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MODELING THE WHO-EPI VACCINE SUPPLY CHAIN IN LOW AND MIDDLE 

INCOME COUNTRIES 

Sheng-I Chen, PhD 

University of Pittsburgh, 2012 

 

The enormous economic impact of diseases has drawn global attention and controlling diseases 

through a vaccination program is one of the highest priorities in healthcare decision making. 

However, successful implementation of vaccination programs must also consider distribution 

network design and logistical feasibility. In this research we address this issue via three broad 

contributions. First, we develop a generic mathematical programming model of the WHO-EPI 

vaccine distribution network in low and middle countries, and adapt the model to answer actual 

vaccine logistics questions such as assessing the feasibility of new vaccine introductions, 

changing the distribution network design, and changing the vial size of an existing vaccine using 

the West African country of Niger to illustrate this. Second, we explore integrating vaccine 

distribution decisions with immunization policies by developing a framework for linking the 

vaccine supply chain model with a disease propagation model. The framework is used to assess 

measles interventions in Niger in order to help policy makers decide on an appropriate 

vaccination policy. Third, we address the significant challenge of increasing the clinic visit rate, 

especially in areas with limited health care resources and high-risk populations. To do this we 

explore the application of passive cold devices for vaccine delivery at remote vaccination sites. 

Such mobile devices are easy to deploy at locations that are off the electricity grid or have an 
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unstable energy supply, and they can also be used to support outreach vaccinations to families in 

rural areas. We develop a computational model to evaluate the cost effectiveness of different 

device designs for vaccine delivery in real world distribution networks. We also conduct 

sensitivity analysis to determine which design is most robust with respect to fluctuations in cost 

performance.  
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1.0 INTRODUCTION 

 

1.1 MOTIVATION 

 

 Issues with Vaccine Delivery 

Infectious diseases kill millions of people every year (Mortality data, 2010). In addition, the 

enormous economic impact of diseases has drawn global attention. Controlling epidemics is one 

of the highest priorities in public health decision making. A large amount of resources are 

allocated to immunization programs, which include a variety of interventions for disease 

prevention and treatment. One of the most effective ways to do this is vaccination, which helps 

populations that are likely to be infected develop immunity to diseases.  

 The introduction of vaccines has significantly improved the quality of life and extended 

life expectancy in many parts of the world. By taking advantage of technology, vaccines today 

are produced less expensively and more quickly. However, vaccine shortages are still a major 

issue in low income countries, where limited resources are available for immunization programs 

(Matthias, D. M., et al., 2007). Because vaccines are often not effectively delivered to meet the 

requirements, people are still afflicted with infectious diseases. In addition, poor vaccine supply 

chains often result in wastage of vaccines during distribution (Setia, S., et al., 2002).  

 Most vaccines need to be stored in a temperature controlled environment (either in a 

freezer or a refrigerator) all the time; improper storage temperatures reduce vaccine potency and 

result in recipients not being protected against diseases (Adu, F. D., et al., 1996)  (Lala, M. K. 
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and  Lala, K. R., 2003)  (Hanjeet, K., et al., 1996). Therefore, appropriate cold storage equipment 

is an essential prerequisite in order to ensure the quality of vaccines administered to the 

population.  

 The challenges of operating an effective vaccine supply chain motivate study of the 

issues that relate to vaccine distribution in order to help improve resource utilization and to 

mitigate disease transmission. Specifically, these include the following:  

Vaccination Activity 

Vaccination activities include routine immunization (RI) and supplemental immunization 

activity (SIA). RI occurs at clinics or health offices where vaccines are administered to children 

according to a pre-specified immunization schedule, based on the World Health Organization 

guidelines and the Expanded Program on Immunization (EPI) (Expanded Program on 

Immunization (EPI), Retrieved 2011). In general, the coverage age groups for RI range from 

birth to five years of age.   

 SIA is implemented to supplement RI by providing recipients a second chance to develop 

immunity against diseases. SIA is also implemented in the form of targeted campaigns when 

there are outbreaks of diseases. The priority areas and target populations are determined based on 

estimates of future disease prevalence. To obtain high coverage, vaccination can take place at 

any location and is not limited to clinics. Health workers often carry vaccines down to villages or 

schools during vaccination days. Intensive vaccination outreach programs can often cover even 

the most remote areas where health care resources are insufficient. SIA reduces vaccine wastage 

because demand is aggregated (Lee, B. Y., et al., 2010). However, to provide unusually large 

amounts of vaccines in a short time period is a major challenge in vaccines logistics.  
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Vaccine Supply Chain 

Distributing vaccine from manufacturers to the final recipients is composed of a series of 

procurement, storage, shipment and other related activities. One of the challenges is that vaccine 

demand and supply are variable. In many low and middle income countries, the demand for 

vaccines is increasing exponentially because of the continued growth in the birth rate. 

Additionally, vaccines are also used for the purpose of immediate response to disease outbreaks. 

Large quantities of vaccines are often stocked for mass vaccinations to prevent disease 

(Zimbabwe measles immunization and child health days campaign, 2010). In most low-income 

countries, vaccines are supplied by international organizations, and can come from multiple 

sources. It is difficult to coordinate orders from different suppliers. Furthermore, information 

provided to vaccine manufacturers can often be unreliable. The lack of good data leads to 

inaccurate demand forecasts, which is a critical impediment to proper planning.  

 It is also important to recognize that vaccine distribution considers both equity and 

efficiency. The goal is to provide vaccines uniformly to everyone in the system, while also 

ensuring that infections can be averted as much as possible. To account for the trade-off between 

equity and efficiency, it is important to balance coverage within an optimal vaccine system 

design.  

 This dissertation presents mathematical models of the vaccine supply chain. While the 

emphasis is on developing a general model that can be widely applied, Niger is used as an 

example for illustrating vaccine supply chains in practice. In Niger, vaccines are provided by 

UNICEF via twice-a-year shipments to a central depot in the city of Niamey. Vaccines are then 
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pushed down to eight regional warehouses once every three months, and 42 district warehouses 

pull vaccines from the regional warehouses on an approximately monthly basis. Similarly, 695 

clinics pull vaccines from the district warehouses about once every month. The entire supply 

chain includes a total of 746 locations, where each is equipped with different volumes of cold 

capacity for holding inventory; however, not all of the clinics/warehouses are currently 

operational. Shipments are made by using either a cold truck (one with refrigeration capabilities) 

or a regular truck. Cold boxes or cold carriers are required when vaccines are delivered by 

regular trucks.  

 

 

Figure 1. Niger vaccine supply chain 

 

 Based upon 2011 statistics, the total population of Niger is about 16 million, with most 

people living in the southern regions (The world factbook : Niger, 2012). The northern regions 
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are inhabited by nomadic people who migrate to areas where there is food available for their 

animals. The population distribution is unbalanced and changes seasonally. Niger also has a very 

large population of children; around 50% of the population is under 14 years of age. 

Vaccinations occur at clinics that are open four days per week, with patients generally getting 

vaccines at the closest clinic.  

Modeling of Infectious Diseases 

Infection occurs when the agent of disease enters into a host. Agents include viruses and 

bacteria; the host focused on in this research is humans. Diseases are spread in populations 

through several different modes of transmission, including food, physical contact, and blood 

borne, airborne and waterborne contacts, depending on the pathogens of diseases (Burt, 1998). 

The symptoms that result from an infection are different, and some diseases do not cause illness 

in a host, while in other cases disease can be transmitted to other hosts regardless of the health of 

infected individuals. Infectious disease remains a leading cause of death in low and middle 

income countries; on average, 60% of deaths in African countries are due to infectious diseases 

(World health statistics, 2008). Some infectious diseases, such as HIV and flu, have emerged in 

both developed and developing countries.  

 Modeling diseases transmitted in populations requires a conceptual framework to 

estimate the spread and prevention of disease. This provides an opportunity for policy makers to 

prepare for the disease outbreak, as well as to make immunization decisions. A variety of 

approaches can model the mechanism of the transmission process, and people use these models 

to investigate disease propagation in a population (Long, E. F. and Brandeau, M. L., 2009). One 

of the approaches related to this study is compartment modeling. Populations are divided into 
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different compartments, such as susceptible, infected and recovered, and there is a transition 

between two compartments according to some a specified rate. The first compartment model was 

developed by Kermack and McKendrick in 1927 (Kermack W. O. and McKendrick A. G., 1927). 

They presented a nonlinear system to characterize an epidemic in a population by the numbers of 

individuals in each compartment over time. The model can predict the prevalence of a disease by 

solving the equations representing the system. 

 

1.2 RESEARCH OBJECTIVE 

 

Our research objective is to develop systems that can address the issues related to vaccine supply 

chains in order to help implement immunization programs in low and middle income countries. 

We study three separate topics in support of this objective.  First, from a vaccine logistics 

perspective, we examine vaccine availability, given a set of constraints that correspond to the 

supply chain limits. Second, from a disease control perspective, we estimate disease propagation 

based on available vaccines given to populations of different age groups. It should be noted that 

vaccine availabilities in turn, are impacted by the supply chain and the fact that poor storage 

conditions might exist at the vaccination locations. Finally, we explore various passive cold 

device designs to improve vaccine availability and store vaccines in a proper temperature range 

during the vaccination periods. These topics are combined with real data for answering questions 

in which policy makers are interested. The integration paves the way to assess a wide variety of 

decisions for controlling epidemics and helps implement disease prevention programs in low and 

middle income countries. 
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1.3 CONTRIBUTIONS 

 

This dissertation develops models for analyzing the issues raised above. The major contributions 

are: 

 Creation of a mixed integer linear programming model for vaccine supply chain modeling 

(VMIP) that uses the C++ computer language to construct the constraints, and then solves the 

problems modeled using CPLEX (IBM Corporation).  

 Incorporation of real world information into the model to assist decision makers in 

developing vaccine policies that use an operations research approach to answer relevant 

policy questions. 

 Use of the model to analyze the impacts of new vaccine introductions on existing cold chain 

systems in low and middle income countries, and to help policy makers make appropriate 

adjustments to minimize problems arising from new vaccine introductions. 

 Identification of bottlenecks in the supply chain and optimal capacity expansion strategies for 

different scenarios. The information can be used in conjunction with immunization programs 

to prepare for a comprehensive plan of allocating resources to where they are most needed. 
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 The model can assess how vaccine availability is affected by changes to the current network 

structure. These network changes can be evaluated to help design makers assess different 

network structures and choose the best alternative to meet the immunization needs of their 

country. 

 Exploration of a stochastic model of disease transmission in multiple communities and 

development of a linkage between the disease and supply chain models to prepare for 

vaccination strategies. 

 Application of the linking to assess vaccination strategy effectiveness using the metric of 

infections averted and to identify resources needed.  

 Investigation of passive cold device designs for various use cases to determine which designs 

are most cost effective. 

 Robust analyses to assess the interactions between passive cold device designs and supply 

chain policies.   
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2.0 PRELIMINARIES 

 

There is a large body of literature that is related to the proposed research and it falls into three 

broad categories: supply chain management, vaccine supply chains, and disease modeling. Each 

of these is now described in more detail. 

 

2.1 SUPPLY CHAIN MANAGEMENT 

 

A supply chain depicts the flows of merchandise and information from suppliers to customers. 

There are many components or links in a supply chain including suppliers, manufacturers, 

distributors, retailers and customers (Chopra, S. and Meindl, P., 2004)  (Simchi-Levi D., et al., 

1999). The structures of most supply chains can be represented as networks where the entire 

system involves a variety of stages and each stage consists of multiple facilities. Each node 

represents a function on the network and different nodes use different enterprise management 

disciplines.  

 The objective of supply chain management (SCM) is to maximize the overall value of the 

entire supply and distribution system (Chopra, S. and Meindl, P., 2004). Products are 

manufactured and distributed in the right quantities, to the right locations at the right time, in 

order to satisfy demand at minimum cost. In the last few decades, numerous studies have been 

published that cover a broad spectrum of SCM problems. Reviews and surveys of the SCM 

domain can be found in (Burgess K., et al., 2006) (Fawcett, S. E., et al., 2008) (Giunipero, L. C., 

et al., 2008) (Jain J., et al., 2010) (Meixell, M. J. and Gargeya, V. B., 2005) (Power, 2005) 
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(Storey, J., et al., 2006). More recently, Fawcett et al. (2008) provide a quantitative and 

qualitative analysis of the benefits, barriers, and bridges to successful collaboration in strategic 

supply chains (Fawcett, S. E., et al., 2008). Manuj and Mentzer (2008) propose risk management 

strategies in global supply chains to enhance sustainable competitiveness by reducing costs 

without compromising customer satisfaction (Manuj I. and Mentzer J. T., 2008). There are many 

facets of SCM research but these can be broadly classified into three categories (Chopra, S. and 

Meindl, P., 2004). 

Supply chain design which deals with decisions that have a long-term effect. The 

structure of the supply chain is decided at this phase including the number and size or 

capacity of facilities and a general plan for how materials will flow through the supply 

network.  

Supply chain planning which includes decisions that are updated a few times per year 

such as production planning, inventory policies and transport strategies.  

Supply chain operation which considers the weekly or daily time frame. Example 

decision problems include scheduling, vehicle routing and setting triggers for placing 

replenishment orders.  

 This research focuses on supply chain design and supply chain planning issues related to 

vaccine delivery for low-income countries. Possible policy decisions include how best to allocate 

vaccines for disease prevention, cold capacity expansion for vaccine storage, determining the 

best vaccine shipping frequency from warehouses to clinics and deploying cold equipment for 

vaccine storage at remote sites. These and other vaccine supply chain policy decisions are 

discussed in more detail in later sections.   
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2.2 VACCINE SUPPLY CHAINS 

 

Traditional supply chain models consider issues such as capacity analysis, inventory positioning, 

procurement, production, routing and transportation modes (Melo, M. T., et al., 2009). In vaccine 

supply chains, there are several additional characteristics that make the modeling and analysis 

more complicated: 

 Temperature requirements for vaccines during transport and storage. In particular, the 

need for an effective cold chain to maintain vaccine efficacy. 

 Difficulties due to the potential for open vial waste. For many vaccines any doses left 

over from an open vial must be discarded at the end of a vaccination session. 

 There are multiple vaccine types in the set (or regimen) of vaccines that a child must 

receive. 

 Vaccines have a limited shelf life. 

 Vaccine demand can be steady (routine birth and child dosing schedules) or there may be 

campaigns designed to immunize for a specific vaccine or set of vaccines during a short 

period of time.   

 There can be significant variability in the supply of vaccines from international 

donations. 
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 To address these system characteristics it is necessary to utilize knowledge and resources 

from several different fields of research including operations research, logistics, public health, 

and public policy. We now review the existing literature specifically related to vaccine supply 

chain problems. The literature is organized into the three general categories of vaccine 

distribution, vaccine manufacturing, and vaccine policy. 

Vaccine Distribution  

Several authors have explored the issues of modeling vaccine distribution in a supply chain 

context. Many of these use mathematical programming to formulate typical problems. Early 

work in this area includes Longini et al. (Longini, I. M., et al., 1978). They present a 

deterministic model to select the optimal influenza vaccine distribution pattern among multiple 

age groups in a “standardized American community” when a limited quantity of vaccine is 

available. The model specifies heterogeneous mixing patterns among individuals in different age 

groups and a vaccine distribution plan can then be determined for each subgroup population to 

minimize the likelihood of epidemics. Kaplan et al. use a mathematical model to evaluate various 

strategies for mitigating the impact of a smallpox bioterrorist attack in a large U.S. city by 

providing vaccines to the various subgroup populations prior to the attack (Kaplan, E. H., et al., 

2002). Kaplan and Merson investigate allocating federal HIV-prevention resources (Kaplan, E. 

H. and Merson, M. H., 2002) and propose a balanced policy that promotes both equity and 

efficiency. Ferguson et al. address the importance of using mathematical models to assess the 

potential for smallpox outbreaks due to bioterrorist attacks (Ferguson, N. M., et al., 2003). They 

show the use of models in planning for disease control by contrasting various prevention 

policies. Andrew and Longini determine minimal vaccine allocations to prevent epidemics 

(Andrew, N. H. and Longini, I. M., 2003). They find the threshold of vaccine coverage by 
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solving for the critical vaccination fraction that could reduce the disease reproduction number to 

a value less than one. Earnshaw and Hick use a linear programming model to make decisions 

concerning the allocation of HIV prevention resources. The objective is to maximize the number 

of HIV transmission infections averted (Earnshaw, S. R. and Hicks, K. A., 2007). The potential 

number of infections that may be averted is calculated by using epidemic models. Then decisions 

are made to allocate available funds to priority subpopulations in different geographic regions for 

HIV prevention. 

 Vaccine Manufacturing 

Chick et al. study shared contracts that offer incentives to both vaccine manufacturers and 

governments (Chick, S. E., et al., 2008). Given a vaccine demand provided by the government, 

the manufacturer decides how much vaccine to produce. The decision is based on optimizing the 

performance of the supply chain insuring that sufficient influenza vaccines are supplied. 

Jacobson et al. use a stochastic model to assess the probability of stock-out for different vaccine 

stockpile levels (Jacobson, S. H., et al., 2006). The paper also considers the impact of 

manufacturing disruptions that can interrupt supply.  They suggest using vaccine stock levels that 

ensure that demand is satisfied while considering potential future production interruptions.  

 Vaccine manufacturers also have to make decisions about what multi-dose vial sizes to 

manufacture. In practice, a large amount of vaccine doses are wasted because for some vaccine 

types all vaccine vials open at the end of a vaccinations session must be discarded. Thus, larger 

multi-dose vials may induce more open vial waste if patient demand for the particular vaccine is 

relatively low during a vaccination session. Lee et al. conduct a cost analysis to determine the 

most cost effective vial size to use for different demand values (Lee, B. Y., et al., 2010). These 
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results can help policy makers decide which vial size to order and can help vaccine 

manufacturers determine which vials sizes may be best to produce based on user needs.   

Vaccine Policy 

Jacobson et al. use an integer programming model to optimize the procurement of children‟s 

immunization vaccines (Jacobson, S. H., et al., 1999). They consider vaccine costs, injection 

costs and clinic visit costs. The objective is to minimize the total cost for fully immunizing a 

child. More recently, Lee et al. develop a mathematical model to represent the vaccine supply 

chain in a country (Lee, B. Y., et al., 2012). They use the model to access the impacts of 

introducing Pneumococcal and Rotavirus vaccines into the Routine Immunization Program in 

Niger. Lee et al. use a discrete event simulation model of Thailand‟s vaccine supply chain to 

analyze the effect of replacing a ten-dose vaccine vial with a single-dose vial (Lee, B. Y., et al., 

2011). The simulation results show that switching to the single-dose vaccine presentation 

reduces open vial waste but increases disposal and administration cost.   

 One important point to note is that other than the recent work by Lee et al., virtually all of 

these models apply to the developed world and do not address the WHO-EPI chain in lower and 

middle income countries (LMC). 

 

2.3 DISEASE MODELING 

 

The widespread use of vaccinations has greatly reduced infectious disease incidence worldwide 

(Expanded Program on Immunization, 2011). However, the vaccine coverage rates required to 
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greatly reduce or eliminate certain diseases in many low-income countries are still not being 

attained. Decision-makers continue to face challenges in determining how to utilize supply chain 

resources in order to raise vaccine coverage rates.  

 To evaluate the effectiveness of an immunization program, credible projections of future 

disease propagation under various possible vaccination strategies are needed.  These projections 

can be obtained using disease models (Hethcote, H. W., 2000). These mathematical models are 

used to study transmission mechanisms and can thereby assess the impacts of using different 

vaccination strategies. Mathematical models can also determine the herd immunity threshold (the 

minimum coverage level needed to control a disease) which can then be used to establish target 

levels of vaccine coverage. Therefore, analysis via mathematical models provides valuable 

insights for planning vaccination programs (Ferguson, et al., 2003). 

 One of the earliest references to a mathematical disease propagation model is Reed and 

Frost in the 1920s. They first used individual-based models to track the behavior of disease 

propagation in a population. The probability that a susceptible individual will be infected during 

time period t (     is determined by the following equation:  

             

where p is the probability of an individual having an effective contact (a contact that transmits 

the disease) in a time period, and    is the number of infected individuals in period t. 

 Kermack and McKendrick published the classical SIR compartment model in 1927 

(Kermack W. O. and McKendrick A. G., 1927). Given that disease outbreaks begin with an 

infected individual (index case), susceptible individuals may become infected if they come in 

contact with an infected individual. Basic versions of the SIR model do not construct a separate 
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compartment for those individuals in the latent period (individuals are infected but not yet 

infectious) but rather assume that once an individual is infectious, that person can transmit the 

disease to other susceptible people. After completing the infectious period, infected individuals 

enter a recovered state. Basic SIR models assume all recovered individuals develop permanent 

immunity and cannot be infected again. A basic SIR model is now illustrated with a numerical 

example (Anderson, R. M. and May, R. M., 1991).  All individuals move through the following 

states:  

                                     

 Consider a closed population (i.e., there are no births, deaths or migration) with an initial 

distribution as shown below: 

 
           
        
         

   
   
 
 

  

 If the disease spreads through person to person contact with a basic reproduction number 

(R0) equal to 2 then each single infected individual can cause at most two secondary cases. Note 

that the rate at which one infected individual generates new infections declines as the number of 

susceptible individuals is depleted. The distribution of infection states in successive steps will be 

the following: 
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 In the vectors above, the number of new infections at each step is calculated based on the 

number of infected individuals, basic reproduction number and proportion of susceptible 

individuals using the following relationship:  

                        
                       

                
 

 The number of new infections demonstrates exponential growth in the early stage of an 

outbreak. After most of the susceptible individuals have been infected (so they are infected or 

recovered), the number of new infections starts to decline. In the end, the system will reach 

equilibrium and the numbers of individuals with each compartment remains unchanged over 

time. In the case of a closed population the number of new infections will eventually fall to zero 

but in an open system it will stabilize to a constant value.  

 

 

Figure 2. Number of new infections projected by basic SIR model 
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 The basic SIR model assumes all susceptible people are equally at risk of infection from 

any infected individual and all infected individuals have an equal infectiousness. While this high 

level aggregation is not able to present the diverse behaviors affecting disease transmission 

among different subpopulations, a more sophisticated SIR model incorporates mixing patterns of 

varying degrees based on the population structure. Examples of more sophisticated SIR models 

include those used in smallpox studies (Ferguson, N. M., et al., 2003). These models capture a 

variety of mechanisms of transmission and control policies that are used to address different 

questions. Hethcote surveys numerous disease models and then derives equilibrium conditions 

mathematically (Hethcote, H. W., 2000). Additional mathematical models are reviewed in 

(Diekmann, O. and Heesterbeek, J. A. P., 2000) (Vynnycky, E. and White, R. G., 2010) which 

show that many disease models now include various disease transmission rates and use different 

levels of data for studying complex scenarios. In this study, we focus on how disease models 

interact with intervention policies for controlling epidemics. Previous research related to some of 

these relationships is now reviewed.   

 Spatial Transmission 

Incorporating detailed data on patterns of population settlement and human migration into 

disease transmission mechanics can make disease models more realistic. In particular, spatial 

structure is an essential component to consider when diseases are transmitted between multiple 

communities. Longini studies how global pandemics are influenced by international travelers; he 

assumes that transmission occurs as passenger flow through connected locations. He presents a 

mathematical model for analyzing the geographic spread of infectious disease (Longini, I. M., 

1988). Grenfell et al. demonstrate recurrent waves of epidemics for measles in England and 

Wales based on historical data analysis (Grenfell, B. T., et al., 2001). Bjornstad et al. develop a 
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Time-series Susceptible–Infected–Recovered model to study the recurrent outbreak of infectious 

diseases in populations (Bjørnstad, O. N., et al., 2002). Each time section is given a dissimilar 

transmission rate and the parameters are set based on time series analysis of historical data. 

Disease Intervention Decisions and Vaccination Strategies 

This area focuses on the effectiveness of intervention policies, exploring different consequences 

of the introduction of intervention/control policies in epidemic models. Crais et al. estimate the 

effective reproduction ratio of measles by using 2003-2004 data on reported cases in Niamey, 

Niger (Crais, R. F., et al., 2006). Assuming that the disease transmission rate is stochastic with a 

given probability distribution, they determine the minimal vaccination coverage that is required 

to avert future epidemics. Long et al. develop a co-epidemic model for analyzing the interactions 

between human immunodeficiency virus (HIV) and tuberculosis (TB) (Long, E. F., et al., 2008).  

Then the disease outcomes are determined under several intervention strategies. Bauch et al 

develop an age-structured compartmental model to investigate vaccination campaign strategies in 

low-income countries (Bauch, C. T., et al., 2009). Populations are allocated into one of the 

mutually exclusive categories based on their epidemiological status and age. Their model 

assumes vaccinated individuals in different age groups lose their immunity at different rates and 

they consider the effects that supplemental vaccination programs have on preventing infections.  

 Other studies have focused on vaccination strategies in a disease control and prevention 

context. The models utilize contact networks to model the interactions between members of the 

population and use this information to adjust the rate at which infections spread. For example, 

Takeuchi and Yamamoto study how disease spreads in a contact network (Takeuchi, F. and 

Yamamoto, K., 2006). They develop a simulation model to access infection outcomes in 
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populations. Furthermore, they evaluate several vaccination strategies considering the measures 

of number of new infections and vaccine demand. Miller and Hyman investigate the decision of 

selecting subgroup populations to vaccinate to mitigate disease outbreak (Miller, J. C. and 

Hyman J. M., 2007). Assuming that an infected individual infects each of its susceptible 

neighbors with some probability in a given contact network, they use models to identify effective 

vaccination strategies for controlling epidemics. 

 Table 1 summarizes vaccination strategies that have been applied in practice. The 

diversity of vaccination strategies is presented noting the target population, stage of epidemic 

and studies that used the vaccination strategy. 
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Table 1. Summary of vaccination strategies 

Vaccination Strategy Target Population Stage of Epidemic Reference 

Ring Vaccination 

Select all neighbors who are 

connected to an infected 

individual  

Post-outbreak 

(Infected individuals 

are identified) 

(Muller, J., et 

al., 2000) 

Targeted Vaccination 

Vaccinate all of the 

population in an affected 

location or city 

Post-outbreak (Ferguson, N. 

M., et al., 

2003) 

Mass Vaccination 

Vaccinate the entire 

population of a country 

experiencing or threatened 

by an outbreak 

Preventive / Post-

outbreak  

(Muller, J., et 

al., 2000) 

Acquaintance Vaccination 

Select an individual 

randomly and vaccinate one 

of its neighbors 

Preventive 

 

(Cohen, R., 

Havlin, S. and 

ben-Avraham, 

D., 2003) 

Degree Vaccination 

Vaccinate individuals by 

descending degree 

Preventive (Pastor-

Satorras, R. 

and 

Vespignani, 

A., 2002) 

 

 The goal of vaccination strategies is to mitigate disease impacts. Most studies emphasize 

ways of identifying vaccination populations that are most likely to be infected by future 

transmission, while ignoring vaccine availability due to limited supply or having insufficient 

cold chain capacity to handle vaccines. The challenge for implementing an effective vaccination 

strategy is to integrate it with realistic vaccine availability. One of the key contributions of this 

research is that it integrates supply chain performance with disease transmission dynamics.   



22 
 

 Recent disease models have considered various factors including influences from the 

complex behavior of social networks, stochastic transmission, seasonal outbreaks and 

vaccination strategies. Despite the existence of numerous studies on these topics, less attention 

has been paid on connecting disease transmission mechanisms with vaccine supply chains. 

Currently, the interactions between the two are still not clear. This research develops models to 

help assess the interactions between disease transmission models and vaccine supply chains.  The 

next section describes a vaccine supply chain model and its applications. This is followed by a 

discussion of how to link supply chain and disease models, and an application of passive cold 

devices for vaccine supply chain. 
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3.0 MODELING OF VACCINE DISTRIBUTION NETWORKS FOR LOW AND 

MIDELE INCOME COUNTRIES 

 

3.1 INTRODUCTION 

 

Effective vaccination programs have long been viewed as one of the best ways to prevent disease 

transmission. Yet, the prevalence of infectious diseases is still a grave concern in many low and 

middle income countries, and millions of people remain at risk for diseases that can be prevented 

through immunization. According to the most recent World Health Organization (WHO) 

publication on the state of vaccines and immunization (State of the world‟s vaccines and 

immunization, 3rd ed. Geneva, 2009), in 2007, there were still millions of children who did not 

get the complete set of routine immunizations scheduled for their first year of life. A more recent 

article (Stack, et al., 2011) indicates that increased rates of vaccination in seventy two of the 

world‟s poorest countries could save 6.4 million lives and avert 624 million cases of illness over 

the next decade. While the problem is most acute in low and middle income countries, it is also 

relevant to a variety of other stakeholders around the world who support vaccine dissemination 

in low and middle income countries. These include more developed nations, vaccine 

manufacturers, organizations like the World Bank, the World Health Organization and UNICEF, 

as well as numerous non-governmental organizations and charitable foundations.   
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3.1.1 Background 

 

The Expanded Program on Immunization (EPI) was launched by the WHO in 1974 with the goal 

of vaccinating children throughout the world (Expanded Program on Immunization, 2011). The 

original suite of vaccines consisted of Bacillus Calmette-Guérin (BCG), diphtheria-tetanus-

pertussis (DTP), oral polio, and measles. Over the years, other vaccines such as Hepatitis B 

(HepB), Haemophilus influenzae meningitis (Hib), mumps, rubella, and yellow fever have been 

added to the list, and by 2019, twelve or more additional vaccines will be added to the 

immunization profiles of low and middle income countries to protect against diseases such as 

typhoid, dengue, malaria and shigella (Kaufmann, R., et al., 2011). In 1999, the Global Alliance 

for Vaccines and Immunization (GAVI) was created specifically to extend the EPI program to 

the poorest countries in the world.  The members of this public-private global health partnership 

include United Nations agencies such as the WHO, UNICEF and the World Bank, public health 

departments in many countries, major charitable foundations and non-governmental 

organizations, and vaccine manufacturers.  The creation of GAVI provided a major impetus to 

the distribution and delivery of EPI vaccines, and the alliance has been instrumental in 

expanding vaccine coverage in many parts of the world.  

 A major challenge facing policy makers and health administrators in low and middle 

income countries is that their health care resources are often very limited. More importantly, 

introducing more of the same types of resources into the public health system is not sufficient in 

and of itself. There is also a need for efficient use of these resources, and one must consider the 

entire vaccine supply chain, which includes all of the personnel, systems, equipment and 

activities required to move vaccines from the manufacturer down to their final recipients. In 

particular, vaccine supply chains in many low and middle income countries are severely strained 
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and the possibility that they will be unable to distribute new vaccines places many lives at risk 

(Kaufmann, R., et al., 2011). Stronger, more efficient, and more robust vaccine supply chains can 

increase vaccination coverage rates and in turn, reduce disease transmission. However, they face 

the challenge of being able to adapt quickly to a number of situations that might arise. There are 

many examples of these including 

 introduction of new vaccines, 

 changes in vaccine presentations and technologies,  

 variations in demand because of migrant populations, changes in birth rates, and poor 

forecasts,  

 unexpected reductions in resources such as cold storage capacities or transportation 

because of unreliable power and/or equipment,  

 movement of healthcare personnel, many of whom have limited training to begin with,  

 unexpected epidemics that draw routine resources, and 

 changes in governmental priorities.  

 In order to make good decisions regarding supply chain options such as transportation 

modes, shipment and delivery patterns and timings, storage and reorder policies, etc., one has to 

consider not just the logistical issues, but also specific vaccine characteristics as they relate to 

their development, distribution, and delivery. For example a recent study assesses the impact of 

different ordering policies on vaccine availability at health clinics in low or middle income 

countries (Rajgopal J., et al., 2011). In general, the decision making process requires a highly 

interdisciplinary approach, drawing on expertise from (among other fields) medicine, public 

health, industrial engineering and information sciences.   
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 In this chapter we develop a general mathematical programming model that can be 

readily adapted as a planning tool in order to systematically analyze many of the common 

scenarios relevant to a vaccine supply chain.  In the following sections we describe a typical EPI 

vaccine supply chain, followed by a detailed description of our model of the EPI vaccine 

distribution network.  The model has been adapted to model parts or all of the networks in three 

different countries (Niger, Thailand and Vietnam) having networks of varying degrees of 

sophistication. We then discuss several examples of how it has been and can be used, to answer 

different questions of interest to public health administrators and policy makers in low and 

middle income countries. 

 

3.1.2 The Vaccine Distribution Network for WHO-EPI Vaccines 

 

A generic supply chain usually has an upstream (or procurement) segment that links suppliers 

with producers, and a downstream (or distribution) segment that links producers with customers. 

With EPI vaccines it is convenient to view the vaccine manufacturers and other agencies that 

provide vaccines to a country as the “suppliers,” the point of entry of the vaccines into the 

country‟s vaccine distribution system as the “producer,” and the vaccine recipients as the 

“customers.” With this analogy, our model is only for the downstream segment of the vaccine 

supply chain, i.e., from where EPI vaccines arrive in the country to where they are finally 

administered to patients.  This allows us to focus on the planning and operational aspects within 

the country. We assume that decisions such as who will provide the country with the various 

vaccines, the amounts to be paid for these, and how much vaccine is brought in on an annual 

basis, have already been made. Typically, these are centralized planning decisions that are made 
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by some appropriate arm of the country‟s government and define constraints within which the 

downstream distribution network must be run. 

A typical EPI vaccine distribution network is composed of a series of procurement, 

storage, and distribution activities. As most vaccines are temperature sensitive, a cold chain 

system and the associated technology for vaccine delivery and maintenance are essential 

components. While minimizing operating costs and vaccine wastage are important, usually the 

primary objective of the vaccine supply chain is to meet or exceed target vaccine coverage rates 

set by the country. 

The general vaccine distribution network for WHO-EPI vaccines is best understood with 

the specific example that we provide below for the West African nation of Niger.  Vaccine 

purchases are co-financed by GAVI and the central government of Niger and shipped to 

UNICEF headquarters in Copenhagen, Denmark. UNICEF then ships the vaccines to the central 

store in Niamey (the capital city of Niger), which constitutes the top node of a four-level 

arborescent network.  Vaccines then move to one of 8 regional stores at the second level of the 

network. The central store and several of the regional stores have dedicated walk-in cold rooms 

in addition to other facilities. A regional store serves somewhere between 3 and 8 different 

districts, each of which has its own storage facility. There are a total of 42 district stores in 

Niger, each one typically equipped with chest refrigerators and freezers.  Finally, the district 

stores move the vaccines to clinics within the district. Niger has 695 of these, typically equipped 

with smaller refrigerators and freezers, and all vaccinations are done only at these clinics; 

currently 642 of these are operational with refrigerator capacity. The network structure and some 

storage characteristics for Niger are shown in Figure 3. 
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. 

 

 

 

Figure 3. Niger vaccine distribution network 

  

 In other countries there might be more or fewer levels in the distribution hierarchy (e.g., 

Vietnam has provincial stores between the regional and district levels), the nodes at each level 

might be assigned different names (e.g., clinics are called sub-districts in Thailand), and there 

might be other minor differences in operational procedures (e.g., in Thailand, vaccinations are 

also performed at some of the district level nodes). However, the general structure of the network 

and the operational guidelines are essentially the same: a central/national storage facility where 

the vaccines arrive and are stored, and from where they flow downwards in a multi-level 

arborescent network.  The timings of the flow could vary. In the simplest case, vaccines might be 

pushed down to the next lower level at fixed time intervals. In other cases, this might happen at 

the higher levels, but nodes at the lower levels might pull vaccines from their supplying nodes 

based on reorder points that are set so as to average approximately the same time interval 

between pulls.  For example, in Niger 
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 The central store receives shipments from UNICEF in Copenhagen about twice a year.  

 Shipments from the central store are pushed down to each regional store once every three 

months.  

 Each district store and clinic has its own reorder point and order quantity; these are set to 

pull vaccines about once a month on average from its parent node at the next higher level. 

 

3.2. MATHEMATICAL PROGRAMMING MODEL 

 

3.2.1 Overview 

 

We formulate a general mathematical model that can then readily be extended to address several 

different planning issues relating to the vaccine network. The baseline problem is to determine a 

distribution strategy to maximize vaccine availability at the lower levels of the hierarchy where 

the vaccines are administered to patients. Prior research on maximizing the effectiveness of 

health care resources has been mostly within the context of the developed world and usually for 

one specific disease at a time as opposed to childhood immunization against several common 

diseases. For example, Longini et al. (Longini, I. M., et al., 1978), present a deterministic model 

to select the optimal influenza vaccine distribution pattern among multiple age groups in a 

“standardized American community” when a limited quantity of vaccine is available. The model 

specifies heterogeneous mixing patterns among different age individuals and a vaccine 

distribution can then be determined for each subgroup population to minimize the likelihood of 

epidemics. Kaplan et al. (2002) use a mathematical model to evaluate various strategies for 

mitigating the impact of a smallpox bioterrorist attack in a large U.S. city by providing vaccines 
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to the populations prior to the attack (Kaplan, E. H., et al., 2002). Earnshaw and Hick (2007) use 

a linear programming model to make decisions concerning the allocation of HIV prevention 

resources (Earnshaw, S. R. and Hicks, K. A., 2007). The objective is to maximize the number of 

HIV infection transmissions averted. A related paper is the one by van Wassenhove and 

Martinez (2010), which addresses humanitarian supply chain issues and the applications of 

operation research methods in these contexts (van Wassenhove, L. N. and Martinez, A. J. P., 

2010).  While the focus is not on vaccines, there is some similarity in that vaccines can bear a 

resemblance to humanitarian relief items (e.g., they are sometimes donated or provided by 

manufacturers at significantly reduced costs for use in low and middle income countries).  

Several extensions to the baseline problem are possible to address with relatively simple 

modifications of the model. For example, a related problem to consider is capacity 

allocation/expansion to satisfy changing demand. Many papers have been published using 

operations research approaches to address these types of issues in other contexts (Melo, M. T., et 

al., 2009) (Cormier, G. and Gunn, E. A., 1999). However, to our knowledge capacity 

expansion/allocation in vaccine distribution networks has not been addressed in prior research.  

This situation is often faced in practice: e.g., the year‟s budget might allow for a limited set of 

refrigerators that must then be allocated optimally to nodes in the distribution network.  

Another issue of interest to public health officials is the effect on the supply chain of 

changing the size of a vaccine presentation or of introducing a new vaccine into the suite of 

vaccines currently being administered.  For example, there are plans to introduce the rotavirus 

and pneumococcal conjugate vaccine (PCV) into the list of EPI vaccines in several countries 

(Pneumococcal vaccination, 2011) (Introduction of Rotavirus vaccines into national 

immunization programmes: Management manual, including operational information for health 
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workers, 2009). The rotavirus vaccine comes in several different vial sizes, some of which are 

relatively large and could possibly have a significant impact on the capability of the cold chains 

in some countries to handle this and all of the other vaccines in a country‟s suite of vaccines. Yet 

another issue of interest is the effect of changes in the structure of the network and/or the 

distribution policies.  For example, what would be the effect of removing an entire level in the 

hierarchy of the network, or the effect of moving from a monthly to a bi-monthly shipping 

schedule between two particular levels in the hierarchy?  
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Table 2. Vaccine characteristics 

Vaccine 

Doses

/ Vial 

Packed 

volume c.c. / 

Dose 

Diluent 

volume c.c. / 

Dose 

Doses 

Administere

d 

Storage 

Scenario: EPI Vaccines (Vaccine volume calculator, 2011) (What are the correct conditions 

for storing EPI vaccines?, 2011) 

Tuberculosis 

(BCG) 

20 1.2 0.7 1 Refrigerator / 

Freezer 

Tetanus 10 3.0  3 Refrigerator 

Measles 10 2.1 0.5 2 Refrigerator 

Oral Polio 20 1.0  4 Freezer 

Yellow Fever 10 2.5 6.0 1 Refrigerator / 

Freezer 

DTP-HepB-Hib 1 16.8  3 Refrigerator 

Scenario : Single-dose measles vial   

Measles-unidose  1 25.6  1 Refrigerator 

Scenario: Introducing New Vaccines (WHO prequalified vaccines, 2011)  

Rotavirus  1 17.1  2 Refrigerator 

PCV 1 55.9  3 Refrigerator 

 

We address questions such as these by modeling the vaccine distribution network as a 

linear program (LP).  Before describing the details of the model in the next subsection, we first 

introduce the notion of the “vaccine regimen”. Table 2 lists the vaccines that are most commonly 
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included in the EPI suite of vaccines.  With some of these vaccines, only a single dose is required 

for complete immunization (e.g., BCG, which is typically administered soon after birth), but with 

others, multiple doses are required at different points in time.  As an example, 3 doses of the 

pentavalent Diphtheria-Tetanus-Pertussis-Hepatitis B-Hemophilus Influenzae type B (DTP-

HepB-Hib) are required for complete immunization; these are recommended at 6, 10 and 14 

weeks.  Similarly, 2 doses of measles vaccine are recommended (the first between 12 and 14 

months and the second one at least 4 months later), as are 4 doses of OPV (a primer at birth and 

3 subsequent doses).  The 3 doses of Tetanus Toxoid are for pregnant women so that they might 

pass on immunity to their children (Immunization, vaccines and biological, 2012). 

The numbers in the “Doses Administered” column of Table 2 constitute what we define 

as a vaccine “regimen.”  If we make the simplifying assumption of a stable population with all 

children and pregnant women adhering to the recommended schedule of immunization, the 

regimen determines the relative proportions in which we would expect to see demand for doses 

of the various vaccines at a clinic. Finally, we define a fully immunized child (FIC) as one who 

has received the entire set of vaccines in the regimen and whose mother received the 3 doses of 

Tetanus Toxoid during her pregnancy. 

 

3.2.2 Model Description 

 

The model is now described in detail.  We assume that predefined “units” of each vaccine (e.g., 

dose) are transported through the supply chain at different monthly time periods over a finite 

time horizon. Since the focus here is on the vaccine distribution problem, we also assume that 

vaccine manufacturers can supply enough vaccines to completely satisfy anticipated demand, 
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which is specified for each location and for each period over the planning horizon. Ideally, we 

would like to meet all demand or at least some minimum specified fraction of the demand. It is 

assumed that each location (node) has refrigerator and/or freezer capacity for vaccine storage and 

that we may or may not have the option of purchasing additional capacity. Depending on their 

characteristics some vaccines cannot be stored in the freezer while others may be stored in either 

the freezer or the refrigerator.  Some vaccines are shipped in a freeze-dried state and must be 

reconstituted with diluent prior to being injected. Diluents must also be stored in the refrigerator 

the day before vaccination day so that the diluent and the vaccines are at the same temperature 

when the vaccines are reconstituted.  

It is assumed that some small known (or estimated) fraction of vaccines is lost in storage 

and during transportation due to breakage, pilferage, etc., and that some fraction of each vial of 

vaccine is lost to so-called “open vial waste.”  The latter term refers to the fact that, for some 

vaccines when a multi-dose vial is opened during a vaccination session, if the vial is not fully 

used during the vaccination session then all of the vaccine remaining in the opened vial must be 

discarded and cannot be used on a subsequent vaccination day (WHO Policy Statement. The use 

of opened multi-dose vials vaccine in subsequent immunization sessions, 2012).  Open vial 

waste depends on the vial size and the demand during a vaccination session (Lee, B. Y., et al., 

2010) and while it is zero in the case of a single dose vial, it could be as high as 80 or 90% for 

multi-dose vials of vaccines that have low demand. Finally, vaccines may or may not be 

administered at a node; nodes that only serve as storage or transshipment points are assumed to 

have zero demand associated with them. Table 3 summarizes the decision variables and 

parameters for our mathematical models. 
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Table 3. Decision variables and parameters 

Sets of indices 

Index Description 

    Index set of all vaccines,              

     

 

    

    

Index subset of vaccines that can only be stored in a refrigerator, 

              

Index set of all nodes in the network,       

Index set of all time periods in the planning horizon,       

Parameters 

Parameters Description 

          Demand (in doses) for vaccine i at location j in time period t 

  
      Refrigerator capacity at location j 

  
                    Freezer capacity at location j 

    
     Transport capacity from location k to location j  

      Effective packed volume of one dose of vaccine i 

                       Diluent volume for vaccine i 

                       Average daily demand for vaccine i at location j 

      Number of doses administered of vaccine i within the vaccine regimen 

        Minimum fraction of demand for vaccine i at location j that must be met each 

period 

  
     Capacity utilization of refrigerators at location j 

  
      Capacity utilization of freezers at location j 
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Table 3 (continued) 

 

    
     Capacity utilization of transporter from location k to location j 

      
     Fraction of vaccine i inventory in refrigerators lost at location j in period t 

      
     Fraction of vaccine i inventory in freezers lost at location j in period t   

        
     Fraction of vaccine i going from a refrigerator at location k to a refrigerator at 

location j in time period t that is lost 

        
     Fraction of vaccine i going from a refrigerator at location k to a freezer at location 

j in time period t that is lost 

        
     Fraction of vaccine i going from a freezer at location k to a refrigerator at location 

j in time period t that is lost 

        
     Fraction of vaccine i going from a freezer at location k to a freezer at location j in 

time period t that is lost 

      
     Fraction of open vial loss for vaccine i at location j in time period t 

  
     Average procurement cost per unit of refrigerator capacity at location j 

  
     Average procurement cost per unit of freezer capacity at location j 

    
     Average procurement cost per unit of transport capacity from location k to 

    location j 

Decision variables 

Variable   Description 

      
        Units of vaccine i used from a refrigerator to satisfy demand at location j in period t  
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Table 3 (continued) 

 

      
        Units of vaccine i used from a freezer to satisfy demand at location j in period t  

          Number of fully immunized children (FIC) at location j  

      
        Inventory of vaccine i in a refrigerator at location j at end of time period t 

      
        Inventory of vaccine i in a freezer at location j at end of time period t 

        
        Units of vaccine i shipped from a refrigerator at location k to a refrigerator at location j  

                in time period t 

        
        Units of vaccine i shipped from a refrigerator at location k to a freezer at location j in  

                time period t 

        
        Units of vaccine i shipped from a freezer at location k to a refrigerator at location j in  

                  time period t 

        
        Units of vaccine i shipped from a freezer at location k to a freezer at location j in time  

                  period t 

  
        Units of refrigerator capacity added at location j 

  
        Units of freezer capacity added at location j 

    
        Units of transport capacity added for the transport link from location k to location j 

 

 

Note that while our approach maintains generality, in practice, many of the parameters 

(e.g., various types of vaccine losses) will probably be identical for different indices of time or 

location.  The baseline model may now be defined as follows: 
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We now describe the various portions of the above model.  The primary objective is to 

maximize the number of fully immunized children (FIC) across all vaccination locations in the 

network, as captured by the first term in the objective function (1).  This is equivalent to 

maximizing the number of complete regimens that are sent down to the locations where vaccines 

are administered, subject to demand limits.  A secondary objective is to also try and maximize 

additional doses of vaccines (as partial regimens) that are sent to these locations.  The goal here 

is that even if there is no more space for an entire regimen, we would still like to have other 

vaccines occupy any space left at the vaccination locations (as opposed to retaining them at 

transshipment points higher up the chain), thus ensuring that we minimize any unsatisfied 

demand. This is captured by the second term in the objective and a small value   is used as a 

coefficient to ensure that maximizing the number of FIC remains the primary objective.   

The first two constraints are inventory balance constraints defined for every vaccine at 

every location and every time period, in the refrigerator (2) and the freezer (3).  The model 

assumes there is a shipping delay of one time unit, so something that ships to a facility in period t 

can be used at or shipped out of that facility in period t+1.  Inventory from the previous period as 

well as incoming shipments are reduced by appropriate factors to account for 

storage/transportation losses. If any vaccine is administered at the location, this amount is 

suitably inflated to account for open vial wastage when computing the inventory actually 

consumed.  

The next two constraints (4) and (5) are storage capacity constraints at the refrigerator 

and freezer respectively, for each location and each time period. The right hand side specifies 

effective available capacity by factoring in utilization.  Refrigerator capacity is adjusted (4) to 

reflect the fact that diluents are also stored in refrigerators; the diluent space required is equal to 
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the diluent volume per dose multiplied by the average daily demand inflated by a factor of 1.5 to 

account for daily demand variation. Note that the capacity constraint is based on peak inventory. 

It is assumed that all shipments into a node occur at the beginning of the month, but outbound 

shipments might not take place immediately, and vaccinations could proceed through the month.  

Therefore, the peak inventory occurs at the beginning of the period and is equal to the sum of the 

ending inventory for the previous period plus the inflows at the beginning of the month. 

The next three constraints initialize inventories of all vaccines at all locations (6) and (7), 

and ensure that vaccines that are only stable at refrigerator temperatures (2°C to 8°C) are never 

stored in freezers (8).  Constraint (9) specifies the range of vaccine supply required for each 

vaccine at each location in each time period. The lower bound in the constraint ensures that in a 

constrained system every vaccine has at least some minimal amount of supply and that one 

vaccine type does not dominate the supply at the expense of another.  

Vaccine demands (      ) in (9) are calculated based on target populations and vaccine 

dose presentation. The target population includes children in the age groups indicated by the 

vaccine administration schedules (e.g., children under age one for tuberculosis) and pregnant 

women who are expected to be covered under the immunization program. Population data was 

available only at the district level, and it is assumed that the clinics operating within a district 

handle equal proportions of the district‟s population. 

Constraint (10) assumes that both freezable and non-freezable vaccines are delivered 

using a common vehicle type. Thus, the total volume of the vaccine being shipped from one 

location to another location can never exceed available transporter capacity.  Finally, constraint 

(11) bounds the FIC value over the planning horizon at any location (  ).  The number of 
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individuals to whom vaccine i is administered at location j (the right-hand side) is found by 

dividing the total number of vaccine i doses administered at location j by the number of doses in 

the regimen (i.e., the number of doses required by each child to be fully immunized).  Then the 

smallest of these values across all vaccine types constitutes an upper bound on (and hence 

determines) the value of   . 

 

3.2.3 Extension to Allow for Capacity Expansion 

Suppose that the baseline system cannot provide sufficient coverage and we would like to add 

cold storage or transportation capacity in order to achieve full coverage and the goal is to 

minimize the total capacity investment cost.  In that case the objective function (1) is replaced by 

the new objective below: 
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The decision variables   
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  represent (respectively) the extra freezer and refrigerator 

volume needed at location j, while     
   represents the extra transportation capacity required 

along the link from node k to node j. In addition, constraints (4), (5) and (10) are modified as 

follows: 
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                                      (10‟) 

The right hand sides of equations (4'), (5') and (10‟) include the addition of non-negative 

variables   
 ,   

  and     
  respectively, to relieve capacity restrictions by permitting the addition 

of storage capacity at each of the locations or transportation capacity along each arc as needed to 

satisfy demand.  

 

3.3 APPLICATIONS 

 

The generic mathematical model of Section 2 can be applied to analyze the vaccine distribution 

network (or portions of it) for specific countries by using the appropriate data and parameters.  In 

the rest of this chapter, examples of an analysis from the West African country of Niger are 

reported to illustrate how the model can be used for making vaccine policy decisions.  

 

3.3.1 Data 

The structure of the distribution network for Niger was described in Section 1 (see Figure 3). 

Information on storage and transport capacities was obtained from the EPI program office in 

Niger. The exact storage capacity at each location is determined based on the equipment that is 

used for the EPI program. Target populations include pregnant women and children below two 

years of age. The population estimates are based on the 2005 census and inflated for 2011 using 

a 3% annual growth rate. Vaccine characteristics are collected from several sources and 

summarized in Table 2 in Section 2.    
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3.3.2 Implementation 

The mathematical model has been developed using the C++ programming language and solved 

using the CPLEX 12.2 solver. A total of 17 monthly periods are considered. The output used for 

analysis is for a one-year period; it excludes the first four time periods and the last time period so 

as to (i) allow vaccines to flow down to the lowest level in the network and permit sufficient 

warm-up, and (ii) avoid end of horizon effects. The experiments were run on an Intel Xeon 3.00 

Ghz dual-processor PC with 20 GB of RAM. The LP can be solved easily and a solution to the 

full-scale model can be obtained in a reasonable amout of computing time.  

 

3.3.3 Modeling the Existing System 

We start with a model of the system as it exists in order to determine its current capabilies.  Our 

model explicitly takes into account several specific details with respect to cold capacity.  The 

central store at Niamey has a cold room with a gross capacity of 90 m
3
. Of the eight regional 

stores (please refer to Figure 3) the three at Tahoua, Zinder and Maradi currently have cold 

rooms for vaccine storage (with gross capacities of 40, 30 and 30 m
3
 respectively), while another 

three (at Agadez, Diffa and Dosso) currently have only refrigerators/freezers but no cold rooms.  

The regional store at Tillabery is completely non-functional, and the district stores in this region 

are served directly by the central store at Niamey. Also, while the Niamey region exists from an 

administrative standpoint it does not have it‟s own cold storage and uses the central store (which 

is in the same city) to meet demand at its districts. Based on the characteristics of the cold rooms 

and conversations with personnel, we used a value of 40% for the utilization factor at the cold 

rooms; so for example, the net capacity at Niamey would be 0.4*90=36 m
3
.  Finally, for each of 
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the 53 clinics that does not currently have operational cold storage equipment we assumed its 

demand was evenly distributed amongst the other operational clinics in the same district. 

We focus on two primary performance measures: (i) the country-wide supply ratio (SRi) 

across all clinics for each vaccine (i.e., the fraction of total demand for the vaccine that can be 

met over a one-year evaluation period), and (ii) the average percentage of fully immunized 

children (FIC) across all clinics in the country.  If we define    as the total population of patients 

served by node j, these measures are computed via 

             
 

           
 

                                         (13) 

                                                                (14) 

Note that as indicated by (14), FIC might be interepreted as a population-weighted average 

percentage across all clinics in the country, or as the overall percentage of fully immunized 

children in the country.  Table 4 lists the average FIC percentage across clinics in each of the 

eight administrative regions.  While the overall weighted population average for the country is 

over 87%, it is clear that two of the three regions without cold rooms (Agadez and Dosso) 

perform poorly; the other one (Diffa) serves a relatively small population and can meet almost all 

demand with just the refrigerators/freezers at its regional store. 
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Table 4. Percentage FIC by region 

Region Percentage 

FIC at clinics 

Agadez 41.81 

Diffa 97.19 

Dosso 65.17 

Maradi 85.21 

Tillabery 95.12 

Tahoua 89.41 

Zinder 97.51 

Niamey 97.84 

Overall  87.12 

 

Our observations are confirmed by the fact that Niger‟s latest Comprehensive Multi Year Plan 

for 2011-2015 (cMYP) recommends the addition of cold rooms of 10m
3
 gross capacity at Agadez 

and Diffa, and 20m
3
 at Dosso and the currently non-functional Tillabery regional stores 

(although our results indicate that the cold room at Diffa is probably not necessary). 

 

3.3.4 Modeling Future Scenarios 

Next, we illustrate how our model can be used to study several different scenarios that are of 

interest to policy makers, and discuss our results. The first scenario (titled „Baseline‟) is based on 

adding cold room capacity as recommended in Niger‟s 2011-2015 cMYP, the details of which 

were listed at the end of Section 3.3.  Table 5 and Table 6 contain respectively, (i) the results for 
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the various vaccine supply ratios, and (ii) the FIC percentages.  The second column in each table 

lists results for the baseline case, while others list results for several other potential future 

scenarios that will be  described in the following subsection. In Table 5, we also present the 

maximum, minimum and the standard deviation of the FIC percentages across all clinics in the 

country.  In addition, Table 7 displays the distribution of the FIC percentages  across the 642 

functional clinics with refrigerator capacity.  The reader will be referred to these tables when 

each scenario is discussed.   

 

Table 5. Vaccine supply ratios for various scenarios 

Vaccine Baseline 

Scenario I Scenario 

II 

Scenario III 

Introduction of new vaccines 

Regional 

level 

removed 

Single-

dose 

measles 

vial 

RV RV and PCV 

Tuberculosis 97.58% 97.58% 93.53% 94.33% 83.96% 

Tetanus 93.18% 93.19% 77.21% 82.07% 44.97% 

Measles 97.58% 97.58% 77.21% 93.49% 83.91% 

OralPolio 97.58% 97.58% 93.53% 94.63% 84.58% 

YellowFever 97.58% 97.58% 93.53% 93.48% 83.91% 

DTC-HepB-HiB 93.18% 93.19% 77.21% 82.07% 44.97% 

Rotavirus 

  

 82.07% 44.97% 

PCV 

  

 

 

44.97% 
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Table 6. Percentage FIC for various scenarios 

Percentage of 

FIC at clinics 
Baseline 

Scenario I Scenario 

II 

Scenario III 

Regional 

level 

removed 

Single-

dose 

measles 

vial 

Introduction 

of RV 

Introduction 

of RV and 

PCV 

Weighted Average 93.18 93.19 77.21 82.07 44.97 

Standard 

Deviation 12.2 12.3 23.7 21.1 29.4 

Maximum 100 100 100 100 100 

Minimum 36.3 34.0 10.5 18.4 0 

 

Table 7. Distribution of percentage FIC across clinics for various scenarios  

Scenario 

Percentage of clinics with FIC percentages of 

0%  

FIC 

<10

% 

10% 

 

FIC 

<20

% 

20% 

 

FIC 

<30

% 

 

30% 

 

FIC 

<40

% 

40% 

 

FIC 

<50

% 

50% 

 

FIC 

<60

% 

60% 

 

FIC 

<70

% 

70% 

 

FIC 

<80

% 

80% 

 

FIC 

<90

% 

90% 

 FIC 

<100

% 

FIC 

= 

100

% 

Baseline 0.00 0.00 0.00 0.62 1.40 2.50 2.50 1.40 7.63 8.88 75.08 

Regional 

level 

removed 

0.00 0.00 0.00 0.62 1.56 2.18 2.34 1.71 7.63 8.88 75.08 

Single-

dose 

measles 

vial 

0.00 0.94 2.18 4.83 6.70 8.26 7.01 6.08 5.14 15.26 43.61 

Introductio

n of RV 
0.00 0.16 1.71 4.05 2.18 11.22 3.58 3.43 10.59 9.35 53.74 

Introductio

n of RV 

and PCV 

1.87 14.17 15.58 14.33 11.99 6.08 8.88 4.21 7.48 3.27 12.15 
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First, the results indicate that the baseline system with added cold rooms is capable of attaining 

high supply ratios for all vaccines (Table 5) and can also fully immunize over 93% of all 

children (Table 6).  Table 7 indicates that more than three quarters of the clinics can attain an 

FIC percentage of 100%, and the vast majority (91.6%) of them attain an FIC percentage of over 

80%.  The  two non-freezable vaccines (Tetanus and DTC-HepB-HiB) determine the limiting 

value of the FIC percentage acheivable; the supply ratios for the other vaccines is larger because 

of the flexiblity with respect to their storage in either freezers or refrigerators.  Furthermore, a 

few additional doses of the smaller vaccines (OralPolio and Tuberculosis) can be stored even 

when there is no room for a complete regimen.   

Scenario I: Removal of a Distribution Level from the Supply Network 

Health administrators in Niger were interested in investigating the effects of changing the current 

four-level distribution supply chain to a three-level one where regional stores are eliminated and 

vaccines at district stores are obtained directly from the central depot. In this scenario, 

tranporters at the district level are used to pick up vaccines from the central depot instead of 

obtaining vaccines from the regional stores.  The objective was to see what the effect on final 

vaccine delivery would be if no new cold rooms were added at regional stores and the existing 

ones were also eliminated in order to save costs.  Because of differences in storage capacities and 

populations served the answer to this was not obvious.   

A model of the new supply chain configuration was analyzed and performance statistics 

across the 642 operational clinics in Niger are displayed in Table 5, Table 6 and Table 7. 

Looking at the results it appears that the performance of this system would be almost identical to 

that of the current four-level hierarchy, with only some very minor differences in the distribution 
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of the FIC percentages across the clinics. This is a key finding since the authorities wanted to 

ensure that there would be no degradation in performance before considering this option.  The 

next step would be to do a more detailed economic analysis of the savings from eliminating the 

regional storage facilities, and the increased transportation costs from longer trips between the 

district and central stores.. 

Scenario II: Changing Vial Size 

To improve vaccine safety and efficacy, immunization participants are considering using more 

single-dose vials to replace commmonly used multi-dose vials. Single-dose vials result in no 

open-vial waste and they minimize the risk of needle contamination since each vial is only 

accessed one time (Phillips G., et al., 1989) (Simon, P. A., et al., 1993). Furthermore, they are 

often integrated with syringes or other injection devices that ensure that vaccines are properly 

administered (Pre-filled monodose injection devices: a safety standard for new vaccines, or a 

revolution in the delivery of immunizations?, 2011). An example of an economic analysis of the 

effects of switching vial sizes can be found in (Lee, B. Y., et al., 2010) while a simulation based 

approach has also been used in (Lee, B. Y., et al., 2011) (Assi, T. M., et al., 2011) to evaluate the 

supply chain effects from changes in vial sizes in two different countries.  

Applying our model to Niger, we examine the effect of replacing 10-dose measles vials 

with single-dose vials. As shown in Table 6 the overall average FIC percentage decreases by 

about 16% (from 93.2% in the existing system to 77.2% with single-dose measles vials), while 

Table 5 indicates that the supply ratios are also reduced for all the vaccines, including the 

measles vaccine. The reason for this is that even though single dose vials of measles vaccine are 

more efficient in terms of eliminating open-vial waste and potentially improving vaccine 
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availability, on a per-dose basis the specific unidose presentation being considered has a 

significantly larger volume and take up more space, thus crowding out other vaccines. This 

becomes an issue at clinics with lower capacity. Table 7 also indicates that there is a large 

decrease in the percentage of clincs that can attain 100% FIC percentage and a general increase 

in the ones which yield a low FIC percentage. These results indicate that cold chain capacity can 

be a factor even when changing the presentation of a single vaccine, and that a system-level view 

is essential.  

Scenario III:  Introduction of New Vaccines 

Many countries are considering introducing new vaccines into their EPI programs. It is important 

to have a plan to assess the ability of the distribution network to handle these new vaccines in 

advance of introducing them. As an example, such an analysis would have been invaluable prior 

to the introduction of two new rotavirus vaccines into several Latin and South American 

countries in 2006-2007: due to their relatively large volume, the rotavirus vaccines displaced 

other EPI vaccines from already limited cold storage space in the supply chains. This 

compromised the distribution of not only the rotavirus vaccines, but also that of other essential 

routine vaccines, resulting in large numbers of wasted doses and prompting a call for the 

formulation of smaller presentations of the rotavirus vaccine (de Oliveira, L. H., et al., 2008).  

An example of such an analysis using our model can be found in Rotavirus vaccine (RV) 

and pneumococcal conjugate vaccine (PCV) are being considered for  introduction into Niger 

(Lee, B. Y., et al., 2012). Introducing RV can reduce mortality among children under five years 

of age in areas that have a high prevalence of diarrheal disease (Introduction of rotavirus 

vaccines into national immunization programmes: management manual, including operational 
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information for health workers, 2009). Pneumococcal disease can cause severe complication in 

young children and outbreaks have occurred in both developing and developed countries, and the 

intense impact of pneumococcal disease has drawn the attention of public health decision 

policymakers worldwide (Pneumococcal vaccination, 2011).  

The results from the introduction of RV and PCV into the existing network in Niger 

indicate that the implications are significant.  From Table 6, the introduction of RV alone 

reduces the FIC percentage to about 82% (from 93.2% in the current system) with the minimum 

value falling to 18.4%, while the introduction of both RV and PCV into the regimen reduces the 

average drastically to under 45%, with three clinics being completely unable to vaccinate any of 

their patients fully (minimum = 0%) because there are insufficient vaccines to distribute at the 

district level due to storage constraints. Table 7 also shows that with both new vaccines in the 

regimen there are significant numbers of clinics with very low coverage. With respect to 

individual vaccines Table 5 shows reductions in the supply ratios for all vaccines, and these 

reductions are very significant for the larger volume vaccines.  Thus, it is obvious that the current 

distribution network becomes overloaded at many locations when these new vaccines with their 

large space requirements are introduced into the EPI regimen. The results clearly illustrate that 

the existing supply and distribution network is not capable of efficiently supporting these new 

vaccines in their current form.  The model also provides details on which specific nodes in the 

chain are overloaded so that decision makers can prioritize capacity allocation if they decide to 

go ahead with the new vaccines; this is discussed next. 
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Scenario IV: Capacity Expansion 

Vaccines must be kept within a specified temperature range or they can suffer a significant loss 

of potency (Adu, F. D., et al., 1996) (Lala, M. K. and Lala, K. R., 2003). However, many low 

and middle income countries have insufficient cold capacity to accomodate vaccine demand 

(Regional Update: Increasing and sustaining immunization coverage in SEAR, 2011). For many 

of these countries it would be useful to be able to develop a capacity expansion plan based on 

information about predicted population sizes and possible changes to the immunization regimens 

they will use in the future. In the last scenario we examine the capacity implications of the 

situation studied in the previous subsection, i.e., the introduction of (i) RV and (ii) RV as well as 

PCV into the EPI vaccine regimen in Niger.  Our model lets decison makers analyze their current 

supply network capacities and explore the impacts on the supply chain of future demand and 

vaccine scenarios. The model assesses the gaps between the current system and future needs, and 

extra capacities are determined based on how many vaccines are expected to be handled at each 

location.  

In Niger, vaccines are delivered by different transport devices across the supply network. 

Cold trucks are used for shipments from the central depot to regional stores. Shipments from 

regional stores to districts stores are made using 4×4 trucks carrying portable cold boxes. Finally, 

healthcare workers handle the shipments between district stores and clinics using small vaccine 

carriers that are usually carried from the district store to the clinic by a worker on a motorcycle, 

bicycle, or possibly by foot.  

Table 8 summarizes the additional capacity needed at each level of the supply chain and 

for the various transport links. For the baseline case, transportation capacity is clearly not an 
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issue.  Also, there is sufficient capacity at the central store, and relatively minor shortfalls at the 

regional and clinic levels. However, the district level presents a bottleneck and in order to 

achieve 100% coverage the network still needs an aggregate cold capacity of a little over 1,000 

liters across all of the 42 district stores; our model provides specific additional capacity 

requirements at each individual store or clinic.   

The last two columns in Table 8 list the corresponding values for additional capacity 

required when (i) RV and (ii) both RV and PCV are introduced into the EPI regimen. It can be 

seen that there is a capacity shortfall throughout the system. First, if only RV is introduced the 

central store needs a small increase of about 3m
3 

 (to its current net volume of 36m
3
), and the 

regions also require a small increase. However, at the bottleneck district level the requirements 

roughly triple over the baseline, and in addition,  the clinic level presents a significant problem 

now with a large increase in the overall capacity required.  There is also a need for significantly 

more cold trucks to transport vaccines between the central store and the districts, although 

transport capacity at lower levels does not appear to be an issue. 

 With both RV and PCV in the regimen, the increased requirements over the baseline are 

drastic and as the last column in Table 8 indicates, the current system is clearly not in any 

position to handle this satisfactorily.  Even at the top of the network, the central store needs to 

increase its capacity by almost 150%! Transportation capacity requirements also go up very 

sharply and even at the lowest level (district to clinic) there is insufficient transport capacity. In 

short, the results clearly indicate that in its current form, the system is marginally equipped to 

handle the introduction of the Rotavirus vacine and absolutely not equipped to handle both 

Rotavirus and PCV. Before the latter can be considered, there is a need for significant additional 

cold storage capacity or for reconfiguring the existing network configuration. 
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Table 8. Additional net capacity required (liters) for vaccine introduction scenarios 

 Baseline Introduction 

of RV 

Introduction 

of RV and 

PCV 

Total Storage Capacity Required    

Central Depot 0 2,842 53,885 

Regional Store 34 749 5,147 

District Store 1,035 3,038 18,617 

Clinics  166 2,285 10,522 

Total Transport Capacity Required    

Cold Truck 0 6,892 32,429 

4x4 Truck 0 28 4,183 

Vaccine Carrier 0 4 4,042 

*. Unit: Liters 

 

Table 9. Additional cold storage equipment for vaccine introduction scenarios 

Level 
Cold Equipment 

Baseline 
Introduction of 

RV 

Introduction of RV 

and PCV 

Number 
Net 

Capacity  
Number 

Net 

Capacity  
Number 

Net 

Capacity  

Central Cold room 

(36,000 net L each)  
0 0L 1 36,000L 2 72,000L 

Region Refrigerator 

(200 net L each)  
1 200L 4 800L 26 5,200L 

District Refrigerator  

(200 net L each) 
17 3,400L 31 6,200L 115 23,000L 

Clinic Solar refrigerator 

(21 net L each)  
54 1,134L 258 5,418L 688 14,448L 

 



55 
 

To calculate the actual cold equipment required, we use level-specific storage equipment 

to identify the number of devices needed for each location. The equipment is selected based on 

the WHO Performance, Quality and Safety (PQS) which recommends cold storage equipment 

for use in immunization systems in low and middle income countries (PQS devices catalogue, 

pre-qualified equipment for the expanded programme on immunization, 2011). The strategy of 

capacity expansion considers vaccine demand, unit cost, unit capacity, maintenance, and 

physical infrastructure. In general, capacity is expanded by adding a large cold room at the top 

level, a medium size refrigerator is used at the middle levels and a solar refrigerator is the most 

recommended solution for the bottom levels due to uncertainty in energy source availability. 

Table 9 presents a summary of the equipment needed for different vaccine introduction 

scenarios. For the baseline scenario, there is no need for a cold room, 18 refrigerators are 

required at the middle levels and 54 solar refrigerators are needed at the clinic level. The net 

capacities of these devices are reported in the next column. The sum of the net capacity of all of 

these devices is considerably more than the net capacity shown in Table 9 because many 

locations only require a few liters but additional capacity must be purchased in discrete units.  

 

3.4 SUMMARY 

 

This chapter provides what is to our knowledge, the first mathematical programming model for a 

generic WHO-EPI vaccine distribution chain in low and middle income countries. The value of 

such a model stems from the fact that the general similarity in the overall network structure in 

different countries makes it easy to adapt it to different environments and public health officials 

and policy makers in these countries can use the model as a planning and evaluation tool.  It can 

be used to better understand bottlenecks and resource constraints in existing networks so as to 



56 
 

improve vaccine delivery and immunization rates.  In addition, it can also be used to evaluate 

several types of interventions and changes or updates in policy; this was illustrated by the four 

different scenarios for Niger described in Section 3.  Versions of the model have already been 

used in three different countries.  While the work described here is focused on vaccines for 

routine immunization, in future work we hope to extend and link our model with traditional 

disease transmission models in order to plan for campaign vaccinations aimed at specific disease 

outbreaks.  
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4.0 LINKING THE VMIP MODEL WITH DISEASE MODEL 

 

Many disease transmission models have been analyzed and used for various applications 

(Hethcote, H. W., 2000) (Anderson, R. M. and May, R. M., 1991) (Diekmann, O. and 

Heesterbeek, J. A. P., 2000). Recently, models have been modified to capture more details about 

how diseases spread or to consider population structures more accurately (Ferguson, N. M., et 

al., 2003) (Vynnycky, E. and White, R. G., 2010). How a disease is transmitted could impact 

decision making on vaccine distribution, and in this chapter we propose a mechanism that links 

the vaccine distribution model with a stochastic disease propagation model. 

 

4.1. INTRODUCTION 

 

We investigate the effectiveness of different vaccination strategies and the capital investment 

required to implement them by using a supply chain model in combination with a disease model. 

For each strategy, we apply the VMIP to assess vaccine availability. The VMIP also determines 

optimal capacity allocations if bottlenecks exist in the distribution network. The effectiveness of 

the different vaccination strategies is evaluated based on the number of new cases of infection 

that occur. To predict the number of new cases of infection we apply the stochastic disease 

model of Ferrari et al. (Ferrari, M. J., et al., 2008). It has been widely applied for modeling the 

spread of measles as part of health care policy development. The model provides an extensive 

level of detail to segregate outputs and possesses the flexibility to be adapted for various policy 
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analyses. Figure 4 is a schematic depicting the linkage of the VMIP model with the disease 

model. 

 

 

Figure 4. Schematic of linking the VMIP model with disease model 

  

 The remaining sections in this chapter introduce the stochastic disease model in detail. 

The stochastic disease model incorporates randomized factors in order to capture disease 

dynamics. The model assumes that population age-stratification varies across locations and that 

birth rates, death rates, contact rates and recovery rates depend on the specific ages found in the 

populations at different locations. Vaccine distribution decisions usually focus on a specific 

population class, especially for the age groups that are more likely to be infected (Expanded 
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Program on Immunization, 2011). The stratifications of population structure provide the 

capability to answer vaccine distribution questions.  

 Many infectious diseases tend to have seasonal outbreaks over years. To set an 

immunization strategy for diseases eradication, it is important to understand long-term epidemic 

trends and the variations found in seasonal transmission patterns. The epidemic dynamics of 

measles is the best understood among acute infections and has attracted the attention of many 

researchers (Bjørnstad, O. N., et al., 2002) (Crais, R. F., et al., 2006) (Grenfell, B. T., et al., 

2001).  These models study how disease spreads in populations over time and the models‟ 

outcomes and conclusions about different control strategies for measles can be useful in 

providing suggestions for decision making on disease prevention policies.  

 Most pandemics are related to human migration patterns and increased international 

travel could lead to global infections (Grenfell, B. T., et al., 2001) (Ruan, S., et al., 2006). With 

modern transportation networks, worldwide spread of infectious agents becomes much easier. 

Studies of how diseases spread between locations provide an opportunity to assess the potential 

for epidemics and to evaluate the effectiveness of different control measures. The goal is to 

understand the behavior of how diseases spread globally to reduce the risk of pandemics. Using 

information about population settlements and accumulating cases, several epidemiological 

studies give quantitative assessments of the epidemic potential of diseases and the effectiveness 

of control measures (Grenfell, B. T., et al., 2001) (Bosch, F., et al., 1990). We apply a stochastic 

disease model to investigate spatial transmission effects. The likelihood of transmission is 

considered as a power function of the distance between susceptible and infected individuals. 

Disease is more likely to occur in specific geographic areas that are near the primary infection 
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location. The disease is assumed to be transmitted from place to place by spatially contagious 

diffusion. 

 Modeling of countrywide epidemics is a great challenge. This analysis does not consider 

all factors present in real situations. The key factors included in this analysis are: 

 Age-specific force of infection 

 Seasonality  

 Spatial spread 

 Recurrent outbreaks 

 Consideration of  vaccinations  

 Consideration of different levels of vaccine availability 

 Before applying a disease model for assessing a countrywide immunization policy, real 

world data is collected and analyzed. In this study, the parameters for the stochastic disease 

model are estimated based on the census of reported cases and population in Niger over several 

years. This information is retrieved from several sources (Vynnycky, E. and White, R. G., 2010) 

(Mossong, J., et al., 1999). Further details are described in the parameter estimation sections.  

   

4.2 STOCHASTIC DISEASE MODEL FORMULATIONS 

 

The development of a disease model is driven by disease biological characteristics. For measles, 

the disease model classifies individuals into susceptible, infected and recovered compartments. 

The model considers m geographical locations. There are 42 districts in Niger, the model 

combines the three districts in Niamey into a single location, the Tchirozerine district is merged 
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with the Agadez district and the Tchintabaraden district is merged with the Abalak district; the 

result is that 38 locations are considered. The model assumes that all members of a population 

with the same age that live in the same location are homogenous; that is, they have the same 

biological and epidemiological parameters.  

 Let       ,       ,        and        denote the number of susceptible, infected, recovered 

and vaccinated people of age a who are present in location m at time t. Due to the nature of 

measles, the model assumes that individuals who are in the infected class cannot move into the  

vaccinated class even if they are vaccinated. Population members in the susceptible or recovered 

compartments may move into the vaccinated class once they have received vaccines. Residents 

in the susceptible class are assumed to become infected with a certain probability. The average 

number of people that transition from the susceptible state to the infected state is given by       
 . 

Each infected individual transitions from the infected state to the recovered state with rate       
 .   

Further, the model considers that there are unreported cases of infection with a rate of       
 .    

 The model uses a discrete time step of two weeks that reflects the duration of a typical 

measles infection (Anderson, R. M. and May, R. M., 1991). In addition, transmission between 

locations is possible when a measles outbreak occurs in a country. The model assumes that 

transmission among locations is a power function of the distance between the locations.  

 Unvaccinated newborns (or non-immune newborns) enter into the susceptible state. Each 

susceptible individual can either become infected, recovered or vaccinated. An infected 

individual only becomes recovered. It is also possible that individuals die during infection. For 

this case, the model assumes that the infected individuals enter the recovered state and then 

deaths occur in the recovered state. For measles, most individuals will develop permanent 
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immunity when they recover from an infection or are vaccinated. The compartments and flows 

are described in the diagram below: 

 

Figure 5. Disease model compartments 

 

4.2.1 Model Formulations 

 

The following table includes the notations that are used in the stochastic disease model. 

  

Table 10. Summary of notations 

[Variable Indices] 

A      the set of age groups,               

T      the set of time intervals,               

M     the set of locations,             

[Variables] 
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Table 10 (continued) 

 

      the expected number of births in period t at location m 

              the expected rate of age transition from age   to age     in a time interval   

              the expected mortality rate at age    

             the expected number of susceptible individuals of age   in period t at location m 

              the number of infected individuals of age   in period t at location m 

             the expected number of recovered individuals of age   in period t at location m 

      
         the expected number of newly infected individuals of age   in period t at location m  

      
        the expected number of newly recovered individuals of age   in period t at location m  

      
         the expected number of unreported cases of age   in period t at location m  

             the vaccination visit rate of age group   at location m 

              the vaccine supply ratio at time t at location m 

        
     the expected number of vaccinated individuals in the susceptible state in period t-1 at       

      location m 

        
     the expected number of vaccinated individuals in the recovered state in period t-1 at      

      location m 

         the time interval over which infants have maternally derived immunity, after this time 

infants become fully susceptible 
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 We now present model formulations for the stochastic disease model. Let T be the set of 

time periods, t = 0, 1, 2, 3…, over the given time horizon. Set M is the set of locations. For 

example, there are M=38 districts in Niger. For each location, the population is further stratified 

by different age groups. Set A represents the ages of individuals, a=0 indicates newborns; 

numbers greater than 0 indicate age groups of children. The number of annual births varies 

across the 38 districts in Niger,      represents the expected number of births at location m 

during a two week interval. 

 The age of a population increases when time advances in the simulation runs. The model 

uses an age transition rate to characterize the population ageing phenomenon. Let    be the 

expected rate of age transition from age   to age     in a time interval. Then    is equal to the 

scale of the time interval divided by the unit of the age group. In our case, the scale of the time 

interval is two weeks and the unit of an age group is four weeks, therefore, the age transition rate 

is 0.5. Each age group has a different mortality rate, and    is the expected mortality rate at age 

a.   

 Next, we describe the variables for representing the numbers of individuals in the 

different compartments. Let        denote the expected number of susceptible individuals of age 

  in period t at location m. Similarly,         is the number of infected individuals of age   in 

period t at location m, and         is the expected number of recovered individuals of age   in 

period t at location m.  

 We also need variables to describe how individuals transition between compartments 

during each time period.       
  is the expected number of newly infected individuals of age a in 

period t at location m.       
  is the number of newly recovered individuals of age a in period t at 
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location m. It is assumed that the transmission rates vary for different age groups at different 

time units at different locations. The estimation of transmission parameters will be described in 

the next section. The number of newly infection individuals is: 

        
                                                                                                           (1) 

 The model assumes that all infected individuals become recovered at the next time 

period. Therefore,       
  is equal to       . 

 Before describing the equations governing each compartment, we present the equations to 

determine the number of vaccinated individuals in either the susceptible or the recovered state. 

For simplicity, the model assumes infected individuals will not be vaccinated. Due to a lack of 

vaccination records and limited resources for conducting blood tests, members of the recovered 

population may receive vaccines. Campaign vaccinations target specific age group populations 

regardless of their immunization history. Let         
  be the susceptible individuals of age a who 

are vaccinated at the previous time period at location m.          
  is equal to the visit rate      

multiplied by the vaccine supply ratio         and the uninfected susceptible population. The 

number of uninfected susceptible individuals is defined as                
 . Therefore, the 

number of vaccinated individuals in the susceptible state is: 

        
                              

                                                               (2) 

 Let         
  be the expected number of vaccinated individuals in the recovered state. The 

number of vaccinated individuals in the recovered state is: 

         
                                                                                     (3) 
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  The above equations describe the transition rates between disease states. In the next 

section, we begin to formulate the equations for determining the size of the populations in each 

compartment. 

 Susceptible Individuals 

The susceptible individuals include individuals who have not been infected or vaccinated 

before. One example of a subpopulation in this category is newborn children. For measles, 

maternally derived immunity in infants covers the first four months (Anderson, R. M. and 

May, R. M., 1991). The time delay    accounts for newborn children having a period of 

immunity before they become susceptible.  

Let        denote the expected number of susceptible individuals of age a in period t at 

location m. The equations governing the number of susceptible individuals for different age 

groups are described as follows. 

(I) if the age is 0: 

                                        
          

                                  (4) 

               

Here the equations determine the number of susceptible individuals,       . On the right 

hand side of the equation, the first term is the number of susceptible individuals from the 

prior period. The second term is the number of births in period    . The third term is 

the population from the previous period that is reaching age 1. The fourth term is the 

number of newly infected individuals entering the infected compartment. The fifth term 
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is the vaccinated population. Finally, the sixth terms captures the number of individuals 

who die.    

(II) if the age greater than 0 and less than A: 

                                                 
          

                   

                                                                                    (5) 

(III) if the age equals to A: 

                                      
          

                                         (6) 

               

For the age groups greater than zero, the new number of susceptible individuals is equal 

to the number susceptible from the prior period plus the inflow from the younger 

population, minus the population transitioning to the next age, the number newly 

infected, the number vaccinated and the number of deaths. 

 Infected Individuals 

The expected number of infected individuals of age a at the end of period t at location m is 

given by: 

                      
        

        
                                                 (7) 

, where       
  is the expected number of newly recovered individuals of age a at the end of 

period t. The model assumes all infected individuals become recovered at the next time 

epoch, therefore,          equals       
  plus       

 . 
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 Recovered Individuals 

The expected number of recovered individuals at time step t: 

                      
                                     

               

                                                                                         (8) 

 The number of newly recovered individuals is determined by the number from the prior 

period and the newly recovered individuals. The third term is the inflow of recovered 

individuals from the younger population. The fourth term is the outflow of people moving to 

the next age. The fifth term denotes the vaccinated population. The sixth term denotes deaths 

that occur in the recovered state.   

 

4.3 PARAMETER ESTIMATIONS 

 

Parameter estimation is a fundamental component of the development of a stochastic disease 

model. The model uses parameters with different levels of detail as inputs to present disease 

transmission processes. These parameters are not directly measurable, and must be computed 

from data in order to calibrate the model to specific problems.  

 One of the challenges in disease modeling is data collection. Obtaining full observational 

data can be time consuming and expensive and so it is generally not feasible to collect data at the 

spatial and temporal frequency required to track these changes effectively. In the absence of 

complete information on the reported cases, several approaches have been developed to estimate 

disease parameters. These approaches consider one or more of the nature of the disease, time 
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series, age structure, population settlements and environmental impacts. The following sections 

describe common approaches that are applied for estimating disease transmission parameters. 

4.3.1 Estimation of Seasonal Transmission 

 

The Time Series SIR (TSIR) model captures the seasonal transmission pattern and the mixing 

factor between susceptible individuals and infected individuals (Bjørnstad, O. N.et al., 2002). 

The model parameters are estimated by using observed disease cases and births in an attempt to 

compensate for the lack of complete data. The subpopulations in each epidemic state can be 

represented by the equations below: 

              
                                                                    (9) 

                                                                                 (10) 

 A time step of two weeks is used in the model based on the infection period for measles. 

In equation (1),    is the transmission parameter which varies with the time periods.   is the 

mixing parameter; if    , then the disease will spread more rapidly, otherwise, it will decrease 

the speed of transmission. Newborns,     , enter the susceptible compartment at time t with 

delay time d accounting for the length of maternally derived immunity in infants, where d is 16 

weeks for measles (Anderson, R. M. and May, R. M., 1991). Both    and    are random noise 

factors with means equal to zero.  

 There are two stages to fit the system of equations with the observed data. The first stage 

uses equation (10) to estimate the reporting rate of infected cases, thereby updating the 

susceptible compartment. Then equation (9) can be fit using the modified number of susceptible 
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individuals and infected cases based on the results from using equation (10). The detailed 

description of each stage is as follows: 

Stage1. Rebuilding the Susceptible Individuals and Unreported Cases 

Suppose    is the number of reported cases. Then the number of true cases    is 

                                                                                           (11) 

where     implies that all cases are reported and values greater than 1 represent the rate at 

which cases go unreported.  Replacing    with     in equation (10) yields 

                                                       (12) 

Let    denote the deviation of    from its mean, so that         , where    is the mean of   .  

Then 

                                                (13) 

Note that  

when    ,                    

when    ,                    

… 

when    ,                      

Therefore, (13) may be expressed as  

               
 
        

 
       

 
                          (14) 
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Furthermore,    
 
    is close to zero when t is large, so that equation (14) can be rewritten as  

         
 
                

 
                            (15) 

Equation (15) is a linear regression model that depicts the relationship between cumulative 

reported cases and cumulative births. Thus, the set of data pairs (   
 
   ,       

 
   ) determines 

a straight line with slope   and intercept        .  

Stage 2. Fitting the Transmission Equation  

The transmission equation (9) is used to determine new infection cases. Applying a logarithmic 

transformation to both sides of the equation, we obtain:  

                                                                  (16) 

Then using a first-order approximation for    in terms of its deviation    we have 

                          
  

  
   

  
 

   
                               (18) 

Ignoring the remainder term in (18), and using this to replace    in equation (16) yields  

                       
    

  
                                (19) 

Combining the first and second terms in equation (19), we can rewrite it as    

                   
    

  
                                           (20) 

By definition         , where    is the estimated reported rate and is obtained from the first 

stage.  
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                                                              (21) 

As the expected number of susceptible individuals    is unknown,    cannot be found directly. 

Instead, define   
       . Equation (21) becomes 

                
   

 

  
                                                                 (22) 

Equation (22) presents a generalized linear model. Given    and    from stage 1 and the 

observed cumulative reported case   , the unknown parameters   
 

,    and   can then be 

estimated.∎  

 In summary, the procedure for parameter estimation is: (1) Collect data on birth rate and 

reported incidence, (2) estimate reporting rate and deviations in the number of susceptible 

individuals, (3) estimate the transmission rate and mixing, (4) conduct sensitivity analysis to 

verify the model. Figure 6 shows that the scaled time series transmission rates in Niger have a 

maximum value of 1. 
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Figure 6. Distribution of estimates of relative time-series transmission rates in Niger  

 

4.3.2 Estimation of Recurrence Outbreak  

One of the major challenges with disease models is in capturing the nature of recurrent 

outbreaks. Extending the TSIR model, the discrete-time compartment model is thus given by 

                       
                          (23) 

                                                                   (24) 

where   represents recurrent infections. Using the assumption that          from the 

previous section, we can rewrite (1) as 

                               
                (25) 

Taking logarithms yields 

                                                                     (26) 
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Replacing              with        
    

  
 yields 

                          
    

  
                                         (27) 

   and    may temporarily be similar after or prior to extinction (         when    

                  ), therefore consider a higher-order approximation for                 

                         
    

    
 

 

 
 
    

    
   

 

 
 
    

    
 
 
                           (28) 

Let                 
           

    

                                
         

         
                      (29) 

Thus equation (27) may be restated as  

                         
    

  
                   

         
         

             (30) 

Combining the first and second terms and letting    
        

                 
   

 

  
                        

           
           

            (31) 

Equation (31) is a linear regression model with parameter set     
  

 

  
                   ∎ 

 

4.3.3 Estimation of Age-Specific Transmission 

In this section, we will describe a general age of infection model for estimating transmission 

rates of different age group populations (Ferrari, M. J., et al., 2010). The model is applied to fit 

the reported cases from a measles outbreak in Niger. The results for each age-specific 

transmission rate will be used in the stochastic disease model to conduct a simulation analysis.  
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Figure 7. Schematic of estimating age-specific transmission 

 

 Let    be the age-specific force of infection. The likelihood of infection at exactly age i, 

denoted by    , is the joint probability of not being infected from age 0 to age i-1 and being 

infected at age i. 

            
   
                                                                              (32) 

 In this study, the likelihood of infection at a specific age is based on surveillance data 

from 2003 through 2004 in Niger. The number of countrywide cases of infection is 11,073. Most 

cases are of children less than 2 years of age (Ferrari, M. J., et al., 2010). These reported cases 

are the input data for fitting the parameter    into the equations above.   

 The next step is to parameterize the transmission rate for each age group based on the 

results. The estimates of the age-specific force of infection are scaled to the average force of 

infection across all age groups. Let    represent a normalization factor for the infection at a 

particular age a. Therefore, 
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                                                                                                     (33) 

 The distribution of the scaled forced of infection is as follows. The peak infection age is 

26 months and then the force of infection decreases gradually. Infection risks are low when 

children are older than 10 years. The first four months are set to zero as maternal immunity 

allows for full infant immunity to measles (Anderson, R. M. and May, R. M., 1991).  

  

 

Figure 8. The insensitive of transmission for each age group children  

 

 The simulation is based on the age-specific transmission rate,   
     

 , which is adjusted 

by using normalized force of infection rates.  

    
     

                                                                                                   (34) 
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4.4. SIMULATION STUDIES OF MEASLES IN NIGER 

 

Most prior research has focused on disease models.  In this work we have introduced a model of 

the vaccine supply chain. However, healthcare policy makers must consider aspects of both. This 

section investigates interactions between vaccine supply chains and disease transmission by 

looking at various measures through an analysis of several different scenarios. To link the 

disease model with the supply chain model, we use the same geographic distribution of 

population settlements for both.  

 

4.4.1 Observed and Predicted Patterns of Measles in Niger 

No disease model can perfectly predict the nature of a future outbreak. The purpose of these 

models is to provide evidence-based assessments of the effects of healthcare strategies, and 

therefore, to help policy makers prepare for epidemics. Instead of performing numerical tests to 

evaluate the quality of a model, we compare the patterns between actual observed data and the 

simulated results. Figure 9 shows the plots of month-to-month cases in Niger. The reported cases 

are collected from countrywide surveillance data during the time period from 1995 to 2004, and 

then the average monthly cases are presented in Figure 9(b). The Niger reported cases, moves 

progressively up from January. The number of infections reaches its peak between March and 

April. After that, the precipitous decline in monthly cases is due to a decrease in the size of the 

susceptible populations. The average monthly cases in the simulation have a similar pattern when 

compared to the surveillance data. Figure 9(a) illustrates the simulations results for monthly 

cases for a time period of fifty years. We exclude the first twenty years of results as warm-up. 
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The figure indicates that the incidence of disease increases rapidly from January and that the 

highest number of infections occurs in April.  

 The high transmission rate of measles primarily leads to acute outbreaks, as shown in 

both the reported data and the simulation results. Further, there is a strong seasonal effect with 

many infections in the first quarter. This pattern relates to the heaviest rains that typically occur 

in March and last until the end of July. The rainy season may heighten risks of more disease 

outbreaks in Niger (Ferrari, M. J., et al., 2008).  

 The peak number of infections in the simulated results is higher than the number of 

reported cases. This is because the simulation considers both reported and unreported cases. In 

Niger, the measles reporting rate is 56% (Finkenstadt, B. F. and Grenfell, B. T., 2000). After 

adjusting for the reporting rate, the simulation results match well with the surveillance data.    

 

 

Figure 9. Simulation cases versus reported cases 



79 
 

 

4.4.2 Niger Studies 

We perform sensitivity analysis to make comparisons among different scenarios using the VMIP 

model and the stochastic disease model. These scenarios include various vaccination strategies 

and recipient visit rates to assess the relative effects of recommended policies enabling future 

planning for diseases control.     

Vaccination Policy Impact 

For Niger, the routine measles vaccine was introduced by EPI in 1987. Routine vaccination 

demands are based on a vaccination schedule for children of different age groups (for example, 

the first dose between 6-9 months). Catch-up measles, or supplemental immunization activity 

(SIA), began in 2004 targeting all children aged 9 months to 14 years old (Hoekstra, E. J., et al., 

2011), regardless of their prior history of vaccinations or infections. Periodic follow-up activities 

vaccinate all populations born since the previous SIA event. The intensive demand ensuing from 

an SIA is a challenge for vaccine logisticians and can be costly to implement and difficult to 

conduct in a short time window. To implement an SIA program, several factors are considered, 

such as vaccine supply, cold chain capacities, required nurses/health workers and accessory 

devices, all of which are needed for vaccinations. We explore an SIA vaccination campaign of 

one month duration occurring once every four years during the month of January, and evaluate 

the operational feasibility in vaccine distribution. Vaccine demands are split evenly over the SIA 

vaccination campaign duration. To assess vaccine availability, we extend the VMIP model to 

include both RI and SIA vaccinations. We assume that delivery of SIA vaccines has a higher 

priority than RI vaccines if the current supply chain has a bottleneck. Table 11 shows that the 

vaccine availability for measles RI declines slightly when SIA are introduced. The reason for this 
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is that the SIA vaccinations create a greater load for the cold chain during the time period(s) of 

the SIA vaccination sessions. For the one month scenario considered here, RI vaccine 

availability drops by about 0.6% during the SIA. 

 The impact of vaccination policies on the number of new cases is estimated by applying 

the stochastic disease model. We report the average number of monthly new cases of measles per 

100,000 people (referred to as cases per 100,000 in the remaining discussion). The model 

predicts that there are 23.6 cases per 100,000 when there is 96.9% vaccine availability for RIs. In 

the case where supply chain capacities must be shared for RI and SIA, SIA introduction 

decreases the average monthly number of cases to 20.5 due to the additional SIA vaccinations, 

although there is a reduction in RI vaccine availabilities as compared with the non-SIA scenario 

because of insufficient overall capacity. As a result, the total susceptible population sizes for the 

SIA cases are actually less than the base (RI) case and this leads to fewer infected individuals.  

The next case considered is where the vaccines for SIA are stored separately from the 

standard EPI cold chain, i.e., using separate equipment for these vaccines. This may occur if an 

outside entity, such as an NGO, organizes a campaign and provides its own cold storage 

equipment that will be in place temporarily to support the SIA campaign. In this case, the SIA 

vaccines will not displace the routine EPI vaccines. For purposes of this analysis, we assume the 

most optimistic SIA scenario where the RI vaccine availability is unchanged and there is 100% 

SIA vaccine availability. Table 11 shows the disease incidence data – there are 19.6 cases per 

100,000 for the SIA as compared with 20.5 cases per 100,000 when the SIA vaccines share 

supply chain capacity with RI. This indicates the benefit of separating SIA vaccines from the 

standard EPI supply chain or of providing additional temporary storage capacity to account for 

the SIA. 
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Table 11. Vaccination policies performance 

Scenario RI vaccine 

availability 

SIA vaccine 

availability 

Disease 

incidence* 

RI **     96.9% - 23.6 

Supply chain capacities shared for RI and SIA 

SIA*** 96. 3% 100% 20.5 

SIA does not share supply chain capacities with RI 

SIA*** 96.9% 100% 19.6 

* Average monthly cases per 100,000 

** RI visit rate 78%  

*** SIA vaccination was assumed to occur over one month; the SIA visit rate is 

7% of the target population  

 

 Supply Chain Reinforced 

In order to overcome the potential drawback of reduced RI levels associated with SIAs as 

described in the previous section we next investigate the cold chain capacity requirements for 

different vaccine polices. The storage capacities will be added in order to remove the current 

system bottlenecks. The WHO and UNICEF have specific guidelines for adding new equipment 

for immunization, and all new equipment must be prequalified before being deployed. An 

example of available equipment for each level is shown in Table 12. Cold rooms are installed at 

the higher levels for stocking larger amounts of vaccine doses. The lowest level uses solar 

refrigerators due to the frequent lack of dependable electricity or other energy sources at these 

locations. 
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Table 12. Cold chain equipment for immunization  

Level Type 
Vaccine storage 

space 
Source 

Central and Region Cold room 30 m
3
 

Niger 

comprehensive 

multi-year plan 

(cMYP)  

District 

Ice lined 

refrigerator (ILR) 

105 L 
(Prequalified ice-

lined refrigerator, 

2012) 

Clinic Solar refrigerator 21 L (Prequalified solar 

refrigerator, 2012) 

 

 The additional cold storage requirements are shown in Table 13. For the RI scenario, the 

extra storage capacity is 24 ILRs and 58 solar refrigerators across all district and clinic locations 

in Niger. The storage capacity requirement increases when SIAs are included. The SIA scenario 

requires the most storage capacity: 24 ILRs at the district level and 106 solar refrigerators at the 

clinic level.  

 We assess the performance of the vaccination policies by considering the number of new 

cases of measles. The scenarios are based on the reinforced vaccine supply chain systems and all 

the vaccines necessary to satisfy demand can be delivered. The incidence rate for the RI now 

drops to 16.6 cases per 100,000. The additional capacity fills the vaccine availability gap, and 

therefore, more children develop immunity by vaccination. Compared with the current system 

(Table 11), the reinforced supply chain thus reduces the number of expected infections.  

 With SIA, the incidence rate is now 14.1 cases per 100,000, which is lower than the base 

(RI) case. This vaccination policy has the best performance in terms of disease incidence as 

compared with other policies. However, the capacity investment is relatively expensive.  
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Table 13. Extra capacities required for vaccination policies 

  RI ** SIA*** 

Disease incidence* 16.6 14.1 

Cold 

equipment 

Cold room 0 0 

ILR 24 24 

Solar refrigerator 58 106 

* Average monthly cases per 100,000 

** RI visit rate 78% 

*** SIA vaccination was assumed to occur over one month; the 

SIA visit rate is 7% of the target population  

 

Sensitivity Analysis on Visit Rate 

Decision making regarding vaccination strategies for epidemic control is made more difficult due 

to the high degree of uncertainty associated with patient visit rates. We conduct sensitivity 

analysis by examining various visit rates in order to explore the impacts on the vaccine supply 

chain and disease transmission outcomes. The age specific vaccination rates are based on data 

collected from the Niamey Lot Quality Assurance Sampling (LQAS) during 2003 to 2004. In 

Figure 10, the solid line represents the actual cumulative visit rate data for routine 

immunizations. Most children received vaccines before the age of one year and the cumulative 

visit rate is relative low - about 78%. We examine the impact if the RI visit rate can increase 

from 78%. For each age group, the visit rate is inflated with a constant ratio to reach the higher 

cumulative visit rate. For example, the visit rate at each age group is inflated by a multiplicative 

factor of 1.8 to reach the 95% cumulative visit rate and inflated by a multiplicative factor of 3 to 

reach approximately 100% (dashed lines in Figure 10).  
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Figure 10. Vaccine recipients visit rate settings for simulation studies 

 

 Figure 11 shows the simulation results for the number of new incidences of measles 

based on different visit rate settings, ranging from the current situation of 78% up to 100%. The 

results show that new cases decline dramatically with an increase in the visit rate. If the visit rate 

increases from 78% to 79% the number of new cases drops to about 12 per 100,000 and if the 

visit rated increases to 82% then the number of new cases drops to about 2.47 per 100,000. If the 

visit rate is 84% or greater there is virtually no presence of measles in the entire population. 
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Figure 11. Average incidence rate per month for different RI visit rates 

 

 We also conducted a similar analysis changing only the SIA visit rate. For this analysis, 

we assumed that the SIA vaccinations are completed within one month and the RI visit rates 

remain the same (78%) and that the vaccine availability is 100%. There are about 14 per 100,000 

for the lowest SIA visit rate setting (of zero), 9.8 per 100,000 for the 15% SIA visit rate, and 

very few incidences for scenarios when the visit rates are great than 60% (Figure 12).  

A decision maker could assess the trade-offs of using two different strategies to improve 

coverage. The first strategy is to increase the visit rates for RI and to eliminate virtually all 

measles incidences the overall visit rate needs to increase from 78% to 85%. The second strategy 

would be to increase SIA activities from covering 7% of the target population to covering about 

60% of the target population.  
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Figure 12. Average incidence rate per month for different SIA visit rates 

 

 Next we assess the impact of visit rates on the supply chain. Table 14 shows the 

additional required cold storage capacities to provide 100% availability for several different visit 

rate scenarios and the resulting number of new incidences of disease for each scenario. The 

disease incidence rate is 16.59 per 100,000 in the 78% visit rate case, 7.62 per 100,000 in the 

80% visit rate case and the number of new infections approaches zero when the visit rates are 

greater than 85%. The required storage capacity is 24 ILRs and 58 solar refrigerators for the 78% 

visit rate. More storage capacity is required when the visit rates are increased, for example, 25 

ILRS and 73 solar refrigerators are needed in the 85% visit rate scenario. The 100% visit rate 

scenario needs the most storage capacity. While improved visit rates can reduce the risk of 

infections, the greater vaccine demands will require more capacities. However, our findings 

indicate that the largest reduction of disease incidence occurs when the visit rates rise to 85% 

from the 78% level which only requires one additional ILR and 15 solar refrigerators to scale up 
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capacity to fulfill the additional demands. This represents a relatively minor addition for the 

entire supply chain network. 

 

Table 14. Sensitivity analysis on vaccine recipient visit rates  

  Visit rate 

78% 80% 85% 90% 95% 100% 

Disease incidences* 16.59 7.62 0.03 0.00 0.00 0.00 

Number of additional storage equipment 

Cold room 0 0 0 0 0 0 

ILR 24 24 25 27 30 33 

Solar refrigerator 58 60 73 95 98 105 

 

 

4.5 CONCLUSIONS 

 

Our study of resource allocation for disease control differs from existing models in that we 

explicitly model interactions among the vaccine supply chain and vaccination strategies and we 

apply a stochastic disease model to assess effectiveness in terms of epidemic outcomes. Based on 

realistic data, both models provide practical strategies to address the interactions between the 

vaccine supply chain and disease transmission.  
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 We developed procedures that can link a supply chain model with a stochastic disease 

model for vaccine decision making in Niger. This procedure can be adapted to other countries or 

different diseases studies. The measures of resources required and benefits associated with 

changes in vaccination strategies provide valuable information for policy makers to determine 

the optimal prevention program.  

 Our analysis has several limitations. The simulation assumes that the vaccines are 

delivered at the start of the time period and that vaccination effects are instantaneous. It is 

unlikely that vaccinations could be implemented and be effective instantaneously. Another factor 

to consider is that in real life recovered individuals may return to the susceptible compartment. 

The temporal immunization can change immunization decisions. Future work is needed to 

determine how these dynamic effects may affect the vaccine policy. In addition, we assumed that 

the vaccine demands are stationary and do not consider human migration. Niger has a high 

migration rate due to the living style, agricultural economy and climate. However, the existing 

data on human migration is very limited. More work is needed to characterize these social 

behaviors.  

 We found that raising either the RI or SIA visit rates can significant reduce disease 

incidences. However, in addition to preparing the supply chain to deliver additional vaccines to 

the vaccinations points, there is the significant challenge of how to actually increase the visit 

rates. In order to increase visit rates decision makers must allocate their efforts and resources to 

make vaccinations easier to access, especially in areas with limited health care resources. Such 

strategies include outreach vaccination, community-based vaccination and campaign 

vaccinations. In the next chapter, we discuss the application of passive cold devices designed for 

vaccine delivery at remote vaccination locations.  
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5.0 PASSIVE COLD DEVICES FOR VACCINE SUPPLY CHAINS 

 

5.1 INTRODUCTION 

 

Passive cold devices (PCD) constitute a novel approach for improving immunization rates in low 

and middle income countries. PCDs do not rely on energy sources and are therefore highly 

desirable.  They are also easy to rapidly install at any location. PCDs are kept cool using a 

cooling medium which is a phase changing material. The most common phase changing material 

is ice and for this reason we simply refer to the phase changing material as ice for the remainder 

of this discussion. The cooling medium and vaccines are filled in PCDs at a recharging point, 

and health workers then move the refilled PCD along with vaccination devices (i.e., syringes, 

etc.) to vaccination points. There are different PCD designs that give rise to different features. 

This research considers three features: vaccine storage volume, required cooling medium 

volume, and maximum storage duration. Lighter and more portable PCDs are required for 

outreach or community-based vaccinations. There are existing storage devices that can be used 

for short-term storage (e.g., a Dometic RCW4) while other models have a longer storage 

duration of more than one week at 32C (e.g., a Dometic RCW25). Presently there is interest in 

developing PCDs that can store vaccines for weeks or possible months between recharging. 

 PCDs could be incorporated into the supply chain to replace stationary cold chain 

equipment at health posts. There are many health posts operating in remote areas with unreliable 

power sources, limited power availability or high energy costs. For these facilities, PCDs could 

be used to ensure the storage and transportation needs of vaccines at controlled temperatures. 
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The benefits of using passive cold devices for storage and transportation may be summarized as 

follows: 

 Easy to access outreach areas 

 Not affected by power outages 

 Lower probability of equipment breakdown    

 Lower recurrent costs (i.e., energy cost and maintenance cost) 

 No need for vaccine carriers or cold trucks during transportation 

 A second related issue is the introduction of new vaccines, which often requires major 

modifications to existing cold chain systems. While significant progress has been made through 

global organizations to strengthen cold chain capacities, the delivery and storage of vaccines is 

costly and requires considerable support including potential equipment maintenance. The 

recurrent costs of adding cold capacity is a significant concern and in order to provide a 

sustainable cold chain PCDs could prove favorable when compared with conventional 

refrigerators. 

Cold Chain Equipment 

Before implementing an immunization program in a country, decision makers need to evaluate 

whether the existing cold chain is capable of supporting vaccination activities or not. Many 

factors must be considered including forecasted vaccine demand, storage capacities, ordering 

policies, transportation capacities, facility locations, etc. The Effective Vaccine Management 

(EVM) initiative provides a comprehensive assessment of cold chain system performance 

(Effective vaccine management initiative, 2012). This identifies capacity expansion strategies for 
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fixing current problems in vaccine supply chains, as well as it considers future cold capacity 

needs over a planning horizon of several years.   

 We now review both conventional cold storage devices and new technologies. To 

organize the discussion, we classify different types of cold chain equipment and present various 

plausible use cases for each type of equipment. It should be noted that there are more different 

types of existing equipment than those discussed here, we only select representative examples 

from the WHO‟s list of Performance, Quality and Safety (PQS) prequalified devices and 

equipment (PQS devices catalogue, pre-qualified equipment for the expanded programme on 

immunization, 2011).  

 (1) Active Cold Devices 

Cold rooms, refrigerators and freezers are examples of active cold devices. These devices rely on 

power sources and are installed within facilities. A cold room can hold a very high volume of 

vaccines, with sizes ranging from 10 cubic meters to 50 cubic meters in order to take advantage 

of economies of scale. In general, most cold rooms are placed at the central and regional levels 

and provide service to lower levels. The design of a cold room must ensure good circulation of 

cold air through the shelves and maintain a stable temperature range. To prevent loss from 

equipment breakdowns, design recommendations encourage redundant electricity sources and 

components. 

 Conventional refrigerators and freezers operate by using electricity, kerosene or propane. 

Some models use dual energy sources (fuel and electricity) within the same equipment, and have 

standby units with automatic start up when the main energy source fails. For example, the Sibir 

170KE model runs on kerosene or electricity. An ice lined refrigerator (ILR) is another example 
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of a device that provides stable temperatures when power cuts are a chronic problem. The 

backup system can provide a temperature range of 2
o
C to 8

o
C for 24 hours during power 

shortfalls or outages.  

 A solar refrigerator can be operated in areas that are off the electricity grid. Its self-

generator unit can provide electricity for the needs of the refrigerator, as well as power that can 

be shared for other purposes. In general, the complete system includes solar panels, batteries, and 

refrigerators. To save on system costs, battery-free solar refrigerators eliminate the need for 

batteries and charge controllers. These refrigerators are highly efficient with low energy 

consumption and keep vaccines cold during cloudy weather. A solar refrigerator system needs be 

installed by a qualified installation company to ensure proper functioning of all components. To 

ensure that all equipment perform normally, a strong routine maintenance program is also a 

necessity. This involves regular cleaning of the solar panels, checking cables and connections, 

and replacing parts and/or batteries periodically. The costs associated with system initialization 

and maintenance are concerns when considering solar capacity investment.  

 (2) Passive Cold Devices  

The availability of reliable energy at a facility can limit the installation of active cold chain 

equipment. Many health posts in low and middle income countries have unreliable electricity, 

frequent power interruptions or high electricity costs. Those factors impact decisions about how 

to allocate cold chain equipment in remote locations. PCDs typically consist of an insulated 

container filled with ice packs to keep vaccines cold without using power.  There are a variety of 

passive cold devices available, ranging from cold boxes and vaccine carriers to insulated 

containers. A vaccine carrier has a relatively small vaccine storage volume and is usually 
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designed for transporting vaccines to health posts. A typical vaccine carrier might hold three 

liters of vaccines and maintain proper temperatures for up to about twenty-four hours (Large 

vaccine carrier: Model RCW4, 2012). A cold box refers to a relatively large insulated container. 

In practice, a cold box is used for either longer distance transportation or to support outreach 

vaccinations. In order to have a longer cold life, a larger number of ice packs are filled in the 

cold box. The cold life can be up to several weeks depending on usage and the frequency with 

which the cold box is opened and closed.   

 

5.2 USE CASES 

 

We next explore possible applications of PCDs. We use Niger as a pilot for studying PCD 

applications and our analysis allows generalizability to other countries and to other use cases. 

Niger is a typical low and middle income country with a high birth rate, low vaccine coverage, 

poor healthcare facilities, and infectious diseases are still prevalent.  

   This study investigates using PCDs for delivering vaccines from the district level to the 

health post level. Vaccine distribution from the central store, through regions and to the districts 

is the same as before. We assume that the vaccine supply chain would contain enough capacity 

to accommodate all use cases in this study and would fulfill vaccine demands and ice 

requirements in a timely manner. At the recharging points (i.e., district stores), PCDs are filled 

with cooling media (say, ice-packs) and vaccines, and the PCDs are delivered from the district to 

the health posts by using either a 44 truck or motorbike. The selection of the vehicle type 

depends on the distance and the total weight of the PCD. The charged PCDs contain enough ice 
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to keep vaccines cool until the next recharging time point. Each health post may need more than 

one PCD depending upon the PCD volume and the vaccine demand (including any buffers) at 

the health post. The deployed PCDs remain at the health post and are allowed to be re-opened as 

required during the vaccination days. For lyophilized vaccines (such as Bacillus Calmette-Guerin 

(BCG), measles and yellow fever vaccines), open vials are discarded at the end of each 

immunization session. Extra PCDs are preserved at the recharging points ready to be filled with 

vaccines and cooling materials when they enter the deployment rotation. Recharged PCDs are 

brought from the recharging points to the health post and swapped out with the used PCDs. In 

some cases, unused vaccines left in the used PCDs are returned to the recharging points with the 

used PCDs. These vaccines can be restocked and sent to the health posts again.  

 

 

Figure 13. Passive cold device use cases 
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 Small population catchment areas or community-base vaccination locations have 

relatively low volumes of vaccine demand during immunization sessions. For such cases, several 

locations could share a PCD while rotating the PCDs among them with a short-term stop at each 

location. The healthcare workers carry vaccines within the PCD to visit each vaccination point 

based on a pre-selected vaccination calendar. Target populations are invited to come for 

vaccination at specified locations during the vaccination sessions. After visiting all of the 

selected vaccination locations the PCD returns to the recharging point. The figure below is a 

schematic depiction of four vaccination points with equal demand sharing a PCD, while rotating 

the PCD with a one week stop at each location. 

 

 

Figure 14. A PCD serves as an immunization resource for multiple communities 
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Use Case Options 

Many competing factors influence PCD designs and configurations. To evaluate whether a 

particular PCD design is robust, this study verifies performance corresponding to the critical 

factors that change across different use cases. The key variables considered and their available 

options are listed below.  

a. Target Population:  The target population includes pregnant women and children 

under two years of age. The number of children of each age is computed by discounting 

the number of annual newborns by a mortality rate for each age. We use a growth rate of 

3.63% to estimate the population in 2015 (The world factbook : Niger, 2012).  

b. Vaccine Schedule: The baseline scenario considers the Expanded Program on 

Immunization (EPI) from the WHO. We also consider the introduction of new vaccines.  

c. Replenishment Frequency: The replenishment frequency is a decision that is based on 

how long the PCD can keep vaccines cold and a frequency is selected that minimizes 

total system cost if this choice allows the PCD to fulfill vaccination needs. According to 

the baseline policy, each health post is assumed to receive re-filled PCDs from the 

recharging point every four weeks. In this study, we also investigate two-week and eight-

week replenishment periods.   

d. Device Rotation: Extra PCDs in the system are allocated to the recharging points. 

Having additional PCDs incurs additional costs but the number of additional PCDs 

affects the types of replenishment policies that are feasible. For example, if the device 

rotation ratio is 100% (i.e., the system has double the number of PCDs needed across all 

health posts), then all used PCDs at the health posts can be exchanged with the extra 
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PCDs at the same point in time. A strategy of grouping replenishments can reduce 

traveling distance by visiting all health points in a single route, and therefore, save on 

transportation costs. However, if the health posts are going to be served using multiple 

smaller routes then a rotation ratio of less than 100% can be employed.  

e. Transportation Mode: Two transportation options are considered: the first is point-to-

point shipment where all shipments are made directly from the recharging point and the 

second is to group all or multiple health posts into one or more shipping routes. For the 

direct shipping case, each health post can have a different replenishment frequency and 

can collect PCDs at the time when they are needed. In general, if only one or two PCDs 

are needed then delivery can be done using a motorcycle or 4x4 truck. For the second 

case, a fixed shipping schedule is more likely to be applied and all health posts would 

receive recharged PCDs at the same time.  A larger vehicle, most likely a 4x4 truck, is 

required for fulfilling multiple locations‟ demands. Several factors need to be considered 

for delivery of PCDs in low and middle income countries, such as the distance, vaccine 

storage temperature, road conditions, commodity security, potential for driver fatigue, gas 

station locations and vehicle availability. Often shipping routes are planned to require a 

maximum of eight hours driving and avoid requiring an overnight stay.   
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Table 15. PCD use cases options 

Factor Options Reference 

Target population Current population Niger census data 

 2015 estimated  

Vaccines EPI (Expanded program 

on immunization, 

2011) 

 EPI+NVI (Introduction of 

rotavirus vaccines 

into national 

immunization 

programmes: 

management 

manual, including 

operational 

information for 

health workers, 

2009) 

Replenishment frequency Every 2 weeks  

 Every 4 weeks Niger cMYP 

 Every 8 weeks  

Extra devices for rotation 20% Assumptions 

 50%  

Transportation mode Direct shipping Distances are 

estimated based on 

Niger cMYP  Loop shipping* 

* Each loop contains some of the clinics served by the recharging point and multiple 

loops may be required. Exact loop formation decisions consider many factors 

including those described under Use Case Options, (e) Transportation mode. 
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5.3 PCD DESIGNS AND CONFIGURATIONS 

 

PCDs are essentially designed to maintain proper temperatures to hold vaccine cool between 

replenishments. In order to reduce the risk of vaccine wastage due to improper storage, several 

points are considered when designing a PCD. For example, the PCDs are tested and the rates of 

heat loss under variable ambient temperatures are calculated; they include several features to 

access vaccines easily; they are constructed to be durable enough to withstand frequent use, etc. 

Furthermore, the device must be evaluated through field trials and meet WHO requirements. 

Elements of different PCD designs and configurations considered are as follows: 

a. PCD Volume: Larger volume can provide more vaccine storage space. The drawbacks 

are increased cost and greater device weight. The volume also depends on the PCD 

internal geometry and compartment design and these factors influence the vaccine and ice 

packing efficiency. 

b. PCD Mass: The total mass of a refilled PCD is based on the weight of the PCD itself, 

the vaccines placed inside of it and the ice loaded into it. The total mass impacts the 

flexibility associated with handling and delivering. For example, if the total mass is 

greater than 25 kg, then the device can only be delivered using a truck. Since hand-

carried movement is the most common way of vaccine delivery at the heath post level, 

device weight is an important consideration. Using lighter insulation material for PCD 

design can reduce total mass.  
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c. Ice requirement: The heat leakage rate impacts the volume of ice needed to keep the 

required cool temperatures. Ice requirement depends on the device geometry, access 

point design, device materials and cooling medium.  

d. Ice Buffer: Ice buffers are used to mitigate multiple risks including: variation in 

ambient temperature, variation in cooling media performance, frequency of device 

access, variation in PCD performance, and potential delays in exchanging PCDs and 

recharging. Ice buffers require additional space in a PCD and increase the demand for 

recharging freezers needed at the recharging points.  

e. Hold Time (HT): Hold time measures the longest time interval that vaccines can be 

stored in a PCD. Heat leakage rate and cooling media provided are the primary factors 

that determine the HT. In general, hold time is measured using an ambient temperature 

assumption (one common choice is +43°C) to cover most use case situations.  

  

5.4 MODEL DESCRIPTIONS 

 

We develop computational models to conduct a PCD cost analysis to assess the benefits of using 

PCDs in the vaccine supply chain. The models can be applied to answer questions such as: (1) 

What is the optimal PCD design for different catchment sizes? (2) What are the benefits of 

efficiently routing shipments for delivering PCDs? (3) What would be the best use case for 

health posts to share a PCD? (4) What is the optimal replenishment frequency?  
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Table 16. PCD model notation 

Sets of indices 

Index Description 

    Index set of all vaccines,              

    Index set of all health posts,       

Notation Description 

      Annual ice recharging cost 

      Annual device cost 

      Annual transportation cost 

      Annual total system cost  

      Vaccine storage space (in liters) per PCD at health post j (unit: liters)  

        Demand (in doses) for vaccine i at health post j  

      PCD Ice buffer (%) 

      Extra percentage of PCDs for rotation 

      Vaccine buffer  

       Capacity (in liters) of ice recharging freezer   

     PCD Gross volume (in liters)    

      Hold time (in days) at health post j  

     Kilograms of ice needed to maintain PCD temperature for one week 

       Doses per vial for vaccine i 

       Vial volume for vaccine i 

       Total mass (in kg) of a loaded PCD at health post j    
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Table 16 (continued) 

 

      Number of PCDs required at health post j  

          Fraction of open vial loss for vaccine i at health post j  

      Annual energy cost (in $) per freezer  

      Unit cost of ice recharging freezer   

      PCD Unit cost   

      Transportation cost (in $/km)  

       Number of vials of vaccine i ordered at health post j  

      Ice packing ratio for freezer 

      Ice packing ratio of PCD  

      Vaccine packing ratio of a PCD  

     Net weight (in kg) of PCD (unit: kg)  

z    Maximum vehicle load (in kg)  

     Vaccine density (in kg/cm
3
)  

       The number of vaccination days during a replenishment interval at health post j  

 

Estimating Open Vial Waste 

“Open vial waste” refers to the fact that for some vaccines, when a multi-dose vial is opened 

during a vaccination session, if the vial is not fully used during the vaccination session then all of 

the vaccine remaining in the opened vial must be discarded and cannot be used on a subsequent 
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vaccination day (WHO policy statement. The use of opened multi-dose vials vaccine in 

subsequent immunization sessions, 2012). A typical example is when a lyophilized multi-dose 

vaccine vial is opened and reconstituted with diluent the vaccine is only good for about six 

hours; after this time period the left-over vaccine doses must be discarded (Getting started with 

vaccine vial monitors, 2002). The amount of open vial waste depends on the vial size and the 

demand during a vaccination session (Lee, B. Y., et al., 2010). For example, rural areas that have 

a small number of children arriving for vaccination need to open more vials per vaccine demand 

than urban areas where the population served is larger and this results in higher open vial waste. 

Open vial waste (OVW) is a major consideration for the vaccination points. Estimating OVW is 

important to ensure that the correct amounts of vaccines are ordered and vaccine stock-outs are 

minimized.  

 Consider the demand      of vaccine    at health post   during a vaccination session. For a 

single dose vial    equals one; for multi-dose vials    is greater than or equal to two. The OVW 

     is computed as: 

        
    

           
                                 (1) 

 In equation (1), the numerator of the quantity subtracted from 1 is equal to the vaccine 

demand during the session, and the denominator is the number of doses of vaccine made 

available (vials opened           multiplied by vial size   ). Thus, this quantity represents the 

fraction of doses that are actually used, so that      is the fraction of doses that are not 

administered to the recipients. Estimates of OVW rates are obtained by simulating vaccine 

demands drawn from a Poisson distribution with mean equal to the average daily demand (see 
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(Lee, B. Y., et al., 2010) for additional details). Values of      for different mean demands are 

given in APPENDIX A.  

Vaccine Ordering Quantity  

To ensure that vaccines are received in correct quantities, the vaccine ordering decision involves 

the assessment of demand forecasts, the target population, coverage and the OVW factor. In 

addition, vaccine buffers are considered to avoid vaccine stock out due to random events such as 

shipping delays, vaccine spoilage, etc. The ordering buffer is based on the WHO guideline 

(Rajgopal J., et al., 2011).  

 The order quantity (or more precisely, the order-up-to level)       for vaccine i at location 

j is computed after accounting for OVW estimates based on equation (1), and is computed via 

         

      

      

  
                                                 (2) 

 The fraction 
      

      
 is the total number of doses that must be ordered to cover demand and 

OVW during a replenishment interval. This quantity is divided by vial size    and rounded up to 

obtain the number of vials needed. Finally, the number of vials ordered is equal to the vials 

needed inflated by the extra buffer,     and rounded up again. 

PCD Vaccine Storage Space  

For each PCD, the vaccine storage space is the portion of the internal space available after the ice 

has been packed. The volume of ice is based on the hold time and the ratio of heat leakage. In 

general, the hold time, hj, at location j is equal to   , and a linear relationship is assumed between 
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the hold time and the required amount of ice (with k kg required for a one week hold time). The 

extra ice buffer,     is used to account for any stochastic variations in the hold time. The density 

of ice is assumed to be 0.917 kg/m3, so that after accounting for the ice packing ratio,   , the ice 

volume in liters is:  

  
           

                                                                               (3) 

 In addition, the remaining space is discounted by the vaccine packing ratio (the fraction 

of storage volume in a device that can actually be occupied by vaccine vials). The vaccine 

storage space     for a device at location j is computed as: 

         
           

                                                        (4) 

Total Mass of a Fully-loaded PCD 

The total mass,     of a completely filled device used at location j is the sum of the PCD net 

weight, the ice weight and the vaccine weight. Given an average vaccine density of  , this may 

be computed as 

      
           

                                          (5) 

The Number of PCDs Needed for a Country 

In general, a single PCD type is assumed to be used for vaccine delivery in a country; this has 

several benefits. A single PCD type reduces initial cost and maintenance costs and from an 

operational standpoint, this affords more flexibility with respect to sharing or exchanging PCD 

parts or PCDs between different locations. The number of PCDs required for health post   is:  
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                                                                                    (6) 

 In equation (6), the vaccine order quantities      come from equation (2) and vaccine 

storage space    comes from equation (4). The parameter    accounts for the extra buffer of 

PCDs needed for replenishment, and the additional PCDs are used to ensure that each heath post 

receives the re-filled PCDs at the same time that the empty PCDs are returned to the recharging 

locations. The total number of PCDs needed for a country is as follows: 

                                     

 
 
 
 
 
 
 
     

 
 
 
 
 

 

      
      

  
        

 
 
 
 
 

  

     
           

        
 

 
 
 
 
 
 
 

                    (7) 

 The total number of PCDs needed in a country is the sum of the PCDs required at each 

health post. In equation (7), the parameters                        are applied to each health 

post; other parameters may be different depending on the health post populations, HT or vaccine 

characteristics.   is the vector of the number of vaccination days over a replenishment interval at 

the health posts,   includes all hold time settings at health posts,    is a demand matrix of 

vaccines i at health posts j,   is a vector of vaccine vial sizes, O is the matrix of the estimated 

open vial waste of vaccine i at health post j and   is a vector of the vial volumes of each vaccine 

i.  

System Cost  

The system costs include PCD costs, transportation costs and ice recharging costs. Let the PCD 

unit cost be    . We amortize the PCD cost over its useful life, assumed to be ten years of use. 
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With an assumed interest rate of 3%, the capital recovery factor in each year is 0.1172. 

Therefore, PCD annual cost    is: 

                                                                       (8) 

 Annual transportation cost is calculated based on the total expected distance traveled in a 

year between recharging points and health posts. This is multiplied by an estimated per kilometer 

cost,     that depends on which vehicle is used for PCD delivery. The cost per kilometer is 

estimated based on vehicle investment, fuel, maintenance and personnel. In addition, we consider 

vehicle load limits. A typical motorbike used for EPI vaccine delivery has a capacity of about 15 

kg in the front and 25 kg in the back. For example, if the total mass of a replenished PCD is 14 

kg, then two PCDs can be carried at the same time (one on the front and one on the back). If the 

total mass of a PCD is great than 25 kg, then the shipment can only be done using 4x4 trucks. 

Assuming a maximum load of   for the mode of transportation selected. The number of annual 

shipments is  
  

  
  for location j, the annual expected transportation cost is calculated as follows: 

         
       

 
  

   

  
                         (9) 

 The annual cost of recharging ice is calculated based on the recharging freezers needed, 

along with their maintenance and energy costs. The number of recharging freezers needed is 

calculated based on the ice volume needed at the health posts. Assuming a packing factor of    

at the freezer, a useful freezer life of ten years, a 3% interest rate, (annual capital recovery factor 

of 0.1172), and a maintenance cost of 5% of the purchase price in each year, the total annual cost 

may be computed as:  
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                   (10) 

 In equation (10), the first term within the parentheses is the annualized cost of the freezer 

purchase price, the second term is the annual maintenance cost, and the third term is the annual 

energy cost per freezer; the term outside the parentheses is the number of freezers needed. 

Finally, the total system cost is: 

                                                                                                                     (11) 

 

5.5 RESULTS 

 

The analysis in this section is based on actual data from Niger to compare the economic impacts 

of different possible PCD designs. There are 42 district stores which recharge PCDs to service 

the health posts underneath them. The average number of health posts within a district is 15, 

ranging from 5 to 35. The model is implemented in a spreadsheet and solved numerically. The 

values of the PCD cost parameters for various weights, volumes and ice requirements are shown 

in Table 17 and Table 18.  Thus, as an example, a 30 liter device that weights 12 kg and requires 

2 kg of ice for a week of hold time would cost 350+750+750=$1,850.  We use the cost/FIC to 

assess the performance of different PCD designs over a time horizon of one year. The system 

costs are calculated using equation (11). 
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Table 17. PCD costs contributions for different weight and volume combinations  

Weight 

(kg) 

Volume 

(Liters) 

Cost parameter 

Weight  Volume 

7 10 $200 $250 

7 20 $200 $750 

7 30 $200 $1,250 

12 20 $350 $250 

12 30 $350 $750 

12 40 $350 $1,250 

17 30 $500 $250 

17 45 $500 $750 

17 60 $500 $1,250 

 

Table 18. PCD costs contributions for different amounts of ice needed per week of hold time 

Ice needed 

(kg/wk) 

Cost 

parameter 

1 $1,250 

2 $750 

3 $250 

 

 

Base Case 

In the base case, we considered a birth cohort of 697,637 children. The age coverage includes 

children under two years of age in accordance with the Niger EPI program. The vaccine target 

coverage is based on the GAVI plan for 2015. The hold time is set as four weeks, and this 

assumption is based on the current ordering policy in Niger. We use three numbers, volume-

weight-ice, to present different PCD designs. The first number refers to the gross PCD volume 

(g), the second to its loaded mass (m), and the third to the amount of ice required to attain a hold 

time of 1 week (k). Table 19 shows the results of cost / FIC for different PCD designs. The blank 
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values indicate that the designs are infeasible because the ice requirements for the four-week 

hold time are greater than the gross volume of the PCD. Designs that require less ice are more 

cost effective because fewer PCDs are needed and there is less ice recharging cost. There is an 

exception when the PCD has weight 17kg and a volume of 60L. For this weight and volume 

configuration the 17-60-2 device has lower cost ($1.09) than the 17-60-1 ($1.11) because most 

health posts require one PCD and the 17-60-2 device price is cheaper than then the 17-60-1. It is 

also important to note that the 17-60-3 device becomes more costly than the 17-60-2 device even 

though the 17-60-3 has the lowest device price. While the device price plays a major role, the 

higher recharging ice cost impacts the overall cost performance.  

The optimal PCD design corresponds to the 17-45-1 design. Most health posts require a 

single PCD and the PCD storage space is highly utilized. In addition, the ice recharging cost is 

the most inexpensive since each PCD only requires 1 kg of ice per week of hold time and a 

single PCD is needed at each health post.   
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Table 19. Cost / FIC of different PCD designs in base case 

  Ice needed (k kg/week of hold time) 

PCD weight 

(m) 

PCD volume 

(g) 

3 kg 2 kg 1 kg 

7 10    

 20   $1.33 

 30  $1.72 $1.08 

12 20   $1.64 

 30  $1.71 $1.08 

 40 $1.59 $1.23 $1.06 

17 30  $1.51 $1.19 

 45 $1.36 $1.10 $1.05 

 60 $1.12 $1.09 $1.11 

* Base case: hold time = 4 weeks 

 

Impact of New Vaccines Introductions 

Table 20 illustrates similar information but with the vaccine demands based on adding new 

vaccines to the current EPI regimen. The cost / FIC raises dramatically in the cases when the 

devices have small vaccine storage space (such as 7-20-1, 7-30-2, 17-20-1, 17-30-2 and 17-40-

3). To satisfy the greater vaccine demands, larger PCD volumes are more desirable. As the 

results in Table 20 show, larger PCD volumes have less of a cost increase for the new vaccine 

introductions. For example, the 17-60-1 design costs $1.11 in the base case and then increases up 
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to $1.62 for the new vaccine introductions. This gap is much less than for small PCD designs 

(such as 7-20-1 which increases in cost from $1.33 to $3.35).  

 The variations between different designs becomes greater with new vaccine 

introductions, the lowest cost (17-45-1) is about three times cheaper than the highest design (7-

30-2). It is also interesting that the 17-45-1 is the most inexpensive design in both the baseline 

and the new vaccine introduction cases.  

 Comparing the system costs of the three ice requirement options, the 1 kg designs are 

consistently lower than the 2 kg and 3 kg designs across different weight and volume settings. 

The 17-60-1 design becomes more inexpensive than the 17-60-2 design, as the designs requiring 

less ice have more vaccine storage space which is important in the case of introducing new 

vaccines and therefore reduces the number of PCDs needed in the system. 
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Table 20. Cost / FIC of different PCD designs in the new vaccine introduction case 

  Ice needed (k kg/week of hold time) 

PCD weight 

(m) 

PCD volume 

(g) 

3 kg 2 kg 1 kg 

7 10    

 20   $3.35 

 30  $4.51 $2.52 

12 20   $4.29 

 30  $4.49 $2.52 

 40 $3.23 $2.10 $1.75 

17 30  $3.01 $1.99 

 45 $2.56 $1.91 $1.61 

 60 $1.90 $1.66 $1.62 

 

Sensitivity Analysis of Different Hold Times 

The purpose of this analysis is to verify if there is a robust device design for different hold time 

settings. The HT duration selected is related to the replenishment frequency. Ice requirements are 

calculated to insure that the PCD will maintain proper cooling for the duration of the time 

between replenishments.  
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Table 21. Sensitivity analysis: Different HTs for the 17-45-1 PCD 

 Cost / FIC 

Parameter PCD cost Transportation cost Ice recharging cost System cost 

2 weeks HT $0.39 $1.16 $0.04 $1.60 

4 weeks HT* $0.41 $0.47 $0.06 $1.05 

6 weeks HT $0.62 $0.39 $0.12 $1.13 

8 weeks HT $0.83 $0.29 $0.19 $1.31 

  

 Table 21 shows the cost summary for the 17-45-1 PCD.  The PCD cost increases with the 

HT duration, from $0.39 (2 weeks) to $0.83 (8 weeks). PCD costs are more for longer HTs as 

each PCD requires more ice and has less storage space.  Transportation cost is the highest for the 

two week HT due to more frequent shipping. There is a trade-off between transportation and ice 

recharging costs, the two week HT has the lowest ice recharging cost as it requires less ice 

volume.  The system cost is the lowest when the HT is 4 weeks, and then the system cost moves 

up in the case of either shorter or longer HTs. 

 

Sensitivity Analysis of PCD Costs Parameters 

If the cost parameters (and hence the device price) are not known with certainty, the impact of 

variations in the device price with different contributions from the three design factors of weight, 

volume and ice requirements can be explored using sensitivity analysis. In Table 22 “regular” 

refers to the original value of the cost parameter for the level of the design factor in question 

(i.e., the corresponding value in  Table 17 or Table 18), while “low” and “high” refer to where 
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this value is reduced or increased respectively by 50%. As an example, for the 12-30-1 device, 

“low,” “regular,” and “high” would use (respectively) values of 175, 350 and 525 for the weight 

cost parameter, 375, 750 and 1125 for the volume cost parameter, and 625, 1250 and 1875 for 

the ice requirement cost parameter.   

 Table 22 summarizes the most robust designs for different cost factor combinations. The 

17-45-1 design is always the best when the ice requirement parameter is at the regular level and 

almost always the best when the parameter is at the high level. However, if this parameter is at 

its low value then the medium volume and medium weight device (12-30-1) becomes the best 

option. It is also important to note that combining changes in multiple factors impacts which 

design is best. One example is if the ice requirement cost parameter is at the high level and the 

volume cost parameter is at the low level, the 17-60-3 design is the lowest cost design.  

Table 22. Optimal PCD designs  

  Ice requirement parameter 

Weight 

parameter 

Volume 

parameter 

Low (-50%) Regular High (+50%) 

Low (-50%) Low (-50%) 12-30-1 17-45-1 17-60-3 

 Regular 12-30-1 17-45-1 17-45-1 

 High (+50%) 12-30-1 17-45-1 17-45-1 

Regular Low (-50%) 12-30-1 17-45-1 17-60-3 

 Regular 12-30-1 17-45-1 17-45-1 

 High (+50%) 12-30-1 17-45-1 17-45-1 

High (+50%) Low (-50%) 12-30-1 17-45-1 17-60-3 

 Regular 12-30-1 17-45-1 17-45-1 

 High (+50%) 12-30-1 17-45-1 17-45-1 
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Because the cost of different PCD features may vary from those stated in Table 18 and 

Table 19, we perform a sensitivity analysis to determine if there is a design that is robust to cost 

variation. This approach evaluates each of the three PCD designs given in Table 22 across each 

of the 27 scenarios in the table to determine how far each design deviates from the optimal 

solution for each scenario. Table 23, Table 24 and Table 25 report the cost deviations of the 12-

30-1, 17-45-1 and 17-60-3 PCDs, respectively from the optimal design for each of the 27 cost 

scenarios. The percentage represents how much the design deviates from the optimal device cost. 

For the 12-30-1 design, Table 23 shows zero deviation in the low-cost (-50%) ice requirement 

cases, about 2% to 3% cost deviations for the regular-cost ice requirement and the worst cases 

occur at the high-cost ice requirement, which has cost deviations as high as 14%. Similarly, we 

found the worst case for the 17-45-1 PCD is about a 5% deviation from the optimal design, and 

about 19% deviation for the 17-60-3 PCD. Different robustness criteria can be used to determine 

the overall most robust solution and two of the most common criteria are the average regret and 

minmax regret. Average regret is the average deviation from the optimal solution for each 

scenario. Minmax regret evaluates the maximum deviation from the optimum solution across all 

scenarios and prefers the solution that minimizes the maximum deviation (Kouvelis, P. and Yu, 

G., 1997).The 17-45-1 PCD is the most robust solution with regard to cost parameter variations 

using both of these criteria because its average regret is 1% compared to 4% for the 12-30-1 

design and 8% for the 17-60-3 design and its  maximum regret is 5% compared to 14% for the 

12-30-1 design and 19% for the 17-60-3 design.  
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Table 23. The 12-30-1 design cost deviations from the best design 

  Ice requirement parameter 

Weight 

parameter 

Volume 

parameter 

Low (-50%) Regular High (+50%) 

Low (-50%) Low (-50%) 0% 2% 13% 

 Regular 0% 2% 7% 

 High (+50%) 0% 3% 7% 

Regular Low (-50%) 0% 2% 13% 

 Regular 0% 3% 7% 

 High (+50%) 0% 3% 7% 

High (+50%) Low (-50%) 0% 2% 14% 

 Regular 0% 3% 7% 

 High (+50%) 0% 3% 7% 

 

Table 24. The 17-45-1 design cost deviations from the best design 

  Ice requirement parameter 

Weight 

parameter 

Volume 

parameter 

Low (-50%) Regular High (+50%) 

Low (-50%) Low (-50%) 5% 0% 5% 

 Regular 4% 0% 0% 

 High (+50%) 1% 0% 0% 

Regular Low (-50%) 4% 0% 5% 

 Regular 2% 0% 0% 

 High (+50%) 1% 0% 0% 

High (+50%) Low (-50%) 4% 0% 5% 

 Regular 3% 0% 0% 

 High (+50%) 1% 0% 0% 
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Table 25. The 17-60-3 design cost deviations from the best design 

  Ice requirement parameter 

Weight 

parameter 

Volume 

parameter 

Low (-50%) Regular High (+50%) 

Low (-50%) Low (-50%) 15% 1% 0% 

 Regular 13% 7% 0% 

 High (+50%) 13% 11% 4% 

Regular Low (-50%) 13% 2% 0% 

 Regular 18% 7% 0% 

 High (+50%) 19% 10% 5% 

High (+50%) Low (-50%) 13% 2% 0% 

 Regular 18% 7% 1% 

 High (+50%) 19% 10% 5% 

 

Generalization of PCD Designs  

It has been noted in the previous discussion that many parameters affect PCD design and cost 

performance. Uncertainty about the population demand is one of the main factors affecting PCD 

design. This led to an additional analysis based on changing the population demand to determine 

how it affects the choice of PCD design. The annual birth cohort was set at levels of 500, 1000, 

1500, 2000, 2500, and 3000. For each level, we assumed there were 16 health posts serving an 

annual birth cohort of that size within one district location. Two vaccine schedules were tested – 

the current Niger EPI schedule and with the introduction of Rotavirus and Pneumococcal 

vaccines. Table 26 lists the optimal PCD designs for the six different catchment size areas for 

both vaccine schedules. For the smallest catchment size area (i.e., 500 annual births at each 

IHC), 12-30-1 is the most cost effective design in the EPI only case, and 12-40-1 is the best 

design for the new vaccine introductions. For the medium catchment size areas (i.e., annual 
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births are either 1000 or 2000), the best designs are 17-45-1 and 17-45-2 (where 17-45-1 is also 

the best design in Niger). For the larger catchment size areas the larger designs perform better 

and the 17-60-1 design is the optimal design in both the base EPI and new vaccine introduction 

cases when there are 3,000 annual births.  

Table 26. Optimal PCD designs for different catchment sizes 

 Vaccine 

Annual birth 

per IHC 

EPI New vaccine 

introduction 

500 12-30-1 12-40-1 

1,000 17-45-2 17-45-1 

1,500 12-40-1 17-60-2 

2,000 17-45-1 17-45-1 

2,500 17-60-2 17-60-1 

3,000 17-60-1 17-60-1 

 

The volume of the optimal design increases as the catchment area size increases, so it 

may be best to use multiple sizes for a country that has health posts with very different 

catchment size areas. APPENDIX C has the details of a robustness analysis based on catchment 

size area (similar to that done for Niger). For small catchment areas (500 annual births) the most 

robust design is the 12-30-1 design at the EPI case and 12-40-1 at the new vaccine introduction 

case. The 17-45-1 design (which was the most robust device in Niger) is the best choice for 

medium size catchment areas (1,000 to 2,000 annual births). The 17-60-1 design is the most 

robust for larger catchment areas (2,500 or 3,000 annual births). Such analysis could easily be 

extended to other ranges of catchment sizes and help to identify the best designs for those use 

cases.  
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5.6 CONCLUSIONS 

 

In this study, we develop a computational model to evaluate different PCD designs for vaccine 

distribution for various use cases. We provide an example to demonstrate how PCDs can be used 

to deliver and store vaccines in Niger. The cost analysis provides information to understand the 

benefits of using PCDs. Our sensitivity analysis identifies a robust design for the situation when 

device price cannot be known with accuracy. Similar analysis can be conducted for deviations of 

either transport cost or ice recharging cost. Our general model provides the required resources 

and their associated costs for vaccine transportation and storage. The model can be readily 

populated and re-used for other countries, which is useful for vaccine logistics and economic 

modelers to assess the cost-effectiveness of PCDs.  

There are limitations to this study. We examined the cost tradeoffs in changing either 

PCD volume or the ice needed per week of HT parameters, in the absence of changing the 

weight parameter. This is because there is no cost penalty associated with device weight, and 

therefore heavy, but low price, designs are always the best choice. However, in real life device 

weight must be considered and its impacts on logistics system design, particularly aspects of 

loading / unloading operations, vehicle maximum loads, and how device portability affects 

outreach vaccinations. Reasonable design considerations may include that at most 25 kilogram 

may be moved by a person, a 50 kilogram device would require two people, and a device of 

more than 50 kilograms would be primarily stationary and could not be used for outreach 

activities.  
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6.0 RESEARCH SUMMARY AND FUTURE DIRECTIONS 

 

The enormous economic impact of diseases has drawn global attention. Controlling diseases is 

one of the highest priorities in healthcare decision making. While improvements in 

medical/pharmacy technologies have significantly improved the quality of life and extended life 

expectancy in many parts of the world, resource shortages and effective use of existing resource 

budgets are still major issues in low and middle income countries (The children‟s vaccine 

initiative: continuing activities, 1995).  Intervention policies must consider both costs and health 

outcomes. This study draws upon domain knowledge in various fields ranging from medicine, 

epidemiology, sociology and industrial engineering to build models and quantitatively analyze 

various systems relevant to vaccine delivery and logistics so as make decisions that will help 

improve health outcomes. 

 

6.1 RESEARCH SUMMARY 

 

This research has focused on three major areas.  First, we have presented the development of a 

mathematical model for the vaccine supply chain in low and middle income countries. The 

model has been used to analyze vaccine policies and results have been reported here and in (Lee, 

B. Y., et al., 2012). To our knowledge, this is the first mathematical programming model for a 

generic WHO-EPI vaccine distribution network. The value of such a model stems from the fact 

that there are many inefficiencies in existing distribution networks and public health officials and 

policy makers can use the model as a planning tool. It can be used to better understand 



122 
 

bottlenecks and resource constraints in existing networks so as to improve vaccine delivery and 

immunization rates. In addition, it can also be used to evaluate several types of interventions and 

changes or updates in policy; this was illustrated by the four different scenarios for Niger 

described in Chapter 3. Versions of the model have already been applied to other countries 

including Thailand and Vietnam.   

 A second research focus that was centered on linking the mathematical programming 

model with a disease propagation model extends the application of quantitative approaches to 

assess the benefits of vaccination policies. The disease propagation model was an extension of a 

stochastic disease model based on the published model of Ferrari et al. (Ferrari, M. J., et al., 

2008) and utilizes real world data from Niger. To assess the interactions between disease 

dynamics and supply chain decisions, we present a framework for linking the disease and supply 

chain models. The framework can be applied to assess the performance of vaccination policies 

by providing realistic disease propagation estimates for a specific country. The framework also 

lets decision makers understand how supply chain decisions may impact disease outcomes.  

 Finally, we explored the use of passive cold devices (PCDs) to support immunization 

activities. We develop and present a cost model which includes factors that are critical to PCD 

operations. The model was applied to identify the most robust PCD design from various options 

using realistic data about features, performance and cost.  

 Overall, this dissertation includes several studies related to vaccine supply chains. The 

major contributions are listed below. 

 Development of a mixed integer linear programming model for the vaccine supply chain in 

low and middle-income countries. 
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 Application of the mixed integer linear programming model to answer vaccine policy 

questions based on real world data and actual health policy concerns. 

 Identification of bottlenecks in existing supply chains and development of alternatives for 

supply chain adjustments to address these bottlenecks. 

 Development of a framework for linking disease and supply chain models, and application of 

the framework to assess vaccination strategy effectiveness using the metric of infections 

averted, along with an identification of resources needed.  

 Investigation of alternative passive cold device designs and identification of the most robust 

designs for real world applications.  

 Robust analyses to assess the interactions between passive cold device designs and supply 

chain policies.   

 

6.2 FUTURE DIRECTIONS 

 

To support vaccine dissemination around the world, we plan to extend the work described here to 

other Global Alliance for Vaccines and Immunization (GAVI) eligible countries. The anticipated 

analyses will use models such as the ones described herein to address issues associated with 

vaccine policies. In addition there are several interesting topics that can be investigated in future 

work.   

 In our present model, the transportation mode for vaccine delivery is point-to-point shipping; 

we plan to consider details of route shipping as an extension. We have developed an initial 

approach using a sweep vehicle routing algorithm. This approach determines routing and 
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sequencing that attempt to minimize total travel distance. In the future, we plan to study this 

further and improve the efficiency of this approach in terms of solution quality. 

 Exploring simultaneous interactions between disease propagation and the supply chain is an 

interesting topic to pursue. During a disease outbreak, it may be necessary to make 

unexpected changes to the vaccine distribution plan to respond to the outbreak. Assessments 

of which changes to make can be conducted via a real-time link between the disease and 

supply chain models. A feedback loop could exchange information between the two systems 

so that vaccine distribution decisions can be changed dynamically in order to mitigate the 

spread of disease. For example, a ring vaccination policy could be used to vaccinate the 

populations that are most likely to contact infected individuals once an outbreak occurs. If 

the distribution network is not capable of delivering vaccines to the outbreak areas in a 

timely manner, then the disease can spread more widely and affect other communities. The 

distribution strategy in the next time step needs to be adjusted according to where the new 

infections are occurring. It is expected that the simultaneous sharing of outbreak and supply 

chain information for decision making can significantly improve the performance of disease 

response plans. However, this also entails significant challenges from the viewpoint of 

integrating the computer codes for the two models. 

 PCD replenishment frequency: Decisions about PCD replenishment frequency depend on 

vaccine demands, transportation, storage, ice recharging, etc. There is a trade-off between 

transportation cost, storage cost and ice recharging cost. For example, more frequent 

shipping could reduce device and ice recharging costs, however, it will have higher 

transportation cost. The purpose of this study would be to determine a PCD replenishment 
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frequency that minimizes the overall system cost and helps to identify the best hold time 

duration for deploying PCDs in a country.  

 Cold chain applications: Similar to vaccines, other products such as, blood/organ delivery, 

food and perishable commodities are also required to be kept in cool temperatures. The 

problems of delivering these items exist in both developed and low and middle income 

country. We anticipate applying our knowledge of the vaccine supply chain to other cold 

chains.  
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     APPENDIX A. OPEN VIAL WASTE ESTIMATION 

 

    OPEN VIAL WASTE ESTIMATION 

 

Table A-1 shows how the percentage of doses wasted varies with the average daily demand and 

vial size. Open vial waste is estimated by using a simulation which draws daily demand from a 

Poisson distribution, and the open vial waste percentage for each scenario is the average of 1000 

simulation trials.  
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Table A - 1. Open vial waste by average daily demand at a clinic and doses per vial 

Average 

daily 

demand 

Vial 

size 10 

Vial 

size 20 

Average 

daily 

demand 

Vial 

size 10 

Vial 

size 20 

Average 

daily 

demand 

Vial 

size 10 

Vial 

size 20 

1 0.8418 0.9209 41 0.0989 0.1874 81 0.0526 0.1047 

2 0.7687 0.8843 42 0.0968 0.1877 82 0.0520 0.1039 

3 0.6844 0.8421 43 0.0947 0.1874 83 0.0514 0.1031 

4 0.5937 0.7963 44 0.0928 0.1862 84 0.0508 0.1022 

5 0.5035 0.7483 45 0.0909 0.1841 85 0.0503 0.1013 

6 0.4232 0.6993 46 0.0891 0.1811 86 0.0497 0.1003 

7 0.3623 0.6497 47 0.0874 0.1772 87 0.0492 0.0993 

8 0.3243 0.5999 48 0.0857 0.1728 88 0.0486 0.0982 

9 0.3047 0.5501 49 0.0841 0.1679 89 0.0481 0.0970 

10 0.2950 0.5008 50 0.0826 0.1628 90 0.0476 0.0959 

11 0.2879 0.4525 51 0.0811 0.1578 91 0.0471 0.0947 

12 0.2790 0.4069 52 0.0796 0.1531 92 0.0466 0.0936 

13 0.2669 0.3659 53 0.0783 0.1488 93 0.0462 0.0925 

14 0.2523 0.3320 54 0.0769 0.1451 94 0.0457 0.0915 

15 0.2365 0.3075 55 0.0756 0.1421 95 0.0452 0.0905 

16 0.2214 0.2932 56 0.0744 0.1397 96 0.0448 0.0896 

17 0.2081 0.2884 57 0.0732 0.1378 97 0.0443 0.0887 

18 0.1972 0.2909 58 0.0720 0.1365 98 0.0439 0.0879 

19 0.1886 0.2978 59 0.0709 0.1355 99 0.0435 0.0872 

20 0.1815 0.3060 60 0.0698 0.1348 100 0.0431 0.0865 

21 0.1755 0.3133 61 0.0687 0.1341 101 0.0427 0.0858 

22 0.1699 0.3182 62 0.0677 0.1334 102 0.0423 0.0852 

23 0.1644 0.3197 63 0.0667 0.1326 103 0.0419 0.0845 

24 0.1588 0.3175 64 0.0657 0.1315 104 0.0415 0.0839 

25 0.1533 0.3119 65 0.0647 0.1302 105 0.0411 0.0832 

26 0.1480 0.3031 66 0.0638 0.1287 106 0.0407 0.0825 

27 0.1429 0.2916 67 0.0629 0.1269 107 0.0404 0.0818 

28 0.1383 0.2782 68 0.0621 0.1249 108 0.0400 0.0811 

29 0.1340 0.2637 69 0.0612 0.1228 109 0.0396 0.0804 

30 0.1302 0.2489 70 0.0604 0.1206 110 0.0393 0.0796 

31 0.1266 0.2345 71 0.0596 0.1185 111 0.0390 0.0789 

32 0.1232 0.2213 72 0.0588 0.1164 112 0.0386 0.0782 

33 0.1200 0.2099 73 0.0581 0.1144 113 0.0383 0.0775 

34 0.1170 0.2007 74 0.0573 0.1126 114 0.0380 0.0768 

35 0.1140 0.1938 75 0.0566 0.1110 115 0.0377 0.0762 

36 0.1112 0.1893 76 0.0559 0.1095 116 0.0373 0.0756 

37 0.1085 0.1868 77 0.0552 0.1083 117 0.0370 0.0749 

38 0.1059 0.1858 78 0.0545 0.1072 118 0.0367 0.0744 

39 0.1034 0.1860 79 0.0539 0.1063 119 0.0364 0.0738 

40 0.1011 0.1866 80 0.0533 0.1055 120 0.0361 0.0733 
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     APPENDIX B. STOCHASTIC DISEASE MODEL 

SIMULATION RESULTS 

STOCHASTIC DISEASE MODEL SIMULATION RESULTS 

 

The Table B - 1 shows the individual simulation replication results for estimating disease 

incidence that are summarized in Table 11. Similarly, Table B - 2 shows in the individual 

simulation replication results for the data summarized in Table 13, and   Table B - 3, Table B - 4, 

Table B - 5, Table B - 6 and Table B - 7 contain similar data for the results that are summarized 

in Table 14. 
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Table B - 1. Simulated monthly cases per 100,000 for different vaccination policies 

Replication ID RI only Supply chain 

capacities shared for 

RI and SIA 

SIA does not share 

supply chain 

capacities with RI 

1 23.5138 20.6738 20.0734 

2 22.5719 20.4374 19.3092 

3 24.3651 21.3654 19.8108 

4 22.7460 20.3648 18.5814 

5 23.9047 19.7348 18.5286 

6 24.6955 20.9319 20.5350 

7 22.6254 19.8079 20.3760 

8 23.2487 20.5849 19.2516 

9 23.1185 21.1134 18.4840 

10 24.9085 19.9256 20.7450 

Standard deviation 0.8615 0.5543 0.8617 

Mean 23.5698 20.4940 19.5695 
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Table B - 2. Simulated monthly cases per 100,000 for the reinforced supply chain scenarios 

Replication ID RI only RI and SIA 

1 15.9200 14.1044 

2 17.0652 13.8432 

3 16.8958 13.5151 

4 17.2444 14.6953 

5 15.5117 14.4090 

6 17.5916 14.4647 

7 15.8456 14.1601 

8 16.4097 13.2621 

9 16.0053 13.7812 

10 17.3759 15.2112 

Standard deviation 0.7006 0.5786 

Mean 16.5887 14.1446 
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Table B - 3. Simulated monthly cases per 100,000 for RI visit rate between 78% and 82% 

Replication 

ID 

Cumulative RI visit rate 

78% 79% 80% 81% 82% 

1 15.9200 12.3733 8.0397 5.6056 1.8745 

2 17.0652 11.0745 6.8666 5.0120 1.9698 

3 16.8958 12.6340 8.1583 5.8061 3.2651 

4 17.2444 11.0745 6.8666 5.0140 1.9698 

5 15.5117 12.6340 8.1583 5.8061 3.2651 

6 17.5916 12.0239 8.1246 5.3270 2.8325 

7 15.8456 12.1165 8.0602 5.7435 2.2017 

8 16.4097 12.0419 7.8558 5.2849 2.2282 

9 16.0053 11.4941 7.3853 5.3175 1.9683 

10 17.3759 11.3247 8.0767 5.4063 3.1131 

Standard 

deviation 

0.7385 0.5998 0.5233 0.2990 0.5818 

Mean 16.5865 11.8791 7.7592 5.4323 2.4688 
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Table B - 4. Simulated monthly cases per 100,000 for RI visit rate between 83% and 87% 

Replication 

ID 

Cumulative RI visit rate 

83% 84% 85% 86% 87% 

1 0.8018 0.0949 0.0583 0.0221 0.0019 

2 1.7343 0.1022 0.0036 0.0088 0.0067 

3 0.5343 0.0344 0.0403 0.0456 0.0149 

4 1.7343 0.1022 0.0036 0.0088 0.0067 

5 0.5343 0.0354 0.0403 0.0456 0.0149 

6 1.1856 0.0357 0.0439 0.0080 0.0120 

7 1.0429 0.0931 0.0022 0.0439 0.0133 

8 0.9844 0.0764 0.0554 0.0438 0.0067 

9 0.9071 0.0365 0.0241 0.0278 0.0040 

10 1.5591 0.0450 0.0245 0.0080 0.0148 

Standard 

deviation 

0.4479 0.0306 0.0213 0.0172 0.0049 

Mean 1.1018 0.0656 0.0296 0.0262 0.0096 
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Table B - 5. Simulated monthly cases per 100,000 for RI visit rate between 88% and 100% 

Replication 

ID 

Cumulative RI visit rate 

88% 89% 90% 95% 100% 

1 0.0062 0.0090 0.0081 0.0032 0.0008 

2 0.0134 0.0100 0.0019 0.0044 0.0007 

3 0.0169 0.0049 0.0044 0.0030 0.0006 

4 0.0134 0.0100 0.0019 0.0044 0.0007 

5 0.0169 0.0049 0.0044 0.0030 0.0006 

6 0.0166 0.0065 0.0051 0.0032 0.0007 

7 0.0099 0.0064 0.0012 0.0039 0.0007 

8 0.0156 0.0088 0.0062 0.0037 0.0008 

9 0.0154 0.0080 0.0029 0.0037 0.0007 

10 0.0102 0.0095 0.0051 0.0038 0.0007 

Standard 

deviation 

0.0036 0.0020 0.0022 0.0005 0.0001 

Mean 0.0134 0.0078 0.0041 0.0036 0.0007 
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Table B - 6. Simulated monthly cases per 100,000 for SIA visit rate between 7% and 50% 

Replication 

ID 

SIA visit rate  

7% 15% 20% 30% 40% 50% 

1 14.1044 8.8328 8.6986 1.8952 0.7443 0.2465 

2 13.8432 9.6615 6.8561 2.4928 0.4896 0.5418 

3 13.5151 10.0040 0.4876 3.9088 0.3644 0.2146 

4 14.6953 8.8705 4.3230 0.5998 0.9741 0.2803 

5 14.4090 8.4933 7.6031 0.9696 0.5875 0.5087 

6 14.4647 10.9811 6.5144 0.8979 0.5387 0.4841 

7 14.1601 10.8706 9.5143 2.7604 0.1249 0.6575 

8 13.2621 9.8210 7.5175 1.3050 0.0681 0.0405 

9 13.7812 10.9107 6.8514 3.6859 1.8418 0.1046 

10 15.2112 10.0163 6.8432 5.7120 0.6294 0.2207 

Standard 

deviation 

0.5786 0.9049 2.5260 1.6340 0.5023 0.2047 

Mean 14.1446 9.8462 6.5209 2.4227 0.6363 0.3299 
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Table B - 7. Simulated monthly cases per 100,000 for SIA visit rate between 60% and 100% 

Replication 

ID 

SIA visit rate 

60% 70% 80% 90% 100% 

1 0.0516 0.1661 0.2475 0.0444 0.0097 

2 0.3968 0.2209 0.1158 0.1178 0.0464 

3 0.0391 0.0856 0.2184 0.0515 0.0132 

4 0.4584 0.0818 0.1555 0.0039 0.0764 

5 0.1463 0.0393 0.0701 0.0816 0.1269 

6 0.0938 0.0172 0.1522 0.0847 0.0457 

7 0.4936 0.3868 0.1954 0.0669 0.0891 

8 0.2041 0.4174 0.0574 0.1530 0.0364 

9 0.2378 0.6280 0.1391 0.0067 0.0991 

10 0.2669 0.0178 0.0191 0.1048 0.0702 

Standard 

deviation 

0.1649 0.2071 0.0730 0.0473 0.0378 

Mean 0.2388 0.2061 0.1370 0.0715 0.0613 
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     APPENDIX C. COST PERFORMANCE OF PCD 

DESIGNS 

COST PERFORMANCE OF PCD DESIGNS 

 

Table C - 1, Table C - 2 and Table C - 3 present the cost performance data that is used for 

identifying robust device designs and the cost deviations shown in Table 23, Table 24 and Table 

25. 

 

Table C - 1. Cost performance for the 12-30-1 design 

      Ice needed (k kg/week of hold time) 

PCD weight 

(m) 

PCD 

volume 

(g) 

-50% Regular +50% 

-50% -50% $0.81 $0.95 $1.08 

 Regular $0.82 $1.07 $1.21 

 +50% $1.07 $1.20 $1.34 

Med -50% $0.82 $0.95 $1.08 

 Regular $0.94 $1.08 $1.21 

 +50% $1.07 $1.20 $1.34 

+50% -50% $0.82 $0.95 $1.09 

 Regular $0.94 $1.08 $1.21 

 +50% $1.07 $1.20 $1.34 
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Table C - 2. Cost performance for the 17-45-1 design 

  Ice needed (k kg/week of hold time) 

PCD 

weight (m) 

PCD 

volume (g) 

-50% Regular +50% 

-50% -50% $0.85 $0.93 $1.01 

 Regular $0.85 $1.05 $1.13 

 +50% $1.08 $1.16 $1.25 

Med -50% $0.85 $0.93 $1.01 

 Regular $0.96 $1.05 $1.13 

 +50% $1.08 $1.17 $1.25 

+50% -50% $0.85 $0.93 $1.01 

 Regular $0.97 $1.05 $1.13 

 +50% $1.08 $1.17 $1.25 

 

Table C - 3. Cost performance for the 17-60-3 design 

  Ice needed (k kg/week of hold time) 

PCD 

weight 

(m) 

PCD 

volume 

(g) 

-50% Regular +50% 

-50% -50% $0.93 $0.94 $0.96 

 Regular $0.93 $1.12 $1.13 

 +50% $1.21 $1.29 $1.30 

Med -50% $0.93 $0.95 $0.96 

 Regular $1.11 $1.12 $1.13 

 +50% $1.27 $1.29 $1.31 

+50% -50% $0.93 $0.95 $0.96 

 Regular $1.11 $1.12 $1.14 

 +50% $1.27 $1.29 $1.31 
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 The following tables provide cost performance data for the sensitivity analysis regarding 

different numbers of annual births that is presented in Table 26. Table C - 4 contains data for the 

cost performance for different annual births in the EPI vaccine case, and Table C - 5 is for the 

new vaccine introduction case.  

 

Table C - 4. Cost performance for different annual births in the EPI vaccine scenario 

Annual 

births 

PCD design 

12-30-1 12-40-1 17-45-2 17-45-1 17-60-2 17-60-1 

500 $1.47 $2.23 $2.23 $2.28 $2.40 $2.46 

1000 $1.43 $1.12 $1.11 $1.14 $1.20 $1.23 

1500 $0.95 $0.74 $1.04 $0.76 $0.80 $0.82 

2000 $0.71 $0.78 $0.78 $0.57 $0.60 $0.61 

2500 $0.57 $0.62 $0.62 $0.64 $0.48 $0.49 

3000 $0.71 $0.52 $0.52 $0.54 $0.58 $0.41 

 

Table C - 5. Cost performance for different annual births in the new vaccine introduction 

scenario 

Annual 

births 

Optimal PCD design 

12-30-1 12-40-1 17-45-2 17-45-1 17-60-2 17-60-1 

500 $4.23 $3.12 $3.99 $3.22 $3.45 $2.46 

1000 $2.81 $2.00 $2.00 $1.61 $1.73 $1.23 

1500 $1.87 $1.33 $1.63 $1.39 $1.15 $0.82 

2000 $2.10 $1.22 $1.44 $1.04 $1.13 $0.61 

2500 $1.95 $1.15 $1.15 $1.02 $1.11 $0.49 

3000 $1.63 $0.96 $1.11 $0.85 $0.93 $0.41 
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 Six different PCD designs perform the best across the twelve scenarios (six annual birth 

levels and two sets of vaccines) and their cost data is in Table C - 4 and Table C - 5. The 

following tables provide cost performance data for the sensitivity analysis regarding different 

numbers of annual births that is presented in Table 26. This approach evaluates how far each of 

the six PCD designs deviates from the optimal solution for each scenario. Table C - 6, Table C – 

7, Table C - 8, Table C - 9, Table C - 10 and Table C - 11 report the cost deviations from the 

optimal design for each of the different annual birth scenarios. There is no one design that is 

optimal across all of the annual birth and vaccine schedule combinations. The 17-60-1 design has 

the overall lowest average deviation but has a maximum deviation of 67% for the 500 annual 

births and EPI vaccines case. In fact, each design has a maximum deviation of 52% or higher. 

Thus, it appears that different annual birth sizes are best served by different PCD designs. For 

small annual births (500) the 12-30-1 design has the lowest costs for the EPI schedule and with 

new vaccine introductions is 36% above the optimal cost (where 12-40-1 is the optimal design). 

The 12-30-1 design has the best average performance and the best worst case performance across 

the 500 annual birth scenarios. For medium annual births (1000-2000) the 17-45-1 design has the 

lowest average deviation (4%), but has a maximum deviation of 21% for the 1500 annual births 

and new vaccine introduction case (where 17-60-2 is the optimal design). The 17-60-2 design 

has a lower maximum regret, 8%, but has a higher average deviation (6%). The 17-45-1 and 17-

60-2 perform similarly for medium annual births but we give a slight advantage to the 17-45-1 

design since it has a lower average deviation. For large annual births (2500-3000) the 17-60-1 

design is the most robust design for both the EPI vaccines and new vaccine introduction cases, 

because its average regret and maximum regret are the lowest among the six designs.  
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Table C - 6. Cost deviation for different catchment size locations for the 12-30-1 PCD 

Annual birth 

EPI New vaccine introduction 

Optimal 

PCD Cost 

12-30-1      

Cost 

Deviation Optimal 

PCD Cost 

12-30-1      

Cost 

Deviation 

500 $1.47 $1.47 0% $3.12 $4.23 36% 

1000 $1.11 $1.43 28% $1.61 $2.81 74% 

1500 $0.74 $0.95 28% $1.15 $1.87 63% 

2000 $0.57 $0.71 25% $1.04 $2.10 101% 

2500 $0.48 $0.57 19% $0.94 $1.95 109% 

3000 $0.41 $0.71 72% $0.78 $1.63 109% 

 

Table C - 7. Cost deviation for different catchment size locations for the 12-40-1 PCD 

Annual birth 

EPI New vaccine introduction 

Optimal 

PCD Cost 

12-40-1      

Cost 

Deviation Optimal 

PCD Cost 

12-40-1      

Cost 

Deviation 

500 $1.47 $2.23 52% $3.12 $3.12 0% 

1000 $1.11 $1.12 0% $1.61 $2.00 24% 

1500 $0.74 $0.74 0% $1.15 $1.33 16% 

2000 $0.57 $0.78 36% $1.04 $1.22 17% 

2500 $0.48 $0.62 30% $0.94 $1.15 23% 

3000 $0.41 $0.52 27% $0.78 $0.96 23% 
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Table C - 8. Cost deviation for different catchment size locations for the 17-45-2 PCD 

Annual birth 

EPI New vaccine introduction 

Optimal 

PCD Cost 

17-45-2      

Cost 

Deviation Optimal 

PCD Cost 

17-45-2      

Cost 

Deviation 

500 $1.47 $2.23 52% $3.12 $3.99 28% 

1000 $1.11 $1.11 0% $1.61 $2.00 24% 

1500 $0.74 $1.04 39% $1.15 $1.63 41% 

2000 $0.57 $0.78 36% $1.04 $1.44 38% 

2500 $0.48 $0.62 30% $0.94 $1.15 23% 

3000 $0.41 $0.52 27% $0.78 $1.11 42% 

 

Table C - 9. Cost deviation for different catchment size locations for the 17-45-1 PCD 

Annual birth 

EPI New vaccine introduction 

Optimal 

PCD Cost 

17-45-1      

Cost 

Deviation Optimal 

PCD Cost 

17-45-1      

Cost 

Deviation 

500 $1.47 $2.28 56% $3.12 $3.22 3% 

1000 $1.11 $1.14 3% $1.61 $1.61 0% 

1500 $0.74 $0.76 2% $1.15 $1.39 21% 

2000 $0.57 $0.57 0% $1.04 $1.04 0% 

2500 $0.48 $0.64 34% $0.94 $1.02 9% 

3000 $0.41 $0.54 31% $0.78 $0.85 9% 
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Table C - 10. Cost deviation for different catchment size locations for the 17-60-2 PCD 

Annual birth 

EPI New vaccine introduction 

Optimal 

PCD Cost 

17-60-2      

Cost 

Deviation Optimal 

PCD Cost 

17-60-2      

Cost 

Deviation 

500 $1.47 $2.40 63% $3.12 $3.45 11% 

1000 $1.11 $1.20 8% $1.61 $1.73 7% 

1500 $0.74 $0.80 8% $1.15 $1.15 0% 

2000 $0.57 $0.60 5% $1.04 $1.13 8% 

2500 $0.48 $0.48 0% $0.94 $1.11 19% 

3000 $0.41 $0.58 41% $0.78 $0.93 19% 
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Table C - 11. Cost deviation for different catchment size locations for the 17-60-1 PCD 

Annual birth 

EPI New vaccine introduction 

Optimal 

PCD Cost 

17-60-1      

Cost 

Deviation Optimal 

PCD Cost 

17-60-1      

Cost 

Deviation 

500 $1.47 $2.46 67% $3.12 $3.57 14% 

1000 $1.11 $1.23 10% $1.61 $1.78 11% 

1500 $0.74 $0.82 10% $1.15 $1.19 3% 

2000 $0.57 $0.61 7% $1.04 $1.17 12% 

2500 $0.48 $0.49 2% $0.94 $0.94 0% 

3000 $0.41 $0.41 0% $0.78 $0.78 0% 
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