanied by repeated workload surveys. 

 

RESULTS 

Data were analyzed using a repeated measures ANOVA 

comparing search and rescue performance between the control 

and the two alarmed displays. No difference was found on the 

overall performance measures areas covered (F1,29 = .488, p 

= .490), victims found (F1,29 = .294, p = .592), or NASA-

TLX workload  survey (F1,29 = 2.557, p = .121).  Significant 

effects were found on measures relating to operator strategy 

and the ways they performed their tasks.   

 

Neglect times 

The Neglect Tolerance model (Crandall et al., 2005) holds 

that increasing robots’ autonomy allows robots to be neglected 

for longer periods of time making it possible for an operator to 

control more robots. Neglect time, therefore, can be 

considered an indirect measure of operator efficiency.  Robots 

in the Decision Aid condition were neglected longer than in 

the Control condition (p = .033, SD = 619.507) but did not 

differ significantly from the Alarm condition. The neglect 

times were Alarm = 1741, Decision Aid = 1887, and Control = 

1629 seconds.  
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Figure  4. Neglect Time 

 

Fault Detection Time 

Fault Detection time was defined as the interval between 

the initiating failure and the selection of the robot involved in 

that event.  

Cumulative Fault Detection times were significantly 

shorter for participants in the Alarm condition, p = .021, with a 

cumulative Fault Detection time of 933 seconds. Times for 

Decision Aid and Control conditions were 1120, and 1210 

seconds respectively. A pairwise T-test shows a significant 

difference between Alarm and Control conditions (p = .021, 

SD = 607.914).  

  

Figure  5. Cumulative Fault Detection time 

 

Average Fault Detection times show a similar advantage 

for the Alarm condition for noticing robots in trouble, p 

= .014, SD = 76.583. These waiting times were Alarm 90, 

Decision Aid 110, and Control 128 seconds.   

  

Figure  6. Average Fault Detection Time  

 

Victim Delay time was defined as the interval between 

when a victim first appeared in a robot’s camera and the 

selection of that robot. Victim Delay time again differed across 

conditions with average times of Alarm 1303, Decision Aid 

1548, and Control 1559 seconds. A pairwise T-test shows 

differences between Alarm and Decision Aid (p= .041, SD = 

613.725), and Alarm and Control conditions (p = .025, SD = 

578.945). 

  

Figure  7. Average Victim Delay Time 

 

Select to Mark per victim  

A related measure, Select-to-Mark, is defined by the 

interval between selecting a robot with a victim in view and 

marking that victim on the map by the process described 

earlier.  Select to mark times can be interpreted as a measure 

of situation awareness (SA) because they require the operator 

to orient and interpret the environment. 

For this measure the results are reversed with users in the 

Alarm condition taking the longest times (17.56 sec) and the 

Control the shortest (14.91 sec) with the Decision Aid 

condition (16 sec) again falling in between.  There was no 

overalleffect forselect to mark time acrossthe three 

experimental conditions (F(1.669,56) = 1.618, p = .212).  A 
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pairwise T-test, however, shows a significant difference 

between Alarm and Control conditions (p = .025, SD = 6.02). 

 

Figure  8. Select to Mark Per Victim Time  

 

DISCUSSION 

Allowing robots to alert operators to their abnormal states 

not only reduced the need to monitor for failures as evidenced 

by the reduced Fault Detection times, but appear to have freed 

cognitive resources to monitor the video feeds for victims 

leading to reduced Victim Detection times as well.  The 

increased select-to-mark times for operators receiving alarms 

suggest that operator strategies may have changed in ways that 

shift attention from the map to the alarm panel and thumbnails 

forcing them to reacquire SA before marking victims on the 

map.  An alternate explanation may be that the more complete 

information available to Alarm condition operators allows 

them to consider problems in parallel interleaving planning for 

further interactions with the marking task. 

  While the information provided by the Alarm and 

Decision Aid displays should be equivalent for an servicing 

robots in a sequential fashion this was not the case for our data 

with  Decision Aid conditions falling somewhere between the 

Alarm and Control conditions. Anecdotal observations suggest 

that this may be because some participants chose to ignore the 

Decision Aid preferring to control robots from the thumbnails 

and map as in the control condition.  User acceptance of highly 

prescriptive decision aids has been a longstanding problem in 

human-machine systems (Kirlik, 1993). Whether it is an 

aversion to being controlled by a machine or cognitive 

dissonance from being unable to understand the basis for a 

machine’s decisions prescriptive aids are often simply turned 

off.  This is especially relevant to multirobot control for the 

types of tasks studied here because most of the technical 

assistance we could provide involves using sophisticated 

scheduling models to help the operator choose the right robot 

to control.  While the simple Decision Aid used in this study 

did not offer the advantages of sophisticated priority queues 

(Crandall et al., 2010) or models based on service 

differentiation (Xu et al., 2010) we can never realize 

advantages from more sophisticated aiding, unless we can 

convey this guidance to the operator in a more effective way.  

Similar results were reported by (Crandall et al., 2010) for 

queue driven multirobot control that dictated decisions.  Since 

the ADSC Alarm display is already showing advantages over 

the basic system, modifying it to “suggest” rather than 

“dictate” the next robot may be a way to improve performance 

without alienating the operator. 
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