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Single nucleotide polymorphism (SNP) arrays are used primarily for genetic association studies, 

with data being analyzed in most cases one SNP at a time. Several other applications of SNP 

arrays, however, involve integration of data over multiple markers for a single individual. Two 

such applications of SNP arrays are studies of copy number variants (CNVs) and regions of 

homozygosity or identity by descent. Hidden Markov models are a common approach to both of 

these problems, but other methods have been used as well. In this dissertation I address several 

methodological issues related to these two types of analysis, and also apply the methods to 

several datasets.  

The purpose of my studies in CNVs is to better detect and analyze CNVs. A major 

concern for all copy number variation (CNV) calling algorithms is their reliability and 

repeatability. I use family data as a verification standard to evaluate CNV calling strategies and 

methods. I make recommendations for how CNV calls can be used in genome-wide association 

studies. I then apply them to analyze CNVs in studies of psychiatric disorders and birth 

outcomes. Results from these studies have the potential for great public health significance, 

because they can lead to better understanding of the genetic etiology and eventually to better 

markers for disease screening and diagnosis.  

                                                                                                                  Eleanor Feingold, PhD 

STATISTICAL METHODS AND ANALYSIS FOR HUMAN GENETIC COPY 

NUMBER VARIATION AND HOMOZYGOSITY MAPPING 

Xiaojing Zheng, PhD 

University of Pittsburgh, 2012

 



 

 

 v 

Homozygosity mapping is a powerful method to map genes for rare recessive disorders. 

However, current methods are not ideal, especially when using high density SNP array data from 

consanguineous families. This study develops improved methods for homozygosity mapping 

using dense SNP data, and thus will improve the ability of geneticists to find genetic causes of 

rare recessive diseases. Many of these rare disorders are life-threatening; identification of the 

disease genes may help with early diagnosis and treatment. 
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1.0  INTRODUCTION 

1.1 SNP ARRAY 

A single nucleotide polymorphism (SNP) is a DNA sequence variation.  It refers to a variation at 

a single DNA nucleotide site in a population. A SNP can be used as a marker in genetic mapping 

and other studies. A SNP array is a DNA microarray designed for high-throughput genotyping of 

thousands to millions of SNPs simultaneously. In general, a SNP array will generate fluorescent 

intensity signals of the two alleles of each SNP. Detailed information about the data that the SNP 

array produces is described in the next section. Two commonly used makers of SNP arrays are 

Affymetrix and Illumina.  

SNP array data are most often analyzed by looking at a single SNP at a time over many 

individuals, such as in genome-wide allelic association analysis; but they can also be used for 

looking at regions or groups of SNPs in a single or a few individuals. Two such applications are 

CNV (copy number variation) studies and homozygosity mapping. This dissertation addresses 

those two applications, which are described in more detail below. 
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1.2 OVERVIEW OF COPY NUMBER VARIATION 

Copy number variation (CNV) refers to the deletion or amplification of a segment of DNA, 

ranging from one kilobase to several megabases in size. CNVs have raised more and more 

interest in genetics in recent years, since accumulating evidence has shown that CNVs may play 

an important role in causing disorders [Henrichsen et al., 2009; Cahan et al., 2009; Sebat et al., 

2007]. At the same time, high throughput DNA microarrays, which make the whole-genome 

scanning of CNVs possible, also greatly accelerate the development of CNV studies.  

The first generation of DNA arrays for CNV studies was comparative genomic 

hybridization (CGH) arrays, which were first reported in the 1990’s [Solinas-Toldo, 1997; Pinkel 

1998]. Test and reference DNAs were labeled with different fluorescent tags and hybridized on a 

slide spotted with thousands of genomic DNA (BAC, cosmid, or cDNA) clones. The 

fluorescence ratio between test and reference DNA was then used to infer the genomic 

gains/losses. However, the low resolution and sparse coverage are the major disadvantages of 

CGH. The high noise due to spotting process is another problem for it. 

The second generation of methods used for CNV studies is SNP arrays. The array 

resolution is greatly increased over what can be done in array CGH. For example, the Illumina 

HumanHap550 BeadChip contains over 550K SNP probes in a single array. However, the probes 

are not uniformly distributed across the genome; they are particularly sparse in CNV regions, 

due to the difficulties in designing robust polymorphic probes in these regions.  

The third generation of methods for CNV detection is SNP arrays with CNV markers. 

Non-polymorphic probes (CNV markers) were added to chips, which may help with identifying 

the CNVs in the regions not previous covered by the SNP arrays. For example, the Illumina 
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HumanHap610 puts together the content from Illumina HumanHap550, containing around 550K 

SNPs, and 60K CNV probes, while the Illumina Human660W-Quad adds a different set of over 

110K CNV markers based on HumanHap550.  The current highest-density chips, the Affymetrix 

6.0 and Illumina 1M, each have approximately one million SNPs and one million CNV markers. 

The CNV studies in this dissertation use the earliest versions of the third generation platforms. 

However, how to accurately identify ("call") the CNVs based on the data from these assays and 

how the CNV calls can be used in genetic association studies are major statistical concerns for 

even the best platforms. 

CNV calling algorithms can be classified into three categories: 1) one-dimensional 

segmentation methods that utilize total intensity measurements only; 2) genotype mining 

approaches that only use SNP genotype information; 3) generalized genotyping approaches that 

use both genotype calls and total probe intensities [Yau et al., 2008]. All arrays will generate 

fluorescent intensity signals for the A and B alleles – X and Y intensities for each person and 

each SNP/marker. In order to infer the location of the CNVs, the information of X and Y 

intensities must be combined across SNPs/markers. The two statistics used to model the copy 

number changes and genotype calls are log R ratio (LRR) and B allele frequency (BAF) 

respectively. LRR=log (X+Y), which measures the total intensity of the two alleles. The 

assumption for LRR is that human beings contain two copies of genomic DNAs, the genomic 

gain (amplification) of a DNA segment will lead to a higher LRR at that specific locus; while 

loss (deletion) will cause lower LRR. BAF = Y/(X+Y), which assays the relative intensity of the 

two alleles. For example, if the genotype at a locus is AB, the total copy number will be 2 

(X+Y=2), and BAF=1/2 (Y=1); if the genotype is ABB, the total copy number will be 3 

(X+Y=3), and BAF=2/3 (Y=2).  
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The one-dimensional segmentation method was originally proposed for analyzing CGH 

array data. Both Nonparametric methods (SW-ARRAY, Circular Binary Segmentation, 

RankCopy, et al) [Price et al., 2005; Olshen et al., 2004, LaFramboise et al., 2009] and 

parametric methods (GADA, ITALICS, CNAG, dChip et al.) [Pique-Regi et al., 2008; Rigaill et 

al., 2008; Nannya et al., 2005, Zhao et al., 2004] have been widely used in detecting changes of 

copy number in tumors. A common question they tried to answer is how to best localize the 

change-point, where copy numbers change between contiguous segments along the chromosome. 

For example, circular binary segmentation (CBS) uses a binary segmentation procedure to look 

for breakpoints, and SW-ARRAY uses dynamic programming to search for breakpoints. A major 

drawback of these methods is that they do not use SNP genotype information, which may reduce 

the statistical power in identifying CNVs. 

The genotype mining algorithm assumes three classes of diploid genotypes (AA, AB or 

BB) and models genotyping errors, for example: Mendelian errors, departure from Hardy-

Weinberg Equilibrium in contiguous regions, contiguous regions of homozygous genotype calls 

etc. One of the recent examples is Microdel, proposed by Kohler [Kohler and Cutler, 2007]. This 

method requires parent-offspring trio data, and it is hard to identify the amplifications due to the 

ambiguous genotype classifications in this situation (for example, AAB can be called as AB or 

AA).  

The generalized genotyping approaches utilize both genotype information and total 

intensity measurements. For example, Birdsuite [Korn et al., 2008] for Affymetrix SNPs arrays; 

and QuantiSNP [Colella et al., 2007] and PennCNV [Wang et al., 2007] for Illumina BeadChips, 

use a Hidden Markov Model (HMM) to predict the copy number state (hidden state) at each 

probe locus (time point) along the chromosome. The assumption for PennCNV is that the 
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emission probability of the log R ratio is distributed as a Gaussian mixture; emission probability 

of BAF is distributed as a Gaussian mixture when the BAF value is between 0 and 1, and a 

mixture of point mass and truncated normal when the BAF value is 0 or 1. The strengths of 

PennCNV include that family relationships can be incorporated into CNVs calling and that the 

likelihood ratio of the copy number state at each marker is available. Also, it runs fast and is very 

user friendly. However, the common disadvantages for the generalized genotyping approaches 

are that the programs do not predict genotype information and the detection of change-points 

may not be very accurate. PennCNV has become the de facto standard for CNV calling using the 

Illumina platform, and almost all of the work proposed for CNV calling in this dissertation is 

based on PennCNV.   

1.3 CNV IN THIS DISSERTATION 

Although various statistical methods have been proposed for detection of CNVs, the statistical 

estimation of CNVs is still unreliable. The lists of CNVs are different with different statistical 

algorithms. But even with the same calling algorithm, the results can be quite different due to 

different calling strategies.  Chapter 2 evaluates the reliability of CNV calling strategies. My goal 

was to make recommendations for how CNV calls can be created and filtered for use in genetic 

association studies. Next, I applied the CNV-calling strategies in genetic association studies in 

Chapters 3 and 4. Chapter 3 investigates association between CNVs and psychosis in 

Alzheimer’s disease (AD+P). Chapter 4 tries to identify the CNVs associated with adverse birth 

outcomes (low birth weight, preterm delivery) and maternal smoking.  
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1.4 HOMOZYGOSITY MAPPING 

Methods that look across multiple markers in SNP arrays are also used for homozygosity 

mapping. Homozygosity mapping is a method for mapping genes for rare recessive disorders in 

families or populations. It takes advantage of a fact that offspring of a consanguineous marriage 

are more likely to have rare recessive disorders. Given a consanguineous family with a rare 

recessive disorder, it is assumed that the disease genes are more likely to be located in the 

regions where affected individuals have two identical alleles inherited from a common ancestor. 

Despite the fact that homozygosity mapping is relatively common; computational methods for it 

are often very ad hoc and/or statistically sub-optimal. The goal of Chapter 5 is to recommend and 

test methods that can bring more statistical rigor and power to this endeavor. I focus in particular 

on family data, as opposed to population data, and on dense SNP data rather than microsatellite 

data, and develop a hidden Markov model that can be used for detecting regions of 

homozygosity taking into account multiple family members.  
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2.1 ABSTRACT 

A major concern for all copy number variation (CNV) detection algorithms is their reliability and 

repeatability. However, it is difficult to evaluate the reliability of CNV calling strategies due to 

the lack of gold standard data that would tell us which CNVs are real. We propose that if CNVs 

are called in duplicate samples, or inherited from parent to child, then these can be considered 

validated CNVs. We used two large family-based Genome-Wide Association Study (GWAS) 

datasets from the GENEVA consortium to look at concordance rates of CNV calls between 

duplicate samples, parent-child pairs, and unrelated pairs. Our goal was to make 

recommendations for ways to filter and use CNV calls in GWAS datasets that do not include 

family data. We used PennCNV as our primary CNV-calling algorithm, and tested CNV calls 

using different datasets and marker sets, and with various filters on CNVs and samples. Using 

the Illumina core HumanHap550 SNP (single nucleotide polymorphism) set, we saw duplicate 

concordance rates of approximately 55% and parent-child transmission rates of approximately 

28% in our datasets. GC model adjustment and sample quality filtering had little effect on these 

reliability measures. Stratification on CNV size and DNA sample type did have some effect. 

Overall, our results show that it is probably not possible to find a CNV calling strategy 

(including filtering and algorithm) that will give us a set of "reliable" CNV calls using current 

chip technologies. But if we understand the error process, we can still use CNV calls 

appropriately in genetic association studies.  

Key words: evaluation; CNV calling strategies; family-based GWAS. 
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2.2 INTRODUCTION 

Most investigators performing genome-wide association studies (GWAS) would like to include 

association tests for CNVs, but low reliability of CNV calls has been a roadblock [Carter, 2007; 

Lai et al., 2005;  Peiffer  et al., 2006; Wineinger et al., 2008]. If a sample is genotyped twice, 

relatively different lists of CNVs can result, and this difference may be exacerbated if two 

different CNV-finding algorithms are used. Various factors are known to affect the reliability, 

most notably DNA quality and differences among CNV calling algorithms.  

The holy grail of CNV calling for genetic association studies is a procedure that will 

produce “reliable” CNV calls - at least high specificity if not high sensitivity. (Note that this is 

somewhat different from the goals of CNV calling for clinical purposes, in which the relative 

value of sensitivity and specificity might be different). Such a procedure might in theory be 

achieved by a combination of algorithm choice, data pre-processing, sample filtering, marker 

sets, and CNV filtering. Typical applications currently in the literature filter by using only 

samples that have high quality by some metric and only CNVs of a certain length. But it has 

been very difficult to compare and validate such procedures because of the lack of gold-standard 

datasets in which CNVs have been molecularly validated. In the absence of datasets with known 

“right answers,” the performance of a calling algorithm on real data cannot be quantified. While 

simulated data can be useful for this type of investigation, particularly in the early stages of 

algorithm development, we believe that there is no substitute for assessing performance on fully-

complex real data, which is the goal of this study. 

The premise of our study is that we can use family data as a substitute for molecular 

validation. If a CNV is called repeatedly in duplicate samples, or transmitted from parent to 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lai%20WR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Peiffer%20DA%22%5BAuthor%5D
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child, then it can be considered validated. This type of validation is not 100% accurate and will 

not be appropriate for clinical use, but it is sufficient to allow us to estimate error rates and use 

those estimated error rates to compare CNV calling strategies. We use two large family-based 

GWAS datasets and compute CNV concordance rates for duplicate samples, parent-child pairs, 

and unrelated pairs. We then use the concordance rates to evaluate a variety of CNV calling and 

filtering strategies. Because previous studies have focused on comparing different software 

packages [Dellinger et al., 2010; Pinto et al., 2011], we focus instead on the role of filtering in 

CNV calling - which markers, samples, and CNV calls should be used. We primarily report 

results for the PennCNV package [Wang et al., 2007], which is generally acknowledged to be 

one of the best for the Illumina (San Diego, California) platform, although we also report some 

results for genoCN [Sun et al., 2009]. Our goal is to make recommendations for how CNV calls 

can be created and filtered for use in genetic association studies. Since these studies generally 

involve unrelated individuals, we do not focus on optimizing calls within families but rather we 

use our families to understand what the best filtering procedures are for individuals. A secondary 

goal is to contribute to the literature describing features and distributions of rare CNVs in the 

human genome. 

Our study design is sketched graphically in Figure 1. From the GENEVA dental caries 

study (http://www.ncbi.nlm.nih.gov/gap?term=geneva), which is a large community-based study 

of oral health genotyped on the Illumina HumanHap610 chip, we selected 91 duplicate pairs and 

752 father-mother-child trios. From the GENEVA preterm delivery study 

(http://www.ncbi.nlm.nih.gov/gap?term=geneva), we used almost all samples -1782 mother-

child pairs genotyped on Illumina Human660W-Quad chip. Of these, 943 pairs were cases of 

pre-term delivery, 779 pairs were controls and the remaining 60 pairs were neither cases nor 

http://www.ncbi.nlm.nih.gov/gap?term=geneva
http://www.ncbi.nlm.nih.gov/gap?term=geneva
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controls. All subjects in the preterm delivery study were from the Danish National Birth Cohort. 

Since the chips used in these two studies share a core set of 550K SNPs, we started by 

calculating and comparing the CNV concordance rates in the two datasets using that shared SNP 

set. We then looked at the concordance rates for the full sets of SNP and CNV markers on each 

chip. We also looked at the effects of using PennCNV’s GC adjustment and filtering out high-

variability samples in the dental caries dataset only. Finally, we looked at subsets of data such as 

amplifications vs. deletions, common vs. rare CNVs, different CNV sizes, and different DNA 

sample types. 

2.3 MATERIALS AND METHODS 

2.3.1 Study Populations 

Both the dental caries and preterm delivery datasets are part of the GENEVA consortium. In both 

datasets, GWAS data was used to verify all parent-child relationships. Detailed information on 

both studies is available from study documents in dbGAP (http://www.ncbi.nlm.nih.gov/gap) 

[Mailman et al., 2007]. The full dental caries study included four different community-based 

samples from Western Pennsylvania, West Virginia, and Iowa. Individuals were selected without 

regard to phenotype, and then were extensively phenotyped for oral health and related traits. We 

used a subset of the full study: 91 pairs of duplicate samples and 752 complete trio-family 

samples from two of the four recruitment sites. The pre-term delivery study is a case-control 

study within a cohort of approximately 1000 mother-child case pairs (cases were defined as 

http://www.ncbi.nlm.nih.gov/gap
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infants<37 weeks of gestation), and 1000 mother-child controls pairs (controls were defined as 

infants=40 weeks of gestation) from the Danish National Birth Cohort study [Olsen et al., 2001]. 

1782 mother/child pairs with complete genotype information were used in this study.  

2.3.2 Genotyping and Quality Control 

Complete genotyping and data cleaning reports for both studies are available in dbGAP 

(http://www.ncbi.nlm.nih.gov/gap).The level of genotyping quality was extremely high.  

2.3.3 CNV Calls by PennCNV  

We generated CNV calls using the PennCNV software (2009Aug27 verion) [Wang et al., 2007]. 

Each sample was called individually, regardless of family relationships. PennCNV is a Hidden 

Markov Model (HMM) based method. It uses the log R ratio (LRR) and B allele frequency 

(BAF) measures computed from the signal intensity files by BeadStudio. To limit analyses to the 

core HumanHap550 (550K) marker sets in the HumanHap610 and Human660W-Quad chips, we 

used the hg18 (NCBI 36) “hh550” Population Frequency of B allele (PFB) file during CNV 

calling. For algorithms with GC model adjustment, we implemented the GC model wave 

adjustment procedure in PennCNV. For sample filtering, after GC model adjustment, we 

excluded samples meeting the criterion lrrsd > 0.3. All analysis was restricted to autosomes. The 

PennCNV trio-based CNV calling feature was not used, since we were interested in assessing 

quality of calls in individuals. PennCNV did not find any loss-of-heterozygosity in our samples. 

http://www.ncbi.nlm.nih.gov/gap
http://neurogenome.org/cnv/penncnv/penncnv.revision090827.tar.gz
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2.3.4 CNV Calls by genoCN  

We generated the CNV calls using the genoCN package (version genoCN 1.08) in R [Sun et al., 

2009]. genoCN is also a HMM-based method using the log R ratio (LRR) and B allele frequency 

(BAF) measures from the signal intensity files by Beadstudio. Unlike PennCNV, which assumes 

that the mean value and SD of LRR and BAF for each HMM state are known, genoCN estimates 

HMM parameters from data. All procedures followed the user guidelines of genoCN. 

2.3.5 Calculation of Overlap Quantities 

Overlap quantities calculated include duplicate concordance, transmission and inheritance rates 

and unrelated pair concordance rates. “Overlap” of CNVs was defined as follows (both criteria 

must be met): a) the overlap length in base pairs is larger than 50% of the length in base pairs of 

the smaller size CNV, b) copy number (cn) state must be either both deletion or both 

amplification.  

For concordance rate, in each sample pair, say sample A and sample B, we first used 

sample A as a "template" and counted how many CNV calls in sample A overlapped with ones 

in sample B. Then we used sample B as a "template" and counted how many overlapped with 

those called in sample A. We summed the numbers of overlapping CNVs in the two 

comparisons, and then divided it by sum of CNV calls in sample A and sample B. We restricted 

the maximum number of overlaps for each CNV in a template sample to one. For example, if a 

single CNV in sample A overlapped with two different CNVs in sample B, only one overlap was 

counted; this avoided overcounting of larger CNVs that were broken into smaller pieces by the 
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algorithm. For the dental caries dataset, the unrelated pair concordance rate was computed from 

father-mother pairs. For the preterm delivery dataset, the unrelated pair concordance rate was 

computed separately in mothers and children. The unrelated-pair concordance rate derived from 

children was highly consistent with the one from mothers, so only the rate from mothers was 

reported. The concordance rate in table 2-12 is also calculated in the same way. 

For the transmission rate, in each parent-child pair, we used CNV calls in the parent as a 

“template,” counted how many of them were also called in the child, and then divided by the 

total number of CNV calls in the parent. For the inheritance rate, we used CNV calls in the child 

as a “template," counted how many CNVs in the child overlapped with those in either parent, 

and then divided by the total number of CNVs in the child.  

All concordance and transmission rates were calculated as the average over all pairs, so 

each pair contributed equally to the mean overlap rate and pairs with especially high or low rates 

were not excessively influential. All calculation was done in R (version 2.10.1) [R Development 

Core Team. 2009].  

2.3.6 Stratification of CNV calls  

Deletion vs. duplication CNVs were defined as CNV calls with cn <2 vs. >2 respectively. 

Common CNVs were defined as a frequency greater than 2%. Frequencies of CNVs were 

derived from unrelated individuals. Each CNV was compared with CNVs in other individuals; its 

frequency was defined as the overlap rate. We restricted the maximum number of overlaps from 

a pair of samples for each CNV to one. 
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2.4 RESULTS AND DISCUSSION 

2.4.1 CNV Concordance Rates Using the Illumina HumanHap550 SNP Set 

In an ideal dataset, duplicate concordance rates would be 100%, transmission rates would be 

50%, and inheritance rates would be 100%. Several major factors, however, potentially cause 

datasets to deviate from this ideal. Most importantly, falsely detected CNVs will cause all of 

these rates to be below their ideal levels. Failure to detect CNVs (false negatives) will have a 

similar effect. For both false negatives and false positives, we should consider the possibility that 

the error is not random - that it could be repeated in duplicate samples or even in parent-child 

pairs because of sample or sequence similarity. A third important factor is de novo mutations in 

children, which will not affect duplicate concordance rates or transmission rates, but will affect 

inheritance rates. Finally, there is the possibility of somatic mutation with age (essentially de 

novo mutations in parents), which would affect apparent transmission rates but not inheritance or 

duplicate concordance rates. Because all of these factors are acting simultaneously, it is not 

possible to estimate them from this type of dataset, but some qualitative conclusions can be 

drawn, as discussed below, in particular if we are willing to assume that de novo mutations and 

somatic mutations are rare compared to CNV-calling errors. 

The first column of Table 2-1 shows the results for the dental caries dataset using the 

common HumanHap550 SNP set. The average parent-child transmission rate is 28%, and the 

duplicate concordance rate is 55%. Father-child transmission rates and mother-child transmission 

rates are essentially identical. The fact that parent-child transmission rates are just about half of 

duplicate concordance rates suggests that we are probably not seeing repeated false calls in 
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duplicates due to sample issues – repeated calls in duplicates are likely to be real. The average 

unrelated pair concordance rate is 5%, which is presumably primarily accounted for by common 

CNVs, although a small amount of concordance by chance of rare CNVs and systematic error 

would also be included. Under simple but very conservative assumptions (such as that almost all 

CNV calls are false positives) we estimate a completely random concordance rate of about 0.3%. 

The fact that the inheritance rate of 42% is much less than twice the transmission rate implies 

that de novo CNVs may account for a non-ignorable proportion of the child CNVs. We note that 

the average child inheritance rate (42%) in our study is lower than what was reported by K. 

Wang et al [2007]. They examined “the fraction of CNVs inferred in offspring but not detected 

in parents (CNV-NDPs)”, and found 25.2% of offspring CNVs from HumanHap550 were CNV-

NDPs. This may due to differences in sample size, sample quality and sample populations. K. 

Wang et al. examined CNV-NDPs in the HapMap CEU + YRI offspring, which is a much 

smaller dataset. 

The first column of Table 2-2 shows the corresponding results for the preterm delivery 

dataset. The concordance rates are very similar to those in the dental caries dataset: duplicate 

concordance rate 52%, mother-child transmission rate 26%, and unrelated concordance rate 4%. 

The highly consistent results imply that the findings from our study are not dataset specific and 

may be reasonably generalizable to other studies, at least for this marker set.  
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2.4.2 Addition of CNV Markers from the HumanHap610 Chip and the Human660W-

Quad Chip 

The HumanHap610 chip (dental caries study) and the Human660W Quad chip (pre-term delivery 

study) each consist of the HumanHap550 SNP set augmented by different sets of CNV probes. 

The second columns of Tables I and II give results for each study using the full chip for that 

study. For the HumanHap610 chip, the parent-child transmission rate and inheritance rate are 

similar to those from the HumanHap550 SNP set, but the average unrelated pair concordance 

rate is higher: 13% vs. 5%. One of the likely explanations is that the 60K additional CNV probes 

on the HumanHap610 chip contain more probes for common CNVs, and this is supported by 

evidence from later analyses (common vs. rare CNVs). Another noticeable difference is that the 

average duplicate concordance rate for HumanHap610 is much lower than for HumanHap550 

(45% vs. 55%). This suggests quite poor performance of the CNV probes on this chip. 

The full Human660W-Quad chip performs very differently than the HumanHap610, 

finding about seven times as many CNVs per sample. It also has much higher concordance and 

transmission rates, suggesting that the CNV probes have much better performance. The average 

duplicate concordance rate for the Human660W-Quad is 64%, as compared to 45% for the 

HumanHap610 and 55% for the HumanHap550. The average unrelated pair concordance rate for 

the Human660W-Quad is also much higher, 21%, suggesting that the CNV markers on the 

Human660W-Quad find many common CNVs. This is likely to also be the reason that the 

mother-child transmission rate is much higher than that on the HumanHap550 (38% vs. 26%). 
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2.4.3 GC Model Adjustment 

PennCNV includes a GC model adjustment feature that adjusts the CNV calls to account for 

varying GC-content of the chromosome in different locations. Our analyses above included that 

adjustment, but the third column of Table 2-1 shows an analysis without the GC adjustment. 

Removing the adjustment increased the number of called CNVs and decreased the reliability 

measures (compare column 3 to column 2), but only very slightly. We conclude that the GC 

adjustment probably does improve quality, but does not make a major difference. 

2.4.4 Sample Filtering 

Column four of Table 2-1 shows an analysis in which we omitted the samples (about 13%) that 

had the PennCNV variability measure lrrsd (log R ratio standard deviation) greater than 0.3. As 

with the GC model adjustment, this improved reliability, but only very slightly. It is clearly a 

good idea in CNV analyses to omit poor-quality samples, but it appears that lrrsd might not be 

the most useful quality measure.  

2.4.5 Deletion vs. Amplification CNVs 

We used the dental caries dataset with the GC adjustment and the full HumanHap610 marker set 

to ask whether concordance rates differed for deletion and amplification CNVs. Table 2-3 shows 

the results. The number of deletion CNVs is 1.5~2 times that of amplification CNVs, but this 

does not necessarily reflect frequency in the human genome, since any given CNV calling 
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algorithm may have higher sensitivity to either deletions or amplifications. It is interesting to 

note that while duplicate concordance and parent-child transmission rates are higher for 

deletions, the inheritance rate (percent of the child’s CNVs that are inherited from parents) is 

higher for amplifications. It is possible that this means that de novo deletions are more common 

in viable offspring than de novo amplifications, but that would clearly merit further 

investigation. 

2.4.6 Common vs. Rare CNVs 

Again using the dental caries dataset with the GC adjustment and the full HumanHap610 marker 

set, we asked whether concordance rates differed for rare and common CNVs. Parent-child and 

unrelated-pair concordance rates are clearly expected to be higher for common CNVs because of 

chance matching, but duplicate concordance rates should not be different for rare and common 

CNVs if the algorithm is equally good at finding both. However, one of the concerns in CNV 

calling is that common CNVs can be hard to detect, since the deviation of the log R ratio 

between case and reference is small after normalization.  

Results are given in Table 2-4. For the purposes of this analysis we arbitrarily considered 

a CNV to be common if it occurred in 2% or more of the sample. The concordance rates in 

unrelated pairs are 3% for rare CNVs and 19% for common CNVs, which confirms that most of 

the concordance between unrelated individuals is due to CNVs that are common in the 

population. This may also explain the higher transmission rate in common CNVs than rare ones 

(32% vs. 20%). The finding that the average duplicate concordance rate in common CNVs is 
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higher than in rare ones (51% vs. 44%) suggests that PennCNV does not in fact have more 

difficulty detecting common CNVs.  

2.4.7 Samples With High CNV Number 

It might be logical to presume that samples with very high CNV numbers are of low quality and 

that the CNVs called in those samples are not real. To investigate this, we plotted CNV number 

vs. concordance rate using the dental caries dataset (HumanHap 610 marker set) in Figure 2-2. In 

general, the concordance/transmission rates tend to decrease with the number of CNV calls, but 

there are clearly some pairs that have high concordance and/or transmission rates even with more 

than 100 CNVs. This suggests that while it might be advisable to filter samples with very high 

numbers of CNV calls out of association studies, there are in fact some individuals who do carry 

high numbers of real CNVs.  

2.4.8 CNV Size 

It is often assumed that calls of larger CNVs are more likely to be accurate, and our results using 

the dental caries dataset (HumanHap 610 marker set) (Table 2-5) support that. We measured the 

“size” of the CNV by the number of markers rather than the physical length, and found that the 

shortest CNVs (3 - 5 markers) had only an 18% mean parent-child transmission rate, while the 

longest (> 54 markers) had a 42% mean parent-child transmission rate. This is a substantial 

difference, but it is not substantial enough to justify filtering out the smallest CNVs or to justify 
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assuming that the largest ones are necessarily correct. Thus while our results support the 

common wisdom, they do not suggest a workable filtering strategy for association studies. 

2.4.9 DNA Source 

Next, we compared the reliability of CNV calls for different DNA sample types. The dental 

caries study includes samples from blood, saliva, mouthwash and buccal swabs. To investigate 

the effect of sample type, we compared transmission rates in pairs with different combinations of 

sample types using the HumanHap 610 marker set. The resulting transmission rates in the dental 

caries dataset are shown in Table 2-6. There is no detectable difference in reliability between the 

blood and saliva samples. The comparative reliability of mouthwash is not conclusive due to the 

small sample size. A limitation of the results shown in Table 2-6 is that because all parental 

samples are either blood or saliva, it is difficult to tell from transmission rates if the other sample 

types are more error-prone. That is, child samples with more false CNVs due to poor DNA 

quality may not necessarily show lower transmission rates if the true CNVs were also called. 

Thus in Table 2-7 we also show the number of CNVs called per sample by sample type. The 

mouthwash, buccal and WGA samples do have significantly more CNVs called per person, and 

we conclude that it is likely that they have higher false-positive rates than the blood and saliva 

samples. It is also intriguing that there is a higher number of CNVs per person in the children's 

saliva and mouthwash samples than in their parents. It appears that children may in general be 

producing lower-quality saliva samples than adults. By contrast, we saw comparable CNV 

numbers from blood samples in children and parents in both the dental caries (Table 2-7) and 

preterm delivery (Table 2-8) datasets. 
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In the pre-term delivery study most maternal samples were from buffy coat, but a 

substantial proportion of the infant samples were from dried blood spots. Some of the buffy coat 

samples and some of the blood spot samples were whole-genome amplified (WGA). Mother-

child transmission rates calculated using the Human660W-Quad marker set are listed in Table 2-

9 according to the sample type for both mother and child. When both mother and child are buffy 

coat (no WGA), the transmission rate is 40%. If the child is WGA, it only drops to 31%, so we 

can infer that most of the real CNVs are still being found in buffy coat WGA. However, when 

the mother is WGA transmission percentages drop substantially, from which we can infer that 

the WGA samples are giving us many spurious CNV calls in addition to the real ones. These 

findings suggest that the WGA samples give us reasonable sensitivity, but very poor specificity. 

2.4.10 Age 

Another interesting question is that of somatic mutations with age. Using parents only from the 

two studies separately, we regressed the log of the number of CNVs on the age of the individual. 

After excluding a few extreme outliers, we found a very small but statistically significant 

increase in the number of CNVs with age (Figure 2-3). This finding is consistent with 

suggestions made in previous studies [Martin et al., 1996; Maslov and Vijg, 2009].   

2.4.11 Comparison to genoCN 

Finally, in order to compare with the performance of PennCNV, we conducted a limited study 

using another algorithm - genoCN [Sun et al., 2009]. We chose two pairs of duplicates and two 
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pairs of unrelated samples at random (from samples with lrrsd<0.3) and tested them using 

genoCN (Tables 2-10 and 2-11). genoCN detected 4~20 fold more CNVs than PennCNV (with 

GCmodel and HumanHap610 markers). Most of the CNVs called by PennCNV were also called 

by genoCN (table 2-9), but the duplicate concordance rates for the genoCN calls were much 

lower than those for PennCNV. From this we can infer that genoCN may give a lot of 

spurious CNV calls in addition to the real ones (reasonable sensitivity but poor specificity). We 

also observed that the unrelated pair concordance rates in genoCN were lower than in PennCNV, 

presumably also due to low specificity.  

An additional problem that we observed in both algorithms was that the largest CNVs 

were not “called” as single units, but were broken into several reported smaller CNVs. This 

problem was worse in genoCN than in PennCNV.  

2.5 CONCLUSIONS 

In summary, CNV association studies have been of great interest lately, but a key problem is 

how to identify a set of reliable CNVs. Molecular validation is not feasible for GWAS-sized 

datasets, and without gold-standard data it has been quite difficult to compare CNV calling 

algorithms to make recommendations for the best ones to use in association studies. We have 

taken advantage of two large family-based GWAS studies to use inheritance as a substitute for 

molecular validation and ask questions about what kind of sample, SNP, and CNV filtering leads 

to the most reliable CNV calls. While many authors have previously reported concordance rates 
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for CNV calls in duplicate samples, we hope that by also looking at very large samples of parent-

child pairs we have added depth to that picture.  

We found several classes of samples that clearly have low reliability and should be 

filtered out of CNV association studies, including any with whole-genome amplification and any 

with excessive numbers of called CNVs. These results are quite concordant with conclusions of 

previous authors. But filtering out these samples did not result in high reliability rates in the 

remaining samples, an issue that we believe has not received adequate attention previously. The 

most prognostic variable we looked at was CNV size, but even that did not guarantee high 

reliability for large CNVs nor low reliability for small CNVs. Thus we suggest that the common 

strategy of using only the largest CNV calls and assuming they are correct is excessively crude 

and probably quite detrimental to statistical power. 

Overall, we conclude from our data that it is probably not possible to find a CNV calling 

strategy that will give us a set of "reliable" CNV calls using current chip technologies. For now, 

CNV calls will need to be understood as having high error rates. But if we understand and model 

the features of that error process, we can still use them appropriately in genetic association 

studies. In particular, the most critical issue will be to make sure that cases and controls are well 

matched on any features that we know affect CNV call reliability rates, such as DNA sample 

type.  

We also made some contributions to the growing picture of what “normal” variability in 

copy number means for the human genome. In particular, we found a subset of individuals who 

carry a fairly high load of rare CNVs (100 or more) that appear from inheritance rates to be real. 

We also found a modest increase in the number of CNVs with age, suggesting a non-trivial rate 

of somatic mutation, although this clearly bears further study. Finally, we found some intriguing 
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results related to the relative inheritance rates of deletions vs. amplifications, which would be 

interesting to follow up further. 

2.6 ACKNOWLEDGMENTS 

The work of XZ was supported by T32MH015169. The work of JRS, MLM, and EF was 

supported by U01DE018903 and U01HG004423. The work of BF, MM, and JCM was supported 

by U01HG004423. The work of CPM and CCL was supported by U01HG004446. Genotyping 

was performed by the Johns Hopkins University (JHU) Center for Inherited Disease Research 

(CIDR) through contract HHSN268200782096C. Dental caries subjects were collected by the 

Center for Oral Health Research in Appalachia (PI M. Marazita, a collaboration of the University 

of Pittsburgh and West Virginia University funded by NIDCR R01-DE 014899) and the Iowa 

Fluoride Study and the Iowa Bone Development Study (PI S. Levy), funded by NIDCR R01-

DE09551 and R01-DE12101, respectively). Pre-term birth subjects were a part of the Danish 

National Birth Cohort (DNBC), which was established with the support of a major grant from the 

Danish National Research Foundation. Additional support for the DNBC has been provided by 

the Danish Pharmacist's Fund, the Egmont Foundation, the March of Dimes Birth Defects 

Foundation, The Augustinus Foundation, and the Health Fund of the Danish Health Insurance 

Societies. 

 

 

 



 

 

 26 

2.7 REFERENCES 

Carter NP. 2007. Methods and strategies for analyzing copy number variation using DNA 
microarrays. Nat Genet 39: S16–S21.  

Dellinger AE, Saw SM, Goh LK, Seielstad M, Young TL, Li YJ. 2010. Comparative analyses of 
seven algorithms for copy number variant identification from single nucleotide 
polymorphism arrays. Nucleic Acids Res 38: e105. 

Lai WR, Johnson MD, Kucherlapati R, Park PJ. 2005. Comparative analysis of algorithms for 
identifying amplifications and deletions in array CGH data. Bioinformatics 21: 3763-
3770. 

Mailman MD, Feolo M, Jin Y, Kimura M, Tryka K, Bagoutdinov R, Hao L, Kiang A, Paschall J, 
Phan L, Popova N, Pretel S, Ziyabari L, Lee M, Shao Y, Wang ZY, Sirotkin K, Ward M, 
Kholodov M, Zbicz K, Beck J, Kimelman M, Shevelev S, Preuss D, Yaschenko E, Graeff 
A, Ostell J, Sherry ST. 2007. The NCBI dbGaP database of genotypes and phenotypes. 
Nat Genet 39:1181-1186. 

Martin GM, Ogburn CE, Colgin LM, Gown AM, Edland SD, Monnat RJ Jr. 1996. Somatic 
Mutations Are Frequent and Increase with Age in Human Kidney Epithelial Cells. Hum 
Mol Genet 5: 215- 221. 

Maslov AY, Vijg J. 2009. Genome instability, cancer and aging. Biochim Biophys Acta 1790: 
963-969. 

Olsen J, Melbye M, Olsen SF, Sørensen TI, Aaby P, Andersen AM, Taxbøl D, Hansen KD, Juhl 
M, Schow TB, Sørensen HT, Andresen J, Mortensen EL, Olesen AW, Søndergaard C. 
2001. The Danish National Birth Cohort. Its background, structure and aim. Scand J 
Public Health 29: 300-307. 

Peiffer DA, Le JM, Steemers FJ, Chang W, Jenniges T, Garcia F, Haden K, Li J, Shaw CA, 
Belmont J, Cheung SW, Shen RM, Barker DL, Gunderson KL. 2006. High-resolution 
genomic profiling of chromosomal aberrations using Infinium whole-genome 
genotyping. Genome Res 16: 1136-1148.  

Pinto D, Darvishi K, Shi X, Rajan D, Rigler D, Fitzgerald T, Lionel AC, Thiruvahindrapuram B, 
Macdonald JR, Mills R, Prasad A, Noonan K, Gribble S, Prigmore E, Donahoe PK, 
Smith RS, Park JH, Hurles ME, Carter NP, Lee C, Scherer SW, Feuk L. 2011. 
Comprehensive assessment of array-based platforms and calling algorithms for detection 
of copy number variants. Nature Biotechnology 29: 512-521. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Dellinger%20AE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Saw%20SM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Goh%20LK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Seielstad%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Young%20TL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Li%20YJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lai%20WR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Johnson%20MD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kucherlapati%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Park%20PJ%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Bioinformatics.');
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mailman%20MD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Feolo%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jin%20Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kimura%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tryka%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bagoutdinov%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hao%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kiang%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Paschall%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Phan%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Popova%20N%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pretel%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ziyabari%20L%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lee%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shao%20Y%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wang%20ZY%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sirotkin%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ward%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kholodov%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zbicz%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Beck%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kimelman%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shevelev%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Preuss%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Yaschenko%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Graeff%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Graeff%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ostell%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sherry%20ST%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Nat%20Genet.');
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Martin%20GM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ogburn%20CE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Colgin%20LM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gown%20AM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Edland%20SD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Monnat%20RJ%20Jr%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Maslov%20AY%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Vijg%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Olsen%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Melbye%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Olsen%20SF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22S%C3%B8rensen%20TI%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Aaby%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Andersen%20AM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Taxb%C3%B8l%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hansen%20KD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Juhl%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Juhl%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Schow%20TB%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22S%C3%B8rensen%20HT%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Andresen%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mortensen%20EL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Olesen%20AW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22S%C3%B8ndergaard%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Peiffer%20DA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Le%20JM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Steemers%20FJ%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Chang%20W%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Jenniges%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Garcia%20F%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Haden%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Li%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shaw%20CA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Belmont%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Cheung%20SW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shen%20RM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Barker%20DL%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gunderson%20KL%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Genome%20Res.');
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Pinto%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Darvishi%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shi%20X%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rajan%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Rigler%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fitzgerald%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lionel%20AC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Thiruvahindrapuram%20B%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Macdonald%20JR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Mills%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Prasad%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Noonan%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gribble%20S%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Prigmore%20E%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Donahoe%20PK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Smith%20RS%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Park%20JH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hurles%20ME%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Carter%20NP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Lee%20C%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Scherer%20SW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Feuk%20L%22%5BAuthor%5D


 

 

 27 

R Development Core Team. 2009. R: A language and environment for statistical computing. R 
Foundation for Statistical Computing,Vienna, Austria. ISBN 3-900051-07-0, URL 
http://www.R-project.org. 

Sun W, Wright FA, Tang Z, Nordgard SH, Van Loo P, Yu T, Kristensen VN, Perou CM. 2009. 
Integrated study of copy number states and genotype calls using high-density SNP arrays. 
Nucleic Acids Res 37: 5365-5377.  

Wang K, Li M, Hadley D, Liu R, Glessner J, Grant SF, Hakonarson H, Bucan M. 2007. 
PennCNV: an integrated hidden Markov model designed for high-resolution copy 
number variation detection in whole-genome SNP genotyping data. Genome Res 17: 
1665-1674.  

Wineinger NE, Kennedy RE, Erickson SW, Wojczynski MK, Bruder CE, Tiwari HK. 2008. 
Statistical issues in the analysis of DNA Copy Number Variations. Int J Comput Biol 
Drug Des 1: 368–395.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.r-project.org./
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sun%20W%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wright%20FA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tang%20Z%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Nordgard%20SH%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Van%20Loo%20P%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Yu%20T%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kristensen%20VN%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Perou%20CM%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wang%20K%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Li%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hadley%20D%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Liu%20R%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Glessner%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Grant%20SF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Hakonarson%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bucan%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed/17921354
http://www.ncbi.nlm.nih.gov/pubmed/17921354
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wineinger%20NE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kennedy%20RE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Erickson%20SW%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Wojczynski%20MK%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Bruder%20CE%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Tiwari%20HK%22%5BAuthor%5D


 

 

 28 

2.8 TABLES AND FIGURES 

 

Table 2-1.  Mean overlap quantities (± SEM) in the dental caries dataset. 
  HumanHap550   HumanHap610 

  GC*   GC non-GC GC+filtering** 

Num of duplicate samples (avg. CNV/sample)*** 182 (18.6) 
 

182 (79.4) 182 (61.1) 162 (54.1) 

Num of non-duplicate samples(avg. CNV/sample) 1736 (26.6) 
 

1736 (68.5) 1736 (92.9) 1512 (54.9) 

Duplicate concordance rate 0.55(±0.02) 
 

0.45(±0.02) 0.43(±0.02) 0.48(±0.02) 

Unrelated pair concordance rate**** 0.05(±0.003) 
 

0.13(±0.004) 0.11(±0.004) 0.14(±0.004) 

Father-child transmission rate 0.28(±0.006) 
 

0.28(±0.005) 0.27(±0.005) 0.31(±0.005) 

Mother-child transmission rate 0.28(±0.006) 
 

0.27(±0.005) 0.26(±0.005) 0.31(±0.005) 

Child inheritance rate 0.42(±0.009)   0.40(±0.008) 0.36(±0.008) 0.45(±0.008 ) 
 
All mean overlap quantities were calculated as the average over pairs. 
*GC model adjustment procedure in PennCNV. 
** Samples were filtered by the criterion: LRR standard deviation (sd) > 0.3. 
*** Number of duplicate samples (average number of CNVs per sample). 
**** The unrelated pair concordance rate was calculated among father-mother pairs. 

 
 

 

Table 2-2.  Mean overlap quantities (± SEM) in the preterm delivery dataset. 
  Hap550    Human660W-Quad  
  GC   GC 
Num of dup samples (avg. CNV/sample) 40 (21) 

 
40 (383) 

Num of non-dup samples(avg. CNV/sample) 3564 (48.8) 
 

3564 (438.6) 
Duplicate concordance rate 0.52 (±0.06) 

 
0.64(±0.02) 

Unrelated pair concordance rate* 0.04(±0.002) 
 

0.21(±0.002) 
Mother-child transmission rate 0.26 (±0.004)   0.38(±0.002) 

 
* The unrelated pair concordance rate was derived from mothers. The rate derived from children 
was very similar. 
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Table 2-3. Mean overlap quantities (±SEM) in deletion vs. amplification CNVs.  
 Deletion Amplification 

Avg CNVs* in dup samples/person 36.1 24.9 
Avg CNVs in non-dup samples/person 46.6 21.9 
Duplicate concordance rate 0.51 (±0.02) 0.40 (±0.02) 
Unrelated pair concordance rate 0.11 (±0.004) 0.14 (±0.007) 
Father-child transmission rate 0.32 (±0.006) 0.25 (±0.007) 
Mother-child transmission rate 0.30 (±0.006) 0.27 (±0.007) 
Child inheritance rate 0.41 (±0.009) 0.46 (±0.009) 

          * Avg CNVs: average number of CNVs 

 

 

Table 2-4. Mean overlap quantities (± SEM) in common vs. rare CNVs. 

  Common Rare 
Avg CNVs in dup samples/person * 41.7 19.4 
Avg CNVs in non-dup samples/person ** 34 23.9 
Duplicate concordance rate 0.51 (±0.03)  0.44 (±0.04) 
Unrelated pair concordance rate 0.19 (±0.006) 0.03 (±0.003) 
Father-child transmission rate 0.32 (±0.006) 0.20 (±0.007) 
Mother-child transmission rate 0.31 (±0.006) 0.21 (±0.007) 

 
Only CNVs from unrelated subjects were used to infer the common vs. rare CNVs. 
* Total sample number of duplicates was 66. 
** Total sample number of non-duplicate subjects was 984. 

 

 

 

 

 

 

 



 

 

 30 

 

Table 2-5.  Mean overlap quantities (± SEM) by size of CNV call. 
   Size of CNV call 

 
3-5 SNPs 6-10 SNPs 11-22 SNPs 23-54 SNPs > 54 SNPs All 

Avg  num of CNVs/person* 13 19.2 18.6 13.4 3.5 67.6 

Duplicate concordance rate 0.31 (±0.02) 0.49 (±0.02) 0.48 (±0.02) 0.55 (±0.03) 0.64 (±0.04) 0.45 (±0.02) 

Unrelated pair concordance rate 0.07 (±0.004) 0.11 (±0.004) 0.12 (±0.005) 0.23 (±0.008) 0.16 (±0.01)   0.13 (±0.004) 

Father-child transmission rate 0.18 (±0.007) 0.29 (±0.006) 0.30 (±0.008) 0.41 (±0.01) 0.42 (±0.02)   0.28 (±0.005) 

Mother-child transmission rate 0.19 (±0.007) 0.27 (±0.006) 0.30 (±0.008) 0.40 (±0.01) 0.43 (±0.02)   0.27 (±0.005) 

*In all 1736 non-duplicate samples. 

 

 

 

Table 2-6.  Mean parent-child transmission rate (± SEM) by sample type in the dental 
caries dataset. 

Sample sources   

Num of 
sample 
pairs   

Father-child 
transmission   

Mother-
child 

transmission 

Parent Child             

Mouthwash Mouthwash 
 

9 
 

0.22 (±0.05) 
 

0.34 (±0.05) 

Saliva Saliva 
 

98 
 

0.27 (±0.01) 
 

0.29 (±0.01) 

Blood Blood 
 

349 
 

0.28 
(±0.008) 

 

0.27 
(±0.007) 

Blood Buccal 
 

89 
 

0.24 (±0.01) 
 

0.23(±0.01) 

Blood Saliva 
 

51 
 

0.30 (±0.02) 
 

0.26 (±0.02) 

Blood Mouthwash 
 

40 
 

0.32 (±0.02) 
 

0.32 (±0.02) 

Blood WGA   10   0.32(±0.06) 
 

0.32(±0.06) 
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Table 2-7. Mean number of CNVs called per sample (± SEM) by sample type in the 
dental caries dataset. 

  Child   Father   Mother 

  sample num  CNV num/sample sample num  CNV num/sample 
sample 
num  

CNV 
num/sample 

Blood 349 61.5±3.3 
 

539 55.9±2.1 
 

539 55.7±1.9 

Saliva 150 82.0±6.7 
 

98 58.4±3.8 
 

98 51.1±3.8 

Mouthwash 49 120.7±23.1 
 

9 71.8±19.4 
 

9 49±11.0 

Buccal 89 109.8±9.3 
      WGA 10 153.6±38.4             

 

 

 

Table 2-8.  Mean number of CNVs called per sample (± SEM) in buffy coat blood 
samples in the preterm delivery dataset. 
  Child   Mother 

  
sample 

num  
CNV 

num/sample   
sample 

num  
CNV 

num/sample 
Buffy 
coat 1257 379.2±2.9   1257 380.8±2.3 

 

 

Table 2-9. Mean mother-child transmission rate (± SEM) by sample type in the preterm 
delivery dataset. 

Sample source   Num of sample pairs   Mother-child transmission 
mother child 

    Buffy coat Buffy coat 1347 
 

0.40 (±0.003) 
Buffy coat Blood spot 346 

 
0.35 (±0.004) 

Buffy coat Buffy coat WGA 52 
 

0.31 (±0.008) 
Buffy coat WGA Buffy coat 13 

 
0.06 (±0.006) 

Buffy coat WGA Blood spot 18 
 

0.14 (±0.01) 
All   1782   0.38 (±0.002) 
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Table 2-10. Comparison of duplicate concordance rate among two pairs of duplicate 
samples from the dental caries dataset using PennCNV and genoCN.  

  Subject ids   Num of CNVs    Num of concordant CNV Duplicate concordance rate 

  dup1 dup2   dup1 dup2       

PennCNV 175040850 9942 
 

88 23 
 

16 0.28 

 
175043297 9950 

 
37 37 

 
24 0.65 

genoCN 175040850 9942 
 

540 616 
 

67 0.12 

  175043297 9950   129 101   52 0.45 

 

 

Table 2-11. Unrelated concordance rate among two pairs of father-mother samples from 
the dental caries dataset using PennCNV and genoCN.  

  Subjects id   Num of CNVs    

Num of 
concordant 

CNV 

Unrelated 
concordance 

rate 

  father  mother    father  mother       

PennCNV 175192256 175049618 
 

64 63 
 

7 0.11 

 
175133191 175097605 

 
58 51 

 
10 0.18 

genoCN 175192256 175049618 
 

195 507 
 

21 0.06 

  175133191 175097605   322 304   44 0.14 
  

 

Table 2-12. Concordance rate between PennCNV and genoCN for each person.  
Subject id Num of CNVs/Sample concordance rate 

  PennCNV genoCN   
175040850 88 540 0.19 

9942 23 616 0.07 
175043297 37 129 0.29 

9950 37 101 0.33 
175192256 64 195 0.52 
175049618 63 507 0.19 
175133191 58 322 0.26 
175097605 51 304 0.25 
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Legends for figures 

Figure 2-1. Summary of study design. 

Figure 2-2. Relationship between number of CNV calls per sample and concordance rate in the 

dental caries dataset.  

* All x–axes are log scale.  

(A) shows relation between average number of CNV calls per pair of duplicate samples and 

duplicate concordance rate. (B) shows relation between average number of CNV calls per pair of 

unrelated samples and unrelated concordance rate. (C) shows relation between number of CNV 

calls in each father and father-child transmission rate. (D) shows relation between number of 

CNV calls in each mother and mother-child transmission rate. 

Figure 2-3. Relationship between age and number of CNV calls in each adult (log scale) in the 

dental caries dataset. 
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Figure 2-1. Summary of study design. 
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Figure 2-2. Relationship between number of CNV calls per sample and concordance rate 

in the dental caries dataset. 

* All x–axes are log scale. (A) shows relation between average number of CNV calls per pair of 

duplicate samples and duplicate concordance rate. (B) shows relation between average number 

of CNV calls per pair of unrelated samples and unrelated concordance rate. (C) shows relation 

between number of CNV calls in each father and father-child transmission rate. (D) shows 

relation between number of CNV calls in each mother and mother-child transmission rate. 
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Figure 2-3. Relationship between age and number of CNV calls in each adult (log scale) 

in the dental caries dataset. 
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3.0  DNA COPY NUMBER VARIANTS LINKED TO AUTISM AND SCHIZOPHRENIA ARE 

ALSO ASSOCIATED WITH PSYCHOSIS IN ALZHEIMER DISEASE 

Xiaojing Zheng 1, M. Ilyas Kamboh 2, M. Michael Barmada 2, Robert A. Sweet 3, F. 

Yesim Demirci 2, Eleanor Feingold 1,2 . 

 

1. Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA 

2. Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA 

3. Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA 

 

3.1 ABSTRACT 

Objectives: Alzheimer disease (AD) is the most common form of dementia. 40-60% of AD 

patients develop psychosis (AD+P), a subtype of disease with more deleterious outcomes. AD+P 

is highly heritable with unknown genetic etiology. It has been proposed that schizophrenia, 

autism and AD+P may share risk genes; however conflicting results have been reported from 

SNP association studies. Recent evidence showed that schizophrenia and autism share some rare 
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copy number variants (CNVs). However it is unknown whether those CNVs are also linked to 

AD+P.  

Methods: We searched for CNVs associated with AD+P in 7 CNV regions that have been 

previously identified across autism and schizophrenia, using the Illumina Omni1-Quad SNP 

array. We also screen the rest of genome by genome-wide association study to nominate 

candidate CNVs for AD+P. CNVs were inferred using PennCNV.  

Results: A 16p11.2 duplication CNV was identified in 2 of 440 AD+P subjects, but not in 136 

AD without psychosis, 593 AD with intermediate psychosis, or 855 non-AD individuals. The 

frequency of this duplication CNV in AD+P is similar to that in schizophrenia. We also found a 

small CNV on 3q29 which is within PAK2, one of the most interesting candidate genes for 

schizophrenia in 3q29. We did not find meaningful CNVs in the other five reported CNV 

regions. In the rest of the whole genome, we did not find any CNV that reaches genome-wide 

significance. The CNVs that are in the top most significant association list are all common ones. 

Conclusions: In conclusion, we are the first to report that AD+P shares rare risk CNVs on 

16p11.2 and 3q29 with schizophrenia and autism. Although rare, these CNVs may have 

important functions in the development of psychosis. 

 

3.2 INTRODUCTION 

Alzheimer disease (AD) is the most common form of dementia. About 4.5 million (12.8%) 

people age 65 years or older in US have AD [Hebert et al, 2003]. Although the incidence of AD 
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increases with age, AD is not a process of normal aging. AD patients have typical pathological 

changes in the brain. 

Family and twin studies have shown that genetic factors play an important role in AD 

[Kauwe et al, 2007 and Bergen et al, 1997]. Depending on age of onset, AD can be divided into 

two subgroups: early onset AD (EOAD) and late onset AD (LOAD) with different genetic 

etiology. EOAD occurs typically before age 60 years. It is rare, and accounts for less than 1% of 

all AD cases [Campion yet al, 1999]. EOAD is a familial AD with autosomal dominant 

transmission. Mutations with complete penetrance in three genes AβPP (amyloid-β protein 

precursor), PSEN1 (presenilin-1) and PSEN2 (presenilin-2) have largely contributed to EOAD 

[Goate et al, 1991; Sherrington et al, 1995; Rogaev et al, 1995; De Strooper et al, 1998]. 

However, none of the three genes is significantly associated with LOAD. LOAD is sporadic and 

not inherited in Mendelian fashion; but it is highly inherited with heritability up to 79% [Gatz et 

al, 2006]. Currently, only ApoE (on chromosome 19) has been consistently reported to be 

associated with LOAD [Goedert et al, 2006; Khachaturian et al, 2004; Corder et al, 1993; 

Saunders et al, 1993]. The majority of the genes related with LOAD have not been identified.  

40-60% of LOAD patients develop psychosis (AD+P) [Sweet RA et al, 2000; Farber NB 

et al, 2000; Forstl H et al, 1994]. Primary features of psychosis are delusions and hallucinations 

[Burns et al, 1990; DeMichele-Sweet et al, 2010]. Delusions are false beliefs held that are not 

consistent with reality; hallucinations are false perceptions without a stimulus - visual or 

auditory-based delusions. Although AD+P is less likely to be an early symptom of AD or 

secondary to more severe AD [Lyketsos CG 2000; Paulsen JS 2000; Sweet RA 2000；Jeste DV 

1992；Ballard CG 1997], it may connect with cognitive decline and serve as a marker for more 

severe cognitive dysfunction [Paulsen JS 2000, Rockwell E 1994].  
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Familial aggregation studies strongly suggested the role of genetic factors in AD+P 

[Bacanu et al, 2005; Sweet et al, 2002; Tustall et al, 2000]. Sweet [Sweet et al, 2003] proposed 

that AD+P represents a distinct subtype with deleterious outcome and more homogeneous 

genetic etiology. Linkage and association studies identified some susceptibility loci 

(chromosome 2p, 6q, 8p, 7, 15, and 21) and candidate genes; however, none of them have been 

consistently associated with AD+P. Many studies have investigated the APOE ɛ4 allele, the well 

documented risk factor for LOAD, but most of them found no evidence for an effect of APOE ɛ4 

on AD+P as compared to AD-P [Lopez et al, 1997].  

It is of great interest that some susceptibility loci and candidate genes for AD+P have 

been shown to increase the risk of schizophrenia (SCZ). For example, NRG1 (neuregulin1) on 8p 

and CHRNA7 (cholinergic receptor, nicotinic, alpha 7) on chromosome 15 have been found to be 

linked to and associated with SCZ and AD+P [Go et al, 2005; Carson et al, 2008], although the 

association of mutations in these two genes with AD+P has not been confirmed by replicate 

studies yet. Sweet et al [2003] also found that AD+P was associated with similar biological 

changes in specific brain areas to those in individuals with idiopathic psychosis of SCZ. Recent 

studies [Prestia 2011; Horesh et al, 2011] compared gene expression profiles in cases vs. controls 

of AD and SCZ, and reported that AD and SCZ may share certain molecular background. 

Actually the shared susceptibility loci between AD and other psychiatric disorders (SCZ, bipolar 

disorder, alcoholism) were observed by Zubenko over 10 years ago [2000], however, the 

underlying mechanisms for the pleiotropic effects is unclear. Sweet et al [2003] have 

hypothesized three possible pathways to AD and AD+P:  1) some shared genes modify the 

course of neurodevelopment disturbances (eg. in SCZ) and process of neurodegenerative illness 

(eg. AD), and increase the risk of psychosis in those disorders. These modifier genes would 
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affect individuals who already have AD, and are therefore distinct from those that contribute to 

the risk for AD.  2) AD+P and AD have their origins in the same genetic mechanisms; 3) Genetic 

factors attributed to SCZ also lead to AD+P.  

If the findings about association of SNPs in AD+P candidate genes (eg. NRG1 and 

CHRNA7) with AD+P and SCZ can be confirmed, it will be in support of the first pathway; but a 

roadblock to making any conclusive inference on this pathway is the inconsistent results from 

SNP association studies.  This may due to small sample size, varied phenotypic definition of 

AD+P across studies, population stratification and allelic heterogeneity.  

Compared to SNP association analysis, CNV (copy number variation) studies in 

psychiatric disorders have achieved significant progress in the past a few years. A CNV is a 

structural variation, which can be a deletion or duplication of a segment of DNA (size 1kb ~ 

several Mb). Heinzen et al recently [2010] conducted the first genome-wide scan of CNVs in 

LOAD in 331 LOAD cases and 368 controls. Although nothing was statistically significant in 

this study, they found an interesting rare duplication CNV in CHRAN7, which has much higher 

frequency (2%) in cases than in controls (0.3%). However no one has done genome-wide CNV 

analysis in AD+P. Cumulative evidence shows that rare CNVs (freq<1%) may be more 

important in behavior disorders, such as SCZ and autism, than common CNVs. Current studies 

in autism and SCZ have shown that autism and SCZ share several rare CNVs. Some of these are 

also shared with various intellectual disability (ID) syndromes. For example, 3q29 deletion was 

identified in children with ID and autism, as well as in adults with SCZ [Quintero-Rivera et al, 

2010]. Moreno-De-Luca, et al. recently summarized the CNV studies in autism and SCZ, and 

reported 7 recurrent CNVs across autism and SCZ [Moreno-De-Luca et al, 2010], which are 

located in chr1q21.1, chr3q29, chr15q13.3, chr16p11.2, chr16p13.11, chr17q12, and chr22q11.2 
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respectively (Table 3-1). The 7 CNVs share two common features: large size and rare frequency. 

Each of them contains several tens to hundreds of genes; and the frequencies in cases and 

controls may be less than 0.5%, and 0.05% respectively. 

These CNV findings lead us to hypothesize that distinct psychiatric disorders may be 

caused by the same or similar genetic variants, perhaps influenced by different environmental 

modifiers. We therefore designed this study to examine whether AD+P shares risk CNVs with 

autism and SCZ. We specifically searched for CNVs for AD+P in the above 7 reported shared 

CNV regions across autism and SCZ, using the Illumina Omni1-Quad SNP array. We also screen 

the rest of genome by genome-wide association study to nominate new candidate CNVs for 

AD+P. 

 

Table 3-1. 7 recurrent CNVs across ASD and SCZ reported by Moreno-De-Luca et al. 
Chr Chromosome Regions CNV CNV Starting Position(bp)a CNV Ending Position(bp) 
1 q21.1 Deletion 144,963,73 145,864,377 
3 q29 Deletion 197,244,288 198,830,238 

15 q13.3 Deletion 28,698,632 30,234,007 
16 p11.2 Duplication 29,557,553 30,107,434 
16 p13.11 Duplication 15,421,876 16,200,195 
17 q12 Deletion 31,893,783 33,277,865 
22 q11.2 Deletion 17,412,646 19,797,314 

 
a Human genome assembly build 36/hg18. 
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3.3 MATERIALS AND METHODS 

3.3.1 Study Populations 

AD cases and controls were recruited through the University of Pittsburgh Alzheimer’s Disease 

Research Center. Controls met the criteria for being free of dementia using the Mini Mental State 

Exam and the Alzheimer’s Disease Assessment Cognitive Scale. Cases were those with 

diagonosis of either probable or definite AD according to criteria set by the National Institute of 

Neurological and Communicative Disorders and Stroke – Alzheimer’s Disease and Related 

Disorders Association and the Consortium to Establish a Registry for Alzheimer’s Disease 

(CERAD). All cases have age of onset of at least 60 years. AD+P was ascertained if any of the 

CERAD behavior rating scale items for psychotic features were rated as occurring three or more 

times in the past month at any visit. AD-P subjects were defined as scores of zero on the same 

items at all visits. Subjects with scores in between 0 and 3 on those items were classified as 

"indeterminate psychosis”. Exclusion criteria included previous history of SCZ, mood disorders, 

bipolar disease, unipolar disease, or anxiety disorder. 

3.3.2 CNV Calling 

DNAs from all subjects were genotyped using the Illumina Omni-Quad array. 2249 samples 

were retained after quality control. All samples with missing genotype rates >= 0.02 were 

removed from the study. All of this cleaning work was done as a part of the original GWAS 

study before we obtained the data for CNV analysis.  
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 We generated CNV calls using the PennCNV software (2009Aug27 verion) [Wang et al., 

2007]. PennCNV is a Hidden Markov Model (HMM) based method. It uses the log R ratio 

(LRR) and B allele frequency (BAF) measures computed from the signal intensity files by 

Beadstudio to detect the CNVs. We used the GC model wave adjustment procedure in 

PennCNV. After GC model adjustment, we filtered the samples that met the criterion of LRR 

standard deviation ≥ 0.3 (Table 3-2). All procedures followed the user guidelines of PennCNV 

and those developed in Chapter 2 of this dissertation. Human NCBI Build 36 (hg18) was used 

for this study. 

3.3.3 Statistical Analysis of CNVs 

CNVs with copy number >2 were defined as duplications; while those with copy number <2 

were considered deletions. We conducted genome-wide association analysis of AD+P with 

CNVs using logistic regression. Amplification and deletion CNVs were coded as dummy 

variables with normal copy number as the reference. The regression model is: logit (Y) = α + 

β1X1 + β2X2. X1 = 1 if and only if copy number <2, otherwise equals zero; X2 = 1 if and only if 

copy number > 2, otherwise equals zero. We adjusted for the covariates age, sex, and principle 

components of population stratification in the regression model. We also specifically searched 

for rare CNVs in the 7 recurrent CNVs identified across ASD and SCZ summarized by Moreno-

De-Luca et al. The criterion for rare CNVs in this search was the occurrence of the deletion and 

duplication CNV in AD-P and no-AD controls ≤ 1 at each of three or more consecutive markers. 

We used the Cochran–Armitage test for trend in SAS (version 9.2) [SAS Institute Inc., Cary, 

http://neurogenome.org/cnv/penncnv/penncnv.revision090827.tar.gz
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NC] to calculate the exact permutation p-value for a trend of the three AD groups (AD-P, AD 

indeterminate P and AD+P).  

Table 3-2. Sample sizes for each study group before and after filtering by LRR deviation. 
  AD+P AD (intermediate P) AD-P No-AD controls 

Before filtering  496 639 156 958 
After filtering  440 593 136 855 

 

3.4 RESULTS 

3.4.1 Genome-Wide Association Analysis 

Using logistic regression, we calculated the p-value for the regression coefficient beta2 in the 

above model (amplification CNVs) at each marker; then summarized the genome-wide results of 

p-values in Figure 3-1. The top panel of Figure 3-1 is a Manhattan plot, which shows the -log10 

(p-value) from the genome-wide scan. The bottom panel of Figure 3-1 is a Q-Q plot, which 

provides a graphical view of how observed p-values and expected p-values are similarly or 

differently distributed. Similarly, we summarized the genome-wide p-values for the regression 

coefficients beta2 (deletion CNVs) in Figure 3-2 and for the whole model (dummy variables- 

amplification and deletion CNVs as a set) in Figure 3-3 respectively. 

Figure 3-1 shows that all of the amplification CNVs have p values > e10-6,  which 

suggests that none of them may be significant after adjustment of multiple comparisons genome-

wide. However, the tests at each marker are highly correlated (much more so than in a genome-

wide association study), so the Q-Q plot needs to be interpreted with care. The peak association 
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signals appear on chromosomes 9, 14, 16, 19 and 20 (P-value <  e10-4). Figure 3-2 shows peak 

association signals for deletion CNVs appear on chromosomes 4, 9, and 18. The peak association 

signal in Figure 3-3 is located in chromosome 16 (P<10e-4). 

 

 

Figure 3-1. Manhattan and QQ plot for amplification CNVs 
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Figure 3-2. Manhattan and QQ plot for deletion CNVs 
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Figure 3-3. Manhattan and Q-Q plot for the whole model 

 

Table 3-3 lists the genes that have CNVs with peak association signals (the highest -

log10P values in Manhattan plots) in Figures 3-1, 3-2, and 3-3. These genes may be interesting 

for AD+P studies. However, the CNVs in all those genes are common CNVs (frequency >5%), 

which make them less likely to be disease genes with major effects.  

 

 

 



 

 

 49 

 
Table 3-3. Genes located within association peaks in Manhattan plots (Figures 3-1, 3-2, 

and 3-3) 
Chr Gene symbols 
  Amplification CNVs Deletion CNVs All CNVs 
4 

 
 

 9 SET, CAMSAP1  
 14 KIAA0284, PLD, AHNAK2, CDCA4,GPR132, JAG2, BRF1, PACS2 

  16 SOX8, ZFPM1 
 

ZFPM1 
18 

 
LOC284260 

 19 APC2 
  20 TAF4     

 

3.4.2 Association Analysis in 7 Recurrent CNV Regions across ASD and SCZ 

We therefore specifically searched for rare CNVs in the 7 recurrent CNV regions proposed by 

Moreno-De-Luca et al. (see Table 3-1). All 7 CNVs are large in size and are very rare. We found 

interesting CNVs in two of the regions: 16p11.2 and 3q29. 

3.4.2.1  16p11.2 

We found one duplication CNV (copy number = 3) in 16p11.2. It was identified in 2 of 440 

AD+P subjects, but not in 136 AD-P, nor in 593 AD with intermediate psychosis, or 855 non-

AD controls. This is a very large (> 0.5 Mb) and rare duplication CNV. It is almost completely 

overlapping with the reported CNV in autism and SCZ, as shown in Figure 3-4. The frequency of 

this duplication CNV in 16p11.2 in AD+P is similar to that in SCZ; the comparison is listed in 

Table 3-4. 
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Figure 3-4. The counts of duplication CNVs at 16p11.2 in three sample groups (AD+P, 

AD-P and non-AD controls).  

The X-axis is the index of markers that are located in reported CNV regions in ASD and SCZ; 

each dot represents one marker. The Y-axis is the count of individuals who carry the duplication 

CNV at each marker in that region in the three sample groups separately. Black represents non-

AD controls; blue represents AD-P; and red represents AD+P.  

 

Table 3-4. Comparison of the duplication CNV in 16p11.2 identified in AD+P and SCZ. 

  
CNV 

Position 
Number of total 

subjects 
Number of subjects 

with CNV 
Freq of CNV in 

cases 

AD+P  
29,554,843-
30,105,652 440 2 0.00455 

AD (intermediate P) 
 

593 0 
 AD-P 

 
136 0 

 No-AD controls  
 

855 0 
 

SCZ 
29,557,553-
30,107,434 4551 21 0.00461 

No-SCZ controls  
 

6391 2 
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3.4.2.2  3q29 

Figure 3-5 shows the CNV findings in 3q29. In this plot, we found no one carried the large 

deletion CNV in 3q29 as reported in SCZ. We then specifically looked at CNVs that are very 

rare in the AD-P and No-AD groups, which (in Figure 3-5) should be regions where the value on 

the y-axis at each of three or more consecutive markers (points) in AD-P (blue) and No-AD 

(black) subjects ≤ 1. We did identify a small deletion CNV (~ 28 kb) in that region, as shown by 

the arrow in Figure 3-5. This CNV is very rare; neither 136 AD-P nor 855 No-AD subjects had 

it. However 7 of 440 AD+P and 4 of 593 AD with intermediate psychosis subjects carried this 

CNV. We next conducted trend tests of the three AD groups (AD+P, AD with indeterminate P 

and “controls”). We chose the “control” group in terms of two different biological models. One 

model assumes that the genetic variants by themselves do not cause psychosis, but they may 

increase the risk of psychosis when interacting with AD. Therefore, we may still see the genetic 

variants in non-AD subjects. An alternative model is that the DNA copy number variant is a 

direct causal risk factor for AD+P, which is different from risk factors for AD-P; so we would 

not expect to see those CNVs in non-AD individuals. Under the former model, we only used the 

AD-P as controls; the one -sided exact p-value from the trend test is 0.0155. Under the latter 

model, we combined AD-P and No-AD as controls; the p-value is 1.44E-4. 

This small deletion CNV, identified in seven AD+P and four AD with intermediate P 

subjects, is located exactly within gene PAK2. The deletions in the different individuals are not 

identical, but each of them deletes some or all of PAK2. They range in size from approximately 10 

to approximately 50 kilobases, with those lengths being approximate due to the limited 

resolution of the SNP array.  
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The CNVs detected in other two AD with intermediate P subjects are longer. Both of 

them include PAK2 and PIGX, the gene next to the 5’ region of PAK2; one of them also included 

RNU6-42 and SENP5, genes close to the 3’ region of PAK2. Detailed information about the 

CNVs in these samples is summarized in Table 3-5. The start and end position of CNVs were 

estimated by PennCNV, not validated by experiments. So the breakpoints of CNVs may not be 

accurate. 

 

 

Figure 3-5. The counts of deletion CNVs at 3q29 in three sample groups (AD+P, AD-P 

and non-AD controls).  
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The X-axis is the index of markers that are located in reported CNV regions in ASD and SCZ; 

each dot represents one marker. The Y-axis is the count of individuals who carry the duplication 

CNV at each marker in that region in the three sample groups separately. Black represents non-

AD controls; blue represents AD-P; and red represents AD+P. The region pointed by an arrow is 

located in PAK2.  

 

 

Table 3-5. Detailed information of the CNV in 3q29 in subjects of AD+P and AD intermediate P 
Subjects CNV start genomic position CNV end genomic position CNV start location CNV end location 

C 1 197,946,898 197,959,516 5' region of PAK2 Intron 1 of PAK2 
C 2 198,017,717 198,045,849 Intron 5 of PAK2 3' region of PAK2 
C 3 198,030,771 198,045,849 Intron 12 of PAK2 3' region of PAK2 
C 4 198,038,417 198,045,849  Intron 13 of PAK2  3' region of PAK2 
C 5 198,038,417 198,043,562 Intron 13 of PAK2 Intron 15 of PAK2 
C 6 198,039,349 198,043,562 Intron 14 of PAK2 Intron 15 of PAK2 
C 7 198,041,310 198,043,562 Intron 15 of PAK2 Intron 15 of PAK2 

I 1 197,914,350 197,959,516  5' region of PIGX Intron 1 of PAK2 
I 2 197,914,350 198,150,251  5' region of PIGX 3' of SENP5 
I 3 197,978,358 198,039,349 Intron 1 of PAK2 Intron 14 of PAK2 
I 4 198,030,771 198,045,849 Intron 12 of PAK2 3' region of PAK2 

 

3.4.2.3  Other Five CNV Regions 

Results in the other five CNV regions are shown in Figure 3-6. We did not find meaningful 

CNVs in the rest of the five reported CNV regions that are recurrent in SCZ and autism.  
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Figure 3-6. The counts of CNVs in other five CNV regions by three sample groups. 

Red points represent AD+P, blue points represent AD-P and black ones indicate non-AD 

controls. X-axis is the index of markers that are located in reported CNV regions in ASD and 

SCZ; each dot represented one marker. Y-axis is the count of individuals who carry duplication 

CNV at each marker in that region in three sample groups separately. The black one represents 

non-AD controls; the blue one represents AD-P and the red one represents AD+P.  
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3.5 DISCUSSION 

We are the first to report that AD+P shares a rare risk CNV region on 16p11.2 with SCZ and 

autism.  Its frequency in AD+P is similar to that in SCZ. Several discrete phenotypes, such as 

SCZ, autism, seizure and mental retardation have been well documented [McCarthy et al, 2009; 

Weiss et al, 2008; Guilmatre et al, 2009; Bedoyan et al, 2010] to be associated with the 

microduplication of 16p11.2; therefore they are considered as 16p11.2 duplication syndromes. 

Our finding actually extends the range of 16p11.2 duplication syndromes to psychosis in 

Alzheimer disease. It implies that distinct psychiatric disorders may be caused by the same or 

similar genetic variants, perhaps influenced by different genetic and/or environmental factors.  

Therefore, it partially supports one of the hypothesized mechanisms proposed by Sweet [2010] 

that neurodevelopmental disorders and neurodegenerative disorders (eg. AD) may share some 

common disease modifier genes, which may be involved in the development of psychosis in 

different disorder processes.  

 We did not find anyone who had the large deletion CNV (863kb) in 3q29 as reported 

[Quintero-Rivera et al, 2010; Willatt et al, 2005; Mulle et al, 2010] in SCZ, but we did find a 

small deletion CNV in PAK2, p21 protein (Cdc42/Rac)-activated kinase 2, was considered as 

one of the most interesting candidate genes in 3q29 for SCZ [Willatt et al, 2005]. Full length 

PAK2 stimulates cell survival and cell growth, and may regulate the apoptotic events in the dying 

cell. PAK2 has 15 exons; its protein product contains two major functional domains: a regulatory 

domain and a kinase domain. The regulatory domain located before exon 7. The kinase domain, 

required for the kinase activity of PAK2, starts from the end of exon 7 (Amino Acid 227) and 

lasts untill the end of whole Amino Acid sequence. We found that the deletion in PAK2 is a one-
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copy deletion, so it won’t completely disrupt the function of PAK2; instead it may have the 

potential to decrease the kinase activity of PAK2 and reduce the cell survival and/or cell growth, 

which may therefore contribute to the psychosis in degenerative disorder like AD. However, it is 

unclear how much a one copy deletion can influence a gene’s expression or its protein activity. 

This hypothesis needs to be validated by experiments at the mRNA or protein level.  

 This deletion CNV in PAK2 has not been reported in any previous SCZ and autism CNV 

studies. One of the likely explanations is that the resolutions of the markers in some studies were 

low; another possible explanation is that most studies only look for large CNVs and filter small 

CNVs from further analysis, since large CNVs are considered more likely to be real and small 

CNVs are very difficult to experimentally validate. But in Chapter 2 we showed that small CNVs 

are not always so unreliable; they should not be ignored in downstream analysis. If this PAK2 

deletion can be validated by experiments and other independent studies, we can narrow down the 

genes responsible for AD+P, and even provide a clue for mechanisms of brain dysfunction. We 

have initiated such validation studies, but do not have results to report at this time.  

 In conclusion, although rare, those CNVs we identified in AD+P may have important 

functions in the development of psychosis. Identification of these CNVs can help with 

understanding the mechanisms of psychosis disorders. In addition, these CNVs have the potential 

to be used in clinical practice for screening, diagnosis, disease classification or genetic testing.  
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4.0  CNVS, BIRTH OUTCOMES AND MATERNAL SMOKING IN A PRETERM 

BIRTH CASE-CONTROL STUDY 

4.1 ABSTRACT 

Objectives: Adverse birth outcomes such as preterm delivery increase infant mortality and can 

have lifelong health consequences. They are likely the results of interactions between genetic 

factors and maternal or fetal environmental factors. However, the genetic determinants are 

unclear. The purpose of this study is to search for genetic copy number variations (CNVs) that 

are associated with preterm delivery and low birth weight, and to investigate whether those 

CNVs have direct or indirect effects on smoking-induced adverse birth outcomes.  

Methods: A large preterm birth case-control dataset including 1937 mothers was used as the 

primary dataset. We first examined the association of smoking with birth outcomes; next, we 

examined the association of CNVs with birth outcomes in candidate genes related to GSTT1, 

which harbors a known CNV that has been shown to be associated with birth outcomes in 

smokers; next, we tested the association of CNVs in GSTT1/GSTT2 with smoking; finally we 

analyzed the rest of the genome to nominate candidate CNVs that are associated with birth 

outcomes in smokers and non-smokers separately. We also analyzed genome-wide to identify 

CNVs associated with smoking. 
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Results: We confirmed the association of smoking with low birth weight and preterm delivery 

(PTD) in the preterm birth dataset. We were not able to confirm the association of the known 

CNV in GSTT1 with birth outcomes, because our arrays do not contain markers in that CNV 

region. However, we found four other CNVs in GSTT1/GSTT2 that are associated with birth 

outcomes in smokers and/or non smokers. We also found two CNVs that are associated with 

smoking in the preterm birth dataset and in a replication dataset. We nominated several candidate 

genes for smoking and birth outcomes by genome-wide scan. 

4.2 INTRODUCTION 

Low birth weight (LBW) refers to birth weight less than 2500g [Kramer MS, 1987], which 

accounts for about 16% of all live-borns in the world [de Onis et al., 1998].  Birth weight is 

regulated by two major processes: duration of gestation and intrauterine growth rate. Preterm 

delivery (PTD), the birth of a baby with less than 37 weeks gestational age, is responsible for 

one-third to two-thirds of infants with LBW [Arifeen et al., 2000; Martin et al., 2007]. PTD and 

LBW each can increase the risk of fetal mortality and infant mortality. However, the causes of 

PTD and LBW are not clear. Multiple factors may contribute to the development of LBW and/or 

PTD, including genetics, environmental and other factors (e.g. demographic, obstetric, 

nutritional factors and maternal morbidity during pregnancy) [Kramer MS, 1987].  

 One of the important environmental factors in birth outcomes is tobacco smoking. 

Maternal tobacco smoking is the single largest prenatal risk factor for a number of different 

problems. It may reduce the mean birth weight and increase the risk of PTD and intrauterine 
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growth restriction [Asmussen et al., 1975; Asmussen et al., 1977; Goldenberg et al., 2007; Kjell 

et al., 2007; Ronco et al., 2005; Nilsen et al., 1984]. One likely pathogenic pathway of smoking-

induced adverse birth outcomes may be associated with the metabolism of the tobacco compound 

PAH (polycyclic aromatic hydrocarbons) [Perera et al., 2005; Tsui et al., 2008, Wu et al., 2010]. 

PAH is one of the most important carcinogenic compounds, and is detoxified in a two-stage 

process. PAHs are converted into procarcinogen in the first stage, which is then conjugated into 

excretal metabolites in the second stage. The conjugation is catalyzed by the gene GSTT1 

(Glutathione S-transferase theta 1), which belongs to the theta class of GSTs. The class 

members, GSTT1 and GSTT2, are located in human chromosome 22. They are about 50kb away 

from each other, with a GSTT pseudogene GSTTP1 located between them. GSTT1 and GSTT2 

share 55% amino acid sequence identity and both are considered to have a detoxification role 

[Coggan et al., 1998]. It has been very well established that a common deletion in GSTT1 is 

associated with modifying the effect of maternal smoking on birth outcomes. Smokers have 

lower mean birth weight infants compared to nonsmokers; however the reduction varies 

according to the GSTT1 polymorphism. The mean birth weight decreased dramatically in 

smokers with the GSTT1 null genotype compared to smokers with the GSTT1 wild-type 

genotype [Aagaard-Tillery et al., 2010; Grazuleviciene et al., 2009; Wang et al., 2002; Wu et al., 

2007]. 

 Linkage and SNP association studies have identified some genes that are associated with 

adverse birth outcomes. However, copy number variation (CNV) studies have rarely been 

conducted in low birth weight and preterm delivery. In this study we set out to do that, taking the 

following steps. All analyses of birth weight were performed in the controls (term births) only.  
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1) Confirm the association between smoking and birth outcomes (PTD and LBW) in our 

dataset. 

2) Confirm the association of GSTT1/GSTT2 CNVs with birth outcomes in smokers, and 

test whether it is also seen in non-smokers. 

3) Test for any direct association between GSTT1/GSTT2 CNVs and smoking in both the 

preterm birth dataset and a replication dataset (dental caries dataset). 

4) Genome scans to identify other CNVs that are associated with smoking in both 

datasets. 

5) Analyze the rest of the genome to nominate candidate CNVs that are associated with 

birth outcomes in smokers and non-smokers separately. 

4.3 MATERIALS AND METHODS 

4.3.1 Study Populations 

Both the preterm birth and dental caries datasets are part of the GENEVA (Gene Environment 

Association studies) consortium. Detailed information on both studies is available from study 

documents in dbGaP (http://www.ncbi.nlm.nih.gov/gap) [Mailman et al., 2007]. The preterm 

birth study is a case-control study of approximately 1000 mother-child case pairs (cases were 

defined as infants<37 weeks of gestation), and 1000 mother-child controls pairs (controls were 

defined as infants=40 weeks of gestation) from the Danish National Birth Cohort study [Olsen et 

al., 2001].  From the GENEVA preterm birth study 

http://www.ncbi.nlm.nih.gov/gap
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(http://www.ncbi.nlm.nih.gov/gap?term=geneva), we used almost all maternal samples -1937 

mothers genotyped on Illumina Human660W-Quad chip. Of these, 893 were cases of PTD, 978 

were controls, and 66 were neither cases nor controls (37 ≤ infants < 40 weeks of gestation). The 

smoking phenotype we used was “any smoking” or “non-smoker” during pregnancy in the 

preterm birth dataset. The replication dataset for smoking is the GENEVA dental caries study 

(http://www.ncbi.nlm.nih.gov/gap?term=geneva), which is a large community-based study of 

oral health genotyped on the Illumina HumanHap610 chip. The full dental caries study included 

four different community-based samples from Western Pennsylvania, West Virginia, and Iowa. 

Individuals were selected without regard to phenotype, and then were extensively phenotyped for 

oral health and related traits. A subset of the full study, 1313 adults with complete smoking 

status, was used in our study. The smoking phenotype was defined as “any smoking” or “non-

smoker” in lifetime. The characteristics of these two datasets are summarized in Table 4-1. 

 

Table 4-1. Characteristics of two datasets 
  Preterm Birth  Dental Caries  

Recruitment  Case-control study within a cohort Community-based families  

Sample size  1937 genotyped mothers  1313 adults with complete smoking status 

Illumina Chips  Human660W-Quad  Humanhap 610  

Number of markers  660K  610K  

Source of DNA  Blood with different origins  Blood, saliva and mouthwash  

Smoking  “Any smoke”or “Non-smoke” during pregnancy  “Any smoke”or “Non-smoke” in life time  

Birth outcomes  Yes  NA  

 

http://www.ncbi.nlm.nih.gov/gap?term=geneva
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 67 

4.3.2 Genotyping and Quality Control 

Complete genotyping and data cleaning reports for both studies are available in dbGAP 

(http://www.ncbi.nlm.nih.gov/gap).The level of genotyping quality was extremely high.  

4.3.3 CNV Calls by PennCNV  

We generated CNV calls using the PennCNV software (2009Aug27 version) [Wang et al., 2007]. 

We used the GC model wave adjustment procedure in PennCNV. Samples were filtered after GC 

model adjustment using the criterion lrrsd > 0.3; 1617 out of 1937 preterm birth samples and 

1261 out of 1313 dental caries samples remained. All analysis was restricted to autosomes. All 

procedures followed the user guidelines of PennCNV and those developed in Chapter 2. Human 

genome build 36 was used for this study. CNVs with copy number >2 were defined as 

amplifications, while those with copy number <2 were considered as deletions. 

4.3.4 Statistical Analysis 

We first examined the association of smoking with PTD and birth weight by logistic regression 

and linear regression respectively. We next examined the association of CNVs in GSTT1, 

GSTTP1 and GSTT2 with the continuous outcome variable birth weight using linear regression, 

and with binary outcomes smoking and PTD using logistic regression. We finally screened the 

CNVs genome-wide for association with smoking using a chi-square-test and for birth weight 

using a t test. If the p-values were smaller than a pre-set threshold at three or more consecutive 

http://www.ncbi.nlm.nih.gov/gap
http://neurogenome.org/cnv/penncnv/penncnv.revision090827.tar.gz
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markers, the region was considered as a significant CNV, and the smallest p-value was reported 

as the p-value for that CNV. The boundaries of the CNV were defined as the first and last 

markers in that region with p-value < 0.05. All calculations were completed in R (version 2.10.1) 

[R Development Core Team. 2009]. 

4.4 RESULTS 

4.4.1 Association between Smoking and Birth Outcomes 

The goal of our first analysis was to confirm the well-known association of smoking with birth 

weight and PTD. We examined this using linear regression for birth weight in controls (term 

births) and logistic regression for PTD. Controls are all exactly 40 weeks gestation. The results 

are summarized in Table 4-2. Smoking is a significant predictor for birth weight in term births 

(p=2.01E-10); the mean birth weight in the smoking group is 277.87g lower than in the non-

smoking group. In addition, smoking is a significant predictor for PTD (odds ratio = 1.27, 

p=0.028). 

Table 4-2. Relationships between smoking and birth outcomes in preterm birth dataset 
Outcomes Predictors Coefficients (Odds Ratio)  P-value 

Birth weight in term births Smoking -277.87 2.01E-10 
PTD Smoking 0.24 (1.27) 0.028 
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4.4.2 Association between GSTT1 / GSTT2 and Birth Weight, Stratified by Smoking 

We next took a closer look at the CNVs in the regions from GSTT2 to GSTT1. We checked the 

association of those CNVs with birth weight in controls. We then stratified the controls by 

smoking status, and analyzed the association in smoking and non-smoking controls separately. 

Table 4-3 summarizes the association of those CNVs with birth weight in different control 

groups.  

 

Table 4-3. Association of CNVs in the regions from GSTT2 to GSTT1 with birth weight in 
different control groups in preterm birth data 

          
 Non-PTD mothers 

(Controls) 

Non-PTD smoking 
mothers 

(Smoking controls) 

Non-PTD Non-smoking 
mothers 

(Non-smoking controls) 
Gene 

Symbol CNV 
Start 

Position 
End 

Position 
Num 

of SNP 
Change of 
mean BW Pvalue 

Change of 
mean BW Pvalue 

Change of 
mean BW Pvalue 

GSTT2 Del  22618460 22624684 10 -82.6 0.0239 -122.8 0.0384 -41.4 0.3521 

GSTT2 Amp 22653131 22666327 20 115.9 0.0162 324.1 0.0078 74.1 0.2066 

GSTTP1 Del  22672338 22687707 18 167.2 0.0048 322.7 0.0046 74.2 0.2246 

GSTT1 Amp 22695041 22697104 16 -115.7 0.0210 20.0 0.8402 -144.9 0.0080 

 

We could not replicate the known association of a deletion CNV in GSTT1 with low birth weight 

in our dataset, because no markers in that CNV region were included in our arrays. However, we 

found a duplication CNV in GSTT1 that decreases birthweight, but only in non-smokers. We also 

found three CNVs in genes other than GSTT1 which are associated with birth weight. Two 

CNVS are located in GSTT2; one is a deletion and the other one is a duplication. Term birth 

smoking mothers who carry the deletion CNV in GSTT2 have significantly lower mean infant 

birth weight than smokers with normal copy number.  On the other hand, smokers who carry the 

amplification CNV show relatively higher mean infant birth weight than those with normal copy 

number; the mean infant birth weight is 324.1g higher in smokers with this duplication CNV 
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than in smokers without this duplication CNV. We also found one deletion CNV in GSTTP1 

which has very similar effect as the duplication CNV in GSTT2.  

4.4.3 Association between GSTT1 / GSTT2 and PTD, Stratified by Smoking 

We then examined the association of the CNVs in the regions from GSTT2 to GSTT1 with PTD.  

We also stratified the samples by smoking status, and analyzed the association in smoking and 

non-smoking PTD mothers separately. Other than those 4 CNVs (in Table 4-3) associated with 

birth weight, we did not find any new CNV in the region from GSTT2 to GSTT1 that is 

significantly associated with PTD. We therefore summarize the association of those 4 CNVs 

with PTD in different sample groups in Table 4-4. 

Table 4-4. Association of CNVs in the regions from GSTT2 to GSTT1 with PTD in mothers 
stratified by smoking state in preterm birth data 

        All mothers Smoking mothers Non-smoking mothers 

Gene Symbol CNV Start Position End Position Odds Ratio P-value Odds Ratio P-value Odds Ratio P-value 

GSTT2 Del 22618460 22624684 0.78 0.0794 0.48 0.0032 0.94 0.7484 

GSTT2 Amp 22653131 22666327 1.06 0.7423 1.72 0.0885 0.79 0.2331 

GSTTP1 Del 22672338 22687707 1.16 0.4522 1.92 0.1077 1.11 0.5651 

GSTT1 Amp 22695041 22697104 1.07 0.6605 0.60 0.0861 1.31 0.1774 
 

The duplication CNV in GSTT1 is not significantly associated with PTD. Smoking does 

not statistically significantly modify the relationship, but this bears further study since the p-

value for smokers is 0.0885. Smokers with the deletion CNV in GSTT2 have significantly 

reduced risk (odds ratio 0.48) of PTD compared to smokers without this CNV. Smokers with the 

duplication CNV in GSTT2 have marginally increased risk (odds ratio 1.72) of PTD compared to 

smokers with normal copy number. The deletion CNV in GSTTP1 is not significantly associated 
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with PTD.  There is no statistically significant evidence that smoking modifies the effect, but the 

p-value for smokers is 0.1077. 

4.4.4 Association between GSTT1 / GSTT2 and Smoking in Two Datasets 

In order to further examine the relationship between smoking, GSTT1, and birth outcomes, we 

used logistic regression to test the relationship between CNVs in the region from GSTT2 to 

GSTT1 and smoking in two independent datasets: the preterm birth dataset and the dental caries 

dataset. By prior hypothesis, variants in GSTT1 and/or GSTT2 should modify the effect of 

smoking on birth outcomes, but should not be associated with smoking itself. However, we 

detected strong associations between CNVs in this region and smoking. The results are 

summarized in Table 4-5. Note that the dental caries dataset does not include markers covering 

out GSTT2 CNVs, so those could not be tested in that dataset.  

Table 4-5. Association of CNVs in the region from GSTT2 to GSTT1 with smoking in two 
datasets 

    Preterm birth dataset Dental caries dataset 

  
    All mothers 

Non-PTD 
mothers All subjects 

Gene 
Symbol CNV 

Start 
Position 

End 
Position 

Odds 
Ratio P-value 

Odds 
Ratio P-value 

Start 
Position 

End 
Position 

Odds 
Ratio P-value 

GSTT2 Del  22618460 22624684 1.55 0.0005 8.54 0.0001   
   

GSTT2 Amp 22653131 22666327 1.26 0.2222 0.57 0.0446   
   

GSTTP1 Del  22672338 22687707 0.70 0.0520 0.52 0.0409 22664948 22668071 0.13 0.0218 

GSTT1 Amp 22695041 22697104 1.28 0.1379 1.76 0.0134 22688572 22717669 0.44 0.0198 

 

In the preterm birth dataset, we found that the deletion CNV in GSTT2 is associated with 

significantly increased risk of smoking (odds ratio=8.54) in non-PTD mothers (p=0.0001). We 

have already known non-PTD smokers with this CNV have significant (p=0.024) lower mean 
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birth weight compared with those without this deletion. This deletion is also significantly 

(p=0.0032) associated with lower risk of PTD (odds ratio=0.48) in smokers. 

Another CNV in GSTT2 is a duplication. We found that it is significantly (p=0.0446) 

associated with decreased risk of smoking (odds ratio=0.57) in non-PTD mothers. We have 

already found non-PTD smokers who carry this CNV have significantly higher mean birth 

weight (p=0.0078) compared to those with wild genotype; it did not significantly influence the 

risk of PTD. 

The third CNV is a deletion, located in gene GSTTP1. It had almost the same relationship 

with birth outcomes and smoking as the above amplification CNV in GSTT2, and the decreased 

risk of smoking for individuals with this deletion CNV in GSTTP1 is replicated by caries dataset 

(odds ratio=0.13, p=0.0218). The fourth CNV is a duplication CNV in GSTT1. It is significantly 

associated with smoking in both datasets but with contradictory odds ratio in two datasets. It 

increased the risk of smoking in non-PTD mothers in preterm birth dataset, but decreased the risk 

of smoking in dental caries dataset. For this CNV, we have already known that it is associated 

with decreased birth weight in non-PTD non-smokers, and it was not significantly associated 

with PTD. 

4.4.5 Genome-Wide Scan to Identify CNVs for Smoking in Two Datasets 

Next, we screened genome-wide for the candidate CNVs for smoking in those two datasets. Logistic 

regression was used for the binary outcome of smoking. Amplification and deletion CNVs were coded as dummy variables, with 

normal copy number serving as the reference. Table 4-6 lists genes in 21 CNVs which were significantly 

(p<0.002) associated with smoking in the preterm delivery dataset; Table 4-7 lists genes in nine CNVs 
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which were significantly (p<0.004) associated with smoking in the dental caries dataset. Genes 

PDZD2, GOLPH3, and HLA-B were significantly associated with smoking in both datasets.  

 

Table 4-6. CNVs significantly (p<0.002) associated with maternal smoking in preterm birth data 
Chr CNV Gene Symbol P-value* 
1 Amplification 

 
NME7 0.0011 

   
CFHR4 0.0007 

2 Amplification   ZC3H6 0.0012 
3 Amplification 

 
CDV3 0.0004 

  
Deletion ROBO2 0.0014 

  
Deletion UROC1 0.0015 

5 Amplification   PDZD2,GOLPH3 2.93E-05 
6   Deletion HLA-B 0.0016 
9 Amplification 

 
DOCK8 0.0004 

10 Amplification   CAMK2G 0.0009 
14 Amplification   RNASE2(3) 0.0002 
  Amplification   FAM30A 0.0020 

16 Amplification 
 

LUC7L 0.0007 

 
Amplification 

 
ATXN2L 0.0014 

17 Amplification   KIAA0753 0.0019 

 
Amplification 

 
FASN,CCDC57,FLJ23754 0.0014 

    Deletion cr597597 0.0005 
19 Amplification 

 
ZBTB7A, MAP2K2 0.0009 

  
Deletion GNG7 0.0018 

22 Amplification   MTMR3 0.0006 
    Deletion GSTT2 0.0015 
* Smallest p-value in a reported CNV region. 
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Table 4-7. CNVs significantly (p<0.004) associated with maternal smoking in dental caries data 

Chr CNV Gene Symbol P-value* 

2 
 

Deletion c2orf27,MGC50273 0.0028 

5 Amplification   PDZD2,GOLPH3 0.0036 

6 
 

Deletion HLA-B 4.55E-6 

7   Deletion OR2A1,FKSG35,FLJ43692 0.0002 

8 
 

Deletion ADAM5P,tMDC 0.0023 

10   Deletion CTNNA3 0.0008 

13 
 

Deletion DQ586768 0.0009 

15 Amplification   SGK269 0.0028 
* Smallest p-value in a reported CNV region. 

4.4.6 Genome-Wide Scan to Identify CNVs for Birth Weight (Term Births), Stratified by 

Smoking 

We next used t-test to search the rest of the genome to nominate candidate CNVs that are 

associated with birth weight in controls (term births). We stratified the controls by smoking 

status, and compared the genes in those CNVs that are significantly associated with birth weight 

in smokers and non-smokers. Table 4-8 lists the genes that are associated with birth weight only 

in smokers, not in non-smokers. 
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Table 4-8. Genes in CNVs which are significantly (P <0.003) associated with birth weight (term 
births) only in smokers in preterm birth dataset 

Chr CNV Gene Symbol P-value 
4 Amp BC039519 0.0008 
5 Amp TPPP 0.0011 
5 Amp CWF19L2 0.0012 

13 Del STARD13 6.08E-05 
13 Del CORL2 0.0006 
20 Amp MYO5B 0.0025 

4.4.7 Genome-Wide Scan to Identify CNVs for PTD, Stratified by Smoking 

We next searched for CNVs for PTD genome-wide in the preterm birth dataset using the chi-

square test. We conducted the analysis in smokers and non-smokers separately, and compared 

the results. Table 4-9 summarizes the CNVs that are significantly (p<0.003) associated with PTD 

only in smokers, but not in non-smokers.  

Table 4-9. Genes in CNVs significantly (P<0.003) associated with PTD in smokers only in 
preterm birth dataset 

Chr CNV Gene Symbol P-value 
1   Del KCNAB2(CHD5,RPL22,ICMT,PCCMT,ACOT7,BACH,HES3) 0.000188 
2 

 
Del SNED1 (AK05589, BC040629) 0.00017 

9 
 

Del NOTCH1 0.001097 
10 

 
Del MMRN2,SNCG 0.002711 

11 Amp 
 

SLC35F2 0.001517 

  
Del TRPM5(CD81,TSSC4) 0.000339 

14 
 

Del IGHE 0.001097 
16 Amp 

 
RAB11FIP3 0.001628 

 
Amp 

 
WWOX 0.001978 

  
Del SOX8,SSTR5,C1QTNF8 0.001978 

  
Del KCTD5 0.001978 

19 
 

Del FAM148C,SHC2,ODF3L2 0.001978 
20 

 
Del NTSR1,OGFR,COL9A3,TCFL5,DIDO1,SLC17A9,BHLHE23 0.001978 

22   Del GSTT2 0.00247 
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4.5 DISCUSSION 

We first checked the relationship between smoking and birth outcomes in our preterm birth 

dataset. The findings that smoking is significantly associated both PTD and LBW were 

consistent with other reports [Chan et al., 2001; Horta et al., 1997.].  

To confirm the association of GSTT1/GSTT2 with birth outcomes, we next conducted 

CNV association analysis in regions from GSTT2 to GSTT1, stratifying on smoking status. We 

also tested the association of CNVs in this region with smoking in two datasets. All the tests for 

association with birth weight were completed in controls, who have exactly 40 weeks gestation. 

We identified 4 CNVs in the region: two CNVs (one deletion and one duplication) in GSTT2, 

one deletion in GSTTP1 and one duplication in GSTT1. The deletion CNV in GSTT2 (size 8kb) 

significantly decreased birth weight in smokers; but not in non-smokers; it also lowered the risk 

of PTD in smokers and increased the risk of smoking in term birth mothers. One of the most 

likely explanations is that the GST gene family has a role in detoxification of tobacco. A deletion 

CNV in GSTT2 may delay the metabolism of nicotine, elongate the addiction effect of nicotine, 

and increases the risk of smoking. The toxicity in smokers with deletion CNV in GSTT2 may be 

not severe enough to cause PTD but may induce slow fetal growth and lead to low birth weight. 

This may also explain the finding of a duplication CNV in GSTT2. Smokers with this duplication 

CNV (size 13kb) in GSTT2 had significant higher birth weight than smokers with normal copy 

number. This duplication CNV is associated with decreased risk of smoking in term birth 

mothers, and is not significantly related with PTD. The consistent findings of the two CNVs in 

GSTT2 suggest that GSTT2 may have an effect on smoking related low birth weight.  

Interestingly, we also found a deletion CNV (size 15kb) in GSTTP1, which has almost the same 
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effects, but smaller magnitude, on birth outcomes and smoking as the amplification CNV in 

GSTT2. It increases the birth weight in smokers with this CNV as compared to smokers with 

normal copy number; it also reduces the risk of smoking. Moreover, its effect on decreasing the 

risk of smoking was replicated in the dental caries dataset. We also identified one duplication 

CNV in GSTT1, which was significantly associated with smoking in both datasets. However the 

odds ratios were reversed in the two datasets. It increased the risk of smoking in non-PTD 

mothers in the preterm birth dataset, and decreased the risk of smoking in adults in the dental 

caries dataset. This is likely due to selection bias. GSTT1 is a detoxification gene; smoking 

mothers with a duplication CNV in GSTT2 may suffer less toxicity; while smoking mothers with 

normal copy number may suffer more toxicity. Severe toxicity may lead to abortion or quit 

smoking. Therefore some smoking mothers with normal copy number may not be selected in the 

preterm delivery study. While in dental caries dataset, the duplication CNV in GSTT2 may 

accelerate the metabolism of nicotine, reduce its addiction, and reduces the risk of initial 

smoking. We also tried to compare our CNV results in GSTT1 and GSTT2 with findings of 

GSTT1 and GSTT2 from other studies. A deletion in GSTT1 [Aagaard-Tillery et al., 2010; 

Grazuleviciene et al., 2009; Wang et al., 2002; Wu et al., 2007] has already been reported to 

modify the effect of smoking on birth weight; smokers with this null genotype of GSTT1 had 

lower mean birth weight than those with control genotype of GSTT1. This deletion 

polymorphism in GSTT1 is located between physical genomic position 22700kb to 22710kb on 

chromosome 22, which unfortunately was not covered by HumanHap660 and HumanHap610 

chips used in our study. Wang et al [Wang et al., 2008] found a SNP rs1622002 (genomic 

position 22630580) in GSTT2 which is associated with metabolism of major tobacco carcinogen 

PAH, however this SNP was not included in our chips. We compared the association results 
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from CNVs to that from SNPs, to investigate whether the CNVs were in linkage disequilibrium 

with any SNP that is associated with smoking and birth outcomes. Interestingly, all SNPs in 

CNV regions of GSTT1 and GSTT2 identified in our study were excluded from SNP association 

analysis due to out of Hardy-Weinberg equilibrium or missing call. This suggests that the CNVs 

we identified in GSTT1/GSTT2 are very likely to be real. 

Next, we searched for other CNVs that are associated with smoking by genome-wide 

screening in two datasets. Genes PDZD2, GOLPH3, and HLA-B are significantly associated with 

smoking in both datasets. Consistent results suggested that we should further explore the role of 

those genes in smoking. However, smoking is a complex process, which may include initiation, 

persistence and cessation of tobacco use. We are not sure in what stage of smoking those genes 

are involved.  

Next, we conducted a genome-wide association study to identify the CNVs for birth 

outcomes (birth weight and PTD) in smokers and non-smokers respectively. All association tests 

for birth weight were conducted in controls (term births). We were especially interested in genes 

that are associated with birth outcomes only in smokers, not in non-smokers. Those genes may 

interact with smoking to influence the birth outcomes. It is noticeable that none of the genes 

associated with birth weight (term births) in smokers only overlapped with the genes that are 

associated with PTD in smokers only. Two likely hypotheses for mechanisms of slow 

intrauterine growth and PTD are: they share common genetic factors but may have different 

phenotypes due to modification of environmental factors like smoking; or they have different 

genetic backgrounds. Our results support the latter hypothesis.  

There are several limitations in our study. First, the missingness of smoking state data in 

PTD cases and controls is not completely random. Seven out of 985 PTD controls and 30 out of 
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924 PTD cases have missing smoking states; however the number of individuals with missing 

smoke state is very small, which should not significantly influence the results of our study. 

Second, we used any smoke in pregnancy in preterm birth data and any smoke in life time in 

dental caries dataset as a smoking variable, which did not consider the quantitative trait of 

smoking amount and influence of smoking in different trimesters, and therefore may be less 

informative. Third, we did not adjust some confounding factors for birth weight, such as 

demographic, psychosocial and obstetric factors. Fourth, we focused on the effects of maternal 

genetics on birth outcomes; we ignored the impact of fetal genetics on the birth outcomes.  

Despite these limitations, we believe our study sheds light on the CNV studies in adverse 

birth outcomes. We conducted candidate gene analysis in GSTT1/GSTT2, and found four new 

CNVs that are associated with birth weight and PTD, through or not through the interaction with 

smoking. We thoroughly screened the CNVs for smoking and birth outcomes genome-wide, and 

identified several strong candidate genes. Also, the consistent findings in two large-scale 

GENEVA datasets make the candidate genes for smoking very interesting. Further studies are 

warranted to further investigate their roles in smoking and birth outcomes, especially the linkage 

disequilibrium among the CNVs in GSTT1/GSTT2.  
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5.0  METHODS FOR HOMOZYGOSITY MAPPING IN INBRED FAMILIES 

COMBINING DENSE SNP DATA WITH A NON-PARAMETRIC LINKAGE ANALYSIS 

PARADIGM 

Homozygosity mapping is a method for mapping genes for recessive diseases in inbred families 

or populations. It relies on the idea that an individual affected by a recessive disease is likely to 

have both chromosomes identical at or near the region of the disease gene. This identity of the 

two chromosomes in an individual is due to the fact that they are inherited from a common 

ancestor, also known as homozygosity by descent (HBD). Another fundamental for 

homozygosity mapping is that the regions of HBD in distinct affected individuals are likely to be 

shared identical by descent (IBD) between those individuals. The disease genes are therefore 

more likely to be at loci which are HBD within an affected individual and IBD across affected 

individuals. 

Depending on the relationships of the study subjects, homozygosity mapping can be 

conducted in two types of samples: family data or population samples with undocumented 

relationships. Homozygosity mapping in consanguineous or inbred families, which refers to 

parents who have at least one common ancestor within a few generations, is a very common 

method for mapping recessive disorders [e.g. Saar et al, 1999; Brooks et al, 2005; Knight et al, 

2008; Mochida et al, 2010; Rizel et al, 2011; Kousar et al, 2011]. For example, Brooks et al. 
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mapped a locus for Goldberg-Shprintzen syndrome, a rare recessive disorder, by searching for 

homozygous chromosome regions in an inbred family with several consanguineous loops. They 

used a panel of microsatellite markers (381 markers) to cover the whole autosomal genome, with 

an average spacing of 10 cM. They used software to check the genotypes of each marker in 

affected individuals. Regions of homozygosity were reported if two consecutive markers were 

homozygous across affected individuals. They then refined the identified region by genotyping 

additional 11 markers within it. Finally they conducted linkage analysis to see if the homozygous 

region was also linked with the disorder (i.e. IBD between affected individuals). In this study, 

the authors searched for homozygosity by state (HBS) first, and then tested whether the affected 

individuals shared more IBD in those HBS regions.  

In addition to inbred families, homozygosity mapping can also be done in putative 

outbred families within a population isolate [e.g Winick et al, 1999; Kahrizi et al, 2009]. For 

example, Winick et al. (1999) successfully identified a locus for a very rare recessive disorder in 

three Pingelapese kindreds by homozygosity mapping. The Pingelapese live in isolated small 

islands, and are assumed to have had fewer than 20 founders about 220 years ago.  Although 

participants in this study were not from known consanguineous families, they were distantly 

related. Using a DNA pooling strategy, the authors first searched for markers that shifted toward 

homozygosity in the affected DNA pool, which is indicated by a reduction in the number of 

alleles in the affected vs. the unaffected pool. The nominated regions were then genotyped in all 

individuals and a linkage analysis was conducted. In the linkage peak regions, they manually 

looked for the homozygous haplotypes across all affected individuals. Thus, in this study they 

searched for HBS at each marker separately in affected vs. unaffected pools first, followed by 

examining IBD sharing in those HBS regions, and finally checked the HBS of the haplotypes. 
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In addition to using family data, some studies have also conducted homozygosity 

mapping in population samples [e.g. Cao et al, 2006; Spiegel et al, 2009; Browning et al, 2010]. 

The assumption of this type of study is that although the study subjects have no documented 

relationship, they may still share common ancestors many generations ago. The expected length 

of HBD segments in this type of study is therefore extremely short compared with those in 

family data.  

Despite the fact that homozygosity mapping is relatively common, computational 

methods for it are often very ad hoc and/or statistically sub-optimal. The goal of our study is to 

recommend and test methods (often combinations of existing methods) that can bring more 

statistical rigor and power to this endeavor. We focus in particular on family data, as opposed to 

population data, and on dense SNP data rather than microsatellite data. 

Three major steps can be considered for any method of homozygosity mapping, and we 

explore improvements to all three. The first step is to estimate IBD/HBD pairwise and/or overall 

in study subjects. The second step is to calculate an IBD/HBD sharing statistic that will indicate 

which regions of the genome are the most likely to harbor the disease gene. The third step is to 

calculate a p-value for the statistic, which is only relevant for larger sample sizes and not for 

studies of one or a few families. For IBD/HBD estimation, we first review current methods and 

then propose two new methods for estimating IBD/HBD in families. For calculating a statistic, 

we suggest a scoring paradigm based on non-parametric linkage analysis. We also propose a 

parametric alternative, and compare it with the non-parametric one. For calculating p-values, we 

first discuss whether it is necessary to calculate a p-value, and then discuss how to calculate it 

depending on the sample size. Finally, we apply all of the above to homozygosity mapping in 

two real pedigrees. 
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The organization of this chapter is as follows. In section 5.1, we discuss current methods 

for homozygosity mapping. In section 5.2, we introduce the datasets that have been used in this 

project. In section 5.3, we use a simple nuclear family to explain some basic principles and our 

methods. In section 5.4, we discuss in theory how these principles might be extended to more 

complex pedigrees. In section 5.5, we demonstrate how our methods can be adapted to analyze 

real data for two pedigrees. In section 5.6, we discuss the strong and weak points of our methods. 

5.1 CURRENT METHODS FOR HOMOZYGOSITY MAPPING 

In the following paragraphs, we will introduce current methods for homozygostity mapping, 

breaking each down into the three steps discussed above. The algorithms for IBD/HBD 

estimation can be classified into two groups. One is likelihood based methods using Hidden 

Markov Models (HMM), such as MERLIN and BEAGLE; however MERLIN and BEAGLE are 

doing very different things with likelihoods. MERLIN is a pedigree likelihood on a known 

pedigree, i.e. finding recombination and IBD. Beagle is a HMM on an individual, looking for 

historical recombination without a known pedigree.  The other one is SNP “streak” based 

methods, which look for long runs of homozygogous genotypes in contiguous markers, such as 

PLINK and HomozygosityMapper. As for steps two and three, usually linkage analysis generates 

parametric and/or non-parametric statistics and calculates the p-value, while the other methods 

do not calculate rigorous statistics. These characteristics of the different programs are 

summarized in Table 5-1 and described in more detail below. 
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MERLIN (Multipoint Engine for Rapid Likelihood Inference) [Abecasis et al, 2002] is an 

analysis package for family data. For homozygosity mapping, many studies [Winick JD et al., 

1999; Garshasbi M et al., 2006] used MERLIN or other linkage analysis software to estimate 

IBD across affected individuals. They then searched for the regions where the affected 

individuals shared significantly higher IBD. Finally they refined the regions by manually 

checking for homologous haplotypes within each affected individual.  

To estimate IBD, MERLIN uses the Lander-Green algorithm, which uses a HMM and 

assumes linkage equilibrium between markers. MERLIN cannot directly work with high-density 

SNP data, because the markers are in linkage disequilibrium (LD) and because of computational 

limitations on the number of markers in can handle. To handle LD in high-density SNP data and 

reduce the number of markers, MERLIN used a method of clustering of markers. This method 

assumes no recombination within clusters and no linkage disequilibrium between clusters. 

However the suitability of this method depends on the availability of either HapMap data or 

other large datasets to allow estimation of LD patterns. 

There are several additional limitations in the usefulness of MERLIN for estimating 

IBD/HBD using dense SNPs for homozygosity mapping. These include the following. 1) 

MERLIN does not model genotyping errors. It considers the genotyping error as a double 

recombination and needs to be manually fixed. 2) MERLIN requires that the pedigree structure 

be known and specified; however the pedigree structure is not always known. 3) It estimates the 

number of alleles shared IBD among relatives in a pedigree instead of HBD; HBD has to be 

manually checked for. 4) The computational load increase linearly with numbers of markers, but 

exponentially with the number of pedigree members. Even with a recently released MERLIN 

(1.1.2), the maximum pedigree size is limited to 24 bits which is calculated by 2N - F; N is the 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Winick%20JD%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Garshasbi%20M%22%5BAuthor%5D
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number of non-founders, F is the number of founders. Therefore the large pedigrees, especially 

for those with a high level of inbreeding, have to be split into smaller subunits. However, 

splitting families can lead to serious loss of information.  

MERLIN can calculate a p-value based on the above statistic. Assuming a large sample 

approximation, linkage analysis methods can use either a z test for non-parametric statistics 

(NPL all and NPL pairs) or a chi-square test for parametric statistics (LOD score) to calculate a 

p-value. However, both statistics are for IBD sharing, not for HBD. 

HomozygosityMapper [Seelowet al, 2009] is a commonly used software package for 

homozygosity mapping in population or family data, which uses a SNP streak based method to 

estimate IBD/HBD. It reports a score, but it does not specify what that score is and how it is 

calculated. Also, it does not calculate a p-value. 

To estimate IBD/HBD, HomozygosityMapper searches for long runs of HBS (in order to 

identify HBD) in a row. In another word, it screens all samples for blocks of homozygous 

genotypes in contiguous markers, where the frequency of homozygosity is different in affecteds 

and unaffecteds. It allows for genotyping errors because the runs of homozygosity do not need to 

be perfect. However, it focuses on identifying HBD within an individual; it ignores IBD between 

individuals. Therefore, the HBD regions shared by affected individuals reported by 

HomozygosityMapper may contain opposite homozygous genotypes, such as AA and BB for a 

given locus. HomozygosityMapper does not consider family structure and allele frequencies; all 

individuals are considered separately. The selection of window sizes may influence the 

estimation, but complete information is not available for this software. It presumably does not 

account for LD among the markers, though this is less necessary in a SNP streak method than in 

a likelihood-based method. 
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PLINK [Purcell et al, 2007] is another commonly used software package for 

homozygosity mapping in population or family data, which also uses a SNP streak based method 

to estimate IBD/HBD. PLINK calculates neither an IBD/HBD sharing statistic nor a p-value. 

To estimate HBD, PLINK first detects HBS within each individual using sliding 

windows, then pair-wise compares the segments in all samples to identify the matched 

overlapping regions of IBD.  PLINK allows for genotyping errors. Also it pays attention to 

allelic matching between individuals. However, it is not sufficient for IBD/HBD detection in 

consanguineous families. Firstly, it was designed for population data. It ignores the relationship 

among individuals. Secondly, the selection of window sizes and thresholds for HBS/HBD 

regions within an individual are arbitrary, which may be affected by the SNP density and 

expected size of homozygous segments. It also ignores the varied distances between SNPs. It 

allows for genotyping errors, but this can result in failure to detect small segments of HBD. 

Thirdly, it does not thoroughly estimate IBD after detection of HBD; it only pools the allele 

matching results for those individuals who are HBD at a locus.  

BEAGLE [Browning et al, 2010] is a software package that estimates IBD/HBD in 

population data pairwise. It is a likelihood based algorithm, which estimates haplotypes in each 

individual to model both LD between markers and IBD between individuals using a modified 

HMM. It assumes that neither the affected individuals nor their parents are related; therefore it 

might not work optimally in consanguineous family data. BEAGLE does not calculate an 

IBD/HBD sharing statistics or a p-value for the statistic. 
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Table 5-1. Commonly used software in homozygosity mapping 

Software Step 1. Estimate IBD/HBD Step 2. 
Calculate a 

statistics 

Step 3. 
Calculate 
a p-value Data type Algorithms Stratigies Model 

LD 
Limitation 

MERLIN Family Likelihood 
based 

IBD estimation 
for linkage 

analysis; then 
detection of 
homozygous 
haplotypes. 

No Not suitable for complex 
inbred family; linkage 

analysis is less powerful 
than homozygosity 
mapping; complete 

pedigree data is needed. 

Yes, for 
IBD 

Yes, for 
IBD 

Homozygosity
Mapper 

Population SNP streak HBD estimation 
in multiple 
individuals 

simultaneously; 
then association 

test for 
disorder. 

No alleles are not matched 
in estimation of 

HBD/IBD 

Unknown No 

PLINK Population SNP streak HBD estimation 
for each 

individual; then 
pairwise 

comparison. 

No Estimate HBD based on 
single individual, family 
relationship cannot be 

incorporated. 

No No 

BEAGLE Population Likelihood 
based 

Haplotype 
based 

estimation of 
IBD/HBD, then 

pairwise 
comparison. 

Yes need to estimate 
haplotype first 

No No 

 

5.2 DATASETS USED IN THIS STUDY  

We used both simulated and real datasets in this study. We first used a dense SNP (GWAS) 

dataset, the GENEVA dental caries dataset, to develop and test the methods for estimation of 

IBD. The phenotype data in this dataset were not used, only genotype and pedigree data. We 

then used simulated datasets to further test the performance of our methods. Finally, we applied 

our methods to identify disease genes in two real inbred pedigrees that were genotyped on a SNP 

linkage panel (approximately 6,000 markers). 
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5.2.1 Geneva Dental Caries Dataset 

The GENEVA dental caries study (http://www.ncbi.nlm.nih.gov/gap?term=geneva) is a large 

community-based study of oral health genotyped on the Illumina HumanHap610 chip. We 

selected samples from nuclear families with two or more offspring. We used this dataset to 1) 

visualize the pattern of IBD configurations across siblings from a nuclear family using plots; 2) 

roughly check whether the estimated IBD configurations from our methods were consistent with 

what we observed in the plots. 3) train our methods for IBD estimation and optimize the 

parameters.  

5.2.2 Simulated Datasets  

 The dental caries dataset is helpful to develop our methods for IBD estimation. However, it does 

not allow us to examine whether our methods can correctly detect the boundaries of the IBD 

configurations, since the true IBD configurations in that dataset are unknown. In addition, it is 

not sufficient for developing methods for HBD estimation in inbred families, since parents do 

not have any documented relationships. To solve these problems, we simulated high density 

phased datasets to construct various IBD and HBD configurations.   

We first retrieved phased genome-wide genotyping data from a pair of parents (ID 

NA12748, NA12749) in HapMap Phase III. 

(http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009-02_phaseIII/HapMap3_r2/CEU/TRIOS/). 

Next, we simulated the recombination events in meiosis at some previously selected breakpoints 

http://www.ncbi.nlm.nih.gov/gap?term=geneva
http://hapmap.ncbi.nlm.nih.gov/downloads/phasing/2009_02_phaseIII/HapMap3_r2/CEU/TRIOS/
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within each parent, and generated the simulated offspring samples with known IBD sharing 

configurations at exact loci (Figure 5-1).  

To observe the influence of marker density on estimation of IBD/HBD, we tested two 

sets of markers. One is Illumina HumanHap610K (over 610K markers), the other is Illumina 6K 

linkage panel (over 6K markers). We retrieved the allele frequencies of those markers from the 

PennCNV PFB (Population frequency of B allele) file: hhall.hg18.pfb, which contains estimates 

of population (European) allele frequencies for more than 1M markers from the Illumina chips. 

 

Figure 5-1. Construction of simulated IBD siblings 

5.2.3 Inbred Pedigree Dataset  

We applied our methods to map disease genes in two real inbred pedigrees. The two pedigrees 

are shown in Figures 5-2 and 5-3. Both pedigrees are for the same autosomal recessive disorder, 



 

 

 93 

although they are from somewhat different populations. All the samples with a star (*) were 

genotyped using Human Linkage-24 BeadChip (Infinium assay). 

 

 

  

 

Figure 5-2. Inbred pedigree 1 
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Figure 5-3. Inbred pedigree 2 

 

5.3 OUR METHODS FOR SINGLE NUCLEAR FAMILY DATA WITH A 

PAIR OF AFFECTED SIBLINGS  

We propose a procedure which integrates three steps for homozygosity mapping: estimation of 

IBD/HBD, calculation of a sharing statistic, and calculation of a p-value for the statistic. In this 

section we use the example of a single nuclear family with a pair of affected siblings to introduce 

our methods for each of the three steps.  

To illustrate our methods for IBD/HBD estimation, we divide our descriptions into three 

parts: 1) theoretical model (section 5.3.1 and 5.3.2); 2) simulation analysis (section 5.3.3 and 

5.3.4); and 3) real data analysis (section 5.3.5 and 5.3.6). To better understand the methods we 
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propose for IBD+HBD estimation, we first introduce IBD estimation (in a single family with 

unrelated parents, Figure 5-4A); and then joint estimation of IBD/HBD (in a single family with 

related parents, Figure 5-4B). After IBD/HBD estimation, we show how to calculate a sharing 

statistic (section 5.3.7) and calculate a p-value (section 5.3.8). 

 

     (A)                                                        (B) 

Figure 5-4. (A) Single nuclear family with unaffected unrelated parents and a pair of 
affected children. (B) Single nuclear family with unaffected closely related parents (relationship 
unknown) and a pair of affected children. 

5.3.1 Methods for Estimation of IBD 

Our goal is to use SNP data from a whole chromosome in a nuclear family and estimate locations 

of meiotic recombination, or equivalently, estimate IBD between the pair of siblings at each 

point on the chromosome. At each point on the chromosome, two siblings have 1/4 chance to 

share 2 IBD, 1/2 chance to share 1 IBD, 1/4 chance to share 0 IBD. If no recombination happens 

during meiosis, the IBD region shared by two siblings should be a whole chromosome long. 

However, the regions of IBD are usually broken by recombination. The average recombination 

rate is one per morgan (approximately 108 base pairs). A standard Poisson process proposed by 

Haldane [Ott 1985] has been used to model the recombination event.  
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In practice, IBD must be estimated in some way from identity by state (IBS), or allele 

matching. Table 5-2 lists the possible configurations of IBS (identity by state) for a pair of 

siblings at a given locus. Table 5-3 summarizes all possible IBD states for the pair of siblings, 

and shows the corresponding possible IBS states for each IBD state. For example, for 2 alleles 

IBD, the IBS configurations can only be AA / AA or AB /AB; however, for 1 allele IBD, the IBS 

configurations can be AA / AB, AA /AA or AB /AB.  

 
                      Table 5-2. IBS configurations between a pair of siblings 
 

IBS states Observed IBS configurations * 
4 AA AA 
3 AA AB 
2 AA BB 
1 AB AB 

*AA, AB and BB in IBS configurations represent observed SNP genotypes at a given locus.  

 
  Table 5-3. IBD configurations and all possible corresponding IBS states 

between a pair of siblings 

Hidden IBD states 
IBD  

configurations * Corresponding IBS states 
a 13  13 4,1 
b 13  14 4,3,1 
c 13  24 4,3,2,1 

* 13, 14, 24 in IBD configurations represent allele sharing status, given parents IBD 
configuration is 12 and 34 at a given locus. Same number represents same allele, different 
numbers indicate different allele. 
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If we plot the IBS configurations for each marker along a chromosome as in Figure 5-5, 

we can view combinations of IBS states that can be used to infer the IBD states. For example, at 

the left hand side of Figure 5-5 we observe the simultaneous existence of IBS states 1, 2, 3, and 

4. They are not literally simultaneous – any given marker is in only one state - but markers in 

those four states are densely interspersed, giving the impression of parallel lines in the plot. This 

corresponds to IBD state c (0 alleles shared IBD between the sibs). The estimated IBD states for 

Figure 5-5 are c, b, a, b, c, b, moving from left to right. However, the estimation based on visual 

inspection of graphs is rough; it may be influenced by genotyping errors and marker densities. 

Also the breakpoints of the IBD states are difficult to determine. To efficiently and accurately 

estimate the hidden IBD configurations, we developed two algorithmic methods. One is a SNP 

streak method; the other is a HMM based method. 

 

Figure 5-5. IBS configurations on chromosome 3 for two siblings from dental caries dataset 

 

Our SNP streak method takes advantage of two features to define the breakpoints of 

various IBD states. It is shown in Table 5-3 that IBS states 4 and 1 are common to all IBD 
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configurations; IBS state 3 is common to IBD configurations b and c; while IBS state 2 is unique 

to IBD configuration c. Also, under the assumption that the recombination events in a pair of 

siblings follow a Poison process, two recombinations cannot occur simultaneously at any marker. 

So IBD state can only switch between “a” and “b”, or “b” and “c”. Taking advantage of these 

two features, the appearance or disappearance of IBS state “3” can serve as a breakpoint between 

IBD state “a” and state “b”; while the appearance or disappearance of IBS state “2” can serve as 

a breakpoint between IBD state “b” and state “c”.  

The SNP streak method uses a sliding window, with window size depending on the 

density of SNPs in the data, to estimate the IBD. We allow for genotyping errors in the following 

way. For any given window, we first look for genotyping errors. If the occurrence of IBS state 

“2” or “3” is only once in a given window, we check a pre-set number of markers (the number of 

markers depends on the selected error rate) before and after that marker; if the singular IBS state 

does not appear in any of those markers, it is considered as a genotyping error. After excluding 

genotyping errors, we use following algorithm to detect IBD. Detailed information is described 

in Appendix C. 

1) In the initial window, we get an IBD state call according to IBS states in that window; 

we then assign that IBD state to all markers on the chromosome. 

2) Next, we slide the window to find the breakpoint for IBD state change.  

3) Once we find a breakpoint, we will replace the IBD state of markers after that 

breakpoint (including that point) with the new IBD state.  
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4) We then repeat procedure 2), until the end of the markers. 

The SNP streak algorithm does not use information on SNP allele frequencies. In 

addition, the choice of window size is arbitrary. Selection of a large window size may miss some 

small 2 IBD regions; a small window size will generate some false 2 IBD regions.  

Instead of using a SNP streak method as described above, it is also possible to use hidden 

Markov models to find regions of IBD. The Markov model is a statistical technique that models 

a Markov process, where the probability of observing a particular state at a particular time point 

only depends on the state at the previous time point. In a hidden Markov model, the states cannot 

be directly observed, therefore are “hidden.” In this project, we used a discrete form first order 

hidden Markov model (HMM) [Rabiner et al, 1989; Petrushin 2000, Nikolai Shokhirev 2010] to 

identify the IBD configurations between a pair of siblings. The literal form of the model assumes 

that the markers are not in LD, but we account for LD by adjusting model parameters.  

A hidden Markov model requires specifying the hidden states, the transition probabilities 

of the true Markov model, the observed states, the probability distribution relating the hidden and 

observed states (emission probabilities) and the initial probability. The hidden state in our 

algorithm is the IBD sharing configuration at a given locus. These are listed in Table 5-3 column 

2. The observed states are the IBS configurations. These are summarized in Table 5-2. The time 

points are the SNP markers ordered by their physical location on a chromosome. Although the 

hidden state is not observable, we can calculate the emission probability according the allele 

frequency at a marker. The emission probabilities are listed in Table 5-4 under the assumption 

that the two parents are not inbred and are unrelated (i.e. the four parental alleles are 
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independent. q is the minor allele frequency at a given SNP marker, p = 1 - q, and ɛ is the total 

genotyping error rate for those individuals. 

Table 5-4. Emission probabilities (Probabilities of IBS states given an IBD state) of 
HMM in a pair of siblings. 

 

IBD state IBS state 

 
1 2 3 4 

a 2pq (1 - ɛ) 0 ɛ (p2 + q2)(1 - ɛ) 

b 
(p2q + pq2)(1 - ɛ) +  

2/3(p2q + pq2)ɛ 2/3(p2q + pq2)ɛ 

(2p2q + 2pq2)(1 - ɛ) + 
 (p3 + q3)ɛ +  
(p2q + pq2)ɛ 

(p 3+ q3)(1 - ɛ) + 
2/3(p2q + pq2)ɛ 

c 
(2p2q2) (1 - ɛ) + 
4/3(p3q + pq3)ɛ 

(4 p2q2)(1 - ɛ) + 
4/3(p3q + pq3)ɛ 

(4p3q + 4pq3)(1 - ɛ) + 
 (p4 + q4)ɛ + 6p2q2ɛ 

(p4 + q4)(1 - ɛ) +  
4/3(p3q + pq3)ɛ 

 
 
 
 
 

The transition probability describes the underlying Markov process - the probability of 

having an IBD sharing state change between two adjacent SNPs. The transitions of the IBD 

sharing states are due to homologous recombination during meiosis. Let λ be the recombination 

rate in morgans. If we assume equal genetic distance between markers, the transition 

probabilities would be as in Table 5-5. However, in real SNP arrays, the distance between 

markers varies. In general, IBD state is unlikely to change for SNPs that are nearby but is more 

likely to change for SNPs that are far apart. To accommodate heterogeneous distances into the 

HMM, Marioni  [ Marioni et al. 2006 ] proposed a modified transition matrix. It was designed to 

model the non-linear changes in the probabilistic structure of the transition matrix caused by the 

heterogeneous distance. However in our model, there is an approximately linear relationship 

between the changes of recombination rate and adjacent SNP distances, so we simplified 

http://www.ncbi.nlm.nih.gov/pubmed/16533818
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Marioni’s equation. Let di denote the physical distance (base pairs) between two adjacent SNPs i 

and i +1. We assume the recombination rate is one per Morgan, and assume 100 Mb is 

approximately equivalent to one Morgan. Let D be a constant that was set as 100 Mb, the 

transition probability can be modeled as in Table 5-6. The hidden IBD states were then identified 

using the Viterbi algorithm [Forney et al, 1973; Shokhirev N, 2010]. All computation were 

programmed and completed in R version 2.10.1 [R Development Core Team, 2008]. 

The use of the hidden Markov model also requires specifying the initial probabilities of 

the Markov process. We used equal probability for each IBD configuration as the initial 

probability; in our example of a pair of siblings, it was 1/3, 1/3, and 1/3. An alternative initial 

probability could be the probability of each IBD configuration given the relationship of the 

pedigree under the null hypothesis of no linkage of the locus with disease; in our example, for 2 

IBD, 1 IBD and 0 IBD, it would be 1/4, 1/2, and 1/4. 

We tested both the HMM method and the SNP streak method on the dental caries dataset. 

The estimated IBD states by both methods were consistent with what we observed based on 

Figure 5-5. However, we cannot judge whether they are completely correct in this dataset, 

because we don’t know the truth. We therefore use simulated data to examine that later. 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Viterbi_algorithm
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Table 5-5. Transition probabilities of hidden states 
 

  a b c 

a 1-4λ 4λ 0 

b 2λ 1-4λ 2λ 

c 0 4λ 1-4λ 

 
 

 
                                Table 5-6. Transition probability of heterogeneous HMM 
 

  a b c 
a 1 - 4di/D 4di/D 0 
b 2di/D 1 - 4di/D 2di/D 
c 0 4di/D 1 - 4di/D 

 
 

5.3.2 Methods for Estimation of IBD and HBD Simultaneously 

The methods described above can be extended to analyze a two-child nuclear family with related 

parents (Figure 5-4 B) and estimate both IBD and HBD (IBD+HBD). For a given locus, all 

possible IBS + HBS configurations for a pair of siblings from inbred parents are listed in Table 

5-7. In Table 5-8, we summarize the possible IBD + HBD states and all possible IBS + HBS 

states for each given IBD + HBD state.  
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      Table 5-7. Observed IBS + HBS configurations 
IBS + HBS states Observed IBS + HBS configurations 

4 AA AA 
3 AA AB 
2 AA BB 
1 AB AB 

  

Table 5-8. IBD + HBD configurations and Corresponding IBS + HBS states 

Hidden IBD + HBD states IBD + HBD configurations Corresponding IBS + HBS states 

a 13  13   4,1 

b 13  14 4,3,1 

c 13  24 4,3,2,1 

d 11  11 4 

e 11  13 4,3 

f 11  23 4,3,2 
 

Our SNP streak method for IBD + HBD calling is similar to the one used in IBD 

estimation for the outbred family above. We define IBD + HBD states according to the IBS + 

HBS states seen in a window.   

Our HMM method described above can also be extended to consider both IBD and HBD. 

Again, we must specify true states, initial probabilities, and transition probabilities, hidden states, 

and emission probabilities. The observed states are the homozygosity by genotype state (HBS) + 

IBS shown in Table 5-7. The hidden states are the HBD+IBD sharing configurations at a given 

locus, which are listed in Table 5-8. Equal probability for each IBD+HBD configuration is used 

as the initial probability. The emission probability is summarized in appendix I. Calculation of 

transition probabilities is more complicated than in the previous example. We therefore describe 

our derivation for the transition probabilities in detail. The transition process is not a real Markov 
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process. The current IBD+HBD state in a pair of siblings does depend not only on their previous 

state of IBD+HBD, but also on the IBD sharing states between parents. The former is determined 

by recombination events in the parents; the latter is determined by the relationship between the 

parents and thus by earlier recombination events. However, we use a model that assumes the 

transitions are Markov. We first calculate the approximate transition matrix of IBD states in 

parents. For a pair of parents that are first cousins, let φ0 denote the event that parents sharing 0 

IBD, φ1 denote that parents sharing 1 IBD, we have P(φ0) = 3/4, P (φ1) = 1/4.  

Assuming Haldane’s model, the g generations after founding, single-path IBD tracts 

would have approximately exponential length distributions with a mean of 1 / (2g) Morgan. For 

first cousin parents, g = 2, the expected IBD length A = 1/2 g = 1/4 Morgan = 100/4 cM. Let B 

denote the expected length of non-IBD tracts. Since A / (A + B) = 1/4, solving it, we get B = 

300/4 cM. So the expected non-IBD length B = 300/4 cM. Therefore, in this pair of closely 

related parents, the transition from IBD to non-IBD is t0 = 4/100 per CM; the transition from 

IBD to IBD is 1 - t0; the transition from non-IBD to IBD is t1 = 4/300 per CM; the transition 

from non-IBD to non-IBD is 1 - t1. Feingold [1993] proposed a method to calculate the exact 

transition probabilities for a function of a Markov chain. Using her method, we got exactly the 

same results here. 

Next, we calculate the IBD+HBD transition matrix for a pair of siblings given the IBD 

state in the parents. Again according to the Poisson process model, we assume that at any time 

point, the transition of IBD in parents and recombination in meiosis will not happen at the same 

time. Let Ω denote the whole transition matrix for a pair of siblings; φ00 denotes transition from 

non-IBD to non-IBD in parents; φ11  denotes transition from IBD to IBD in parents;  φ01 denotes 
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transition from non-IBD to IBD in parents; φ10 denotes transition from IBD to non-IBD in 

parents. Let i denotes a previous IBD+HBD state; j denotes a current state. ωij denotes the 

transition from i to j.  

ωij = P(ωij |φ0)  P(φ0) + P(ωij |φ1)  P(φ1) 

      = [P(ωij |φ00) P(φ00) + P(ωij |φ01) P(φ01)] P(φ0) + [P(ωij |φ11) P(φ11) + P(ωij |φ10) P(φ10)] P(φ1) 

We can eventually get the transition matrix (Table 5-9). This transition matrix is based on 

the assumption that the parents are first cousins. We also calculated the transition matrix by 

assuming the parents are second cousind, and tested both in simulated and real data. We got the 

same estimated HBD+IBD segments in the children, no matter the assumed relationship of the 

parents. So our model is robust to this assumption, at least as between first and second cousin 

relationships.  

 
Table 5-9. Transition probabilities of hidden states 

  a b c d e f 

a 
1-3 (1- t1) di/D - 
(1-t0) di/D - 3/16t1 

3 (1-t1) di/D + 2/3(1-
t0) di/D 0 3/16t1 1/3(1- t0) di/D 0 

b 
3/2(1-t1) di/D + 
1/3(1-t0) di/D 

1- 3(1- t1) di/D - 
2/3(1- t0) di/D -3/8 t1 3/2(1- t1) di/D 0 3/8 t1 + 1/6(1- t0) di/D 1/6(1- t0) di/D 

c 0 3(1- t1) di/D + 3/8 t1 
1-3(1- t1) di/D 
- 3/4 t1 0 0 3/8 t1 

d 1/4t0 0 0 
1-1/4t0 - (1-t0) 
di/D (1- t0) di/D 0 

e 1/4(1- t0) di/D 1/4[(1-t0) di/D + t0] 0 1/4(1- t0) di/D 1-(1-t0) di/D -1/4t0  1/4(1- t0) di/D 

f 0 1/2(1- t0) di/D 1/4t0 0 1/2(1- t0) di/D 
1- (1-t0) di/D -
1/4t0 
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5.3.3 Simulation Study to Compare SNP Streak and HMM Methods for IBD Estimation 

In section 5.3.1 we introduced two methods for IBD estimation in a two-child nuclear family 

with unrelated parents: a HMM-based method and a SNP streak based method. In this section we 

test their accuracy using simulated data. We did the simulation study qualitatively. We randomly 

selected the breakpoints for each chromosome and ran the simulation tests across all autosomal 

chromosomes in human genome. In this section we only show the results on chromosome 3 as an 

example.  For a more rigorous simulation test, we should run the test in a large number of times 

and report the percentage of correct IBD “calls.” Since the model assumes that the markers are in 

linkage equilibrium, which is not true for high density markers, we evaluate the performance of 

our methods using two marker sets with different density: Illumina 6K linkage panel and 

Illumina HumanHap 610K. We discuss performance in the Illumina 6K linkage panel first, and 

the Illumina HumanHap 610K next. In each marker set, we simulated IBD configurations first; 

then estimated the IBD configurations using our two methods; and finally compared the 

estimated IBD with the known simulated IBD configurations to evaluate the accuracy of our 

methods. 

Figure 5-6 is the plot of IBS configurations of simulated sibling pairs for the Illumina 6K 

linkage panel markers on chromosome 3. We can roughly see from Figure 5-6 that there are 6 

different segments of IBS configuration combinations, which may imply 6 different IBD states. 

The true simulated IBD states are listed in Table 5-10. Inferred IBD by our SNP streak method 

with window size 15 SNPs (average distance is 11 Mb) shown in Table 5-11. Inferred IBD by 
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our HMM model is shown in Table 5-12. From the above comparison we can see that both 

methods work very well for the simulated data with 6K linkage panel SNP markers. 

 

Figure 5-6. The plot of IBS configurations of simulated siblings with Illumina 6K 
linkage  panel markers on chromosome 3. 

 
 
 

Table 5-10. The true simulated IBD states 
chr start_snp_index end_snp_index IBD_state 

3 1 40 1 

3 41 80 2 

3 81 120 3 

3 121 160 2 

3 161 200 1 

3 201 263 2 
 
 
 
 
 
 
 
 



 

 

 108 

Table 5-11. Inferred IBD by SNP streak method 
chr start_snp_index end_snp_index IBD_state start_position end_position 
3 1 40 1 177,033 27,228,974 
3 41 91 2 28,649,284 70,395,473 
3 92 120 3 70,528,666 97,161,899 
3 121 161 2 98,368,882 127,977,995 
3 162 200 1 128,119,045 158,772,629 
3 201 263 2 158,876,463 198,707,094 

 
 

 
 

Table 5-12. Inferred IBD by our HMM model 
chr start_snp_index end_snp_index IBD_state start_position end_position 
3 1 40 1 177,033 27,228,974 
3 41 90 2 28,649,284 69,831,064 
3 91 120 3 70,395,473 97,161,899 
3 121 160 2 98,368,882 126,294,003 
3 161 197 1 127,977,995 156,507,016 
3 198 263 2 158,239,353 198,707,094 

 

We next evaluate the performance of those two methods using the Illumina HumanHap 

610K markers. This marker set has high density - 610K markers genome-wide. Figure 5-7 shows 

IBS configurations of simulated sibling pairs using the Illumina HumanHap 610K markers on 

chromosome 3. We can see from Figure 5-7 that there are 6 different segments of IBS 

configuration combinations, which may imply 6 different IBD states. Table 5-13 lists the true 

simulated IBD configurations. Table 5-14 lists the inferred IBD by SNP streak with window size 

of 400SNPs (average distance is ~2.2 Mb). The HMM model reported a lot of small IBD 

segments for the high density 610K markers. We therefore have to optimize the parameter D. If 

we set D = 1021, then our HMM method works very well, which actually implies that using the 

incorrect value for D makes up for the model “error” of assuming no LD. Table 5-15 shows the 
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inferred IBD by our HMM method after setting D = 1021. The estimated IBDs by the two 

methods are consistent with the real IBD configurations. We also found that the two choices of 

initial probability have no effect on the IBD estimation. 

 

 

Figure 5-7. The plot of IBS configurations of simulated paired siblings by using Illumina 
HumanHap 610K markers on chromosome 3. 

 

                        Table 5-13. The true simulated IBD states 
chr seq_start seq_end IBD_state 

3 1 5000 1 
3 5001 10000 2 
3 10001 15000 3 
3 15001 20000 2 
3 20001 25000 1 

3 25001 35684 2 
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Table 5-14. Inferred IBD by SNP streak method 
chr seq_start seq_end IBD_state start_position end_position 
3 1 5001 1 38,411 19,458,699 
3 5002 10098 2 19,487,078 45,785,098 
3 10099 14957 3 45,787,518 70,675,771 
3 14958 19997 2 70,678,539 110,141,846 
3 19998 25042 1 110,145,770 138,682,404 
3 25043 35684 2 138,685,339 199,348,860 

 

                    Table 5-15. Inferred IBD by our HMM method (D = 1021) 
chr seq_start seq_end IBD_state start_position end_position 
3 1 4999 1 38,411 19,449,331 
3 5000 10086 2 19,455,317 45,737,729 
3 10087 14981 3 45,767,213 70,817,227 
3 14982 19996 2 70,849,409 110,134,811 
3 19997 25036 1 110,141,846 138,642,262 
3 25037 35684 2 138,672,290 199,348,860 

5.3.4 Simulation Study to Compare Two Methods for IBD+ HBD Estimation 

In this section, we use simulated data very similarly to what was done above to evaluate the 

performance of those two methods on joint estimation of IBD+HBD in the two-sibling nuclear 

family with related parents. Again we use two sets of markers with different densities. We use 

Illumina 6K markers first, followed by Illumina HumanHap610K. Again in each marker set, we 

simulate IBD configurations first; followed by estimation of IBD configurations using our two 

methods; and finally comparison of the estimated IBD with the known simulated IBD 

configurations to evaluate the accuracy of our methods. 

Figure 5-8 is the plot of IBS + HBS configurations of a simulated sibling pair using the 

6K linkage panel markers on chromosome 3. It is relatively hard to tell based on Figure 5-8 how 



 

 

 111 

many different patterns of IBS + HBS configurations exist, because the expected IBD+HBD 

regions are smaller than previous IBD only regions and the markers are not high density. This 

actually suggests the necessity of statistical methods for estimation of IBD+HBD.  

The true simulated IBD + HBD is listed in the Table 5-16. Inferred IBD + HBD by our SNP 

streak method with window size 15 SNPs is shown in Table 5-17. Inferred IBD + HBD by our 

HMM model is shown in Table 5-18. The estimated IBD+HBD by SNP streak and HMM 

methods have highly consistent results with each other and with the true IBD+HBD 

configurations, which suggests that both of them work very well with the Illumina 6K marker 

set.

 

Figure 5-8. The plot of IBS + HBS configurations of simulated siblings with 6K linkage panel 

markers on chromosome 3. 
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Table 5-16. The true simulated IBD + HBD states 
chr start_snp_index end_snp_index HBD_state 
3 1 50 3 
3 51 100 2 
3 101 120 1 
3 121 150 4 
3 151 200 1 
3 201 263 2 

 
 
 
 

Table 5-17. Inferred IBD + HBD by SNP streak method 
chr start_snp_index end_snp_index HBD_state start_position end_position 
3 1 49 3 177,033 37,286,095 
3 50 96 2 37,560,742 72,109,515 
3 97 125 1 73,514,520 101,388,492 
3 126 150 4 101,916,281 120,791,949 
3 151 200 1 121,602,168 158,772,629 
3 201 263 2 158,876,463 198,707,094 

 
 
 

Table 5-18. Inferred IBD + HBD by HMM method  
chr start_snp_index end_snp_index HBD_state start_position end_position 
3 1 50 3 177,033 37,560,742 
3 51 96 2 41,353,624 72,109,515 
3 97 116 1 73,514,520 89,589,647 
3 117 150 4 95,087,815 120,791,949 
3 151 197 1 121,602,168 156,507,016 
3 198 263 2 158,239,353 198,707,094 

 
 

Figure 5-9 is the plot of IBS + HBS configurations of simulated paired siblings by using 

Illumina 610K markers on chromosome 3. The true simulated IBD + HBD is listed in the Table 

5-19. Inferred IBD + HBD by SNP streak method with window size 400 SNPs is shown in Table 

5-20. Again, our HMM algorithm reported a lot of small segments of IBD+HBD, due to LD of 
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high dense markers. After setting the parameter D = 1021, the inferred IBD + HBD by our HMM 

model is shown in Table 5-21. Results from our two methods are consistent with true IBD+HBD 

configurations in simulated dataset. HMM has a little better prediction of breakpoints. 

 

Figure 5-9. The plot of IBS + HBS configurations of simulated siblings with Illumina 
610K markers on chromosome 3. 

Table 5-19. The true simulated IBD + HBD states 
chr Start_snp_index End_snp_index IBD_state 
3 1 5000 1 
3 5001 10000 2 
3 10001 15000 3 
3 15001 20000 2 
3 20001 22000 1 
3 22001 23000 4 
3 23001 25000 1 
3 25001 35684 2 
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Table 5-20. Inferred IBD + HBD by SNP streak method 
chr start_snp_index end_snp_index HBD_state start_position end_position 
3 1 5000 1 38,411 19,455,317 
3 5001 10097 2 19,458,699 45,784,333 
3 10098 14956 3 45,785,098 70,661,075 
3 14957 19996 2 70,675,771 110,134,811 
3 19997 21991 1 110,141,846 121,306,727 
3 21992 23000 4 121,311,202 126,729,053 
3 23001 25041 1 126,732,030 138,680,883 
3 25042 35684 2 138,682,404 199,348,860 

 

Table 5-21. Inferred IBD + HBD by our HMM model (D = 1021) 
chr start_snp_index end_snp_index HBD_state start_position end_position 
3 1 4999 1 38,411 19,449,331 
3 5000 10086 2 19,455,317 45,737,729 
3 10087 14981 3 45,767,213 70,817,227 
3 14982 19996 2 70,849,409 110,134,811 
3 19997 21991 1 110,141,846 121,306,727 
3 21992 22999 4 121,311,202 126,720,789 
3 23000 25036 1 126,729,053 138,642,262 
3 25037 35684 2 138,672,290 199,348,860 

5.3.5 Inbred Pedigree Data to Compare Two Methods for IBD Estimation 

In order to further examine the performance of our two methods for IBD estimation, we used 

inbred pedigree 1. This data has the merit that it is contributed by many factors and their 

interactions which may not be modeled in simulated data. But we don’t know the true results, so 

we compared their performance with each other. Compared with dental caries dataset, which 

used illumine 610K, these inbred pedigrees were genotyped using the Illumina 6K linkage panel 

array. Figure 5-10 is the plot of IBS configurations for a selected a pair of siblings on 

chromosome 3 in pedigree 1. The inferred IBD by our SNP streak method with window size 15 
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SNPs is shown in Table 5-22. Inferred IBD by our HMM model is shown in Table 5-23. The 

results from the two methods are consistent, except that the first segment of IBD reported by 

HMM was not reported by the SNP streak method, which is likely due to that segment of IBD is 

smaller than the window size. 

 

Figure 5-10. IBS configurations of a pair of siblings on chromosome 3 in inbred pedigree 

1. 

Table 5-22. Inferred IBD by SNP streak method 
chr start_snp_index end_snp_index IBD_state 
3 1 33 2 
3 34 49 1 
3 50 72 2 
3 73 87 3 
3 88 222 2 
3 223 274 1 
3 275 292 2 

              
              

 
 
 
 



 

 

 116 

Table 5-23. Inferred IBD by HMM method 
chr start_snp_index end_snp_index IBD_state start_position end_position 
3 1 11 1 169,613 4,084,699 
3 12 33 2 4,568,187 23,848,605 
3 34 47 1 24,449,356 32,530,183 
3 48 70 2 33,880,569 49,738,341 
3 71 88 3 50,089,518 63,538,921 
3 89 223 2 64,402,141 156,507,016 
3 224 274 1 157,451,011 190,015,502 
3 275 292 2 191,130,782 198,707,094 

5.3.6 Inbred Pedigrees Data to Compare Two Methods for IBD+HBD Estimation 

Next, we compared the performance of our two methods for jointly estimating IBD+HBD in 

pedigree 1. The plot of IBS+HBS configurations is same as Figure 5-10. The inferred IBD + 

HBD by our SNP streak method with window size 11 SNPs is shown in Table 5-24. Inferred 

IBD + HBD by our HMM model is shown in Table 5-25. It appears that the SNP streaks method 

missed a small IBD region (SNP index 1-11) at the beginning of chromosome 3, and broke large 

regions (SNP indices 71~88 and 89 ~ 130 into smaller regions, due to the arbitrary window size 

and ignorance of allele frequency. 

 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 117 

 
Table 5-24. Inferred IBD + HBD by SNP streak method 

chr start_snp_index end_snp_index IBD_state start_position end_position 
3 1 33 2 169,613 23,848,605 
3 34 49 1 24,449,356 35,050,834 
3 50 72 2 35,059,970 50,962,234 
3 73 76 3 51,556,549 53,884,770 
3 77 87 6 55,246,275 63,417,661 
3 88 107 5 63,538,921 74,336,367 
3 108 123 2 75,317,481 86,643,308 
3 124 188 5 86,929,468 132,970,355 
3 189 222 2 133,018,071 156,310,480 
3 223 274 1 156,507,016 190,015,502 
3 275 292 2 191,130,782 198,707,094 

 
 
 
 
 
 
 

 
Table 5-25. Inferred IBD + HBD by our HMM method 

chr start_snp_index end_snp_index IBD_state start_position end_position 
3 1 11 1 169,613 4,084,699 
3 12 33 2 4,568,187 23,848,605 
3 34 47 1 24,449,356 32,530,183 
3 48 70 2 33,880,569 49,738,341 
3 71 88 3 50,089,518 63,538,921 
3 89 130 2 64,402,141 90,472,437 
3 131 187 5 95,087,815 132,129,169 
3 188 223 2 132,970,355 156,507,016 
3 224 274 1 157,451,011 190,015,502 
3 275 292 2 191,130,782 198,707,094 

5.3.7 Calculation of IBD/HBD Sharing Statistics 

After estimation of IBD/HBD configurations, we would like a statistic to measure how well the 

IBD/HBD sharing pattern in the family fits the genetic model. For example, under a simple 
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Mendelian model, we would expect all affected individuals to share both IBD and HBD, while 

no unaffected individual should fully share IBD with the affecteds. If we do not expect a simple 

Mendelian model, we might prefer a statistic that gives the highest score to the sharing 

configuration described above, but some intermediate score to a configuration in which, say, one 

unaffected member of the family also shares IBD with the affecteds. We consider both 

parametric and non-parametric IBD/HBD sharing statistics. 

We first propose a non-parametric score function, S, for IBD/HBD configurations, in the 

manner of non-parametric linkage analysis. Let φ represent the IBD/HBD configuration of the 

target individuals, which in our example is the 2 affected siblings. A “perfect” score function for 

a Mendelian mode of inheritance is: S(φ) =1 if φ is 11 11; otherwise S(φ) = 0.  It assumes 

complete penetance and no phenocopies. Penetrance is defined as the proportion of individuals 

who carry a disease gene but that develop an observable disease trait. A phenocopy is defined as 

an individual who does not carry a disease gene but nonetheless displays a disease trait. A 

“forgiving” score function is a multi-class scoring rule that allows for incomplete penetrance 

and/or phenocopies. For example, we can score IBD/HBD configuration 11 12 as 1/5 (an 

arbitrary score, or based on the penetrance rate), instead of 0. So, for any observed IBD/HBD 

configuration at a specific locus, the non-parametric score statistic T= S(φ) actually measures the 

extent of IBD/HBD across the affected individuals compared to unaffected ones. In other words, 

we incorporate the affectedness information into the score statistic.  

We next propose a parametric alternative: a scoring function based on the logarithm of 

likelihood ratio. Let L1 be the maximum value of the likelihood of the data. Let L0 be the 
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maximum value of the likelihood of the data under the null hypothesis of no linkage of 

IBD/HBD with the disease, which is just the Mendelian probability of the IBD/HBD 

configuration. We can form the log-likelihood ratio statistic ln (L1 / L0). Let φ represent the 

IBD/HBD configuration of the target individuals - in our example the 2 affected siblings; ℜ is 

their relationship in the pedigree; ω denotes the phenotypes of the 2 siblings; f is the penetrance 

of each genotype. For simplicity, we use an outbred family here as an example. If we assume the 

parents’ IBD configurations are 12 34, then L0 = P (φj |ℜ ) for each IBD configuration class j 

(j=1, 2, 3) are listed in Table 5-26. For L1 we have: 

     L1 = P (φj | ω, f , ℜ ) = P(ω | φj, f , ℜ) P (φj |ℜ) / P (ω|f) 

     P(ω|f) = P (φj ) P(ω | φ j, f)           

               = 1/4 ∑4

1j=
P [ω|φ (j=1), f] + 1/2 P [ω|φ (j =2), f] + 1/4 P [ω|φ (j =3), f]   

Let D represent the disease allele; d is the non-disease allele; q is the disease allele 

frequency; f is the penetrance rate, which refers to a rate of occurrence of a disease among 

individuals whose genotypes are rare homozygosity. For example, if f is100%, all individuals 

with DD in a recessive disorder will be affecteds. For simplicity, we assume penetrance of the 

common homozygote is zero, then P[ω | φ( j=1), f]  = P(ω | φ(j =1), sib1 carries DD)  P(sib1 carries 

DD) + P (ω | φ(j =1), sib1 carries Dd)  P (sib1 carries Dd) + P (ω | φ(j =1), sib1 carries dd)  P (sib1 

carries dd). We can easily derive that in our example: P (ω | φ(j =1), sib1 carries DD) P (sib1 

carries DD) = f 2q2 ; P (ω | φ(j =1), sib1 carries Dd) = P (ω | φ(j =1), sib1 carries dd) =0. Therefore, 

P [ω | φ(j =1), f] = f 2q2. Similarly, we can get the conditional probabilities of affection states for 

other IBD configurations, and finally get the log likelihood ratio statistic ψ. It is obvious that ψ is 
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a function of disease allele frequency q and penetrance f. Since in real world, we do not know the 

true values for parameters q and f, we prefer a non-parametric method to a parametric one. 

Table 5-26. P (φj | ℜ ) for each IBD configuration class j 

IBD configuration P (φj | ℜ ) 
class indicator (j) Sib1 Sib2   

1 13 13   1/4 
2 13 14  1/2  
3 13 24   1/4 

 

5.3.8 Calculate a P-Value for the Statistic 

If the number of families were large, we could use the nonparametric statistics to test the null 

hypothesis that the locus has no linkage to the disease. This can be done easily if all pedigrees 

are identical, and otherwise must be approximated. We first standardize the score statistics Ti in 

each family i (i= 1, 2, …, N) by equation (1).  

Ti′ = [Ti – E (Ti)] / SE                   (1) 

E (Ti) is the expected value of Ti under the null hypothesis, and SE is the standard 

deviation of Ti, they can be calculated as followed. Pi (φj |ℜ) is the null hypothesis probability of 

IBD/HBD configuration j in family i. 

E (Ti) =∑J

1j=
Si (φj) Pi (φj | R)     
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SE = Var (Ti) / N 

Var (Ti) = E (Ti
2) – [E (Ti)] 2 

            E (Ti
2) = ∑J

1j=
[Si (φj)]2 Pi (φj | R) 

 Let T c = ∑N

1= i
Ti′ / N 

If all pedigrees are identical, including the same relationship between the parents, then 

the Ti′s are iid with mean=0 and standard deviation=1. Then if the sample size is large, according 

to the central limit theorem, T c ~ N (0, 1). We can easily get the corresponding p-value. When 

sample size is small, since T c does not follow a normal distribution, we can calculate an exact p-

value based on the exact distribution of the statistics. 

5.4 IDEALIZED EXTENSION TO LARGE FAMILIES 

The principle of extending our methods to a large complex family is that we want to calculate 

HBD and IBD simultaneously for all family members, including both affected and unaffected, to 

maximize statistical information. In theory we can extend the IBD/HBD estimation methods 

implemented above to any large family, although the computation will become complex. We 

first illustrate this in larger sibships, using a single nuclear family with 3 children (Figure 5-11) 

as an example, and then in extended families. Theoretically, estimating IBD/HBD in multiple 

individuals simultaneously is more powerful than pairwise estimation.  
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Figure 5-11. Single nuclear family with unaffected related parents (relationship 

unspecified) and mix of two affected and one unaffected children. 

5.4.1 Methods for Estimation of IBD+HBD in Three Siblings Simultaneously 

The principle of the SNP streak method in multiple individuals is same as before, but the number 

of IBS+HBS configurations and IBD+HBD configurations increases. Table 5-27 lists all 

IBS+HBS states and their corresponding configurations. Table 5-28 summarizes the IBD+HBD 

states and the corresponding IBS+HBS configurations and states. Two IBD+HBD states “h” and 

“L” correspond to same set of IBS+HBS states - “6” and “3”, however the probability of being 

state “h” or “L” given the IBS+HBS states (here is “6” and “3”) is different. In another word, the 

emission probability is different. Since the SNP streak does not take into account of allele 

frequencies, it cannot distinguish these, so we prefer not to use this method. Instead we will use 

HMM for IBD+HBD detection in three children simultaneously. 

Again, the HMM method for IBD+HBD is composed of five core elements. The 

observed IBS+HBS states are listed in Table 5-27, and the hidden IBD+HBD states are 

summarized in Table 5-28. We used an initial probability that was equal for all IBD+HBD 

configurations. The emission probabilities we used are listed in appendix II. The principle of 
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calculation of transition probabilities of hidden states here is same as for a sibling pair. The 

transition process is actually not a Markov process any more, as we described previously. Again, 

for simplicity of calculation, we assume the transition of IBD in parents and recombination in 

meiosis does not happen at the same marker. The model also assumes LD between the markers. 

Table 5-27. IBS+HBS states and their corresponding configurations 

IBS + HBS states Observed IBS + HBS configurations 
6 AA AA AA 
5 AA AA AB 
4 AA AA BB 
3 AA AB AB 
2 AA AB BB 
1 AB AB AB 

 
 
 
 
 
 

Table 5-28. IBD+HBD states and the corresponding IBS+HBS configurations and states 
Hidden IBD+HBD states IBD+HBD configurations All possible IBS+HBS states 

a 13  13  13 6,1 
b 13  13  14 6,1,5,3 
c 13  13  24 6,1,5,3,4 
d 13  14  23 6,1,5,3,2 
e 11  11  11 6 
f 11  11  13 6,5 
g 11  11  23 6,5,4 
h 11  13  13 6,3 
i 11  31  12 6,5,3 
j 11  13  23 6,5,3,2 
k 11  23  23 6,4,3,2 
L 12  31  32 6,3 
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For example, we assume the parents are first cousins. Let di denote the physical distance 

(base pairs) between two adjacent SNPs i and i +1. If we assume the recombination rate is one 

per Morgan, and assume 100 Mb is approximately equivalent to one Morgan. Let D be a constant 

that is set as 100 Mb. The transition probabilities are given in Table 5-29.  

Table 5-29. Transition probability of HMM for three siblings simultaneously 
  a b c d e f g h i j k L 

a 

1-9/2(1-t1) 
di/D – 3/2(1-
t0) di/D -
3/16t1 

9/2(1- t1) 
di/D +(1- t0) 
di/D 0 0 3/16 t1 0 0 

1/2(1- t0) 
di/D 0 0 0 0 

b 

3/4(1-t1) di/D 
+1/6(1- t0) 
di/D 

1-3(1- t1) 
di/D - 5/6(1- 
t0) di/D -3/8 
t1- 1/12 t0 

3/4(1- t1) 
di/D + 1/12 t0 

3/2(1- t1) 
di/D 0 3/16 t1 0 

3/16 t1+ 
1/12(1- 
t0) di/D 0 

1/6(1- t0) 
di/D 

1/12(1- 
t0) di/D 

1/3(1- 
t0) di/D 

c 0 

3/2(1- t1) 
di/D + 3/16 
t1 

1-9/2(1- t1) 
di/D -9/16 t1 3(1- t1) di/D 0 0 3/16 t1 0 0 0 3/16 t1 0 

d 0 
3/2(1- t1) 
di/D 

3/2(1- t1) 
di/D 

1-3(1- t1) 
di/D -3/8 t1 0 0 0 0 0 3/16 t1 0 3/16 t1 

e 1/4 t0 0 0 0 

1-3/2(1-
t0) di/D - 
1/4 t0 

3/2(1-
t0) di/D 0 0 0 0 0 0 

f 0 1/4 t0 0 0 
1/4(1-t0) 
di/D 

1-3/2(1-
t0) di/D 
- 1/4 t0 

1/4(1-
t0) di/D 

1/2(1-t0) 
di/D 

1/2(1-
t0) di/D 0 0 0 

g 0 0 1/4 t0 0 0 
1/2(1-
t0) di/D 

1-3/2(1-
t0) di/D 
- 1/4 t0 0 0 (1-t0) di/D 0 0 

h 1/4(1-t0) di/D 
1/4(1-t0) 
di/D + 1/4 t0 0 0 0 

1/2(1-
t0) di/D 0 

1-3/2(1-
t0) di/D - 
1/4 t0 0 

1/2(1-t0) 
di/D 0 0 

i 0 
1/2(1-t0) 
di/D 0 1/4 t0 0 

1/2(1-
t0) di/D 0  0 

1-3/2(1-
t0) di/D 
- 1/4 t0 

1/2(1-t0) 
di/D 0 0 

j 0 
1/4(1-t0) 
di/D 0 1/4 t0 0 0 

1/4(1-
t0) di/D 

1/4(1-t0) 
di/D 

1/4(1-
t0) di/D 

1-3/2(1-t0) 
di/D - 1/4 t0 

1/4(1-t0) 
di/D 

1/4(1-
t0) di/D 

k 0 
1/2(1-t0) 
di/D 1/4 t0 0 0 0 0 0 0 (1-t0) di/D 

1-3/2(1-
t0) di/D - 
1/4 t0 0 

L 0 
5/4(1-t0) 
di/D 0 1/4 t0 0 0 0 0 0 

1/4(1-t0) 
di/D 0 

1-3/2(1-
t0) di/D 
- 1/4 t0 
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5.4.2 Simulation Study to Explore HMM Method for Detection of IBD+HBD in Three 

Siblings Simultaneously  

We performed a simulation study to explore the accuracy of the HMM method for IBD+HBD 

estimation in larger sibships with different densities of markers: Illumina 6K linkage panel and 

Illumina HumanHap 610K. Again, this simulation study is judged qualitatively as described in 

section 5.3.3. Figure 5-12 shows the plot for 6K data of IBS+HBS for three siblings with inbred 

parents. We can find many different streaks of IBS+HBS states in this figure, but it is hard to 

estimate the IBD+HBD states by viewing the plot. The true simulated IBD+HBD states are listed 

in Table 5-30. Table 5-31 summarizes the inferred IBD+HBD by our HMM model. Comparison 

of the two tables shows that our HMM model works very well; it reports results that are 

consistent with the true IBD + HBD states. However, we found that the HMM model cannot 

work well in high density (Illumina HumanHap 610K) SNP data to predict the IBD+HBD in 

three siblings simultaneously, when we set D = 10-21 as previously used in a pair of siblings. It 

broke the large piece into many small ones, which may due to the ignorance of LD in our model. 
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Figure 5-12. IBS+HBS states vs. physical position of 6K linkage panel markers on 
chromosome 3 for three simulated siblings with inbred parents. 

 
 
 
 
 

Table 5-30. The true simulated IBD+HBD states 
chr SNP_start_index SNP_end_index IBD_state 
3 1 20 8 
3 21 40 1 
3 41 75 2 
3 76 90 3 
3 91 120 4 
3 121 130 3 
3 131 160 2 
3 161 180 6 
3 181 200 5 
3 201 220 1 
3 221 263 2 
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Table 5-31. Inferred IBD+HBD by our HMM model in simulated data 
chr SNP_start_index SNP_end_index IBD_state start_position end_position 
3 1 18 8 177,033 10,682,860 
3 19 40 1 12,551,845 27,228,974 
3 41 75 2 28,649,284 60,440,318 
3 76 84 3 62,379,875 64,969,334 
3 85 120 4 66,408,991 97,161,899 
3 121 127 3 98,368,882 103,343,249 
3 128 158 2 106,082,020 125,766,590 
3 159 180 6 126,284,920 142,814,254 
3 181 200 5 145,136,566 158,772,629 
3 201 219 1 158,876,463 175,008,461 
3 220 263 2 176,593,117 198,707,094 

5.4.3 Inbred Pedigrees Data with 6 K Linkage Panel for Detection of IBD+HBD by HMM 

in Three Siblings Simultaneously  

To further investigate the performance of the HMM method, we randomly picked 3 siblings 

whose parents are first cousins in pedigree 1, and investigated the performance of our methods. 

Figure 5-13 is the scatter plot of IBS+HBS states vs. physical position of 6K linkage panel 

markers on chromosome 3. Table 5-32 summarizes the results from the HMM method. Although 

it is hard to accurately tell the IBD+HBD states and the break points between them visually from 

the plot, we can still roughly infer the number of different IBD+HBD segments based on the 

plot. Comparing the estimation from the HMM method with the plot, we can see consistency on 

the number of different IBD+HBD states, which implies that our HMM model works for 

estimation of IBD+HBD in three siblings at the same time in real data.  

Our HMM method can be extended to larger families with complicated relationships, but 

it becomes computationally difficult to list and analyze all possible IBD+HBD configurations 

and their corresponding IBS+HBS states. 
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Figure 5-13. IBS+HBS states vs. physical position of 6K linkage panel markers on 

chromosome 3 for three siblings with inbred parents from real data. 
 

Table 5-32. Inferred IBD+HBD by our HMM model in real data 

chr start_snp_index end_snp_index 
IBD+HBD 

state start_position end_position 
3 1 23 3 166,244 10,682,860 
3 24 40 4 12,551,845 22,441,845 
3 41 88 2 23,848,605 53,884,770 
3 89 116 10 55,246,275 72,109,515 
3 117 159 7 73,514,520 103,496,947 
3 160 196 10 105,934,105 126,294,003 
3 197 234 2 127,419,176 149,673,437 
3 235 265 6 150,516,770 174,047,370 
3 266 280 5 174,955,020 184,078,508 
3 281 306 1 184,727,003 193,634,068 
3 307 321 2 194,013,895 198,707,094 
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5.4.4 Calculating an IBD+HBD Sharing Statistic  

The methods for creating a statistic (score) for a two-sibling family outlined above can be 

extended to larger families. Here we show the extension to the three-sibling family with two 

affected and one unaffected children. We again discuss both non-parametric and parametric 

scoring functions.  

To create a non-parametric score function, let φ represent the HBD/IBD configuration of 

the 2 affected and 1 unaffected siblings. A perfect scoring function S (φ) = 1 if φ is 11 11 12, 11 

11 22, or 11 11 23; otherwise S(φ) = 0. A forgiving score function will allow incomplete 

penetrance and/or phenocopies. For example, we can score HBD configuration 11 11 11 as 1/10 

(an arbitrary score, or based on penetrance rate), instead of 0. This scoring concept can extend 

easily to larger families with more than 3 target individuals or to families that combine affected 

and unaffected individuals. 

For a parametric alternative, we again use a score based on likelihood ratio ln (L1 / L0). If 

we assume the parents’ IBD configurations are 12 34, then L0 = P(φj |ℜ ) for each IBD 

configuration class j (j =1, 2, 3, 4) are listed in Table 5-33. 

Table 5-33. P(φj |ℜ ) for each IBD configuration class j 

IBD configuration P(φj |ℜ ) 
class indicator (j) Sib1 Sib2 Sib3   

1 13 13 13   1/16 
2 13 13 14   3/8  
3 13 13 24   3/16 
4 13 14 23   3/8  
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While L1 = P (φj | ω, f , ℜ ) = P(ω | φj, f, ℜ) P (φj | f, ℜ) / P (ω|f, ℜ) 

                = P(ω | φj, f) P (φj | ℜ) / P (ω|f) 

P(ω|f) = ∑4

1j=
P (φj) P(ω | φj, f)           

= 1/16 P[ω|φ(j=1), f]  +  3/8 P[ω|φ(j=2), f]  +  3/16 P[ω|φ(j=3), f]  +  3/8 P[ω|φ(j=4), f]   

Let D represent the disease allele; d is the non-disease allele; q is the disease allele 

frequency; f is the occurrence rate of a disease among individuals whose genotypes are rare 

homozygosity. For simplicity, we assume penetrance of the common homozygote is zero, then  

P(ω | φj, f)  = P(ω | φj, sib1 carries DD) P(sib1 carries DD) + P(ω | φj, sib1 carries Dd) * 

P(sib1 carries Dd) + P(ω | φj, sib1 carries dd) P(sib1 carries dd) 

We can easily derive that in our example 

P(ω | φj, sib1 carries DD) P(sib1 carries DD) =  f 2(1-f) q2  

P(ω | φj, sib1 carries Dd) = P(ω | φj, sib1 carries dd) =0 

Therefore, P[ω | φj, f]  = f 2(1-f) q2 

Similarly, we can get the conditional affection states for other IBD configurations. We 

can extend this type of parametric score to more than 3 individuals if we can list all IBD 

configurations and P(φj| ℜ ) for each IBD configuration class i under the null hypothesis of no 

association of the locus with the disease.  
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As in the previous discussion, we still prefer non-parametric statistics because the disease 

allele frequency, penetrance rate and phenocopy rate are likely to be unknown. 

5.4.5 Calculate a P-Value for The Statistic  

Calculation of a p-value for the statistic is similar to what was previously described in section 

5.3.8. 

5.5 APPLICATION 

The methods described above can in theory be extended to an arbitrarily large and complex 

family, but in practice the computational limitations are significant. In this section we apply the 

principles outlined above to two large inbred pedigrees that are segregating a Mendelian 

disorder; this dataset was described in section 5.2.3. Theoretically, we would like to estimate the 

IBD/HBD overall in each pedigree. However, for efficiency of computation, we take a 

compromise approach. We first estimate the IBD/HBD in two affected siblings at a time by the 

HMM method and in non-sib affected pairs by the SNP streak method. For the affected 

individual who is IBD+HBD with at least one other affected individuals, we check the IBD/HBD 

between this affected with each of his/her unaffected sibs (two individuals at a time) by HMM. 

We then combine them to get the overall results. 
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5.5.1 Pedigree 1  

Pedigree 1 is shown in Figure 5-2. This large family contains two related sibships: a first-cousin 

inbred family and a second-cousin inbred family. We summarize our findings in Table 5-34. We 

did not find any region in which HBD and IBD are shared across all affected individuals without 

sharing with any unaffected individuals. However, we did identify a couple of regions with 

almost perfect sharing patterns. These might be appropriate candidate regions, if we believe that 

the penetrance is not complete and/or phenocopies exist. 

Table 5-34. Summary of IBD+HBD findings in pedigree 1. 
Chr Start position End position Shared by 
7 39,062,912 51,818,497 all 4 affected, and 2 unaffected individuals 

22 38,643,301 45,944,914 3 affected, and 0 unaffected individuals 
6 165,642,334 170,734,025 2 affected, and 1 unaffected individuals 
2 66,648,337 80,327,668 2 affected, and 1 unaffected individuals 

If we use perfect score statistics, the total score for any region in this family is zero. 

However, if we use forgiving score statistics we can give, for example, a score “1/2” to the 

IBD+HBD configuration in row one (chr 7) of Table 5-34; a score 1/2 to the configuration in 

row two (chr22); a score “1/8” to each of the other two configurations (chr6 and chr2). Then chr 

7 and chr 22 will be the most interesting regions due to the highest score they get. 

Since this is a single pedigree, we will not calculate a p-value; it will not be very 

informative.  
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5.5.2 Pedigree 2  

Pedigree 2 carries the same recessive disorder as pedigree 1, but comes from a different 

population. The structure of this family is shown in Figure 5-3. We have genotyping data from 

seven unaffected ones and two affected living individuals. The relationship between the two 

affected individuals is complicated, because of several multi-level inbreeding loops. It is thus 

difficult to apply a HMM model to this pair of individuals. For computational efficiency, we use 

the SNP streak method to detect IBD+HBD in this non-sibling affected pair. We still use our 

HMM method to estimate IBD+HBD in each pair of siblings. Finally, we combine the results. 

We found three regions that are IBD+HBD in the two affected individuals, but not in the 

seven unaffected ones. We summarize the findings in Table 5-35. 

Table 5-35. Summary of IBD+HBD findings in pedigree 2. 
chr start position end position 
6 107,436,098 123,962,270 
7 125,007,188 134,817,061 
8 101,541,340 116,719,665 

If we use a perfect scoring function as a statistic, we can give score “1” to each of these 

three regions (chr 6, 7 and 8) in Table 5-35, and score zero to all other regions. It is notable that 

although the disorder in pedigrees 1 and 2 is same, the origins of the samples are different.  We 

found inconsistent results between pedigrees 1 and 2, which implies that this disorder may be 

genetically heterogeneous in different populations. 
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5.6 DISCUSSION  

We proposed a rigorous statistical framework for homozygosity mapping in consanguineous 

family data with high density SNP markers. This procedure contains three steps. For step one - 

estimation of IBD/HBD - existing methods are not sufficient. They are not optimal for 

homozygosity mapping in inbred families. Linkage analysis software such as Merlin can work 

for familial IBD, but it is not sufficient for HBD estimation. We therefore proposed two 

algorithms, one a SNP streak method and the other an HMM method. The SNP streak algorithm 

is simple and straightforward; it does not use information on family structures or SNP allele 

frequencies. However, the selection of a window size is arbitrary, and the method may fail to 

find some small homozygous regions. Our HMM method employs a number of approximations 

to the true model, such as assuming no LD and assuming a Markov structure, but despite these 

approximations it works very well as demonstrated in simulated and real data.  

For calculation of an IBD sharing statistic, we suggested a non-parametric scoring 

statistic (perfect score or forgiving score), which incorporates the affection status into the scores. 

The forgiving score will allow for incomplete penetrance rate and/or phenocopies. The non-

parametric score does not depend on an assumption about disease allele frequency; therefore it is 

robust to some model misspecification. We also considered a parametric alternative, a likelihood 

statistic, however it heavily depends on disease allele frequency, penetrance and phenocopy 

rates, and therefore it is sensitive to selection of model parameters. 

Calculation of a p-value for the statistic depends on the sample size of identical families. 

If the sample size is large, we can use the approximate normal distribution of the mean score to 

get the p-value. If the sample size is small, we can use an exact test.  
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All in all, our simulated and real data studies have shown that our procedure is a 

statistically and computationally efficient method for homozygosity mapping in inbred families. 

It is difficult to compare results of our methods to those from other methods, because the other 

methods do such different things, but compared with other methods, there are several strengths 

of our methods. First, our method is fast. For our real 6K linkage panel data, it took less than 1 

minute for our method to infer IBD+HBD genome-wide in a pair of samples. Unlike MERLIN, 

we incorporated genotyping errors. Also MERLIN requires a known pedigree structure; however 

our algorithm can accommodate the unknown relationship between the inbred parents by just 

modeling them as either 1st or 2nd cousins, which does not appear to change the results of 

inference. But note that we did not test more distant relationships. Our methods are an 

improvement over HomozygosityMapper in that we will not report runs of homozygosity with 

unmatched alleles between individuals as HBD regions. Compared with BEAGLE, which does 

not bear close relationships among the study subjects, our methods can work in inbred families.  

Our methods do have several limitations. Our HMM model assumes linkage equilibrium 

among the markers, which is not true for high density SNP data. In order to make HMM method 

work in high density SNP data, we have to increase the parameter “D” dramatically to 

compensate for the model’s no-LD assumption. This is not an accurate way to model LD, but it 

is fast and it works. We failed in estimation of IBD+HBD in three siblings at the same time for 

high density SNP data with adjusted parameter D, but it works fine for linkage panel data. 

Another limitation of our method is that it becomes complicated if we want to estimate 

IBD+HBD in many individuals from a large complex family simultaneously; we may need to 

compromise by estimation of IBD+HBD in a pair or three individuals at a time. In addition, the 



 

 

 136 

transition process is not a real Markov process; we used some approximations. However it works 

well in both simulated and real data.  

In the future, we would like to model LD in our HMM method for inbred family data. We 

also will do simulation more quantitatively, and draw conclusions about the accuracy of the 

estimated breakpoints.  
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6.0  DISCUSSION 

6.1 CONCLUSIONS AND CONRIBUTIONS OF THIS WORK 

This dissertation is composed of four projects; all of them involve using dense SNP data. The 

first three projects focused on studies of CNVs; the fourth project was about homozygosity 

mapping. The core question I addressed in this dissertation is how to look across multiple SNPs 

to accurately detect some specific DNA regions (CNV or IBD/HBD) in high density SNP arrays,  

and how to apply those methods to real data analysis of complex diseases, such as CNV studies 

in mental health and behavioral disorders, and IBD/HBD estimation in rare recessive diseases. 

Our first project made recommendations for how CNV calls can be used in genome-wide 

association studies. A roadblock to comparison of different CNV-calling strategies is the lack of 

gold standard data to tell us which CNVs are real. We used family data as a verification standard, 

and proposed that if CNVs are repeatedly called in duplicate samples, or inherited from parent to 

child, then these can be considered validated CNVs. We used two large family genome wide 

association study (GWAS) datasets to look at concordance and inheritance rates of CNV calls. 

This allowed us to draw inferences about the performance of various CNV calling strategies, and 

the features and distributions of CNVs in the human genome.  We found current filtering 

strategies and the common strategy of using only the largest CNV calls cannot guarantee high 
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reliability. We concluded from our data that it is probably not possible to find a CNV calling 

strategy that will give us a set of "reliable" CNV calls using current chip technologies. For now, 

CNV calls will need to be understood as having high error rates. But if we understand and model 

the features of that error process, we can still use them appropriately in genetic association 

studies. In particular, the most critical issue will be to make sure that cases and controls are well 

matched on any features that we know affect CNV call reliability rates, such as DNA sample 

type. We also made some contributions to the growing picture of what “normal” variability in 

copy number means for the human genome.  

Our second project was a real data analysis on AD+P. We proposed that different mental 

health disorders may share some genetic factors and that their expression might be modified by 

other environmental and genetic factors. Therefore, we specifically searched for CNVs in seven 

recurrent CNV regions identified in schizophrenia and autism. We are the first to report that 

AD+P shares a rare risk CNV region on 16p11.2 with schizophrenia and autism. Its frequency in 

AD+P is similar to that in schizophrenia. We also found a smaller CNV on 3q29 which is within 

PAK2, one of the most interesting candidate genes for schizophrenia in that region. Although 

rare, these CNVs may have important functions in the development of psychosis. Identification 

of these CNVs can help with understanding the mechanisms of psychosis disorders. These CNVs 

have the potential to be used in clinical practice for screening, diagnosis, disease classification or 

genetic testing. Some CNVs are already in use in pediatric settings.  For example, 3q29 is 

evaluated in children with autism. 

Our third project was a study of CNVs, smoking and birth outcomes. We thoroughly 

screened the genome for CNVs associated with smoking and birth outcomes, and identified 

several strong candidate genes. Also, the consistent findings in two large-scale GENEVA 
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datasets make the candidate genes for smoking very interesting. A previously-reported CNV in 

GSTT1 associated with birth outcomes in smokers was not covered by this chip. However, we 

did find other CNVs in GSTT1 and GSTT2 respectively, which are associated with birth weight 

in smokers. We don’t know if these CNVs are in LD with the previously-reported one. 

Our fourth project developed statistical methods for homozygosity mapping in family 

data using dense SNP arrays. Statistical methods for homozygosity mapping have traditionally 

been ad hoc and suboptimal. Our objective was to propose more rigorous statistical approaches 

to this problem, with the goal of improved gene-finding. We proposed two different 

mathematical approaches for finding the regions of the genome that are most likely to harbor the 

genes we are looking for. We also proposed a more rigorous framework for statistical evaluation 

of those regions. We tested our methods in both simulated and real data. We successfully 

identified the HBD regions in simulated family data. We found several potentially disease-

causing regions in two real pedigrees. Compared with current methods, our methods add 

statistical rigor, and are a great improvement over simple visual inspection methods that are 

more commonly used.  

From the four studies described above, we found that HMM is a good algorithm to look 

across multiple markers at a time in high density SNP arrays, whether for CNV calling or 

homozygosity mapping. However several factors may influence the performance of HMM. One 

important factor is data quality.  For CNV calling, different filtering methods and strategies have 

been proposed in order to improve the data quality; however, none of the methods is optimal.  

Another factor that is a barrier to making HMM models work for this kind of data is LD. Most 

common software for homozygosity mapping does not try to model LD; instead it prunes or 

clustesr markers, which may reduce the power to detect short regions. BEAGLE does model both 
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LD between markers and IBD between a pair of unrelated individuals. However, it does not 

model the relationship of a family in HMM; it assumes that neither affected individuals nor their 

parents are related. So how to model LD between markers and IBD/HBD in multiple inbred 

family members simultaneously is be an open question. 

6.2 FUTURE WORK AND OPEN QUESTIONS 

There are some open questions in each of the projects. In our first project, we found a subset of 

individuals who carry a fairly high load of rare CNVs (100 or more) that appear from inheritance 

rates to be real. However, the mechanism is unknown. We also found a modest increase in the 

number of CNVs with age, suggesting a non-trivial rate of somatic mutation, although this 

clearly bears further study. Finally, we found some intriguing results related to the relative 

inheritance rates of deletions vs. amplifications, which would be interesting to follow up further. 

The CNV findings in project two were all identified by statistical methods. We are 

conducting molecular experiments to validate these CNVs, especially in 3q29. If validated, this 

will be a major finding, since a small duplication CNV in 3q29 has not been reported in 

literature.  

In project three, we are not sure whether the association of CNVs with smoking is real. 

The association could due to an artifact of our selection on successful birth outcomes, since 

smokers who have fetal deaths were not included in this study. Replicate studies using 

independent data are warranted. 
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In project four, the direction of future work is to develop methods that can model LD and 

IBD/HBD simultaneously in family data using dense SNP array.   
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APPENDIX A 

EMISSION PROBABILITY IN HIDDEN MARKOV MODEL FOR IBD+HBD IN A PAIR 

OF CHILDREN 

Table A-1 lists the probabilities of configurations of HBS+IBS (emission probabilities) 

conditional on the configurations of HBD+IBD for a pair of siblings. 

Table A-1. Probability of configuration of HBS+IBS conditional on the configuration of 
HBD+IBD for a pair of siblings 

index of HBD 
+IBD 

configuration index of HBS + IBS configuration 

 
1 2 3 4 

a 2pq (1-ɛ) 0 ɛ (p2+q2) (1-ɛ) 

b 
(p2q+pq2) (1-ɛ) 
+2/3(p2q+pq2) ɛ 2/3(p2q+pq2) ɛ 

(2p2q+2pq2) (1-ɛ) + (p3+q3) ɛ 
+ (p2q+pq2) ɛ 

(p3+q3) (1-ɛ) +2/3 
(p2q+pq2)ɛ 

c 
(2p2q2) (1-ɛ)+ 
4/3(p3q+pq3)ɛ 

(4p2q2) (1-ɛ) 
+4/3(p3q+pq3)ɛ 

(4p3q+4pq3) (1-ɛ) + (p4+q4) ɛ 
+6p2q2ɛ 

(p4+q4) (1-ɛ) + 
4/3(p3q+pq3)ɛ 

d 0 0 ɛ 1-ɛ 

e 2/3pqɛ 2/3pqɛ 2 pq (1-ɛ) +(p2+q2)ɛ 
(p2+q2)(1-ɛ)+ 

2/3pqɛ 

f 2/3(p2q+pq2) ɛ 
(p2q+pq2) (1-ɛ) 
+2/3(p2q+pq2) ɛ 

(2p2q+2pq2) (1-ɛ) +(p3+q3) 
ɛ+(p2q+pq2) ɛ 

(p3+q3) (1-ɛ) 
+2/3(p2q+pq2) ɛ 
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APPENDIX B 

EMISSION PROBABILITY IN HMM FOR DETECTION OF HBD IN 3 CHILDREN 

SIMULTANEOUSLY 

Table B-1 lists the probabilities of configurations of HBS+IBS (emission probabilities) 

conditional on the configurations of HBD+IBD for three children simultaneously. 
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Table B-1. Probability of configuration of HBS+IBS conditional on the configuration of 
HBD+IBD for three children simultaneously 

index of HBD 
+IBD 
configuration 

index of HBS + IBS configuration 
  
  

 
1 2 3 4 5 6 

a 2pq (1-ɛ) 0 2pqɛ 0 (p2+q2) ɛ (p2+q2) (1-ɛ) 

b 
(p2q+pq2) (1- ɛ) + 

1/3(p2q+pq2)ɛ 1/3( p2q+pq2)ɛ 
(p2q+pq2) (1-ɛ) + 

4/3(p2q+pq2)ɛ 1/3 (p2q+pq2)ɛ 
(p2q+pq2) (1-ɛ) + (p3+q3)ɛ + 

1/3(p2q+pq2)ɛ 
(p3+q3) (1-ɛ) +1/3 

(p2q+pq2)ɛ 

c 
(4p2q2) (1-ɛ) + 2/3 

( p2q+pq2)ɛ 2/3( p2q+pq2)ɛ + p2q2ɛ 
2(p2q+pq2) (1-ɛ)  +  2/3 

( p2q+pq2)ɛ +4p2q2ɛ 
2 p2q2 (1-ɛ)  +  
2/3( p2q+pq2)ɛ 

2(p3q+pq3) (1-ɛ) + (p4+q4) ɛ 
+2/3(p3q+pq3) ɛ + p2q2ɛ 

(p4+q4) (1-ɛ) + 
2/3(p3q+pq3)ɛ 

d 
2 p2q2 (1-ɛ)  + 

2/3(p3q+pq3+ p2q2)ɛ 
2 p2q2 (1-ɛ)  + 

2/3(p3q+pq3+ p2q2)ɛ 
2/3(p3q+pq3+ p2q2) (1-ɛ) 
+ 2/3(p3q+pq3) ɛ +2 p2q2ɛ   

 2/3(p3q+pq3)ɛ +  
p2q2ɛ   

2(p3q+pq3 (1-ɛ) + (p4+q4)ɛ 
+2/3(p3q+pq3+ p2q2)ɛ 

(p4+q4) (1-ɛ) + 
2/3(p3q+pq3)ɛ 

e 0 0 0 0 ɛ (1-ɛ) 

f 0 0 2/3pqɛ 2/3pqɛ 2 pq (1-ɛ) +(p2+q2) ɛ 
(p2+q2)(1-ɛ) + 

2/3pqɛ 

g 0 0 2/3( p2q+pq2)ɛ 
(p2q+pq2) (1-ɛ) 
+2/3( p2q+pq2)ɛ 

2( p2q+pq2) (1-ɛ) + (p3+q3) ɛ 
+( p2q+pq2)ɛ 

(p3+q3) (1-ɛ) + 
2/3( p2q+pq2)ɛ 

h 2/3pqɛ 2/3pqɛ 2pq (1-ɛ) 0 (p2+q2+ 2/3pq)ɛ (p2+q2) (1-ɛ) 

i 1/3(p2q+pq2) ɛ 1/3(p2q+pq2) ɛ 
(p2q+pq2) (1-ɛ)+ 2/3 

(p2q+pq2)ɛ 2/3(p2q+pq2) ɛ 
2(p2q+pq2) (1-ɛ )+ (p3+q3) ɛ + 

1/3(p2q+pq2) ɛ 
(p3+q3) (1-ɛ) 

+2/3(p2q+pq2) ɛ 

j 1/3 pqɛ (p2q+pq2) (1-ɛ)+ 1/3 pqɛ (p2q+pq2) (1-ɛ)+ 5/6 pqɛ  5/6 pqɛ 
(p2q+pq2) (1-ɛ)+ (p3+q3)ɛ+ 

1/3 pqɛ 
(p3+q3) (1-ɛ) + 

1/3 pqɛ 

k 2/3 (p2q+pq2)ɛ 7/6 (p2q+pq2)ɛ 2(p2q+pq2) (1-ɛ) (p2q+pq2) (1-ɛ) (p3+q3)ɛ + 7/6 (p2q+pq2)ɛ (p3+q3) (1-ɛ) 

l (p2q+pq2)ɛ (p2q+pq2)ɛ 3(p2q+pq2) (1-ɛ) 0 (p3+q3)ɛ + (p2q+pq2) ɛ  (p3+q3) (1-ɛ) 
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APPENDIX C 

PROCEDURES FOR SNP STREAK METHOD 

1) Calculate the IBS+HBS states among the assigned family members at each SNP on a 

chromosome and generate a sequence of IBS+HBS states;  

2) Select the window size, the sliding size and the genotyping error rate; 

3) Check whether any singular IBS+HBS state in a given window is a genotyping error. For 

example, we can test 25 SNPs before and after the marker with singular IBS+HBS state. If the 

IBS+HBS state is still singular in those 50 SNPs, it is considered as a genotyping error.  

4) Generate a null sequence of IBD+HBD states with length = all makers in a chromosome. 

5) Initial window: estimate the IBD+HBD state according to the IBS+HBS states in the initial 

window; fill the null IBD+HBD sequence with this estimated IBD+HBD state.  

6) Sliding windows: slide the window to find the break points - the last SNP in the first window 

with newly appeared IBS+HBS states; or the first SNP in the first window with newly 

disappeared IBS+HBS states. Re-estimate the IBD+HBD states based on the IBS+HBS state in 

the window starting from the break point, and replace the IBD+HBD states for all markers on 

and after the break point with the re-estimated one. 
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