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It has been estimated that worldwide 600,000 babies are born annually with significant 

congenital heart disease. In children with congenital heart disease, normal growth and 

hemodynamic function of the pulmonary arteries and aorta become disrupted due to structural 

heart defects and/or genetic disorders. Congenital heart and related vascular defects cause 

increased flow and pulmonary pressure leading to unfavorable vascular remodeling that result in 

pulmonary arterial hypertension. Congenital abnormalities of these arteries often necessitate 

surgical repair or the use of autologous tissue and synthetic biomaterials as vascular grafts. The 

optimal vascular replacement should be able to accommodate somatic growth and closely mimic 

the structure, function and physiologic environment of native vessels. In recent years, there has 

been a growing interest in the development of a living autologous tissue graft that could address 

the critical need for growing substitutes in the repair of congenital cardiovascular defects.  

In the current study, the biomechanical characteristics of the native ovine main 

pulmonary artery during postnatal growth period were delineated to establish the benchmarks for 

tissue engineering approaches. The local postnatal alterations in the surface geometry of the 

pulmonary artery based on magnetic resonance images of the endoluminal arterial surface were 

estimated. The regional growth adaptations of the mechanical behavior and elastin structure were 

subsequently quantified. The collagen organization and recruitment behavior using a biaxial 

stretching device combined with multiphoton microscopy were measured. The experimental 
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measurements were finally fit to a structurally-based constitutive model of the arterial wall. The 

results of this study can also help elucidate the governing mechanisms of normal remodeling and 

growth process by enhancing our knowledge of alterations in the geometry and structure-

mechanics relationship of the pulmonary arterial wall during postnatal maturation. 
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1.0 INTRODUCTION 

Growth and remodeling is a cellular activity that is controlled by growth hormones and growth 

factors at the molecular level. From a physiological perspective, growth is a change in the 

homeostatic state due to alterations in the environment and internal stresses [1]. Through the 

application of mechanics, the field of biomechanics enables a better understanding of the effects 

of mechanical loads on the structure, properties, and function of living tissues [2]. There is great 

interest in the pulmonary circulation among pediatricians due to the relatively high incidence and 

extent of pulmonary vascular change in congenital heart disease [3-5], and also among 

cardiologists due to the occurrence of pulmonary hypertension in chronic rheumatic and 

thromboembolic disease [6-10]. 

In the current work, biomechanical principles, based on the application of continuum 

mechanics to physiology, are employed to delineate the change in the structure-function 

relationship of the pulmonary arterial tissue as it undergoes normal growth process. The general 

approach outlined by Y.C. Fung [11] will be followed to conduct a biomechanical study of 

selected ‘quasistatic’ snapshots of postnatal growth in the pulmonary artery according to the 

following steps:  

1. Study the gross anatomy of the organ. 

2. Delineate the histology and microstructure of the tissue 

3. Determine the mechanical properties of the tissue.  
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4. Derive a constitutive equation based on the fundamental laws of physics (e.g. 

conservation of mass, conservation of momentum, conservation of energy).  

5. Compare the experimental results with theoretical ones to determine whether the given 

hypotheses are justified.  

1.1 MAIN PULMONARY ARTERY ANATOMY AND FUNCTION 

The pulmonary trunk (PT) lies between the pulmonary valve and the bifurcation (BFN) into the 

right and left pulmonary arteries. It carries oxygen-deficient blood from the right ventricle 

toward the lungs. In this study the main pulmonary artery (PA) is defined as the region of the PT 

bounded proximally by the pulmonary valve sinotubular junction (STJ) and distally by the BFN 

(Figure 1.1). The PA is elliptical in cross-section rather than circular, and tapers towards its BFN 

point [10]. It is curved towards its posterior and medial aspects with a more prominent curvature 

towards the former aspect. On its medial wall, the PA is adjacent to the ascending aorta (AA), 

and the auricle of the left atrium lies on its lateral aspect proximal to the BFN. The anterior wall 

of the pulmonary trunk is physically connected to the AA through connective tissue on its medial 

aspect and on its anterior wall through the ligamentum arteriosum, the origin of which will be 

explained in the following section (section 1.2). 

Under normal conditions, the output of the right ventricle is equal to that of the left 

ventricle. The hemodynamics of the pulmonary and systemic circulations are, however, quite 

different. Their major differences are as follows: 1) The mean pulmonary arterial pressure is 

about one-sixth of the systemic; 2) The pulmonary vascular resistance is also about one-sixth of 
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the systemic; 3) Pulmonary arteries are more distensible; 4) Pulmonary arteries do not become 

stiffer from central towards peripheral sites, as do the systemic arteries [10].  

The pumping action of the right ventricle causes pressure in the PT to exceed that of the 

pulmonary veins to the extent that it forces blood through the pulmonary vascular resistance at a 

rate of 5 L/min [10]. The large compliance of the pulmonary trunk enables it to convert the 

pulsatile pumping action of the right ventricle to a relatively continuous blood flow through the 

pulmonary system. As the right ventricle pumps blood during systole the pulmonary trunk 

expands, and as the right ventricle starts relaxing during diastole, the PA pressure exceeds the 

RV pressure causing the pulmonary valve to close; then the pulmonary trunk passively unloads 

and forces blood flow through the pulmonary arteries and vasculature. 

 

 

Figure 1.1. Artistic depiction of human heart showing pulmonary trunk and surrounding structures (anterior view). 

Pulmonary trunk is bounded proximally by pulmonary valve and distally by left and right pulmonary arteries and 

located adjacent to ascending aorta and left atrium on its medial and lateral walls, respectively (direction of blood 

flow shown with arrows) (U.S. National Library of Medicine: http://www.ncbi.nlm.nih.gov). 

http://www.ncbi.nlm.nih.gov/
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1.2 PHYSIOLOGICAL DEVELOPMENT OF THE PULMONARY ARTERY AND 

AORTA 

During normal embryogenesis, the truncus arteriosus begins to split and form into the anterior 

pulmonary artery and the posterior aorta [12]. During the prenatal period, a state of physiologic 

pulmonary hypertension exists due to the patent ductus arteriosus and the equalization of aortic 

and pulmonary artery pressures; the AA and PA are similar in wall thickness. At the time of 

birth, the lungs begin to function, the ductus arteriosus closes (gradually becoming a ligament 

structure), and the PA experiences a significant drop in blood pressure and hemodynamic 

change. Therefore, changes in the pulmonary vascular resistance, pulmonary blood flow, and 

oxygen tension distinguish the pulmonary from the systemic circulation, and trigger a transition 

from the fetal to the postnatal circulatory pattern [13, 14]. The attenuation of medial smooth 

muscle of the PA wall results in decrease of the ratio of medial thickness to external diameter 

from 20% to 25% in fetuses to less than 10% in infants 3 to 6 months of age. Beyond the first 

year of life, thickness of the PA wall is normally less than half that of the adjacent ascending 

aorta, although diameters of the two great arteries remain similar [15].  

1.3 MOTIVATION BEHIND THE STUDY 

1.3.1 Diseases Affecting Pulmonary Artery and Treatment Options 

It has been estimated that worldwide 600,000 babies are born annually with significant congenital 

heart disease [16]. In children with congenital heart disease, normal growth and hemodynamic 
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function of the pulmonary arteries and aorta become disrupted either due to structural heart 

defects and/or genetic disorders [16-20]. This includes Alagille and Williams syndromes and 

acquired defects after surgical interventions, most commonly subsequent to the repair of tetralogy 

of Fallot. Congenital heart and related vascular defects cause increased flow and pulmonary 

pressure leading to unfavorable vascular remodeling that results in pulmonary arterial 

hypertension [16, 17, 21]. In children, pulmonary arterial hypertension is a severe condition that 

leads to substantial remodeling of the extracellular matrix (ECM) in the proximal pulmonary 

arteries. In systemic arteries, hypertension and aging can lead to structural remodeling in the form 

of increase in the media thickness, rise in the collagen/elastin ratio, and changes in the structure 

of the elastic lamina [22, 23]. 

There are a number of disease conditions that originate in the AA and eventually affect 

the PA. For example, PA dilation can occur in association with genetic diseases of connective 

tissue such as Marfan syndrome and with pulmonary valve hemodynamic abnormalities; 

however, in the absence of any abnormal pulmonary conditions, PA dilation can also occur due 

to bicuspid aortic valve disease, which is the most common aortic valve malformation [19].   

Congenital abnormalities of these arteries often necessitate surgical repair or the use of 

autologous tissue and synthetic biomaterials as vascular grafts [24-26]. The patency of the 

synthetic conduit replacements is limited, often requiring further surgical re-interventions due to 

lack of adaptation to the normal growth of the child and/or functional failure of the graft [27]. 

The autologous conduit replacements are limited in supply and may not adjust to the different 

flow environment of the graft site. The optimal vascular replacement should be able to 

accommodate somatic growth and closely mimic the structure, function and physiologic 

environment of native vessels. In recent years, there has been a growing interest in the 
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development of a living autologous tissue graft that could address the critical need for growing 

substitutes in the repair of congenital cardiovascular defects [28-31].  

Detailed growth characteristics of the native artery are required to establish the baseline 

for tissue-engineered construct in post-implantation. Moreover, delineating the normal arterial 

growth characteristics has implications for the timing and nature of surgical repair [12, 24]. 

Finally, understanding the normal arterial morphogenesis is a prerequisite to understanding any 

disease process by yielding unique insight into the mechanisms of vascular adaptations and their 

important physiological factors.  

1.3.2 Study of Three-Dimensional Geometry and Surface Growth ‘Deformation’  

There have been promising results in the engineering of arterial conduit replacements [28-30]. 

However, there is an absence of the required benchmarks of three-dimensional (3D) geometry of 

these engineered conduit replacements, particularly shape changes associated with somatic 

growth. Since arterial geometry greatly influences hemodynamics [32], replacement conduits 

should closely resemble the native 3D arterial shape and, critically, accommodate somatic 

growth. Therefore, a detailed knowledge of the native arterial shape during normal postnatal 

growth is a prerequisite in the development of conduit tissue engineering endeavors.  

Children with congenital heart disease undergo diagnostic imaging for the evaluation of 

right ventricular outflow tract dimensions, and the normal sizes of portions of the PT have been 

carefully elucidated in various stages of development [33-40].  However, the normal progression 

of three-dimensional PT geometry during postnatal growth, including whether growth is a 

proportionate scale-up of size in which basic geometric proportions are maintained (i.e. an 
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isotropic growth pattern), or whether the shape of the PT changes over the period of postnatal 

growth (anisotropic growth), remains unknown.   

Furthermore, an understanding of the dynamic processes of developmental growth in 

arteries requires a detailed description of the temporal and spatial patterns of geometrical 

changes. Previous studies have been limited in that they do not provide a detailed, spatially 

continuous description of the local temporal and spatial patterns associated with growth. 

Moreover, use of a geometric descriptor that allows for the computation of continuous growth 

trends with increasing mass can elucidate general growth patterns and reduce errors associated 

with the use of individual specimen reconstructions.  

Recent advances in cardiac magnetic resonance imaging (MRI) and image segmentation 

offer the potential for detailed three-dimensional characterization of cardiac structures in vivo. 

Many prior investigations have utilized ovine animal models in the evaluation of cardiovascular 

physiology and heart valve testing [41, 42]. In the present study we will provide a thorough 

description of the 3D surface geometry of native ovine PA by estimating the mapping of older 

PA surface shape to the youngest one, and delineating regional modifications in surface 

geometry using nonlinear deformation analysis. Therefore, growth deformation patterns using 

MRI data are obtained in order to define the critical three-dimensional benchmarks for PT 

conduit replacements over time.  

Despite their close mechanical association throughout lifetime, the effects of the AA and 

PA physical coupling on their respective geometries during the normal postnatal remodeling 

period remains unknown. The present work is thus undertaken to determine the regional postnatal 

surface growth deformation of the PA and AA to shed light on the underlying causes leading to 
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the specific three-dimensional surface shape alterations in these arteries during postnatal 

development and gain further insight into the uniqueness of specific geometric changes of the PA. 

1.3.3 Study of Arterial Wall Mechanics and Structure 

The relationship of pressure to flow and the propagation of both in the artery is a function of 

arterial mechanics. Changes in the distensibility of large blood vessels are critical determinants of 

ventricular afterload and eventual dysfunction in the pulmonary hypertension as well as many 

congenital defects [43]. The mechanical behavior of the proximal pulmonary arteries is modified 

in pulmonary hypertension and in many congenital defects due to substantial ECM remodeling 

and wall thickening [44, 45]. Diminishing compliance of the large pulmonary arteries has been 

linked to the deposition of excess matrix proteins in the arterial wall [46]. Biochemical studies in 

animals have shown a significant upsurge in the collagen and elastin synthesis and content in 

hypertensive pulmonary arteries [46-48].  

It is well known that newborn animals develop more severe pulmonary hypertension than 

adults with dramatic vascular changes [49]. The perinatal period is associated with significant 

elastin and collagen accumulation in the pulmonary trunk and aorta in preparation for a marked 

postnatal increase in arterial pressure [50, 51]. Therefore, the elastin and collagen synthesis may 

be particularly sensitive to modulation by hypoxia during this time of rapid growth. Lammers et 

al. [52] have delineated the prominent role of elastin in the alteration of pulmonary artery 

mechanics in hypertensive calves. However, they point out that in order to fully realize the nature 

of this disease phenomenon, the elastin structure of both the normal PA and that of the 

hypertensive arterial wall has to be studied and quantified.  
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In a few previous studies, it has been shown that the regional mechanical behavior of the 

aorta is modified as a result of normal growth and aging [53-58]. It has been claimed, for 

example, that the elastic modulus changes as a result of alteration in vessel geometry and ECM 

mass [56]. It has been suggested that the structure of the artery adapts to changes in arterial shape 

during postnatal growth in order to maintain an equilibrium mechanical tension per elastin 

lamellar unit [50, 59]. Wells et al. [60, 61] revealed an important relationship between the 

mechanics and ECM composition of the ovine thoracic aorta wall during the postnatal maturation. 

The incremental elastic modulus at low tensile stress was linked to the relative elastin content 

during the perinatal period; however, they demonstrated that neither variable changed during 

postnatal life. They measured a substantial increase in the incremental elastic modulus at high 

tensile stress during postnatal life that corresponded to a dramatic increase in the collagen cross-

linking index in the absence of a significant change in relative collagen content.  

There have not been any studies on the regional alteration in the mechanical behavior of 

normal growing vessels and under pulmonary hypertension, particularly the trunk and right main 

artery. In the current study, the micromorphological and mechanical adaptations of the native 

ovine PA based on the quantified geometrical surface growth profile are characterized to initially 

resolve the relationship between geometrical and biomechanical heterogeneity during postnatal 

growth. Secondly, the study was undertaken to delineate the relationship between mechanical 

behavior and microstructure, and to understand the role of elastin and collagen in normal 

pulmonary artery remodeling during postnatal growth. Finally, the structural and mechanical data 

was used in developing an appropriate constitutive model to explain the structure-function 

relationship and for future applications in predicting the alterations in the mechanical behavior of 

the artery in a pathological states based on the measured stress or strain. 
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1.4 MECHANICAL BEHAVIOR OF THE ARTERIAL WALL  

1.4.1 Biaxial Mechanical Behavior  

Soft tissues exhibit large nonlinear deformations and pronounced mechanical anisotropy because 

of their oriented fibrous structure. In many biomechanical studies only uniaxial testing has been 

performed due to challenges of controlling two-dimensional (2D) boundary conditions [62]. 

However, since arteries undergo biaxial loading in vivo and exhibit mechanical anisotropy, 

uniaxial data cannot be utilized to formulate a constitutive model with physiologically relevant 

model parameters. In the vascular biomechanics literature, there have been many reports of the 

pressure-diameter relationship of the different vessels through pressurization of the cylindrical 

arterial wall [11, 63]; in this type of experimental setup the physiological boundary conditions is 

relatively maintained. However, the regional behavior of the arterial wall cannot be characterized 

due to the heterogeneity of the arterial wall and the challenges associated with accurately 

defining the boundary conditions for a complex 3D geometry, such as that of the PA. Thus, this 

form of experimental setup cannot provide the mechanical data relevant to the purposes of the 

current study. Henceforth, in the present study a previously developed planar biaxial testing 

device [64, 65] is utilized to characterize the regional biaxial behavior of the PA during postnatal 

growth.  

1.4.2 Residual Strain 

Arteries are thick-walled tubes with very large radius to thickness ratios. During the cardiac 

cycle, when blood pressure increases, the wall thickness decreases, and the radius-to-thickness 
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ratio increases. Under this condition, the strain at the inner wall is larger than that at the outer 

wall. Since the stress-strain relationship is exponential, the stress at the inner wall becomes larger 

and falls exponentially to a lower value at the outer wall [1]. In 1983, Vaishnav and Vossoughi  

[66] and Fung [67] noted the presence of circumferential residual strain in arterial walls, revealed 

through the opening of a transversely cut vessel. In 1986, Chuong and Fung [68] proposed that 

residual stresses develop in growing arteries to reduce stress gradients in the loaded arterial wall 

by generating compression at the inner wall and tension at the outer wall (Figure 1.2). In a 

subsequent study, Takamizawa and Hayashi [69] suggested that strain rather than stress was 

uniform in the arterial wall under physiological loading condition.  

 

Zero-Stress State

Stress at 0 mmHg

Stress at 100 mmHg

 = 0  = 20o  = 150o

 

Figure 1.2. Effect of residual strain on the homeostatic stress distribution in blood vessel wall. 

Circumferential stress distribution in the wall is shown at 0 mmHg and 100 mmHg transmural blood pressure (center 

and bottom rows) in absence of residual strain (left column) and in presence of increasing residual strain, as shown 

by opening angle, according to wall thickness in center and right columns, respectively. 

Copyright  1990 Springer-Verlag New York, Inc. Reproduced partially from Figure 11.3:2 from [1] with 

permission from author as well as Springer Science and Business Media. 
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Strain and stress distributions in the arterial wall affect the mechanical function of the 

artery, and can play an important role in the remodeling associated with wall growth and the 

onset and progression of vascular diseases such as hypertension. In the current study, in order to 

delineate possible alterations in stress distribution patterns during postnatal maturation, the 

regional residual strains of the endoluminal and abluminal surfaces of the PA wall are quantified 

in juvenile and adult age groups. 

1.5 STRUCTURE OF THE ARTERIAL WALL 

The arterial wall is composed of three lamina: the tunica intima (innermost layer), tunica media 

(middle layer), and tunica adventitia (outermost layer) (Figure 1.3). The intima is the thinnest 

layer, consisting of a single layer of endothelial cells (mainly myofibroblasts) and a 

subendothelial layer composed of elastin, collagen fibers, and smooth muscles cells [11]. The 

endothelial cells act as a barrier between the thrombogenic media and blood. The elastic sheet 

demarcating the outermost layer of the aortic tunica intima from the aortic tunica media is 

termed the internal elastic lamina. The boundary between the tunica intima and media is often 

not readily defined, and the internal elastic lamina may be the innermost of the many elastic 

lamellae within the wall. The tunica media is considered to be the most mechanically dominant 

layer and is comprised of elastic sheets, collagen fibers, and smooth muscle cells [70]. The 

elastin and collagen fibers are closely associated with each other in the media and are organized 

into concentric rings of lamella units around the arterial lumen with smooth muscle cells lying 

between these lamellae [71]. The tunica adventitia is composed of fibroblasts and fibrocytes, 

ground-matrix, thick bundles of collagen fibers, some elastic fibers, blood vessels (vasa 
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vasorum), and nerves; it is surrounded by loose connective tissue [70]. The elastic sheets 

between the tunica intima and tunica media, and the tunica media and tunica adventitia are called 

the internal and external elastic lamina, respectively (Figure 1.3). 

 

Tunica Intima

Endothelial Cells

Collagenous bundles

Elastic fibrils

Smooth muscle cells

Tunica Media

Elastic sheets

Smooth Muscle Cells

Collagen fibers

Network of elastic fibrils

Endoluminal surface

Tunica Adventitia

Collagen fibers

Ground Substance

Elastic fibrils

Fibroblasts

Vasa vasorum

Nerves

Internal elastic lamina

External elastic lamina

 

Figure 1.3. Artistic depiction of aortic wall structure. 

(http://herkules.oulu.fi/) 

 

 

Elastin and collagen are the primary structural proteins in the elastic arterial wall and 

impart the essential mechanical integrity for the artery to modulate the pulsatile cardiac output 

[72]. The coil and recoil behavior of elastic fibers render the artery its elasticity properties and 

large-range reversible extensibility. Experiments on single elastic fibers have demonstrated that 

these fibers do not creep and can endure millions of extension-relaxation cycles without 

experiencing significant fatigue [73]. Elastic fibers are composed of two morphologically and 

chemically distinct components: elastin and microfibrils. Elastic fiber is comprised of about 90% 

elastin, which forms its internal core, and is surrounded by a sheath of unbranched microfibrils 

http://herkules.oulu.fi/isbn951426973X/html/x840.htm
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[71]. The highly organized process of elastogenesis, through assembly of fibrillin into 

microfibrils and the association of microfibrils with tropoelastin, is limited to fetal and early 

neonatal development [72]. The structure of elastic matrices differs among tissues. Their 

function is a direct outcome of their composition and organization.  

Collagen fibers are composed of three polypeptide chains, each consisting of regions of 

the repeating amino acid motif Gly-X-Y, where X and Y could be any amino acid. With X and Y 

amino acids on the surface and Glycine residues inside the core of the protein, the right-handed 

triple helical structure of the collagen is created. Of the various types of collagen, the fibrillar 

collagens are the most mechanically significant forms of collagen and widely occur in the 

vasculature. The three polypeptide chains in a fibrillar collagen molecule are called α chains. 

Collagen molecules can consist of three identical α chains, termed homotrimeric, or have 

genetically distinct α chains, termed heterotrimeric. Type III collagen is homotrimeric and Type I 

collagen is heterotrimeric with two identical α1 chains and a third distinct α2 chain [74]. The 

medial layer is about 30% Type I and 70% Type III while the adventitia is primarily composed 

of Type I collagen [75]. The dominant passive mechanical response of the artery is imparted by 

the medial collagen fibers under physiological conditions [76]. While adventitial collagen may 

play a role in arterial mechanics, it has been considered to serve primarily as a protective sheath 

to prevent rupture during hyperinflation, thus the focus of this work is on the media. 

In normal fetus, the tunica media of the PA and AA have similar thickness and elastic 

tissue structure. The relative medial thickness of the PA to AA decreases to between 0.4 and 0.8 

from birth until the second year of life [77]. The adult PA elastic tissue is irregular and more 

sparse than the aorta, and individual lamina are short and not as parallel or uniform [77, 78]. 

Leung et al [50] studies in the rabbit model during postnatal growth period revealed that the 
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relative collagen content of the PA surpasses that of the AA while the relative elastin content 

does not significantly change since birth and is less than the AA. 

1.6 MODELING OF THE ARTERIAL WALL MECHANICS 

The deformation and stress of materials are linked by constitutive relations, and the functional 

form of these equations must be experimentally determined. Soft tissue can be characterized by a 

complex geometry and composite nature as well as a highly non-linear, often anisotropic, finite 

deformation mechanical behavior. The loading response of anisotropic materials is direction-

dependent. For example, in the special case of anisotropy known as orthotropy, there are 

mutually orthogonal planes of material symmetry. For transversely isotropic materials, there is a 

single axis of symmetry [79]. 

For biological materials that only undergo small deformations, such as bone tissue, the 

principles of linear elasticity can be used [80]. However, for soft tissues, such as arterial tissue, 

nonlinear approaches must be taken. Many soft tissues are simplified to be nonlinearly elastic or 

hyperelastic, where the stress state of the material is independent of its loading history. 

Constitutive modeling based on the hyperelasticity theory under isothermal and adiabatic 

conditions involves defining a strain energy, or stored energy, function in terms of strain or its 

invariants.  

However, living tissues exhibit complex mechanical behavior and in many ways do not 

meet the definition of an elastic body. Soft biological tissues show hysteresis or energy 

dissipation when subjected to cyclic loading and unloading. They display stress relaxation when 

held at a constant strain, and show creep when held at a constant stress. In order to model the 
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nonlinear mechanical behavior of soft tissues within the framework of hyperelasticity, certain 

assumptions need to be made. Since after preconditioning the stress-strain relationship does not 

vary with the rate of strain, the strain-rate effect is ignored. The stress-strain relationships of 

loading and unloading curves are treated separately. Each of these curves is considered a 

pseudoelastic curve with the corresponding strain-energy function called the pseudo strain-

energy function [11].  

1.6.1 Phenomenological Constitutive Models 

Phenomenological constitutive models do not have a structural basis and aim at capturing as well 

as predicting the bulk response of the tissue. Fung postulated the first model for soft tissue 

mechanics [81, 82], in which a strain energy function of exponential form was defined to capture 

the nonlinear behavior. In 1987, Humphrey and Yin [83] presented a model that was a 

combination of phenomenological and structural approaches, where the strain energy function 

was expressed in terms of separated matrix and fibrous contributions.  In 1998, Holzapfel and 

Weizsacker [84] proposed an additive phenomenological strain function for passive arterial wall 

mechanics by introducing a decoupled neo-Hookean strain energy function [85] for the 

“isotropic”  “elastin-dominated” rubber-like response with the Fung model for the anisotropic 

“collagen-dominated” fabric-like response. In 2000, Holzapfel and Gasser [86], modeled the 

arterial wall as a two-layer (media and adventitia) thick-walled tube by assigning separate 

material parameters for each layer with the same form of a Fung-type strain energy function.   
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1.6.2 Structural Constitutive Models 

The mechanical loading-deformation relation of elastin and collagen fibril bundles is 

fundamental to understanding the underlying microstructural mechanisms of tissue behavior. 

Structurally motivated models incorporate significant mechanical aspects of the underlying 

microstructure to better predict the mechanical behavior and understand the mechanisms 

governing the structure-function relationship of biological tissues. In 1957, Roach and Burton 

[87] studied the mechanical roles of collagen and elastin in the arterial wall loading response and 

provided indirect evidence that elastin fibers primarily carry the mechanical load at low 

pressures, while at higher pressures collagen is the chief load bearing constituent. They 

demonstrated that the slope of the elastin-depleted arterial wall loading curve was significantly 

altered at low pressures while it was relatively preserved in the higher pressure region. 

Additionally, the unloaded radius of the artery increased after removal of elastin. Thus, they 

inferred that elastic fibers are primarily responsible for resisting deformation at low pressures 

and do not play a major role at higher pressures. On the other hand, after chemical degradation of 

collagen, the arterial wall compliance significantly increased at high pressure while the initial 

radius of the artery decreased. They claimed that “at low pressures, only the elastic fibers have 

reached their unstretched length, but as the pressure is increased, more and more of the 

collagenous fibers of the ’fibrous jacket’ reach their unstretched length.” Therefore, the passive 

mechanical response of the artery wall has been assumed to be governed by isotropic elastin 

fibers in the initial loading region while the crimped circumferentially-oriented medial collagen 

fibers gradually unfurl and begin carrying load under increasing pressure [87, 88]. 

In 1979, Lanir [89] originally formulated a structurally motivated model for flat 

collagenous tissues where the passive tissue response was considered to be the result of additive 
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responses of its two primary constituents: linearly elastic individual elastin and collagen fibers. 

Nonlinearity was introduced by variation in fibers’ undulation or recruitment in a given fiber 

orientation. Lanir’s model allowed for the direct incorporation of recruitment and the orientation 

distribution of collagen fibers [89, 90]. This model has been modified and applied to various 

biological tissues [91-93].  

Liao and coworkers [94] used the small angle light scattering technique coupled with a 

planar biaxial mechanical device for direct analysis of kinematics of gross fiber angular 

distribution of heart valve tissue under biaxial loading, with the results directly incorporated into 

Lanir’s model [93]. Wognum et al. [91, 95] modified Lanir’s model to include the mechanical 

contribution of smooth muscle cells and applied this multiphase model to the study of bladder 

wall remodeling after spinal cord injury. Hill and colleagues [92] combined a uniaxial loading 

device with multiphoton microscopy (section 5.2.1) to quantify the collagen structure and 

recruitment behavior of the carotid artery. They directly incorporated both experimental 

measurements into Lanir’s model and compared their findings with previous assumptions on 

collagen recruitment behavior.   

1.7 SPECIFIC AIMS 

The overall objective of this work is initially to establish the benchmarks for tissue engineering 

approaches. Moreover, by enhancing our knowledge of alterations in the structure-mechanics 

relationship of the main pulmonary artery during postnatal maturation, help begin elucidating the 

governing mechanisms of the normal remodeling and growth process. For the majority of this 

study, Dorset Ovine is used as the animal model of choice for having a cardiovascular system 
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similar to that of humans and a relatively fast growth rate that allows a feasible timeframe for 

such a study. The study objective is divided into the following three specific aims:  

1. Quantify local postnatal alterations in surface geometry of the PA and AA to determine 

the effects of physical connections between these adjacent arteries on their respective 

surface shapes and to provide the basis for the rest of the study. 

2. Quantify the regional growth adaptations of the mechanical behavior and microstructural 

properties to determine the relationship between mechanics and microstructure; this is 

achieved by  

A. Characterizing regional biaxial behavior and residual strain patterns. 

B. Quantifying elastin organization, and collagen structure and recruitment behavior. 

3. Develop a modified structural constitutive model of the arterial fibrous tissue to 

incorporate all the measured structural data.  

All the experimental data along with the constitutive model will help delineate the 

structure-function relationship of arterial wall and help begin elucidating mechanisms 

behind regional modifications of mechanics in normal postnatal remodeling and growth 

of the pulmonary arterial wall. 

This thesis is further divided as follows. The formulations for nonlinear deformation and 

stress analysis used in continuum mechanics are described in Chapter 2.0. The goals set in the 

first specific aim are fulfilled by the work presented in Chapter 3.0. To achieve part A of the 

second specific aim, the regional mechanical properties are investigated in Chapter 4.0 using a 

biaxial mechanical testing device and a residual strain measurement setup. To fulfill the goals 

sets in the specific aim 2B, in Chapter 5.0, the regional elastin fiber orientation distribution is 

quantified in the multiphoton images of stress-free sections of the pulmonary arterial wall. 
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Subsequently, in Chapter 6.0, a coupled multiphoton microscope-biaxial stretching system is 

used to quantify postnatal alterations in the collagen structure and recruitment behavior. The 

measured elastin and collagen structure as well as the collagen recruitment data are then directly 

incorporated into a modified structural constitutive model as explained in Chapter 7.0. 
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2.0 NONLINEAR THEORY OF ELASTICITY AND SOFT TISSUE MECHANICAL 

MODELS 

The two important measures in a material’s mechanical behavior are stress, defined in its 

simplest form as force divided by the area it is acting on, and stretch or strain, measures of a 

change in length upon loading. In the case of finite deformations, several different definitions of 

stress and strain are used. In this chapter the definitions of stress and strain in the context of 

nonlinear elasticity are presented. Also included is a summary of laws of thermodynamics and 

physical principles that impose a framework on the form of a constitutive model. Finally, an 

overview of previously developed soft tissue mechanical models is given.  

2.1 GENERAL ANALYSIS OF DEFORMATION 

Soft tissues often undergo “large” or “finite” deformation, which introduces geometric 

nonlinearity into the analysis even if the material properties are linear. This section deals only 

with geometry; discussion on material nonlinearity due to nonlinear stress-strain relation will 

follow in next sections. The nonlinear deformation principles have been applied to quantify mass 

accretion or change in geometry in the studies of tissue growth and remodeling (Section 2.4.4). 

Thus, the derived equations in this section will be used in estimating surface growth deformation 
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patterns (Chapter 3.0). The content of this section is based on the Chapter 3 of the book by Larry 

Taber on the “Nonlinear Theory of Elasticity: Applications in Biomechanics” [96]. 

2.1.1 Coordinate Systems and Base Vectors 

The point P in the reference (or undeformed) state on a body o at time t=0 becomes point p in 

the deformed body t at time t (Figure 2.1). The point P is located in the material or Lagrangian 

curvilinear coordinate system X
I
, and p is located in the spatial or Eulerian curvilinear coordinate 

system x
i
. In a general case, the coordinate system X

I
 and x

i
 are defined with respect to two 

difference reference frames O and o, that could be moving relative to each other. The X
I
 and x

i
 

coordinate systems can be kept separate to take advantage of any symmetry in o and t. The X
I
 

system can also be assumed to be embedded in o so that it deforms with the body resulting in 

each point keeping the same coordinate label during the motion, and the x
i
 = X

I
 are called 

convected coordinates.  
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Figure 2.1. Coordinates and base vectors in undeformed body o and deformed body t.  

Copyright  2004 by World Scientific Publishing Co. Reproduced from [96]. 
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The position vectors to P and p are R(X
I
, t) and r(x

i
, t), respectively. Then, the mapping of P into 

p and the inverse mapping are defined according to 

r = r(R, t),     R = R(r, t),      (2.1) 

respectively, which imply  

r = r(x
i
, t) = r(X

I
, t),     R = R(X

I
, t) = R(x

i
, t).   (2.2) 

The covariant base vectors in o are 

 I ,IIX


 


R
G R           (2.3) 

and the two sets of covariant base vectors in t are  

I ,II

i ,ii

X

x


 



 


r
g r

r
g r

.      (2.4) 

The GI are tangent to the X
I
 coordinate curves at P, the gi are tangent to the x

i
 coordinates curves 

at p (Figure 2.1), and the gI are tangent to the convected X
I
 coordinate curves at p.  Eqs. (2.3) and 

(2.4) give the differential line element vectors as 

I

I

I i

I i

d dX

d dX dx



 

R G

r g g
.     (2.5) 

2.1.2 Deformation Gradient Tensor 

The deformation gradient tensor F is defined to be the tensor that transforms a differential line 

element dR in the undeformed body o into dr in the deformed body t (Figure 2.2) as follows  

Td = d = d r F R R F .     (2.6) 
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The inverse of the deformation gradient tensor F
-1

 maps transformation from o relative to t 

according to 

1 Td = d = d  R F r r F .    (2.7) 

Based on these equations, the deformation gradient tensor can be obtained through 

 

T

T

=

=









r
F

R

R
F

r

.      (2.8) 

In order to define these tensors in terms of base vectors, we can substitute Eqs. (2.5) into (2.8) as 

follows 

I
T J I II

I J IJ

J

J
T I J IJ

J I II

I

dX
= = = δ =

dX

dX
= = δ =

dX












gr
F G g G g

R G

GR
F g G g G

r g

,   (2.9) 

where  

I

J

1 for I = J
δ

0 for I J


 


 

is the Kronecker delta.  

 

n

N F

o t
 

Figure 2.2. Deformation of line element dR into line element dr. 

Copyright  2004 by World Scientific Publishing Co. Reproduced from [96]. 
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2.1.3 Deformation and Strain Tensors 

The deformation gradient tensor includes rigid-body motion, and it also is non-symmetric 

resulting in nine parameters, that all may not be known in some problems. Hence, F is modified 

to represent only deformation or change in length according to 

T

T

= 

 

C F F

B F F
,      (2.10) 

where C and B are the right and left Cauchy-Green deformation tensors, respectively; both of 

these tensors are symmetric (C
T
=C and B

T
=B). We can now define the Lagrangian and Eulerian 

strain tensor as follows 

T

1 T 1

2   

2     

    

    

E C I F F I

e I B I F F
.    (2.11) 

2.1.4 Geometric Measures of Deformation 

In order to report regional deformation of a tissue, we need to define more physically meaningful 

measures of deformation than the deformation gradient and strain tensors, which characterize 

deformation of a body. The stretch or stretch ratio has a direct physical interpretation by 

describing the deformation of differential element dS into differential element ds. The stretch 

ratio ds/dS depends on the specific orientation of the deformed or the undeformed element. The 

Lagrangian stretch ratio N) measures the deformation of an element in the direction of N in the 

undeformed body o, and the Eulerian stretch ratio (n) computes the deformation of element n 

in the deformed body t, where both N and n are unit vectors.  
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The differential vector elements in the undeformed and deformed states are defined 

according to 

d  dS,        d  ds R N r n     (2.12) 

where dr does not necessarily correspond to the deformed dR. By substituting into Eqs. (2.6) and 

(2.7), we can write 

1 ds  dS        or         dS  ds,     n F N N F n   (2.13) 

which, when divided by dS, result in the following relations  

T

(N)   =   n F N N F                                                (2.14) 

 1 1 T

(n)   .      N F n n F                                             (2.15) 

With N and n being unit vectors, we can write 

2 T

(N) (N) (N)  (  ) (  ) ( ) ( )        n n N F F N  

2 1 1 T 1

(n) (n) (n)   (  )(  ) ( ) ( )           N N n F F n , 

and based on Eqs.(2.10), we obtain 

2

(N)

2 1

(n)

  

    

   

   

N C N

n B n
.       (2.16) 

2.1.5 Principal Strains: The Eigenvalue Problem 

At any point in a body, a unique set of orthogonal axes can be defined relative to which shear 

strains disappear. These axes are called principal axes of strain, and strains along these axes are 

principal strains. In order to compute the principal strains the eigenvalue problem has to be 
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solved. The principal stretch ratios (Ni)
 and (ni)

 (i=1,2,3) and the corresponding principal axes 

Ni and ni should satisfy the following eigenvalue problem  

2

(N)

1 2

(n)

   =   

 =    

 

 

N C N

n B n
,       

which can be re-written as  

2

(N)

2

(n)

(  )   0

 (  )   0

  

  

C I N

B I n
.       (2.17) 

It can be demonstrated that C and B have real eigenvalues and mutually orthogonal eignevectors. 

As n is in the direction of the deformed element with undeformed orientation N, (n) = (N), thus, 

the eigenvalues of C and B are equal. 

2.2 DEFINITION OF STRESS 

In the case of larger deformation, because undeformed and deformed geometries are different, 

the only meaningful definition for stress is force per unit deformed area, which is called true 

stress or Cauchy stress. The Cauchy stress tensor  is derived from the traction vectors acting on 

a body’s surfaces in the deformed configuration. The deformed geometry of a solid body, 

however, often is difficult to measure and may be time-dependent. Therefore, another measure of 

stress is defined as the force per unit undeformed (reference) area, which is termed the 

engineering stress or Lagrangian stress. The Lagrangian stress tensor, also called the 1
st
 Piola 

Kirchhoff stress tensor P, is defined in the referential configuration and is related to the Cauchy 

stress tensor according to 
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1J P F σ ,      (2.18) 

where F
-1 

is inverse of deformation gradient tensor, and J (Jacobian) is the change in an 

infinitesimal volume element from the reference ( 0dV )  to the deformed configuration ( dV )  

defined as 0 det( )J dV dV  F , which based on conservation of mass is equivalent to 

0 det( )J    F ; here,   and 0  are the tissue densities in the current configuration and 

reference configurations, respectively, and det(F) is the determinant of F. 

The governing equations may be easier to solve if written in terms of yet another type of 

stress called the 2
nd

 Piola Kirchhoff stress tensor S, which has no direct physical meaning. S is a 

symmetric tensor, unlike P, and is related to  and P as follows 

1 T TJ    S F σF PF ;      (2.19) 

thus, P can also be written in term of S as 
T P FS SF . 

2.3 THERMODYNAMIC LAWS AND FUNDAMENTAL CONSTITUTIVE 

PRINCIPLES 

The functional form of a constitutive model for a thermomechanical continuum should be 

bounded by the laws of thermodynamics. In a thermomechanical material, thermal and 

mechanical effects dominate the material’s behavior and electrical, chemical and other effects 

are ignored [96]. The following text is largely based on ref [96], Chapter 5. The first law of 

thermodynamics deals with conservation of energy. For a thermomechanical continuum, the 

principle of conservation of energy can be written in the form  

 K U P Q   , (2.20) 
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where K is the kinetic energy, U the internal energy (consists of thermal energy and strain 

energy), P the mechanical power input (the rate of work done on a body by applied loads) and Q 

the rate of heat input. The left side represents changes in internal energy, the right side energy 

that is added externally.  

For an arbitrary volume element that deforms from 0dV  into dV , Eq.(2.20), written in 

the local form, and in terms of the Cauchy stress tensor , or the first Piola Kirchhoff stress 

tensor P, respectively, the first law can be formulated as 

 
T

0 0 0

: 0

: 0

u r

u r

 

 

   

   

σ D q

P F q
. (2.21) 

In this, the following definitions hold:  ρ and ρ0 are, respectively, the mass densities in the 

current and reference configurations; u is the internal energy per unit mass; D is the rate-of-

deformation tensor; F is the deformation gradient tensor; r is the rate of heat production per unit 

mass due to internal sources; q and q0 the outward-directed heat flux vectors per unit deformed 

and undeformed surface area, respectively, with   and   being their corresponding gradient 

operators. According to Eq. (2.21), the first law of thermodynamics states that the rate of 

increase in internal energy of a volume element ( u  or 0u ) is equal to the sum of the rate of 

work done by the stresses on the element, i.e. the stress power ( :σ D  or : T
P F ), the rate of 

internal heat production (ρr or ρ0r), and the rate of heat flow into the element ( q  or 0q ). 

 The first law of thermodynamics basically states that conversion of work to heat, and vice 

versa, is reversible in a closed system; hence, the total energy remains constant.  However, it 

does not consider the irreversible processes or dissipated energy. The second law of 

thermodynamics restricts the direction of energy conversion processes and is based on the 

concept of entropy (Σ). For a solid body, the second law of thermodynamics states that the time-
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rate of change of the total entropy in a body is greater than or equal to the sum of the influx of 

entropy through the surface of the body and the entropy generated by internal heat sources. The 

Lagrangian local forms of this relation, which is also called the Clausius-Duhem inequality, is 

given by 

 0

0

1
0

r

T T

 
     

 

q
, (2.22) 

where T is the absolute temperature.  

The possible forms for thermomechanical constitutive equations are restricted by the 

above thermodynamic considerations and by the following physical principles: coordinate 

invariance, determinism, local action, equipresence, material objectivity, physical admissibility, 

and material symmetry.  

The principle of material symmetry is used to develop specific forms of constitutive 

equations based on a given material directionality or symmetry, such as orthotropy or transverse 

isotropy, which are often used to characterize soft tissues.  

The principle of coordinate invariance states that constitutive equations must be 

independent of the coordinate system that is used to describe the motion of a body, thus, should 

be developed in tensor form.  

The principle of determinism states that the stress distribution in a body at a given time 

depends on the entire history of deformation and temperature. In the case of an ideal elastic 

material however, there is no energy dissipation and usually temperature effects are ignored; 

thus, the stress at time t depends only on the instantaneous deformation.  

The principle of local action indicates that the motion and temperature of an arbitrary 

point in a thermoelastic body can be determined from the values and the spatial derivatives of 
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these variables at a nearby point. For simple materials, this principle together with the principle 

of determinism, suggest that the constitutive equations for a thermoelastic material can be written 

in the form 

 

 

 

 

 

, , ,

, , ,

, , ,

, , ,

T T

T T

u u T T

T T

 

 

 

   

σ σ R F

q q R F

R F

R F

, (2.23) 

where R is position vector to two nearby points in the undeformed body.  

The principle of equipresence states that an independent variable that appears in one 

constitutive equation for a material, must be present in all constitutive equations for that material. 

This principle needs to be applied if other effects, such as electrical or chemical, are to be 

included.  

The principle of material objectivity or material frame indifference states that the form of  

constitutive equations must remain unchanged under rigid motions of the spatial reference frame. 

In other words, the events occurring at a point in a body must be independent of the motion of 

the observer. The deformation gradient tensor F is per definition an objective quantity, since it 

describes changes in length and angle relative to a given reference configuration. Under a change 

of reference frame, the frame invariance of F implies that it transforms to F
* 

through the rotation 

tensor Q, as *  F Q F . The contact forces within a body are frame indifferent, so are the 

differential areas on which they act, it follows that Cauchy stress tensor is an objective quantity. 

The second order tensors are objective because a general second order tensor T transforms as 

*   T Q T Q
T . Since deformation and temperature are objective, the constitutive relations for a 

thermoelastic material (Eq. (2.23)) are frame indifferent. Based on the principle of material 

frame indifference, the constitutive equations can take the forms       
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T

( )

T

( )

T

( )

( )

or ( )

or ( )

g

f

h







  

  

  

σ Θ U Θ

σ Θ C Θ

 σ Θ E Θ

, (2.24) 

where Q = 
T
,  g, f and h are called response functions, and U is the right stretch tensor which is 

obtained through polar decomposition of F (  F Q U ). Using the conversion definition of stress 

measures (Eq. (2.19)), this eventually states  

 

( )

( )

( )

( )

or ( )

or ( )

s

s

s

g

f

h







S U

S C

 S E

. (2.25) 

These relations, in terms of second Piola-Kirchhoff stress tensor, are convenient to work with 

since rotation does not appear explicitly.   

 The principle of physical admissibility states that constitutive equations must be 

consistent with any of the basic laws of continuum mechanics, including the first and second 

laws of thermodynamics, Eqs. (2.21) and (2.22). Stating these equations in terms of the 2
nd

 Piola 

Kirchhoff stress S and eliminating r between these two equations yields 

  0 : 0T u    S E . (2.26) 

Eq. (2.26) can now be combined with the general constitutive equations in Eq. (2.23) and the 

case for which temperature is considered to be the independent variable. It is convenient to 

introduce the Helmholtz free energy function 

 u T    , (2.27) 

as a replacement for the internal energy u. Then, Eq. (2.23) is substituted by 

  , , ,T T  R E , (2.28) 

and using Eq. (2.27) to eliminate u in Eq. (2.26) yields 
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  0 : 0T    S E . (2.29) 

Combining Eqs. (2.28) and (2.29), and using the chain rule gives 

 0 0 0: 0T T
T T

  
  

     
         

     
S E

E
. (2.30) 

For independent strain and temperature distributions, this equation implies the relations 

 

0

0

T

T














  








S
E

. (2.31) 

If the deformation is isothermal ( 0T  ), then  ,  R E , meaning the material behaves 

purely elastically. This relation suggests that during an isothermal deformation, the strain energy 

is zero in the reference state or in absence of any deformation. In this case, a strain energy 

density function Ψ is defined as 

   0,  R E , (2.32) 

per unit undeformed volume. Since the density ρ0 of the undeformed body is independent of 

deformation, Eq. (2.31) gives the constitutive equation  

 





S
E

, (2.33) 

where the 2
nd

 Piola Kirchhoff stress tensor is derived from the scalar strain energy density 

function Ψ (Note that in the rest of this dissertation, Ψ will be referred to only as strain energy 

function).  A material possessing a constitutive relation of the form (2.33) is called a hyperelastic 

material, implying that the mechanical properties of the hyperelastic material are characterized 
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completely by a scalar strain-energy function. The relation (2.33) can be defined in terms of the 

Cauchy and first Piola-Kirchhoff stress tensors, by using Eqs. (2.19), according to 

 

1 T

T

J  
  




 


σ F F
E

P F
E

.      (2.34) 

Under the assumption of pseudoelasticity, the strain energy function  should be technically 

referred to as a pseudo-strain energy function (Section 1.6). In the rest of this dissertation, 

however, the general term “strain energy” is used.   

Most biological tissues are considered nearly incompressible (isovolumetric) because of 

their high water content. The work done by a pressure load is due to pressure acting through a 

change in volume. Since a perfectly incompressible material undergoes no volume change (J = 

det(F) = 1), the hydrostatic pressure does not impart any energy. As a result, for a given strain 

field in an incompressible material, the constitutive relations resolve the state of stress only up to 

an arbitrary function p I , where p is called the Lagrange multiplier and is analogous to 

hydrostatic pressure. For 1J  , Eq. (2.34) is modified according to  

 
T p


   


σ F F I

E
,      (2.35) 

which is the general constitutive relation for an incompressible hyperelastic material. 

Substituting this equation and J=1 into Eqs. (2.18) and (2.19) yields the corresponding relations 

for Piola-Kirchhoff stress tensor 

 

1 T 1

1 T 1 T

p

p

 

   


    




     



P F σ F F
E

S F σ F F F
Ε

. (2.36) 
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Based on the definition of the right Cauchy-Green deformation tensor (Eq. (2.10)) the relation 

for the 2
nd 

Piola-Kirchhoff  stress tensor of an incompressible hyperelastic material can be stated 

as 

 
1p 

 


S C
E

 (2.37) 

2.4 MECHANICAL MODELS OF SOFT TISSUES 

2.4.1 Governing Equations in Biaxial Stretching of a Membrane 

The form of  is not known a priori for nonlinear elastic materials, and characterizing 

mechanical properties requires data from various loading protocols. Unless the structure is one-

dimensional, e.g. tendon, uniaxial testing alone is not adequate. At the very least biaxial testing is 

required to determine material properties of most soft tissues, such as artery, myocardium and 

pericardium, which experience multiaxial loading in vivo.  

Arterial tissue is often modeled as transversely isotropic based on the assumption that 

structural components mainly lie in the plane of the arterial wall. In the biaxial stretching of a 

rectangular block of membranous tissue undergoing uniform extension in the x1x2-plane (Figure 

2.3), the boundary conditions are:  P11=P1, P22=P2 (with P13 = P23 = P33 = 0). If the tissue is 

transversely isotropic with fibers aligned in the X1 direction, shear strain are negligible, and the 

deformation gradient and Lagrangian strain components are, respectively, given by 

 

1 2 3

2 2 2

1 2 3

[ ] [ , , ]

1 1 1
[ ] ( 1), ( 1), ( 1)

2 2 2

i

I

IJ

F diag

E diag

  

  



 
    

 

, (2.38) 



 36 

where i are stretch ratios. For an incompressible material, 3

1 2

1


 
  since 1 2 3det( ) 1   F . 

Since the xi are aligned with material principal axes, shear stresses can be considered 

negligible, consequently, there is no disadvantage in working with Piola-Kirchhoff stress tensor  

since it is symmetric. The constitutive relation (2.36)1 yields 

 1( )P F p F 

  




 


   (I not summed), (2.39) 

with PI J = 0 for J  .The first term involving  can be simplified by (2.38) using 

 F
 


 

    

   
  

    
. (2.40) 

Thus, we can write 

 
p

P
 



 


 


  (I not summed). (2.41) 

 

X2, x2
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P22

e1

e2

e3

 

Figure 2.3. Biaxial stretching of transversely isotropic rectangular membrane. 

Copyright  2004 by World Scientific Publishing Co. Reproduced from [96]. 
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If the material is incompressible, the Lagrange multiplier p can be determined directly from the 

boundary condition (P33=0) according to 

 3p 






. (2.42) 

Inserting this relation into Eq. (2.41) yields 

 

3
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1 1
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  





 
 
 

 
 
 

. (2.43) 

It should be noted that the shear terms, P12 and P21, are negligible if the fiber orientation 

distribution is symmetric about the co-ordinate axis along e1. 

2.4.2 Phenomenological Hyperelastic Constitutive Models 

The most common type of constitutive models used for soft tissues are phenomenological 

models, which are usually of a polynomial or exponential form. A very well-known example of a 

phenomenological constitutive model, originally introduced by Fung [11] but used and extended 

by many researchers afterwards, is of the form 

  exp ,ic f a     E , (2.44) 

where the function f generally consists of polynomial terms of the components of E of varying 

order (with constants ai), depending on the specific set of mechanical data. The most general 

form of Eq. (2.44) is given by (in indicial notation with the summation convention) [97] 

    0

1
exp

2
ijkl ij kl mnpq mn pq ij ij ijkl ij klE E E E E E E          . (2.45) 
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Another form of phenomenological constitutive equation is expressed in terms of a set of 

independent strain invariants of C or B [98]. The first three (principal) invariants are defined as 

  

2 2 2

1 1 2 1

2 2 2 2 2 2 2 2

2 1 2 1 3 2 3

2 2 2 2

3 1 2 1
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tr tr

tr tr

J

. (2.46) 

These invariants are used to define the strain energy for isotropic materials, i.e. 

    1 2 3, ,    C , (2.47) 

which results in the three principal stresses (Cauchy, 1
st
 Piola Kirchhoff, and 2

nd
 Piola Kirchhoff) 

in an incompressible material (a=1,2,3) to be defined as (see also [99]) 
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. (2.48) 

Many different forms of strain energy functions for isotropic soft deformable materials in 

terms of the principal stretches have been proposed in the literature. On the other hand, many 

materials, and in fact, most biological tissues, are characterized as anisotropic and cannot be 

described by isotropic constitutive equations. These materials can be viewed as being composed 

of an isotropic matrix material (ground substance) and one or more families of fibers responsible 

for the anisotropy, with the derivation of the constitutive relation based on the principle of 

material symmetry. This approach, initially proposed by Holzapfel [86], can be viewed as a 

“hybrid” approach, between pure phenomenological and fully structural. The simplest 

representation of this is transverse isotropy, with one family of fibers. The fiber direction in the 
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reference configuration is defined by a unit vector a(X), and its structural tensor is defined as 

a a . The so-called pseudo-invariants of C and a, related to the fibers, are now introduced as  
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5
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I
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

a Ca

a C a
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A

T
, (2.49) 

where λA is the stretch in fiber family A. For a transversely isotropic material, the strain energy is 

written in terms of the five invariants as  1 2 3 4 5I , I , I , I , I  . When a material consists of two 

families of fibers, where the second fiber family is defined by the unit vector b, additional strain 

invariants are defined associated with this additional fiber family and the interaction between the 

two families. The invariants I6-I8 are defined as 
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. (2.50) 

In soft tissues, the strain energy function is often divided into an isotropic and an anisotropic part 

representing the isotropic matrix and the fibers, respectively, resulting in  

    1 2 4 5I , I I , I ,  iso aniso
, (2.51) 

when assuming incompressibility (I3 = 1). This is often simplified to [86] 

    1 4 6I I , I  iso aniso
. (2.52) 

Different specific functional forms of Ψiso and Ψaniso have been proposed in the literature, where 

for Ψiso often a neo-Hookean formulation is used 

  1I 3
2


  iso , (2.53) 

where  is the shear modulus.  For Ψaniso many different phenomenological expressions similar 

to Eq. (2.45) have been proposed (e.g. [86, 100-103]). An interesting generalization of the 
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invariant based method has been presented by Ehret and Itskov [104]. They have introduced a 

constitutive model for fiber-reinforced materials consisting of an arbitrary number of fibers, 

where each fiber is represented by its individual structural tensor and a weight factor.  

2.4.3 Structural Constitutive Models 

The structural approach, where each model parameter has physiological significance, allows for 

separate investigation of the contribution of each individual tissue component to the tissue’s 

mechanical behavior. Structural constitutive models can help determine the underlying 

physiological parameters of normal remodeling and growth as well as pathological processes.  

 The structural constitutive model developed in this dissertation builds upon the 

theoretical work formally introduced by Lanir [89, 90], in which the tissue-level response is 

related to the collective contribution of individual fiber ensembles. The term fiber ensemble 

refers to a collection of fibers sharing a common orientation. This modeling technique treats the 

fibrillar ECM component by homogenizing the fiber ensemble response. This modeling approach 

for planar collagenous tissues is integrated into a multi-component structural constitutive model 

by combining it with a description for a second component, outlined in Chapter 7.0. 

2.4.3.1 Assumptions 

The representative volume element (RVE) identified, that contains a fiber ensemble (Figure 2.4), 

is sufficiently large to include enough information on the underlying microstructure yet is amply 

smaller than the macroscopic tissue dimensions. The RVE is treated as a three-dimensional 

continuum, and within the RVE, the following assumptions are made: 
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1. The tissue can be idealized as a network of fibers of varying types and structures, all 

embedded within a compliant ground matrix.  

2. Tissue dimensions and internal structure change under the affine assumption. 

3. The individual constituent fibers bear load only along their fiber axes and have negligible 

compressive or bending rigidity.  

Nx2

x1

θ

 

Figure 2.4. Schematic of representative structural volume element. 

Fiber ensemble is an idealized group of fibers of different crimp or undulation, aligned in the same direction N at an 

angle θ. 

 

2.4.3.2 Tissue Level Framework  

The tissue level strain energy density Ψ of the RVE is assumed to result from the summation of 

contributions of individual fibrous components, weighted by their respective mean volume 

fractions   is defined as 

 ( ) ( )i

i

  E E  (2.54) 

Assuming a hyperelastic material response, the tissue-level 2
nd

 Piola Kirchhoff stress S is derived 

from the strain energy as (Eq. (2.37)) 
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1( )S p  

 


Ε
E C

Ε
,  

where the Lagrange multiplier p accounts for the incompressible nature usually associated with 

non-fibrillar tissue components.  

A structurally based modeling approach for the collagen fibers in planar tissues have 

been employed, where the contribution of individual collagen fiber ensembles acting at 

independent orientations is summed over all orientations, using a statistical fiber orientation 

distribution function. Thus, it assumes the form  

       ( ) ( , )ens ens ens

col col col col colR d R E d
 

          E E , (2.55) 

where Rcol(θ) is the collagen fibers’ angular density function, 
ens

col is the strain energy associated 

with an individual collagen fiber ensemble (ens), and 
ens TE  N EN is the uniaxial Green-

Lagrange strain acting in the ensemble direction, defined by a unit vector parallel to the fiber 

axis in the reference configuration N(θ). The effective ensemble response has been modeled with 

a phenomenological expression [93, 105] as well as with a formulation accounting for the 

recruitment process [93]. The former approach is described here, and the latter approach will be 

presented in Chapter 7.0.  

2.4.3.3 Phenomenological Fiber Ensemble Model 

Exponential models have been successfully used to describe the nonlinear effective fiber 

ensemble stress-strain relation. A two-parameter exponential model has been defined as  

    1 2exp 1ens ens ensS E d d E  
 

, (2.56) 

which has been applied to the aortic valve and arterial tissue [93, 105-108]. Using this 

exponential fiber model form for the fiber ensemble response, this model can be considered 



 43 

hybrid: The fiber orientation distribution is defined in a structural manner and can be determined 

experimentally; however, the fiber ensemble model itself is phenomenological.  

 A modified version of this model considers that collagen fibers are being recruited up to 

an upper bound ensemble strain Eub where all fibers are straight. The effective fiber ensemble 

response follows the exponential response of Eq. (2.56) up to this upper bound strain, and when 

the upper bound strain is reached, the fiber ensemble is assumed to behave in a linear elastic 

manner with a modulus equal to the tangent modulus at Eub, under the assumption that straight 

collagen fibers behave linear elastic. This results in the following fiber ensemble model: 

 
 

 

1 2

1 2

exp 1 0

exp 1ens
ub

ens ens

ub

ens ens
ens

ens ens

ub ub ubens E E

d d E for E E

S E
S

E E d d E for E E
E 

    
 

 
        

. (2.57) 

2.4.4 Mechanical Models of Growth and Remodeling 

The widely accepted biomechanical driver behind the growth and remodeling (G&R) processes, 

as a part of normal development or as a response to pathology, is the restoration of a 

homoeostatic internal stress level. The radius, wall thickness, and opening angle associated with 

residual stress in arteries adapt to perturbations in pressure and flow. During the last decade 

several mathematical models have been developed to capture and predict the G&R behavior of 

arteries [109-111]. The volumetric growth was explained by early models through the study of 

the relationship between mechanical load and uniform growth by Hsu [112], and the study of 

mass resorption and deposition in living bone by Cowin and Hegedus [113, 114], who introduced 

a theory explaining the structural adaptations of an elastic material to applied loading.  The later 

work by Skalak [115] provided an analytical description of the non-uniform mass growth, and 
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Rodriguez et al. [116] combined these theories of the finite volumetric growth in soft tissue 

within the continuum framework by introducing the multiplicative decomposition of the total 

deformation gradient into its elastic and growth parts (Figure 2.5). In this approach, the growth 

kinetics resulting in total shape change is divided into two parts: (i) a generally non-compatible 

part resulting from the material addition or removal that alters the local stress-free configuration, 

and (ii) an elastic part associated with the deformation of constituent elements to form the final 

shape [117].  

Mixture theories [118, 119], which combine continuum theories for the motion and 

deformation of solids and fluids, with general principles of chemistry, have been utilized to 

model the individual growth and mechanical response of primary individual wall constituents, 

mainly proteoglycan gel matrix, smooth muscle cells, elastin and collagen; homogenization is 

done through a rule-of-mixtures model for the stress response. Humphrey and coworkers [120-

122] have developed an extensive modeling framework for tissue growth and remodeling of 

vascular wall based on the so-called constrained mixture approach, where the tissue is assumed 

to be a mixture of multiple (solid) constituents, that are constrained to deform together.  

The rule-of-mixtures relations allow the changing rates of protein synthesis and cell 

proliferation and associated half-lives to be accounted for and enable basic mechanisms of G&R 

to be modeled mathematically rather than merely modeling the consequences of such turnover. 

Changes in geometry are computed naturally in the constrained mixture model of G&R simply 

by satisfying linear momentum balance at each G&R time point. Nevertheless, the current 

functional forms are in a state of infancy, and appropriate constitutive relations need to be 

derived based on experimental data.  
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Figure 2.5. Schematics of multiplicative decomposition of deformation gradient in remodeling and growth. 

The deformation gradient is decomposed into its elastic, Fe, and growth, Fg, parts. BU represent unloaded intact 

configurations, and bZSS are stress-free configurations. 
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3.0 ESTIMATION OF IN VIVO SURFACE GROWTH DEFORMATIONS OF MAIN 

PULMONARY ARTERY AND ASCENDING AORTA 

The following studies were conducted to characterize the PT and AA geometry and delineate 

deformation patterns in the growing ovine model as outlined in the first specific aim (section 

1.7). MR images were obtained from endoluminal surfaces of 13 ovine hearts at end-diastole 

with ages ranging from 1.5 to 12-months (considered adult), with corresponding masses of 15.3 

to 56.6 kg. The basic geometric parameters of the PT and AA (including sinus regions) were first 

measured, based on segmentation point cloud data. This initial study was carried out to define 

the tissue engineered pulmonary artery conduit in vivo dimensional requirements, and also to 

determine the degree of nonaffine alteration in the surface geometry of both arteries during 

postnatal growth. Based on the results obtained, it was decided to quantify the regional surface 

growth deformation patterns of the PA and AA to understand the underlying causes of revealed 

nonaffine changes in surface geometry of each artery. A finite element based surface 

representation of each artery was developed, and the interpolated geometries as a function of 

mass were obtained to determine local arterial surface growth relative to each artery’s early age 

state of 15 kg. The principles of nonlinear deformation analysis were used to quantify the local 

alterations in the in vivo surface geometry.  

Although in the biomechanical analysis of growth, the reference configuration is usually 

the stress-free state, in this study, the reference state is the in-vivo end-diastolic stage of the 
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artery, where artery is both loaded and contains residual stress. Therefore, the computed 

postnatal surface growth deformations include the alterations in the residual stress and the end-

diastolic deformation. However, the assumption was made that the changes in surface geometry 

of the artery significantly dominate the postnatal growth deformation patterns as compared to the 

modifications in residual stress and end-diastolic deformation profile or mechanical behavior.   

Results indicated that the spatial and temporal growth deformation patterns of both 

arteries were highly heterogeneous. The longitudinal PA growth stretch of the middle region on 

the posterior wall reached 2.57±0.078 (mean±SD) at the adult stage. In contrast, the longitudinal 

growth of the AA was smaller and fairly uniform (1.80±0.047). Interestingly, a region of the 

medial wall of both arteries where they are in contact showed smaller circumferential growth 

stretches, specifically 1.12±0.012 in the PA and 1.43±0.071 in the AA at the adult stage. Overall, 

our results suggested that the surrounding tissue impingements and contact between the arteries 

resulted in increasing spatial heterogeneity in postnatal growth, leading to increasing taper and in 

particular an increase in cross-sectional ellipticity of the PA. Results of this study can be used to 

guide the development of therapeutic approaches for congenital defects. 

3.1 METHODS 

3.1.1 Animal Source 

Thirteen sheep (Ovis aries, subspecies Dorset) weighing between 12 to 60 kg, of ages 1.5 (the 

earliest time point used for ovine heart valve implants [30]) to 12 months (full adulthood), were 

obtained.  Use of experimental sheep was approved by the Institutional Animal Care and Use 
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Committee of Children’s Hospital Boston. Animals were cared for by a veterinarian in 

accordance with the “Guide for the Care and Use of Laboratory Animals.” Since it was shown 

that the mass of the animals highly correlated with their age and was known more exactly, mass 

was used to identify the growth stage throughout the study. 

3.1.2 MRI 

Imaging was performed with a 1.5 Tesla MRI scanner (Philips Achieva, Best, the Netherlands) 

and a 5-channel cardiac radiofrequency surface coil. After localizing images were obtained, 

breath-hold ECG-gated steady-state free precession sequences were obtained in long and short-

axis ventricular planes, and in the long and short-axis planes to the pulmonary valve. In-plane 

and through-plane velocities were measured using an ECG-gated velocity-encoded cine MRI 

pulse sequence. Imaging of the thorax was performed using a ECG and respiratory navigator 3D 

SSFP pulse sequence to generate a three-dimensional isotropic data set (acquired resolution of 

1.5 x 1.5 x 1.5 mm sections, reconstructed to 0.78 x 0.78 x 0.78 mm) at end-expiration and end-

diastole (Figure 3.1A).    

3.1.3 Image Segmentation 

A semi-automated segmentation method, termed Shells and Spheres, was used for extracting 

anatomical shapes from 3D images. This method is specifically designed to segment shapes that 

curve back upon themselves, such as the heart and great vessels [123]. Spherical operators were 

centered at each image pixel and sized to reach, but not cross, the nearest object boundary.  

Spheres were then “grown” at each pixel location by incorporating “shells” of pixel intensity 
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values into an ongoing analysis of mean, variance, and first-order moment, in order to identify 

the radius at which each sphere would grow past its nearest object boundary. The coronary 

arteries and first AA side branch were removed and the remaining gaps were filled during the 

segmentation. For each image, a subset of spheres was identified as medial, meaning that each 

touched at least two boundaries. Therefore the algorithm produced a set of paired boundary and 

medial locations in addition to the segmented shape of the PT and AA. The local medial 

locations or center points helped define the centerline paths used in registering the arteries as 

well as develop an appropriate curvilinear coordinate system to carry out the deformation 

analysis. 

A set of Shells and Spheres segmentations of the PT were also manually segmented. The 

Shells and Spheres segmentation results correlated well with the given set of manually 

segmented images and produced visually accurate representations of the heart and great vessels 

(Figure 3.1). The Dice Similarity Coefficient was calculated to be 0.97, indicating a strong 

similarity between manual and Shells and Spheres segmentations [124]. 

3.1.4 Definition of Anatomic Terms 

The proximal extent of the PT was defined at the pulmonary root and its distal extent at the PA 

bifurcation (Figure 3.1B,C).  The sinuses of Valsalva were defined as the bulbous portion of the 

proximal PT. The STJ was defined as the distal boundary of the sinuses of Valsalva. The 

proximal boundary of the PA was defined at the STJ and its distal aspect, at the PA bifurcation. 

The region of interest (ROI) on the AA was defined as beginning at the aortic STJ and ending at 

a plane that intersected the bifurcation point of the pulmonary trunk, termed end-ROI. 

 



 50 

C.

PT

RV

RA

Sinus of 
Valsalva

A.

PT

AA
RV

RA

RV

PT

Sagittal p
lan

e

B.

AA

 

Figure 3.1. 2D slice and 3D raw MR cardiac images and segmentation masks. 

2D slice (A),  3D MRI of the Ovine heart and two major arteries overlaid with a Shells and Spheres segmentation of 

the pulmonary trunk and right ventricle in the posterior view (orange) (B), and  anterior view of 3D surface model of 

the automated Shells and Spheres segmentation of the right heart shown (red) with following  structures  labeled 

(C): Right atrium (RA), Right ventricle (RV), Pulmonary trunk (PT), Right pulmonary artery (RPA) and Left 

pulmonary artery (LPA). Copyright  2007, IEEE [124]. 

 

3.1.5 Basic Dimensional Measurements 

Centroids of medial point clouds were calculated at a mean of 6-mm intervals along the height of 

the artery.  To define a center axis, every three adjacent centroids were fitted with a second order 

polynomial. Sections of surface point clouds, with an average thickness of 2.5mm, were obtained 

normal to the center axis at midpoint between neighboring centroids (Figure 3.2). The proximal 

and distal anatomic boundaries of the PA were defined manually, by the identification of the 

sinuses of Valsalva (pulmonary root, proximal boundary) and the pulmonary bifurcation (distal 

boundary). The length of the artery along the center axis path was calculated based on the 

cumulative lengths of the polynomial segments within these defined boundaries. Vessel 

tortuosity was calculated as the ratio of distance along the center axis path to end-to-end length, 

with a value of 1.0 corresponding to no tortuosity (i.e. straight tube).   
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The boundary data were fitted with ellipses (Figure 3.2), and volume and surface area of 

each artery were calculated.  For the pulmonary root and sinuses of Valsalva, the segmented 

section having the largest sinus radius was selected manually for analysis from each data set 

(Figure 3.3A). Nodes were manually selected from that cross-section. The center of the section 

was determined based upon the center of the best-fit circle to the three sinus nodes. From these 

definitions of nodes and center, the sizes, angles and areas of the sinuses of Valsalva were 

measured (Figure 3.3B). 
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Bifurcation
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RVOT
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Figure 3.2. Point cloud depictions of PT as generated by shells and spheres segmentation technique. 

Representative juvenile and adult PT surface points (black) with medial point clouds (in blue) shown in the former, 

and corresponding single anatomical cross-sectional shapes of surface and medial points clouds along with principal 

axes in both PTs demonstrated. 
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Figure 3.3. Basic dimensional measurements of sinuses of Valsalva shown in PA. 

Plane of maximum sinus radii (red) shown along with center axis (blue), and calculated centroids (purple) in 

posterior (left) and sagittal views (right) (A). Illustration of measurements of sinuses of Valsalva in a cross-section 

of surface point clouds across region of maximum sinus size (blue) and best-fit circle to sinus nodes (valve 

commissures; red rectangles) along with angles between sinuses (B). 

3.1.6 Overall Approach for Estimation of Surface Growth Deformation  

Since it was not possible to place physical markers on the tissue surface, we assumed that the 

relative circumferential and longitudinal locations of material points were locally preserved 

throughout the postnatal maturation period. The 3D coordinates of arterial surfaces points were 

interpolated in the in-surface coordinate space using the piece-wise polynomial finite-element 

shape functions. Subsequently the surface geometries were interpolated as a function of mass. 

Finally, the full growth deformation maps were obtained by applying the 2D nonlinear 

membrane shell-based convective surface analysis to the interpolated surface coordinates to 

estimate the effective growth strain field. Specific steps are given in the following. 
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3.1.7 Registration 

While semi-automated non-rigid 3D registration methods that can deform one image to match 

the template image by defining a spatial transformation exist [125], the more inherent variations 

in anatomical shapes and image quality, the less applicable these approaches become. The AA 

and PA datasets were, therefore, registered semi-manually through the following global affine 

transformation sequence. The affine registration of the PA was defined from three significant 

features: 1) the left, 2) right pulmonary arteries at the BFN (Figure 3.4B), and 3) the centerline 

path. The AA registration was based on the main side branch and the two coronary arteries at the 

sinuses of Valsalva, which formed three prominent anatomical landmarks. 

The AA and PA of the youngest sheep (1.5 month-old, 15.3 kg) were chosen as the 

templates to define registration. Each segmentation image was aligned to the corresponding 

template using a two-step registration procedure. Automated intensity-based registration was 

first used to align the images, and then the images were manually transformed to improve 

alignment of the aforementioned features. The automated registration was performed within a 

standard registration framework consisting of a cost function, optimizer, transform, and 

interpolator. In this framework, a cost function was computed between the two images to 

measure similarity, an optimizer iteratively adjusted the parameters of a transform to improve the 

cost function, and the interpolator applied image transforms to calculate sub-voxel values. In this 

study, a gradient descent optimizer with a correlation ratio cost function was used to determine 

the affine transformation variables of 3D rotation and scaling with the nearest neighbor 

interpolation, appropriate for binary data, used to apply the transform.   
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Figure 3.4. Anatomical positions and registration of AA and PT.  

Anatomical positions shown in anterior view, with medial aspect outlined (Dashed square; Top), and in posterior 

view (Bottom) (A). Registration by affine transformation: (B) and (C) show, respectively, non-registered images of 

PA and AA (Top), and images of PA and AA of 56.6-kg ovine registered to their corresponding templates of 15.3-

kg lamb (Bottom) (registration RMS errors for images of same juvenile ovine obtained one week apart were 0.78 

mm in PA and 0.62 mm in AA). Note: Main side branch coming off of AA in ovine branches off to Brachiocephalic, 

Left Common Carotid and Left Subclavian arteries at a more distal point. 

 

The AA registration was manually refined by aligning the segments of coronary arteries 

proximal to the sinuses of Valsalva and the main side branch with those of the template (Figure 

3.4C). To develop the PA centerline paths, the surface and local center points were aligned with 

the X
3

 axis (Figure 3.5A), and the cylindrical polar coordinates of local center points were 

computed. The centerline path of each PA was defined using 4
th

 and 2
nd

 order polynomials to 

interpolate the radial and angle coordinates of local center points as a function of the X3 

coordinate, respectively. The 3D curvilinear feature of the centerline paths allowed refining PAs’ 

registration and defining optimal scaling factors . The AA and PA registered surface renderings 



 55 

were displayed together and each surface data set was re-cropped according to the 

aforementioned boundary definitions. 

3.1.8 Surface Fitting 

3.1.8.1 Surface parameterization   

A toroidal coordinate system was defined to allow use of the linear least-squares fitting method 

for developing surface models of the PA and AA, where only a single coordinate was fitted 

[126], and resulted in a relatively uniform distribution of data points in the in-surface coordinate 

plane [127]. The local coordinate of each surface point was determined by finding its orthogonal 

projection on the centerline path using the gradient-based unconstrained optimization routine of 

backtracking line search, implemented in Mathcad (Parametric Technology Corporation. MA, 

USA).  

3.1.8.2 Common centerline path generation  

In order to define all the corresponding surfaces with respect to one coordinate system, a 

common centerline path was developed. The common centerline path of all PA surfaces was 

simply developed by interpolating the radial and angle coordinates of individual centerline paths 

as a function of X
3
 coordinate using 2nd and 4th order polynomial functions, respectively, which 

accurately approximated both coordinates (Figure 3.5A). 
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Figure 3.5. Common center axis of PAs and comparison of AA and PA center axes curvatures. 

 Common center axis of PAs (red) and individual center axes points (black) with Frenet frame (blue) shown in 

medial-posterior view along with global Cartesian coordinate system (A). AA and PA center axis paths shown 

together from two perspectives to demonstrate larger tortuosity of PA compared to AA (B). 

 

3.1.8.3 Coordinate transformation and surface fit  

Once the parameterization of surface points was complete, the following local Cartesian 

coordinate was defined at each of the projection points on the centerline path based on the Frenet 

frame [128]. This coordinate transformation is represented by 

3 3 3
(θ, X ) = (θ, X )  =   (s) (θ, s) + (X ),r x Q x y

  
 (2.1) 

where s  is the length along center axis path, x  is the local coordinate of the surface point in the 

current configuration, with its projected centerline path point y, and Q is the local 3D rotation 

matrix (Appendix A1). Next, local growth as a deformation was evaluated using a convective 

coordinate system, under the assumption that deformations occur such that the (θ,s) surface 

coordinate locations for any material point undergo minimal changes during maturation. A finite 
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element based surface fit was developed to model the arterial surface geometry using 2D finite 

element interpolation functions derived from the tensor product of 1D cubic hermite element 

formulation to enforce C
1
 continuity [126]. The bicubic Hermite finite element has four functions 

defined at each node: the radial coordinate and its partial first and cross derivatives with respect 

to local isoparametric coordinates  and  (which correspond to the θ and t directions, Figure 

3.5A). Thus, the radial coordinate of an internal surface point P is computed by summing the 

product of 16 terms  

jk jk
Ρ i i ,ρ =  ψ (ξ,η)ρ      (2.2) 

where 
jk
iρ  is the vector of nodal variables, subscript i=1,4 denotes the node number, and 

subscripts j,k=0,1 denote the order of derivatives with respect to  and  respectively.  

3.1.8.4 Finite Element Mesh Size  

The very high density of data points from MR images greatly exceeded the minimum 

requirement of 16 data points per element (with 16 nodal variables). However, the accurate 

reconstruction of the 3D surface in the toroidal coordinate system through the finite element 

interpolation scheme required determination of the appropriate mesh resolution for capturing the 

prominent features while smoothing the noise due to MRI and segmentation processes. To this 

end we developed the following approach to determine the optimal number of elements required 

to accurately represent the endoluminal surface geometries. The mesh resolution was determined 

based on the oldest PA geometry due to its more complex 3D shape compared to the AA. The in-

plane dimensions of the smallest feature of interest amongst all PA surfaces was resolved to be 6 

x 7 mm, in t and θ directions, respectively. A finite element surface fit with relatively dense grid 

size of 8 by 8 elements, that captured the features having twice as high of the spatial frequency 
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as that of the smallest feature of interest, was initially generated. The surface fit was sampled at a 

quarter size of the smallest targeted feature in θ and t directions. A 2D FFT analysis was 

performed on the surface fit data using MATLAB (The MathWorks Inc. MA, USA). The 

numbers of elements in θ and t directions were reduced iteratively until the 2D FFT spectrum of 

the surface fit indicated significant smoothing of the determined spatial noise. 

3.1.9 Two-Dimensional Surface Deformation 

The local growth deformation of the 2D endoluminal surfaces (with no transmural deformation 

consideration) was estimated in the polar toroidal coordinate. The in-surface base vectors were 

computed using Eqs. (2.3) and (2.4) according to 
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The measure of shear during growth was defined as 

   -1 -1
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and ˆ

sU  are the corresponding unit base vectors in the reference 

configuration The stretch ratios  and s corresponding to ˆ
u  and ˆ

su  directions, respectively, 

were computed based on Eq.(2.16)2. The subsequent growth rates (in units of Kg
-1

) in the 

circumferential and longitudinal directions were obtained by computing the instantaneous slope 



 59 

of the growth stretch ratio curves as a function of mass, 
θλ  and 

sλ , at each unit mass interval 

from 12 kg to 60 kg. 

3.1.10 Time Interpolated Growth  

To gain better insight into major trends in the temporal development and spatiotemporal 

relationships, a continuous growth deformation map was generated as follows. The 3D surface 

shapes were approximated as a function of mass by interpolating the four surface fit variables,   

o
iρ  and 

jk>0
iρ , at each node. The radial coordinates were linearly interpolated, and the remaining 

nodal variables were approximated based on second order polynomial functions, which 

represented the general trend in data as accurately as possible without capturing the outlier 

points. The scaling factors, obtained from registration, were interpolated linearly as a function of 

mass. The interpolated shape of each artery at 15 kg was used as the referential geometry to 

obtain the spatiotemporal developmental deformation map up to 60 kg using the equations 

provided in the previous section. This approach also had the advantage of developing an 

interpolated referential configuration that avoided issues with individual specimen variations.  

3.1.11 Study of Arterial Cross-Sections based on Interpolated Surface Fits 

The true anatomical sections of the interpolated PA and AA surface fits with respect to their 

corresponding common center axes were obtained. The principal component analysis was 

performed on all the surface cross-sections and major and minor diameters were obtained (Figure 

3.2). The angle of the major axes of sections along each artery with respect to its corresponding 

STJ cross-section was measured.  Ellipticity of each section was calculated as the ratio of major 
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to minor diameters, and tracked along the length of the vessel. The arterial taper was defined as 

the ratio of BFN or end-ROI to STJ cross-sectional areas.  

3.1.12 Verification 

To assess the accuracy of the method implementation for the above deformation analysis, an 

analytically defined torus shaped phantom was generated [129], based on the measured 

geometric characteristics of the PA as follows. It was demonstrated that in the postnatal growth 

period the PA taper towards the BFN increased by about 20% and its cross-sectional ellipticity 

increased by about 30%. Its tortuosity, however, was maintained at an average value of 1.1, with 

negligible out-of-plane curvature. Two phantoms with the same tortuosity as the PA were created 

to represent the above geometric trends from the juvenile to adult stage. The analytical equation 

of a torus was modified to incorporate the ellipticity and taper changes (Appendix A2). To 

simulate growth, the phantom representing the juvenile stage was scaled by a factor of 2.33 to 

obtain the phantom representing the mature artery (Figure 3.15A).  

3.1.13 Statistical Analysis 

Student t-tests were performed for comparisons of mean values for the results of basic geometric 

study, where p<0.05 was considered significant (SPSS software, IBM Inc., New York, U.S.). Net 

results are presented as mean ± standard deviation (SD). 
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3.2 RESULTS 

3.2.1 Basic Geometric Parameters 

MRI data were utilized for the 11 sheep, whose mean weight was 30.9 kg (12-57 kg range) and 

mean age was 6 months (1-12 months range). Animal age and weight were highly correlated 

(r
2
=0.86), and were functionally interchangeable. Due to its accessibility, weight was selected as 

the basis for further analysis. The linear interpolation of all growth data with respect to animal 

weight, explained in the following sections, resulted in r
2 

> 0.8. 

The postnatal increase in volume of sinuses of Valsalva in both aortic and pulmonary 

roots proportionately by an average of 184 and 171 mm
3
, respectively, for every unit (kg) rise in 

weight (Figure 3.6A). The lengths of both sinus regions also linearly rose over time at rates of 

0.22 and 0.26 mm/kg (Figure 3.6B). The angles of the sinuses with respect to the center of the 

vessel did not differ between age groups (p=NS) in either pulmonary (anterior-to-left angle = 

117±4°; anterior-to-right angle = 112±4°; left-to-right angle = 131±4°, or aortic sinuses (left-to-

right coronary angle=115±1
o
; right-to-noncoronary angle=124±2

o
; left-to-noncoronary 

angle=117±4
o
). A comparison of the size of each sinus of Valsalva was performed based on the 

maximum cross-sectional area of each sinus.  The cross-sectional areas of aortic and pulmonary 

sinuses were very similar and increased significantly with age proportionate to the weight 

(Figure 3.7A). There were no statistically significant differences between growth rates of 

individual pulmonary root sinuses (right, anterior and left); however, there was a difference in 

sinus cross-sectional area, with the right (“non-facing”) semilunar cusp area representing a larger 

portion of the total cross-sectional area than the left or anterior cusp (right vs. anterior p<0.008; 

right vs. left p<0.05, data not shown). The aortic sinuses (right coronary, left coronary and 
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noncoronary) were not significantly different in size and growth rate. The ratio of cumulative 

cross-sectional areas of sinus lobes with respect to center circle was calculated. The average 

contribution of aortic sinus lobes was twice as much as that of pulmonary sinus lobes to their 

corresponding total sinus cross-sectional areas (Figure 3.7B).   
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Figure 3.6. Postnatal increase in volume and length of aortic and pulmonary sinuses of Valsalva. 

  Sinus of Valsalva  increase in volume at rates of 171 mm
3
/kg in pulmonary and 184 mm

3
/kg in aortic roots (A) and 

increase in length at 0.22 mm/kg in pulmonary and 0.26 mm/kg in aortic roots (B) were linearly proportional to 

animal weight. 
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Figure 3.7. Postnatal changes in total sinus cross-sectional area and relative area of sinus lobes. 

Cumulative peak cross-sectional area of the sinuses of Valsalva linearly increased with weight (A). Ratio of 

cumulative cross-sectional areas of sinus lobes with respect to center circle was twice as large in pulmonary root as 

compared to aortic root (B). 
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Tortuosity of the PT was moderate and did not vary by animal size (1.110±0.005, p<0.7 

between groups). Therefore, for the pulmonary trunk taken as a whole, additions to surface area 

over time did not translate into an increasingly tortuous arterial course, but into scaled arterial 

size increased over time. The relative contribution of the sinuses of Valsalva to the PT length 

along center axis path became less over time. In young animals, the sinuses of Valsalva 

represented approximately 38±2.2% of the entire PT length, while in larger animals, the sinuses 

accounted for 33±0.01%  of PT length; this measurement was proven to be significant based on 

the considerably faster longitudinal growth rate of the PA compared to its sinus region (p<0.04). 

The longitudinal growth rate was very close between the PT and AA (p=NS) with every 1 kg 

increase in animal weight resulting in a corresponding increase in length along center axis path 

of 0.5 mm and 0.2 mm in the PA and pulmonary root respectively, and 0.4 mm and 0.3 mm 

increase in lengths of the AA and aortic root, respectively (Figure 3.6B and Figure 3.8A). 
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Figure 3.8. Postnatal increase in volume and anatomical length of PA and AA. 

Volumes of both arteries increased linearly with weight at 343 and 256 mm3/kg, respectively (A). PA’s 

considerably faster increase in its true length, at 0.5 mm/kg, compared to sinus region (at 0.2 mm/kg) explains its 

increasing contribution to PT length over time, whereas longitudinal growth of AA, at 0.4 mm/kg, did not 

significantly dominate that of its sinus region (0.3 mm/kg) (B). 
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Bulk size of both arteries, measured by surface area and volume, linearly scaled with 

growth; every unit kg increase in body weight yielded a corresponding increase of 44.5 mm
2
 and 

293 mm
3
 in the PA, and 38.0 mm

2
 and 278 mm

3 
increases in the AA surface areas and volumes, 

respectively (Figure 3.8B).  

The orientation of major axes of cross-sections along each artery relative to that of the 

STJ section was fairly constant in the PA and did not considerably change in the AA (Figure 

3.9A). The cross-sectional shape of the PA, expressed as vessel ellipticity, differed between 

groups. In the smaller, younger animals, the PA cross-sectional shape was nearly circular 

throughout its length. In the larger, older animal group, the PA was relatively circular in cross-

section at the level of the sinuses, but became more elliptical, with maximum ellipticity detected 

around approximately 70% of the total PA center axis length from the STJ. In the distal PA (70-

100% of total center axis length), the arterial shape became less elliptical. Unlike the PA, the AA 

cross-sections showed relatively irregular and non-elliptical geometry with ellipticity staying 

relatively constant with age (Figure 3.9C, D; major-to-minor diameter ratios were 1.13±0.049 in 

the PA and 1.35±0.058 in the AA at the 60-kg growth stage). 

Both the PA and AA showed significant distal tapering with age, demonstrated by a 

decrease in the ratio of the STJ to PA bifurcation cross-sectional areas. The PA taper increased 

from 0.86 (i.e. nearly straight) to 0.67 (for the adult) while the AA tapered at a slower rate from 

0.74 to 0.62 (Figure 3.9B).   
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Figure 3.9. Resulting overall changes in geometry of PA and AA. 

Orientation of major axes of cross-sections along PA remained unaltered and only slightly changed in AA (A). 

Tapering, as measured by the ratio of cross-sectional areas of BFN or end-ROI to STJs, increased with growth 

slightly faster in PA than AA (B). Cross-sectional ellipticity of PA increased with age (C) while it was relatively 

maintained in AA (D) as demonstrated by measurements at three growth stages. 

 

3.2.2 Regional Growth Deformation Patterns 

3.2.2.1 Method verification  

The stretches in both circumferential and longitudinal directions computed based on the modified 

torus analytical equations were close in magnitude to those obtained from the finite element 

based implementation with root mean square (RMS) errors of 0.011 and 0.0032, respectively 

(Figure 3.15). The error in the shear calculation was somewhat larger since it combined errors in 
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both base vector calculations, but was still well within acceptable limits (RMS error=0.063 

degs). Overall, the surface fit methodology was able to capture the virtual arterial surface 

accurately. 

3.2.2.2 Affine registration 

The scaled gross shapes of the PAs and AAs of the older animals closely matched with that of 

the 15.3-kg template, which confirmed the findings from the previous study that the arterial 

tortuosity remained relatively constant (Figure 3.4B,C). The registration of images from 

preliminary MR scans of the same juvenile ovine obtained one week apart verified the accuracy 

of the registration approach with RMS errors of 0.78 mm in the PA and 0.62 mm in the AA. The 

animals’ mass and scaling factor values correlated linearly (r
2
=0.85 for PA and r

2
=0.91 for AA), 

with every 10 kg increase in mass resulting in an increase of 0.2 in scale (unitless) in both the PA 

and AA size. The 4
th

 and 2
nd

 order polynomial regressions of radial and angle coordinates very 

accurately approximated the coordinates of combined PAs centerline paths, further validating the 

accuracy of the registration method (RMS error = 0.46 mm and 3.90 degs of radial and angle fits, 

respectively). The resulting AA common centerline path provided an accurate representation of 

the combined local center coordinates with angle coordinates of local center points staying 

relatively constant along the X
3
 coordinate (RMS error = 2.43 mm and 2.46 degs for radial and 

angle fits, respectively).  The PA and AA segments of the centerline paths were calculated to be 

24.0 mm and 27.1 mm long, respectively. 

3.2.2.3 Geometry 

The results from the 2D FFT analysis on different mesh densities indicated that the optimal 

number of equally spaced elements in θ and s was a grid of 4 x 3, respectively. For the sake of 
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computational efficiency the data density was reduced by 50% to less than 80 points per element. 

The 12-bicubic hermite element mesh provided an excellent representation of the endoluminal 

surface geometries (PA RMS error = 0.60±0.10 mm, AA RMS error = 0.50±0.04 mm).  

The interpolated arterial shapes with respect to animal mass provided a faithful 

representation of spatiotemporal geometric changes in both the PA (RMS error = 0.80±0.033 

mm for radial coordinates, RMS error = 0.28±0.11 and 1.61±0.22 mm.mm
-1

 for first derivatives 

in θ and t directions, respectively, and RMS error = 1.70±0.88 mm
-1

 for cross partial derivatives) 

and the AA (RMS error = 0.64±0.034 mm for radial coordinates, RMS error = 0.33±0.11 and 

2.23±0.26 for first derivatives in of θ and t directions, respectively;  and RMS error = 2.20±1.25 

mm
-1

 for cross partial derivatives). 

3.2.2.4 Growth deformation patterns 

The change in growth directions as measured by shear was very small in the both PA ( = 

1.17±3.50 degs) and AA ( = 0.37±1.40 degs). Shear deformations during growth were, 

therefore, ignored due to overall negligible values, consequently the principal directions of 

growth deformation coincided closely with the circumferential and longitudinal directions. 

The temporal growth patterns were relatively consistent during the developmental period 

with the spatial heterogeneity becoming progressively more substantial with age. The 

circumferential growth particularly showed larger degree of spatial variation than longitudinal 

growth, where it was dependent on both the circumferential and longitudinal locations (Figure 

3.10 and Figure 3.13). The λ values of adult stage of 60 kg are reported in the following 

explanation of growth deformation patterns. 
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Figure 3.10. Time-interpolated circumferential growth stretch of PA and AA medial and posterior walls. 

Circumferential growth was highly heterogeneous in both PA (top) and AA (bottom) due to mutual radial 

constraints they impose on outlined regions of their respective medial walls and absence of constraint on their 

posterior aspects. 

 

Most of the medial wall of the PA grew very little circumferentially compared to other 

aspects of the artery (1.12±0.012) while λ of a large segment of the AA medial wall was not as 

substantially inhibited (1.43±0.071) (Figure 3.10 and Figure 3.14A). The circumferential growth 

of the PA lateral wall significantly decreased towards the BFN (from 1.69±0.11 to 1.28±0.067) 

(Figure 3.11 and Figure 3.14B). A similar, but less pronounced, trend was observed on the 

anterior wall, where towards the BFN, the λθ values dropped from a mean of 1.70± 0.066 to 

1.48±0.035 (Figure 3.11 and Figure 3.14B). The average circumferential growth was 
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significantly larger on the posterior wall compared to the other three walls, and the pattern was 

relatively less heterogeneous (1.73±0.056) (Figure 3.10 and Figure 3.14B). 

The circumferential growth patterns did not significantly change in the axial direction on 

most of the lateral wall of the AA (1.66±0.056) (Figure 3.11 and Figure 3.14C); however, λ 

increased in the circumferential direction for less than 30% from anterior towards posterior 

walls. On the anterior wall of the AA, where the main side branch was located (Figure 3.11), 

circumferential growth appreciably changed, with the region located right after the side branch 

having significantly smaller growth (1.28±0.029) compared to the rest of that aspect 

(1.47±0.067). The largest circumferential growth in the AA occurred on a large segment of its 

posterior wall with λθ of 2.019±0.047 (Figure 3.10 and Figure 3.14C). 
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Figure 3.11. Time-interpolated circumferential growth stretch of PA and AA anterior and lateral walls. 

Proximal region to BFN of PA lateral wall (top), that appears to coincide with anatomical position of the auricle of 

the left atrium, grew about 60% less. A decrease of at least 20% in circumferential growth stretch values on 

corresponding region of PA anterior wall postulated to be due to connection with pericardial sac. Main side branch 

on anterior wall of AA (bottom) was slanted towards end-ROI  resulted in 18% less growth on region located right 

after side branch. Large axial regions of anterior and lateral walls grew slower than posterior wall, most likely due to 

constraints of superior vena cava and left brachiocephalic vessel. 
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Figure 3.12. Time-interpolated longitudinal growth stretch of PA and AA posterior walls. 

Posterior and medial walls of PA (Top) were significantly larger, due to a larger curvature, than that of the posterior 

wall of AA (Bottom). 

 

The longitudinal growth had considerably smaller degree of heterogeneity compared to 

the circumferential growth (Figure 3.12 and Figure 3.13). The posterior and medial walls and a 

portion of the lateral wall of the PA showed, respectively, progressively larger longitudinal 

growth with age (2.50±0.10) compared to most of the anterior wall, which had a slower and 

relatively uniform longitudinal growth (1.99±0.094) (Figure 3.12,Figure 3.13 and Figure 3.14E). 

The considerably larger longitudinal growth of the PA posterior wall as compared to the anterior 

wall was mainly due to its axial curvature and essentially unchanged tortuosity of the centerline 

path during the whole growth period (Figure 3.4). That is in order to maintain constant tortuosity, 

the posterior wall had to grow faster than the anterior wall (Appendix A3). Due to the absence of 

a comparable axial curvature in the AA (Figure 3.5B), for most part, the longitudinal growth of 

the AA was relatively smaller and less heterogeneous with a mean of 1.80±0.023 (Figure 3.12-
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Figure 3.14F). The presence of a relatively large curvature on a small region of the posterior wall 

resulted in a slight rise in λs (Figure 3.12 and Figure 3.14F). 

The areal stretch was less heterogeneous than either the longitudinal or circumferential 

stretch in the PA. The lateral wall consistently had relatively smaller areal stretch starting about 

30% away from BFN (2.77±0.18) compared to the rest of that wall (3.72±0.13). The medial wall 

had on average the smallest growth as measured by an areal stretch of 2.88±0.28. The posterior 

wall grew the most (4.19± 0.22) with anterior wall having the next largest growth in surface area 

(3.31±0.26). The areal stretch of the AA was only slightly non-uniform on the medial and 

anterior walls with means of 2.72±0.21 and 2.51±0.22, respectively.  The change in surface area 

was fairly constant and larger on the lateral wall of the AA in the axial direction (3.03±0.12) 

with the posterior wall growing the most (3.44±0.29). 
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Figure 3.13. Time-interpolated longitudinal growth stretch of PA and AA anterior walls. 

Longitudinal growth of PA (Top) and AA (Bottom) uniformly changed with age with larger growth of PA anterior 

wall at the 60-kg growth stage attributed to its larger curvature than that of AA. 
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Figure 3.14. Circumferential growth stretch profiles of PA and AA at the adult stage (60 kg). 

Circumferential growth of PA and AA medial walls (M) shown in (A), and those of lateral (L), anterior (A) and 

posterior (P), with approximate position of AA main side branch, shown in (B) and (C), respectively. The paths 

along four walls and locations for the computation of growth rates are illustrated in PA (D). Longitudinal growth 

stretch profiles along four walls of PA and AA, shown in (E) and (F), respectively. 

3.2.3 Growth Rates 

The growth rates were computed in the STJ, middle point (MPT) regions and the BFN region in 

the PA (Figure 3.14D) or end-ROI region in the AA on all four aspects of each artery (Table 

3.1). Both circumferential and longitudinal growth rates increased with age as compared at four 

different growth stages from youngest to oldest time points (except λ
S

of the AA was constant 

up to 35-kg growth stage). For the most part λ of the PA was small up to about the 35-kg 

growth stage (about 4 months of age) and increased approximately linearly thereafter. The AA 

circumferential, however, was relatively more linear with smaller change in growth rates. The 
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circumferential growth rate on the ‘contact’ segment of the medial wall of the PA was 

substantially smaller than that of the corresponding segment of the AA medial wall. 

 

Table 3.1. Circumferential and longitudinal surface growth rates in PA and AA. 

Rates computed after ~35 kg growth stage in four circumferential and three longitudinal regions (reported as 

mean±SD in %/kg). 

Artery 
Axial 

region 

Circumferential Growth Rate 
 

Mean Medial Posterior Lateral Anterior 

PA 

STJ 1.5±0.5 2.3±0.7 2.4±1.3 1.9±0.6 2.0±0.8 

MPT 0.48±0.12 3.0±1.1 1.1±0.5 1.9±0.6 1.6±0.6 

BFN 0.24±0.03 1.9±0.6 0.48±0.13 0.83±0.16 0.9±0.2 

AA 

STJ 1.6±0.06 2.7±0.7 1.3±0.2 1.5±0.5 1.8±0.4 

MPT 1.1±0.05 2.9±0.8 1.7±0.3 0.50±0.25 1.6±0.4 

End-ROI 1.5±0.2 2.1±0.5 1.1±0.02 1.0±0.1 1.4±0.2 

 

 

Artery 
Axial 

region 

Longitudinal Growth Rate 

Medial Posterior Lateral Anterior 

PA 

STJ 2.9±0.7 3.3±1.0 3.3±0.7 3.4±0.9 

MPT 4.6±1.1 4.2±0.9 3.6±0.9 2.3±0.6 

BFN 2.9±0.7 3.5±0.9 2.8±0.7 2.2±0.6 

Mean 3.5±0.8 3.7±0.9 3.2±0.8 2.6±0.7 

AA 

STJ 1.7±0.4 2.5±0.7 1.5±0.7 1.7±0.4 

MPT 1.9±0.4 2.1±0.4 2.3±0.6 1.6±0.4 

End-ROI 1.9±0.4 1.9±0.4 1.4±0.7 2.1±0.4 

Mean 1.8±0.4 2.2±0.5 1.7±0.7 1.8±0.4 
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3.3 DISCUSSION 

3.3.1 Overview 

This study is the first to investigate the spatial and temporal postnatal growth changes in the 

geometry (expressed as a deformation) of the AA and PA during the postnatal development. 

Knowledge of normal arterial growth kinematics can shed light on mechanisms guiding 

development and allow detection of deviations that can change arterial mechanics, which can set 

the stage for the development of a degenerative disease [130]. As an example, it has been 

determined that during normal embryogenesis the truncus arteriosus begins to split and form into 

the anterior pulmonary artery and the posterior aorta [12]. Possibly due to their common 

embryologic origin from a single outflow tract, there are disease conditions that originate in one 

artery and eventually affect both arteries [19, 131]. This provided an additional reason to 

characterize the growth deformation of both the AA and PA to quantify the degree of mechanical 

association of these two arteries.  

3.3.2 General Trends and Implications 

The key findings from the initial study were that the postnatal volumetric growth of the 

pulmonary and aortic root as well as the PA and AA scaled with the weight of the animal, and 

occurred at the same rate in both arteries. Despite considerable increase in actual length, the PT 

maintained its tortuosity while the contribution of the sinuses of the Valsalva to its length 

decreased over time. The alterations in the surface geometry of the PT were found to be 



 75 

considerably non-uniform as compared to the AA. The cross-sectional shape of PT became more 

elliptical with age and more non-uniform along its length.  

The surface growth deformations revealed that the region of the medial PA wall in 

contact with AA had the smallest computed growth at the 12-month postnatal stage. A large 

segment of the AA medial wall and part of its posterior wall, which is proximal to the end-ROI 

(where the PA wraps around the AA), showed about 40% to 70% smaller circumferential 

growth. The lack of significant growth on the sections of both arteries, where they are associated 

with each other, implies that both mutually impose radial constraints. The circumferential growth 

rate on the AA medial wall in the PA-coupling region was about four times as fast as that of the 

corresponding region on the PA medial wall. Therefore, the constraint imposed by the AA on the 

PA had a substantially larger inhibiting effect on the PA circumferential growth than vice versa.  

The lateral wall and anterior walls of the PA showed, respectively, the next highest 

degrees of spatial heterogeneity. The region proximal to the BFN of the PA lateral wall, that 

coincides with the anatomical position of the auricle of the left atrium, had an average 

circumferential growth comparable to that of the medial wall of the PA and grew about a quarter 

as fast as the rest of that wall. On the anterior wall of the PA, we speculate that the decrease of at 

least 20% in circumferential growth stretch values in the vicinity of the BFN is due to the 

connections to the ligamentum arteriosum in that region.  

The circumferential growth patterns of the rest of the AA seemed to be also guided by the 

presence of surrounding tissue impingements. On the anterior wall of the AA due to the main 

side branch being slanted towards the end-ROI, the region located after the main branch showed 

an average of about 18% less growth than other areas of that wall, resulting in the 

circumferential growth rate slowing down by a factor of about two and a half. Compared to the 
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posterior wall, the relatively slower growth on the large axial region on the anterior wall 

extending to the lateral wall appears to be caused by the constraints imposed by the superior vena 

cava and the left brachiocephalic vessel. 

The orientations of the major axes of cross-sections along each artery relative to that of 

the STJ section remained fairly unaltered in both arteries. This is an indication that the locations 

of surrounding tissue structures or constrains are relatively unchanged during postnatal growth. 

This observation supports the assumption that the relative location of surface material points 

during the study timeline were somewhat persevered.  

It was demonstrated that both arteries became increasingly tapered towards the BFN and 

end-ROI during postnatal maturation. However, the PA taper increased from 0.86 (i.e. nearly 

straight) to 0.67 (for the adult) while the AA tapered at a slower rate from 0.74 to 0.62 (Figure 

3.9B). The study by Huang et al. [54] also reports increasing taper in the AA of mice during the 

postnatal growth stage. The aforementioned constraints proximal to the BFN on the lateral and 

anterior walls of the PA probably have resulted in slower circumferential growth compared to 

more distal regions, and explain the increase in PA taper towards the BFN with age. The 

presence of the main side branch between the STJ and the end- ROI regions in the AA is the 

cause of its greater taper compared to the PA. The radial impingement of the PA on the posterior 

wall of the AA proximal to the end-ROI limits growth in that region and leads to an increase in 

axial taper as the rest of the posterior wall of the artery is considerably less constrained to grow.   

The existence of taper in the AA has been recognized as a physiological adaptation 

allowing for the optimization of pulsatile flow and favorable wave reflective properties that are 

inherent to the design of the conduit arteries [132]. The arterial taper enables connecting 

segments of the cardiovascular system that have different wave propagation or input impedance 
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properties in order to decrease blood flow fluctuations [133] and wave reflection. Therefore, the 

increase in taper with growth can lead to a more efficient wave propagation properties of the AA 

and PA with the rise in hemodynamic demands in larger ovine.  

The cross-sectional geometry of both arteries was elliptical, with the PA ellipticity 

increasing significantly with age compared to the AA. The significant radial impingement of the 

AA on a large segment of the PA’s medial wall along with considerable growth on most of the 

posterior and anterior walls of the PA results in the increase in cross-sectional ellipticity with 

age. In the generated torus phantom the circumferential stretch was also axially variable due to 

the phantom becoming more tapered and was circumferentially variable due to increase in 

ellipticity (Figure 3.15B, D). 
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Figure 3.15. Torus phantoms to verify implementation of growth deformation analysis. 

‘Juvenile’ phantom was affinely enlarged by a factor of 2.33 to obtain ‘adult’ phantom (A), (B) and (C). 

Additionally, it was increased in taper by 20% and cross-sectional ellipticity by 30%, (D) and (E). Circumferential 

stretch was axially variable due to the phantom becoming more tapered and was circumferentially variable due to 

increase in ellipticity (D). The longitudinal stretch was larger on the inner aspect as compared to the outer aspect (C) 

and (E), which indicates that in order for a torturous artery to maintain constant axial curvature, it has to grow more 

on the aspect with larger curvature. 
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The PA longitudinal growth patterns did not significantly change with age; λs was on 

average more than 50% larger and more heterogeneous on the posterior, medial, and a small area 

on the lateral walls. The longitudinal growth patterns resembled those of the torus phantom with 

the inner surface growing significantly more than the outer surface, which indicates that in order 

for the artery to maintain a constant axial curvature, its posterior wall, with larger curvature, had 

to grow more than the anterior one (Appendix A3). This phenomenon was also demonstrated in 

the torus phantom results of Figure 3.15C,E. The large λs on the medial wall was a result of the 

concaved shape of the vessel in that region due to mechanical coupling with the AA. The 

relatively smaller and more uniform longitudinal growth in the AA is due to the absence of 

comparable axial curvature to the PA.  

Understanding normal arterial morphogenesis can yield unique insight into the 

mechanisms of vascular adaptations and their important physiological factors.  As explained, 

there is probably a dynamic interplay between arterial growth kinematics, pulsatile blood flow, 

and arterial hemodynamics. As demonstrated, the existence of and changes in geometric features 

such as curvature and torsion lead to spatial variations in the vessel wall. These geometric 

features can also result in hemodynamic conditions leading to disease localization
 
[134, 135]. 

Furthermore, due to the correlation between vessel geometry and its microstructure, the change in 

morphology of the artery as it grows will result in changes in its mechanical properties [56-58]. 

Additionally, the data on growth deformation patterns allows computation of changes in stress 

distribution, which is an important measure of the onset of disease and an indicator of 

predisposition to a variety of vascular pathologies.   
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3.3.3 Limitations 

Since the animals used here were sacrificed at varying times for other non-related studies, the 

same individual animals could not be imaged for the entirety of the study. However, the growth 

trends found in both arteries for all animals were very consistent. Furthermore, since it was not 

practical to place surface markers on either artery to track growth during the one-year length of 

study, it was assumed that the relative spatial locations with respect to in-surface coordinates 

were maintained within the growth period. This assumption was supported by the registration 

results and especially the similarity in shapes of the scaled centerline paths over the entire 

growth period, which demonstrated that the overall arterial shape was maintained despite local 

changes in geometry.  

3.3.4 Summary  

This study demonstrated, for the first time, highly heterogeneous growth deformation profiles 

with variable growth rates during the normal postnatal development of the AA and PA. The 

heterogeneous circumferential growth patterns led to an increase in taper in both arteries and in 

cross-sectional ellipticity in the PA.  This was a result of the surrounding tissues and the physical 

interaction between the vessels considerably constraining the geometric remodeling of both 

arteries. Interestingly these external forces had a significantly larger effect on the PA growth 

patterns compared to the AA. Due to the larger tortuosity of the PA, its posterior wall had to 

grow more rapidly in the longitudinal direction than its anterior aspect; whereas the longitudinal 

growth patterns in the AA were comparatively less heterogeneous. The present results will lay 
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the basis for a full growth and remodeling simulation of implants in developing individuals, 

including normal and congenitally defective patterns in humans. 
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4.0 REGIONAL CHARACTERIZATION OF THE MECHANICAL BEHAVIOR 

The work in this chapter fulfills the first part of the second specific aim (section 1.7). The 

knowledge of biaxial mechanical behavior of the arterial wall is of great significance as outlined 

in sections 1.3.3 and 1.4. Based on the surface growth patterns delineated in Chapter 3.0, the 

mechanical behavior of the PA wall in four regions around its circumference was characterized 

at two growth stages. Initially, the biaxial behavior of the AA and PA in the porcine model was 

characterized in order to gain insight into the nature of differences in the mechanical properties 

of these two major arteries. Finally, the residual strain of the PA wall was quantified at the STJ 

and BFN in order to characterize arterial wall remodeling patterns during the normal growth 

process. The results from the porcine AA and PA study suggested that the PA has more viscous 

properties than the AA. Additionally, the PA stress-stretch loading path was more nonlinear than 

the AA. The mechanical behavior of the PA was quite heterogeneous in each growth stage. The 

circumferential stiffness among the four regions was relatively similar while the longitudinal 

stiffness was significantly heterogeneous. The medial wall became considerably more 

anisotropic while the biaxial mechanical properties of the anterior and posterior walls were 

maintained. The endoluminal and abluminal circumferential residual strain at the BFN was 

smaller compared to the STJ and significantly decreased with growth while it was fairly 

preserved at the STJ. 
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4.1 METHODS 

The postnatal growth period was represented by two age groups of 4-5 months and 10-12 months 

old, considered juvenile and adult, respectively, in Dorset ovine. For each age group ten fresh 

Dorset ovine PT specimens were obtained from local slaughterhouse for each of the biaxial 

mechanical and residual strain measurement experiments. Specimens were carried in PBS on ice 

for about 45 minutes before arriving at the laboratory to be either tested or stored in the -80
o
C 

freezer. The age of the animal was verified by the size of its pulmonary trunk. 

4.1.1 Biaxial Testing 

A detailed description of the biaxial testing device (Figure 4.1) has been previously presented 

[65, 136, 137]. A summary of specimen preparation and biaxial system is provided below.  

Arterial wall samples were cut into squares of appropriate size (sections 4.1.1.2 and 

4.1.1.3); thickness measurements were taken at three locations using a micrometer Starrett® 

Model 1010 thickness gage (The L.S. Starrett Company) and averaged. Stainless steel hooks, 

0.016 inch in diameter, were tied to both ends of 10 cm long silk suture lines and were attached 

to the specimen with four hooks per side forming two loops of suture (Figure 4.1). A total of 

sixteen hooks were placed creating four pairs of sutures. Four small cut portions of 

polypropylene suture were affixed to the middle region of the specimen in a square pattern using 

small amount of cyanoacrylate glue to serve as fiducial markers. Specimens were submerged in 

room temperature PBS bath and mounted onto the biaxial device with the circumferential and 

longitudinal directions aligned with the X1 and X2 axes, respectively.  
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Figure 4.1. Biaxial mechanical experimental setup. 

 

Using custom-written control software, load control biaxial mechanical testing was 

performed. The samples were taken through ten preconditioning cycles for each biaxial stress 

protocol. The marker positions in the free-floating (no-load) reference states were saved before 

start of the test, after the initial ten equibiaxial stress preconditioning cycles (post-

preconditioned), and finally after the seven-protocol biaxial testing was finished (post-test). The 

post-preconditioned state was used as the reference for all the seven protocols. A 0.4-0.6 gram 

tare load was applied to the specimen to enable proper device operation. 

4.1.1.1 Biaxial Tensile Testing Analysis 

The gage lengths as determined from marker positions from the unconstrained or free-float post-

preconditioned states were used as the reference for all strain calculations. The biaxial 

deformation of soft biological tissues is generally very heterogeneous. In order to calculate 
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deformation of a planar biaxially loaded arterial wall sample, using limited number of fiducial 

markers, it was assumed that the deformation within the marker-delimited area is homogeneous. 

The stretch calculation method used is well documented for soft tissues [62, 138]. The 

generalized planar biaxial deformation is considered to be  

1 1 1 1 2x = λ Χ + κ Χ ,      2 2 2 2 1x = λ Χ + κ Χ ,       (3.1) 

where X and x are the locations of material particles in the reference and deformed states, 

respectively, and λi and κi, being the in-plane stretch ratios and shear. The locations of markers 

are tracked the using an optical tracking software. Xn, where n is the marker number, are the 

pixel coordinates of the marker positions in the reference configuration and xn, are the 

deformation-dependent marker coordinates. Shape functions are used to map the real pixel 

coordinates into an isoparametric coordinate system (Figure 4.2) such that the marker 

displacements u can be calculated as the linear sum of the isoparametric shape functions 

according to 
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where f  is the set of isoparametric shape functions;  and  are the isoparametric coordinates. 
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Figure 4.2. Mapping of marker coordinates into an isoparametric coordinate system. 
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The spatial derivatives of u with respect to  and can then be calculated as 
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which can be used to derived the spatial derivatives of u with respect to x can using the relation 
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These spatial derivatives comprise the components of the of the deformation gradient, FiJ, from 

which λ and κ can be determined by 
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 (3.5) 

Since soft tissues are composed primarily of water, they can be considered 

incompressible so that J = det(F) = 1; thus, λ3 is calculated from the components of F (section 

2.4.1). The corresponding Lagrangian-Green strain tensor was calculated according to Eq. (2.11). 

Using the measured axial loads, the deformation gradient tensor and the initial specimen 

dimensions, Cauchy stress tensor  at each time t was calculated. The first and second Piola-

Kirchhoff stresses (P and S, respectively) were computed using the deformation gradient tensor 

and  according to Eqs. (2.18) and (2.19).  

The shear components of the deformation gradient and stress tensors can be considered 

negligible if fibers are mainly aligned or symmetrically distributed along either loading axes; in 

that case, the two remaining major stress components, S11(E11, E22) and S22(E11, E22), can be 

determined from planar biaxial testing and used in developing the constitutive equation. 
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4.1.1.2 Comparative study of the PA and AA in porcine model 

Fresh adult porcine hearts (n=8) with intact AAs and PTs were obtained from the local abattoir. 

A porcine model was chosen because of its similar anatomy and biomechanics to human 

cardiovascular system. Before performing biaxial testing on all samples, the maximum stress 

level for conducting a one-to-one comparison of the two arteries mechanical properties had to be 

determined. Therefore, the effect of stress history on the biaxial behavior was evaluated on three 

samples from each artery by subjecting each sample to ten cycles of preconditioning sequentially 

to maximum equibiaxial stress levels of 40 kPa, 60 kPa, 80 kPa and again 40 kPa. Based on the 

results obtained, each pulmonary and aortic sample was biaxially loaded to the estimated average 

respective pulmonary and systemic physiologic hoop stresses of 30 and 80 kPa. One specimen 

from each of the central regions of medial and lateral walls were excised from each artery. The 

specimens were cut into squares of 15 mm per side. The specimens were subjected to equibiaxial 

stress controlled testing. 

4.1.1.3 Study of postnatal mechanical properties of PA 

From each artery four square samples were excised from the following four locations around the 

circumference (Figure 4.3): medial, lateral, posterior and anterior. The specific location of 

samples on each of four walls was chosen based on the circumferential growth deformation 

profile reported in Chapter 3.0. Each set of four specimens was tested on the same day. 

Specimens were cut into squares of 10-15 mm per side.  

Each specimen was taken to a maximum biaxial stress of 35 kPa which is approximately 

equivalent to the peak systolic stress level. The complete seven-protocol planar biaxial routine 

consisted of the following stress controlled circumferential-to-longitudinal stress ratio: 8.75:35, 

17.5:35, 26.25:35, 35:35, 35:26.25, 35:17.5 and 35:8.75 kPa. For each protocol, specimens were 
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taken through contiguous loading and unloading cycles of preconditioning until cycles became 

repeatable or a steady state was achieved. The loading and unloading paths of all specimens 

became repeatable in less than 5 preconditioning cycles. The loading duration was set to 10 

seconds resulting in strain rates of 3-4 percent/sec and 5-6.5 percent/sec, in circumferential and 

longitudinal directions, respectively.   
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Figure 4.3. Locations of biaxial samples excised from PA anterior (A), medial (M), posterior (P), and lateral (L) 

walls. 

4.1.2 Residual Strain Measurement 

The residual strain measurements were performed immediately following the arrival of the tissue 

from the slaughterhouse. One ring from the STJ and one ring from the BFN regions of the fresh 

PA were excised. A large number of black water-insoluble ink dots were placed uniformly along 

the thickness of the ring with a fine brush to better identify endoluminal and abluminal surfaces 

(Figure 4.4).  To allow tissue re-equilibration and inhibit protease activity, the ring was initially 

placed in a PBS-PMSF solution at 37
o
C for 20 minutes. Thereafter, the ring was placed in a tank 

containing PBS and papaverine-HCl to relax the smooth muscle cells; the temperature was 
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maintained at approximately 37
o
C by circulating the tank solution through a Julabo heater bath 

(Julabo Labortechnik GmbH, Seelbach, Germany; Figure 4.4). The rings were attached point-

wise with a high viscosity glue to a small insulated wire piece (1 mm in diameter) attached to a 

stable base to keep the ring in one location and the edges in the right orientation towards the 

camera. After a few minutes, a lateral cut was made on the ring. A custom-written Labview 

program (National Instruments Corporation, Austin, TX) was run to acquire an image every 2 

minutes for 30 minutes. ImageJ software (National Institute of Health Image, 

http://rsb.info.nih.gov/ij/) was used to measure the lengths of endoluminal and abluminal surface 

boundaries in the intact and final state of cut specimens. The circumferential residual strain was 

calculated in the cut ring with respect to unloaded state according to 

 2 

RSθ RSθ

1
E = λ -1

2
, 

where intact
RSθ

cut

L
=

L
λ . 

 

Specimen Tank

Thermometer

Camera

Tank-Heater media 

circulating pump

Julabo Heater

Temperature Control System

 
 
Figure 4.4. Residual strain measurement experimental setup (left). Ring (unloaded) and cut (stress-free) specimens 

(right). 

http://rsb.info.nih.gov/ij/
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4.1.3 Statistical Analysis 

Statistical analysis was performed using the SPSS software. A mixed factorial analysis of 

variance (ANOVA) was performed for the between-subjects variables of age and within-subject 

variables of location and direction (SPSS software). The Mauchly's test of sphericity was 

performed for examining the equality of error variances. The multiple post hoc comparisons 

were made using the Bonferroni correction when error variances were similar and the 

Greenhouse-Geisser post-hoc adjustment was made when homogeneity of variance was violated. 

A one-tailed value of p < 0.05 was considered statistically significant. The effect size r was 

calculated for each statistical comparison to determine whether the difference between data was 

substantive (the threshold for a large effect is defined to be above 0.5). All values are reported in 

terms of mean  standard error (SEM). 

4.2 RESULTS 

4.2.1 Biaxial Behavior 

4.2.1.1 Comparative study of the PA and AA in porcine model 

The initial and final 40kPa loading paths of the same specimens did not coincide in the higher 

stress regions in both circumferential and longitudinal directions; the stress-stretch curves of 

each protocol instead followed more closely the immediately preceding curve (Figure 4.5). 

Therefore, the PA wall retained its loading history, and the preconditioning for each protocol did 
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not ‘reset’ the mechanical behavior of the PA wall. However, all the loading paths of the AA 

coincided (Figure 4.5).  

The PA biaxial behavior was nearly isotropic in the middle region of the medial wall 

(p>0.2) while the lateral wall samples exhibited significant anisotropy (p<0.03). The AA biaxial 

behavior was significantly anisotropic at both locations (p<0.01, Figure 4.6). Therefore, the 

biaxial behavior of the PA was more heterogeneous than that of the AA. The AA maximum 

equibiaxial stress value was approximately 2.7 times larger than that of the PA maximum. 

However, the mean peak circumferential and longitudinal stretches of the AA at both locations, 

1.200.02 and 1.360.04, respectively, were close to that of the PA with respective peak 

circumferential and longitudinal stretches of 1.280.02 and 1.360.04. 

The tangential moduli of both arteries were calculated based on the slope of the mean 

first Piola-Kirchoff stress of the equibiaxial stress loading path (Figure 4.6).  The deformation-

stiffening response of the AA was fairly linear; however, the PA tangential modulus was 

nonlinear remaining relatively constant up to about 13 to 18% stretch and increased linearly 

thereafter (Figure 4.7). The AA showed a much larger degree of anisotropy with 1.80.1 times 

larger circumferential tangential modulus than the longitudinal modulus.  
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Figure 4.5. Effect of loading history on porcine PA and AA stress-stretch curves despite preconditioning. 

Representative circumferential (top) and longitudinal (bottom) equibiaxial stress loading paths of PA and AA 

samples after sequentially preconditioned to each of maximum stress levels of 40 kPa, 60 kPa, 80 kPa and 40 kPa. 
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Figure 4.6. Equibiaxial stress-controlled behavior of porcine PA and AA. 

PA response is more nonlinear as well as heterogeneous, with its medial wall (top) nearly isotropic and lateral wall 

(bottom) anisotropic, compared to AA. Although AA maximum applied biaxial stress value was about 2.7 times 

larger than that of the PA, mean peak circumferential and longitudinal stretches of AA at both locations, 1.200.02 

and 1.360.04, respectively, were very close to that of PA with peak longitudinal stretch of 1.280.02 and 

circumferential stretch of 1.360.04. 

 

The mean ratio of the circumferential to longitudinal moduli of the PA were only 

1.320.01 in the medial and 0.890.03 in the lateral walls. The tangential moduli of the AA in 

circumferential and longitudinal directions were 40643 and 20950 kPa, respectively, in the 

medial location and 38971 and 24965, respectively, at the lateral wall. The PA wall was 

significantly more complaint with respective circumferential and longitudinal tangential moduli 

of 12670 and 14686 kPa at the medial and 12149 and 9137 at the lateral walls (p<0.01).  
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Figure 4.7. Tangential moduli of porcine PA and AA equibiaxial stress-stretch loading paths. 

Deformation-stiffening response of the AA was fairly linear while PA tangential modulus was constant up to about 

13 to 18% stretch and increased linearly thereafter. The AA showed much larger degree of anisotropy with 1.80.1 

times larger circumferential tangential modulus than the longitudinal modulus. The circumferential modulus was 

only 1.320.01 and 0.890.03 times the longitudinal modulus in PA medial and lateral samples. 

 

4.2.1.2 Postnatal growth alterations of PA 

The spatial variation of the thickness of the biaxial specimens, measured before testing, was 

significant. The anterior and posterior locations had similarly larger thicknesses (1.60.08 mm) 

compared to medial and lateral positions (1.140.05 mm, p<0.006) in the juvenile Ovine group 

(Figure 4.8). The regional thickness change with growth was not significant (p>0.06).  

The biaxial loading curve for each protocol was stable and repeatable after the first two to 

three preconditioning cycles. A representative raw stress and deformation data for all seven 

biaxial protocols is shown in Figure 4.9. The deformations due to preconditioning in the 

circumferential and longitudinal directions were maintained with growth (p>0.2, Figure 4.10). 

The effect of preconditioning on the circumferential sample dimension was significantly 

heterogeneous. The change in the circumferential dimension was much larger in medial samples 

compared to the posterior ones (p<0.006). The preconditioning resulted in a much larger stretch 
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in the circumferential, 1.070.01, than the longitudinal direction, 1.0120.003, in the anterior 

and medial locations (p<0.001) while it did not show any significant directional dependency for 

posterior and lateral samples (1.030.03, p>0.07).  

The degree of change in sample dimensions due to the seven-protocol biaxial testing in 

any given direction was not significantly heterogeneous (p>0.2, Figure 4.10). The biaxial testing 

had a substantially smaller effect on the sample dimensions than the first ten preconditioning 

cycles, resulting only in a mean stretch of 1.0190.002 in the circumferential and 1.0060.002 in 

the longitudinal directions after the initial preconditioning, indicating that the tissues were not 

damaged during testing. The directional-dependency of the specimen deformation due to biaxial 

testing and its significant spatial variability in the juvenile group were consistent with the 

preconditioning deformation patterns. The small change in the free-float circumferential 

dimension as a result of biaxial testing became even significantly less in the adult group in all 

four regions with larger decrease in the medial and anterior walls (p<0.005). 
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Figure 4.8. Thicknesses (mm) of excised specimens of adult and juvenile PA. 

Anterior and Posterior samples were consistently thicker than the medial and lateral samples (p<0.006). The 

thickness of PA wall was maintained with growth in all regions. 
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Figure 4.9. Representative seven-protocol biaxial circumferential and longitudinal stress (P11 and P22) data 

(left) and corresponding measured deformations (right). 

 

The biaxial loading paths of the PA wall samples were nonlinear. However, A prominent 

toe region similar to that of heart valves [64] and other arterial tissues [139] was not present 

(Figure 4.11). The circumferential direction was consistently stiffer than the longitudinal 

direction in all regions except the posterior wall, where the biaxial behavior was nearly isotropic 

in both age groups (p>1.0, Figure 4.11 and Figure 4.12). The compliance in the circumferential 

direction was not spatially variable in the juvenile stage (p>0.07) while it became slightly more 

heterogeneous towards the adult stage with the medial wall significantly stiffer circumferentially 

than the lateral wall (p<0.04, r=0.63). The longitudinal compliance of the lateral wall 

considerably increased with growth (p<0.01, r=0.57, Figure 4.12). In the juvenile stage, the 

anterior and medial regions exhibited a similarly larger degree of anisotropy than the posterior 

wall (p<0.02) while posterior and lateral walls were not significantly different in their biaxial 

behavior (p>0.8), based on the comparison of their maximum longitudinal-to-circumferential 
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stretch ratio (Figure 4.13). The anisotropy of medial wall increased substantially during postnatal 

growth (p<0.006, r=0.64) while it was relatively maintained in the other regions (Figure 4.13).   
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Figure 4.10. Change in load-free dimensions of samples due to preconditioning and seven-protocol biaxial testing. 

Change in circumferential 1 and longitudinal 2 dimensions both due to preconditioning (top) and biaxial testing 

(bottom) was not significantly heterogeneous (p>0.2). Preconditioning changed circumferential dimension 

significantly more than the longitudinal one in both age groups and biaxial testing had the same effect in the juvenile 

group in anterior and medial locations (p<0.03). 
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Figure 4.11. Circumferential (filled symbols) and longitudinal (hollow symbols) equibiaxial stress loading paths in 

the given four regions of juvenile (circles) and adult (triangles) PA wall. 

Biaxial loading paths were nonlinear; all regions were circumferentially stiffer than longitudinally except the 

posterior wall, where the biaxial behavior was nearly isotropic in both age groups. 
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Figure 4.12. Regional growth changes in circumferential and longitudinal compliance of PA wall. 

Maximum Circumferential (filled symbols) and longitudinal (hollow symbols) stretch of equibiaxial stress protocol 

of PA anterior (A), medial (M), posterior (P) and lateral (L) regions shown in juvenile (Jvl) and adult (Adt) groups. 

Circumferential compliance was relatively homogeneous at juvenile stage (p>0.07) while it became heterogeneous 

towards the adult stage with the medial wall circumferentially stiffer than the lateral wall (p<0.04, r=0.63); lateral 

wall became considerably more longitudinally compliant with growth (p<0.01, r=0.57). 
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Figure 4.13. Regional growth changes in anisotropy of PA wall. 

Ratio of maximum longitudinal to circumferential stretch of equibiaxial stress protocol in four regions of PA with 

growth: anisotropy of medial wall increased substantially during postnatal growth (p<0.006, r=0.64) while it was 

relatively maintained in the other regions. 
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4.2.2 Residual Strain  
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Figure 4.14. Circumferential residual strain of endoluminal and abluminal surfaces in juvenile and adult ovine. 

Larger residual strain values were measured on abluminal surface than endoluminal surface in both age groups 

(p<0.001); BFN residual strain decreased considerably over time (p<0.02, r=0.5) while it was maintained at STJ. 

 

The internal diameter of the PA increased by approximately 1.4 times on average based on the 

measurements of the load-free ring specimens. The abluminal circumferential residual strain was 

consistently larger compared to the endoluminal surface (p<0.001, Figure 4.14).  In the juvenile 

stage, the respective endoluminal and abluminal residual strains of -0.230.02 and 0.390.05 at 

the STJ decreased to -0.180.02 and 0.350.03, respectively, at the BFN. However, this distal 

decrease in residual strain was not significant in the juvenile group (p>0.06). While the STJ 

residual strain was relatively preserved with growth (p>1), it did significantly decrease at the 

BFN from juvenile to adult stage. This decline in amount of residual strain at the BFN with 

growth occurred both at the endoluminal surface, falling from -0.180.02 to -0.100.02, and at 

the abluminal surface, from 0.350.03 to 0.190.02 (p<0.02, r=0.5). This finding was further 
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confirmed by the adult group’s considerably smaller residual strain at the BFN compared to the 

STJ, with residual strains of -0.220.02 and 0.300.05 at endoluminal and abluminal surfaces, 

respectively, (p<0.01, r=0.6).  

4.3 DISCUSSION 

The study of the changes in arterial geometry and mechanical properties at their zero-stress and 

no-load states and relating these to arterial histology are critical steps toward understanding the 

underlying mechanism of variations in arterial in vivo mechanical behavior due to vascular 

growth and remodeling. The regional mechanical behavior of the aorta and its postnatal growth 

adaptations have been investigated in several previous studies [53-55, 61, 140, 141]. While there 

have been a few studies of pulmonary artery mechanics [63, 142-144], there have not been any 

other rigorous investigation of the regional pulmonary arterial mechanical behavior as a function 

of growth. In this chapter, the regional mechanical properties of the porcine PA and AA were 

initially studied to understand the uniqueness of the PA mechanical behavior. Subsequently, the 

regional mechanical properties of the ovine PA were characterized guided by the previously 

quantified alterations in local surface geometry during postnatal growth.  

4.3.1 Biaxial Behavior of Porcine PA and AA 

The results of this study demonstrated that the PA and AA had significantly different mechanical 

behavior under their respective physiological stresses. As expected, the circumferential direction 

was stiffer in both arteries. The PA retained its loading history while the biaxial behavior of the 
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AA was not dependent on the previous loading regiment. This finding suggests that PA has more 

viscous properties than the AA. Cox [145] claimed that smooth muscle cells are contributors to 

viscous properties in the canine pulmonary arteries. Wells et al. [60] reported that changes in 

arterial viscosity during postnatal maturation closely followed changes in the relative smooth 

muscle cell content in the ovine thoracic aorta. Therefore, the expected relative smooth muscle 

cell content of the PA should be considerably more than that of the AA. 

Although the AA maximum physiological stress was about 2.7 times larger than that of 

the PA, their mean peak strains were very similar in circumferential direction and nearly 

identical in longitudinal direction. This phenomenon could be achieved due to the AA’s 

substantially larger stiffness; on average it had 3.2 times larger circumferential and 1.4-2.7 times 

larger longitudinal tangent modulus when compared to the PA.  This finding suggests that the 

mechanical driver behind the structural differences between these arteries is preservation of an 

optimal homeostatic deformation, rather than stress. The study by Guo and Kassab [54] supports 

the same deformation-driven mechanism behind postnatal growth and remodeling in the aorta.  

It was also demonstrated that mechanical behavior of both arteries was considerably 

heterogeneous. The PA’s nearly isotropic behavior in the central region of the medial wall can be 

justified because of larger axial curvature in that region compared to the lateral wall. However, 

finite element analysis should be undertaken to fully elucidate the underlying cause of regional 

variations in mechanical behavior.  

Therefore, it was established that biaxial properties of the PA are unique and very distinct 

from that of the AA. In the Ross procedure, the pulmonary root is used to replace the 

malfunctioning aortic root. The pulmonary root, which normally functions within the low 

pressure pulmonary system, must swiftly adapt to the systemic pressure. The subsequent 
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increases in wall stress lead to remodeling and autograft dilation that can cause aortic 

insufficiency or aneurysm formation requiring reoperation [146, 147]. The differences in 

mechanical behavior of these two arteries as elucidated in this study are important for 

understanding differences in stiffness and wall stress before the Ross procedure.  

All the tissue-engineering research to date in large arteries has been focused on the 

pulmonary arterial replacement due to challenges with the higher physiological demands of the 

aortic environment [29, 30, 50, 148].  The engineering of the tissue conduit replacement of the 

diseased or malfunctioning aorta is necessary in congenital heart diseases, congenital connective 

tissue disorders such as Marfan’s syndrome, or in cases of rupture-prone atherosclerotic 

aneurysm formation [149]. The tissue conduit replacement of the aorta requires adjusting the 

tissue-engineering approach for the pulmonary artery to ensure survival of the conduit in the 

systemic environment. The knowledge of biomechanical differences of these two arteries can 

inform the modifications to the tissue-engineering methodology used for the pulmonary conduit 

replacement. 

4.3.2 Biomechanical Properties of PA during Postnatal Growth 

The normal growth process resulted in complex modifications in mechanical behavior of the PA. 

The summaries of results along with their implications are outlined in the following sections. 

4.3.2.1 Geometry 

The regional thickness of the PA wall was significantly heterogeneous. The anterior and 

posterior walls were much thicker than the medial and lateral locations implying the existence of 

larger wall tension during the cardiac cycle in those regions according to the homogeneity of 
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stress hypothesis. There was no measured increase in wall thickness and no significant change in 

its spatial variation with growth denoting increased hoop and axial stress, based on Laplace’s 

law. Due to an average of 1.4 times increase in diameter, thus, a significant increase in diameter-

to-thickness ratio with growth, in absence of any measured change in physiological blood 

pressure, the hoop stress in the PA wall rises by about 40% with growth. 

4.3.2.2 Biaxial mechanical behavior 

The PA wall was circumferentially stiffer in both age groups implying a more dominant 

circumferential fiber orientation. Previous studies of the PA biaxial behavior in other animals 

report similar directional properties [143]. The PA wall exhibited an average of 40% 

circumferential and 40-60% longitudinal strains under equibiaxial stress. The large 

circumferential and longitudinal extensibility of the PA wall is of great significance since during 

cardiac systole about one-third of the heart’s stroke volume can be stored in the PA alone leading 

to significant attenuation of blood flow pulsatility in the rest of the pulmonary system [150]. The 

loss of arterial compliance is a predictor of cardiovascular mortality. In pediatric congenital heart 

disease and hypoxia-induced pulmonary hypertension, for example, the extent of decrease in 

pulmonary artery compliance is an indicator of disease progression [47, 144, 151, 152].  

Longitudinal compliance, particularly in the juvenile group, was substantially more 

variable than the circumferential behavior amongst the four regions studied. The heterogeneity in 

the longitudinal stiffness resulted in nearly isotropic behavior on the posterior wall and a 

significant degree of anisotropy of the anterior wall. The heterogeneity in biaxial behavior 

correlated with the degree of discrepancy between circumferential and longitudinal curvatures in 

a given region. The posterior aspect of the PA wall has larger axial curvature compared to the 

anterior aspect, and thus, the isotropic behavior of the posterior wall specimens can be attributed 
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to more similar curvatures in the circumferential and longitudinal directions of the posterior wall 

in the in situ configuration.  

The biaxial behavior of the medial and lateral walls was modified with growth while that 

of the anterior and posterior walls was unchanged. The circumferential growth deformation 

patterns, as reported in Chapter 3.0, were also substantially altered in the same medial and lateral 

regions. Although circumferential growth seems to have been restricted in the lateral location, 

the circumferential stiffness was not affected in that region while the longitudinal compliance 

considerably increased with growth. The medial region exhibited significantly larger degree of 

anisotropy in the adult group with larger longitudinal compliance and, to a lesser degree, a larger 

circumferential stiffness, noting that neither of these directional changes was individually 

statistically significant. These findings support the assumption made in the first specific aim that 

the computed growth deformation patterns were due to change in the vessel surface geometry 

and not due to modification in the mechanical behavior.  

The spatial variation and possible increase in the regional in vivo axial pre-stretch with 

growth in medial and lateral aspects of the PA due to modifications in surface geometry can play 

a possible role in measured changes in longitudinal compliance. The changes in circumferential 

and longitudinal curvatures in these regions with growth are plausible drivers for the significant 

alterations in directional mechanical properties. However, further analysis utilizing finite element 

methodology is necessary to investigate the underlying cause of these measured alterations in the 

regional mechanical behavior with growth. 
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4.3.3 Residual Strain Patterns 

It is now well established that the vascular system contains residual strain in the no-load state. 

This effect can be revealed by making a radial cut in a ring tissue. It has been demonstrated that 

this mechanism generates non-uniform pre-stress transmurally in the vessel wall, thus reducing 

the concentration of the circumferential stress at the inner wall at normal physiological pressure 

[1, 66, 68]. The study of the change in the zero-stress state is of a unique significance because 

the zero-stress is the only state at which cells and extracellular matrix are at natural shape. The 

residual strain patterns along the PA wall have been described in previous studies [153-155], but 

the alteration in this pattern with growth has not been previously reported.   

The measured residual strain values during the postnatal maturation period were 

considerably heterogeneous and became more nonuniform with growth. The abluminal ERSθ was 

substantially larger than that of the endoluminal surface.  Although the transmural distribution of 

ERSθ was not quantified, this observation is an indication that the neutral bending axis is located 

proximally (near the endoluminal surface), indicating that the medial layer is stiffer, hence, more 

mechanically significant than the adventitial layer [156]. Since the change in the abluminal 

residual strain between the two age groups was consistent with that of the endoluminal surface, 

the position of the neutral bending axis is probably relatively maintained with growth.  

There was an average of about 24% circumferential residual stain present at the 

endoluminal surface in the juvenile stage that fell to approximately 16% in the adult stage. The 

residual strain was relatively maintained at the STJ while it significantly decreased at the BFN, 

implying that the PA wall remodels toward BFN while it maintains its structure near the right 

ventricular outflow region. As demonstrated in the previous chapter, the PA tapers distally with 
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growth. This decrease in diameter at BFN and drop in hoop stress in that region may be a 

correlate to the decrease in residual strain. 

The remodeling of the vessel wall in a disease condition such as hypertension or during 

the normal maturation process results in change of the zero-stress state due to the nonuniform 

growth in different parts of the vessel [1, 157]. Fung and Liu [154] studied the effect of hypoxia-

induced hypertension on the zero-stress state of the rat pulmonary artery. In this study they state 

that tissue growth is induced by growth factor and other physical, chemical, and biological 

factors. They claim that physical stress, if shown to influence growth, should also cause tissue 

remodeling under hypertension because of the direct relationship between blood pressure and 

physical stress. Since it was shown in the current study that the PA diameter-to-thickness ratio 

increased with growth, the wall stress should have increased. However, while the nonuniform 

wall stress distribution in the adult arterial wall was provided as a basis for heterogeneity of 

residual strain, the same reasoning cannot explain the relative preservation of residual strain at 

the STJ with growth in presence of larger wall stress in the adult PA. Therefore, further analysis 

is required to elucidate the driving mechanism behind remodeling of the PA wall during the 

normal growth process.  
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5.0 REGIONAL STRUCTURAL CHARACTERIZATION 

The objective of this chapter was to determine the structural correlates to the mechanical 

properties reported in the previous chapter by delineating the spatial variation of the PA wall 

structure during the postnatal maturation as outlined in the second specific aim (sections 1.3.3 

and 1.7). The gross anatomy of arterial wall structure was studied and the regional thicknesses of 

the major arterial layers were measured. The multiphoton microscopy (MPM) technique was 

utilized to obtain high quality images of collagen and elastin microstructure. The elastin structure 

was accurately quantified, and the mean fiber orientation and degree of fiber scattering were 

calculated in the four designated regions of the PA wall with growth. The sizes of all three 

arterial layers were maintained with growth. The elastin fiber network exhibited clear 

directionality and was heterogeneous correlating with the mechanical properties. The change in 

elastin organization of lateral wall corresponded with the postnatal alteration in its mechanical 

behavior. The elastin structure of the medial wall did not change to a significant extent with 

growth.  Therefore, further study is required to elucidate the structural remodeling mechanism 

underlying the regional modification in mechanical behavior of the medial wall during postnatal 

growth.  
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5.1 BACKGROUND 

The collagen and elastin gross fiber orientation have been acquired in fixed tissues using small 

angle light scattering (SALS) technique [158]. This technique has been used along with 

mechanical testing to directly analyze the fiber kinematics during biaxial loading [94, 159]. One 

of the major limitations of the SALS technique is that only gross tissue microstructure can be 

determined: elastin and collagen fibers are not distinguished. Further, only average transmural 

architectural information can be obtained unless the tissue is sectioned, SALS performed on each 

section and subsequently the SALS data of the sections is reconstructed into a 3D configuration 

the get the gross architecture of the tissue [160]. Finally, the three-dimensional trajectory of 

fibers cannot be visualized through the SALS technique. The last two limitations are particularly 

significant for the study presented in the next chapter on quantification of collagen recruitment 

behavior.   

Multiphoton excitation microscopy (MPM) based on the simultaneous absorption of two 

or more near infrared photons has become a powerful technique for the artifact-free, 

nondestructive and high-resolution visualization of the fibrillar components of the extracellular 

matrix such as collagen and elastin in their native environment [161-163]. The non-linear process 

called second harmonic generation (SHG) enables visualization of collagen fibers with 

submicron resolution without the need for tissue processing. In SHG, multiple photons 

simultaneously interact with non-centrosymmetric molecular assemblies of fibrillar collagen 

producing radiation at exactly half of the excitation wavelength [164]. The 3D autofluorescence 

imaging of the elastic fiber is achieved through two-photon excitation autofluorescence (TPEF) 

microscopy. In the conventional confocal laser scanning fluorescence microscopy absorption of a 

single photon supplied adequate energy for the fluorophore to reach the excited state from which 
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it returns to the ground state by producing a photon of fluorescence [165]. In TPEF, the 

fluorophore excitation is achieved by the near simultaneous absorption of two longer wavelength 

photons. TPEF and SHG signals can be excited and detected simultaneously provided that two 

detection channels are present on the microscope. Usually, SHG signal travels in the same 

direction as the incident light and isotropic TPEF is detected in the backward direction. In this 

work, MPM imaging of collagen and elastin is performed on stress-free arterial segments. 

5.2 METHODS 

After biaxial testing, samples were placed in freshly prepared 2% paraformaldehyde solution and 

refrigerated at 4°C overnight. Subsequently, one circumferential strip was cut from each sample 

for transverse sectioning for visualization of the arterial layer structure, and the remaining 

specimen was left for enface sectioning to quantify the collagen and elastin fiber content and 

orientation. The fixed samples were paraffin-embedded; the strip samples were each cut 

transversely into 5-m thick sections for histological staining, and the enface sectioning was 

performed at a 50-m slice thickness for multiphoton imaging. The Verhoeff-Van Gieson stain 

for elastin was applied to strip section for clear identification of arterial layer structure. Different 

arterial layers were visually identified and their thicknesses manually measured using ImageJ 

software.  
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5.2.1 Multiphoton Microscopy 

The Olympus FV1000 MPM system consisted of a mode-locked Ti: Sapphire laser (Chameleon 

Vision, Coherent, Santa Clara, CA) and an Olympus upright optical microscope. The average 

excitation power at the sample was approximately 40mW with an excitation wavelength of 830 

nm and about 10% laser transmissivity. The tissue was line-scanned, and TPEF and SHG signals 

were captured by two nondescanned external photomultiplier tube detectors coupled to the 

longpass dichroic mirrors and bandpass emission filters. The emission wavelengths was set to 

400±100 nm for second harmonic generation signal of collagen, and the second channel was set 

at 525±50 nm for elastin fluorescence. Time-lapse images were acquired using Fluoview 

software (Olympus). Using a 25X water-immersion objective, XY scans (508 × 508 m; 0.497 

m/pixel resolution) were performed at 2 sec/pixel. Depending on the section quality either an 

image stack or a single XY scan was acquired of each slide from the sectioned tissue samples. 

5.2.2 Structural Quantification 

The MPM technique was used to obtain collagen and elastin signals of three enface sections of 

medial layer of each biaxial specimen (n=5 per location per age group), with one section 

proximal to intima, one in the central region, and one proximal to the adventitia. The MPM 

images of adventitial sections of randomly selected biaxial specimens (n=7) were also obtained. 

The elastin and collagen channels of MPM images were separated and maximum intensity z-

projection of collagen and elastin image stacks were obtained using ImageJ, giving a 2D 

projection from the 3D stacks. The relative elastin and collagen content of each image was 

quantified using ImageJ color threshold tool (Appendix B).  
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Due to the presence of collagen fiber’s crimp structure, the fiber axis could not be 

accurately determined. Therefore, only elastin fiber orientations were determined in the sections 

of tunica media based on a method originally developed by Chaudhuri et al. [166] that was 

implemented by Karlon et al. [167] for automated measurement of myofiber orientation and has 

been used to determine the distribution of fiber angle in tissue-engineered scaffolds [168]. A 

custom-written MATLAB program based on the aforementioned method [166] was implemented 

to quantify the fiber orientation distribution (Figure 5.1; Appendices C2 and C3).  

 Specific details of the method were given in previous publications [166, 167] and are 

briefly explained here. Edge detection was performed by convolving a horizontal and a vertical 

mask of a selected size s x s, with the image at each pixel, to give respective gradient measures 

Gx and Gy. The edge image was then constructed from gradient vector magnitude (G = Gx
2
 + 

Gy
2
) and angle  (=tan

-1
[Gx/Gy]). The image was then divided to m x m pixel sub-images, and 

the gradient magnitude G was used as the weighing function for each angle on the domain [-90
o
, 

90
o
] at 1

o
 increments at each pixel in the sub-image. The summed gradient-weighted contribution 

for each angle in the domain was determined, and the dominant fiber orientation was identified 

as the maximum accumulator bin value within a sub-region. The angle values representing each 

bin were accumulated in a histogram to define the collagen fiber orientation distribution in the 

whole image. The circumferential direction in each section corresponded with 0
o
 angle; hence, 

the vessel axis was aligned with the 90
o
 angle. Vertical and horizontal mask sizes were 7 x 7 

pixels (s = 3). Subregion size for direction vector calculation was 16 x 16 pixels. Both mean 

elastin fiber orientation and normalized orientation index (NOI), as a degree of orientation 

dispersion from the mean fiber alignment, were computed to quantify fiber structure in the PA 

wall. 
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Figure 5.1. Quantification of elastin fiber network angular distribution in 2D projection of MPM images. 

Collagen (red) and elastin (green) of a proximal section of tunica media shown on the left with each fiber population 

individually displayed in middle. A depiction of orientation analysis of elastin fibers is demonstrated through 

superimposed regional fiber orientation vectors (white arrows) with corresponding normalized fiber orientation 

distribution graph on the right. 

 

5.2.3 Statistical Analysis 

A one-way ANOVA was performed to evaluate spatial variability (SPSS software). Levene's test 

for homogeneity of error variance was performed. The multiple post hoc comparisons were made 

using the Bonferroni correction when error variances were similar and the Games-Howell post-

hoc adjustment was made when homogeneity of variance was violated. The independent t-test 

was used to assess the changes with growth in each location. A one-tailed value of p < 0.05 was 

considered statistically significant. All values are reported in terms of mean  SEM. 
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5.3 RESULTS 

5.3.1 Thicknesses of Arterial Layers 

The regional variation of arterial layer structure was negligible in both age groups (p>0.4). The 

relative thickness of each layer did not significantly change with growth (p>0.08). The PA wall 

mostly consisted of the tunica media, occupying 810.8% of the wall thickness, and substantially 

smaller wall volume was comprised of tunica adventitia and intima, taking up 110.7% and 

7.30.4% of the wall thickness, respectively (Figure 5.2).  
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Figure 5.2. Relative thickness of each arterial layer in PA wall. 

Verhoeff-Van Gieson stained transverse section of PA lateral wall sample is shown (left) with each layer labeled; 

the collagen is in pink, elastin is in black and smooth muscle is in brown color. The relative thickness of each layer 

is displayed in a bar chart (right): media is substantially thicker than the intima and adventitia. 
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5.3.2 Collagen and Elastin Structure 

Collagen and elastin were closely associated with each other and formed laminas in the tunica 

intima and media. Elastin exhibited two forms: a dense network structure and a thin sheet-like 

structure. The elastin compact network arrangement gradually became sparse distally, moving 

from the intima towards the adventitia (Figure 5.3). In the tunica adventitia, collagen formed 

thick undulated bundles running mostly in the circumferential direction with elastin dispersed in 

between in the form of randomly oriented fiber strands (Figure 5.3). Uniform or very distinct 

internal and external elastic laminae were not present in the ovine PA wall; they mainly appeared 

as sparse perforated narrow sheets (Figure 5.4). 
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Figure 5.3. MPM images showing different layer structures of PA wall. 

Montage of MPM images of a transverse section of PA anterior wall (top) with each layer labeled. MPM images of 

enface sections of intimal, medial and adventitial layers (bottom) displaying representative collagen (red) and elastin 

(green) structure and content in each layer: Collagen was relatively thin and had fine crimp structure in media and 

formed into thicker fiber bundles in adventitia; relative elastin content of media (621%) was significantly larger 

than collagen while collagen was dominant fiber in adventitia (632%). 
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100 m

 

Figure 5.4. MPM images of internal (left) and external (right) elastic lamina-like structures (green) of ovine PA 

wall. 

 

There was not a significant alteration in the relative collagen and elastin content of the tunica 

media spatially and with growth (p>0.3).  The collagen area fraction was measured to be 381% 

(Elastin:  621%) in the tunica media and 632% (Elastin: 372%) in the tunica adventitia.  

There was no significant transmural variation in elastin fiber orientation distribution based on 

the mean fiber orientation and NOI (p>0.4). The elastin fiber structure was considerably 

heterogeneous and was nonuniformly altered with growth. The mean elastin fiber orientation and 

the NOI of anterior and posterior walls did not change with growth (p>0.1). The mean fiber 

orientation values indicated that elastin fibers were considerably more circumferentially aligned 

on the anterior aspect of the PA wall, 05 degrees, compared to the posterior aspect, 308 

degrees (p<0.005) (Figure 5.5). However, according to the NOI quantities, the degree of fiber 

alignment of anterior wall, 383%, was not significantly different from that of the posterior wall, 

443% (p>0.1).  

The elastin fibers’ mean orientation in the medial wall was similar to that of the anterior 

wall and seemed to become more circumferentially aligned with growth, changing from 77 to 
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23 degrees. However, this change in fiber orientation did not prove to be significant (p=0.07). 

The degree of fiber dispersion 492% was maintained in the medial wall (p>0.1) and was 

relatively less than the anterior wall (p=0.02). The significant change in fiber structure with 

growth was measured in the later wall where elastin fibers became considerably more 

circumferentially aligned, with the mean fiber orientation changing from 236 to 17 degrees 

(p=0.006), from juvenile to adult stage. The NOI of lateral wall elastin fibers significantly 

decreased from 603% to 464% (p=0.01) revealing an increase in degree of fiber scattering. 

This change in elastin fiber structure resulted in significant variation in the mean fiber orientation 

from that of the posterior wall, and while the NOI of lateral wall was significantly larger than 

rest of the PA wall in the juvenile group (p<0.01), it became fairly uniform in the adult stage.  
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Figure 5.5. Regional variation of elastin mean fiber orientation and NOI of PA wall with growth. 

Average mean fiber orientation and NOI of both age groups reported for anterior and posterior regions as no 

significant alterations in elastin fiber structure was measured at these locations with growth (p>0.4). Elastin 

organization in medial wall did not change significantly with growth (p>0.07). Anterior and medial wall elastin fiber 

alignment was significantly closer to circumferential direction than posterior wall (p<0.001). Degree of fiber 

dispersion of medial wall was less than anterior region (p=0.02). NOI of lateral wall was less than other regions in 

juvenile stage (p<0.01). In lateral wall, significant increase in circumferential mean orientation of elastin fibers with 

growth (from 236 to 17 degrees) (p=0.006) was associated with significant drop in NOI from 603% to 464% 

(p=0.01). In adult group, other than the posterior wall, the mean fiber orientation was in circumferential direction. 
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5.4 DISCUSSION 

Collagen types I and III, protein molecules with great tensile strength, and elastin, a heavily 

cross-linked, rubbery protein, determine the proper form and function of the artery wall and 

essentially regulate its physical and mechanical properties [169]. Elastin and collagen are the 

critical scleroproteins in larger arteries since they render the arterial wall its large distensibility 

and recoil property that enables relatively continuous blood flow from the heart to the rest of the 

body with little change in pressure. 

The development of the circulatory system implicates the deposition and remodeling of 

these structural proteins. The studies of collagen and elastin synthesis in the developing aorta and 

pulmonary artery has revealed that they undergo a relatively rapid and dramatic series of 

biochemical and morphologic alterations during the perinatal period as a preparation for 

postnatal increase in arterial pressure [50, 71, 170]. 

Although collagen molecules are probably slowly replaced during adult life, studies of 

elastin turnover indicate that vertebrates depend on the elastin molecules synthesized in early 

development to function throughout life [72]. Inherited or acquired disorders in the synthesis, 

processing, or remodeling of these proteins lead to major disruption of the arterial function, such 

as in hypertension [171-174]. 

The goal of this study was to understand the role of collagen and elastin organization and 

content in remodeling of the PA wall and correlating these changes with the alterations in 

mechanical behavior during postnatal maturation. This information is valuable to unraveling the 

primary mechanisms of vascular remodeling and developing advanced mechanobiological 

constitutive models that integrate quantitative information of vascular biology, structure, and 

biomechanics. 
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In Chapter 4.0, it was demonstrated that the thickness of the PA wall does not increase 

with growth implying that there would be an average 40% increase in hoop stress due to an 

equivalent increase in diameter. The tunica media is considered to be the most mechanically 

significant arterial layer as measured to occupy the major part of the PA wall. However, despite 

the inferred rise in the hoop stress, the thickness of this layer was maintained with growth. 

Therefore, the change in size of tunica media is not part of the adaptive response to change in 

wall stress during postnatal growth. The relative thickness of this arterial layer was also 

maintained in the four designated regions at a given growth stage.  

The quantified elastin content of the tunica media was significantly larger than its 

collagen content indicating that elastin is the more dominant structural protein in the PA wall. 

The absence of a toe region in the stress-strain loading path, as demonstrated in the previous 

chapter, confirms that elastin response [175] overrides the collagen mechanical contribution, 

particularly in the low-load zone. This claim will be addressed in Chapter 6.0. This result implies 

that elastin can play a significant role in modifying the mechanical behavior of the arterial wall 

in many disease processes such as in hypertension [176, 177]. It was also revealed that the elastin 

and collagen concentration of the PA wall was not modified with growth, eliminating the theory 

of upsurge of elastin and collagen synthesis as a mechanistic response to the change in wall 

stress during normal postnatal growth process.  

The elastin structure of the PA wall was quantified and the mean fiber orientation and 

NOI, degree of fiber alignment, was measured. In many previous constitutive models of the 

arterial wall, elastin contribution has been represented by neoHookean or other isotropic models 

[86, 178]. However, current results demonstrated that the elastin fiber network had a distinct 

alignment with a moderate degree of dispersion, implying that mechanical behavior of the PA 
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elastin network is direction-dependent as demonstrated in a few recent studies of aortic elastin 

[179, 180].  

The heterogeneity in the mechanical behavior of the PA wall was comparable with the 

spatial variation in the elastin structure. For example, the elastin fibers in the medial and anterior 

walls were more circumferentially aligned than the posterior wall correlating with the 

substantially larger anisotropy of former regions compared to the latter, where the organization 

of the elastin fiber network was for the most part maintained with growth. A significant 

alteration in elastin structure was measured on the lateral wall, where the mean fiber alignment 

became nearly circumferential while the fiber orientation dispersion increased as revealed by the 

drop in the NOI. Thus, the increase in longitudinal compliance of the lateral wall can be 

explained by change in the mean fiber orientation towards the circumferential direction.  

On average, the elastin fibers became more circumferentially aligned in the medial wall 

in the adult group compared to the juvenile stage. However, the p value was not sufficiently 

small to irrefutably link the change in the elastin network arrangement to the substantial rise in 

the anisotropy of the medial wall. Therefore, further study need to be conducted to fully 

corroborate the change in elastin organization as the underlying structural cause of the alteration 

in the mechanical behavior of the medial PA wall during postnatal growth.  



 120 

6.0 DIRECT MEASUREMENT OF COLLAGEN RECRUITMENT  

The goal of this study, as outlined in the third specific aim (sections 1.6.2 and 1.7), was to 

quantify the postnatal alterations in collagen recruitment behavior using a biaxial loading device 

coupled with the MPM system. The 3D architecture of collagen fibers was examined and fiber 

trajectory path was traced in the medial aspect of the PA wall. The 2D collagen and elastin fiber 

orientation was measured from the summed intensity z-projection of the 3D image stacks. The 

collagen fibers, on average, were more aligned than elastin fibers as measured by the NOI. The 

measured collagen tortuosity in the stress-free state significantly increased with growth. 

However, the collagen fibers were recruited at an overall considerably faster rate in the adult 

specimens. The alteration in collagen recruitment behavior with growth is an indication of 

modification in collagen structural properties or a possible change in the elastin-collagen 

interaction. As reported in the previous chapters, the stress was not found to be the primary 

mechanical driver during normal growth process of the PA wall. Understanding the underlying 

mechanism of this change in collagen recruitment behavior during growth will help to determine 

the primary mechanical factors influencing the arterial wall’s normal remodeling and growth 

process.  
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6.1 BACKGROUND 

It has been proposed that the passive mechanical response of the arterial wall is governed by 

isotropic elastin fibers in the initial loading region while the crimped circumferentially-oriented 

medial collagen fibers gradually unfurl and begin carrying load under increasing pressure [87, 

88]. In 1978, Cox [181] performed in vitro pressure-diameter measurements on several arterial 

types, e.g. carotid, iliac, mesenteric, etc., and also quantified the collagen and elastin content of 

each artery. He used the relation between the variations of the elastic moduli of different arteries 

with the elastin and collagen content to estimate the elastic modulus of elastin and collagen 

fibers. Based on the assumption of the parallel contribution of connective tissue elements, he 

then derived the relation between the transmural pressure and the fraction of collagen fibers 

supporting wall stress using the simple relation 

inc el el col col colE E F E    , 

where Einc is the incremental elastic modulus, el and col are the percent dry weights of 

collagen and elastin, respectively; Eel and Ecol are the elastic moduli of elastin and collagen, and 

Fcol is the percent fibers supporting wall stress at a given pressure or strain.  

 Recently, there have been few studies on the direct quantification of the relation between 

the collagen engagement (recruitment behavior) and tensile loading of the arterial wall. Roy and 

coworkers [182] froze cylindrical rabbit carotid arteries at different circumferential stretches, and 

sectioned the arterial wall. They then obtained autofluorescence signals of Picro Sirius Red 

stained collagen fibers in each section under a confocal microscope and quantified the collagen 

tortuosity or straightness in each 2D confocal image.  
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With the advent of advanced imaging modalities such as the MPM, the 3D dynamics of 

collagen loading behavior of untreated or fresh tissue can now be directly measured without the 

confounding influence of fixation or antibody staining. Hill et al. [92] combined a uniaxial 

mechanical testing device with the MPM system and obtained the collagen SHG signals of fresh 

rabbit carotid arteries at different uniaxial stretches. Subsequently, they measured the collagen 

tortuosity from the 3D reconstruction of MPM image stacks at a given stretch.  

As previously explained (section 1.4.1) the limitation with uniaxial testing is that it does 

not correspond to physiological boundary conditions of arterial wall. Therefore, in the current 

study, a biaxial loading device is coupled with the MPM system to quantify, for the first time, the 

postnatal changes in the arterial wall deformation-collagen recruitment relation in the tunica 

media of the fresh pulmonary arterial tissue.  

6.2 METHODS 

To both visualize and quantify the collagen fiber network in three dimensions under real-time 

equibiaxial strain deformations, biaxial testing was performed underneath the same Olympus 

FV1000 MPM system described in section 5.2.1. A miniaturized biaxial testing system was 

custom developed to fit the space constraints of the MPM system (Figure 6.1). The miniaturized 

biaxial testing system (microbiax) consisted of both an imaging and motion control system. For 

the motion control system displacement was imparted with four miniature hybrid linear actuators 

(HaydonKerk) that were controlled with a customized Labview program, a motion controller 

card, and a 4-axis stepper power drive (National Instruments).   
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A detailed description of the biaxial testing methods used for planar biological tissues 

was previously presented (section 4.1.1). A 10 mm x 10 mm specimen was dissected from the 

medial aspect of the juvenile (n=5) and adult (n=5) ovine PA wall (section 4.1.1.3). To expose 

the tunica media, the tunica intima was gently peeled off using a micro forceps and micro 

scissors. Most of the loose connective tissue of tunica adventitia in the center of the specimen 

was clipped, and four small cut portions of polypropylene suture were attached as fiducial 

markers to the center of the abluminal surface of the specimen. Two silk suture loops of equal 

length were attached to each side of the specimen with four stainless steel hooks, and the 

specimen was placed in the microbiax PBS bath at room temperature. The stainless steel hooks 

attached to each side of the specimen were coupled to the linear actuator through suture lines that 

looped over carriage mounts. These carriages were free to rotate to allow for equal tension in the 

suture lines, and thus allow for a relatively homogenous stress distribution in the specimen 

during testing. The specimen was mounted onto the device such that X1 and X2 axes of the 

device corresponded with circumferential and longitudinal directions of the sample (Figure 6.2). 

 

Linear Actuator

Motor

Carriage

Hooks for mounting 

specimen tension threads

Rotating 

Carriage Part

 

Figure 6.1.  CAD diagram of microbiaxial stretching device (left) and a single carriage (right). 
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The fiducial markers were visualized with a mirror angled at 45 degrees that was 

mounted below the miniaturized biaxial test system with a transparent cast acrylic base (Figure 

6.2). For the imaging system, strain was calculated real-time with a customized Labview 

program, and a firewire camera (Sony Inc., Tokyo, Japan) equipped with a 55 mm telecentric 

lens (CBC Inc., New York). The customized Labview software allowed the user to control 

displacement while continuously displaying the real-time strain, calculated as described in 

section 4.1.1.1. The specimens were taken through three equibiaxial stretch cycles of 

preconditioning at the rate of 0.5 mm/sec. The specimens were then taken to 50% equibiaxial 

stretch at 10% stretch intervals for both juvenile and adult specimens. Subsequently, the juvenile 

specimens were taken to 70% equibiaxial stretch. Because the first few adult specimens tore at 

the hooks at 70% stretch, the remaining specimens were taken up to 65% stretch. The SHG and 

TPEF emission signals of collagen and elastin fibers were acquired in the stress-free post-

preconditioned state and at each stretch level. At each stretch level, the tissue extension was held 

fixed during the approximate 30 minutes of image acquisition. The excitation wavelength was 

chosen at 830 nm at about 11 to 13% laser transmissivity. The emission wavelengths were 

received by two filters: The first channel was set to 400±100nm for SHG signal of collagen, and 

the second channel was set at 525±50 nm for elastin TPFE signal. The sampling speed was set to 

2 μs/pixel with a 2 line kalman filter, and the scanning had an incremental z-step of 0.6 m. The 

maximum imaging depth reached ranged from about 70 to about 150 m. Image stacks were 

imported into the Imaris software (Bitplane, Switzerland), for 3D visualization and quantitative 

analysis of 3D collagen fiber trajectories. Due to compaction of fibers at or below 20% stretch, 

the number of fibers that were accurately traceable was about 25. Thus, for each subsequent 

stretch level 25 fiber paths were traced.  
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Figure 6.2. Microbiax device combined with MPM system.  

Specimen’s reflection in mirror captured by camera underneath the device stage (bottom). X1 and X2 corresponded 

to arterial wall specimen’s circumferential and longitudinal directions; deformation along those axes was computed 

through tracking of fiducial markers (blue) by a Labview program (front panel shown on right). 

 

Tortuosity was defined as the ratio of fiber-path (fiber arc) length to the chord length,  = 

s/l. Fiber arc length s was measured in 3D reconstructed images by using the semi-automated 

Filament function in Imaris (Figure 6.3). Fibers were manually selected by the operator and the 

fiber tracing was performed using the fast marching algorithm, which is a generalization of the 
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2D method described in [183]. The chord length l was determined based on the best fit line to the 

3D fiber trace, rather than the end-to-end length, so that the chord length was not dependent upon 

the choice of the end points [92]. An important advantage of using the 3D renderings is that 

tracing of the longer fibers is much more accurate than with 2D methods, since portions of fibers 

that travel out of the plane, or that overlap, may be included.  

The 2D elastin fiber orientations were quantified in both fully loaded and in post-

preconditioned unloaded states, and collagen fiber orientation was quantified in the former state. 

First, summed-intensity projection of MPM image stack into X1-X2 plane of arterial wall was 

obtained (Appendix C1). The previously outlined algorithm was then implemented to quantify 

the orientation distribution of each fiber type (section 5.2.2; Appendices C2 and C3). 

 

100 m

 

Figure 6.3. 3D reconstruction of MPM image stacks at 40% equibiaxial stretch. 

3D elastin and collagen structure of a juvenile medial PA wall specimen at 40% equibiaxial stretch (left). Tracking 

of collagen fibers’ 3D trajectory in the same image using filament tracing function of Imaris (right). 
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6.2.1 Statistical Analysis 

The paired and independent t-test was used to assess the within group parameter of deformation 

level and in-between group variable of growth (SPSS software). A one-tailed value of p < 0.05 

was considered statistically significant. All values are reported in terms of mean  SEM. 

6.3 RESULTS 

The angle of the fiber best-fit line with the X1-X2 plane (plane of the wall) was measured in order 

to examine the validity of the simplification of 3D fiber paths to 2D fiber orientation 

distributions. The average out-of-plane fiber angle was measured to be 8.20.8 and 111 degrees 

in juvenile and adult groups, respectively, with no significant difference between the two groups 

(p=0.4). The mean orientation and NOI of both elastin network and collagen fibers were used to 

make comparisons of fiber orientation distribution. It was verified that the elastin orientation was 

mostly maintained during equibiaxial deformation (p>0.2; Figure 6.4). The elastin and collagen 

fiber orientation did not considerably change with growth (p>0.06; Figure 6.4 and Figure 6.5), 

which confirms the elastin results reported in Chapter 5.0. Mean Elastin and collagen fiber 

orientations were similar (p>0.1) and nearly circumferential, 12 deg. The collagen fibers were 

more aligned, using the average of both age groups (NOI: 713%), compared to the elastin fiber 

network (NOI: 572%, p=0.02). However, it should be noted that the presence of two peaks in 

the fiber orientation distribution of collagen in the adult group may have somewhat confounded 

the NOI calculation (Figure 6.5). 
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Figure 6.4. Average elastin fiber distribution of medial PA wall with growth and under equibiaxial deformation. 
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Figure 6.5. Average collagen fiber orientation distribution of medial PA wall in each growth stage.   
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Figure 6.6. Growth adaptations in collagen fiber tortuosity and recruitment behavior of medial aspect of PA wall. 

Collagen fibers had a more tortuous trajectory in the adult group than juvenile specimens in stress-free state 

(p=0.006). Differences in collagen recruitment behavior became significant at and above =1.4 (p<0.004), where 

fibers in adult specimens were recruited at a faster rate (with respect to deformation). This deformation state was 

equal to or beyond peak physiologically relevant circumferential deformations measured in biaxial testing 

experiments of section 4.2.1.2. 

 

The collagen fiber tortuosity did not significantly change between the stress-free and 10% 

stretch in both age groups (p>0.4). Therefore, the tortuosity values of fibers in both these 

configurations were combined to calculate the mean fiber tortuosity of the stress-free PA wall. 

The collagen fibers had a more tortuous trajectory in the adult group, 1.310.01, than the 
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juvenile specimens, 1.230.01; (p=0.006). The tortuosity was calculated to be 1.040.01 for 

juvenile specimens and 1.020.002 for adult samples at their respective applied maximum 

equibiaxial deformations. Henceforth, the critical fiber recruitment tortuosity, beyond which a 

fiber was considered straight, was defined to be 1.04. The decrease in fiber tortuosity with 

respect to applied deformation correlated well with the increase in fiber recruitment (Figure 6.6). 

The fiber recruitment seemed to start after =1.20 in adult specimens and after =1.10 in 

juvenile group. However, the difference between recruitment behavior of the two age groups did 

not become significant until after =1.4 (p<0.004), where fibers in adult samples were recruited 

on average 1.4 times faster than fibers in the juvenile specimens.  

 

6.4 DISCUSSION 

The gradual unfurling of collagen fibers or fiber recruitment has been postulated to be the 

underlying cause for the nonlinear stiffening of arterial wall with increasing stress [87]. The 

traditional techniques of staining and fixation techniques have been used to quantify the collagen 

recruitment process [182]. In this approach, a single tissue sample can only provide structural 

information at a single level of stretch. The sectioning and fixation can also interfere with the 

native collagen configuration. Furthermore, the 2D analysis of fiber crimp structure can skew the 

tortuosity measurements because of the 3D nature of fiber trajectory. Hill and coworkers [184] 

combined a uniaxial loading device with the MPM system to directly measure the 3D collagen 

fiber paths and evaluate the collagen recruitment process for the first time. This approach 

enabled 3D collagen fiber architecture to be imaged at multiple stretch values for the same 
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sample. Thus, a single specimen could provide multiple data points and comparisons could be 

made between the level of collagen crimp through the loading process. 

As previously explained (section 1.4.1), uniaxial testing does not sufficiently replicate the 

biaxial nature of cardiovascular tissues’ in situ boundary conditions. Furthermore, in non-

equibiaxial deformation, due to the dispersion of the fibrous structure of the arterial wall, the 

deformation experienced by fibers is a function of their orientation with respect to the loading 

direction. Therefore, the degree of fiber uncrimping does not directly correlate with the applied 

tissue deformation. Additionally, the possible non-affine deformation of underlying fibrous 

structure during uniaxial and non-equibiaxial loading means that deformation of fibers cannot be 

related to tissue level strain measurements. Therefore, in this work we used a custom biaxial 

tension device combined with the MPM system to directly evaluate and quantify the collagen 

fiber recruitment behavior under equibiaxial deformation.  

The 2D elastin and collagen fiber orientation was measured in projected image stacks. 

Fiber tortuosity was measured from 3D fiber traces obtained from 3D rendered MPM images at 

different stretch levels. Measurement of 3D fiber orientation demonstrated that the medial 

collagen fibers lie mainly in the plane of the wall. This supports the selection of a 2D fan splay 

form of distribution rather than use of the 3D conical splay orientation distribution of the fibers 

in the mechanical modeling of the vessel wall [106, 185]. The elastin fiber orientation 

measurements were consistent with the results of arterial wall sections (section 5.3.2). The 

change in organization of elastin fibers was not significant with growth. The collagen fiber 

orientation seemed to have changed with growth; however, this change was not statistically 

significant.  
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It was verified that the equibiaxial deformation did not cause noticeable change in the 

orientation distribution of elastin fibers, meaning that fiber rotation with deformation was 

minimal. Thus, fibers deformed in an affine fashion in this specific applied deformation protocol; 

in other words, fiber deformation correlated with the tissue level deformation. The measured 

circumferential and longitudinal stretch values of adult medial PA wall samples near peak 

physiological biaxial stress levels were measured to be 1.370.03 and 1.410.03, respectively 

(Figure 6.7). Thus, the applied equibiaxial deformation approximately replicated the 

physiological biaxial deformation experienced by the PA wall under the in vivo condition. 

The collagen fibers had a considerably more tortuous trajectory in the adult group 

compared to the juvenile growth stage. However, this feature did not lead to a slower overall 

collagen fiber engagement with deformation. On the contrary, while having a slightly slower 

engagement rate (with respect to deformation) below 30% stretch level, the collagen fibers were 

recruited at a significantly faster rate in the adult specimens with the difference becoming 

significant starting at =1.4, where 30 to 40% of fibers were recruited. Comparison of this data 

with the biaxial stress-stretch data of Chapter 4.0 reveals that this stretch level may be near or 

beyond the maximum physiological deformation level of the PA wall, especially in the 

circumferential direction (Figure 6.7).  

Hill et al. [184] direct measurements of collagen recruitment behavior demonstrated that 

collagen fibers start contributing to the arterial wall mechanics at a finite strain. The current 

results confirmed their finding. In both groups, there was not any collagen engagement at and 

below =1.10, and minimal engagement below =1.30. The biaxial testing results of medial 

wall, reported in Chapter 4.0, indicated that the average estimated end-diastolic (Pcirc  18 kPa)  

and peak systolic (Pcirc  35 kPa) stress levels resulted in about 20% and less than 40% 
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circumferential deformations, respectively. Therefore, the mechanical behavior of the PA wall 

within the normal cardiac loading cycle is determined to a large degree by elastin and not 

collagen. The existence of significant compressive residual strain near the endoluminal surface 

of the PA wall (section 1.4.2), where the collagen architecture was analyzed, implies that 

collagen fibers should have even smaller crimp period in the unloaded cylindrical configuration 

of the artery. This suggests that the engagement of collagen fibers would happen even at a larger 

deformation in vivo than current measurements indicated. 2D Graph 3
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Figure 6.7. Biaxial stress-stretch behavior of medial aspect of adult PA wall near physiological biaxial stress levels. 

Circumferential and longitudinal stretch values of adult medial PA wall samples near peak physiological biaxial 

stress levels were similar; thus, applied equibiaxial deformation in this study approximately replicates physiological 

biaxial deformation experienced under the in vivo condition. Furthermore, difference in collagen recruitment 

behavior between adult and juvenile specimens became significant starting at =1.4; this stretch level is near or 

beyond the maximum physiological deformation level of PA wall as shown here. 

 

The alteration in the collagen recruitment behavior with growth suggests a modification 

in the collagen structural properties. This change in the collagen response could also imply 

alteration in the elastin-collagen interaction. Wells et al. [60] investigated the relationship 

between mechanics and ECM composition of the ovine thoracic aorta wall during postnatal 
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maturation. They measured a substantial increase in the incremental elastic modulus at high 

tensile stress during postnatal life that corresponded to a dramatic increase in the collagen cross-

linking index in absence of a significant change in the relative collagen content. The possible rise 

in the cross-linking of collagen fibers in the PA wall can be the underlying cause of the increase 

in collagen recruitment rate with growth. This claim needs to be verified with experimental 

measurements of ECM composition in the PA wall at different postnatal growth stages.   

The results reported in Chapters 4.0 and 5.0 determined that stress was not the 

mechanical parameter that was maintained during normal growth process, and that stress levels 

in the arterial wall increased with growth. The faster recruitment rate of collagen could be an 

indication of the collagen remodeling to maintain the maximum deformation level in the arterial 

wall. Further studies should be conducted to verify this hypothesis.  

In this study we only considered the medial collagen fibers in the proximity of 

endoluminal surface of the arterial wall. The visual inspection of the collagen fiber crimp 

structure throughout the stress-free PA wall revealed an increase in the crimp period from intima 

towards the adventitia (Figure 5.1 and Figure 5.3), implying that the collagen engagement occurs 

earlier proximal to tunica intima. Therefore, the contribution of collagen fibers is more 

substantial more proximally in the medial layer. A more thorough investigation of the collagen 

recruitment behavior throughout the arterial wall, especially in the in situ cylindrical 

configuration, is necessary; however, due to the depth limitation of the MPM, similar direct 

measurements of the whole PA wall are not currently feasible. The larger average tortuosity of 

the collagen fibers in the stress-free adult specimens could be due to the smaller compressive 

circumferential residual strains in the adult PA wall compared to the juvenile stage (section 
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4.2.2). Thus, in the unloaded in situ configuration, the collagen fibers probably have a more 

similar level of undulation between the two age groups.   

The current study demonstrated for the first time significant alterations in the collagen 

recruitment behavior during postnatal growth period. Understanding the underlying mechanism 

of this change in collagen recruitment behavior during growth will help to determine the primary 

mechanical factors influencing the arterial wall’s normal remodeling and growth process.  
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7.0 INCORPORATION OF ALL EXPERIMENTAL MEASURMENTS INTO A 

MODIFIED STRUCTURAL CONSTITUTIVE MODEL 

This chapter presents the modeling framework to incorporate the plethora of experimental 

measurements into a structurally based constitutive model, as outlined in the third specific aim 

(section 1.7). The previous collagen recruitment measurements revealed that collagen 

engagement is minimal within the normal physiological loading range. Therefore, in order to 

describe the nonlinear anisotropic behavior of the tunica media in the medial PA wall specimens, 

the mechanical contribution of the elastin network had to be separated from the isotropic fairly 

linear contribution of the ground matrix, represented by a neoHookean model. A nonlinear 

phenomenological elastin model based on the limiting chain extensibility phenomenon of the 

atactic rubber polymer, suggested by Ogden [178] based on the Fung-Demiray model [186], was 

utilized. The Fung-Demiray model was modified in order to incorporate the orientation 

distribution measurements of elastin fibers and account for the anisotropic contribution of the 

elastin network, as also established by previous investigators. This new constitutive model of the 

tunica media of the PA wall provided high quality fit of the five-protocol biaxial stress-stretch 

data of the medial wall specimens based only on optimization of four model parameters. 
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7.1 BACKGROUND 

The altered mechanical properties of arteries are critically associated with microstructural 

remodeling. The mechanical load-deformation relation of elastin and collagen fibril bundles is 

fundamental to understanding the underlying microstructural mechanisms of tissue behavior. 

Structurally motivated models incorporate significant mechanical aspects of the underlying 

microstructure to better predict the mechanical behavior and understand the mechanisms 

governing the structure-function relationship of biological tissues. The constitutive model 

developed takes account of contributions of the collagen component, elastin or elastic fibers 

(sections 1.5 and 1.6.2), and ground matrix, consisting of non-fibrillar elastin, smooth muscle 

cells and other non-cellular materials.  

The increased rate of collagen and elastin synthesis in blood vessels in connection with 

both systemic and pulmonary hypertension has been revealed by many biological studies. 

Structural and degradative alterations of medial elastin is found to be a major contributing factor 

in physiological phenomena such as aging, and the initiation and development of cardiovascular 

disease, such as aortic aneurysms [187, 188]. Although elastin network plays a significant role in 

modifying the mechanical behavior of blood vessels, the mechanical properties of elastin are not 

fully determined, and studies connecting microstructural changes with elastin mechanics are 

scarce.  

Arteries are generally considered anisotropic, and this property is usually attributed to 

collagen fibers while the elastin contribution has been represented by the isotropic neoHookean 

model [86, 189, 190]. Lillie and coworkers [180] performed uniaxial tests on purified aortic 

elastin and demonstrated that the elastic tissue possessed an inherent anisotropy, with the 

circumferential stiffness 1.4 times the axial. Their results agreed with values obtained in uniaxial 
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tests of alkali-purified elastic tissue from canine and ovine aortas [191]. They also demonstrated 

that the elastic tissue behavior was non-linear in uniaxial tests.  

The study of biaxial tensile behavior of isolated elastin networks of bovine thoracic aorta 

by Zou and Zhang in 2009 [179] revealed significant mechanical characteristics of arterial 

elastin. Their experimental results consistently indicated that elastin network possessed strong 

anisotropy that was comparable to the intact arteries, with the circumferential direction being 

stiffer than the longitudinal direction. Based on an entropy-based non-Gaussian affine statistical 

model of a network of randomly oriented molecular chains [192], they determined that change in 

elastin fiber orientation leads to markedly different stress–strain response.  

It is now possible to carry out single-chain force-extension experiments on elastin [193]. 

These studies clearly indicate that elastin does not behave as a linear Hookean material. The 

force-extension curve of the elastin molecule chain is characterized by two regions with distinct 

slopes: The first region is of low curvature, where the protein extends relatively easily, followed 

by a substantially stiffer region, where the force-extension curve rises quickly towards a vertical 

asymptote. The mechanical behavior of elastin at the single chain level and the macroscopic 

level is similar to that of the atactic rubber-like materials [194], meaning that its strain-stiffening 

behavior can be explained by limiting chain extensibility. Therefore, in the present study the 

elastin mechanics is represented by a function that simulates the limiting chain extensibility 

behavior, a concept based upon rubber elasticity [178]. This function is derived from the model 

introduced by Demiray based on Fung’s model [186]. Ogden and Saccomandi [178] proposed 

using this model to account for the nonlinear isotropic contribution of the elastin network.  

The results of the current study revealed the presence of a distinctly oriented elastin 

structure in the tunica media of the PA wall (section 5.3.2), and the previous studies, referred to 
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above, indicated arterial elastin exhibiting considerable anisotropy. Therefore, the Fung-Demiray 

model is modified to incorporate the anisotropic nonlinear contribution of the elastin network to 

the mechanical behavior of the PA wall.  

7.2 CONSTITUTIVE MODEL FORMULATION 

The biomechanics of the tunica media of the medial aspect of the PA wall is modeled at two 

quasistatic snapshots of postnatal growth (juvenile and adult) based on the following 

assumptions and considerations: 

1. The general form of the constitutive model is assumed to be maintained during the 

postnatal maturation period. This assumption is partially supported by the fact that the 

shape of the stress-stretch curve was relatively conserved with growth (section 4.2.1.2). 

2. The mechanical response of tunica media can be idealized into a single response function 

per unit area. 

3. The collagen and elastin are considered to be the mechanically dominant components 

compared to smooth muscle cells. 

4. Both elastin and collagen fibers bear load only along their fiber axes and have negligible 

resistance to compressive forces.  

5. The contribution of elastin-collagen interaction to the mechanical behavior is ignored; 

therefore, the net tissue response is considered to be the sum of the individual constituent 

responses. 
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6. The contribution of either of these fibers is mainly in the plane of the wall (radial 

mechanical behavior of the artery is governed mostly by the incompressible and ground 

matrix constituents). 

7. It is assumed that the load required to straighten the collagen fibers is negligible 

compared to the load transmitted by elastin or stretched collagen. Thus, collagen bears 

load only when nearly or completely straight. 

8. Contributions from non-load bearing constituents are combined with the ground matrix. 

9. The reference state for all model calculations is the post-preconditioned state as defined 

in section 4.1.1.3. 

 

The tissue level strain energy density  of the RVE is assumed to result from the 

contribution of collagen (col), elastin (el) and ground matrix (gm), which includes the sparse 

elastic sheets or laminae and smooth muscle cells, weighted by their respective volume fractions 

 according to  

 ( ) ( ) ( ) ( )       C C C Ccol col el el gm gm . (6.1) 

The tissue level response in terms of the 2
nd

 Piola-Kirchhoff stress is defined as  

 
1 12 2 2 2 

  
        

   

C
S C C

C C C C

gmcol el
col el gmp p , (6.2) 

where gm = 1- (el +col); the Lagrange multiplier p, which accounts for the incompressible or 

isovolumetric deformation, is assumed to be associated only with elastin and ground matrix 

constituents of the tissue. A structurally based modeling approach is employed for the collagen 

and elastin strain energy functions: The contribution of individual fiber ensembles acting in a 
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given direction 
cos( )
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
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 
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N  (in the reference state; Figure 2.4) is summed over all 

orientations, using a probability distribution function. Thus it assumes the form   
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, (6.3) 

where functions Rcol and Rel govern the planar angular distributions of collagen and elastin fibers, 

respectively;  ens

col  and  ens

el are collagen and elastin fiber ensemble strain energy functions, 

respectively. 

 The collagen fibers in an ensemble are represented by a collection of springs that engage 

at various tissue deformation levels or slack stretches s [89]. Hence, the ensuing collagen 

ensemble stain energy is considered to be the sum of individual fiber strain energies  f

col  

weighted by the recruitment probability function or the distribution of slack stretches d as  

 
0

( ) ( ) ( )


      
fens f

col f s col s sd d , (6.4) 

where f  is the stretch along fiber axis.  

Based on the X-ray diffraction observation of D-spacing of heart valve and tendon 

collagen fibers, Sasaki et al. [195, 196] suggested that the straight collagen fiber has a linear 

force-displacement behavior. However, the single-chain force extension experiments of collagen 

type II fibers in a more recent study by Sun  et al. [197] revealed that collagen fiber has a 

nonlinear loading behavior. Since the deformation range considered in this study is within the 

physiological range and substantially below full collagen engagement (sections 6.3 and 6.4), the 

mechanical contribution of the collagen fibers are considered to be within the linear region of 

their tensile force-extension curve.  
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The linear fiber force-displacement relation, when normalized using the reference state 

fiber cross-sectional area and length, becomes the following linear relation based on the 1
st
 Piola-

Kirchhoff stress and stretch:  

 [ 1]  col col tP , (6.5) 

where col is the elastic modulus of the individual straight collagen fibers, and λt  is the true fiber 

stretch (Figure 7.1) defined according to  

 
f

t

s





 , (6.6) 

where f = l/l0 and s = ls/l0. Based on the relation f

t

d
P

d




 , the elastin ensemble or collagen 

fiber strain energy is defined as 

  
2
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2
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Figure 7.1. Schematic of different length and displacement definitions of an initially undulated collagen fiber (left); 

Stress-deformation curve of a single crimped collagen fiber (right). 

l0 is reference length used for fiber stretch calculations; ls refers to slack length or actual fiber length; s is slack 

displacement or difference between end-to-end length and actual fiber length; t is true fiber displacement (or stress-

generating displacement) and  is combined fiber displacement (left). s is slack or straightening stretch of single 

collagen fiber; f is total stretch along fiber axis; t is true stretch or stretch of straight fiber, col is collagen elastic 

modulus. 
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The Fung-Demiray [186] limiting chain extensibility elastin model [178] is given by 

  1exp[ (I 3)] 1
2


   iso

el b
b

, (6.8) 

where  represents the shear modulus, b is a dimensionless material constant, and I1 is the first 

invariant of C (I1 = tr(C), Eq. (2.46)). To account for anisotropic contribution of elastin network, 

the above relation has to be modified to be in terms of fiber deformation. The elastin fiber is 

assumed to be transversely isotropic and bear load only along its axis; I1 can be written in terms 

of the local fiber coordinate as 2 2

1I 2  f
, where f is deformation along fiber axis and  is 

the deformation orthogonal to the fiber axis ( 2 3      ). The elastin fiber can be considered to 

be nearly incompressible within the physiological deformation range; thus, 2 1  f
 or 

2 1   f
. The final relation for the first invariant is then given by 

 2 1

1I 2  f f
. (6.9) 

Using Eqs. (6.8) and (6.9), the elastin ensemble strain energy is described by 

  2 1exp[ ( 2 3)] 1
2


      ens

el f fb
b

, (6.10) 

where  is the shear modulus of the elastin ensemble.  

The isotropic contribution of the ground matrix, including sparse elastic sheets, are 

represented by the neoHookean model as 

  1I 3
2


  gm , (6.11) 

where   is the shear modulus of ground matrix and I1 is the first invariant given in terms of 

global tissue deformation as 

 
2 2 2

1 1 2 3I      ,  
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where 3 = 1/12 based on the incompressibility assumption. 

The collagen or elastin contribution to the tissue stress is derived according to 
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where i = col or el; the second term is derived based on the relation 
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Thus, the final collagen ensemble stress tensor form is given by 
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where   col col col  is the effective collagen fiber modulus. Therefore, the collagen stress 

component is given by 
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The elastin ensemble stress in terms of 2
nd

 Piola Kirchhoff stress in the local fiber 

coordinate is derived using (Eqs. (2.41) and (2.48)3) 
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where pel  is the Lagrange multiplier associated with the elastin fiber deformation in an ensemble, 

which can be determined from the relations for the stress components normal to the fiber axis S22 

= S33 = 0. Hence, the final relation for the ensemble elastin stress is  

 3 2 13 (1 )exp[ ( 2 3)]       ens

el f f fS b . (6.18) 

The final form of the stress tensor for the elastin component is given by 
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where el = 3el is the ensemble elastin effective elastic modulus. 

 To determine the principal biaxial (circumferential and longitudinal) stress contribution 

of the ground matrix, represented by the neoHookean model, a derivation similar to Eqs. (2.43) 

based on the relation for the 2
nd

 Piola Kirchhoff, Eq. (2.48)3, gives rise to the relations 
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where   gm gm  is the effective shear modulus of the ground matrix.  

7.2.1 Fitting of Fibers’ Orientation Distribution Measurements 

The measurements of the 2D orientation of the collagen and elastin fibers need to be represented 

by circular statistics to be included into the constitutive model, as R() in Eqs. (6.3). In this study 

von Mises distribution, VM(,k), was chosen as probability distribution function for the fiber 

orientation distribution. The probability density function of the unimodal von Mises distribution 

is defined according to 
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where  is the mean orientation and I0 is the modified Bessel function of order zero given by 
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When k tends to infinity, the von Mises distribution approaches the Gaussian distribution with 

variance 1/k. The parameter k is related to the circular standard deviation  through the relation 
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, (6.23) 

where I1 is the modified Bessel function of order one.  

The mean orientation distribution of elastin was obtained by averaging all the orientation 

measurements of the of the medial PA wall (sections 5.3.2 and 6.3). The mean collagen fiber 

orientation distribution data was based on measurements made in the previous chapter (Figure 

6.5). By plotting the histograms for the mean orientation data of collagen and elastin fibers, it 

was observed that the orientation distributions were either quite asymmetric or that there were 

two predominant peak orientations (Figure 7.2). Because of the nature of the fiber distributions, a 

mixture of two -periodic von Mises populations was used to represent the mean orientation 

distribution data, defined as 

 1 1 2 2

0 1 0 2
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 
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k k
R
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, (6.24) 

where i and ki (i = 1,2) are the absolute value of the means and spread parameters of each fiber 

population, respectively.  
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Figure 7.2. Final average elastin and collagen measured orientation distributions and bimodal von Mises probability 

distribution fits. 

 

7.2.2 Fitting of Collagen Recruitment Measurements 

The gradual recruitment of collagen fibers in the RVE, a process in which fibers in an individual 

ensemble engage into load transmission as they become straightened, has been described by 

different probability distribution functions [92, 93]. The beta cumulative probability density 

function (CDF) provided a truthful representation of the collagen recruitment measurements in 

the juvenile specimens, Djvl (Figure 7.4). The beta probability density PDF is a continuous 

function and is parameterized by two positive shape parameters a and b according to  
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where B(.) is the Beta function, that appears as normalization constant. The beta probability 

distribution is defined on the interval x[0, 1] as follows 
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where ub
 is the upper bound stretch, where all ensemble fibers are straight. The quality of CDF 

fit to experimental recruitment measurements is considerably dependent on ub
. Therefore, ub

 

was varied to find the closest value to the maximum applied experimental stretch that resulted in 

the minimum RMS error between the recruitment measurements and the fit (Figure 7.3). Based 

on the results obtained, ub 
was set to 1.82. 
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Figure 7.3. Determining upper bound stretch in beta recruitment function based on RMS error of fit to experimental 

measurements in juvenile specimens. 
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The recruitment measurements in adult specimens (Dadt) were more accurately modeled 

with the gamma cumulative probability distribution function CDF (Figure 7.4), whose 

probability density function is given by 
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where A is the shape parameter, B is the scale parameter and (.) the Gamma function; x is 

defined according to Eq. , where ub
 was set to the maximum applied biaxial stretch of 1.65. 
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Figure 7.4.  Beta and gamma cumulative distribution function fits to mean juvenile and adult collagen recruitment 

data, respectively. 

7.2.3 Parameter Estimation 

The process of parameter estimation also referred to as model fitting, aims at determining 

parameter values for a model through capturing experimental data as closely as possible. An 

error function or objective function is minimized, which is usually defined as the sum-of-squared 

errors between the experimental data values and calculated model values.  Finding the minimum 
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value of the objective function, using a predefined tolerance value, is an iterative procedure:  

After giving a set of initial estimates for the parameters, the parameter values are altered in each 

iteration to attain a smaller value of the objective function and to eventually reach the optimal set 

of parameters. 

Most of the available optimization algorithms are the gradient-based methods, e.g. 

Levenberg-Marquardt method, which rely on the smooth behavior of the error surface. The final 

parameter values found in gradient-based methods are usually dependent on the initial parameter 

estimates, and there is the risk of reaching only a local minimum of the objective function. The 

alternative is to use a more robust global approach such as the genetic algorithm. The genetic 

algorithm uses the survival of the fittest concept mimicking the process of natural evolution. A 

group of parameters sets is maintained instead of just one working solution set, and based on 

how well each set fits the data, it is either used to produce better candidate solutions or 

discarded. Although the genetic algorithm and other global minimization approaches increase the 

likelihood of reaching the global minimum of the objective function in a given parameter space, 

they require an exhaustive sampling of the parameter space at a considerable computational 

expense. The use of these methods are, therefore, more applicable in problems with relatively 

large number of parameters, where there are usually larger number of local minima and a high 

chance of failure of a purely gradient-based method to locate the global minimum.  

In this study, most of the measureable structural parameters were experimentally 

determined, and only four parameters (Table 7.1) for each age group were determined by fitting 

of the constitutive model to the mean of each group’s five-protocol biaxial mechanical data. The 

objective function minimized to find the optimal parameters was defined according to 

    
2 2

mod exp mod exp

11, 11, 22, 22,
    
   i i i i

i

SSE S S S S  (6.28) 
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Table 7.1. List of experimentally measured and estimated parameters. 

Parameters 
Measured 

Experimentally 

Estimated 

through Model 

Collagen recruitment, d()   

Elastin angular distribution, Rel(θ)   

Collagen angular distribution, Rcol(θ)   

Elastin model constants, el, b  2 

Collagen elastic modulus, col  1 

Ground matrix effective shear modulus, gm  1 

 

The complete structural constitutive model is highly nonlinear mainly because of the 

orientation distribution functions and elastin model and the recruitment function. This highly 

nonlinear model required a nonlinear parameter optimization or curve fitting algorithm. The 

model was implemented in MATLAB. The MATLAB function “lsqcurvefit”, especially 

designed for curve fitting purposes of nonlinear functions, was used to perform the parameter 

fitting. By default, lsqcurvefit uses the (large scale) trust-region-reflective algorithm, which is a 

subspace trust-region method and is based on the interior-reflective Newton method. Trust-

region methods are based on the basic idea to approximate the function f with a simpler function 

g, which reasonably reflects the behavior of function f in a neighborhood around the point x. This 

neighborhood is the trust region. This algorithm allows the user to define bounds on the 

parameters and hence perform constrained optimization. The following bounds were placed on 

the parameters: 100  col  10
7
; 0.1  el  100; 0.1   b  25, and 0.1  gm  300. 
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7.3 RESULTS 

The average orientation distribution data of elastin and collagen fibers were well fit by the mixed 

von Mises probability distribution function (Figure 7.2, r
2
>0.94). The beta and gamma 

probability density functions provided accurate representation of the mean measured collagen 

recruitment data of juvenile (r
2 

= 0.97) and adult (r
2
 = 0.98) specimens, respectively (Figure 7.4).   
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Figure 7.5. Constitutive model fit to the average five-protocol biaxial stress-stretch data of juvenile and adult medial 

PA wall specimens. 

 

The modified constitutive model incorporating elastin limiting chain extensibility 

behavior and its anisotropic contribution enabled a very accurate simultaneous fitting of the 

circumferential and longitudinal stress-stretch data of five biaxial loading regiments (Figure 7.5). 

The final parameter values along with RMS and r
2
 values of the model fit for each age group are 

reported in Table 7.2. Both the ground matrix and elastin constituents were load bearing in the 

low stress region. Since the elastin was predominately oriented circumferentially in the adult 

group (Figure 7.2), the ground matrix effective modulus could be accurately determined based 
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on the influence of ground matrix on the longitudinal stress-stretch behavior. However, due to 

the high degree of scattering of elastin fibers in the juvenile stage, the elastin contribution was 

also dominant in the longitudinal direction. Thus, the sensitivity of the model to the contribution 

of ground matrix component was negligible in the juvenile group; as a consequence, the effective 

modulus of the ground matrix could not be determined. Therefore, it was assumed that the 

properties of ground matrix are not altered with growth, and the juvenile ground matrix effective 

modulus was set equal to that of the adult value. 

 

Table 7.2. Constitutive model fitting results (Effective moduli are in kPa). 

 

Age Group 
Parameters [95% Confidence Intervals] r

2
 

RMS error 
col  el  b gm Circ Long 

Juvenile 
2007 

[1860, 2154] 

18.8  

[18.6, 21.5] 

2.2 

[2.1, 2.3] 
4.1* 0.989 0.986 1.01 

Adult 
169 

[24.6, 314] 

14.5 

[14.0, 15.1] 

2.7 

[2.6, 2.8] 

4.1 

[3.8, 4.4] 
0.979 0.987 1.18 

*Kept constant 

7.4 DISCUSSION 

Constitutive models are required to describe the mechanical behavior of each layer of the arterial 

wall and gain insights into the mechanisms behind the mechanical response of the arterial wall. 

The absence of similar crimp or undulation architecture to that of the collagen fibers in the 

elastin network of the arterial wall and substantially smaller elastic modulus of elastin fiber 

means that elastin can become readily load bearing as the arterial wall starts passively extending 

in the in situ configuration or under the in vitro planar biaxial tensile testing condition. In the 

current study the strain stiffening phenomenon of the rubber polymer chains was used to model 
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the behavior of elastin in an RVE [178, 186]. The use of this model to describe the behavior of 

elastin fibers is supported by the experimental force-extension measurements on a single elastin 

molecule chain [193].  

 In most previous models of the arterial wall, the underlying orientation distribution of 

collagen fibers is considered to be the only cause of the strong anisotropy of the arterial wall [86, 

190]. In the current work, the Fung-Demiray model was chosen to account for the strain-

stiffening behavior of elastin fiber. It was subsequently modified to allow for the direct 

incorporation of the measured elastin orientation distribution data into the constitutive model of 

the tunica media of the PA wall. This modified model accounted for the anisotropic contribution 

of elastin network and provided a highly accurate fit of the five-protocol biaxial stress-stretch 

data of the PA wall based on optimization of only four parameters. The phenomenological form 

of this model and the correlation between the shear modulus and the dimensionless exponent 

parameter did not allow for elucidating possible alterations in elastin properties with growth. 

The direct measurement of the collagen recruitment behavior (section 6.3) revealed that 

most of the collagen fibers do not become load bearing within the normal physiological 

deformation region of the PA wall based on the obtained biaxial stress-stretch data (Pmax=35 kPa, 

section 4.2.1.2).  In order to correctly characterize the collagen fiber properties, the artery has to 

be loaded well above the physiological loading level. In the study by Hill et al. [92], through the 

combined uniaxial mechanical testing-MPM system, it was revealed that collagen contribution 

becomes dominant after about 500 kPa stress in the circumferential (or preferred) direction in the 

rabbit carotid artery. Thus, the effective collagen modulus obtained based on fitting of the model 

to the current biaxial data cannot provide a reliable estimate of the collagen fiber properties. 

Therefore, to account for the nonlinear anisotropic behavior of the PA wall in the juvenile and 
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adult growth stages, it was necessary to separate out the contribution of the elastin network from 

the relatively linear isotropic response of the ground matrix.  

It was observed that when the recruitment function parameters were set as variables in the 

optimization process, the faster collagen recruitment resulted in smaller collagen effective 

modulus values and vice versa. Therefore, the direct measurement of collagen recruitment 

behavior is necessary to prevent this covariance between the collagen model parameters skewing 

the determination of collagen fiber property through the constitutive model. 

In the majority of previous constitutive models of the soft tissues, including those of 

arterial wall, the elastin contribution has been combined with that of the ground matrix. In the 

current study it was demonstrated that elastin substantially contributes to the nonlinear 

anisotropic mechanical behavior of the arterial wall. Therefore, a constitutive model of the 

arterial wall cannot determine the structure-function relationship of arterial wall without taking 

into account the nonlinear behavior of elastin fibers and the anisotropic contribution of the 

elastin network. 

 In order to gain insight into the possible physiological modifications of elastin structural 

properties with growth and the prominent role of elastin in the alteration of pulmonary artery 

mechanics in hypertension [52], more structurally relevant elastin models need to be developed. 

The elastin and collagen fibers are closely associated with each other in the media and are 

organized into concentric rings of lamella units around the arterial lumen (Figure 5.3) with 

smooth muscle cells lying between these lamellae [71]. In order to elucidate load-bearing 

mechanism of elastin and collagen constituents of the arterial wall, the effect of the cross-linking 

of elastin fibers with each other and their interaction with collagen fibers has to be included into 

the constitutive model.  
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8.0 SUMMARY AND CONCLUSION 

The overall objective of this work was to lay the foundation for tissue engineering approaches 

and help elucidate the mechanisms regulating the normal remodeling and growth process by 

enhancing our knowledge of alterations in the structure-mechanics relationship of the main 

pulmonary artery during postnatal maturation. These goals were carried out through the 

characterization of the gross anatomy, mechanical behavior, histology, and microstructure of the 

PA wall during the postnatal growth period. The differences in the anatomy and mechanical 

behavior of PA and AA were also revealed to gain insight into physiological factors affecting the 

3D geometry and governing the mechanical behavior of each artery.    

It has been widely accepted that growth and remodeling is a change in the homeostatic 

state due to alterations in the environment and internal stresses [1]. It has been suggested that the 

structure of the artery adapts to changes in arterial shape during perinatal and postnatal 

maturation in order to maintain an equilibrium mechanical tension per elastin lamellar unit [50, 

59]. In the present study we did not find any evidence that the stress was maintained in the PA 

wall during normal postnatal growth. 

In Chapter 4.0, it was demonstrated that the thickness of the PA wall did not increase 

with growth implying that there is an average of 40% increase in hoop stress due to an equivalent 

increase in diameter. The tunica media is considered to be the most mechanically significant 

arterial layer as measured to occupy the major part of the PA wall in the current study (section 



 157 

5.3.1). However, despite the inferred rise in the hoop stress, the relative thickness of this layer 

was maintained with growth. It was also revealed that the elastin and collagen concentration of 

the PA wall was not modified with growth (section 5.3.2). Therefore, unlike the arterial wall 

remodeling due to hypertension [46-48], the upsurge of elastin and collagen synthesis is not a 

mechanistic response to the change in wall stress during the normal postnatal growth process.  

While the nonuniform wall stress distribution in the PA wall could be provided as a basis 

for heterogeneous residual strain pattern at a given growth stage (section 4.2.2), the same 

reasoning cannot explain the relative preservation of residual strain at the STJ with growth in 

presence of larger wall stress in the adult PA.  

It was demonstrated that although the AA maximum physiological stress was about 2.7 

times larger than that of the PA maximum physiological loading stress, their mean peak strains 

were very similar in circumferential direction and nearly identical in longitudinal direction 

(section 4.2.1.1). This phenomenon could be achieved due to the AA’s substantially larger 

stiffness; on average it had 1.4-2.7 times larger longitudinal and 3.2 time larger circumferential 

tangent modulus when compared to the PA. This finding suggests that the mechanical driver 

behind the structural differences between these arteries is preservation of an optimal peak 

homeostatic deformation, rather than stress.   

As demonstrated in Chapter 6.0 collagen fibers were recruited at a significantly faster rate 

(with respect to deformation) in the adult specimens,. The faster recruitment rate of collagen 

could be an indication of collagen remodeling to maintain the maximum deformation level in the 

arterial wall during postnatal maturation. Further studies should be conducted to verify this 

hypothesis and elucidate the driving mechanism behind the measured structural and mechanical 
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alterations of the PA wall. For example, the peak-systolic MR images of arterial surface should 

be acquired to compute and compare peak wall deformations at each growth stage. 

In both juvenile and adult age groups, there was not any collagen engagement at and 

below =1.10, and minimal engagement below =1.30 (section 6.3). The biaxial testing results 

of medial wall, reported in Chapter 4.0, indicated that the average estimated peak systolic (Pcirc  

35 kPa) stress level resulted in less than 40% circumferential deformations. Therefore, the 

mechanical behavior of the arterial wall within the normal cardiac loading cycle is determined to 

a large degree by elastin and not collagen. The elastin content of the tunica media was also found 

to be significantly larger than its collagen content (section 5.3.2). Furthermore, it was revealed 

that the elastin fiber network had a distinct alignment, and the heterogeneity in the mechanical 

behavior of the PA wall was comparable with the spatial variation in the elastin organization. 

These results imply that elastin can play a significant role in modifying the mechanical behavior 

of the arterial wall in many disease processes such as in hypertension [176, 177]. 

Thus, a constitutive model of the arterial wall cannot determine the structure-function 

relationship of arterial wall without taking into account the structural properties of elastin fibers 

and the nonlinear anisotropic behavior of the elastin network. In most previous models of the 

arterial wall, the underlying orientation distribution of collagen fibers is considered to be the 

only cause of the strong anisotropy of the arterial wall [86, 190]. 

In the current study the strain stiffening behavior of a single elastin fiber was represented 

by the Fung-Demiray model (section 7.2). The Fung-Demiray model was then modified to allow 

for the direct incorporation of the measured elastin orientation distribution data and anisotropic 

contribution of elastin network into the constitutive model of the tunica media of the PA wall. 
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This modified constitutive model provided a highly accurate fit of the five-protocol biaxial 

stress-stretch data of the PA wall based on optimization of only four parameters.  

For future studies a more structurally-based model of the elastin network needs to be 

developed in order to gain insight into the possible physiological modifications of elastin 

structural properties with growth and the prominent role of elastin in the alteration of pulmonary 

artery mechanics in hypertension. Furthermore, an elastin-collagen interaction term needs to be 

incorporated into the model to understand the role of collagen within the normal physiological 

loading phase. 
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APPENDIX A 

SURFACE GROWTH DEFORMATION STUDY: RELEVANT CALCULATIONS 

A1.  Coordinate Transformation 

The local coordinate of the surface point x  with its projected centerline path point, y, and Q are 

the 3D rotation matrix defined by local Frenet frame as 

ρ(θ,s)cos(θ)

= ρ(θ,s)sin(θ) ,

0

 
 
 
  

x

 

3 3

cn cn

3 3

cn cn

3

R (X )cos(Θ (X ))

= R (X )sin(Θ (X ))  

X

 
 
 
 
 

y

 

and 

1 1 1

2 2 2

3 3 3

n (s) b (s) t (s)

= n (s) b (s) t (s) ,

n (s) b (s) t (s)

 
 
 
 
 

Q  

where  is the surface radial coordinate defined as a function of circumferential location θ and 

length along the centerline path s, which is given by 
3

2 2
1 2

X
3 3

3 30

dy dy
s(X ) = + +1  dX

dX dX

 
    
   

    
 

 ; 

Rcn and cn are the redial and angular coordinates of the centerline path; n, b and t are the local 

Frenet frame axes of the centerline path. 
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A2.  Modified Torus 

Equation of torus in cylindrical polar coordinates is given by 

1 maj

2 min

3 min

X =r cos(Θ)

X =(r sin(Θ)+R) cos(Φ)

X =(r sin(Θ)+R) sin(Φ),

    (B1) 

where  and  define circumferential and centerline path coordinate; rmaj = ecc.rmin 
with ecc 

being the mean cross-sectional ellipticity; and R is the radius of the torus centerline and 

 min STJ

RΦ
r =r 1+ taper 1

L

 
 

 
, where L is the length of centerline. 

A3.  Demonstration of the Curvature Dependent Growth 

 

Figure A1. Elongation of a torus (blue) with a constant radius and centerline path tortuosity. 

 

In the case of the simple elongation of a torus with a constant centerline path (Figure A1) 

tortuosity is given by 
θ

Tortuosity =
2 - 2cos(θ)

 (with θ in radians), and the longitudinal stretch 

ratios of inner and outer surfaces are given by 
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By comparing the denominators of the two stretch equations, we can see that the denominator of 

inn

Lλ is smaller than out

Lλ  (since R0-Rt<0 or Rt-R0>0); thus,  inn

Lλ out

Lλ . 
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APPENDIX B 

QUANTIFICATION OF RELATIVE FIBER CONTENT 

(c)(b)(a)

 

Figure B1. The relative area content of collagen and elastin quantified using ImageJ. The collagen and elastin 

channels were separated (a), and color threshold tool was used  to adjust brightness level so that only fiber-

containing regions are selected (b,c). 

 

Once MPM images for each section were obtained, each picture was then split into collagen and 

elastin channels using the "Split Channels" function under the "Image  Color" tab. Next, the 

images obtained were converted into RGB images from their original 8-bit default setting. In 

each image regions of collagen and elastin shown were selected using the "Color Threshold" tool 

under the "Image  Adjust" tab (Figure B1,b). Boundaries around the areas of fibers were 

formed after hitting the “Select” button (Figure B1,c). The total fiber area was measured using 

the "Analyze  Measure" function, and this returned a value pertaining to the total area of the 
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fibers. From this, the percent area was calculated, and this value reflects the relative amount of 

collagen and elastin in each section.  
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APPENDIX C 

FIBER PATH TRACKING AND ORIENTATION ANALYSIS 

C1.  MATLAB Program for Obtaining 2D Projection of MPM Image Stacks 

% Program description: Opens stacks of multi-photon images and superimposes 

% them into a 2D rendering.  

%  Inputs:  1. Image Size 

%          2. Your desired starting image in stack 

%          3. Number of images in stack  

%  Output:  1. Collagen 2D projected image 

%          2. Elastin 2D projected image 

clear all; 

g=0; % Only tiffs! 

aimg=0; % Do not invert image 

disp('Enter image size in pixels (multi-photon is typically 1024x1024)') 

imgsiz=input('ENTER 512 or 1024:  ') 

[file,file_path]=uigetfile('*.tif','Select collagen image file') 

img=imread([file_path file]); 
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% Give size of image 

M=imgsiz; 

N=imgsiz; 

% Make new black image 

rgb=0; 

for rgb=1:3 

newimg(:,:,rgb)=double(zeros(imgsiz,imgsiz)); 

end 

filsiz=length(file) 

nfiles=str2num(file(filsiz-4))+... 

10*str2num(file(filsiz-5))+... 

100*str2num(file(filsiz-6)) 

num=input('ENTER: Number of files '); 

for k=1:num; 

 nfiles=nfiles+1; 

%NOTE: RGB, red = 1, green = 2, blue = 0 

% Convert image to double 

    img=double(img); 

    newimg(:,:,1)=newimg(:,:,1)+img(:,:,1); 

    newimg(:,:,2)=newimg(:,:,2)+img(:,:,2); 

    new_file=file(1:filsiz-7); 

    zer=num2str(0); 

    if nfiles < 10 
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        img=imread([file_path new_file zer zer num2str(nfiles) '.tif']); 

        [file_path new_file zer zer num2str(nfiles) '.tif'] 

    else 

        if nfiles >= 100 

            img=imread([file_path new_file num2str(nfiles) '.tif']); 

            [file_path new_file num2str(nfiles) '.tif'] 

        else 

            img=imread([file_path new_file zer num2str(nfiles) '.tif']); 

            [file_path new_file zer num2str(nfiles) '.tif'] 

        end 

    end 

    countdown=num-k; 

end 

% Display figures 

maxcol=max(max(newimg(:,:,1))); 

newimg(:,:,1)=(newimg(:,:,1)./maxcol)*255; 

maxel=max(max(newimg(:,:,2))); 

newimg(:,:,2)=uint8((newimg(:,:,2)./maxel)*255); 

newimg=uint8(newimg); 

figure(1) 

imshow(newimg) 

elastin(:,:,2)=newimg(:,:,2); 

elastin(:,:,1)=double(zeros(imgsiz,imgsiz)); 
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elastin(:,:,3)=double(zeros(imgsiz,imgsiz)); 

elastin=uint8(elastin); 

figure(2) 

imshow(elastin) 

collagen(:,:,1)=newimg(:,:,1); 

collagen(:,:,2)=double(zeros(imgsiz,imgsiz)); 

collagen(:,:,3)=double(zeros(imgsiz,imgsiz)); 

collagen=uint8(collagen); 

figure(3) 

imshow(collagen) 

imwrite(collagen,[file_path 'collagen_sum' '.tif'],'tif') 

imwrite(elastin,[file_path 'elastin_sum' '.tif'],'tif') Dfsdfsdf 

C2.  Implementation of Chaudhuri Algorithm 

Below is the implementation of Chauhuri algorithm by Todd Courtney; this program is called by 

‘MainProgram.m’. 

function [x_hist,y_hist] = courtney(name,lowths,t) 

% This program tracks fiber paths and generated a fiber orientation histogram 

% Inputs: 1. Name (collagen or elastin image file) 

%   2. lowths (minimum threshold for image) 

%            3. t (size of accumulator subregion denoted as w by Chauhuri)  

% Output:   x_hist (0-180 degrees at 1 degree increment) 
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%           2. y_hist (Number of fibers at each given x_hist angle)   

toln=0.0044; % Enter tolerance for angles 

img_v2=imread([name,'.tif']);  

img_v1=img_v2(:,:,2); 

img_v1=medfilt2(img_v1); 

img_v1=histeq(img_v1); 

img_v1=double(img_v1); % convert array values from uint8 to double precision 

% Find size of image 

M=length(img_v1(:,1)); 

N=length(img_v1(1,:)); 

clear i j 

for i=1:M; % iterate across rows 

    for j=1:N; % iterate across columns 

        if img_v1(i,j)<=lowths; 

            img_v1(i,j)=0; 

         end 

    end 

end 

% Edge detection 

s=3; % Set mask size s 

l=2*s+1; % length of cols and rows of kernel 

sig=2.0; 

for i=-s:1:s; 
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    for j=-s:1:s; 

        hy(i+s+1,j+s+1)=(2*i/sig^2)*exp(-(i^2+j^2)/sig^2); 

        hx(i+s+1,j+s+1)=(2*j/sig^2)*exp(-(i^2+j^2)/sig^2); 

    end 

end 

clear i j 

for i=1:M-l+1; % iterate across rows 

    for j=1:N-l+1; % iterate across columns 

        gx=0; 

        gy=0; 

        for p=1:l; % iterate across rows of kernel over current pixel 

            for q=1:l; % iterate across cols of kernel over current pixel 

                gy=gy+hy(p,q)*img_v1(i-1+p,j-1+q); 

                gx=gx+hx(p,q)*img_v1(i-1+p,j-1+q); 

            end 

        end 

        Gx(i,j)=gx; 

        Gy(i,j)=gy; 

        G(i,j)=(gx^2+gy^2); 

        if (gx<=0)&&(gy<=0); 

            phi(i,j)=2; 

        else 

            if gx<=0; 
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                phi(i,j)=2; 

            else 

                phi(i,j)=atan(gy/gx); 

            end 

        end 

    end 

    countdown1=M+1-l-i; 

end 

% Directional Histogram Construction 

k=0; 

i=0; 

j=0; 

row=0; 

for i=1:t:M-l+1; 

    row=row+1; 

    col=0; 

    for j=1:t:N-l+1; 

        col=col+1; 

        clear A 

        if (M-t-i>=t)&&(N-t-j>=t) 

            theta=0; 

            k=0; 

            index=0; 
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            for theta=0:1:179 

                k=k+1; 

                radian=theta*pi()/180; 

                p=0; 

                q=0; 

                a=0; 

                sum=0; 

                % iterate across subregion 

                for p=1:t; 

                    for q=1:t; 

                        if phi(i-1+p,j-1+q)==2; 

                            a=a+0; 

                        else 

                            a=a+G(i-1+p,j-1+q)*(cos(radian-phi(i-1+p,j-1+q)))^2; 

                        end 

                    end 

                end 

                A(k)=a; % accumulator bin sum across subregion 

            end 

            index=0; % reset index 

            if max(A)<=0; 

                maxang(row,col)=200; 

            else 
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                [y,index]=max(A); 

                maxang(row,col)=index-1; 

            end 

        end 

    end 

    countdown2=M+1-l-i; 

end 

% Normalize G for image 

G=(G./max(max(G))).*255; 

G=uint8(G);G=double(G); 

% Take natural logarithm of G 

clear i j 

for i=1:length(G(:,1)); 

    for j=1:length(G(1,:)); 

        if G(i,j)<=0; 

            Glog(i,j)=0; 

        else 

            Glog(i,j)=log(G(i,j)); 

        end 

    end 

end 

clear x y u v 

mag=20; 
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i=0; 

j=0; 

n=0; 

row=0; 

for i=1:t:M-l+1; 

    row=row+1; 

    col=0; 

    for j=1:t:N-l+1; 

        col=col+1; 

        if (M-t-i>=t)&&(N-t-j>=t) 

            n=n+1; 

            x(n)=(j+(t/2)-1)+(s+1); 

            y(n)=(i+(t/2)-1)+(s+1); 

            if maxang(row,col)==200; 

                u(n)=0; 

                v(n)=0; 

            else 

                u(n)=mag*sin(maxang(row,col)*pi()/180); 

                v(n)=-mag*cos(maxang(row,col)*pi()/180); 

            end 

        end 

    end 

end 
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% Determine the raw angles and histogram 

angles=maxang(((maxang(:)>=1)&(maxang(:)<=180))); 

[y_hist,x_hist]=hist(angles,1:180); 

img_v1=uint8(img_v1); 

figure(1) 

imshow(img_v1); 

hold on 

quiver(x,y,u,v,'w'); 

saveas(gcf,[char(name) '.jpg'],'jpg'); 

figure(2) 

bar(x_hist,y_hist); 

saveas(gcf,[char(name) '_bar.jpg'],'jpg'); 

C3.  MATLAB Program for Computing Mean Fiber Orientation and NOI 

This program is called by the ‘MainProgram.m’ after ‘courtney.m’  

function [theta_c,theta_p,NOI,x_hist_final,y_hist_final]=OI_SALS_fata(x_hist,y_hist) 

% Finds the mean fiber orientation and computes the NOI based on the  

% histogram generated by ‘courtney.m’ 

%  Inputs:  1. x_hist (0-180 degrees at 1 degree increment) 

%          2. y_hist (Number of fibers at each given x_hist angle) 

%  Outputs:  1. theta_c (mean fiber orientation) 

%          2. theta_p (peak orientation or orientation with maximum number of fibers 
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%            3. NOI 

%           4. x_hist_final (modified x_hist: -90 to 90 degrees) 

%            5. y_hist_final (normalized y_hist) 

N=4; 

polyfit_coeffs=polyfit(x_hist,y_hist,N); 

y_polyfit=polyval(polyfit_coeffs,x_hist); 

x_optima_pts_all=roots([polyfit_coeffs(1)*N, polyfit_coeffs(2)*(N-1), polyfit_coeffs(3)*(N-2), 

polyfit_coeffs(4)*(N-3), polyfit_coeffs(5)*(N-4)]); 

index_optima_pts_in_range=find(x_optima_pts_all>=0 & x_optima_pts_all<=180 &... 

                               x_optima_pts_all==real(x_optima_pts_all)); 

x_optima_pts=x_optima_pts_all(index_optima_pts_in_range); 

x_optima_pts=sort(x_optima_pts); 

y_optima_pts=polyval(polyfit_coeffs, x_optima_pts);               

% [min_value,min_index]=min(y_polyfit); 

[min_value_y,min_index_y]=min(y_optima_pts); 

min_index=round(x_optima_pts(min_index_y)); 

% % % % % %  

figure(2) 

bar(x_hist,y_hist); 

hold on 

plot(x_hist,y_polyfit,'r') 

hold on 

plot(x_optima_pts,y_optima_pts,'cX'); 
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%  

y_hist_mod=zeros(size(y_hist)); 

x_hist_mod=zeros(size(x_hist)); 

%  

y_hist_mod(1:(179-min_index))=y_hist(min_index+1:179); 

y_hist_mod((180-min_index):180)=y_hist(1:min_index+1); 

x_hist_mod(1:(179-min_index))=x_hist(min_index+1:179); 

x_hist_mod((180-min_index):180)=x_hist(1:min_index+1)+179; 

%  

yfit=smooth(y_hist_mod)'; 

%  

figure(3) 

bar(x_hist_mod,y_hist_mod) 

hold on 

plot(x_hist_mod,yfit,'g') 

%  

% Determine the centroid  

for i=1:180-1 

    theta_cnum(i)=x_hist_mod(i+1)*((yfit(i+1)+yfit(i))/2); 

    theta_cden(i)=((yfit(i+1)+yfit(i))/2); 

end 

theta_c=round(sum(theta_cnum)/sum(theta_cden)); 

% Define theta_p 
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[value,index]=max(yfit); 

theta_p=x_hist_mod(index); 

[a b]=min(abs(x_hist_mod-theta_p)); % Find location of maximum 

% theta_pdisc=x_hist(b); 

%  

 ZTOT = trapz(x_hist_mod.*pi/180,yfit(1:180)); % total area 

%  

% Calculate area centered about theta_p in increasing widths 

for j=1:(length(x_hist_mod)/2)     

        if (b-j>0)&&(b+j<181)           % double check within bounds .. .  

       Zrow(j) = trapz(x_hist_mod(b-j:b+j).*pi/180,yfit(b-j:b+j)); % find area of intervals  

    End 

end 

%  

% % Normalize area to unity 

Znorm=Zrow/ZTOT; 

% Compute normalized fiber distribution 

y_hist_final = y_hist_mod/ZTOT; 

% Find where the area is reaches 50% and acquire its theta location 

[az bz]=min(abs(Znorm-0.5)); 

tetastart=x_hist_mod(b-bz); 

tetaend=x_hist_mod(b+bz); 

% Calculate OI as theta that encompasses 50% centered at theta_p 
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OI=tetaend-tetastart; 

NOI=((90-OI)/90)*100; 

x_hist_final(1:180)=x_hist_mod(1:180)-theta_c;  % Modify range of x_hist to -90 to 90 deg 

%  

if theta_c > 180 

    theta_c = theta_c - 180; 

    theta_p = theta_p - 180; 

end 

MainProgram.m 

The script below passes the image path, minimum threshold value and size of subregion to 

‘courtney.com’, output of which are passed to ‘OI_SALS_fata.m’. Finally all necessary ouput 

data and figures are saved. 

clear all; clc; close all; warning off; 

% %  

curr_directory='F:\Multiphoton\\Adult\DA18M_medial\stretch_10%.tif.frames\'; 

name='elastin_sum'; 

%  

file_path=strcat(curr_directory,name); 

lowthes=140;  % Minimum threshold value for image  

W=17; %  size of accumulator subregion A^W_theta, previously 12, now 30,  

[x_hist,y_hist,angles]=courtney(file_path,lowthes,W); %mpm_image,name,lowths,t 
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[theta_c,theta_p,NOI,x_hist_final,y_hist_final]=OI_SALS_fata(x_hist,y_hist); 

constants=[theta_c,theta_p,NOI] 

saveas(gcf,[char(file_path) '_bar.jpg'],'jpg'); 

% save data 

save([file_path,'.mat'],'name','constants','x_hist_final','y_hist_final','x_hist','y_hist','angles'); 

beep; 



 181 

BIBLIOGRAPHY 

1. Fung YC. Biomechanics: Motion, Flow, Stress, and Growth. New York: Springer-Verlag 

1990. 

2. Humphrey JD, Delange SL. An introduction to biomechanics : Solids and fluids, analysis 

and design. New York: Springer-Verlag; 2004. 

3. Lucas CL, Wilcox BR, Coulter NA. Pulmonary vascular response to atrial septal defect 

closure in children. J Surg Res 1975,18:571-586. 

4. Wilcox BR, Lucas CL. Pulmonary input impedance in children with left-right shunt. J 

Surg Res 1980,29:40-49. 

5. Radke NF, Lucas CL, Wilcox BR. Detection of Pulmonary Vascular-Disease in Infants 

Using Input Impedance Spectra. Circulation 1984,70:458-458. 

6. Milnor WR, Conti CR, Lewis KB, O'Rourke MF. Pulmonary arterial pulse wave velocity 

and impedance in man. Circ Res 1969,25:637-649. 

7. Kitabatake A, Inoue M, Asao M, Masuyama T, Tanouchi J, Morita T, et al. Noninvasive 

evaluation of pulmonary hypertension by a pulsed Doppler technique. Circulation 

1983,68:302-309. 

8. Haneda T, Nakajima T, Shirato K, Onodera S, Takishima T. Effects of oxygen breathing 

on pulmonary vascular input impedance in patients with pulmonary hypertension. Chest 

1983,83:520-527. 

9. Kussmaul WG, 3rd, Altschuler JA, Herrmann HC, Laskey WK. Effects of pacing 

tachycardia and balloon valvuloplasty on pulmonary artery impedance and hydraulic 

power in mitral stenosis. Circulation 1992,86:1770-1779. 

10. Nichols WW, O'Rourke MF. McDonald's blood flow in arteries: Theoretical, 

experimental and clinical principles. 5th ed. London: Hodder Arnold; 2005. 

11. Fung YC. Biomechanics: Mechanical properties of living tissues. 2nd ed. New York: 

Springer-Verlag; 1993. 



 182 

12. Mavroudis C, Backer CL. Pediatric Cardiac Surgery: Mosby, Inc; 2003. 

13. Rudolph AM. The changes in the circulation after birth. Their importance in congenital 

heart disease. Circulation 1970,41:343-359. 

14. Ursell PC, Byrne JM, Fears TR, Strobino BA, Gersony WM. Growth of the great vessels 

in the normal human fetus and in the fetus with cardiac defects. Circulation 

1991,84:2028-2033. 

15. Allen HD, Adams FH, Moss AJ. Moss and Adams' heart disease in infants, children, and 

adolescents: Including the fetus and young adult. 6th ed. Philadelphia: Lippincott 

Williams & Wilkins; 2001. 

16. Adatia I, Kothari SS, Feinstein JA. Pulmonary hypertension associated with congenital 

heart disease: pulmonary vascular disease: the global perspective. Chest 2010,137:52S-

61S. 

17. Tulloh RM. Congenital heart disease in relation to pulmonary hypertension in paediatric 

practice. Paediatr Respir Rev 2005,6:174-180. 

18. Deterling RA, Jr., Clagett OT. Aneurysm of the pulmonary artery; review of the literature 

and report of a case. Am Heart J 1947,34:471-499. 

19. Kutty S, Kaul S, Danford CJ, Danford DA. Main pulmonary artery dilation in association 

with congenital bicuspid aortic valve in the absence of pulmonary valve abnormality. 

Heart 2010,96:1756-1761. 

20. Patnaik AN, Barik R, Babu S, Gullati AS. A rare case of left lung hypoplasia associated 

with congenital pulmonary artery aneurysm and ventricular septal defect. Pediatr Cardiol 

2012. 

21. Greenwald SE, Johnson RJ, Haworth SG. Pulmonary vascular input impedance in the 

newborn and infant pig. Cardiovascular Research 1984,18:44-50. 

22. Boumaza S, Arribas SM, Osborne-Pellegrin M, McGrath JC, Laurent S, Lacolley P, et al. 

Fenestrations of the carotid internal elastic lamina and structural adaptation in stroke-

prone spontaneously hypertensive rats. Hypertension 2001,37:1101-1107. 

23. Gaballa MA, Jacob CT, Raya TE, Liu J, Simon B, Goldman S. Large artery remodeling 

during aging: biaxial passive and active stiffness. Hypertension 1998,32:437-443. 

24. Kogon BE, Patel M, Pernetz M, McConnell M, Book W. Late pulmonary valve 

replacement in congenital heart disease patients without original congenital pulmonary 

valve pathology. Pediatric Cardiology 2009,31:74-79. 



 183 

25. Ono M, Goerler H, Kallenbach K, Boethig D, Westhoff-Bleck M, Breymann T. Aortic 

valve-sparing reimplantation for dilatation of the ascending aorta and aortic regurgitation 

late after repair of congenital heart disease. J Thorac Cardiovasc Surg 2007,133:876-879. 

26. Rosenberg HG, Williams WG, Trusler GA, Higa T, Rabinovitch M. Structural 

composition of central pulmonary arteries. Growth potential after surgical shunts. J 

Thorac Cardiovasc Surg 1987,94:498-503. 

27. Mayer JE, Jr. Uses of homograft conduits for right ventricle to pulmonary artery 

connections in the neonatal period. Semin Thorac Cardiovasc Surg 1995,7:130-132. 

28. Cho SW, Kim IK, Kang JM, Song KW, Kim HS, Park CH, et al. Evidence for in vivo 

growth potential and vascular remodeling of tissue-engineered artery. Tissue Eng Part A 

2009,15:901-912. 

29. Hoerstrup SP, Cummings Mrcs I, Lachat M, Schoen FJ, Jenni R, Leschka S, et al. 

Functional growth in tissue-engineered living, vascular grafts: follow-up at 100 weeks in 

a large animal model. Circulation 2006,114:I159-166. 

30. Shinoka T, Shum-Tim D, Ma PX, Tanel RE, Isogai N, Langer R, et al. Creation of viable 

pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 

1998,115:536-545; discussion 545-536. 

31. Mol A, Smits AI, Bouten CV, Baaijens FP. Tissue engineering of heart valves: advances 

and current challenges. Expert Rev Med Devices. 2009,6:259-275. 

32. O'Rourke MF, Nichols WW. Aortic diameter, aortic stiffness, and wave reflection 

increase with age and isolated systolic hypertension. Hypertension 2005,45:652-658. 

33. Alvarez L, Aranega A, Saucedo R, Contreras JA, Lopez F. Morphometric data 

concerning the great arterial trunks and their branches. Int J Cardiol 1990,29:127-139. 

34. Castillo EH, Arteaga-Martinez M, Garcia-Pelaez I, Villasis-Keever MA, Aguirre OM, 

Moran V, et al. Morphometric study of the human fetal heart. I. Arterial segment. Clin 

Anat 2005,18:260-268. 

35. Snider AR, Enderlein MA, Teitel DF, Juster RP. Two-dimensional echocardiographic 

determination of aortic and pulmonary artery sizes from infancy to adulthood in normal 

subjects. Am J Cardiol 1984,53:218-224. 

36. Henry WL, Ware J, Gardin JM, Hepner SI, McKay J, Weiner M. Echocardiographic 

measurements in normal subjects. Growth-related changes that occur between infancy 

and early adulthood. Circulation 1978,57:278-285. 

37. Epstein ML, Goldberg SJ, Allen HD, Konecke L, Wood J. Great vessel, cardiac chamber, 

and wall growth patterns in normal children. Circulation 1975,51:1124-1129. 



 184 

38. Sievers HH, Onnasch DG, Lange PE, Bernhard A, Heintzen PH. Dimensions of the great 

arteries, semilunar valve roots, and right ventricular outflow tract during growth: 

normative angiocardiographic data. Pediatr Cardiol 1983,4:189-196. 

39. Grant RP, Downey FM, Macmahon H. The architecture of the right ventricular outflow 

tract in the normal human heart and in the presence of ventricular septal defects. 

Circulation 1961,24:223-235. 

40. Szpinda M, Brazis P, Elminowska-Wenda G, Wisniewski M. Morphometric study of the 

aortic and great pulmonary arterial pathways in human foetuses. Ann Anat 2006,188:25-

31. 

41. Herijgers P, Ozaki S, Verbeken E, Van Lommel A, Racz R, Zietkiewicz M, et al. 

Calcification characteristics of porcine stentless valves in juvenile sheep. Eur J 

Cardiothorac Surg 1999,15:134-142. 

42. Sutherland FW, Perry TE, Yu Y, Sherwood MC, Rabkin E, Masuda Y, et al. From stem 

cells to viable autologous semilunar heart valve. Circulation 2005,111:2783-2791. 

43. Wang Z, Chesler NC. Pulmonary vascular wall stiffness: An important contributor to the 

increased right ventricular afterload with pulmonary hypertension. Pulm Circ 

2011,1:212-223. 

44. Kobs RW, Muvarak NE, Eickhoff JC, Chesler NC. Linked mechanical and biological 

aspects of remodeling in mouse pulmonary arteries with hypoxia-induced hypertension. 

Am J Physiol Heart Circ Physiol 2005,288:H1209-1217. 

45. Drexler ES, Bischoff JE, Slifka AJ, McCowan CN, Quinn TP, Shandas R, et al. 

Stiffening of the extrapulmonary arteries from rats in chronic hypoxic pulmonary 

hypertension. Journal of Research of the National Institute of Standards and Technology 

2008,113:239–249. 

46. Tozzi CA, Christiansen DL, Poiani GJ, Riley DJ. Excess collagen in hypertensive 

pulmonary arteries decreases vascular distensibility. Am J Respir Crit Care Med 

1994,149:1317-1326. 

47. Ooi CY, Wang Z, Tabima DM, Eickhoff JC, Chesler NC. The role of collagen in 

extralobar pulmonary artery stiffening in response to hypoxia-induced pulmonary 

hypertension. Am J Physiol Heart Circ Physiol 2010,299:H1823-1831. 

48. Poiani GJ, Tozzi CA, Yohn SE, Pierce RA, Belsky SA, Berg RA, et al. Collagen and 

elastin metabolism in hypertensive pulmonary arteries of rats. Circ Res 1990,66:968-978. 

49. Tucker A, Migally N, Wright ML, Greenlees KJ. Pulmonary vascular changes in young 

and aging rats exposed to 5,486 m altitude. Respiration 1984,46:246-257. 



 185 

50. Leung DYM, Glagov S, Mathews MB. Elastin and Collagen Accumulation in Rabbit 

Ascending Aorta and Pulmonary Trunk during Postnatal Growth; correlation of Cellular 

Synthetic Response with Medial Tension. Circ Res 1977,41:316-323. 

51. Langille BL, Brownlee RD, Adamson SL. Perinatal aortic growth in lambs: relation to 

blood flow changes at birth. Am J Physiol 1990,259:H1247-1253. 

52. Lammers SR, Kao PH, Qi HJ, Hunter K, Lanning C, Albietz J, et al. Changes in the 

structure-function relationship of elastin and its impact on the proximal pulmonary 

arterial mechanics of hypertensive calves. Am J Physiol Heart Circ Physiol 

2008,295:H1451-1459. 

53. Choudhury N, Bouchot O, Rouleau L, Tremblay D, Cartier R, Butany J, et al. Local 

mechanical and structural properties of healthy and diseased human ascending aorta 

tissue. Cardiovasc Pathol 2009,18:83-91. 

54. Huang Y, Guo X, Kassab GS. Axial nonuniformity of geometric and mechanical 

properties of mouse aorta is increased during postnatal growth. Am J Physiol Heart Circ 

Physiol 2006,290:H657-664. 

55. Haskett D, Johnson G, Zhou A, Utzinger U, Vande Geest J. Microstructural and 

biomechanical alterations of the human aorta as a function of age and location. Biomech 

Model Mechanobiol 2010,9:725-736. 

56. Greenwald SE, Berry CL, Haworth SG. Changes in distensibility of intrapulmonary 

arteries in the normal newborn and growing pig. Cardiovascular Research 1982,16:716-

725. 

57. Rachev A, Greenwald SE, Kane TP, Jr JEM, Meister JJ. Analysis of the strain and stress 

distribution in the wall of the developing and mature rat aorta. Biorheology 1995,32:473-

485. 

58. Pagani M, Mirsky I, Baig H, Manders WT, Kerkhof P, Vatner SF. Effects of age on 

aortic pressure-diameter and elastic stiffness-stress relationships in unanesthetized sheep. 

Circ Res 1979,44:420-429. 

59. Berry CL, Looker T, Germain J. The growth and development of the rat aorta. I. 

Morphological aspects. J Anat 1972,113:1-16. 

60. Wells SM, Langille BL, Lee JM, Adamson SL. Determinants of mechanical properties in 

the developing ovine thoracic aorta. Am J Physiol 1999,277:H1385-1391. 

61. Wells SM, Langille BL, Adamson SL. In vivo and in vitro mechanical properties of the 

sheep thoracic aorta in the perinatal period and adulthood. Am J Physiol 

1998,274:H1749-1760. 



 186 

62. Sacks MS, Sun W. Multiaxial mechanical behavior of biological materials. Annu Rev 

Biomed Eng 2003,5:251-284. 

63. Chesler NC, Thompson-Figueroa J, Millburne K. Measurements of mouse pulmonary 

artery biomechanics. J Biomech Eng 2004,126:309-314. 

64. Billiar KL, Sacks MS. Biaxial mechanical properties of the natural and glutaraldehyde 

treated aortic valve cusp--Part I: Experimental results. J Biomech Eng 2000,122:23-30. 

65. Grashow JS. Evaluation of the Biaxial Mechanical Properties of the Mitral Valve 

Anterior Leaflet Under Physiological Loading Conditions [Master's Thesis]. Pittsburgh, 

PA: University of Pittsburgh; 2005. 

66. Vaishnav RN, Vossoughi J. Estimation of residual strains in aortic segments. New York; 

1983. 

67. Fung YC. What principle governs the stress distribution in living organisms? Beijing: 

Science Press; 1983. 

68. Chuong CJ, Fung YC. On residual stresses in arteries. J Biomech Eng 1986,108:189-192. 

69. Takamizawa K, Hayashi K. Strain energy density function and uniform strain hypothesis 

for arterial mechanics. J Biomech 1987,20:7-17. 

70. Fratzl P. Collagen structure and mechanics. New York: Springer; 2008. 

71. Mithieux SM, Weiss AS. Elastin. Advances in protein chemistry 2005,70:437-461. 

72. Sherratt MJ. Tissue elasticity and the ageing elastic fibre. Age 2009,31:305-325. 

73. Gosline J, Lillie M, Carrington E, Guerette P, Ortlepp C, Savage K. Elastic proteins: 

biological roles and mechanical properties. Philos Trans R Soc Lond B Biol Sci 

2002,357:121-132. 

74. Hulmes DJ. Building collagen molecules, fibrils, and suprafibrillar structures. J Struct 

Biol 2002,137:2-10. 

75. von der Mark K. Localization of collagen types in tissues. Int Rev Connect Tissue Res 

1981,9:265-324. 

76. Wolinsky H, Glagov S. Structural Basis for the Static Mechanical Properties of the Aortic 

Media. Circ Res 1964,14:400-413. 

77. Heath D, Wood EH, Dushane JW, Edwards JE. The structure of the pulmonary trunk at 

different ages and in cases of pulmonary hypertension and pulmonary stenosis. J Pathol 

Bacteriol 1959,77:443-456. 



 187 

78. Saldana M, Arias-Stella J. Studies on the strcture of the pulmonary trunk. I. Normal 

changes in the elastic configuration of the human pulmonary trunk at different ages. 

Circulation 1963,27:1086-1093. 

79. Green AE, Zerna W. Theoretical elasticity. 2nd ed. New York: Dover; 1992. 

80. Cowin SC. The mechanical and stress adaptive properties of bone. Ann Biomed Eng 

1983,11:263-295. 

81. Fung YC. Elasticity of soft tissues in simple elongation. Am J Physiol 1967,213:1532-

1544. 

82. Fung YC, Fronek K, Patitucci P. Pseudoelasticity of arteries and the choice of its 

mathematical expression. Am J Physiol 1979,237:H620-631. 

83. Humphrey JD, Yin FC. A new constitutive formulation for characterizing the mechanical 

behavior of soft tissues. Biophysical Journal 1987,52:563-570. 

84. Holzapfel GA, Weizsacker HW. Biomechanical behavior of the arterial wall and its 

numerical characterization. Comput Biol Med 1998,28:377-392. 

85. Rivlin RS, Saunders DW. Large elastic deformations of isotropic materials .7. 

Experiments on the deformation of rubber. Philos Trans R Soc Lond A Math Physic Sci 

1951,243:251-288. 

86. Holzapfel GA, Gasser TC. A new constitutive framework for arterial wall mechanics and 

a comparative study of material models. J Elasticity 2000,61:1-48. 

87. Roach MR, Burton AC. The reason for the shape of the distensibility curves of arteries. 

Can J Biochem Physiol 1957,35:681-690. 

88. Scott S, Ferguson GG, Roach MR. Comparison of the elastic properties of human 

intracranial arteries and aneurysms. Can J Physiol Pharmacol 1972,50:328-332. 

89. Lanir Y. A structural theory for the homogeneous biaxial stress-strain relationships in flat 

collagenous tissues. J Biomech 1979,12:423-436. 

90. Lanir Y. Constitutive equations for fibrous connective tissues. J Biomech 1983,16:1-12. 

91. Wognum S, Schmidt DE, Sacks MS. On the mechanical role of de novo synthesized 

elastin in the urinary bladder wall. J Biomech Eng 2009,131:101018. 

92. Hill MR, Duan X, Gibson GA, Watkins S, Robertson AM. A theoretical and non-

destructive experimental approach for direct inclusion of measured collagen orientation 

and recruitment into mechanical models of the artery wall. J Biomech 2012,45:762-771. 



 188 

93. Sacks MS. Incorporation of experimentally-derived fiber orientation into a structural 

constitutive model for planar collagenous tissues. J Biomech Eng 2003,125:280-287. 

94. Liao J, Yang L, Grashow J, Sacks MS. The relation between collagen fibril kinematics 

and mechanical properties in the mitral valve anterior leaflet. J Biomech Eng 

2007,129:78-87. 

95. Wognum S. A multi-phase structural constitutive model for insights into soft tissue 

remodeling mechanisms [PhD Dissertation]. Pittsburgh, PA: University of Pittsburgh; 

2010. 

96. Taber LA. Nonlinear Theory of Elasticity, Applications in Biomechanics. Danvers, MA: 

World Scientific Publishing; 2004. 

97. Fung YC. Biorheology of soft tissues. Biorheology 1973,10:139-155. 

98. Spencer AJM. Continuum mechanics. Dover ed. Mineola, N.Y.: Dover Publications; 

2004. 

99. Holzapfel GA. Nonlinear solid mechanics: a continuum approach for engineering. 

Chichester ; New York: Wiley; 2000. 

100. Holzapfel GA. Determination of material models for arterial walls from uniaxial 

extension tests and histological structure. J Theor Biol 2006,238:290-302. 

101. Holzapfel GA, Gasser TC, Ogden RW. Comparison of a multi-layer structural model for 

arterial walls with a fung-type model, and issues of material stability. J Biomech Eng 

2004,126:264-275. 

102. Humphrey JD, Strumpf RK, Yin FC. Determination of a constitutive relation for passive 

myocardium: I. A new functional form. J Biomech Eng 1990,112:333-339. 

103. Humphrey JD, Yin FC. On constitutive relations and finite deformations of passive 

cardiac tissue: I. A pseudostrain-energy function. J Biomech Eng 1987,109:298-304. 

104. Itskov M, Ehret AE, Mavrilas D. A polyconvex anisotropic strain-energy function for 

soft collagenous tissues. Biomech Model Mechanobiol 2006,5:17-26. 

105. Billiar KL, Sacks MS. Biaxial mechanical properties of the native and glutaraldehyde-

treated aortic valve cusp: Part II--A structural constitutive model. J Biomech Eng 

2000b,122:327-335. 

106. Freed AD, Einstein DR, Vesely I. Invariant formulation for dispersed transverse isotropy 

in aortic heart valves: an efficient means for modeling fiber splay. Biomech Model 

Mechanobiol 2005,4:100-117. 



 189 

107. Chen K, Fata B, Einstein DR. Characterization of the highly nonlinear and anisotropic 

vascular tissues from experimental inflation data: a validation study toward the use of 

clinical data for in-vivo modeling and analysis. Ann Biomed Eng 2008,36:1668-1680. 

108. Einstein DR, Freed AD, Stander N, Fata B, Vesely I. Inverse parameter fitting of 

biological tissues: a response surface approach. Ann Biomed Eng 2005,33:1819-1830. 

109. Taber LA. A model for aortic growth based on fluid shear and fiber stresses. J Biomech 

Eng 1998,120:348-354. 

110. Rachev A, Stergiopulos N, Meister JJ. A model for geometric and mechanical adaptation 

of arteries to sustained hypertension. J Biomech Eng 1998,120:9-17. 

111. Taber LA, Humphrey JD. Stress-modulated growth, residual stress, and vascular 

heterogeneity. J Biomech Eng 2001,123:528-535. 

112. Hsu FH. The influences of mechanical loads on the form of a growing elastic body. J 

Biomech 1968,1:303-311. 

113. Hegedus DH, Cowin SC. Bone remodeling II: small strain adaptive elasticity. J Elasticity 

1976,6:337-352. 

114. Cowin SC, Hegedus DH. Bone remodeling I: theory of adaptive elasticity. J Elasticity 

1976,6:313-326. 

115. Skalak R, Dasgupta G, Moss M, Otten E, Dullumeijer P, Vilmann H. Analytical 

description of growth. J Theor Biol 1982,94:555-577. 

116. Rodriguez EK, Hoger A, McCulloch AD. Stress-dependent finite growth in soft elastic 

tissues. J Biomech 1994,27:455-467. 

117. Alastrue V, Martinez MA, Doblare M. Modelling adaptative volumetric finite growth in 

patient-specific residually stressed arteries. J Biomech 2008,41:1773-1781. 

118. Atkin RJ, Craine RE. Continuum Theories of Mixtures - Basic Theory and Historical 

Development. Quarterly Journal of Mechanics and Applied Mathematics 1976,29:209-

244. 

119. Bowen RM. A Theory of Constrained Mixtures with Multiple Temperatures. Archive for 

Rational Mechanics and Analysis 1979,70:235-250. 

120. Gleason RL, Jr., Humphrey JD. A 2D constrained mixture model for arterial adaptations 

to large changes in flow, pressure and axial stretch. Math Med Biol 2005,22:347-369. 

121. Humphrey JD, Rajagopal KR. A constrained mixture model for arterial adaptations to a 

sustained step change in blood flow. Biomech Model Mechanobiol 2003,2:109-126. 



 190 

122. Gleason RL, Taber LA, Humphrey JD. A 2-D model of flow-induced alterations in the 

geometry, structure, and properties of carotid arteries. J Biomech Eng 2004,126:371-381. 

123. Cois A, Galeotti J, Tamburo R, Sacks M, Stetten G. Shells and Spheres: An n-

Dimensional Framework for Medial-Based Image Segmentation. International Journal of 

Biomedical Imaging 2010,2010:1-13. 

124. Cow CA, Rockot K, Galeotti J, Tamburo R, Gottlieb D, Mayer JE, et al. Automated 

segmentation of the right heart using an optimized Shells and Spheres algorithm. In: 4th 

IEEE International Symposium on Biomedical Imaging: From Nano to Macro (ISBI 

2007); 2007. pp. 876-879. 

125. Azar A. An interactive intensity- and feature-based non-rigid registration framework for 

3D medical images [Master's Thesis]. Sophia-Antipolis, France: Université de Nice 

Sophia-Antipolis; 2005. 

126. Nielsen PM, Le Grice IJ, Smaill BH, Hunter PJ. Mathematical model of geometry and 

fibrous structure of the heart. Am J Physiol 1991,260:H1365-1378. 

127. Smith DB, Sacks MS, Vorp DA, Thornton M. Surface geometric analysis of anatomic 

structures using biquintic finite element interpolation. Ann Biomed Eng 2000,28:598-611. 

128. Struik DJ. Lectures on classical differential geometry. 2nd ed. New York: Dover; 1961. 

129. Renton JD. Applied Elasticity: Matrix and Tensor Analysis of Elastic Continua. 

Chichester: Ellis Horwood Limited; 1987. 

130. Berry CL. Growth, development, and healing of large arteries. Ann R Coll Surg Engl 

1973,53:246-257. 

131. de Sa M, Moshkovitz Y, Butany J, David TE. Histologic abnormalities of the ascending 

aorta and pulmonary trunk in patients with bicuspid aortic valve disease: clinical 

relevance to the ross procedure. J Thorac Cardiovasc Surg 1999,118:588-594. 

132. O'Rourke MF. Mechanical principles. Arterial stiffness and wave reflection. Pathol Biol 

(Paris) 1999,47:623-633. 

133. Taylor MG. Wave-travel in a non-uniform transmission line, in relation to pulses in 

arteries. Phys Med Biol 1965,10:539-550. 

134. Choi G, Cheng CP, Wilson NM, Taylor CA. Methods for quantifying three-dimensional 

deformation of arteries due to pulsatile and nonpulsatile forces: Implications for the 

design of stents and stent grafts. Ann Biomed Eng 2008,37:14-33. 

135. Thubrikar MJ. Vascular mechanics and pathology: Springer; 2007. 



 191 

136. Sacks MS, Chuong CJ. Orthotropic mechanical properties of chemically treated bovine 

pericardium. Ann Biomed Eng 1998,26:892-902. 

137. Billiar KL, Sacks MS. Biaxial mechanical properties of the natural and glutaraldehyde 

treated aortic valve cusp--Part I: Experimental results. J Biomech Eng 2000a,122:23-30. 

138. Hoffman AH, Grigg P. A method for measuring strains in soft tissue. J Biomech 

1984,17:795-800. 

139. Vande Geest JP, Sacks MS, Vorp DA. The effects of aneurysm on the biaxial mechanical 

behavior of human abdominal aorta. J Biomech 2006,39:1324-1334. 

140. Gozna ER, Marble AE, Shaw A, Holland JG. Age-related changes in the machanics of 

the aorta and Pulmonary artery of man. J Appl Physiol 1974,36:407-411. 

141. Vande Geest JP, Sacks MS, Vorp DA. Age dependency of the biaxial biomechanical 

behavior of human abdominal aorta. J Biomech Eng 2004,126:815-822. 

142. Patel DJ, Schilder DP, Mallos AJ. Mechanical properties and dimensions of the major 

pulmonary arteries. J Appl Physiol 1960,15:92-96. 

143. Drexler ES, Quinn TP, Slifka AJ, McCowan CN, Bischoff JE, Wright JE, et al. 

Comparison of mechanical behavior among the extrapulmonary arteries from rats. J 

Biomech 2007,40:812-819. 

144. Hunter KS, Albietz JA, Lee PF, Lanning CJ, Lammers SR, Hofmeister SH, et al. In vivo 

measurement of proximal pulmonary artery elastic modulus in the neonatal calf model of 

pulmonary hypertension: development and ex vivo validation. J Appl Physiol 

2010,108:968-975. 

145. Cox RH. Viscoelastic properties of canine pulmonary arteries. Am J Physiol 

1984,246:H90-96. 

146. Takkenberg JJ, Klieverik LM, Schoof PH, van Suylen RJ, van Herwerden LA, 

Zondervan PE, et al. The Ross procedure: A systematic review and meta-analysis. 

Circulation 2009,119:222-228. 

147. David TE, Omran A, Ivanov J, Armstrong S, de Sa MP, Sonnenberg B, et al. Dilation of 

the pulmonary autograft after the Ross procedure. J Thorac Cardiovasc Surg 

2000,119:210-220. 

148. Hosoda Y, Kawano K, Yamasawa F, Ishii T, Shibata T, Inayama S. Age-dependent 

changes of collagen and elastin content in human aorta and pulmonary artery. Angiology 

1984,35:615-621. 



 192 

149. Humphrey JD. Cardiovascular Solid Mechanics: Cells, tissues and organs. New York: 

Springer; 2002. 

150. Patel DJ, Freitas FMD, Mallos AJ. Mechanical function of the main pulmonary artery. J 

Appl Physiol 1962,17:205-208. 

151. Tabima DM, Chesler NC. The effects of vasoactivity and hypoxic pulmonary 

hypertension on extralobar pulmonary artery biomechanics. J Biomech 2010,43:1864-

1869. 

152. Berger RM, Cromme-Dijkhuis AH, Hop WC, Kruit MN, Hess J. Pulmonary arterial wall 

distensibility assessed by intravascular ultrasound in children with congenital heart 

disease: an indicator for pulmonary vascular disease? Chest 2002,122:549-557. 

153. Jiang ZL, Kassab GS, Fung YC. Diameter-defined Strahler system and connectivity 

matrix of the pulmonary arterial tree. J Appl Physiol 1994,76:882-892. 

154. Fung YC, Liu SQ. Changes of zero-stress state of rat pulmonary arteries in hypoxic 

hypertension. J Appl Physiol 1991,70:2455-2470. 

155. Liu SQ, Fung YC. Influence of STZ-induced diabetes on zero-stress states of rat 

pulmonary and systemic arteries. Diabetes 1992,41:136-146. 

156. Han HC, Fung YC. Direct measurement of transverse residual strains in aorta. Am J 

Physiol 1996,270:H750-759. 

157. Huang W, Sher YP, Delgado-West D, Wu JT, Peck K, Fung YC. Tissue remodeling of 

rat pulmonary artery in hypoxic breathing. I. Changes of morphology, zero-stress state, 

and gene expression. Ann Biomed Eng 2001,29:535-551. 

158. Sacks MS, Smith DB, Hiester ED. A small angle light scattering device for planar 

connective tissue microstructural analysis. Ann Biomed Eng 1997,25:678-689. 

159. Joyce EM, Moore JJ, Sacks MS. Biomechanics of the fetal membrane prior to mechanical 

failure: Review and implications. Eur J Obstet Gynecol Reprod Biol 2009,144 Suppl 

1:S121-127. 

160. Gaitan-Leon DM, Schmidt DE, Chew DW, Vorp DA, Sacks MS. Structural information 

of cardiovascular tissues using small angle light scattering. In: Proceedings of the 

American Society of Mechanical Engineers (ASME) Summer Bioengineering Conference. 

Lake Tahoe, CA; 2009. 

161. Zoumi A, Lu XA, Kassab GS, Tromberg BJ. Imaging coronary artery microstructure 

using second-harmonic and two-photon fluorescence microscopy. Biophysical Journal 

2004,87:2778-2786. 



 193 

162. Boulesteix T, Pena AM, Pages N, Godeau G, Sauviat MP, Beaurepaire E, et al. 

Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure. 

Cytometry A 2006,69:20-26. 

163. Konig K, Schenke-Layland K, Riemann I, Stock UA. Multiphoton autofluorescence 

imaging of intratissue elastic fibers. Biomaterials 2005,26:495-500. 

164. Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW. Live tissue 

intrinsic emission microscopy using multiphoton-excited native fluorescence and second 

harmonic generation. Proceedings of the National Academy of Sciences of the United 

States of America 2003,100:7075-7080. 

165. Scherschel JA, Rubart M. Cardiovascular imaging using two-photon microscopy. 

Microsc Microanal 2008,14:492-506. 

166. Chaudhuri BB, Kundu P, Sarkar N. Detection and gradation of oriented texture. Pattern 

Recognition Letters 1993,14:147-153. 

167. Karlon WJ, Covell JW, McCulloch AD, Hunter JJ, Omens JH. Automated measurement 

of myofiber disarray in transgenic mice with ventricular expression of ras. Anat Rec 

1998,252:612-625. 

168. Courtney T, Sacks MS, Stankus J, Guan J, Wagner WR. Design and analysis of tissue 

engineering scaffolds that mimic soft tissue mechanical anisotropy. Biomaterials 

2006,27:3631-3638. 

169. Davidson JM, Hill KE, Alford JL. Developmental changes in collagen and elastin 

bioynthesis in the porcine aorta. Developmental Biology 1986,118:103-111. 

170. Bendeck MP, Langille BL. Rapid accumulation of elastin and collagen in the aortas of 

sheep in the immediate perinatal period. Circ Res 1991,69:1165-1169. 

171. Beridze N, Frishman WH. Vascular Ehlers-Danlos syndrome: pathophysiology, 

diagnosis, and prevention and treatment of its complications. Cardiol Rev 2012,20:4-7. 

172. Stakos DA, Tziakas DN, Chalikias GK, Mitrousi K, Tsigalou C, Boudoulas H. 

Associations between collagen synthesis and degradation and aortic function in arterial 

hypertension. Am J Hypertens 2010,23:488-494. 

173. Avolio A, Jones D, Tafazzoli-Shadpour M. Quantification of alterations in structure and 

function of elastin in the arterial media. Hypertension 1998,32:170-175. 

174. Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta and large 

conduit arteries during early development as an initiating event in pathogenesis of 

systemic hypertension. Lancet 1997,350:953-955. 



 194 

175. Gundiah N, M BR, L AP. Determination of strain energy function for arterial elastin: 

Experiments using histology and mechanical tests. J Biomech 2007,40:586-594. 

176. Martyn CN, Greenwald SE. Impaired synthesis of elastin in walls of aorta and large 

conduit arteries during early development as an initiating event in pathogenesis of 

systemic hypertension. The Lancet 1997,350:953-955. 

177. Wagenseil JE, Mecham RP. Elastin in large artery stiffness and hypertension. J 

Cardiovasc Transl Res 2012. 

178. Ogden RW, Saccomandi G. Introducing mesoscopic information into constitutive 

equations for arterial walls. Biomech Model Mechanobiol 2007,6:333-344. 

179. Zou Y, Zhang Y. An experimental and theoretical study on the anisotropy of elastin 

network. Ann Biomed Eng 2009,37:1572-1583. 

180. Lillie MA, Shadwick RE, Gosline JM. Mechanical anisotropy of inflated elastic tissue 

from the pig aorta. J Biomech 2010,43:2070-2078. 

181. Cox RH. Passive mechanics and connective tissue composition of canine arteries. Am J 

Physiol 1978,234:H533-541. 

182. Roy S, Boss C, Rezakhaniha R, Stergiopulos N. Experimental characterization of the 

distribution of collagen fiber recruitment. J Biorheology 2010,24:84-93. 

183. Meijering E, Jacob M, Sarria JCF, Steiner P, Hirling H, Unser M. Design and validation 

of a tool for neurite tracing and analysis in fluorescence microscopy images. Cytometry 

Part A 2004,58A:167-176. 

184. Hill M. A Novel Approach for Combining Biomechanical and Micro-structural Analyses 

to Assess the Mechanical and Damage Properties of the Artery Wall [PhD Dissertation]. 

Pittsburgh, PA: University of Pittsburgh; 2011. 

185. Holzapfel GA, Ogden RW. Constitutive modelling of arteries. Proceedings of the Royal 

Society a-Mathematical Physical and Engineering Sciences 2010,466:1551-1596. 

186. Demiray H. A note on the elasticity of soft biological tissues. J Biomech 1972,5:309-311. 

187. McEniery CM, Wilkinson IB, Avolio AP. Age, hypertension and arterial function. Clin 

Exp Pharmacol Physiol 2007,34:665-671. 

188. Schwartz CJ, Valente AJ, Sprague EA, Kelley JL, Nerem RM. The pathogenesis of 

atherosclerosis: an overview. Clin Cardiol 1991,14:I1-16. 

189. Zulliger MA, Fridez P, Hayashi K, Stergiopulos N. A strain energy function for arteries 

accounting for wall composition and structure. J Biomech 2004,37:989-1000. 



 195 

190. Gasser TC, Ogden RW, Holzapfel GA. Hyperelastic modelling of arterial layers with 

distributed collagen fibre orientations. J R Soc Interface 2006,3:15-35. 

191. Sherebrin MH, Song SH, Roach MR. Mechanical anisotropy of purified elastin from the 

thoracic aorta of dog and sheep. Can J Physiol Pharmacol 1983,61:539-545. 

192. Bischoff JE, Arruda EM, Grosh K. A microstructurally based orthotropic hyperelastic 

constitutive law. J Appl Mech-Transactions of the ASME 2002,69:570-579. 

193. Urry DW, Hugel T, Seitz M, Gaub HE, Sheiba L, Dea J, et al. Elastin: a representative 

ideal protein elastomer. Philos Trans R Soc Lond B Biol Sci 2002,357:169-184. 

194. Erman B. Molecular aspects of rubber elasticity. In: Mechanics and thermomechanics of 

rubberlike solids, CISM courses and lecture notes. Edited by Saccomandi G, Ogden RW. 

Vienna: Springer; 2004. 

195. Sasaki N, Odajima S. Elongation mechanism of collagen fibrils and force-strain relations 

of tendon at each level of structural hierarchy. J Biomech 1996,29:1131-1136. 

196. Sasaki N, Odajima S. Stress-strain curve and Young's modulus of a collagen molecule as 

determined by the X-ray diffraction technique. J Biomech 1996,29:655-658. 

197. Sun YL, Luo ZP, Fertala A, An KN. Stretching type II collagen with optical tweezers. J 

Biomech 2004,37:1665-1669. 

 

 


	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 3.1. Circumferential and longitudinal surface growth rates in PA and AA.
	Table 7.1. List of experimentally measured and estimated parameters.
	Table 7.2. Constitutive model fitting results (Effective moduli are in kPa).

	LIST OF FIGURES
	Figure 1.1. Artistic depiction of human heart showing pulmonary trunk and surrounding structures (anterior view).
	Figure 1.2. Effect of residual strain on the homeostatic stress distribution in blood vessel wall.
	Figure 1.3. Artistic depiction of aortic wall structure.
	Figure 2.1. Coordinates and base vectors in undeformed body and deformed body.
	Figure 2.2. Deformation of line element dR into line element dr.
	Figure 2.3. Biaxial stretching of transversely isotropic rectangular membrane.
	Figure 2.4. Schematic of representative structural volume element.
	Figure 2.5. Schematics of multiplicative decomposition of deformation gradient in remodeling and growth.
	Figure 3.1. 2D slice and 3D raw MR cardiac images and segmentation masks.
	Figure 3.2. Point cloud depictions of PT as generated by shells and spheres segmentation technique.
	Figure 3.3. Basic dimensional measurements of sinuses of Valsalva shown in PA.
	Figure 3.4. Anatomical positions and registration of AA and PT.
	Figure 3.5. Common center axis of PAs and comparison of AA and PA center axes curvatures.
	Figure 3.6. Postnatal increase in volume and length of aortic and pulmonary sinuses of Valsalva.
	Figure 3.7. Postnatal changes in total sinus cross-sectional area and relative area of sinus lobes.
	Figure 3.8. Postnatal increase in volume and anatomical length of PA and AA.
	Figure 3.9. Resulting overall changes in geometry of PA and AA.
	Figure 3.10. Time-interpolated circumferential growth stretch of PA and AA medial and posterior walls.
	Figure 3.11. Time-interpolated circumferential growth stretch of PA and AA anterior and lateral walls.
	Figure 3.12. Time-interpolated longitudinal growth stretch of PA and AA posterior walls.
	Figure 3.13. Time-interpolated longitudinal growth stretch of PA and AA anterior walls.
	Figure 3.14. Circumferential growth stretch profiles of PA and AA at the adult stage (60 kg).
	Figure 3.15. Torus phantoms to verify implementation of growth deformation analysis.
	Figure 4.1. Biaxial mechanical experimental setup.
	Figure 4.2. Mapping of marker coordinates into an isoparametric coordinate system.
	Figure 4.3. Locations of biaxial samples excised from PA anterior (A), medial (M), posterior (P), and lateral (L)walls.
	Figure 4.4. Residual strain measurement experimental setup (left). Ring (unloaded) and cut (stress-free) specimens(right).
	Figure 4.5. Effect of loading history on porcine PA and AA stress-stretch curves despite preconditioning.
	Figure 4.6. Equibiaxial stress-controlled behavior of porcine PA and AA.
	Figure 4.7. Tangential moduli of porcine PA and AA equibiaxial stress-stretch loading paths.
	Figure 4.8. Thicknesses (mm) of excised specimens of adult and juvenile PA.
	Figure 4.9. Representative seven-protocol biaxial circumferential and longitudinal stress (P11 and P22) data(left) and corresponding measured deformations (right).
	Figure 4.10. Change in load-free dimensions of samples due to preconditioning and seven-protocol biaxial testing.
	Figure 4.11. Circumferential (filled symbols) and longitudinal (hollow symbols) equibiaxial stress loading paths inthe given four regions of juvenile (circles) and adult (triangles) PA wall.
	Figure 4.12. Regional growth changes in circumferential and longitudinal compliance of PA wall.
	Figure 4.13. Regional growth changes in anisotropy of PA wall.
	Figure 4.14. Circumferential residual strain of endoluminal and abluminal surfaces in juvenile and adult ovine.
	Figure 5.1. Quantification of elastin fiber network angular distribution in 2D projection of MPM images.
	Figure 5.2. Relative thickness of each arterial layer in PA wall.
	Figure 5.3. MPM images showing different layer structures of PA wall.
	Figure 5.4. MPM images of internal (left) and external (right) elastic lamina-like structures (green) of ovine PAwall.
	Figure 5.5. Regional variation of elastin mean fiber orientation and NOI of PA wall with growth.
	Figure 6.1. CAD diagram of microbiaxial stretching device (left) and a single carriage (right).
	Figure 6.2. Microbiax device combined with MPM system.
	Figure 6.3. 3D reconstruction of MPM image stacks at 40% equibiaxial stretch.
	Figure 6.4. Average elastin fiber distribution of medial PA wall with growth and under equibiaxial deformation.
	Figure 6.5. Average collagen fiber orientation distribution of medial PA wall in each growth stage.
	Figure 6.6. Growth adaptations in collagen fiber tortuosity and recruitment behavior of medial aspect of PA wall.
	Figure 6.7. Biaxial stress-stretch behavior of medial aspect of adult PA wall near physiological biaxial stress levels.
	Figure 7.1. Schematic of different length and displacement definitions of an initially undulated collagen fiber (left);Stress-deformation curve of a single crimped collagen fiber (right).
	Figure 7.2. Final average elastin and collagen measured orientation distributions and bimodal von Mises probabilitydistribution fits.
	Figure 7.3. Determining upper bound stretch in beta recruitment function based on RMS error of fit to experimentalmeasurements in juvenile specimens.
	Figure 7.4. Beta and gamma cumulative distribution function fits to mean juvenile and adult collagen recruitmentdata, respectively.
	Figure 7.5. Constitutive model fit to the average five-protocol biaxial stress-stretch data of juvenile and adult medial
PA wall specimens.

	NOMENCLATURE
	Acronyms
	Symbols

	PREFACE
	1.0 INTRODUCTION
	1.1 MAIN PULMONARY ARTERY ANATOMY AND FUNCTION
	1.2 PHYSIOLOGICAL DEVELOPMENT OF THE PULMONARY ARTERY AND AORTA
	1.3 MOTIVATION BEHIND THE STUDY
	1.3.1 Diseases Affecting Pulmonary Artery and Treatment Options
	1.3.2 Study of Three-Dimensional Geometry and Surface Growth ‘Deformation’
	1.3.3 Study of Arterial Wall Mechanics and Structure

	1.4 Mechanical Behavior of the Arterial Wall
	1.4.1 Biaxial Mechanical Behavior
	1.4.2 Residual Strain

	1.5 Structure of the Arterial Wall
	1.6 Modeling of the Arterial Wall Mechanics
	1.6.1 Phenomenological Constitutive Models
	1.6.2 Structural Constitutive Models

	1.7 Specific Aims

	2.0 NONLINEAR THEORY OF ELASTICITY AND SOFT TISSUE MECHANICAL MODELS
	2.1 GENERAL ANALYSIS OF DEFORMATION
	2.1.1 Coordinate Systems and Base Vectors
	2.1.2 Deformation Gradient Tensor
	2.1.3 Deformation and Strain Tensors
	2.1.4 Geometric Measures of Deformation
	2.1.5 Principal Strains: The Eigenvalue Problem

	2.2 DEFINITION OF STRESS
	2.3 THERMODYNAMIC LAWS AND FUNDAMENTAL CONSTITUTIVE
PRINCIPLES
	2.4 MECHANICAL MODELS OF SOFT TISSUES
	2.4.1 Governing Equations in Biaxial Stretching of a Membrane
	2.4.2 Phenomenological Hyperelastic Constitutive Models
	2.4.3 Structural Constitutive Models
	2.4.3.1 Assumptions
	2.4.3.2 Tissue Level Framework
	2.4.3.3 Phenomenological Fiber Ensemble Model

	2.4.4 Mechanical Models of Growth and Remodeling


	3.0 ESTIMATION OF IN VIVO SURFACE GROWTH DEFORMATIONS OF MAIN PULMONARY ARTERY AND ASCENDING AORTA
	3.1 METHODS
	3.1.1 Animal Source
	3.1.2 MRI
	3.1.3 Image Segmentation
	3.1.4 Definition of Anatomic Terms
	3.1.5 Basic Dimensional Measurements
	3.1.6 Overall Approach for Estimation of Surface Growth Deformation
	3.1.7 Registration
	3.1.8 Surface Fitting
	3.1.8.1 Surface parameterization
	3.1.8.2 Common centerline path generation
	3.1.8.3 Coordinate transformation and surface fit
	3.1.8.4 Finite Element Mesh Size

	3.1.9 Two-Dimensional Surface Deformation
	3.1.10 Time Interpolated Growth
	3.1.11 Study of Arterial Cross-Sections based on Interpolated Surface Fits
	3.1.12 Verification
	3.1.13 Statistical Analysis

	3.2 RESULTS
	3.2.1 Basic Geometric Parameters
	3.2.2 Regional Growth Deformation Patterns
	3.2.2.1 Method verification
	3.2.2.2 Affine registration
	3.2.2.3 Geometry
	3.2.2.4 Growth deformation patterns

	3.2.3 Growth Rates

	3.3 DISCUSSION
	3.3.1 Overview
	3.3.2 General Trends and Implications
	3.3.3 Limitations
	3.3.4 Summary


	4.0 REGIONAL CHARACTERIZATION OF THE MECHANICAL BEHAVIOR
	4.1 METHODS
	4.1.1 Biaxial Testing
	4.1.1.1 Biaxial Tensile Testing Analysis
	4.1.1.2 Comparative study of the PA and AA in porcine model
	4.1.1.3 Study of postnatal mechanical properties of PA

	4.1.2 Residual Strain Measurement
	4.1.3 Statistical Analysis

	4.2 RESULTS
	4.2.1 Biaxial Behavior
	4.2.1.1 Comparative study of the PA and AA in porcine model
	4.2.1.2 Postnatal growth alterations of PA

	4.2.2 Residual Strain

	4.3 DISCUSSION
	4.3.1 Biaxial Behavior of Porcine PA and AA
	4.3.2 Biomechanical Properties of PA during Postnatal Growth
	4.3.2.1 Geometry
	4.3.2.2 Biaxial mechanical behavior

	4.3.3 Residual Strain Patterns


	5.0 REGIONAL STRUCTURAL CHARACTERIZATION
	5.1 BACKGROUND
	5.2 METHODS
	5.2.1 Multiphoton Microscopy
	5.2.2 Structural Quantification
	5.2.3 Statistical Analysis

	5.3 RESULTS
	5.3.1 Thicknesses of Arterial Layers
	5.3.2 Collagen and Elastin Structure

	5.4 DISCUSSION

	6.0 DIRECT MEASUREMENT OF COLLAGEN RECRUITMENT
	6.1 BACKGROUND
	6.2 METHODS
	6.2.1 Statistical Analysis

	6.3 RESULTS
	6.4 DISCUSSION

	7.0 INCORPORATION OF ALL EXPERIMENTAL MEASURMENTS INTO A MODIFIED STRUCTURAL CONSTITUTIVE MODEL
	7.1 BACKGROUND
	7.2 CONSTITUTIVE MODEL FORMULATION
	7.2.1 Fitting of Fibers’ Orientation Distribution Measurements
	7.2.2 Fitting of Collagen Recruitment Measurements
	7.2.3 Parameter Estimation

	7.3 RESULTS
	7.4 DISCUSSION

	8.0 SUMMARY AND CONCLUSION
	APPENDIX A
	SURFACE GROWTH DEFORMATION STUDY: RELEVANT CALCULATIONS
	A1.  Coordinate Transformation
	A2.  Modified Torus
	A3.  Demonstration of the Curvature Dependent Growth


	APPENDIX B
	QUANTIFICATION OF RELATIVE FIBER CONTENT

	APPENDIX C
	FIBER PATH TRACKING AND ORIENTATION ANALYSIS
	C1.  MATLAB Program for Obtaining 2D Projection of MPM Image Stacks
	C2.  Implementation of Chaudhuri Algorithm
	C3.  MATLAB Program for Computing Mean Fiber Orientation and NOI


	BIBLIOGRAPHY



