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The aim of this study is to develop a microfluidic platform for making particles from molten 

polymers. This thesis describes the process of formation of droplets and bubbles in microfluidic 

flow-focusing geometries. High viscosity and low interfacial tension of molten polymers makes 

it difficult to break a continuous fluid stream into drops. Furthermore, the eventual requirements 

that the polymers can only flow when heated far above room temperature require a new approach 

to fluid handling.  

This thesis describes the development of a platform for molten polymer microfluidics 

based on a pressure-driven flow of polymer into micro-channels etched out of metal foils. This 

platform is developed for room temperature operation to test whether undiluted polymer melts 

can be emulsified in a controlled fashion in a microfluidic device. We report the results of a 

comparative study of microfluidic emulsification (i.e. drop or bubble formation) with different 

viscosities polymer liquids. At room temperature, depending on the properties of the polymer 

fluids and the flow rate, emulsification occurred in the dripping and jetting regions. We 

developed a simple circuit model to describe the observed dependence of the size of bubbles on 

the supplied pressure. The bubble shape, size, velocity, frequency were well investigated under 

various experimental conditions.  

This study demonstrates the possibility of polymer drop formation in the room 

temperature device that can be used to further research using polymers need high temperature to 

be melted. 

MICROFLUIDIC DROP FORMATION WITH POLYMER PLASTICS 

Shu-Che Peng, M.S. 

University of Pittsburgh, 2012
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1.0  INTRODUCTION 

Microfluidics is a branch of research that studies the design, fabrication, and operation of 

systems of microscopic channels that conduct fluids. Microfluidics usually refers the 

devices and methods that control and deal with the fluid flow on a micron scale [1]. It is a 

technology that seeks to control and manipulate small amounts (10
–9

 to 10
–18

 liters) of 

fluids, using channels with dimensions of tens to hundreds of micrometers [2]. There has 

been significant research on implementing such ideas with low-viscosity liquids, most 

frequently water, at room temperature. One branch of microfluidics concerns two-phase 

flows of liquids in microfluidic channels with the goal of making particles of controlled 

structure. The overall goal of this research is to transplant these technologies to molten 

polymers.  

There are two challenges in the research. These are (1) high viscosity and low 

interfacial tension of molten polymers makes it difficult to break a continuous fluid stream 

into drops (2) high viscosity and high temperature requires completely new methods of 

fluid-handling. The goal of this project is a room temperature study using high viscosity 

polymers that will conduct the fundamental studies with high viscosity polymers that are 

liquid at room temperature, and also develop a platform suitable for handling such fluids. If 



 2 

successful, this will pave the way for further research using polymers that are solid at room 

temperature  

Chapter 2 is the review of literature on two phase flow in microfluidic devices, and 

in particular on devices aimed at generating drops. Chapter 3 is about materials, methods, 

and device development. The result and discussion of developing the methodology using 

gas/polymer to form bubbles, and two immiscible polymers is Chapter 5. Chapter 6 is the 

conclusions and suggestions for future work.   
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2.0  LITERATURE REVIEW 

2.1 BACKGROUND 

The first research in microfluidics developed in 1975 by S.C. Terry in the Stanford 

University [3]. However much of the development of microfluidics can be traced to a 1999 

paper by the Whitesides group [4] on how flows in micro-channels can be controlled and 

used to pattern the channel itself Beyond the scientific development, the key idea in this 

paper was soft lithography to fabricate microfluidic devices inexpensively using silicone 

rubber. Shortly afterwards, two papers by the Quake group [5] and the Nakajima group [6], 

showed how two phase flow of oil and water in microfluidic devices could be used to 

generate drops of a precisely controlled and tunable size. Notably Nakajima also showed 

that if the drops were made of oil whose temperature was above room temperature, upon 

cooling the drops could be frozen to form solid particles. Since these articles, there has 

been tremendous amount of research on generating drops in micro-channels, using them as 

micro-reactors, as sample “carriers” for sensor applications, and as precursors for the 

formation of particles of controlled shape, size, and structure. This last application of 

particle fabrication is the main topic of interest of this thesis.  
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2.2 APPLICATIONS OF 2-PHASE IN POLYMER PARTICLES 

The types of particles fabricated in microfluidic devices have drawn attention in different 

areas. The microfluidics device with its small size takes the advantages of low cost of 

fabrication, and high precision. Recently, such complex polymer particles have been 

considered in biological and analytical applications.  

In biology, these polymer particles could be used to replace the standard enzyme-

linked immunosorbent assay (ELISA) procedure [7]. These applications are still developing, 

and at this stage the ability to fabricate complex microstructures is ahead of their 

applications.  

Enzyme-linked immunosorbent assay (ELISA) is a biochemical technique used 

broadly in immunology detection biosensor field. [8] It’s a powerful tool can easily 

measure the antigen in the sample in a very easy way. The current methods of using ELISA 

technique are based on antibody-coated micro-titer plate format and require high sample 

consumption and time-consuming washing steps for detection. Recently, an interesting 

alternative way is using microfluidic technique to make micron polymer particles replacing 

the micro-titer plates [9]. The critical element in the approach is to use optically 

distinguishable polymer micro-particles, each of which is functionalized with an antibody 

against a protein of interest. Moreover, the multiple protein measurements can be made in a 

single sample at once. Due to the micro size of particles, it requires less sample 

consumption and rapidly detection than before. It can be more sensitive than the standard 

sandwich ELISA [7].  
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Kumacheva et al. [10] demonstrated a technique of fabricating Janus particles and 

three-phase particles using microfluidics. These particles can be synthesized by the UV 

light source. The potential application of Janus particles can be combination of two 

different or multifunctional properties materials into a single particle. Particles with 

oppositely charged hemispheres created an electric field can be remotely monitored. Its 

potential applications in the production of color electronic paper would be realized in the 

future.  

Polymer particles find important applications in medical diagnostics, and drug 

delivery. Biodegradable polymers, such as poly (lactic-co-glycolic acid) (PLGA), for 

example, have been widely used for drug delivery to achieve such controlled drug release. 

[2-4]. Anderson et al [11] demonstrated the technique of polymer micro-particle fabrication 

by using PLGA/drug and Polyvinyl alcohol (PVA) in the microfluidic device. With the 

higher yields by the microfluidic method, particles prepared using the microfluidic 

approach has a significant advantage than the conventional fabrication, especially for 

expensive drugs. 

2.3 PARTICLES IN MICROFLUIDIC DEVICES 

2.3.1  Methods to solidify polymer particles 

As mentioned above, many ways have been developed to generate liquid drops in a 

controlled fashion in microfluidic devices. To solidify the liquid drops into solid particles, 
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various mechanisms can be used. These are classified as 1) heat-based, 2) light-based, and 

3) chemical-reaction-based methods. [12] In heat-based methods, high melting point oils 

have been be melted in high temperature, drops formed, and cooled down into solids at 

lower temperature. For example, Nakajima et al emulsified hydrogenated edible oils at high 

temperature, and subsequently the emulsion was cooled and solidified give citation. 

Alternately or a drop made of monomeric oil can be thermally polymerized into solid 

particles [6]. Kumacheva et al. [13] synthesized droplets using various oligomers, and then 

polymerized them thermally on the microfluidic device itself. If the channel size was larger 

than the drop size, the drops were spherical; otherwise they were confined by the channel 

during polymerization and hence non-spherical particles. In light-based methods, ultraviolet 

light is used to convert monomer drops them into solid particles by photo polymerization. 

Kumacheva et al. [10] demonstrated that using soft lithography to shape Janus particles 

from immiscible monomers  by using UV light in the downstream. There are many other 

groups who have used UV polymerization in microfluidic devices [14, 15]. Doyle et al [16] 

patterned the flat drops before UV-curing them. Chemical reaction based methods are 

different since there are no other external technique, such as UV light or heating devices. 

In these methods, a specific chemical is added separately for the polymerization. As gel 

materials, calcium alginate is the most commonly employed system for the gel formation 

[17]. The polymer droplet could be solidified by this chemical in specific time and certain 

region in the microfluidic channel [17].  

Others use the UV-polymerization of single phase flow to make particles using a 

photo-mask. Chung et el [18] introduced the technique called “railed microfluidics”, an 

agile method to assemble microstructures inside fluidic channels. The Doyle group [19] 
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demonstrated a stop flow lithography method that polymerizes a fluid through projection 

lithography within a microfluidic device.  

Finally, it is also possible to start not with drops, but with particles that can be 

assembled on a device in a specific fashion, and then joining these assemblies permanently. 

Solomon et al [20] report the approaches of assembling colloidal particles into assemblies 

and then sintering them in microfluidic devices.  

The limitation of these methods is the materials that can be processed: light-based 

approaches rely on monomers that can be UV‐cross-linked rapidly [10]. There are only few 

photo sensitive polymers and some hydrogels that can be solidified rapidly by using UV 

light. For chemical reaction based methods, they are require specific chemical functionality 

that can solidify the particles rapidly [17]. In this study, we are seeking to apply cooling 

based methods to solidify polymer and could be applied to most of polymers. Most 

materials either are liquid at room temperature or have very high melting temperatures. The 

goal of your project is to overcome these material limitations.  

2.4 THREE MAJOR TYPES OF DROPLET GENERATION SYSTEM 

2.4.1 T-Junction Based Droplet Formation 

The earliest paper on droplet-formation in microfluidic devices [5] developed a T-junction 

shaped channel for generating drops. The channel geometry is shown in Figure 1 below. 

The dispersed phase flow is supplied from the lower branch and uniform-sized drops are 
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formed in the junction by due to interfacial tension driven breakup.  Numerous later 

researchers have used this method [21-24]. Garstecki et al. [24] developed a theoretical 

model to describe the mechanism by which droplets and bubbles are formed in T-junction 

microfluidic device. Guillot and Colin [25] then developed a semi-empirical model to 

describe the transition from droplets forming to stable parallel streams at a T-junction. At 

sufficiently high flow rates, the drop formation does not occur; instead parallel “co-flow” 

flow occurs. 

 

Qc

Wc

Wd

Wo

Qd

 

Figure 1 T-junction geometry to form drops  

 

2.4.2 Flow-Focusing Device Based Droplet Formation 

Another common geometry used for drop generation is the flow-focusing geometry in a 

microfluidic device shown in Figure 2 below developed by the Stone group [26]. The 
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dispersed phase flow is supplied through the middle channel, and two continuous flows 

come from two outer channels. These two liquid phases are forced through to a small 

constriction that is located downstream of the three channels. Numerous studies have used 

this approach [27-30]. In our study, we choose this geometry as our device geometry since 

the drop-forming fluid does not contact the side walls of the channel and hence wettability 

problems can be avoided. Utada et al [31] had a strong correlation that estimate the 

relationship of drop size and the flow rate in the flow focusing geometry channel. Some 

researchers have used the same geometry without a constriction and this is sometimes 

called a cross-flow junction. 

 

 

Figure 2 Geometries used in flow-focusing microfluidic devices. 
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2.4.3 Co-flow Based Droplet Formation Devices 

Co-flow based geometry shown in the Figure 3 is when the two fluids flow parallel to each 

other and form drops [32-35]. This flow geometry is similar to numerous traditional drop 

generating devices such as spray nozzles or emulsifiers. Sometimes there is a collector tube 

of diameter intermediate between the inner and the outer tubes; this collector is placed with 

its inlet a small distance away from the inner tube. Umbanhowar et al. [36] described this 

experimental technique for the production of highly mono-disperse emulsions.  

 

Figure 3 Geometries used in co-flow microfluidic devices. 
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2.5 CAPILLARY NUMBER AND CHALLENGE FOR MOLTEN POLYMER 

MICROFLUIDICS 

Two-phase flows are determined by the balance of inertial force, viscous drag forces, 

interfacial tension forces, and buoyancy forces. The Reynolds number (Re) is a 

dimensionless number that gives the ratio of inertial forces to viscous forces and quantifies 

the relative importance of these two forces under given flow conditions: 

     
   

 
 (1)  

where    is the fluid density (kg/m
3
),   is the velocity (m/s), D specifies a characteristic 

length scale (m), and   is the viscosity of the fluid (Pa.s). The Bond number (Bo) 

determines the relation between gravitational forces and surface tension forces: 

    
     

 
 (2)  

 

where    is the fluid density difference (kg/m
3
),   is the surface tension between the two 

fluids (N/m), and   is the gravitational acceleration (m/s
2
). 

 In microfluidic flows, the Reynolds and Bond numbers are very small and hence it 

is safe to ignore gravitational forces and inertial forces. The two dominant forces are 

surface tension forces and viscous drag forces. The Capillary number (Ca) is defined to the 

ratio of viscous drag forces and surface tension forces: 

    
        
        

 
  

 
 (3)  
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Figure 4 Flow map based on the capillary number with various flow regimes. a): threading b): 

jetting c): dripping d): tubing e): viscous displacement. Fluid 1 here is the dispersed phase fluid, and fluid 2 is 

the continuous phase fluid. Reprinted with permission from the authors [37]. 

 

All theories and experiments of drop formation and behavior in micro-channels 

involve Ca as the primary dimensionless parameter. For example, Cubaud et al. [37] 

examined two-phase flow in a cross-flow junction. They represented their results in the 

form of a flow map that depends on two capillary numbers, one for the inner fluid, and one 

for the outer fluid. This map (Figure 4) distinguishes the following flow regions: a): 

threading b): jetting c): dripping d): tubing e): viscous displacement. In our research, we are 

interested the dripping and jetting phenomena these are the ones that can give rise to drop 

formation. From this map, it is clear that the droplets or bubbles are formed when Ca is less 

than about 0.1. The viscosity of polymers is about 5 orders of magnitude larger than in 

oil/water systems, and the interfacial tension is an order of magnitude lower. Thus, at any 

reasonable flow rate, it means the Ca is extremely high when a molten polymer is to be 

used. Reducing the Ca sufficiently low to allow drop formation would require flow rates 
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that are six orders of magnitude lower than in oil‐water systems. This is a fundamental 

challenge in implementing drop-generation systems with molten polymers. 

2.6 CHALLENGES: HIGH VISCOSITY, HIGH TEMPERATURE, AND LOW 

TEMPERATURE; CAPILLARY NUMBER 

As mentioned in the introduction, the goal of this project is to use microfluidic devices to 

make drops out of molten polymers and then cool them to form solid particles. Here we 

will list the chief challenges. 

2.6.1 Fundamental challenge  

The capillary number issue mentioned above is the chief fundamental challenge of this 

research; it arises from factors (high viscosity and low interfacial tension) which cannot be 

circumvented. The high viscosity of polymers and the lower interfacial tension increase the 

difficulties to make droplets in the micro channels.  

2.6.2 Practical challenges  

The first most obvious challenge is that some portions the device must be designed to 

operate at high temperature, but furthermore, prior to exit from the device, the molten drops 

must also be allowed to cool down to solidify them. Secondly, maintaining visibility in the 

junction area -along with the high temperature requirement- greatly constrains selection of 
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window materials. Lastly, the very high viscosity of molten plastics means that pinching off 

the continuous flow to form drops is more difficult; instead, there is a tendency to form a 

co-flow of continuous streams. PDMS devices, which are extremely common in research 

on microfluidics can no longer be used since the microfluidic device must be operated at 

high temperature and pressure. Finally, in past research on oil/water systems, syringe 

pumps were generally used to control the fluid flow rate. With the high temperature system, 

the syringe pumps could not be easily used because of the temperature requirement to melt 

the solid polymer. While the syringe itself could be maintained hot, it is much more 

difficult to maintain in a high temperature in the tubing that connects the syringe pumps to 

the devices. Furthermore, the low flow rates would imply a long residence time in the 

tubing, with thermal degradation due to the high temperature. Therefore the polymers need 

to be stored in small quantities in molten form on the device itself. 

2.7 TECHNICAL APPROACH  

Moon et al. [38] demonstrated that metal shims (i.e. foils) could be used to construct 

channels for microfluidic flow of molten polymers. The shims were machined with micro-

channels and then sandwiched between hard surfaces. Since visibility is needed they 

constructed the windows out of sapphire. The polymer was stored on the device, and in fact 

was a single pellet of plastic. The chamber of the molten polymer was exposed to 

controlled pressure to drive flow. Thus, syringe pumps and external tubing was not used: 
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the pressure control system was be used to drive the flow. By adjusting the pressure value, 

the microfluidic flow rate could be varied.  

We seek to build upon these ideas further to build microfluidic devices that can 

generate drops. 

2.8 PREVIEW OF THIS RESEARCH 

In summary we aim to develop a new approach for implementing microfluidic devices that 

can generate drops from molten polymers. This requires solving many practical problems 

mentioned above as well as one fundamental one of whether drop breakup will occur even 

when bulk viscosity is so high. This thesis seeks split the challenges into two parts: first 

developing the shims and pressure control system, and testing whether drops can be formed 

at reasonable flow rates, and second, how to implement his device at high temperature. This 

thesis addresses first two challenges. 

In this study, we are focusing on using pressure driven control system to drive the 

polymer flows at room temperature. Our target is to study the high viscosity microfluidic 

polymer flow at room temperature to find out whether drop formation is feasible. The 

research result could be used later in the high temperature microfluidic study. 
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3.0  MATERIALS AND METHODS 

 As mentioned in the previous chapter, the goal of this thesis is to test out the basic ideas of fluid 

handling and to address the fundamental challenges of inducing droplet breakup with molten 

polymers, but to do so at room temperature. The issue of the high temperature device is left for 

the future. 

3.1 MICROFLUIDIC PLATFORM DESIGN 

The experiment system in this study is shown in Figure 5. We will discuss three portions 

separately: the microfluidic device, the driving force for flow, and the data acquisition. The 

microfluidic device is shown in Figure 6. The outer platform (Figure 7, Figure 8) of the 

microfluidic device was fabricated from acrylic (polymethyl methacrylate, PMMA), with two 

reservoirs for holding two different polymers. For the research in Chapter 5, one of the reservoirs 

was filled with the continuous polymer liquid phase, whereas the other was empty, allowing 

nitrogen gas to be fed through.  

The geometry of the channels here is flow-focusing with the widths of the main channels 

being 381μm, and the constriction (127μm) in the intersection as will be shown later in Figure 14. 
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Early experiments used a single layer of metal foil to fabricate the channels. These devices 

suffered from severe wettability problems related to the fact that the dispersed phase made 

contact with the top and bottom surfaces of the flow channels. In oil/water systems, it is common 

to use surfactants to control which phase wets the solid surfaces; however, effective surfactants 

are not available for controlling the wettability of molten polymers. Therefore it is crucial to 

prevent the dispersed phase fluid from contacting the walls of the channel. Accordingly the 

device was redesigned in three layers. The channel was constructed in three layers made of three 

different metal shims to avoid wetting problems, i.e. to avoid the dispersed phase from touching 

the top and bottom walls. The thickness of bottom and top shims were 125μm (Figure 9), and the 

middle shim was 250μm (Figure 10). Dispersed phase is supplied through a channel in the 

middle shim (Figure 11, Figure 12). When assembled, the device geometry (Figure 13) ensures 

that the dispersed phase does not touch the top or bottom walls as it is introduced.   

  

 

 Regulator

Cylinder

Digital Camera

Microfluidic device

Pressure sensor

Control Board

Pc

Pd

 

Figure 5 The experimental setup. Dotted lines here are the electrical wires, and the solid ones are the 

nitrogen gas lines 
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Continous phase flow Dispersed phase flow

Exit

Acrylic bottom

Shim layers

Acrylic top

 

Figure 6 Microfluidic setup for the two-phase flow in a flow-focusing geometry. The microfluidic device 

is mounted on an inverted microscope. 

Continuous phase flow Dispersed phase flow

 

Figure 7 The acrylic platform as viewed from the top.  
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Continuous phase flow Two phase flows

 

Figure 8 The acrylic platform viewed from the bottom.  
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Continuous phase flow along the channels 

indicated in the previous figure

Continous phase flow

 

Figure 9 The bottom views of the acrylic platform. 

Continous phase flow

Continous phase flow

Dispersed phase flow

 

Figure 10 The scheme of the middle shim.  
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Continous phase flow

Continous phase flow

Dispersed phase flow

 

Figure 11 Magnified view of the junction region in the top and bottom shim layers. 

 

Continous phase flow

Continous phase flow

Dispersed phase flow

 

Figure 12 Magnified view of the junction region in the top and middle shim layers. 
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Dispersed phase flow 
Continuous phase flow 

Continuous phase flow 

Constriction

 

Figure 13 The scheme of the three metal shims stacked. The dispersed phase flow from the middle shims 

could avoid the wettability problem. 

 

3.2 DRIVING THE FLOW: REGULATORS, THE CONNECTORS, SENSORS 

The Nitrogen gas cylinder was connected to two regulators to supply air pressure. The pressure 

regulators, 78-4 (Melotieanon), were used to maintain the constant pressure required to push the 

polymers and the nitrogen gas streams into the channels. The regulators were connected to the 

microfluidic device with 1/8” tubes and 1/4” to 1/8” quick-disconnect fittings. Two 15 psi 

pressure sensors, 26PC15 (Honeywell), were used to determine the pressure being applied. In 

each experiment, the continuous phase pressure was fixed at a certain value, and the dispersed 

phase pressures was varied to examine the various flow conditions under which two phase flow 

can be realized.  
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3.3 DATA ACQUISITION: MICROSCOPE, CAMERA, AND THE IMAGE 

ACQUISITION. 

The voltage values output by the pressure sensors were read by a controller board, 6014 (NI 

instruments), connected to a computer. The pressure values and experiment time were recorded 

by software (Lab-view). Images of bubbles and droplets were captured with a 4X microscopic 

objective and recorded by a microscope digital camera, EO-1312M (Edmund Optics, Germany. 

The acquisition rate was 13 frames per second with a 1280X1024 resolution.  

3.4 MATERIALS 

Nitrogen gas and polyisoprene (PI) was used as the dispersed phase and three 

polydimethylsiloxane (PDMS) liquids with various viscosities were used as the continuous phase. 

Table 1 shows some of the relevant properties of the fluids used. The two pressure regulators 

were controlled from 4-12 psi to realize different flow conditions. All experiments were 

conducted at room temperature. 
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Table 1 Properties of the fluids used at room temperature 
1
 

fluid ρ(kg∙m
-3

) μ(Pa∙s) Supplier 

PDMS 30K 965 30 Rhodia 

PDMS 100K 965 100 Rhodia 

PDMS 500K 965  500 Rhodia 

PI (LIR30) 910 131 Kuraray America 

PEO400 1128 108*10
-3

 Aldrich 

Water 1000 1*10
-3

 N/A 

Nitrogen gas 1.251  17.81*10
-6

 Penn Oxygen 

                                                 

1
 PDMS viscosities are measured by the manufacturer. PI viscosity was measured in house on a rheometer. 
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4.0  RESULTS AND DISCUSSION 

Before undertaking two phase flow experiments with immiscible polymeric fluids, several 

experiments were conducted with air as the dispersed phase and a room-temperature molten 

polymer (PDMS) as the continuous phase. One significant advantage of this is that wall-

wettability is not an issue: the walls are completely wetted by PDMS. The goals of the 

experiments are to verify operation of the system in room temperature, to test for any leakages, 

and most importantly to find out conditions under which bubbles are formed. 

4.1 GAS-LIQUID SYSTEM 

4.1.1 The geometry of the Flow-focusing channel 

Figure 14 illustrates the geometry of a flow-focusing junction. The PDMS continuous fluid flows 

from the side-channels and pinches off the air bubbles from the air stream supplied in the middle 

channel. The channels have rectangular cross sections with a narrow constriction. The channels 

width w here are 381  , and the constriction a is 127    
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The experiments consisted of forcing PDMS and air through the device at various 

combinations of pressure; recording video of the flow at the junction and downstream of the 

junction. The gas and PDMS pressure values range from 5-12 psi  

     A
381 μm a=127 μm

381 μm

381 μm

Air

PDMS

PDMS

D
L

 

Figure 14 Geometry of the cross flow junction along with dimensions. Bubbles are formed in the junction 

and their geometry is specified by their length L and width D. 

 

4.1.2 Bubble formation 

In each experiment, the Pc value was kept fixed and Pd was increased gradually to identify the 

range of Pd values in which bubble formation was evident. This process was repeated at 

successively higher values of Pc. The whole process of bubble formation in the flow-focusing 

geometries can be described as follows: PDMS fluid and air form an interface at the intersection 

of the channel. As the air pressure Pd is increased, at a certain pressure, bubbles began to form at 
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a regular frequency. The time sequence of the whole bubble formation process is shown in 

Figure 15. When the pressure Pd was increased further, at some higher value, instead of steady 

formation of bubbles, the flow became irregular without regular pinch off of discrete bubbles as 

shown in Figure 16. 

t =0.072 s t =0.720 s t =0.863 s

t =1.007 s t =1.079 s t =1.295 s

26.905 s t =27.428 s T = 27.962 s  

Figure 15  The bubble formation in the flow-focusing junction. The continuous phase liquid is PDMS 30K. 

The continuous phase pressure is Pc = 5 psi and the dispersed phase is Pd = 3.18 psi. The upper six images show the 

time sequence of bubble formation in the junction. The lower three images show the bubble being convected 

downstream. 
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t =0.072 s t =0.720 s t =0.863 s

t =1.007 s t =1.709 s t =1.295 s

t =26.905 s t =27.428 s t =27.952 s  

Figure 16 The Irregular “tubing” flow in the flow-focusing cross-section. The continuous phase liquid is 

PDMS 30K. The continuous phase pressure is Pc = 5 psi, and the dispersed phase is Pd = 3.18 psi.  

 

In the range of Pd values in which bubble formation is evident, there is a large 

dependence of bubble size, frequency, and velocity on Pd. Each of these dependences is explored 

below. But before proceeding, it is important to establish a procedure whereby the size of the 

bubbles can be estimated in a consistent fashion. 
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Figure 18 shows a schematic diagram of the typical bubble shape in our experiments. 

Since the bubbles are not spherical, we need some systematic procedure to estimate the bubble 

volume consistently. Therefore we have developed the following procedure for doing so, 

assuming that the bubble is axisymmetric. The overall goal of the procedure is the find the 

volume of an equivalent cylinder whose cross-sectional area matches the cross-sectional area of 

the bubble. The width D of the bubble can be measured directly from the image. We first use the 

“find edges” function in ImageJ to find the boundary of the bubble. Then, the area of the bubble, 

A, in the frame can be determined by the “measure area” function in ImageJ. If this area is 

equated to the cross-sectional area DL of the equivalent cylinder, the effective length L can be 

obtained simply as    .  

A

D

L

 

Figure 17 The diagram of the bubble illustration. 

 

The volume of the equivalent cylindrical bubble V (Figure 17) is simply obtained as: 

 
    (

 

 
)
 

  
(4)  

In many cases, we are interested not in the volume, but in the diameter which can be calculated 

as: 

 
     (

 

 

 

 
)
  

 
(5)  
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To consider the possible errors, we illustrate three limiting types of the bubbles for discussions in 

Figure 18 and Figure 19 to calculate the error in estimating the bubble volume and diameter. The 

first type is the cylinder shape of the bubble. For sufficiently long cylinders, the above procedure 

will cause no error in estimating the volume when we apply above procedure. For short cylinders, 

error may be expected. In the limiting case of a short cylinder, we may spherical bubbles. 

The volume of the sphere is: 

 
   

 

 
 (
 

 
)
 

 
(6)  

The projected area is Pi*D
2/3

. Thus the length L of the effective cylindrical bubble can be 

obtained as: 

 
    (

 

 
)
 

     
(7)  

 
    

 

 
 

(8)  

The axisymmetric shape volume for the cylinder shape: 

 
   

 

 
 (
 

 
)
 

 
(9)  

Thus, the diameter error of spherical shape is about 8 %, which may be regarded as an acceptable 

level of error. Finally we consider the crescent shape of the bubble. We simply illustrate this 

shape with two spheres overlapped in the radius 
 

 
 (Figure 18). 

The volume of this moon-shape bubble: 

 
   

  

  
 (
 

 
)
 

 
(10)  

The area of the moon-shape is now equated to the effective cylinder area DL: 
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(12)  

The axisymmetric shape volume for the cylinder shape: 
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)

 

 

(13)  

Thus, the diameter d error of moon-shape is about 1.5 %, once again an acceptable level of error 

D D D

 

Figure 18 Three major types of the bubble shape. 

 

Figure 19 A schematic illustration of the bubble formation. 

 

In summary, we conclude that there is relatively little error in estimating the bubble 

diameter by the procedure developed here. 

Figure 20 shows that while the bubble sizes do not change across a large range, there is a 

very large dependence of the bubble size on the dispersed phase pressure. Compared to flow rate 

controlled systems, a similar changes in bubble size requires orders of magnitude increase in 
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dispersed phase flow rate [39, 40]. In contrast, in the pressure-controlled situation discussed here, 

the same change in diameter is caused by only a few percent increases in Pd 

The bubble velocity versus the dispersed pressure for various values of Pc is shown in 

Figure 21, and also found to change significantly as Pd increases. This trend is puzzling since in 

the current experiment, the Pc is kept constant, and Pd changes only a few percent, therefore, a 

large increase in total flow rate is not expected. Thus we had expected the bubble velocity to 

increase only slightly with Pd. In contrast, experimentally the bubble velocity is found to grow 

rapidly with dispersed phase pressure. 

The results for the frequency of bubble formation are shown in Figure 22. Again, the 

frequencies increase sharply as the dispersed phase pressure grows. The frequencies increase 

almost linearly with Pd.  

 Finally, Figure 24 shows the flow map, i.e. the combinations of pressure within which 

bubbles can be generated. It is clear that there is a relatively narrow range of Pc and Pd values in 

which bubble formation occurs. This is in sharp contrast to flow rate-controlled systems in which 

bubbles (or drops) can be generated across a wide range of flow rate ratios.  

One quantity of interest in these situations is the capillary number, Ca. For the PDMS/air 

interface, σ is known to be about 20 
  

 
. The Ca calculated accordingly is shown in Figure 25, 

and of course it follows the same trend as the velocity. Notably, the capillary numbers are far 

larger than noted in Figure 4 (the largest Ca value in Cubaud et al is Ca = 10
-1

 [37]. )  

Reynolds’s number (Re) here: 



 33 

 

 

 

    
    

  
          

   
   

(       )
 (       )

      

  
  
   

           

(14)  

 

Bond number (Bo) here: 

 

   
    

  
      

 
  
 (        )  

       
  
  

          

(15)  

Both Re and Bo are far less than 1 indicating that inertial and gravitational effects are 

weak: the flow is dominated by viscous and surface tension forces. 

Based on the value of the capillary number, an extrapolation of Cubaud's results suggest that a 

flow in the dripping regime may be expected. And it looks like we could get drop or bubble 

formation at far higher capillary values than Cubaud. The reason is not clear but it is not because 

we used a gas as the dispersed phase (rather than a liquid). In fact, in the following chapter, we 

will demonstrate the similar results using water as our dispersed phase flow. The extreme 

viscosity ratio may be one of the reasons. Indeed, it must be noted that in Cubaud et al the 

velocity was known exactly since the flow rates were specified. In our case, the gas phase 

velocity is measured from video microscopy. 

 



 34 

 

 

 

Figure 20 Highly dependence of size on Pd 
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Figure 21 Dependence of bubble velocity Pd at various values of Pc. 
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Figure 22 Frequency is almost 2 -3 times faster when narrowed Pd changes applied. 
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Figure 23 Dependence of the dispersed phase flow rate Qd (= bubble volume x bubble frequency) on Pd at 

various values of Pc 
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Figure 24 The combinations of continuous fluid pressure (Pc) and dispersed fluids pressure (Pd) at which 

bubbles can be generated. 
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Figure 25 Dispersed pressure with the Capillary number of dispersed phase.  

 

4.1.3 Modeling: circuit model for the flow-focusing geometry 

The results above show that there is severe dependence of bubble size, velocity and frequency on 

the continuous phase pressure. They also show a relatively narrow range of pressures in which 

bubbles can be formed. Similar results have been reported previously [39, 40]. For example, 

Ward et al compared the flow-controlled system and the pressure-controlled system using oil and 

water as the fluids. They found that when the flow was driven at a specified flow rate (using a 

syringe pump); the drop sizes and frequency were only weakly dependent on the flow rates or 

relative flow rate. In contrast when the fluid pressures were specified with pressure regulators 

(similar to our experiments), the drop or the bubble size had a much stronger dependence on the 

pressure or relative pressure. They did not explain their observations in detail, but the key idea is 
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that each fluid must have some minimum pressure in order to penetrate into the junction. I.e. if 

the pressure of either fluid is too low, then its flow will stop altogether and drop formation will 

stop. This is the crucial difference between pressure-controlled flow as compared to flow-rate 

controlled flow: in the latter situation, it is possible to specify extremely low flow rates for either 

stream and still have bubble generation, whereas in pressure-controlled situations, a very low 

pressure on a stream will stop it’ s flow altogether.  

Here we will develop a simple model (Figure 26) that captures this idea quantitatively 

and explains both the flow map as well as the large dependence of drop size and frequency on 

the dispersed phase pressure. The basic idea is to draw equivalence between the fluid circuit and 

an electrical circuit with the flow rates being analogous to a current and the pressure drops being 

analogous to potential differences; each path then must have a resistance. Indeed, in single 

laminar flow situations (due to the low Reynolds numbers), the analogy can be made exactly 

since the fluid mechanical situation is linear (i.e. flow rates are proportional to flow drops). For 

multiphase flow situations (e.g. the drop flow from the junction to the exit), such linearity is not 

exact, but will be assumed here. 

The model starts with defining the each portion of the flow path with a resistance as 

illustrated in Figure 26. A pressure of zero is ascribed at the exit, and a pressure of Pi is assumed 

at the junction. We will model the flow with three resistances instead of fours since the two 

continuous streams may simply be regarded as resistances in parallel. The results do not make 

any difference either with three resistances or four resistances; a four-stream circuit is equivalent 

to a three-stream with just double the value of Rc. 
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Figure 26 The scheme of pressure analytical method. 

 

The relationship between the flow rates and the pressure drops along each path can be 

written by the following equations: 

            (16)  

            (17)  

        (     ) (18)  

where Rc, Rd, and Rout are the resistances of the channels, Qc and Qd are the flow rates, Pc and Pd 

are the pressure in the channels, and Pi are the pressure values in the intersection. As mentioned 

above, since the flow is laminar and single phase in the inlet channels, the above equations are 

exact and the R values can be calculated exactly from the geometry and viscosity. The Rout value 

corresponds to two phase flow and hence the linear relationship between pressure drop and flow 
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rate is only approximate. Ho and Leal [41] stated that exact pressure drop relationship can be 

calculated for cylindrical tubes from the viscosity ratio, the drop velocity, and the drop shape. 

Here we will not do so and the main conclusions from the model are not affected by this. Solving 

the above equations, the Qc, Qd and Pi could be calculated. 

    
          (       )

         （       ）
 (19)  

    
          (       )

         （       ）
 (20)  

    
    (         )

         （       ）
 (21)  

Clearly, regardless whether bubble formation occurs or not, for obtaining forward flow of 

both fluids, both the Q values must be positive:   

             
  
  
 

    
       

 (22)  

            
  
  
 
       
    

 (23)  

Accordingly, the forward flow is obtained in the limits: Qc = 0; 
  

  
 

    

       
 and Qd = 0; 

  

  
 
       

    
 that outside these limits, “back flow” will occur for one of the supply channels. 

Clearly then, the flow map, i.e. the pressure range within which two phase flow (with or 

without bubble formation) can occur depends on the relative values of the three resistances. If the 

Rout is relatively small, the ratio of the inlet pressures can be significantly different from 1, 

whereas if Rout is large, two phase flow can occur only in a narrow range of pressure ratios. This 
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is illustrated in Figure 27 that shows two cases: one with all three resistances equal (Rc = Rd = 

Rout), and another when (Rout = 15Rc).  

Next we turn to the actual values of the flow rates under conditions when two phase flow 

exists. The relationship of continuous flow rate Qc, and the dispersed flow rate Qd with dispersed 

pressure Pd are shown in Figure 28. This demonstrates when the continuous pressure Pc is fixed 

in is set to 10 (arbitrary units) and Rc = Rd, Rout = 15Rc (also arbitrary units), with increasing Pd, 

Qc decreases from a finite value to zero at a certain value of Pd. Conversely Qd is zero at a certain 

value of Pd, and then rises linearly. This graph illustrates quantitatively the key idea expressed at 

the beginning of this section that there is a certain minimum pressure for each fluid to enter the 

junction. 

Previous literature in flow rate controlled systems [24, 31, 39] suggests that size, 

frequency and velocity depend severely on flow rate when the one of the flow rates is very small. 

For example when Qc is very small, very large bubbles are expected.  

Li et al. [42] studied the empirical relations of bubble formation and they are able to 

quantitatively describe the phenomenon. Here, we describe our experiments from empirical 

correlations. The results of the experiment could lead us to predict the drop sizes based on 

theoretical models. According to Li’s studies [42], the drop size as a function of the Qd/Qc ratio 

for various sizes of the gas inlet and gas-liquid outlet may be represented by the following 

correlation: 

 
 

  
  (

  
  
)  (24)  
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where the dimensionless ratio L/W is the bubble length to the channel width, and the power law 

index αand constant β. The relationship shows that the bubble sizes grow to infinity when the 

flow rate ratio is high. In contrast, the bubble size will be small when the flow rate ratio is low. It 

shows that size depends on flow rate ratio and therefore quantitatively, the circuit model predicts 

large pressure drop dependence, at least in the pressure region where one of the flow rates 

approaches zero.  

      
    

                  
 (25)  

In the equation 25, the circuit model shows that the flow rate strongly depends on 

pressure, and there the velocity should depend as well. The velocity of dispersed phased will 

change significantly with the dispersed flow rate. 

                            (26)  

Equation 26 indicates that frequency depends on the flow rate and the volume. The 

circuit model does not predict the volume. If volume is constant (i.e. drop diameter constant) 

then frequency will have same behavior as flow rate. In reality volume of drop increases with Qd, 

and hence frequency does not increase as sharply with increasing Pd.  



 45 

 

 

 

Figure 27 Pressure range in which forward flow occurs in all channels. The solid lines are calculated from 

equations 22 and 23 for Rc = Rd = Rout. The dashed lines correspond to Rc = Rd and Rout is 15 times higher than Rc. 

Here the units of Pc and Pd are arbitrary. 
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Figure 28 The dependence (calculated from equation 19-20) of the two flow rates on the dispersed phase 

pressure keeping the continuous phase Pc constant, The resistances here are Rc = Rd, Rout = 15*Rc 

 

Having established the reason for the strong pressure dependence qualitatively, we now 

test the model more quantitatively. We assume Rd is much smaller than Rc because the viscosity 

of nitrogen gas (17.8*10
-6

 Pa.s) is far lower than of the PDMS fluid (30 Pa.s). Therefore we will 

simply set Rd to be zero. Equation 20 therefore becomes: 

   
   
  

 
  
  
(
  
    

  ) (27)  

 

Dispersed phase flow stops 
Continuous phase flow stops 
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This equation has two fitting parameters, Rout and the ratio Rc/Rout which can be adjusted to fit 

the Qd vs. Pd data of Figure 23. The fit (done by eye) is shown in Figure 30. It is clear that the 

same values of fitting parameter can capture the data at all values of Pc simultaneously. This 

lends confidence to the validity of the circuit model. The actual values of the fitting parameters 

are Rc/Rout = 0.6, Rc = 9.7*10
-9

 
      

   
 and Rout = 1.6*10

-8 
      

   
. We may estimate the value of Rc 

and Rout using the equations for laminar flow in for the rectangular channel flow [43]: 

    
   

    
 (28)  

   
 (   ) 

   
 (29)  

where L is the channel length, w is the channel width, h is the channel height, α is the 

geometrical correction factor, and C is dimensionless compactness. According to the  Figure 29 

[43], we could find the C and α for the rectangular flow. Here, we combine the channel 

resistance in sequence because of the complicated geometries. The continuous phase resistance is 

combined the two acrylic supplied channels with vertical channels, Rc = 4.7*10
-9

 
      

   
.  And 

outlet resistance is combined the constriction channel with the downstream channels, Rout = 

4.1*10
-8  
      

   
. The ratio of Rc/Rout = 0.1. The absolute values of Rc and Rout obtained 

experimentally are within a factor of 4 of the values estimated. However, the calculated ratio is 

in poor agreement with that calculated theoretically. 
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Figure 29 The correction factor versus compactness for the elliptical, rectangular, and triangular classes. 

Numerical results from a finite-element simulation are also included (○, △, and □) Reprinted with permission from 

the authors [43].  

These are predictions for the combination of Pc vs. Pd in which forward flow is obtained. 

It is clear that the lower limit (i.e. the minimum pressure needed for bubble formation) is well-

captured by the model. The upper limit cannot be measured experimentally since we stop the 

flow experiments when bubble generation transitions into tubing flow. Thus experimentally we 

are not able to determine whether the predicted limit for when the air will start backing up the 

PDMS supply channels is accurate or not. 
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In summary, the circuit model which ignores all surface tension phenomena, is able to 

predict the flow characteristics of the two-phase flow, and furthermore is able to qualitatively 

explain why the drop size depends strongly on the dispersed phase pressure.   

 

Figure 30 Approximate fits of equation 27 to the flow rate vs the dispersed phase pressure. 
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Figure 31 The flow map from equation 22-23 using the same value of Rout/Rc as obtained from the 

previous figure (Rout=1.66Rc). 

 

4.1.4 Effect of viscosity of the continuous phase 

To study the effect of viscosity of the continuous phase, we used three different viscosities, 10K 

30K and 500K, of PDMS fluids. Figure 32 shows the flow map with different viscosities of the 

continuous phase fluids. Figure 33 shows that the bubble size decreases somewhat as the 

viscosity of the continuous phase increases, nevertheless, the bubbles remain comparable in size 
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to the device dimensions. Comparing the three viscosities at the same pressure values, Figure 34 

illustrates that the velocity of the bubbles decreases significantly as the viscosity of the 

continuous phase increases. Figure 36 show the frequencies of the bubble formation reduce as 

the viscosity of the continuous phase PDMS increases. Finally, the flow rate of the continuous 

phase, obtained as the product of the bubble volume and the frequency, is illustrated in Figure 38. 

The increase in continuous phase viscosity reduces the bubble flow rate. We will now consider 

each of these in turn. 

The bubble size itself does not appear to change suggesting that it is primarily determined 

by the geometry of the junction. Indeed the basic theory of drop breakup states that drops are 

formed when the capillary number reaches its critical value of 1 

 

        
        
        

 
  

 
   (30)  

Since bubble size does not appear in this equation, the weak dependence of bubble size 

on flow conditions is not surprising. 

Next we turn to the flow rate. The circuit model predicts that flow resistances are 

proportional to viscosity and hence flow rate should be inversely proportional to viscosity. This 

scaling is tested in Figure 39 which plots the product of viscosity and flow rate vs. Pd. While the 

data do not collapse into a single curve, they do fall in a somewhat narrow band suggesting that 

to a first approximation, the bubble flow rate reduces because the viscosity increased. 
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Next frequency can simply be found from the time required to create a drop of the desired 

diameter at the flow rate available. Since drop size does not change much, and Q is inversely 

related to viscosity, frequency must reduce with increase in viscosity. Indeed this is seen as well. 

Next we turn to the velocities and frequencies. Figure 35 and Figure 37 show that both 

these quantities scale with the viscosity, i.e. the product frequency*viscosity or 

velocity*viscosity cause the data to collapse indicating that velocity and F are both quantities are 

proportional to viscosity. The flow rate Qd also shows this phenomenon. The flow rate is affected 

by the drop volume and the frequency. Thus, in different viscosities fluids, the flow rated would 

only affected by the frequency. The result in Figure 39 demonstrated the rescaled effect on the 

flow rate. According the circuit model we developed above, the flow rate is a function of 

pressures and resistances. As viscosity increases, resistance increases. So flow rates go down. 

Since drop size does not change much, frequency goes down. And the bubble velocity is the 

function of the flow rate. That’s why the velocities decrease with the increase of the viscosity. 
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Figure 32 The combinations of continuous fluid pressure (Pc) and dispersed fluids pressure (Pd) at different 

viscosities. 
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Figure 33 Effect of continuous phase viscosity on bubble sizes. 
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Figure 34 Dependence of drop velocity on the viscosity of the continuous phase. 
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Figure 35 The velocity shifted by velocity* viscosity.  
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Figure 36 The drop frequency in different viscosities. The frequency goes up when the Pd increases. In 

addition, the highest viscosity continuous phased fluid gets the lowest frequency. 
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Figure 37 The frequency shifted by frequency* viscosity.  
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Figure 38 The flow rate Qd in different viscosities. The frequency goes up when the Pd increases. In 

addition, the highest viscosity continuous phased fluid gets the lowest Qd. The Qd axis is plotted in the log scale. 
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Figure 39 The flow rate Qd shifted by Qd* viscosity. The Qd axis is plotted in the log scale. 
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5.0  LIQUID-LIQUID SYSTEM 

The previous chapter tested out the feasibility of bubble formation in a pressure-driven 

microfluidic device with a highly viscous continuous phase. Those experiments give some 

confidence that interfacial tension-driven drop breakup can still occur with undiluted polymer 

melts; thus in principle, molten polymer microfluidics is feasible. We now turn to examining a 

liquid/liquid system where both the continuous as well as dispersed are both undiluted polymeric 

liquids. As before, both fluids are high-viscosity liquids at room temperature. In the flow-

focusing microfluidic device, the drop formation is qualitatively different from the bubble.  Two-

phase liquid flows in microfluidic devices have been widely studied [24, 44, 45]; however, there 

are no reports of generating drops from undiluted molten polymers.  

5.1 EXPERIMENTAL PROCEDURE 

The continuous phase was PDMS 100k which has a viscosity of 100 Pa.s. The dispersed phase 

liquids are liquids of various viscosities: water, PEO400, PI. The experimental protocol is the 

same as before: keep Pc fixed while increasing (or reducing) Pd in a stepwise fashion. The 

continuous phase liquid and the dispersed phase liquid are both filled into the reservoirs at the 
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same time, and then the continuous phase liquid is filled into the channel first to prevent the 

wetting problem. In early experiments with the three layer shims, we noted problems with wall 

wettability: sometimes the dispersed phase fluid would touch the bottom and/or top wall and 

leave a residue that interfered with the imaging and complicated further experiments. Following 

Figure 13, the dispersed phase fluid can be prevented from touching the top and bottom wall by 

simply making the top and bottom shim layer thicker; this was done with two additional shims of 

thickness 125 μm at the top and bottom. This five layer device prevented the wettability 

problems in the liquid/liquid experiment. 

The remainder of the experimental apparatus and procedures were identical to those in 

the previous section. However as we discussed below, an entirely different behavior was found. 

5.2 RESULTS 

We had expected that, similar to the formation of bubbles in the previous chapter, we would be 

able to form droplets could be formed at the cross-flow junction. Thus the original goal of the 

experiments was to examine the similarities and differences between the quantitative behaviors, 

e.g. drop vs. bubble sizes, the range of pressures in which drops can be formed, etc. However, in 

the present case, the dispersed phase PI was found to form a continuous filament, rather than 

breakup into drops. The formation of this thin filament is shown in Figure 40 and Figure 41. 
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Figure 40 Formation of a PI filament surrounded by continuous phase PDMS. Pc = 5 psi and Pd = 2.61 psi.  
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Figure 41 The downstream image of the filament of PI surrounded by continuous phase PDMS. Pc here is 5 

psi, and Pd is 2.61 psi.   

  

At high values of Pd, this filament was stable and was convected downstream to the exit 

of the device. As the Pd was reduced, the thickness of the thread was found to decrease. 

Sufficiently thin filaments eventually broke by a downstream capillary instability into a string of 

drops as illustrated in Figure 42. Between the primary drops in this string, smaller satellite drops 

are clearly visible, and this has been noted commonly in capillary breakup phenomena. These 

drops were then convected to the exit of the channel. The drops formed by this downstream 
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capillary breakup are far smaller than the gas bubbles formed in the cross-flow junction in the 

previous chapter, and indeed. Indeed, the gas bubbles were comparable in size to the dimensions 

of the channel, whereas the drops of Figure 41 are many times smaller than the smallest 

dimension (the 127 micron constriction) of the channel. This observation is potentially useful 

since it raises the possibility of creating polymeric particles that are far smaller than the size of 

the microfluidic channels.   

Figure 43 shows the flow map of the combinations of pressure within which different 

thickness of the threads can be generated. The qualitative behavior is similar, the bubble size or 

the thread size increased with the higher Pd, however the actual pressure values at which two-

phase flow occurs is different, perhaps due to the change in overall thickness of the flow 

geometry. 
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Figure 42 A string of PI drops formed downstream of the crossflow junction by a capillary instability of a 

PI filament.  
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Figure 43 The pressure flow map of the PI dispersed phase flow. 

 

The diameters of the filament are shown in the Figure 44 as a function of the dispersed 

phase pressure. Similar to the behavior of the bubble sizes in the previous chapter, there is a 

significant dependence of the filament diameter on the pressure. The filaments that show 

capillary breakup correspond to the lowers value of Pd at which two-phase flow is still possible; 

in this region, there is a strong decrease of filament diameter. This suggests that the capillary 

breakup may occur only because the dispersed phase flow is on the verge of stopping, leading to 

very small filament diameters and possible small fluctuations in diameter, both of which 

facilitate capillary breakup.   
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Figure 44 The diameter of the PI filament as a function of dispersed phase pressure. The points shown with 

a circle showed a downstream capillary breakup similar to that shown in Figure 42. 

5.3 DRIPPING VS. JETTING 

The chief result of this chapter is that the behavior of the PI/PDMS flow is altogether different 

from that of the air/PDMS flow. We seek to examine the reasons for this change. At least three 

possible reasons may be listed for this difference: compressibility, viscosity ratio, and interfacial 

tension, and each of these will be considered in turn.  
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Drop breakup is induced by interfacial tension. Indeed in Chapter 2, we discussed the role 

of capillary number (    ) and noted that breakup is possible only if the capillary number is 

relatively small. At large value of capillary number, continuous stream flow was observed as 

illustrated in Figure 4. The surface tension of the Nitrogen gas/PDMS interface may be expected 

to be about 19 mN/m [46] whereas that of the PI/PDMS interface may be expected to be about 

2.73 mN/m [46]. Clearly the lower interfacial tension between PI and PDMS may raise the 

capillary number and make the breakup more difficult, but it doesn’t affect too much compared 

to viscosity ratio. The second is that air is compressible whereas PI is not; this may play a role in 

the breakup. Thirdly, the viscosity ratio changes from 1.781*10
-7

 for the Nitrogen gas/PDMS 

experiment to 1.3 for the PI/PDMS experiment; this may also influence breakup phenomena. 

Additional experiments were conducted to test these possibilities. 

 

Table 2 Viscosities ratio and surface tension between liquids 

Fluid Viscosity Raito Surface tension (mN/m)  

Nitrogen gas/PDMS 100K 1.781*10
-7

 19 

Water/PDMS 100K 10
-5

 34.8 

PEO-400/PDMS 100K  1.08*10
-3

 3-12 
2
 

PI (LIR30)/PDMS 100K 1.3 2.73 

 

                                                 

2
 typical of polymer pairs 
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In order to test the effect of dispersed phase compressibility, the experiment was repeated 

using water as the dispersed phase, and keeping the same PDMS 100K as continuous phase. The 

viscosity ratio for water/PDMS is 10
-5

 as compared to 1.781*10
-7

 for Nitrogen gas/PDMS. While 

these are not equal, they are both far less than 1. Furthermore, the viscosity ratio of interfacial 

tension between water and PDMS is 10
-5

, which is even higher than air/PDMS; thus replacing air 

with water is not likely to increase the capillary number. Thus it is reasonable to expect that any 

difference between the flow behaviors of the air/PDMS pair vs. the water/PDMS pair would be 

attributed to difference in the compressibility. In fact our experiments show that their behavior 

was qualitatively similar (Figure 45) and water drops could be generated similar to the air 

bubbles. This experiment definitively suggests that compressibility is not the reason for the 

difference between PI and air.  

 

 

Figure 45 A: the water droplet formation B: the Nitrogen gas bubble formation. Give information on 

pressure. 
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Next we turn to the viscosity ratio. The hypothesis is that as viscosity ratio increases, at 

some value between 10
-5

 (for water/PDMS) and 1.3 (for PI/PDMS) a there will be a change in 

behavior from drop formation at the cross-flow junction (usually called dripping) to either 

filament formation (usually called jetting). The first fluid considered was PEO 400 with a 

viscosity of 90*10
-3

 Pa.s, corresponding to a viscosity ratio of 9*10
-4

. The behavior is shown in 

Figure 46 and it is clear that PEO400 forms a short thread to break up instead of downstream 

break up. Thus the reason for the difference between the air/PDMS and the PI/PDMS appears to 

be attributable to the viscosity ratio: it appears that with increasing viscosity ratio, there is a 

transition from dripping to jetting (with downstream breakup) to jetting that forms a filament that 

does not breakup readily. 

 

 

Figure 46 A: drop formation in the cross-flow junction for water. B. Formation of a short filament with 

downstream breakup with PEO400. C. Formation of a filament without downstream breakup. The continuous phase 

fluid here is PDMS 100K. Pc here is 10 psi, Pd is 4.73 psi.  

 

This idea that the viscosity ratio can affect the dripping to jetting transition has been 

explored in the literature, albeit in flow rate controlled devices (rather than pressure-controlled 
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devices). The previous literatures show the results that when the velocity of the liquids is fixed, 

the more stable stream is obtained with the viscosity of the liquid increased [37, 44, 45, 47].  

To summarize the results of this chapter, switching from air/PDMS to PI/PDMS requires 

increasing the thickness of the top and bottom layers so that the dispersed phase fluid does not 

contact the top and bottom walls. The chief result is that there is a qualitative difference in 

behavior: switching from air to a higher viscosity fluid result in the formation of a thin filament. 

If this filament is made sufficiently thin, it is possible to induce downstream breakup; this has the 

potential advantage of forming drops that are significantly smaller in size than the channel 

dimensions. However in this device at least, there was only a very narrow range of conditions in 

which downstream breakup was observed. We presume that this is because the diameter of the 

filament generated is relatively large, and the time required for capillary breakup is so large that 

the filament exits the device before breakup can occur.  

We considered one approach for accelerating downstream breakup, viz. perturbing the 

filament diameter with the goal of reducing the time required for inducing the capillary 

instability. The basic idea was to perturb the value of Pd at a certain frequency so that the 

filament would develop slimmer “necks” at regular intervals; these necks would then be sites 

where the capillary instability could occur rapidly. 

We built up a three way solenoid valve system (Figure 47) to test if we could increase the 

perturb of the dispersed phase stream. Two different dispersed phase pressure were provided by 

two independent regulators, and the solenoid valve could switch rapidly so that the dispersed 

phase pressure could be alternated between two values. By controlling the frequencies of the 
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switching valves, we could create a square-wave pressure signal to vary the dispersed phase flow 

rate. 

Three 
way 
valves

 

 

Regulator

Pressure sensor

High Pd

Low Pd

 

Pc

Microfluidic device

Digital Camera

Control Board

Nitrogen gas 

Cylinder

 

Figure 47 The solenoid system includes three regulators, a solenoid valve. The solenoid could be switched 

between the high Pd and low Pd.  

 

Experiments were conducted with Pc = 10 psi. The value of the Pd was oscillated between 

two values that differed by as little as 0.4 psi (solenoid switching between 5.2 psi and 4.8 psi) to 

as high as 7.5 psi (solenoid switching between 8 psi and 1.5 psi). The frequency of oscillations 

was varied from 0.1 Hz to 1.5 Hz. In all these cases, it was found that while we could perturb the 

filament substantially, the perturbation was still insufficient to induce breakup while the filament 

was still within the device. We did see downstream breakup in many circumstances; however, 
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this was invariably when the filament diameter was already very small. Thus the chief 

conclusion was that downstream breakup is possible only if sufficiently small diameter filaments 

can be generated. 

Appendix A shows preliminary results using substantially smaller micro-channels in 

which filaments of small diameter can be realized readily. In those cases, downstream breakup 

was observed in a wide range of parameters. 
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6.0  CONCLUSION AND FUTURE WORK 

6.1 CONCLUSION 

In this study, our two major problems, (1) high viscosity and low interfacial tension makes it 

difficult to break a continuous fluid stream into drops (2) high viscosity and high temperature 

required completely new methods of fluid handling, are discussed and resolved. By developing 

the pressure-driven system and metal shims for microfluidic channels, we can solve the wetting 

problem and high viscosities issues for the development of molten polymer microfluidics.  

In the gas-liquid experiment, we demonstrated the circuit model to explain the fluid 

phenomena in the micro channels. By discussing the bubble sizes, flow velocity, flow rate, 

frequency, and different viscosities fluids, we find that (i) the flow rates are the functions of the 

pressure in the channels and the resistances of the channels. This model could explain why the 

bubble size depends severely on the pressure driving the flow (ii) The frequency of the bubbles is 

increased with the increase of Pd. (iii) the different viscosities fluids do not affect the bubble sizes 

but flow rate, velocity, and frequency.  

In the liquid-liquid experiment, we note that for the high viscosity dispersed fluid, the dripping 

phenomenon is not observed, instead, threading and jetting were obtained. From the different 

viscosities dispersed fluids test, we could conclude that this threading phenomenon is not caused 
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by the compressibility of the dispersed phase, but by the viscosities difference between the 

dispersed fluid and the continuous fluid. 

At the beginning of this work, we did not have confidence that we could form drops with 

molten polymers at all. Now that we have done this, we are certain that we can get polymeric 

drops by downstream breakup. 

6.2 FUTURE WORK 

The results of the liquid-liquid system suggest narrowing down the size of the microfluidic 

channels to test whether we can reliably generate drops with a downstream breakup. We have 

made anther device for the high temperature experiment. The dimension of the constriction is 

narrowed down to 75 micron, which helps us to decrease the drop sizes. In this device, still 

operating with the same fluids and at room temperature, we are able to make 10-20 micron sizes 

droplets. The details of this experiment are attached in the appendix A. The high temperature 

device was fabricated by a Mechanical Engineering Design team as a part of an undergraduate 

design class. The experiments in the Appendix were conducted with assistance from 

undergraduate researcher Justin Lowen.   

Accordingly the future direction of this work is towards testing a wider variety of 

polymers that are not liquid at room temperature. This would require the device to operate at 

high temperature to form molten polymer drops, but then also cool them rapidly to solidify them 

into particles. 
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Finally, it would be useful in the future to explore the formation of particles with 

complex geometries. 
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APPENDIX A 

PI-PDMS EXPEREIEMENT WITH NARROWED CHANNEL DIMENSION 

Materials and methods 

In order to narrow down the size of the channels, we redesign the shims and the microfluidic 

device. The new design of the device is made of aluminum plates with steel stainless shims. This 

device was constructed to enable high temperature experiments in the future, although here we 

will only discuss experiments at room temperature. Here the liquid-liquid experiment of Chapter 

5 was repeated to test whether we can reliably generate drops with a downstream breakup when 

the filament diameter is small. The shims were designed in different channels with the laser 

machining. The design drawings are listing below (Figure 48, Figure 49). 
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Figure 48 The high temperature microfluidid device. All components shown are made of metal, not acrylic 

as in Figure 7. 

 

The geometry was similar to that used in the rest of the thesis except that the widths of the 

main channels were 150 μm, and the constriction (75 μm) in the intersection as will be shown in 

Figure 49. Furthermore, due to the smaller dimensions of the channels, the pressures required to 

drive flow were higher and hence conventional dial gauges were used to measure the applied 

pressure. The rest of the experiment setup was as same as before. PI was used as the dispersed 

phase and PDMS 100K liquids with various viscosities were used as the continuous phase. The 

experiment procedure are remained the same as before; the Pc value was kept fixed and Pd was 

increased gradually to identify the range of Pd values in which droplet formation was evident. Pd 

here is set up a fixed value 32 psi. 
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Figure 49 Geometry of the cross flow junction along with dimensions.  

 

Results 

The results of the experiments were similar; the dispersed phase PI was found to form a 

continuous filament, rather than breakup into drops in the intersection. After the intersection, 

because of the instability of the stream, the stream broke up into droplets in the downstream 

shown in the Figure 50. The drop sizes increased with increasing Pd, as shown in the Figure 51. 

Figure 52 shows the diameter changes of the thread sizes with the Pd increased.  

Clearly in these cases, the diameter of the filament was much smaller than obtained in 

Chapter 5 and downstream breakup was observed in all these experiments. Moreover, the point 

at which capillary breakup occurred (as measured from the junction) increased with increasing Pd. 
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This may be because the thicker filaments generated at higher Pd take a longer time to break. 

Finally, the frequency shown in the Figure 54 decreased with the increase of the Pd.  

In the Chapter 5, we found that the thread size is an important factor to form jetting 

phenomenon. We tried to accelerate the capillary instability by perturbing the stream, but this did 

not affect the stability of the filament noticeably. In contrast, here we note that in the narrower 

micro-channel, downstream capillary breakup occurs readily and drops that are less than 40 

microns in diameter can be realized readily.   

 

Figure 50 Drop formation by downstream capillary breakup. The continuous phase fluid here is PDMS 

100K, and the dispersed phase fluid is PI. Pc here is 32 psi, Pd is 28 psi.  
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Figure 51 Dependence of drop size on Pd when Pc value was kept fixed at 32 psi. 
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Figure 52 The thread diameter changed with Pd.  
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Figure 53 The distance of the point of the break up from the intersection depended on the Pd. 
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Figure 54 Frequency of the downstream breakup droplets dependence on Pd. 
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