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VS-FMDF AND EPVS-FMDF FOR LARGE EDDY SIMULATION OF

TURBULENT FLOWS

Mehdi B. Nik, PhD

University of Pittsburgh, 2012

The first part of this dissertation is concerned with implementation of the joint “velocity-

scalar filtered mass density function” (VS-FMDF) methodology for large eddy simulation

(LES) of Sandia Flame D. This is a turbulent piloted non-premixed methane jet flame. In

VS-FMDF, the effects of the subgrid scale chemical reaction and convection appear in closed

forms. The modeled transport equation for the VS-FMDF is solved by a hybrid finite-

difference/Monte Carlo scheme. For this flame (which exhibits little local extinction), a

flamelet model is employed to relate the instantaneous composition to the mixture fraction.

The LES predictions are compared with experimental data. It is shown that the methodology

captures important features of the flame as observed experimentally.

In the second part of this dissertation, the joint “energy-pressure-velocity-scalar filtered

mass density function” (EPVS-FMDF) is developed as a new subgrid scale (SGS) model for

LES of high-speed turbulent flows. In this model, the effects of compressibility are taken into

account by including two additional thermodynamic variables: the pressure and the internal

energy. The EPVS-FMDF is obtained by solving its modeled transport equation, in which

the effect of convection appears in a closed form. The modeled EPVS-FMDF is employed

for LES of a temporally developing mixing layer.

Keywords: Large eddy simulation, filtered density function, turbulent reacting flows.
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1.0 INTRODUCTION

The filtered density function (FDF)1–3 is now regarded as one of the most effective means

of conducting large eddy simulation (LES) in turbulent combustion. In its initial form,

the marginal “scalar” FDF (S-FDF);4 and its mass weighted scalar filtered mass density

function (S-FMDF)5 provided the first demonstration of a “transported” FDF in reacting

flows. The primary advantage of S-FDF (S-FMDF) over conventional (non-FDF) methods

is that it accounts for the effects of subgrid scale (SGS) chemical reactions in a closed form.

This closure is the primary reason for S-FMDF’s popularity and its widespread applications

within the past decade.6–25 See Ref.26 for a recent review.

Inclusion of the “velocity” in the FDF accounts for the effects of “convection” in a closed

form as well. This is demonstrated in the velocity-FDF (V-FDF),27 the joint velocity-scalar

FDF (VS-FDF),11 and its density weighted VS-FMDF28 formulations. In its most rudimen-

tary form, the VS-FDF is equivalent to, at the least, a “second-order” SGS model. It is to

noted that the majority of conventional hydrodynamic SGS closures are “zero-order.”29–32

This higher accuracy yields a better predictive capability of the FDF in capturing more

intricate physics of SGS transport.33

The first objective of this work is to assess the capability of the VS-FMDF for prediction

of hydrocarbon flames. For that, we consider the piloted non-premixed methane jet flame, as

studied in the experiments of the Combustion Research Facility (CRF) at the Sandia National

Laboratories,34,35 and at TU-Darmstadt.36 Sheikhi et al.37 report the first results of S-FMDF

predictions for this flame. Their encouraging results motivated significant subsequent S-

FMDF simulations by many others.12,13,18–23 The contributions are ongoing; the CRF web site

maintains an updated bibliography of the growing literature in this field. In the experiments,

three flames are considered: flames D, E and F. The geometrical configuration in these flames
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is the same, but the jet inlet velocity is varied. In Flame D, the fuel jet velocity is the lowest.

The jet velocity increases from flames D to E to F, with noticeable non-equilibrium effects in

the latter two. Flame D is considered in this thesis. The objective is to assess the predictive

capability of the VS-FMDF in capturing the flow field and the scalar mixing. This is the

first application of the VS-FMDF for prediction of a hydrocarbon flame.

The second objective of this work is to extend the VS-FMDF for LES of high speed

flows. This is accomplished by considering the joint “energy-pressure-velocity-scalar filtered

mass density function” (EPVS-FMDF). This is an extension to VS-FMDF methodology and

provides the most comprehensive form of the FDF formulation to date. With the definition of

the EPVS-FMDF, the mathematical framework for its implementation in LES is established.

A transport equation is developed for the EPVS-FMDF in which the effect of SGS convection

appears in a closed form. The unclosed terms in this equation are modeled in a fashion

similar to that in the Reynolds-averaged procedures. A Lagrangian Monte Carlo procedure

is developed and implemented for numerical solution of the modeled EPVS-FMDF transport

equation. Simulations are conducted of a non-reacting temporally developing mixing layer.

1.1 SCOPE

This dissertation is organized as follows. In Chapter 2, the joint velocity-scalar filtered mass

density function (VS-FMDF) for LES of Sandia Flame-D is considered. The work described

in this chapter has been presented at APS-DFD ;38 and is published in AIAA Journal,39

and Flow, Turbulence and Combustion.40 In Chapter 3, the joint energy-pressure-velocity-

scalar filtered mass density function (EPVS-FMDF) methodology is developed. Parts of this

chapter has been presented at APS-DFD,41,42 and AIAA-ASM.43,44 In Chapter 4, some final

remarks are made, with some suggestions for future research. Parts of this dissertation was

presented at an invited lecture at AIAA-JPC.45

2



2.0 JOINT VELOCITY SCALAR FILTERED MASS DENSITY FUNCTION

FOR VARIABLE DENSITY FLOWS

In the work presented in this chapter, the previously developed VS-FMDF methodology is

employed for LES of Sandia flame D. Following its mathematical definition, the exact VS-

FMDF transport equation is presented. The unclosed terms in this equation are modeled

using an equivalent system of stochastic differential equations. For this, a hybrid Eule-

rian/Largrangian numerical solution procedure is used. In the Eulerian part, the filtered

transport equations are solved by a finite-difference method. In the Lagrangian part, the

solution of the modeled VS-FMDF transport equation is obtained by a Monte Carlo method.

The unclosed statistics in the Eulerian part are obtained from the Monte Carlo solver. The

comparative capabilities of the VS-FMDF is assessed by comparing the predicted results

with the experimental data. Also, with the utilization of progressively larger number of grid

points, the effects of resolution on various statistics of the flow variables, as predicted by

VS-FMDF are investigated.

2.1 FORMULATION

2.1.1 Basic equations

In a turbulent flow undergoing chemical reaction involving Ns species, the primary transport

variables are the density ρ(x, t), the velocity vector ui(x, t) (i = 1, 2, 3), the pressure p(x, t),

the enthalpy h(x, t) and the species’ mass fractions Yα(x, t) (α = 1, 2, . . . , Ns). The equations

which govern the transport of these variables in space (xi) (i = 1, 2, 3) and time (t) are the

3



continuity, momentum, enthalpy (energy) and species’ mass fraction equations, along with

an equation of state

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (2.1a)

∂ρui
∂t

+
∂ρujui
∂xj

= −
∂p

∂xi
+
∂τji
∂xj

, (2.1b)

∂ρφα

∂t
+
∂ρujφα

∂xj
= −

∂Jα
j

∂xj
+ ρSα, α = 1, 2, . . . , σ = Ns + 1, (2.1c)

p = ρR0T

Ns∑

α=1

Yα/Mα = ρRT, (2.1d)

where R0 and R are the universal and mixture gas constants and Mα denotes the molecular

weight of species α. The chemical reaction source terms Sα ≡ Ŝα (φ(x, t)) are functions of

compositional scalars (φ ≡ [φ1, φ2, . . . , φNs+1]). Equation (2.1c) represents the transport of

species’ mass fraction and enthalpy in a common form with

φα ≡ Yα, α = 1, 2, ..., Ns, φσ ≡ h =
Ns∑

α=1

hαφα, hα = h0α +

∫ T

T0

cpα(T
′)dT ′. (2.2)

Here T and T0 denote the temperature field and the reference temperature, respectively.

In this equation, h0α and cpα denote the enthalpy of formation at T0 and the specific heat

at constant pressure for species α. For a Newtonian fluid, with Fick’s law of diffusion, the

viscous stress tensor τij and the scalar flux Jα
j are represented by

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi

−
2

3

∂uk
∂xk

δij

)
, Jα

j = −ρΓ
∂φα

∂xj
(2.3)

where µ is the fluid dynamic viscosity and Γ denotes mass molecular diffusivity coefficients for

all the scalars. We assume µ = ρΓ; i.e. unity Schmidt (Sc) and Prandtl (Pr) numbers. The

viscosity and molecular diffusivity coefficients can, in general, be temperature dependent. In

reactive flows, molecular processes are much more complicated than portrayed by Eq. (2.3).

Since the molecular diffusion is typically less important than that of SGS, this simple model

is adopted with justifications and caveats given in Refs.46–48
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2.1.2 Filtered equations

Large eddy simulation involves the spatial filtering operation29–32,49

〈Q(x, t)〉ℓ =

∫ +∞

−∞
Q(x′, t)G(x′,x)dx′, (2.4)

where G(x′,x) denotes a filter function, and 〈Q(x, t)〉ℓ is the filtered value of the trans-

port variable Q(x, t). In variable-density flows it is convenient to use the Favre-filtered

quantity 〈Q(x, t)〉L = 〈ρQ〉ℓ / 〈ρ〉ℓ. We consider a filter function that is spatially and tem-

porally invariant and localized, thus: G(x′,x) ≡ G(x′ − x) with the properties G(x) ≥ 0,
∫ +∞
−∞ G(x)dx = 1. Applying the filtering operation to Eqs. (2.1) and using the conventional

LES approximation for the diffusion terms, we obtain

∂〈ρ〉ℓ
∂t

+
∂ 〈ρ〉ℓ 〈uj〉L

∂xj
= 0, (2.5a)

∂ 〈ρ〉ℓ 〈ui〉L
∂t

+
∂ 〈ρ〉ℓ 〈uj〉L 〈ui〉L

∂xj
= −

∂ 〈p〉ℓ
∂xi

+
∂

∂xj

(
µ

(
∂ 〈ui〉L
∂xj

+
∂ 〈uj〉L
∂xi

))

−
2

3

∂

∂xi

(
µ
∂ 〈uj〉L
∂xj

)
−
∂ 〈ρ〉ℓ τL(ui, uj)

∂xj
, (2.5b)

∂ 〈ρ〉ℓ 〈φα〉L
∂t

+
∂ 〈ρ〉ℓ 〈uj〉L 〈φα〉L

∂xj
=

∂

∂xj

(
〈ρ〉ℓ Γ

∂ 〈φα〉L
∂xj

)
−
∂ 〈ρ〉ℓ τL(uj, φα)

∂xj
+ [〈ρ〉ℓ 〈Sα〉L] ,

(2.5c)

In equation (2.5), the second-order Favre SGS correlations are defined by

τL(a, b) = 〈ab〉L − 〈a〉L 〈b〉L .

(2.6)
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2.2 EXACT VS-FMDF TRANSPORT EQUATION

The “velocity-scalar filtered mass density function” (VS-FMDF), denoted by PL, is formally

defined as2

PL (v,ψ,x; t) =

∫ +∞

−∞
ρ(x′, t)ζ (v,ψ;u(x′, t),φ(x′, t))G(x′ − x)dx′, (2.7)

where

ζ (v,ψ;u(x, t),φ(x, t)) =
3∏

i=1

δ (vi − ui(x, t))×
σ∏

α=1

δ (ψα − φα(x, t)) . (2.8)

In this equation, δ denotes the Dirac delta function, and v,ψ are the velocity vector and the

scalar array in the sample space. The term ζ is the “fine-grained” density.47,50 Equation (2.7)

defines the VS-FMDF as the spatially filtered value of the fine-grained density. With the

condition of a positive filter kernel,51 PL has all of the properties of a mass density function

(MDF).47 Considering the time derivative of the fine-grained density function Eq. (2.8) and

using Eqs. (2.1b)-(2.1c), and Eqs. (2.3), (2.7), results in

∂PL

∂t
+
∂vjPL

∂xj
=

∂

∂vi

(〈
1

ρ(φ)

∂p

∂xi

v,ψ
〉

ℓ

PL

)
−

∂

∂vi

(〈
1

ρ(φ)

∂τji
∂xj

v,ψ
〉

ℓ

PL

)

+
∂

∂ψα

(〈
1

ρ(φ)

∂Jα
i

∂xi

v,ψ
〉

ℓ

PL

)
−

∂

∂ψα

(Sα(ψ)PL) .

This is an exact transport equation and indicates that the effects of convection, the second

term on left-hand side, and chemical reaction, the last term on the right-hand side (RHS),

appear in closed forms. The unclosed terms denote convective effects in the velocity-scalar

sample space. The unclosed terms are exhibited by the conditional filtered28 values as shown

by the first three terms on the RHS.
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2.3 MODELED VS-FMDF TRANSPORT EQUATION

For closure of the VS-FMDF transport equation, we consider the general diffusion process,52

given by the system of stochastic differential equations (SDEs). In this context developed in

Refs.4,11,27,53,54 we utilize the simplified Langevin model (SLM) and the linear mean square

estimation (LMSE) model.50

dX+
i = U+

i dt+

√
2µ

〈ρ〉ℓ
dWi, (2.9a)

dU+
i =

[
−

1

〈ρ〉ℓ

∂ 〈p〉ℓ
∂xi

+
2

〈ρ〉ℓ

∂

∂xj

(
µ
∂ 〈ui〉L
∂xj

)
+

1

〈ρ〉ℓ

∂

∂xj

(
µ
∂ 〈uj〉L
∂xi

)
−

2

3

1

〈ρ〉ℓ

∂

∂xi

(
µ
∂ 〈uj〉L
∂xj

)]
dt

+ Gij

(
U+
j − 〈uj〉L

)
dt +

√
C0ǫdW

′
i +

√
2µ

〈ρ〉ℓ

∂ 〈ui〉L
∂xj

dWj, (2.9b)

dφ+
α = −Cφω

(
φ+
α − 〈φα〉L

)
dt+ Sα(φ

+)dt, (2.9c)

where

Gij = −ω

(
1

2
+

3

4
C0

)
δij , ω =

ǫ

k
,

ǫ = Cǫ
k3/2

∆L

, k =
1

2
τL (ui, ui) .

(2.10)

Here X+
i , U

+
i , φ

+
α are probabilistic representations of position, velocity vector, and scalar

variables, respectively. W terms denote the Wiener-Lévy processes.55,56 In equation (2.10),

ω is the SGS mixing frequency, ǫ is the dissipation rate, k is the SGS kinetic energy, and ∆L

is the LES filter size. The model parameters are the same as those suggested by Sheikhi et

al.28: C0 = 2.1, Cφ = 1.0 and Cǫ = 1.0. The Fokker-Planck equation corresponding to Eq.

(2.9) is:
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∂FL

∂t
+
∂viFL

∂xi
=

1

〈ρ〉ℓ

∂ 〈p〉ℓ
∂xi

∂FL

∂vi
−

2

〈ρ〉ℓ

∂

∂xj

(
µ
∂ 〈ui〉L
∂xj

)
∂FL

∂vi
−

1

〈ρ〉ℓ

∂

∂xj

(
µ
∂ 〈uj〉L
∂xi

)
∂FL

∂vi

+
2

3

1

〈ρ〉ℓ

∂

∂xi

(
µ
∂ 〈uj〉L
∂xj

)
∂FL

∂vi
−
∂
(
Gij

(
vj − 〈uj〉L

)
FL

)

∂vi
+

∂

∂xi

(
µ
∂(FL/ 〈ρ〉ℓ)

∂xi

)

+
∂

∂xi

(
2µ

〈ρ〉ℓ

∂ 〈uj〉L
∂xi

∂FL

∂vj

)
+

µ

〈ρ〉ℓ

∂ 〈uk〉L
∂xj

∂ 〈ui〉L
∂xj

∂2FL

∂vk∂vi
+

1

2
C0ǫ

∂2FL

∂vi∂vi

+ Cφω
∂ ((ψα − 〈φα〉L)FL)

∂ψα

−
∂ (Sα (ψ)FL)

∂ψα

.

(2.11)

2.4 NUMERICAL PROCEDURE

Numerical solution of the modeled VS-FMDF transport equation is obtained by a hybrid

finite-difference (FD)/Monte Carlo (MC) procedure. The computational domain is dis-

cretized on equally spaced finite-difference grid points and the FMDF is represented by

an ensemble of statistically identical MC particles which carry information pertaining to the

velocity and the scalar values. This information is updated via temporal integration of the

SDEs. Statistical information is obtained by considering an ensemble of NE computational

particles residing within an ensemble domain of characteristic length ∆E centered around

each of the FD grid points. To reduce the computational cost, a procedure involving the use

of non-uniform weights is also considered. This procedure allows a smaller number of parti-

cles in regions where a low degree of variability is expected. Conversely, in regions of high

variability, a large number of particles is allowed. The sum of weights within the ensemble

domain is related to filtered fluid density.57

The FD solver is fourth-order accurate in space and second-order accurate in time.58 All

of the FD operations are conducted on fixed grid points. The transfer of information from the

FD points to the MC particles is accomplished via a linear interpolation. The inverse transfer
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is accomplished via ensemble averaging. The FD transport equations include unclosed second

order moments which are obtained from the MC. Further details on the hybrid FD-MC can

be found in Ref.57.

2.5 FLOW CONFIGURATION AND SIMULATION PARAMETERS

Sandia Flame D consists of a main jet with a mixture of 25% methane and 75% air by

volume. The nozzle is placed in a coflow of air and the flame is stabilized by a substantial

pilot. The Reynolds number for the main jet is Re = 22400 based on the nozzle diameter

D = 7.2mm and the bulk jet velocity 49.6m/sec.

Simulations are conducted on a three-dimensional Cartesian mesh with uniform spacings

in each of the three directions. The computational domain spans a region of 20D×16D×16D

in streamwise (x), and the two lateral (y, z) directions, respectively. The number of grid

points for different test cases in the x, y and z directions are presented in Table (1). The

filter size is set equal to ∆G = 2(∆x∆y∆z)(1/3) where ∆x, ∆y and ∆z denote the grid

spacings in the corresponding directions. The size of the ensemble domain for evaluations of

the filtered values is equal to the half of the filter size.

For efficient parallel simulations, the domain is partitioned into equally sized partitions

and each partition is assigned to a different processor at the onset of the simulations. This

provides an effective parallelization and is relatively easy to implement. Each CPU is as-

signed relatively equal number of grid points and (approximately) equal number of particles.

Simulations are conducted in conjunction with MPI and the PETSC59–61 library.

The flow variables at the inflow are set the same as those in the experiments, including the

inlet profiles of the velocity and the mixture fraction. The inlet condition for the velocity

is presented in Fig. (1). The flow is excited by superimposing oscillating axisymmetric

perturbations at the inflow. The procedure is similar to that in Ref.62, but the amplitude

of forcing is set in such a way to match the experimentally measured turbulent intensity

of the streamwise velocity at the inlet. Standard characteristic boundary conditions63 are

implemented in all of the FD simulations.
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The MC particles are supplied in the inlet region and are free to move within the domain

due to combined actions of convection and diffusion. There are at least 40 MC particles at

each cell. Per results of extensive previous studies28 this is sufficient to yield an excellent

statistical accuracy with minimal dispersion errors. The simulation results are monitored to

ensure the particles fully encompass and extend well beyond regions of non-zero vorticity

and reaction.

The methane-air reaction mechanism, as occurs in this flame, is taken into account

via the “flamelet” model. This model considers a laminar, one-dimensional counterflow

(opposed jet) flame configuration64. The detailed kinetics mechanism of the Gas Research

Institute (GRI2.11)65 is employed to describe combustion. The flamelet table at strain rate

of a = 100 1/s is used to relate the thermo-chemical variables to the mixture fraction. This

value is consistent with that used in previous S-FMDF37 and PDF66 predictions of this

flame.

The overall predictive capability of VS-FMDF is demonstrated by comparing the flow

statistics with the Sandia-Darmstadt34–36. These statistics are obtained by long-time aver-

aging of the filtered field during 6 flow through times. The notations Q and RMS(Q) denote

the time-averaged mean and root mean square values of the variable Q, respectively.

2.6 RESULTS

For the purpose of flow visualization, the contour plots of FD and MC computations for

〈RT 〉L are shown in Fig. (2). The central jet lies in the middle along the axial coordinate,

surrounded by a pilot where the temperature is the highest and encircled by the air coflow.

The region close to inlet is dominated by the molecular diffusion and the jet exhibits a

laminar-like behavior. Further downstream, the growth of perturbations is manifested by

the formation of large scale coherent vortices. The upstream feedback from the vortices

created initially triggers further self-sustaining vortex rollup, and subsequent pairing and

coalescence of neighboring vortices.67,68

10



Table 1: Grid parameters and the corresponding filter size

Grid Resolution Cells ×106

(x,y,z)

G1 101× 81× 81 0.662

G2 150× 123× 123 2.260

G3 200× 161× 161 5.180

G4 270× 215× 215 12.48

In order to assess the grid dependency of the VS-FMDF simulations, we consider four

grid configurations (G1 throughG4) with a progressively increasing resolution from about 0.6

to 12.2 million grid points (Table 1). To compare with the experimental data, we consider

the Reynolds-averaged moments of the thermo-chemical variables. In the figures in this

chapter, the overline denotes the Reynolds-averaged operator. The root mean square (RMS)

includes the contributions from both the resolved and the residual fields. The capability

of the method in predicting the hydrodynamics field is demonstrated by examining some

of the (reported) flow statistics. The radial (r =
√
z2 + y2) distribution of the mean axial

velocity and its corresponding RMS values are shown to compare well with experimental

data in Fig. (3). The VS-FMDF predicts the peak value of mean axial velocity profile and

the spread of the jet reasonably well. The RMS values, however, is underpredicted. The

radial distribution of the mixture fraction is also shown to compare well with data in Fig.

(4). The mean values agree closely with the experimental data. The RMS values, however,

is underpredicted. From the grid dependency standpoint, the mean fields of velocity and

mixture fraction both converge to the results corresponding to the G4 grid. The convergence

for the RMS field is slower, but the results for G4 compare best with experimental data.

The radial distribution of the mean temperature values and its corresponding RMS are

presented in Fig. (5). Similar to hydrodynamic quantities, the mean profiles show a rela-

tively good agreements with measured data while the RMS values are underpredicted. The
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statistics of the mass fractions (denoted by Y ) of several of the species at different stream-

wise locations are compared with data in Figs. (6)-(10). The mean profiles of the species

show a close agreements with measurements. The RMS values show close agreements with

measured data at the inner layer, but not as good at the outer layer. These disagreements

can be attributed, in part, to the shortcoming of the flamelet model in relating the thermo-

chemical variables to the mixture fraction. From the grid dependency standpoint, the mean

fields of temperature and species mass fractions both converge to the results corresponding

to the G4 grid.

Finally in Figs. (11)-(13), the PDFs of the resolved mixture fraction as predicted by the

VS-FMDF are compared with those measured experimentally at several locations through-

out the domain. In general, both the peak and the spreads of the PDFs are predicted well

by the VS-FMDF. From the grid dependency standpoint, the PDF’s converge to the re-

sults corresponding to the G4 grid; in which the best agreement with experimental data is

observed.

12



0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

<
U

>
L
/U

C
L

r/D

 

 
experiment
G4
G3
G2
G1

(a)

0 1 2 3
0

0.02

0.04

0.06

0.08

0.1

r/D

R
M

S
(<

U
>

L
)/

U
C

L

 

 
experiment
G4
G3
G2
G1

(b)

Figure 1: Radial distribution of the mean and RMS values of the filtered axial velocity.

Ucl denotes the mean axial velocity at the centerline at the inlet, the symbols denote the

experimental data. The line denotes the mean values and the thick solid line denotes the

RMS values. (a) Mean axial velocity at x/D = 0.138, (b) RMS of the axial velocity at

x/D = 0.138.
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Figure 2: The instantaneous filtered RT fields obtained via MC (left) and FD (right).
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Figure 3: Radial distribution of the mean and RMS values of the filtered axial velocity.

Ucl denotes the mean axial velocity at the centerline at the inlet, the symbols denote the

experimental data. The line denotes the mean values and the thick solid line denotes the

RMS values. (a) Mean axial velocity at x/D = 15, (b) RMS of the axial velocity at x/D = 15.
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Figure 4: Radial distribution of the mean and RMS values of the filtered mixture fraction.

The symbols denote the experimental data. The line denotes the mean values and the thick

solid line denotes the RMS values. (a) Mean mixture fraction at x/D = 15, (b) RMS of the

mixture fraction at x/D = 15.
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Figure 5: Radial distribution of the mean and RMS values of the filtered temperature values.

The symbols denote the experimental data. The line denotes the mean values and the thick

solid line denote the RMS values. (a) Mean temperature (K) at x/D = 15, (b) RMS of the

temperature (K) at x/D = 15.
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Figure 6: Radial distribution of the mean and RMS values of filtered CH4 mass fractions.

The symbols denote the experimental data. The line denotes the mean values and the thick

solid line denotes the RMS values. (a) Mean CH4 mass fraction at x/D = 15, (b) RMS of

CH4 mass fraction at x/D = 15.
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Figure 7: Radial distribution of the mean and RMS values of the filtered O2 mass fractions.

The symbols denote the experimental data. The line denotes the mean values and the thick

solid line denotes the RMS values. (a) Mean O2 mass fraction at x/D = 15, (b) RMS of O2

mass fraction at x/D = 15.
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Figure 8: Radial distribution of the mean and RMS values of the filtered CO mass fractions.

The symbols denote experimental data. The line denotes the mean values and the thick

solid line denotes the RMS values. (a) Mean CO mass fraction at x/D = 15, (b) RMS of

CO mass fraction at x/D = 15.
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Figure 9: Radial distribution of the mean and RMS values of the filtered CO2 mass fractions.

The symbols denote the experimental data. The line denotes the mean values and the thick

solid line denotes the RMS values. (a) Mean CO2 mass fraction at x/D = 15, (b) RMS of

CO2 mass fraction at x/D = 15.
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Figure 10: Radial distribution of the mean and RMS values of the filtered H2O mass frac-

tions. The symbols denote the experimental data. The line denotes the mean values and

the thick solid line denotes the RMS values. (a) Mean H2O mass fraction at x/D = 15, (b)

RMS values of H2O mass fraction at x/D = 15.
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Figure 11: PDF of the resolved filtered mixture fraction at x/D = 15 and different radial

locations. The symbols and the thick lines denote the experimental data and LES predictions,

respectively. (a) Radial location r = 2 mm and (b) radial location r = 4 mm.
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Figure 12: PDF of the resolved filtered mixture fraction at x/D = 15 and different radial

locations. The symbols and the thick lines denote the experimental data and LES predictions,

respectively. (a) Radial location r = 6 mm and (b) radial location r = 8 mm.
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Figure 13: PDF of the resolved filtered mixture fraction at x/D = 15 and different radial

locations. The symbols and the thick lines denote the experimental data and LES predictions,

respectively. (a) Radial location r = 10 mm and (b) radial location r = 12 mm.
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2.7 SUMMARY

Since its original development about a decade ago, the S-FMDF4,5 has experiences widespread

applications for LES of a variety of reacting flows.6–25 The methodology has found its way

in industry20 and is now covered as a powerful predictive tool in most modern text- and

hand-books.49,64,69–72 This popularity is partially due to the demonstrated capability of the

method to simulate realistic hydrocarbon flame. The extended methodology, the VS-FMDF,

is significantly more powerful as it also accounts for the effects of SGS convection in an exact

manner. This superiority has been demonstrated by comparative assessment of the method

in several “basic” flow configurations.28

The objective of the work in this chapter is to asses the prospects of the VS-FMDF

for LES of realistic hydrocarbon flames. For that, we consider the piloted, non-premixed,

turbulent, methane jet flame (Sandia Flame D). For this near-equilibrium flame, the thermo-

chemical variables are determined by the related to the mixture fraction. A modeled trans-

port equation for the mass weighted joint FDF of the velocity and the mixture fraction28 is

considered. This equation is solved by a hybrid finite-difference / Monte Carlo method. The

predictive capability of the overall scheme is assessed by comparison of the ensemble (long

time Reynolds-averaged) values of the thermo-chemical variables with laboratory data. Also,

the grid dependency of the predicted results is assessed via consideration of progressively

larger number of grid points. In the case with the finest resolution, there are over 10 million

grid points. The results of this resolution assessment indicate that the first order moments

converges quickly; but the rate of convergence for the second order moments and the PDFs

of the resolved field is slower. All of the mean quantities are, generally, in good comparison

with experimental data. For the RMS values, the predicted values agree closely with the

experimental data in the inner layer, but not as good in the outer layer. This discrepancy

is attributed, in part, to the use of the flamelet model in relating thermo-chemical variables

to the mixture fraction.

The obvious extension of this work is to consider flames which experience non-equilibrium

effects (such as Sandia Flames E and F). Such simulations require consideration of finite-

rate chemistry. Currently it is not computationally feasible to implement detailed kinetics
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in VS-FMDF; nor is it possible in S-FMDF. Implementation of reduced kinetics schemes is

within reach provided that sufficient computational resources are available. It is predicted

that VS-FMDF will be the primary method of FDF prediction in a decade or so from now.
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3.0 JOINT ENERGY PRESSURE VELOCITY SCALAR FILTERED MASS

DENSITY FUNCTION FOR HIGH SPEED FLOWS

In the work described in this chapter, the VS-FMDFmethodology is extended for LES of high

speed turbulent flows, by considering the joint “energy-pressure-velocity-scalar filtered mass

density function” (EPVS-FMDF). Following its mathematical definition, an exact transport

equation is derived for the EPVS-FMDF. This equation is modeled in a probabilistic manner.

By consideration of a “systems of stochastic differential equations” (SDEs). The procedure

for numerical solution of the EPVS-FMDF is based on a hybrid Eulerian/Largrangian proce-

dure. The Eulerian part involves finite-difference solution of the filtered transport equations.

The Lagrangian part involves Monte Carlo solution of the modeled EPVS-FMDF transport.

The unclosed moments in the Eulerian part are obtained from the Monte Carlo solver. The

consistency and the accuracy of this procedure are established by the simulation of a three-

dimensional, temporally evolving mixing layer involving the transport of a passive scalar.

These simulations are assessed by comparing the EPVS-FMDF results with those of direct

numerical simulation (DNS).

3.1 FORMULATION

3.1.1 Basic equations

In a multiple species non reacting high speed turbulent flow, the primary transport variables

are the density ρ(x, t), the velocity vector ui(x, t) (i = 1, 2, 3), the pressure p(x, t), the inter-

nal energy e(x, t) and the species mass fractions φα (α = 1..Ns). The equations which govern
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the transport of these variables in space (xi) (i = 1, 2, 3) and time (t) are the continuity,

momentum, energy, pressure and scalar equations along with an equation of state:

∂ρ

∂t
+
∂ρuj
∂xj

= 0, (3.1a)

∂ρui
∂t

+
∂ρujui
∂xj

= −
∂p

∂xi
+
∂τji
∂xj

, (3.1b)

∂ρe

∂t
+
∂ρuje

∂xj
= −

∂qj
∂xj

+ σij
∂ui
∂xj

, (3.1c)

∂p

∂t
+
∂puj
∂xj

= − (γ − 1)
∂qj
∂xj

+ (γ − 1) σij
∂ui
∂xj

, (3.1d)

∂ρφα

∂t
+
∂ρujφα

∂xj
= −

∂Jα
j

∂xj
(3.1e)

p = ρ
R0

W
T, (3.1f)

where R0 are the universal gas constants andW is the mean molecular weight of the mixture

given by 1
W

=
Ns∑
α=1

φα

Wα
. Here T denote the temperature field, e is the internal energy and

γ = cp
cv

is the specific heat ratio. For a Newtonian fluid, the viscous stress tensor τij , the

energy flux qj , the species α diffusive mass flux vector Jα
j and σij tensor are represented by

σij = τij − pδij , (3.2a)

τij = µ (T )

(
∂ui
∂xj

+
∂uj
∂xi

−
2

3

∂uk
∂xk

δij

)
, (3.2b)

qj = −λ (T )
∂T

∂xj
, (3.2c)

Jα
j = −ρΓ (T )

∂φα

∂xj
, (3.2d)

where µ is the fluid dynamic viscosity, λ denotes the thermal diffusivity and Γ is the mass

diffusion coefficient. In this formulation, we assume using calorically perfect gas in which the
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specific heat at constant pressure cp and specific heat at constant volume cv are constants.

Also, p = (γ − 1)ρe holds for a calorically perfect gas.

3.1.2 Filtered equations

Large eddy simulation involves the spatial filtering operation29–32,49

〈Q(x, t)〉ℓ =

∫ +∞

−∞
Q(x′, t)G∆l1

(x′,x)dx′, (3.3)

where G∆l1
(x′,x) denotes a filter function, and 〈Q(x, t)〉ℓ is the filtered value of the trans-

port variable Q(x, t). In this definition, the subscript l1 for the filter function indicates that

〈Q(x, t)〉ℓ is the first level filter value of variable Q(x, t).
73 In variable-density flows it is con-

venient to use the Favre-filtered quantity 〈Q(x, t)〉L = 〈ρQ〉ℓ / 〈ρ〉ℓ. We consider a filter func-

tion that is spatially and temporally invariant and localized, thus: G∆l1
(x′,x) ≡ G∆l1

(x′−x)

with the properties G∆l1
(x) ≥ 0,

∫ +∞
−∞ G∆l1

(x)dx = 1. Also, the second level spatial filtering

operation is defined as:

〈〈Q(x, t)〉ℓ〉ℓ2 =

∫ +∞

−∞
〈Q(x′, t)〉ℓG∆l2

(x′,x)dx′, (3.4)

where G∆l2
(x′,x) denotes a secondary filter function. In variable-density flows it is con-

venient to use the Favre-filtered quantity, similarly to the first level filtering operation,

〈〈Q(x, t)〉L〉L2
= 〈〈ρQ〉ℓ〉ℓ2 / 〈〈ρ〉ℓ〉ℓ2.
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Applying the first level filtering operation to Eqs. (3.1) and using the conventional LES

approximation for the diffusion terms, we obtain

∂〈ρ〉ℓ
∂t

+
∂ 〈ρ〉ℓ 〈uj〉L

∂xj
= 0, (3.5a)

∂ 〈ρ〉ℓ 〈ui〉L
∂t

+
∂ 〈ρ〉ℓ 〈uj〉L 〈ui〉L

∂xj
= −

∂ 〈p〉ℓ
∂xi

+
∂τ̆ij
∂xj

−
∂ 〈ρ〉ℓ τL(ui, uj)

∂xj
, (3.5b)

∂ 〈ρ〉ℓ 〈e〉L
∂t

+
∂ 〈ρ〉ℓ 〈uj〉L 〈e〉L

∂xj
= −

∂q̆j
∂xj

−
∂ 〈ρ〉ℓ τL(e, uj)

∂xj

+ ǫ+ τ̆ij
∂ 〈ui〉L
∂xj

− Πd − 〈p〉ℓ
∂ 〈ui〉L
∂xi

, (3.5c)

∂ 〈p〉ℓ
∂t

+ 〈uj〉L
∂ 〈p〉ℓ
∂xj

= − (γ − 1)
∂q̆j
∂xj

−
∂τ(p, uj)

∂xj

+ (γ − 1) ǫ+ (γ − 1) τ̆ij
∂ 〈ui〉L
∂xj

− (γ − 1)Πd − γ 〈p〉ℓ
∂ 〈ui〉L
∂xi

, (3.5d)

∂ 〈ρ〉ℓ 〈φα〉L
∂t

+
∂ 〈ρ〉ℓ 〈uj〉L 〈φα〉L

∂xj
= −

∂J̆α
j

∂xj
−
∂ 〈ρ〉ℓ τL(φα, uj)

∂xj
. (3.5e)
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In Eq. (3.5), the filtered viscous stress tensor τ̆ij , the filtered energy flux q̆j and the filtered

diffusive mass flux vector J̆α
j are defined as

τ̆ij = µ (〈T 〉L)

(
∂ 〈ui〉L
∂xj

+
∂ 〈uj〉L
∂xi

−
2

3

∂ 〈uk〉L
∂xk

δij

)
, (3.6a)

q̆j = −λ (〈T 〉L)
∂ 〈T 〉L
∂xj

, (3.6b)

J̆α
j = −〈ρ〉ℓ Γ (〈T 〉L)

∂ 〈φα〉L
∂xj

, (3.6c)

Πd =

〈
p
∂ui
∂xi

〉

ℓ

− 〈p〉ℓ
∂ 〈ui〉L
∂xi

, (3.6d)

ǫ =

〈
τij
∂ui
∂xj

〉

ℓ

− τ̆ij
∂ 〈ui〉L
∂xj

. (3.6e)

The second-order and third-order regular SGS correlations and Favre SGS correlations are

defined by

τℓ(a, b) = 〈ab〉ℓ − 〈a〉ℓ 〈b〉ℓ , (3.7a)

τℓ(a, b, c) = 〈abc〉ℓ − 〈a〉ℓ τℓ (b, c)− 〈b〉ℓ τℓ (a, c)− 〈c〉ℓ τℓ (a, c)− 〈a〉ℓ 〈b〉ℓ 〈c〉ℓ , (3.7b)

τL(a, b) = 〈ab〉L − 〈a〉L 〈b〉L , (3.7c)

τL(a, b, c) = 〈abc〉L − 〈a〉L τL (b, c)− 〈b〉L τL (a, c)− 〈c〉L τL (a, c)− 〈a〉L 〈b〉L 〈c〉L .

(3.7d)

In case of not specifying the subscript, the subgrid term will be defined explicitly. In Eq.

(3.5d), the subgrid term without the subscript is defined as:

τ (p, uj) = 〈puj〉ℓ − 〈p〉ℓ 〈uj〉L . (3.8)
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The second order velocity correlations are governed by

∂ 〈ρ〉ℓ τL (ui, uj)

∂t
+
∂ 〈ρ〉ℓ 〈uk〉L τL (ui, uj)

∂xk
= 〈ρ〉ℓ Pij −

∂Tijk
∂xk

− ǫij +Πij . (3.9)

Equation (3.9) provides an “exact” form of the transport equations for the second order

velocity correlations. In this equation, the production term Pij , the transport term Tijk, the

dissipation term ǫij and the pressure-rate-of-strain tensor Πij are defined as:

Pij = −τL (ui, uk)
∂ 〈uj〉L
∂xk

− τL (uj, uk)
∂ 〈ui〉L
∂xk

, (3.10a)

Tijk = 〈ρ〉ℓ τL (ui, uj, uk) + τ (p, ui) δjk + τ (p, uj) δik

− (τ (ui, τjk) + τ (uj, τik)) , (3.10b)

ǫij =

(〈
τik
∂uj
∂xk

〉

ℓ

− τ̆ik
∂ 〈uj〉L
∂xk

)
+

(〈
τjk

∂ui
∂xk

〉

ℓ

− τ̆jk
∂ 〈ui〉L
∂xk

)
, (3.10c)

Πij =

(〈
p
∂ui
∂xj

〉

ℓ

− 〈p〉ℓ
∂ 〈ui〉L
∂xj

)
+

(〈
p
∂uj
∂xi

〉

ℓ

− 〈p〉ℓ
∂ 〈uj〉L
∂xi

)
. (3.10d)

In Eq. (3.10b), the subgrid terms without the subscript are defined as:

τ (p, ui) = 〈pui〉ℓ − 〈p〉ℓ 〈ui〉L , (3.11a)

τ (p, uj) = 〈puj〉ℓ − 〈p〉ℓ 〈uj〉L , (3.11b)

τ (ui, τjk) = 〈uiτjk〉ℓ − 〈ui〉L τ̆jk, (3.11c)

τ (uj, τik) = 〈ujτik〉ℓ − 〈uj〉L τ̆ik. (3.11d)

From Eqs. (3.10c) and (3.6e), the dissipation is defined as: ǫ = ǫii/2. Also from Eqs. (3.10d)

and (3.6d), the pressure dilatation term is defined as: Πd = Πii/2.
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The second order scalar correlations are governed by

∂ 〈ρ〉ℓ τL (φα, φβ)

∂t
+
∂ 〈ρ〉ℓ 〈uk〉L τL (φα, φβ)

∂xk
= 〈ρ〉ℓ P

αβ −
∂T αβ

k

∂xk
− ǫαβ . (3.12)

Equation (3.12) provides an “exact” form of the transport for the second order scalar correla-

tions. In this equation, the production term P αβ, the transport term T αβ
k , and the dissipation

term ǫαβ are defined as:

P αβ = −τL (φα, uk)
∂ 〈φβ〉L
∂xk

− τL (φβ, uk)
∂ 〈φα〉L
∂xk

, (3.13a)

T αβ
k = 〈ρ〉ℓ τL (φα, φβ, uk)− 〈ρ〉ℓ Γ

∂τL (φα, φβ)

∂xk
, (3.13b)

ǫαβ = 2 〈ρ〉ℓ ΓτL

(
∂φα

∂xj
,
∂φβ

∂xj

)
. (3.13c)
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The second order velocity-scalar correlations are governed by

∂ 〈ρ〉ℓ τL (ui, φα)

∂t
+
∂ 〈ρ〉ℓ 〈uk〉L τL (ui, φα)

∂xk
= 〈ρ〉ℓ P

α
i −

∂T α
ik

∂xk
− ǫαi +Πα

i . (3.14)

Equation (3.14) provides an “exact” form of the transport for the second order velocity

scalar correlations. In this equation, the production term P α
i , the transport term T α

ik, the

dissipation term ǫαi and the pressure-rate-of-scalar-strain Πα
i are defined as:

P α
i = −τL (ui, uk)

∂ 〈φα〉L
∂xk

− τL (φα, uk)
∂ 〈ui〉L
∂xk

, (3.15a)

T α
ik = 〈ρ〉ℓ τL (ui, φα, uk) + τ (p, φα) δik − (τ (φα, τik)− τ (ui, J

α
k )) , (3.15b)

ǫαi =

(〈
τik
∂φα

∂xk

〉

ℓ

− τ̆ik
∂ 〈φα〉L
∂xk

)
−

(〈
Jα
k

∂ui
∂xk

〉

ℓ

− J̆α
k

∂ 〈ui〉L
∂xk

)
, (3.15c)

Πα
i =

〈
p
∂φα

∂xi

〉

ℓ

− 〈p〉ℓ
∂ 〈φα〉L
∂xi

. (3.15d)

In Eq. (3.15b), the subgrid terms without the subscript are defined as:

τ (p, φα) = 〈pφα〉ℓ − 〈p〉ℓ 〈φα〉L , (3.16a)

τ (ui, J
α
k ) = 〈uiJ

α
k 〉ℓ − 〈ui〉L J̆

α
k , (3.16b)

τ (φα, τik) = 〈φατik〉ℓ − 〈φα〉L τ̆ik. (3.16c)
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The second order velocity-energy correlations are governed by

∂ 〈ρ〉ℓ τL (ui, e)

∂t
+
∂ 〈ρ〉ℓ 〈uk〉L τL (ui, e)

∂xk
= 〈ρ〉ℓ P

e
i −

∂T e
ik

∂xk
− ǫei +Πe

i

+

(〈
uiτkj

∂uk
∂xj

〉

ℓ

− 〈ui〉L

〈
τkj

∂uk
∂xj

〉

ℓ

)

−

(〈
uip

∂uj
∂xj

〉

ℓ

− 〈ui〉L

〈
p
∂uj
∂xj

〉

ℓ

)
. (3.17)

Equation (3.17) provides an “exact” form of the transport for the second order velocity-

energy correlations. In this equation, the production term P e
i , the transport term T e

ik, the

dissipation term ǫei and the pressure-rate-of-scalar-strain Πe
i are defined as:

P e
i = −τL (ui, uk)

∂ 〈e〉L
∂xk

− τL (e, uk)
∂ 〈ui〉L
∂xk

, (3.18a)

T e
ik = 〈ρ〉ℓ τL (ui, e, uk) + τ (p, e) δik − (τ (e, τik)− τ (ui, qk)) , (3.18b)

ǫei =

(〈
τik

∂e

∂xk

〉

ℓ

− τ̆ik
∂ 〈e〉L
∂xk

)
−

(〈
qk
∂ui
∂xk

〉

ℓ

− q̆k
∂ 〈ui〉L
∂xk

)
, (3.18c)

Πe
i =

〈
p
∂e

∂xi

〉

ℓ

− 〈p〉ℓ
∂ 〈e〉L
∂xi

. (3.18d)

In Eq. (3.18b), the subgrid terms without the subscript are defined as:

τ (p, e) = 〈pe〉ℓ − 〈p〉ℓ 〈e〉L , (3.19a)

τ (ui, qk) = 〈uiqk〉ℓ − 〈ui〉L q̆k, (3.19b)

τ (e, τik) = 〈eτik〉ℓ − 〈e〉L τ̆ik. (3.19c)
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The second order energy correlations are governed by

∂ 〈ρ〉ℓ
τL(e,e)

2

∂t
+
∂ 〈ρ〉ℓ 〈uk〉L

τL(e,e)
2

∂xk
= 〈ρ〉ℓ P

ee −
1

2

∂T ee
k

∂xk
− ǫee

+

(〈
eτij

∂ui
∂xj

〉

ℓ

− 〈e〉L

〈
τij
∂ui
∂xj

〉

ℓ

)

−

(〈
ep
∂uj
∂xj

〉

ℓ

− 〈e〉L

〈
p
∂uj
∂xj

〉

ℓ

)
. (3.20)

Equation (3.20) provides an “exact” form of the transport for the second order energy corre-

lations. In this equation, the production term P ee, the transport term T ee
k and the dissipation

term ǫee are defined as:

P ee = −τL (e, uk)
∂ 〈ui〉L
∂xk

, (3.21a)

T ee
k = 〈ρ〉ℓ τL (e, e, uk) + 2τ (e, qk) , (3.21b)

ǫee = −

(〈
qk
∂e

∂xk

〉

ℓ

− q̆k
∂ 〈e〉L
∂xk

)
. (3.21c)

In Eq. (3.21b), the subgrid term without the subscript is defined as:

τ (e, qk) = 〈eqk〉ℓ − 〈e〉L q̆k. (3.22)
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The second order pressure correlations are governed by

∂ τℓ(p,p)
2

∂t
+ 〈uk〉L

∂ τℓ(p,p)
2

∂xk
= P pp −

1

2

∂T pp
k

∂xk
− (γ − 1) ǫpp − γ 〈p〉ℓΠd

− γτℓ (p, p)
∂ 〈uj〉L
∂xj

−
2γ − 1

2
τ

(
p, p,

∂ui
∂xi

)

+ (γ − 1)

(〈
τijp

∂ui
∂xj

〉

ℓ

− 〈p〉ℓ

〈
τij
∂ui
∂xj

〉

ℓ

)
. (3.23)

Equation (3.23) provides an “exact” form of the transport equations for the second order

pressure correlations. In this equation, the production term P pp, the transport term T pp
k and

the dissipation term ǫpp are defined as:

P pp = −τ (p, uk)
∂ 〈p〉ℓ
∂xk

, (3.24a)

T pp
k = τ (p, p, uk) + 2 (γ − 1) τ (p, qk) , (3.24b)

ǫpp = −

(〈
qk
∂p

∂xk

〉

ℓ

− q̆k
∂ 〈p〉ℓ
∂xk

)
. (3.24c)

In Eq. (3.24b), the subgrid terms without the subscripts are defined as:

τ (p, p, uk) =
〈
p2uk

〉
ℓ
− 2 〈p〉ℓ τ (p, uk)− 〈uk〉L τℓ (p, p)− 〈p〉2ℓ 〈uk〉L , (3.25a)

τ (p, uk) = 〈puk〉ℓ − 〈p〉ℓ 〈uk〉L , (3.25b)

τ (p, qk) = 〈pqk〉ℓ − 〈p〉L q̆k. (3.25c)
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3.2 EXACT EPVS-FMDF TRANSPORT EQUATION

The “energy-pressure-velocity-scalar filtered mass density function” (EPVS-FMDF), denoted

by PL, is formally defined as2

PL (v,ψ, θ,η,x; t) =

∫ +∞

−∞
ρ(x′, t)ζ (v,ψ, θ,η;u(x′, t),φ(x′, t), e(x′, t),p(x′, t))G(x′−x)dx′,

(3.26)

where

ζ (v,ψ, θ,η;u(x, t),φ(x, t), e(x, t),p(x, t)) =

(
3∏

i=1

δ (vi − ui(x, t))

)
×

(
σ=Ns∏

α=1

δ (ψα − φα(x, t))

)
× δ (θ − e(x, t))× δ (η − p(x, t)) .

(3.27)

In this equation, δ denotes the Dirac delta function, and v, ψ, θ and η are the velocity vector,

the scalar array, the sensible internal energy and pressure in the sample space. The term ζ

is the “fine-grained” density.47,50 Equation (3.26) defines the EPVS-FMDF as the spatially

filtered value of the fine-grained density. With the condition of a positive filter kernel,51 PL

has all of the properties of a mass density function (MDF).47 For further developments it is

useful to define the “conditional filtered value” of the variable Q(x, t) as

〈
Q(x, t)

u(x, t) = v,φ(x, t) = ψ, e(x, t) = θ,p(x, t) = η
〉
ℓ
≡
〈
Q
v,ψ, θ,η

〉
ℓ
=

∫ +∞
−∞ ρ(x′, t)ζ (v,ψ, θ,η;u(x′, t),φ(x′, t), e(x′, t),p(x′, t))G(x′ − x)dx′

PL (v,ψ, θ,η,x; t)
. (3.28)

Equation (3.28) implies the following:

1. for Q(x, t) = c
〈
Q(x, t)

v,ψ, θ,η
〉
ℓ
= c, (3.29)
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2. for Q(x, t) ≡ Q̂(u(x, t),φ(x, t), e(x, t),p(x, t))

〈
Q(x, t)

v,ψ, θ,η
〉
ℓ
= Q̂(v,ψ, θ,η), (3.30)

3. Integral properties:

〈ρ(x, t)Q(x, t)〉ℓ =

∫ +∞

−∞

∫ +∞

−∞

〈
Q(x, t)

v,ψ, θ,η
〉
ℓ
PL(v,ψ, θ,η,x; t)dvdψdθdη,

(3.31)

From Eqs. (3.29), (3.30, (3.31) it follows that the filtered value of any function of the velocity

and/or scalar variables is obtained by its integration over the sample spaces:

〈ρ(x, t)〉ℓ 〈Q(x, t)〉L =

∫ +∞

−∞

∫ +∞

−∞
Q̂(v,ψ, θ,η)PL(v,ψ, θ,η,x; t)dvdψdθdη. (3.32)

To develop the EPVS-FMDF transport equation, we consider the time derivative of the

fine-grained density function Eq. (3.27)

∂ζ

∂t
= −

(
∂uk
∂t

∂ζ

∂vk
+
∂φα

∂t

∂ζ

∂ψα

+
∂e

∂t

∂ζ

∂θ
+
∂p

∂t

∂ζ

∂η

)
. (3.33)

Substituting Eqs. (3.1b)-(3.1c)-(3.1e), into Eq. (3.33) we obtain

∂ρζ

∂t
+
∂ρujζ

∂xj
=

(
∂p

∂xj
−
∂τkj
∂xk

)
∂ζ

∂vj
+

(
∂Jα

j

∂xj

)
∂ζ

∂ψα

+

(
γρp

∂uj
∂xj

+ (γ − 1) ρ
∂qi
∂xi

− (γ − 1) ρτij
∂ui
∂xj

)
∂ζ

∂η

+

(
∂qi
∂xi

− τij
∂ui
∂xj

+ p
∂uj
∂xj

)
∂ζ

∂θ
. (3.34)
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Integration of this equation according to Eq. (3.26), while employing Eq. (3.28) results in

∂PL

∂t
+
∂vjPL

∂xj
=

∂

∂vi

(〈
1

ρ

∂p

∂xi

v,ψ, θ,η
〉

ℓ

PL

)

−
∂

∂vi

(〈
1

ρ

∂τij
∂xj

v,ψ, θ,η
〉

ℓ

PL

)

+
∂

∂ψα

(〈
1

ρ

∂Jα
j

∂xj

v,ψ, θ,η
〉

ℓ

PL

)

+
∂

∂θ

(〈
1

ρ

∂qi
∂xi

v,ψ, θ,η
〉

ℓ

PL

)

−
∂

∂θ

(〈
1

ρ
τij
∂ui
∂xj

v,ψ, θ,η
〉

ℓ

PL

)

+
∂

∂θ

(〈
1

ρ
p
∂uj
∂xj

v,ψ, θ,η
〉

ℓ

PL

)

+ (γ − 1)
∂

∂η

(〈
∂qi
∂xi

v,ψ, θ,η
〉

ℓ

PL

)

− (γ − 1)
∂

∂η

(〈
τij
∂ui
∂xj

v,ψ, θ,η
〉

ℓ

PL

)

+ γ
∂

∂η

(〈
p
∂uj
∂xj

v,ψ, θ,η
〉

ℓ

PL

)
. (3.35)

This is an exact EPVS-FMDF transport equation in which the effect of convection appears

in a closed form. The conditional terms at the right hand side are unclosed.
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Using the decompositions:

〈
1

ρ

∂p

∂xi

v,ψ, θ,η
〉

ℓ

PL =
1

〈ρ〉ℓ

∂ 〈p〉ℓ
∂xi

PL +

[〈
1

ρ

∂p

∂xi

v,ψ, θ,η
〉

ℓ

−
1

〈ρ〉ℓ

∂ 〈p〉ℓ
∂xi

]
PL

〈
1

ρ

∂τij
∂xj

v,ψ, θ,η
〉

ℓ

PL =
1

〈ρ〉ℓ

∂τ̆ij
∂xj

PL +

[〈
1

ρ

∂τij
∂xj

v,ψ, θ,η
〉

ℓ

−
1

〈ρ〉ℓ

∂τ̆ij
∂xj

]
PL

〈
1

ρ

∂Jα
j

∂xj

v,ψ, θ,η
〉

ℓ

PL =
1

〈ρ〉ℓ

∂J̆α
j

∂xj
PL +

[〈
1

ρ

∂Jα
j

∂xj

v,ψ, θ,η
〉

ℓ

−
1

〈ρ〉ℓ

∂J̆α
j

∂xj

]
PL

〈
1

ρ

∂qi
∂xi

v,ψ, θ,η
〉

ℓ

PL =
1

〈ρ〉ℓ

∂q̆i
∂xi

PL +

[〈
1

ρ

∂qi
∂xi

v,ψ, θ,η
〉

ℓ

−
1

〈ρ〉ℓ

∂q̆i
∂xi

]
PL

〈
1

ρ
τij
∂ui
∂xj

v,ψ, θ,η
〉

ℓ

PL =
1

〈ρ〉ℓ
τ̆ij
∂ 〈ui〉L
∂xj

PL +

[〈
1

ρ
τij
∂ui
∂xj

v,ψ, θ,η
〉

ℓ

−
1

〈ρ〉ℓ
τ̆ij
∂ 〈ui〉L
∂xj

]
PL

〈
1

ρ
p
∂uj
∂xj

v,ψ, θ,η
〉

ℓ

PL =
1

〈ρ〉ℓ
〈p〉ℓ

∂ 〈uj〉L
∂xj

PL +

[〈
1

ρ
p
∂uj
∂xj

v,ψ, θ,η
〉

ℓ

−
1

〈ρ〉ℓ
〈p〉ℓ

∂ 〈uj〉L
∂xj

]
PL

〈
∂qi
∂xi

v,ψ, θ,η
〉

ℓ

PL =
∂q̆i
∂xi

PL +

[〈
∂qi
∂xi

v,ψ, θ,η
〉

ℓ

−
∂q̆i
∂xi

]
PL

〈
τij
∂ui
∂xj

v,ψ, θ,η
〉

ℓ

PL = τ̆ij
∂ 〈ui〉L
∂xj

PL +

[〈
τij
∂ui
∂xj

v,ψ, θ,η
〉

ℓ

− τ̆ij
∂ 〈ui〉L
∂xj

]
PL

〈
p
∂uj
∂xj

v,ψ, θ,η
〉

ℓ

PL = 〈p〉ℓ
∂ 〈uj〉L
∂xj

PL +

[〈
p
∂uj
∂xj

v,ψ, θ,η
〉

ℓ

− 〈p〉ℓ
∂ 〈uj〉L
∂xj

]
PL,
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the exact EPVS-FMDF transport equation becomes:

∂PL

∂t
+
∂vjPL

∂xj
=

1

〈ρ〉ℓ

∂ 〈p〉ℓ
∂xi

∂PL

∂vi
−

1

〈ρ〉ℓ

∂τ̆ij
∂xj

∂PL

∂vi
+

1

〈ρ〉ℓ

∂J̆α
j

∂xj

∂PL

∂ψα

+
1

〈ρ〉ℓ

∂q̆i
∂xi

∂PL

∂θ

−
τ̆ij
〈ρ〉ℓ

∂ 〈uj〉L
∂xi

∂PL

∂θ
+

〈p〉ℓ
〈ρ〉ℓ

∂ 〈uj〉L
∂xj

∂PL

∂θ
+ (γ − 1)

∂q̆i
∂xi

∂PL

∂η

− (γ − 1) τ̆ij
∂ 〈ui〉L
∂xj

∂PL

∂η
+ γ 〈p〉ℓ

∂ 〈uj〉ℓ
∂xj

∂PL

∂η

+
∂

∂vi

[(〈
1

ρ

∂p

∂xi

v,ψ, θ,η
〉

ℓ

−
1

〈ρ〉ℓ

∂ 〈p〉ℓ
∂xi

)
PL

]

−
∂

∂vi

[(〈
1

ρ

∂τij
∂xj

v,ψ, θ,η
〉

ℓ

−
1

〈ρ〉ℓ

∂τ̆ij
∂xj

)
PL

]

+
∂

∂ψα

[(〈
1

ρ

∂Jα
j

∂xj

v,ψ, θ,η
〉

ℓ

−
1

〈ρ〉ℓ

∂J̆α
j

∂xj

)
PL

]

+
∂

∂θ

[(〈
1

ρ

∂qi
∂xi

v,ψ, θ,η
〉

ℓ

−
1

〈ρ〉ℓ

∂q̆i
∂xi

)
PL

]

−
∂

∂θ

[(〈
1

ρ
τij
∂ui
∂xj

v,ψ, θ,η
〉

ℓ

−
1

〈ρ〉ℓ
τ̆ij
∂ 〈ui〉L
∂xj

)
PL

]

+
∂

∂θ

[(〈
1

ρ
p
∂uj
∂xj

v,ψ, θ,η
〉

ℓ

−
1

〈ρ〉ℓ
〈p〉ℓ

∂ 〈uj〉L
∂xj

)
PL

]

+ (γ − 1)
∂

∂η

[(〈
∂qi
∂xi

v,ψ, θ,η
〉

ℓ

−
∂q̆i
∂xi

)
PL

]

− (γ − 1)
∂

∂η

[(〈
τij
∂ui
∂xj

v,ψ, θ,η
〉

ℓ

− τ̆ij
∂ 〈ui〉L
∂xj

)
PL

]

+ γ
∂

∂η

[(〈
p
∂uj
∂xj

v,ψ, θ,η
〉

ℓ

− 〈p〉ℓ
∂ 〈uj〉L
∂xj

)
PL

]
.

(3.36)
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3.3 MODELED EPVS-FMDF TRANSPORT EQUATION

For closure of the EPVS-FMDF transport equation, we consider the general diffusion pro-

cess,52 given by the system of stochastic differential equations (SDEs):

dX+
i (t) = DX

i dt+BX
ij dW

X
j (t) + FXU

ij dWU
j (t) + FXφ

ij dW φ
j (t)

+ FXE
ij dWE

j (t) + FXP
ij dW P

j (t), (3.37a)

dU+
i (t) = DU

i dt+BU
ijdW

U
j (t) + FUX

ij dWX
j (t) + FUφ

ij dW φ
j (t)

+ FUE
ij dWE

j (t) + FUP
ij dW P

j (t), (3.37b)

dφ+
α (t) = Dφ

αdt+Bφ
αjdW

φ
j (t) + F φX

αj dW
X
j (t) + F φU

αj dW
U
j (t)

+ F φE
αj dW

E
j (t) + F φP

αj dW
P
j (t), (3.37c)

dE+(t) = DEdt+ BE
j dW

E
j (t) + FEX

j dWX
j (t) + FEU

j dWU
j (t)

+ FEφ
j dW φ

j (t) + FEP
j dW P

j (t), (3.37d)

dP+(t) = DPdt+BP
j dW

P
j (t) + F PX

j dWX
j (t) + F PU

j dWU
j (t)

+ F Pφ
j dW φ

j (t) + F PE
j dWE

j (t). (3.37e)

where X+
i , U

+
i , φ

+
α , E

+ , P+ are probabilistic representations of position, velocity vec-

tor, scalars, pressure and energy variables. The coefficients in Eq. (3.37) can be also a

function of position, velocity vector, scalar, pressure and energy variables as well. The

D(X+,U+,φ+,E+,P+; t) terms denote drift coefficient, the B(X+,U+,φ+,E+,P+; t) terms

denote diffusion, the F (X+,U+,φ+,E+,P+; t) terms denote diffusion couplings, and the W

terms denote the Wiener-Lévy processes.55,56
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Following Refs. 4,11,27,53,54 we utilize the simplified Langevin model (SLM) and linear

mean-square estimation (LMSE).74 In order to model the internal energy and the pressure,

following Refs. 75,76 we utilize the first law of thermodynamics and equation of state (for an

ideal gas with constant specific heats):

dX+
i = U+

i dt+

√
2µ

〈ρ〉ℓ
dWi, (3.38a)

dU+
i = −

1

〈ρ〉ℓ

∂ 〈p〉ℓ
∂xi

dt+
2

〈ρ〉ℓ

∂

∂xj

(
µ
∂ 〈ui〉L
∂xj

)
dt

+
1

〈ρ〉ℓ

∂

∂xj

(
µ
∂ 〈uj〉L
∂xi

)
dt−

2

3

1

〈ρ〉ℓ

∂

∂xi

(
µ
∂ 〈uj〉L
∂xj

)
dt

+ Gij

(
U+
j − 〈uj〉L

)
dt+

√
C0

ǫ

〈ρ〉ℓ
dW ′

i +

√
2µ

〈ρ〉ℓ

∂ 〈ui〉L
∂xj

dWj, (3.38b)

dφ+
α = −Cφω

(
φ+
α − 〈φα〉L

)
dt, (3.38c)

dE+ =

(
−
Ceω

γ

(
E+ − 〈e〉L

)
+

1

γ

(
ǫ

ρ+
+
τ̆ij
ρ+

∂ 〈ui〉ℓ
∂xj

)
+
γ − 1

γ
E+

(
A−

B2

γ

))
dt

+
γ − 1

γ
E+BdWp, (3.38d)

dP+ = P+ (Adt+BdWp) (3.38e)

where

Gij =
Πd

2k 〈ρ〉ℓ
− ω

(
1

2
+

3

4
C0

)
δij ,

k =
1

2
τL (ui, ui) ,

ǫ = 〈ρ〉ℓCǫ
k3/2

∆L

,

ω =
1

〈ρ〉ℓ

ǫ

k
,

Πd = CΠ

(〈
〈p〉ℓ

∂ 〈ui〉L
∂xi

〉

ℓ2

− 〈〈p〉ℓ〉ℓ1
∂ 〈〈ui〉L〉L2

∂xi

)
,

A = −
Ceω

E+

(
E+ − 〈e〉L

)
+

1

E+

(
ǫ

ρ+
+

1

ρ+
τ̆ij
∂ 〈ui〉L
∂xj

)
− γ

Πd

τℓ (p, p)

(
P+ − 〈p〉ℓ

)
− γ

∂ 〈ui〉L
∂xi

−
γ

γ − 1

1

ρ+E+

(
∂q̆i
∂xi

+
∂

∂xi

(
µ
∂ 〈e〉L
∂xi

))
,

B = 0. (3.39)
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Here ω is the SGS mixing frequency, ǫ is the dissipation rate, k is the SGS kinetic energy,

and ∆L is the LES filter size. The parameters C0, Cφ, Ce, Cǫ and CΠ are model constants

and need to be specified.28,77 In this equations, A and B are the drift and diffusion coef-

ficients for the energy and the pressure stochastic equations, respectively. The dissipation

term ǫ and the pressure dilatation term Πd are modeled.27,77 The Fokker-Planck equation,78

FL(v,ψ, θ,η,x; t), the joint PDF of U+, φ+, E+, P+ and X+ is:

∂FL

∂t
+
∂viFL

∂xi
=

1

〈ρ〉ℓ

∂ 〈p〉ℓ
∂xi

∂FL

∂vi
−

2

〈ρ〉ℓ

∂

∂xj

(
µ
∂ 〈ui〉L
∂xj

)
∂FL

∂vi
−

1

〈ρ〉ℓ

∂

∂xj

(
µ
∂ 〈uj〉L
∂xi

)
∂FL

∂vi

+
2

3

1

〈ρ〉ℓ

∂

∂xi

(
µ
∂ 〈uj〉L
∂xj

)
∂FL

∂vi
−
∂
(
Gij

(
vj − 〈uj〉L

)
FL

)

∂vi
+

∂

∂xi

(
µ
∂(FL/ 〈ρ〉ℓ)

∂xi

)

+
∂

∂xi

(
2µ

〈ρ〉ℓ

∂ 〈uj〉L
∂xi

∂FL

∂vj

)
+

µ

〈ρ〉ℓ

∂ 〈uk〉L
∂xj

∂ 〈ui〉L
∂xj

∂2FL

∂vk∂vi
+

1

2
C0

ǫ

〈ρ〉ℓ

∂2FL

∂vi∂vi

+ Cφω
∂ ((ψα − 〈φα〉L)FL)

∂ψα

+
Ceω

γ

∂ ((θ − 〈e〉L)FL)

∂θ

−
γ − 1

γ

(
ǫ+ τ̆ij

∂ 〈ui〉L
∂xj

)
∂

∂θ

(
θ

η
FL

)

−
γ − 1

γ

∂ (θAFL)

∂θ
+
γ − 1

γ2
∂ (θB2FL)

∂θ
−
∂ (ηAFL)

∂η

+
1

2

(γ − 1)2

γ2
∂2 (θ2B2FL)

∂θ∂θ
+
γ − 1

γ

∂2 (θηB2FL)

∂θ∂η
+

1

2

∂2 (η2B2FL)

∂η∂η
.

(3.40)
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The transport equations for the first order moments are obtained by integration of Eq. (3.40)

according to Eq. (3.31):

∂〈ρ〉ℓ
∂t

+
∂ 〈ρ〉ℓ 〈uj〉L

∂xj
= 0, (3.41a)

∂ 〈ρ〉ℓ 〈ui〉L
∂t

+
∂ 〈ρ〉ℓ 〈uj〉L 〈ui〉L

∂xj
= −

∂ 〈p〉ℓ
∂xi

+
∂τ̆ij
∂xj

−
∂ 〈ρ〉ℓ τL(ui, uj)

∂xj
, (3.41b)

∂ 〈ρ〉ℓ 〈e〉L
∂t

+
∂ 〈ρ〉ℓ 〈uj〉L 〈e〉L

∂xj
= −

∂q̆j
∂xj

−
∂ 〈ρ〉ℓ τL(e, uj)

∂xj

+ ǫ+ τ̆ij
∂ 〈ui〉L
∂xj

−Πd − 〈p〉ℓ
∂ 〈ui〉L
∂xi

, (3.41c)

∂ 〈ρ〉ℓ 〈φα〉L
∂t

+
∂ 〈ρ〉ℓ 〈uj〉L 〈φα〉L

∂xj
= −

∂

∂xj

(
−µ

∂ 〈φα〉L
∂xj

)
−
∂ 〈ρ〉ℓ τL(φα, uj)

∂xj
.

(3.41d)

Assuming µ = ρΓ; i.e. unity Schmidt (Sc) numbers, the set of Eqs. (3.41) are identical to

Eq. (3.5).
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The transport equations for the second order correlations are obtained by integration of Eq.

(3.40) according to Eq. (3.31). The second order modeled correlations for velocity and scalar

variables are governed by:

∂ 〈ρ〉ℓ τL (ui, uj)

∂t
+
∂ 〈ρ〉ℓ 〈uk〉L τL (ui, uj)

∂xk
= 〈ρ〉ℓ Pij −

∂ 〈ρ〉ℓ τL (uk, ui, uj)

∂xk

+ Gjk 〈ρ〉ℓ τL (uk, ui) +Gik 〈ρ〉ℓ τL (uk, uj)

+
∂

∂xk

(
µ
∂τL (ui, uj)

∂xk

)
+ C0ǫδij , (3.42)

∂ 〈ρ〉ℓ τL (φα, φβ)

∂t
+
∂ 〈ρ〉ℓ 〈uk〉L τL (φα, φβ)

∂xk
= 〈ρ〉ℓ P

αβ −
∂ 〈ρ〉ℓ τL (uk, φα, φβ)

∂xk

+ 2µ
∂ 〈φα〉L
∂xk

∂ 〈φβ〉L
∂xk

+
∂

∂xk

(
µ
∂τL (φα, φβ)

∂xk

)
− 2Cφω 〈ρ〉ℓ τL (φα, φβ) ,

(3.43)

∂ 〈ρ〉ℓ τL (ui, φα)

∂t
+
∂ 〈ρ〉ℓ 〈uk〉L τL (ui, φα)

∂xk
= 〈ρ〉ℓ P

α
i −

∂ 〈ρ〉ℓ τL (uk, ui, φα)

∂xk

+
∂

∂xk

(
µ
∂τL (ui, φα)

∂xk

)

+ Gik 〈ρ〉ℓ τL (uk, φα)− Cφω 〈ρ〉ℓ τL (ui, φα) .

(3.44)
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By integration of Eq. (3.40) according to Eq. (3.31), the second order modeled velocity-energy

correlations are governed by:

∂ 〈ρ〉ℓ τL (ui, e)

∂t
+
∂ 〈ρ〉ℓ 〈uk〉L τL (ui, e)

∂xk
= 〈ρ〉ℓ P

e
i −

∂ 〈ρ〉ℓ τL (uk, ui, e)

∂xk

+
∂

∂xk

(
µ
∂τL (ui, e)

∂xk

)

+ Gik 〈ρ〉ℓ τL (uk, e)− Ceω 〈ρ〉ℓ τL (ui, e)

− (γ − 1) 〈ρ〉ℓ τL (ui, e)
∂ 〈uk〉L
∂xk

−
〈p〉ℓ τ (p, ui) + τ (p, p, ui)

τℓ (p, p)
Πd

+ (〈e〉ℓ − 〈e〉L)

(
ǫ+ τ̆ij

∂ 〈ui〉L
∂xj

)

− (〈e〉ℓ − 〈e〉L)

(
∂q̆i
∂xi

+
∂

∂xj

(
µ
∂ 〈e〉L
∂xj

))
.

(3.45)

In Eq. (3.45), the subgrid terms without the subscripts are defined as:

τ (p, ui) = 〈pui〉ℓ − 〈p〉ℓ 〈ui〉L , (3.46a)

τ (p, p, ui) =
〈
p2ui

〉
ℓ
− 2 〈p〉ℓ τ (p, ui)− 〈ui〉L τℓ (p, p)− 〈p〉2ℓ 〈ui〉L . (3.46b)
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By integration of Eq. (3.40) according to Eq. (3.31), the second order modeled energy cor-

relations are governed by:

∂ 〈ρ〉ℓ
τL(e,e)

2

∂t
+
∂ 〈ρ〉ℓ 〈uk〉L

τL(e,e)
2

∂xk
= 〈ρ〉ℓ P

ee −
1

2

∂ 〈ρ〉ℓ τL (uk, e, e)

∂xk

+
∂

∂xk

(
µ
∂ τL(e,e)

2

∂xk

)

+ µ
∂ 〈e〉L
∂xk

∂ 〈e〉L
∂xk

− Ceω 〈ρ〉ℓ τL (e, e)

− (γ − 1) 〈ρ〉ℓ τL (e, e)
∂ 〈uk〉L
∂xk

−
〈p〉ℓ τ (p, e) + τ (p, p, e)

τℓ (p, p)
Πd

+ (〈e〉ℓ − 〈e〉L)

(
ǫ+ τ̆ij

∂ 〈ui〉L
∂xj

)

− (〈e〉ℓ − 〈e〉L)

(
∂q̆i
∂xi

+
∂

∂xj

(
µ
∂ 〈e〉L
∂xj

))
. (3.47)

In Eq. (3.47), the subgrid terms without the subscripts are defined as:

τ (p, e) = 〈pe〉ℓ − 〈p〉ℓ 〈e〉L , (3.48a)

τ (p, p, e) =
〈
p2e
〉
ℓ
− 2 〈p〉ℓ τ (p, e)− 〈e〉L τℓ (p, p)− 〈p〉2ℓ 〈e〉L . (3.48b)
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By integration of Eq. (3.40) according to Eq. (3.31), the second order modeled pressure

correlations are governed by:

∂ τℓ(p,p)
2

∂t
+ 〈uj〉L

∂ τℓ(p,p)
2

∂xj
= P pp −

1

2

∂τ (p, p, uk)

∂xk
− γ 〈p〉ℓ Πd

− γτℓ (p, p)
∂ 〈ui〉L
∂xi

+
∂

∂xi

(
µ
∂ τL(p,p)

2

∂xi

)

+ µ
∂ 〈p〉L
∂xi

∂ 〈p〉L
∂xi

− (γ − 1)Ceω 〈ρ〉ℓ τL (p, e)

−
2γ − 1

2

τℓ (p, p, p)

τℓ (p, p)
Πd

−
1

2

(
λ
∂ 〈T 〉L
∂xj

− (2γ − 1)µcv
∂ 〈T 〉L
∂xj

)
∂ 〈p〉ℓ
∂xj

+
1

2

∂

∂xj

[
〈p〉ℓ

(
λ
∂ 〈T 〉L
∂xj

− (2γ − 1)µcv
∂ 〈T 〉L
∂xj

)
+ µ

∂ 〈p〉L 〈p〉L
∂xj

]
.

(3.49)

In Eq. (3.49), the subgrid terms without the subscripts are defined as:

τ (p, uk) = 〈puk〉ℓ − 〈p〉ℓ 〈uk〉L , (3.50a)

τ (p, p, uk) =
〈
p2uk

〉
ℓ
− 2 〈p〉ℓ τ (p, uk)− 〈uk〉L τℓ (p, p)− 〈p〉2ℓ 〈uk〉L . (3.50b)

Assuming µcv = λ; i.e. Prandtl (Pr) number equal to γ, the transport equation for the

second order modeled energy correlations, Eq. (3.47), modeled energy-velocity correlations,

Eq. (3.45), and pressure correlations, Eq. (3.49), will be good approximations to their exact

counterparts, Eq. (3.20), Eq. (3.17) and Eq. (3.23).
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3.4 NUMERICAL PROCEDURE

Numerical solution of the modeled EPVS-FMDF transport equation is obtained by a hy-

brid finite-difference/Monte Carlo procedure. The basis is similar to those in RAS,79,80 in

previous FDF simulations4,5,27 and in VS-FMDF simulations.28 For simulations, the FDF is

represented by an ensemble of Np statistically identical Monte Carlo (MC) particles. Each

particle carries information pertaining to its position, X(n)(t), velocity, U (n)(t), scalar value,

φ(n)(t), n = 1, . . . , Np, energy, E
(n)(t) and pressure, P(n)(t). This information is updated

via temporal integration of the SDEs. The simplest way of performing this integration is via

Euler-Maruyama discretization.81 For example, for Eq. (3.37a),

Xn
i (tk+1) = Xn

i (tk) +
(
DX

i (tk)
)n

∆t +
(
BX

ij (tk)
)n

(∆t)1/2
(
ζXj (tk)

)n

+
(
FXU
ij (tk)

)n
(∆t)1/2

(
ζUj (tk)

)n
+
(
FXφ
ij (tk)

)n
(∆t)1/2

(
ζφj (tk)

)n

+
(
FXE
ij (tk)

)n
(∆t)1/2

(
ζEj (tk)

)n
+
(
FXP
ij (tk)

)n
(∆t)1/2

(
ζPj (tk)

)n
, (3.51)

where Di(tk) = Di(X
(n)(tk),U

(n)(tk),φ
(n)(tk),E

(n)(tk),P
(n)(tk); tk), . . . , and ζ(tk)’s are in-

dependent standardized Gaussian random variables. This scheme preserves the Itô-Gikhman

character of the SDEs.82

The computational domain is discretized on equally spaced finite-difference grid points.

These points are used for three purposes: (1) to identify the regions where the statistical

information from the MC simulations are obtained and (2) to perform a set of complemen-

tary LES primarily by the finite-difference methodology for assessing the consistency and

convergence of the MC results. The LES procedure via the finite-difference discretization is

referred to as LES-FD and will be further discussed below.

Statistical information is obtained by considering an ensemble of NE computational par-

ticles residing within an ensemble domain of characteristic length ∆E centered around each

of the finite-difference grid points. This is illustrated schematically in Fig. (14). For reliable

statistics with minimal numerical dispersion, it is desired to minimize the size of ensemble
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domain and maximize the number of the MC particles.47 In this way, the ensemble statistics

would tend to the desired filtered values:

〈a〉E ≡
1

NE

∑

n∈∆E

a(n) −−−−→
NE→∞
∆E→0

〈a〉L ,

τE (a, b) ≡

(
1

NE

∑

n∈∆E

a(n)b(n)

)
− 〈a〉E 〈b〉E −−−−→

NE→∞
∆E→0

τL (a, b) ,

(3.52)

where a(n) denotes the information carried by nth MC particle pertaining to transport variable

a. To reduce the computational cost, a procedure involving the use of non-uniform weights5

is also considered. This procedure allows a smaller number of particles in regions where a low

degree of variability is expected. Conversely, in regions of high variability, a large number

of particles is allowed. It has been shown5,47 that the sum of weights within the ensemble

domain is related to filtered fluid density as

〈ρ〉l ≈
∆m

VE

∑

n∈∆E

w(n), (3.53)

where VE is the volume of ensemble domain and ∆m is the mass of particle with unit weight.

The Favre-filtered value of a transport quantity Q(v,φ) is constructed from the weighted

average as

〈Q〉L ≈

∑
n∈∆E

w(n)Q(v(n),φ(n))∑
n∈∆E

w(n)
. (3.54)

With uniform weights,47 the particle number density decreases significantly in regions of low

density such as reaction zone. The implementation of variable weight allows the increase in

particle density without increasing the particle number density in these regions.

The LES-FD solver is based on the forth order finite-difference scheme.58 This is a variant

of the MacCormack scheme in which fourth-order differencing schemes are used to approx-

imate the spatial derivatives, and second-order symmetric predictor-corrector sequence is

employed for time discretization. All of the finite-difference operations are conducted on

fixed grid points. The transfer of information from the grid points to the MC particles is

accomplished via a linear interpolation. The transfer of information from the particles to

the grid points is accomplished via ensemble averaging as described above.
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The transport equations to be solved by the LES-FD solver include unclosed second

order moments which are obtained from the MC solver. The LES-FD also determines the

filtered velocity, scalar fields, density and energy field. That is, there is a “redundancy” in

the determination of the first filtered moments as both the LES-FD and the MC procedures

provides the solution of this field. This redundancy is actually very useful in monitoring the

accuracy of the simulated results.5,27,79,80

3.5 FLOW CONFIGURATION AND SIMULATION PARAMETERS

Simulations are conducted of a three-dimensional temporally developing mixing layer in-

volving transport of a passive scalar variable. These simulations are used to assess the

consistency and the overall capabilities of the EPVS-FMDF methodology. The predictions

are compared with data obtained by direct numerical simulation (DNS) of the same layer. In

the representation below, x, y and z denote the streamwise, the cross-stream, and the span-

wise directions, respectively. The velocity components along these directions are denoted by

u, v and w in the x, y and z directions, respectively. The temporal mixing layer consists

of two parallel streams traveling in opposite directions with the same speed.83–85 Both the

filtered streamwise velocity, scalar fields are initialized with a hyperbolic tangent profiles

with 〈u〉L = 1, 〈φ〉L = 1, on the top stream and 〈u〉L = −1, 〈φ〉L = 0 on the bottom stream.

The density and temperature fields are initially uniform 〈ρ〉ℓ = 1, 〈T 〉L = 1. The length

Lv is specified such that Lv = 2NPλu, where NP is the desired number of successive vortex

pairings and λu is the wavelength of the most unstable mode corresponding to the mean

streamwise velocity profile imposed at the initial time. The flow variables are normalized

with respect to the half initial vorticity thickness, Lr = δv(t=0)
2

, (δv = ∆U

|∂〈u〉L/∂y|max
, where

〈u〉L is the Reynolds-averaged value of the filtered streamwise velocity and ∆U is the veloc-

ity difference across the layer). The reference velocity is Ur = ∆U/2. In these simulations,

the Reynolds number is Re = UrLr

ν
= 50 and the Mach number is Ma = Ur√

γRTr
= 0.6.

The temporal simulations are conducted for a cubic box, 0 ≤ x ≤ L, −L
2

≤ y ≤ L
2
, 0 ≤

z ≤ L where L = Lv/Lr. The 3D field is parameterized in a procedure somewhat similar to
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that by Vreman et al.86 The formation of the large scale structures are expedited through

eigenfunction based initial perturbations.87,88 This includes two-dimensional84,86,89 and three-

dimensional84,90 perturbations with a random phase shift between the 3Dmodes. This results

in the formation of two successive vortex pairings and strong three-dimensionality.

Simulations are conducted on equally-spaced grid points. The temporal simulations,

have grid spacings ∆x = ∆y = ∆z = ∆ with the number of grid points 1933 and 653 for

DNS and LES, respectively. To filter the DNS data, a top-hat function of the form below is

used with ∆L = 2∆,

G(x′ − x) =
3∏

i=1

G̃(x′i − xi),

G̃(x′i − xi) =





1
∆L

|x′i − xi| ≤
∆L

2
,

0 |x′i − xi| >
∆L

2
,

(3.55)

No attempt is made to investigate the sensitivity of the results to the filter function51 or the

size of the filter.91–93

A hyperbolic tangent profile is utilized to assign the velocity, scalar and uniform temper-

ature and density profiles initially. The temporal simulations are conducted with periodic

boundary conditions in homogeneous directions (x and z) and zero-derivative boundary

condition in cross-stream direction. All simulations are performed with variable particle

weights.5 In temporal simulations, the MC particles are initially distributed throughout the

computational region in a random fashion. Due to flow periodicity in the streamwise and

spanwise directions, if the particle leaves the domain at one of these boundaries, new par-

ticles are introduced at the other boundary with the same velocity, compositional, energy

and pressure values. In the cross-stream directions, the free-slip boundary condition is satis-

fied by the mirror-reflection of the particles leaving through these boundaries. The particle

weights are set according to filtered fluid density at the initial time. The number of particles

per grid point is NPG = 64 (NE = 64) and the ensemble domain size (∆E) is set equal to

the grid spacing in each (x, y or z) direction. The effects of both of these parameters are

assessed in the previous works.4,5,27,28 All results are analyzed both “instantaneously” and

“statistically.” In the former, the instantaneous scatter plots of the variables of interest are
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analyzed. In the latter, the “Reynolds-averaged” statistics constructed from the instanta-

neous data are considered. These are constructed by spatial averaging over homogeneous

directions (x and z). All Reynolds-averaged results are denoted by an overbar.

No attempt is made to determine the appropriate values of the model constants; the

values suggested in the literature are adopted94 C0 = 2.1, Cǫ = 1, Cφ = 1, Ce = 1 and

CΠ = 0.0. The model parameters are the same as those suggested by Sheikhi et al.28 No

attempt is made to optimize the values of these parameters. The values of Sc = 1 and

Pr = 1.4 are set accordingly.

3.6 RESULTS

The first objective of this section is to demonstrate the consistency of the EPVS-FMDF

formulation. Since the accuracy of the LES-FD procedure is well-established (at least for

the first order filtered quantities), such a comparative assessment provides a good means

of assessing the performance of the MC solution. Consistency assessments are obtained by

presenting the scatter plots of instantaneous results obtained from LES-FD and MC. The

consistency assessment for flow variables at t = 80 is presented in Fig. (15). As shown, the

MC density

〈ρ〉MC ≡

(∑
n∈∆E

w(n)
(
1/ρ(n)

)
∑

n∈∆E
w(n)

)−1

(3.56)

is in good agreement with the filtered density obtained from LES-FD. The consistency is

observed for all first order moments; the regression and the 45◦ lines almost coincide.

The second objective of this section is to analyze some of the characteristics of the

EPVS-FMDF via comparative assessments against DNS data. Figure (16) shows the in-

stantaneous iso-surface of the scalar field (〈φ〉L) obtained by EPVS-FMDF at t = 80. By

this time, the flow is going through pairings and exhibits strong 3D effects. This is evident

by the formation of large scale spanwise rollers with the presence of secondary structures

in streamwise planes.87For comparison, the DNS data are filtered from the original high
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resolution 1933 points to the coarse 653 points. The Reynolds-averaged values of the fil-

tered first order moments at t = 80 are shown in Fig. (17). In the comparisons, we also

consider the “resolved” and the “total” components of the Reynolds-averaged moments.

The former is denoted by R(a, b) = 1

〈ρ〉ℓ

(
〈ρ〉ℓ 〈a〉L 〈b〉L −

〈ρ〉ℓ〈a〉L 〈ρ〉ℓ〈b〉L
〈ρ〉ℓ

)
; and the latter is

r(a, b) = ãb− ãb̃; in which overbar indicates the Reynolds averaging operation and overtilde

is the Favre Reynolds averaging operation; This operation is denoted by ã = ρa
ρ
≈

〈ρa〉ℓ
〈ρ〉ℓ

. In

DNS, the “total” components are directly available, while in LES they are approximated

by r(a, b) ≈ R(a, b) + τFL (a, b), in which τFL (a, b) =
〈ρ〉ℓτL(a,b)

〈ρ〉ℓ
.95 Several components of the

Reynolds-averaged values of the second order moments of the resolved, subgrid and the total

field are compared with DNS data in Figs. (18)-(25). As it is shown, EPVS-FMDF yields

accurate predictions of the resolved, the SGS and the total fields.

All EPVS-FMDF predictions compare well with DNS data in predicting the spread of

the layer as indicated in Figs. (26) and (27). Figure (26) shows the temporal variations of

the “scalar thickness,”

δs(t) =
∣∣y(〈̃φ〉L = 0.9)

∣∣+
∣∣y(〈̃φ〉L = 0.1)

∣∣, (3.57)

and the “momentum thickness,”96

δm(t) =
1

4

∫ +∞

−∞
〈ρ〉ℓ

(
1−

〈ρ〉ℓ 〈u1〉L
〈ρ〉ℓ

)(
1 +

〈ρ〉ℓ 〈u1〉L
〈ρ〉ℓ

)
dy. (3.58)

Figure (27) shows the temporal variations of the “total resolved kinetic energy,”97

Ef(t) =

∫ +∞

−∞

1

2
〈ρ〉ℓ 〈ui〉L 〈ui〉L dx, (3.59)

and the “production rate of the SGS kinetic energy,”97

Pk(t) =

∫ +∞

−∞
−〈ρ〉L τL(ui, uj)

∂ 〈ui〉L
∂xj

dx. (3.60)
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3.7 SUMMARY

The filtered density function (FDF) methodology has proven very effective for large eddy

simulation (LES) of turbulent reactive flows.26 All previous contributions in FDF are concen-

trated on LES of low-speed flows. The objective of the work in this chapter is to develop the

joint energy-pressure-velocity-scalar filtered mass density function (EPVS-FMDF) method-

ology for LES of high-speed turbulent flows. The exact transport equation governing the

evolution of the EPVS-FMDF is derived. It is shown that the effect of subgrid scale (SGS)

convection appears in a closed form. The unclosed terms are modeled in a fashion similar

to that in probability density function (PDF) methods. The capability of the EPVS-FMDF

is demonstrated by conducting LES of a temporally developing mixing layer. The prelim-

inary comparisons with DNS data are encouraging. Work is in progress on fine-tuning of

the EPVS-FMDF sub-closures and applying the methodology for LES of a wider class of

high-speed flows.
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∆

∆E 1
2

3

Figure 14: Ensemble averaging in MC simulations: 1(∆E = ∆/2), 2(∆E = ∆), 3(∆E = 2∆).

Black squares denote the FD grid points, and the circles denote the MC particles.
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Figure 15: Scatter plots of (a) < u >L, (b) < φ >L, (c) < v >L, (d) < w >L, (e) < ρ >ℓ

and (f) < e >L. The thick solid line denotes 45◦. The parameter r denotes the correlation

coefficient.
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Figure 16: Contour surfaces of the instantaneous 〈φ〉L field in temporal mixing layer simu-

lations via EPVS-FMDF.
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Figure 17: Cross-stream variations of (a) ρ, (b) ẽ, (c) ũ and (d) φ̃. The thick solid line

denotes EPVS-FMDF predictions. The circles denote DNS data.
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Figure 18: Cross-stream variations of (a) R(ui, ui)/2, (b) τ
F
L (ui, ui)/2, (c) r(ui, ui)/2 from

filtered DNS and (d) r(ui, ui)/2 from unfiltered DNS. The thick solid line denotes EPVS-

FMDF predictions. The circles denote DNS data.
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Figure 19: Cross-stream variations of (a) R(u, v), (b) τFL (u, v), (c) r(u, v) from filtered DNS

and (d) r(u, v) from unfiltered DNS. The thick solid line denotes EPVS-FMDF predictions.

The circles denote DNS data.
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Figure 20: Cross-stream variations of (a) R(φ, φ), (b) τFL (φ, φ), (c) r(φ, φ) from filtered DNS

and (d) r(φ, φ) from unfiltered DNS. The thick solid line denotes EPVS-FMDF predictions.

The circles denote DNS data.
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Figure 21: Cross-stream variations of (a) R(u, φ), (b) τFL (u, φ), (c) r(u, φ) from filtered DNS

and (d) r(u, φ) from unfiltered DNS. The thick solid line denotes EPVS-FMDF predictions.

The circles denote DNS data.
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Figure 22: Cross-stream variations of (a) R(v, φ), (b) τFL (v, φ), (c) r(v, φ) from filtered DNS

and (d) r(v, φ) from unfiltered DNS. The thick solid line denotes EPVS-FMDF predictions.

The circles denote DNS data.
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Figure 23: Cross-stream variations of (a) R(e, e), (b) τFL (e, e), (c) r(e, e) from filtered DNS

and (d) r(e, e) from unfiltered DNS. The thick solid line denotes EPVS-FMDF predictions.

The circles denote DNS data.
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Figure 24: Cross-stream variations of (a) R(u, e), (b) τFL (u, e), (c) r(u, e) from filtered DNS

and (d) r(u, e) from unfiltered DNS. The thick solid line denotes EPVS-FMDF predictions.

The circles denote DNS data.
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Figure 25: Cross-stream variations of (a) R(v, e), (b) τFL (v, e), (c) r(v, e) from filtered DNS

and (d) r(v, e) from unfiltered DNS. The thick solid line denotes EPVS-FMDF predictions.

The circles denote DNS data.
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Figure 26: Temporal variation of (a) scalar thickness (δs) and (b) momentum thickness (δm).

The thick solid line denotes EPVS-FMDF predictions. The circles denote DNS data.
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Figure 27: Temporal variation of (a) total resolved kinetic energy (Ef ) and (b) SGS kinetic

energy production rate (Pk). The thick solid line denotes EPVS-FMDF predictions. The

circles denote DNS data.
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4.0 CONCLUSIONS

Since its original conception,1,2 the filtered density function (FDF) has become very pop-

ular for large eddy simulation (LES) of turbulent combustion. In its stand-alone form,

the FDF must account for the joint statistics of all of the relevant physical variables. The

most sophisticated FDF closure available prior to this work was the frequency-velocity-scalar

FMDF (FVS-FMDF),98 and a simpler version (VS-FMDF) which does not include the SGS

frequency.11,28 Hydrodynamic closure in incompressible, non-reacting flows has been success-

fully achieved via the velocity-FDF (V-FDF),27 and the one which has been utilized the most

only considers the scalar field (S-FDF and S-FMDF). This is the most elementary form of

FDF when it was first introduced,4,5 and has experienced widespread usage. Some of the sub-

sequent contributions in FDF are in its basic implementation,7,8,12–16,18–20,22–25,39,40,71,99–103

fine-tuning of its sub-closures,10,104,105 and its validation via laboratory experiments.14,106–110

See Ref.26 for a recent review of the state of progress in FDF.

The objective of the first part of this dissertation is to employ the VS-FMDF for LES of

Sandia Flame-D. It is shown that the model performs well in predicting some of the phenom-

ena pertaining to this experiment. Most of the overall flow statistics, including the mean

field, the resolved and total second order moments are in good agreements with the data.

To simulate high speed turbulent flows, development of the joint “energy-pressure-velocity-

scalar filtered mass density function” (EPVS-FMDF) is the objective of the second part of

this dissertation. The consistency and accuracy of EPVS-FMDF transport are assessed via

LES of a temporally developing mixing layers involving the transport of a passive scalar.

This assessment is made by comparing the moments obtained from the Monte Carlo (MC)

solver with those obtained by solving the corresponding transport equations directly by a

finite-difference method (LES-FD) method. The LES-FD equations are closed by including
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the moments from the MC solver. The FDF predictions are compared with direct numerical

simulation (DNS) data of the same flow. It is shown that the FDF performs well in pre-

dicting some of the phenomena pertaining to the SGS transport. Most of the overall flow

statistics, including the mean field, the resolved and the total second order moments are in

good agreements with DNS data.

Some suggestions for possible future work are:

• Extension of the VS-FMDF for simulation of complex turbulent reacting flows with finite

rate chemistry.

• Application of the VS-FMDF for LES of flows with complex geometrical configurations.

• Inclusion of the differential diffusion in EPVS-FMDF formulation.

• Application of the EPVS-FMDF for LES of complex turbulent reacting flows, including

those with strong shocks.
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