Azad, RK and Lawrence, JG
(2005)
Use of artificial genomes in assessing methods for atypical gene detection.
PLoS Computational Biology, 1 (6).
0461 - 0473.
ISSN 1553-734X
Abstract
Parametric methods for identifying laterally transferred genes exploit the directional mutational biases unique to each genome. Yet the development of new, more robust methods - as well as the evaluation and proper implementation of existing methods - relies on an arbitrary assessment of performance using real genomes, where the evolutionary histories of genes are not known. We have used the framework of a generalized hidden Markov model to create artificial genomes modeled after genuine genomes. To model a genome, "core" genes - those displaying patterns of mutational biases shared among large numbers of genes - are identified by a novel gene clustering approach based on the Akaike information criterion. Gene models derived from multiple "core" gene clusters are used to generate an artificial genome that models the properties of a genuine genome. Chimeric artificial genomes - representing those having experienced lateral gene transfer - were created by combining genes from multiple artificial genomes, and the performance of the parametric methods for identifying "atypical" genes was assessed directly. We found that a hidden Markov model that included multiple gene models, each trained on sets of genes representing the range of genotypic variability within a genome, could produce artificial genomes that mimicked the properties of genuine genomes. Moreover, different methods for detecting foreign genes performed differently - i.e., they had different sets of strengths and weaknesses - when identifying atypical genes within chimeric artificial genomes. © 2005 Azad and Lawrence.
Share
Citation/Export: |
|
Social Networking: |
|
Details
Metrics
Monthly Views for the past 3 years
Plum Analytics
Altmetric.com
Actions (login required)
|
View Item |