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MODELING, SCALEUP AND OPTIMIZATION OF SLURRY BUBBLE COLUMN 

REACTORS FOR FISCHER-TROPSCH SYNTHESIS 

Laurent Sehabiague, PhD 

University of Pittsburgh, 2012 

The hydrodynamic and mass transfer parameters of gaseous mixtures of N2 and He, used as 

surrogate components for CO and H2 respectively, were measured in three Fischer-Tropsch (F-T) 

liquids in the presence and absence of solid particles (Al2O3, FeOx). The data were obtained in a 

pilot-scale (0.29 m ID and 3 m high) slurry bubble column reactor (SBCR) within wide ranges of 

operating conditions covering those of F-T synthesis. The manometric method, the Transient 

Physical Gas Absorption technique and the Dynamic Gas Disengagement technique were 

employed to obtain the gas holdup, the volumetric liquid-side mass transfer coefficient and the 

gas bubbles Sauter mean diameter, respectively. Statistical experimental design was used to 

investigate the effect of these operating conditions on those parameters. The gas-liquid 

interfacial area appeared to control the mass transfer behavior of the SBCR operating in the 

churn-turbulent flow regime. 

A user-friendly simulator based on a comprehensive computer model for F-T SBCRs, 

taking into account the hydrodynamics, kinetics, heat transfer, and mass transfer was developed. 

Novel hydrodynamic and mass transfer correlations, covering wide ranges of reactor geometry, 

gas distributor types, and operating conditions were established using our experimental data and 

those available in the literature; and a new relationship between the axial dispersion of large gas 

bubbles and their average diameter were developed and included in the reactor model. All 

reactor partial differential equations, equation parameters along with the pertinent boundary 

conditions were simultaneously solved numerically using the finite elements method. Different 

kinetic rate expressions available in the literature for iron and cobalt-based catalysts were 

included in the simulator which was used to predict the effects of the operating conditions, such 



 v 

as catalyst concentration, pressure, temperature, H2/CO ratio, and superficial gas velocity on the 

performance of an F-T SBCR. The predictions showed that the performance of the reactor was 

strongly dependent on the catalyst type and the kinetic rate expression used. The simulator was 

also used to optimize the reactor geometry and operating conditions in order to produce 10,000 

barrels per day of synthetic hydrocarbons. 
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NOMENCLATURE 

A numerical constant,- 

a Gas-liquid interfacial area per unit liquid volume, m-1 

B numerical constant,- 

BeFT Dimensionless heat of the FT reaction, - 

C numerical constant,- 

C* Equilibrium gas solubility in the liquid, mol.m-3 

Ci,G Concentration of component i in the gas phase, mol.m-3 

Ci,L Concentration of component i in the liquid phase, mol.m-3 

CP,L Heat capacity of the liquid phase, J/kg/K 

CS Catalyst concentration, kg.m-3 

CV Solid volumetric concentration, vol% 

CW Solid weight concentration, wt% 

d32 Sauter mean bubble diameter, m 

dB Bubble diameter, m 

DC Column diameter, m 

DG Gas dispersion coefficient, m2s-1 

Di Diffusivity of component i in wax, m2 s-1 

DL Liquid dispersion coefficient, m2s-1 

do Orifice diameter, m 

dP Particles diameter, m 

dR Reactor diameter, m 

DS Solid particles dispersion coefficient, m2s-1 

dT Diameter of the tank, m 

ΔEi Energy of activation, J/mol 



 xxi 

F Fanning factor, - 

g Acceleration due to gravity, m s-2 

h Heat transfer coefficient, W.m-2.K-1 

HD Dispersion height, m 

Hei Henry’s Law constant of gas component i, Pa.m3.mol-1 

ΔHR,i Heat of reaction, J/mol 

K Pseudo kinetic constant, s-1 

kFT Rate constant of the FT reaction, units depend on reaction rate selected 

kL Liquid-side mass transfer coefficient, m.s-1 

kLa Volumetric liquid-side mass transfer coefficient defined over liquid volume, s-1 

kpipes Heat transfer conductance of the cooling pipes, J/m2/s/K 

L Reactor length, m 

Mi Molecular weight of species i, kg.mol-1 

Mw Molecular weight of wax, kg.mol-1 

ni Number of moles of species i, moles 

No Number of Orifices in the gas distributor, - 

npipes Number of cooling pipes, - 

P Pressure, Pa 

PC Critical pressure, Pa 

Pm Mean partial pressure of gas, Pa 

PS Saturated vapor Pressure, Pa 

PT Total Pressure, Pa 

QG Gas volumetric flow rate, m3.s-1 

R Universal gas constant, J.mol-1.K-1 

ri Cooling tubes internal radius, m 

ro Cooling tubes external radius, m 

T Temperature, K 

Tinlet Inlet gas/liquid temperature, K 

TC Critical temperature, K 



 xxii 

UG Superficial gas velocity, m.s-1 

UL Superficial liquid velocity, m.s-1 

UP Solid particles settling velocity, m.s-1 

USL Superficial slurry velocity, m.s-1 

Ub Bubble rise velocity m.s-1 

UTS Terminal settling velocity of solid particles, m.s-1 

V Volume, m3 

vL Liquid molar volume, mol/m3 

Vsmall small bubbles rise velocity, m.s-1 

xi Mole fraction of component i, - 

z Axial coordinates (reactor length), m 

y Steam mole fraction, - 

Z Compressibility factor, - 

  

Greek Letters  

δ Film thickness, m 

εG Gas holdup, - 

Ω Heat resistance due to cooling pipes, K/W 

λpipes Heat conductivity of the cooling pipes, W/m/K 

λR Heat conductivity of reactor wall, W/m/K 

μ Viscosity, kg.m-1.s-1 or Pa.s 

μeff Effective viscosity, kg.m-1.s-1 or Pa.s 

μ0
w Water viscosity at 298 K, kg.m-1.s-1 or Pa.s 

ν kinematic viscosity, m2/s 

ρ Density, kg.m-3 

σ Surface tension, N.m-1 

ω Accentric factor, - 

ζ Open area of the gas distributor, 𝜁 = 𝑁𝑜 �
𝑑𝑜
𝑑𝑅
�
2
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SL Slurry phase 
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SBCR Slurry bubble column reactor 
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𝑈𝜑𝐿
𝐷𝜑  
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𝑈𝐿𝐿
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𝑈𝐿𝐿
𝐷𝑆  

Peclet Number of the solid particles 𝑃𝑒𝑝 =
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𝜇𝐿  
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𝜌𝐿𝑈𝑇𝑆𝑑𝑅

𝜇𝐿  
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𝑘𝐿𝑎 𝑑𝑅2

𝐷𝑖𝑗  
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𝐿𝑘𝐿𝑎𝑖,𝑠𝑚𝑎𝑙𝑙𝑅𝑇
𝑈𝐺,𝑖𝑛𝑙𝑒𝑡𝐻𝑒𝑖  

Stanton Number of heat transfer 𝑆𝑡𝐻 =
𝐿𝑈𝐻𝑒𝑎𝑡

𝜌𝑆𝐿𝐶𝑃,𝑆𝐿𝑈𝑆𝐿 

Stanton Number of Liquid (large bubbles) 𝑆𝑡𝐿,𝑖,𝑙𝑎𝑟𝑔𝑒 =
𝐿𝑘𝐿𝑎𝑖,𝑙𝑎𝑟𝑔𝑒

𝑈𝑆𝐿
 

Stanton Number of Liquid (small bubbles) 𝑆𝑡𝐿,𝑖,𝑠𝑚𝑎𝑙𝑙 =
𝐿𝑘𝐿𝑎𝑖,𝑠𝑚𝑎𝑙𝑙

𝑈𝑆𝐿
 

Other Dimensionless Numbers  

ξ =
z
L

 

τL = t
UL

L
 

τG = t
UG,inlet

L
 

UG,small
′ =
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UG,inlet
 

UG,large
′ =
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UG,inlet
 

UP
′ =

UP

UL
 

θ =
T

Tinlet
 

ρSL′ =
ρSL
ρSL,0
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1.0  INTRODUCTION 

Crude oil has been the main source of energy in the world for over a century; and progress, 

economy and energy policies of numerous countries are determined by its production and/or 

consumption. In 2007, the world oil production totaled about 81 million bbl/day and the US oil 

consumption was about 21 million bbl/day, almost 50% in the form of gasoline used in over 210 

million motor vehicles traveling over 7 billion miles/day [1]. The US refineries produced 90% of 

the gasoline used. In 2006, the world's top five crude oil-producing countries are: Saudi Arabia, 

Russia, United States, Iran, and China. In the US, the top crude oil-producing states are: Texas, 

Alaska, California, Louisiana, and Oklahoma, where over one-fourth of the crude oil is produced 

offshore in the Gulf of Mexico. The amount of crude oil produced in the United States has been 

getting smaller each year; however, the use of products made from crude oil has been growing, 

making it necessary to bring more oil from other countries. Although the US is the world’s third 

largest crude oil producer, less than 35% of the crude oil used by the refineries was produced in 

the US, and the net petroleum imports accounted for 58% of the total petroleum consumption. 

About 48% of the net petroleum imports were from countries in the western hemisphere, 18% 

from the Persian Gulf, 22% from Africa, and 12% from other regions. In the US, a refined one 

barrel (42 US gallon) of crude oil produces about 19.15 gallons of finished motor gasoline, 9.21 

gallons of diesel, 3.82 gallons of jet fuel, 1.75 gallons of heating oil, 1.76 gallons of heavy fuel 

oil, 1.72 gallons of liquefied petroleum gases (LPG) and 7.27 gallons of other products. Most of 

these petroleum products are used to fuel cars, airplanes, and trucks, to heat homes, and to make 

diverse products, including polymers, plastics, medicines, ink, crayons, bubble gum, 

dishwashing liquids, deodorants, eyeglasses, records, tires, ammonia, heart valves, etc. [1]. 

Today, oil has become the backbone of the industrial revolution and modern civilization. It is 

largely used in transportation, buildings, medicine, roads, and warfare. It is also crucial to many 
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industries, including chemicals, petrochemicals and agriculture. Above all, it dominates the 

world energy and political scenes. 

Unfortunately, oil is not an everlasting source of energy because studies in the last 50 

years [2, 3] have shown that the world production would peak as a result of the rising world energy 

consumption and the continuous depletion of oil reserves. Predicting the peak of production year 

remains a difficult task and has not yet been accurately forecasted. Nevertheless, most of the 

studies agree that peaking would occur within few decades [4-6] as can be seen in the list of 

different projected peak dates presented in Table 1, which are taken from Hirsch et al. [7]. 

 
Table 1: Projections of the Peaking of World Oil Production 

Projected Date Reference 
2006-2007 Bakhtiari [8] 
2007-2009 Simmons [9] 
After 2007 Skrebowski [10] 

Before 2009 Deffeyes [11] 
Before 2010 Goodstein [12] 
Around 2010 Campbell [13] 

After 2010 World Energy Council [14] 
2010-2020 Laherrere [15] 

2016 DOE EIA [16] 
After 2020 Jackson et al. [17] 

2025 or later Davis [18] 
No visible peak Lynch [19] 

 

The imminent peaking of world oil production and the need to reduce the dependency of oil-

importing countries upon oil-exporting countries have been the major driving forces in the recent 

years to find alternative sources to oil. 

In the 1920’s, Franz Fischer and Hans Tropsch in Germany developed a process for 

producing synthetic hydrocarbons [20, 21] which is known as the Fischer-Tropsch (F-T) process. In 

this process, the synthesis gas, also known as syngas (Hydrogen and Carbon Monoxide), reacts 

in the presence of a catalyst to produce a mixture of liquid hydrocarbons. The syngas can be 

produced from nearly any carbon-bearing feedstock; therefore a large variety of sources ranging 

from natural gas or coal to biomass can be used. These resources put together represent a 

significantly large amount of energy (see Table 2 and Figure 1) that can be converted into useful 

F-T liquids. 
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Table 2: Worldwide Fossil Energy Reserves [22, 23] 

Fossil energy Units Quantity 
Oil x 1012 tons 0.13 - 0.2 

Coal x 1012 tons 0.9 - 1.0 
Natural Gas x 1012 m3 171 - 198 

 

Figure 1 shows that whereas oil resources are only able to sustain current world consumption for 

a few decades, biomass, natural gas and especially coal can provide enough energy for many 

years to come. Coal alone could satisfy the current worldwide energy consumption for over 400 

years while biomass provide a large source of renewable energy although some estimate that 

only a fraction (< 15%) could actually be used [23]. In addition, large numbers of stranded natural 

gas reserves, considered uneconomical until now due to problems of gas transportation, could be 

exploited by converting the natural gas into F-T transportable liquids [24]. Thus, synthetic fuels 

produced via F-T synthesis appear to be good candidates as alternative and/or complementary 

sources of fuel. 

 

 
Figure 1: Order of Magnitude of Energy Resources (EJ = 1018 J) [25, 26] 

World Consumption
450 EJ/y

Oil
8,700 EJ

Biomass
2,900 EJ/y

Gas
17,000 EJ

Coal
185,000 EJ
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The interest in using F-T synthesis has been arising in the last years mainly due to the concern 

about increasing crude oil prices [27] (see Figure 2). It was estimated that using F-T synthesis to 

produce fuels can become competitive if the price of the crude oil exceeded 20-24$/bbl [28-30] and 

more recently 50$/bbl [31] which has been clearly the case as can be seen in the trend of crude oil 

prices over the past 12 years presented in Figure 2. 

 

 
Figure 2: Crude Oil Prices (World Average) over the Last 15 Years [1, 32] 

 

The F-T synthesis is the central step in the Gas-To-Liquid (GTL), Coal-To-Liquid (CTL) or 

Biomass-To-Liquid (BTL) processes. These 3 processes can be summarized as the 

Everything/Anything-To-Liquid (XTL) process as shown in Figure 3. The first step involves the 

conversion of the initial resource into syngas. This is done via gasification in the case of biomass 

and coal or steam reforming and partial oxidation in the case of natural gas. Producing syngas 

from natural gas is less energy intensive and therefore more economical than from coal or 

biomass (gasification step). The syngas is cleaned and then sent into the F-T reactor where in the 
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presence of a catalyst it is converted into synthetic liquid hydrocarbons. Then upon further 

processing and upgrading, various products such as gasoline, diesel, naphtha and waxes are 

obtained. 

 

 
Figure 3: GTL, CTL and BTL Processes or XTL Process 

 

Several types of multiphase reactors were proposed to carry out F-T reactions. They can be 

classified into three groups: fixed bed reactors, fluidized bed reactors, and slurry reactors. Fixed 

bed reactors (FBRs) have long been used for F-T synthesis since WWII. This type of reactors is 

relatively easy to scale-up, but has a high capital cost. In these reactors, the solid phase (catalyst) 

is stationary and the syngas flows through small diameter tubes packed with the catalyst. 

Therefore, a high-pressure drop is created inside the reactor due to its low voidage [33], (generally 

less than 40%). Since F-T synthesis is highly exothermic (∆H = -165 kJ/mol [34]), the heat 

removal has been one of the major problem encountered when operating commercial F-T 

reactors. Coke formation on the catalyst surface due to high temperature (hot spots) is a serious 
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issue in fixed beds. Other types of reactors such as circulating fluidized-bed reactors (CFBRs) 

and fixed fluidized-bed reactors (FFBRs) were developed by Sasol (in South Africa) in order to 

improve the performance, but those reactors could only be used at high temperature and only 

produce volatile hydrocarbon products, such as gasoline. 

It is known since the 1950’s that slurry reactors could be used to carry out F-T synthesis. 

In this type of reactor, the solid-phase consists of fine catalyst particles suspended in a liquid-

phase, which allows an efficient temperature control/removal. These reactors, however, have not 

been applied in a commercial scale until recently [27] due to the lack of existing reliable system to 

separate the fine catalyst from the liquid products (wax) and the limited knowledge of their 

hydrodynamics, mass/heat transfer characteristics, and flow patterns. 

One type of slurry reactors appear to be of particular interest: Slurry Bubble Column 

Reactor (SBCR). In an SBCR, the Syngas is sparged through the liquid-phase from the bottom of 

the reactor inducing mixing and suspension of the catalyst particles. When the suspension of the 

catalyst is carried out not only by the gas, but also by the recirculation of the liquid-phase in the 

reactor, the reactor is sometimes called an Ebulating Bed Reactor (EBR). The advantage of 

EBRs over SBCRs is essentially the ability to use larger and heavier catalyst particles, which 

would not be suspended well enough by the gas flow alone. 

The advantages of SBCRs over FBRs are [27, 35-37]: 

- Better temperature control and heat removal 

- Lower capital cost (~25% of that of a multi-tubular reactor) due to their relatively 

simple design 

- Lower pressure drop (4 times less than in fixed bed reactor) 

- Ability of using finer catalyst particles (<100 µm) allowing huge surface area and 

better mass transfer 

- Higher yield per reactor volume 

- Catalyst can be added and removed continuously, allowing longer runs since no 

shutdown are necessary. 

Several challenges, inherent to the SBCRs, however, have to be considered [35]. They include the 

following: 

- Important liquid back-mixing caused by the flow of the large gas bubbles 
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- Catalyst attrition and deactivation due to high shear created near the gas 

distributor 

- Difficulty in separating fine solid particles from the viscous liquid (wax) 

- Difficulty of scaleup due to complex flow dynamics 

The design, modeling and scaleup of SBCRs for F-T synthesis require, among others, accurate 

knowledge of the kinetics, hydrodynamics, and heat as well as mass transfer characteristics of 

the gas-liquid-solid system used. More precisely, the kinetic rate expressions, liquid- and solid-

side heat/mass transfer coefficients, gas, liquid and solid holdups/distributions, flow regimes and 

pressure drop, are the essential parameters needed for the modeling, design, and scaleup of such 

reactors. Furthermore, these parameters have to be obtained under actual F-T conditions, i.e., 

high pressure (10-45 bar), high temperature (450-610 K), and high gas throughput; large reactor 

diameter (up to 10 m), and high slurry concentration (up to 50 vol.%) which are required to 

achieve high space-time yields [38]. 
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2.0  LITERATURE REVIEW 

2.1 THE FISCHER-TROPSCH SYNTHESIS 

The Fischer-Tropsch synthesis (initially called “Synthol”) was developed in the 1920’s in 

Germany at the Kaiser Wilhelm Institute by two German researchers, Franz Fischer and Hans 

Tropsch, with the intent of producing synthetic hydrocarbons [20, 21]. Their work was based on the 

1902 discovery of Sabatier and Senderens [39] that methane can be produced from H2 and CO in 

the presence of nickel catalyst. In the Fischer-Tropsch process, the synthesis gas (H2 and CO) 

reacts in presence of a solid catalyst to produce a wide range of hydrocarbon products, such as 

olefins, paraffins and oxygenates (alcohols, aldehydes, acids, ketones, etc…). The F-T synthesis 

is a combination of oligomerization reactions which can be summarized as follows: 

• n-Paraffins synthesis: 

𝑛𝐶𝑂 + (2𝑛 + 1)𝐻2 → 𝐶𝑛𝐻2𝑛+2 + 𝑛𝐻2𝑂 (2-1) 

• 1-Olefins synthesis: 

𝑛𝐶𝑂 + 2𝑛𝐻2 → 𝐶𝑛𝐻2𝑛 + 𝑛𝐻2𝑂 (2-2) 

• Alcohols synthesis: 

𝑛𝐶𝑂 + 2𝑛𝐻2 → 𝐶𝑛𝐻2𝑛+2𝑂 + (𝑛 − 1)𝐻2𝑂 (2-3) 

A simplified way to model the kinetics of the F-T synthesis is to represent the overall 

stoichiometry of the reaction by: 

𝐶𝑂 + �1 +
𝑚
2𝑛
�𝐻2

𝑟𝐹𝑇��
1
𝑛
𝐶𝑛𝐻𝑚 + 𝐻2𝑂 (2-4) 

The main products of the F-T synthesis are paraffins and the usage ratio H2/CO is typically 

between the range of 2.06 to 2.16 [27, 40]. This reaction has been reported to be exothermic (∆H0 = 

-165 kJ/mol at 298 K [34]). 
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Side reactions may occur, including: 

• Water Gas Shift (WGS) reaction, where the water (H2O) produced by the F-T reaction 

reacts with carbon monoxide (CO) to form hydrogen (H2) and carbon dioxide (CO2): 

𝐶𝑂 + 𝐻2𝑂
𝑟𝑊𝐺𝑆�⎯� 𝐶𝑂2 + 𝐻2 (2-5) 

The WGS reaction is also exothermic (∆H0 = - 41.2 kJ/mol at 298 K [41]). 

• The Boudouard reaction may occur at very high temperature when hot spot are formed in 

the reactor due to an insufficient heat removal: 

2𝐶𝑂 → 𝐶(𝑠) + 𝐶𝑂2 (2-6) 

This reaction is extremely exothermic (∆H0 = -170 kJ/mol at 298 K [42]). It produces coke on the 

catalyst surface leading to a significant decrease of the catalyst activity and must therefore be 

avoided. 

• Hydrogenation of carbon monoxide to methane: 

𝐶𝑂 + 3𝐻2 → 𝐶𝐻4 + 𝐻2𝑂 (2-7) 

• Oxidation/reduction of the catalyst: 

𝑀𝑥𝑂𝑦 + 𝑦𝐻2 ↔ 𝑦𝐻2𝑂 + 𝑥𝑀 

𝑀𝑥𝑂𝑦 + 𝑦𝐶𝑂 ↔ 𝑦𝐶𝑂2 + 𝑥𝑀 
(2-8) 

• Carbide formation: 

𝑥𝑀 + 𝑦𝐶 ↔𝑀𝑥𝐶𝑦 (2-9) 

Two processes with different operating conditions are used industrially to carry out the F-T 

synthesis: the Low Temperature F-T (LTFT) process and the High Temperature F-T (HTFT) 

process. Table 3 summarizes the main characteristics of these 2 processes. 

 
Table 3: LTFT and HTFT Processes Characteristics [27, 43] 

 LTFT HTFT 
T (K) 450 – 530 570 - 620 

P (bar) 10 – 45 ~20 
Products Heavy Oil, Wax, Diesel Gasoline 
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2.1.1 Catalysts 

Two types of catalysts are commercially used in F-T synthesis, namely iron (Fe) and cobalt-

based (Co) catalysts. Iron catalyst is cheap and has a high WGS activity and therefore it is best 

suited for CO rich syngas produced from coal gasification. However, it is prone to attrition and 

the water produced by the F-T synthesis may decrease its activity [24, 27]. Cobalt-based catalyst on 

the other hand has higher activity since it is not inhibited by water. It also has longer life than 

iron catalyst as it is more resistant to attrition. Cobalt-based catalyst, however, is more expensive 

(see Table 4). It also has no WGS activity and consequently it is best suited for H2-rich syngas, 

such as that produced from natural gas reforming. It is important to note that both iron and 

cobalt-based catalysts are subject to poisoning by sulfur compounds. It is therefore 

recommended to keep the sulfur content in the syngas below 0.02 mg/m3 at standard conditions 

of pressure and temperature [27]. Incidentally, this is the reason why F-T fuels contain very few 

amount of sulfur when compared with those produced from oil, and as such F-T fuels are 

considered more environmentally friendly. 

Nickel- (Ni) and Ruthenium- (Ru) based catalyst have been used as F-T catalyst in the 

laboratory; however, they have not been used in industry. Nickel-based catalysts produce too 

much methane over most operating conditions and are poorly performing at high pressure due to 

the production of volatile carbonyls. Ruthenium-based catalysts, although they have high activity 

and produce high molecular weight compounds at low temperatures and high pressures, they are 

very expensive (see Table 4) and therefore could not yet be applied at industrial scale [27]. 

 
Table 4: Comparative prices of different catalysts based on Fe [27] 

Catalyst type Price index 
Fe 1 
Ni 250 
Co 1000 
Ru 50000 

 

The cobalt-based catalyst supports commonly used in the industry include silica (SiO2), titania 

(TiO2), alumina (Al2O3), magnesia (MgO), activated carbon (C) and zeolites. A large range of 

oxides can be used as catalyst promoters, such as oxides of potassium (K), magnesium (Mg), 

aluminum (Al), silicium (Si), thorium (Th), zirconium (Zr), hafnium (Hf), cerium (Ce), uranium 
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(U), titanium (Ti), chromium (Cr), copper (Cu), selenium (Se), molybdene (Mo), manganese 

(Mn) and lanthanum (La). Noble metals, such as ruthenium (Ru), platinum (Pt), palladium (Pd), 

rhenium (Re), rhodium (Rh) and iridium (Ir), are also used as promoters [44]. 

2.1.2 Reaction Mechanism 

Various authors have studied the reaction mechanisms of the F-T synthesis. Despite its 

complexity and the controversy in the research community over which reactions actually take 

place, most of them agree that the F-T synthesis involves a polymerization process with 

initiation, propagation and termination steps. The three main possible reaction mechanisms (see 

Figure 4) proposed are [36, 45, 46]: 

- Carbide (also called carbene or alkyl) mechanism: it is the first historically proposed 

mechanism by Fischer and Tropsch in 1926 and it still remains the favorite mechanism 

among the research communities [46, 47]. In this mechanism, both CO and H2 are 

dissociatively adsorbed on the catalyst surface. The adsorbed C and O are then 

hydrogenated into CH2 and H2O. The CH2 adsorbed can then be further hydrogenated 

into CH3 and/or insert itself into the carbon metal bond of an adsorbed CnHm species 

allowing the chain to grow. The termination may occur from the reduction by adsorbed 

hydrogen in order to give alkanes or by a β-elimination in order to yield α-olefins. 

- Enol (also called oxygenates or hydroxy-carbene) mechanism: in this mechanism, H2 

reacts with CO adsorbed on the catalyst surface to form oxygenated intermediates 

CHOH-metal. The Chain growth occurs by surface condensation reactions of two of 

those intermediates, with elimination of water. The termination occurs by hydrogen 

assisted elimination of the –OH group. 

- CO-insertion mechanism: it is similar to the carbene mechanism where an alkyl-metal 

species is formed. The Chain growth then occurs by direct insertion of a carbonyl 

intermediate (CO-metal) into the carbon metal bond. The termination is similar to that of 

the carbide mechanism. 

It is important to note that none of the above mechanisms can successfully predict the whole 

products spectrum obtained using catalysts such as Fe, Co, Ni and Ru [46]. Instead, all three 
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mechanisms are likely to occur simultaneously with one or the other mechanism being favored 

depending on the catalyst used. 

A recent study [47] of the F-T mechanism over a cobalt-based catalyst based on density 

functional theory (DFT) calculations and microkinetic simulations argued that another 

mechanism, where the formation of an oxymethylidyne (or formyl) CHO intermediate is the key 

step, is more likely to occur on cobalt-based catalyst than the carbide mechanism, however, this 

mechanism has yet to be confirmed experimentally. 

2.1.3 Products Distribution 

The products distribution of the F-T synthesis is often assumed to follow the Anderson-Schulz-

Flory (ASF) distribution [36]. This simple model considers that the chain growth probability 

factor (α) (probability of adding a monomer to the carbon chain) is constant. Therefore, the 

number of moles of the products with n carbons can be related to the number of moles of 

products with n-1 carbons by: 

𝑛𝐶𝑛 = 𝛼𝑛𝐶𝑛−1 (2-10) 

The product distribution follows a geometric series as: 

𝑛𝐶𝑛 = 𝛼𝑛−1𝑛𝐶1 (2-11) 

The model assumes that every carbon atom adsorbed on the catalyst surface has (1 − 𝛼) 

probability to form a product with only one carbon (methane). Hence, the number of moles of 

products with only one carbon can be related to the total number of carbons in all products by: 

𝑛𝐶1 = (1 − 𝛼)𝑛𝐶,𝑡𝑜𝑡𝑎𝑙 (2-12) 

This leads to: 

𝑛𝐶𝑛 = 𝛼𝑛−1(1 − 𝛼)𝑛𝐶,𝑡𝑜𝑡𝑎𝑙 (2-13) 

The total number of moles of products can be calculated as: 

𝑛𝑇𝑜𝑡𝑎𝑙 = �𝑛𝐶𝑛
𝑛

= 𝑛𝐶,𝑡𝑜𝑡𝑎𝑙(1 − 𝛼)�𝛼𝑛−1
𝑛

 (2-14) 

Assuming n becomes very large (approaching infinity), and  𝛼 < 1, the series will converge and 

Equation (2-14) can be simplified to: 

𝑛𝑇𝑜𝑡𝑎𝑙 = 𝑛𝐶,𝑡𝑜𝑡𝑎𝑙(1 − 𝛼)
1

1 − 𝛼
= 𝑛𝐶,𝑡𝑜𝑡𝑎𝑙 (2-15) 
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Figure 4: Main F-T Mechanisms [46] 
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The molar fraction of the n-carbons chain length products can then be calculated from Equations 

(2-13) and (2-15): 

𝑥𝑛 = (1 − 𝛼)𝛼𝑛−1 (2-16) 

The mass fraction of the n-carbons chain length products can then be calculated: 

𝑤𝑛 =
𝑥𝑛𝑀𝑊,𝐶𝑛

∑ 𝑥𝑛𝑀𝑊,𝐶𝑛𝑛
=

(1 − 𝛼)𝛼𝑛−1𝑀𝑊,𝐶𝑛

(1 − 𝛼)∑ 𝛼𝑛−1𝑀𝑊,𝐶𝑛𝑛
=

𝛼𝑛−1𝑀𝑊,𝐶𝑛

∑ 𝛼𝑛−1𝑀𝑊,𝐶𝑛𝑛
 (2-17) 

Since most products are linear paraffins and olefins, the molecular weight of n-carbons chain 

length products can be approximated as a function of their number of carbon atoms and a 

reference molecular weight independent of n: 

𝑀𝑊,𝐶𝑛 = 𝑛𝑀𝑊,𝑟𝑒𝑓 (2-18) 

Equation (2-17) then becomes: 

𝑤𝑛 =
𝛼𝑛−1𝑛𝑀𝑊,𝑟𝑒𝑓

𝑀𝑊,𝑟𝑒𝑓 ∑ 𝑛𝛼𝑛−1𝑛
=

𝛼𝑛−1𝑛
∑ 𝑛𝛼𝑛−1𝑛

 (2-19) 

The denominator in the above equation can be expressed as: 

�𝑛𝛼𝑛−1
∞

𝑛=1

= �𝛼𝑛−1
∞

𝑛=1

+ �𝑛𝛼𝑛
∞

𝑛=1

 (2-20) 

The two terms on the right-hand-side can be rewritten as: 

�𝑛𝛼𝑛−1
∞

𝑛=1

=
1

1 − 𝛼
+ 𝛼�𝑛𝛼𝑛−1

∞

𝑛=1

 (2-21) 

Which leads to: 

�𝑛𝛼𝑛−1
∞

𝑛=1

=
1

(1 − 𝛼)2 (2-22) 

Replacing this new expression for the denominator in Equation (2-19) gives: 

𝑤𝑛 =
𝛼𝑛−1𝑛

1
(1 − 𝛼)2

= (1 − 𝛼)2𝑛𝛼𝑛−1 (2-23) 

The molar and mass fractions of the different products obtained in the F-T synthesis for a typical 

value of α (0.9) are shown in Figure 5. Jager and Espinoza [48] reported that for an existing pilot 

reactor, new iron and cobalt-based catalysts have shown α values between 0.8 and 0.95. 

The actual product distributions of paraffins and olefins produced by Fischer-Tropsch 

synthesis have been found to obey this model relatively well except for C1 and C2 products [27]. 
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Indeed, significant deviations have been reported in the literature [49-51] with higher yield of 

methane and lower yield of ethane/ethene than predicted by ASF distribution. Also, the chain 

growth probability factor has been observed in numerous studies to change after carbon number 

of about 10 [52] for both catalysts leading to the adoption of a double-α distribution model to take 

this phenomenon into account [53-55]. The superposition of 2-α distributions has been found 

experimentally to give a good approximation of the chain length distribution of products for both 

iron and cobalt-based catalysts [56]. In this 2-α model, 2 different growth probability factors (α1 

and α2) are introduced for the small and long chain length products, respectively [52]. The 

resulting mole fraction of the n carbon chain length product can then be written as: 

𝑥𝑛 = 𝐴𝛼1𝑛−1 + 𝐵𝛼2𝑛−1 (2-24) 

 

 
Figure 5: Typical F-T Products Distribution (ASF Model) 

 

Coefficients A and B can be calculated by introducing the term ζ corresponding to the break 

point of the distribution where the contributions of both terms are equal and the fact that the sum 

of the mole fractions of each carbon product equals the unity: 

𝐴𝛼1
𝜉−1 = 𝐵𝛼2

𝜉−1

 

(2-25) 
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�𝑥𝑛
𝑛

= 1
 

(2-26) 

Equations (2-24) and (2-25) lead to: 

𝑥𝑛 = 𝐴�𝛼1𝑛−1 + �
𝛼1
𝛼2
�
𝜉−1

𝛼2𝑛−1�

 

(2-27) 

This can be combined with Equation (2-26) to give: 

�𝑥𝑛
𝑛

= 𝐴��𝛼1𝑛−1

𝑛

+ �
𝛼1
𝛼2
�
𝜉−1

�𝛼2𝑛−1

𝑛

� = 1 (2-28) 

After simplifying the series, an expression for the constant A can be obtained: 

𝐴 =
1

1
1 − 𝛼1

+ �𝛼1𝛼2
�
𝜉−1 1

1 − 𝛼2

 (2-29) 

Inserting the above expression in Equation (2-25) allows an expression for B: 

𝐵 =
�𝛼1𝛼2

�
𝜉−1

1
1 − 𝛼1

+ �𝛼1𝛼2
�
𝜉−1 1

1 − 𝛼2

 (2-30) 

The resulting mole fraction can therefore be expressed as [52]: 

𝑥𝑛 =
𝛼1𝑛−1 + �𝛼1𝛼2

�
𝜉−1

𝛼2𝑛−1

1
1 − 𝛼1

+ �𝛼1𝛼2
�
𝜉−1 1

1 − 𝛼2

 (2-31) 

A typical 2-α product distribution is shown in Figure 6. 

2.1.4 Kinetics of the Fischer-Tropsch Synthesis 

The complexity of the F-T reaction mechanism and the numerous species involved in it are 

major obstacles to fully describe the kinetics of the F-T synthesis. In order to simplify the task, 

many empirical overall reaction rates have been developed in the literature. Latest studies, 

however, have focused on developing comprehensive kinetics based on Langmuir-Hinshelwood-

Hougen-Watson (LHHW) approach since the variety of the products obtained from the F-T 

synthesis can only be explained and modeled by detailed kinetics models that include every 
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elementary reaction [57]. The reaction rates available in the literature for both iron and cobalt 

based catalysts are presented in the following section. 

2.1.4.1 Iron Catalyst 

Iron catalyst activity has been found to increase with the partial pressure of H2 and decrease with 

partial pressure of H2O [58, 59] suggesting a strong competition between CO and H2O for the 

adsorption to the active sites of the catalyst. Indeed, the catalyst has a high WGS activity and 

therefore the rate of the WGS reaction along that of the F-T must be taken into account for 

simulation purposes. Numerous studies of the kinetics of the Fischer-Tropsch synthesis on iron 

catalyst, conducted mostly in fixed bed and slurry reactors, since the 1950’s led to very different 

kinetic rate expressions as can be seen in Table 5. Only recently, however, comprehensive 

kinetic models, able to predict both the syngas consumption rate and products distribution, have 

been proposed [57, 60-64]. The diversity among the rate equations shown in Table 5 may arise from 

the diversity of the catalysts, reactors (mass transfer not always negligible) and operating 

conditions used in those studies. As a matter of fact, when choosing one of those expressions for 

modeling purposes, one has to select the correlation that has been developed within the 

conditions closest to the simulated ones. 

 
Figure 6: F-T Products Distribution (2-α Model) 
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Table 5: Kinetics Studies for the Fischer-Tropsch Synthesis on Iron Catalyst 

Catalyst Reactor 
Operating Conditions 

Equation Reference 

T , C P , 
MPa 

H2/CO 
feed 

Fe Fixed Bed - - - COHFTFT PPkr 2
2

=
 

Brotz [65] 1 

Reduced Fused 
Fe/K2O/MgO 

Fixed Bed, 
Fluidized 

Bed, Slurry 

250-
320 2.2-4.2 2.0 totalFTFT Pkr =  Hall et al.[66] 1 

Reduced Nitrided Fe Fixed Bed - - - 
2HFTFT Pkr =

 

2

2

COCO

COH
FTFT aPP

PP
kr

+
=  

Anderson [67] 1 

Reduced Nitrided Fused 
Fe Fixed Bed 225-

240 2.2 0.25-
2.0 

5.05.04.06.0
22 FTOHCOHFT rbPPaPr −=

 
Anderson and Karn [68] 

Fused Fe & Prec. 
Fe/Cu/MgO/K2CO3 

Fixed Bed 200-
280 10 3.12 5.02.02.05.1

22 COOHCOHFT PbPPaPr +=
 

Kolbel et al.[69] 1 

Reduced Nitrided Fused 
Fe/Cr2O3/SiO2/MgO/K2O Fixed Bed 225-

255 2.2 0.25-
2.0 

34.066.0
2 COHFTFT PPkr =

 
Anderson et al.[70] 1 

Reduced Fused 
Fe/K2O/Al2O3/SiO2 

Fixed Bed 225-
265 1.0-1.8 1.2-7.2 

2HFTFT Pkr =
 

Dry et al.[71] 

Fe 
Fixed Bed, 
Fluidized 

Bed 

200-
340 0.5-4.0 1.0-7.3 

OHCO

COH
FTFT aPP

PP
kr

2

2

+
=

 
Dry [72] 

Reduced Nitrided Fused 
Fe/K2O/Al2O3/SiO2 

Gradientless, 
Fixed Bed 

250-
315 2.0 2.0 

OHCO

COH
FTFT aPP

PP
kr

2

2

+
=  Atwood and Bennett [73] 

Plasma Sprayed Fe Recirculating 
Reactor 

250-
300 

0.77-
3.1 1.5-3.9 

OHCO

COH
FTFT aPP

PP
kr

2

2

+
=

 
Thomson et al.[74] 1 

Reduced Prec. 
Fe/Cu/K2O Fixed Bed 220-

270 1.0-2.0 1.0-6.0 25.0
2

CO

H
FTFT P

P
kr =

 

Feimer et al.[75] 

Reduced Fused 
Fe/K2O/CaO/SiO2 

Slurry 232-
263 0.4-1.5 0.5-1.8 

OHHCO

COH
FTFT aPPP

PP
kr

22

2

2

+
=  Huff and Satterfield [76] 
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Table 5 (Cont’d)     

Catalyst Reactor 
Operating Conditions 

Equation Reference 

T , C P , 
MPa 

H2/CO 
feed 

Fe/Cu/K - 265 - - 
2

2

COCO

COH
FTFT aPP

PP
kr

+
=

 
Leib and Kuo [77] 3 

Reduced Prec. Fe/K Slurry 220-
260 1.0 0.5-0.6 

2

2

COCO

COH
FTFT aPP

PP
kr

+
=  Ledakowicz et al. [78] 

Prec. Fe & Fused Fe Slurry 210-
280 0.5-5.5 0.5-3.5 

OHCO

COH
FTFT aPP

PP
kr

2

2

+
=

 

2

2

COCO

COH
FTFT aPP

PP
kr

+
=

 

Nettelhoff et al.[79] 4 

Reduced Prec. Fe/K Slurry 220-
260 - 0.5-2.0 

2

2

COCO

COH
FTFT aPP

PP
kr

+
=

 

OHHCO

COH
FTFT aPPP

PP
kr

22

2

2

+
=

 

Deckwer et al.[80] 

Prec. Fe/Cu/K & 
Reduced Fe/Cu/K/SiO2 

Slurry 235-
265 1.5-3.0 0.6-1.0 

2HFTFT Pkr =
 

OHCO

COH
FTFT aPP

PP
kr

2

2

+
=  

Zimmerman and Bukur 
[37] 
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Table 5 (Cont’d)     

Catalyst Reactor 
Operating Conditions 

Equation Reference 

T , C P , 
MPa 

H2/CO 
feed 

Reduced Prec. 
Fe/CuO/K2O/Na2O/SiO2 

Fixed Bed 250-
350 0.6-2.1 3.0-6.0 

α

α

−










+
+












+
=

−

+

1
11

2

2

2

22

51

1

1

51

1

5

HCO

CO

n

HCO

CO
H

HC

PkPk
Pk

PkPk
Pk

P

kr
nn

 

α

α

−










+
+












+
=

−

1
11

2

2

2

2

51

1

1

51

1

6

HCO

CO

n

HCO

CO
H

HC

PkPk
Pk

PkPk
Pk

P

kr
nn

 

651

1

2
kPkPk

Pk

HCO

CO

++
=α  

Lox and Froment [60, 61] 

Prec. Fe/Cu/K Gradientless 230-
264 1.0-2.6 1.1-2.4 

OHCO

COH
FTFT aPP

PP
kr

2

2

+
=

 

OHHCO

COH
FTFT aPPP

PP
kr

22

2

2

+
=

 

Shen et al.[81] 4 

Reduced Prec. Fe/Cu/K Fixed Bed 220-
300 1.0-3.2 1.1-2.8 

OHCO

COH
FTFT aPP

PP
kr

2

2

+
=

 
Liu et al.[82] 
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Table 5 (Cont’d)     

Catalyst Reactor 
Operating Conditions 

Equation Reference 

T , C P , 
MPa 

H2/CO 
feed 

Reduced Prec. 
Fe/Cu/K/SiO2 

Spinning 
Basket 250 0.8-4.0 0.25-

4.0 

OHCO

HCO
FTFT bPaP

PP
kr

2

2

1 ++
=

 

( )2
2

2

1 OHCO

HCO
FTFT bPaP

PP
kr

++
=

 

( )2

2
1

2

2

1 OHCO

HCO
FTFT bPaP

PP
kr

++
=

 

van der Laan and 
Beenackers [58, 83, 84] 

Reduced Prec. 
Fe/Cu/K/SiO2 

Slurry 250 1.2-4.0 0.25-
4.0 ( )2

2
1

2

2

1 COCO

HCO
FTFT bPaP

PP
kr

++
=  van der Laan [58] 

Fe Fixed Bed 220-
260 2.4 1.87-

2.0 5 
CO

OH
HFTFT

C
C

Ckr
2

2

6.11

1

+
=  

Jess et al.[85] 

Fe & Fe/Al2O3/Cu/K2O 
& Fe/Mn/Cu/K2O Slurry 225-

275 
PH2=0.26-3.02 
PCO=0.02-1.94-

 

2

2/3

, ))/(1(
)/(

22

22

OHCOH

OHCOHFT
orgC PPPa

PPPk
r

⋅⋅+

⋅
=

 

van Steen and Schulz 
[86] 

Fe & Fe/K Slurry 200-
240 1.0 1.0-3.0 y

CO
x

HFTFT PPkr )()(
2

=

 

Eliason and 
Bartholomew [87] 

Fe/Cu/K - - - - 

Detailed kinetics including α-olefin readsorption 
using LHHW approach 

( )
nnHCHCOHCOHCH PPPPPfr

242224
,...,,,,=

 ( )
nnnn HCHCOHCOHHC PPPPPfr

2422222
,...,,,,=

+

( )
nnnn HCHCOHCOHHC PPPPPfr

242222
,...,,,,=

 

Wang et al.[62, 88] 
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Table 5 (Cont’d)     

Catalyst Reactor 
Operating Conditions 

Equation Reference 

T , C P , 
MPa 

H2/CO 
feed 

Reduced Fe/Cu/K Fixed Bed 220-
269 1.1-3.1 1.0-3.0 

Detailed kinetics including α-olefin readsorption 
using LHHW approach 

( )
nnHCHCOHCOHCH PPPPPfr

242224
,...,,,,=

 ( )
nnnn HCHCOHCOHHC PPPPPfr

2422222
,...,,,,=

+

 
( )

nnnn HCHCOHCOHHC PPPPPfr
242222

,...,,,,=
 

Wang et al.[63] 

Reduced Fe/Mn Fixed Bed 267-
327 1.0-3.0 1.0-3.0 

Detailed kinetics including α-olefin readsorption 
using LHHW approach 

( )
nnHCHCOHCOHCH PPPPPfr

242224
,...,,,,=

 ( )
nnnn HCHCOHCOHHC PPPPPfr

2422222
,...,,,,=

+

 
( )

nnnn HCHCOHCOHHC PPPPPfr
242222

,...,,,,=
 

Yang et al.[64] 

Fe/Mn & Fe/Cu/K Spinning 
Basket 

260-
300 1.1-2.6 0.67-

2.05 

Detailed mechanisms based on elementary 
reactions via Langmuir-Hinshelwood-Hougen-

Watson (LHHW) 
),...,,,(

2224 nnHCOHCOHOHCH PPPPfr =
 

),...,,,(
2224 nnHCOHCOHCH PPPPfr =

 
),...,,,(

22212 nnnn HCOHCOHOHHC PPPPfr =
+  

),...,,,(
22212 nnnn HCOHCOHOOHHC PPPPfr =

−  
),...,,,(

22222 nnnn HCOHCOHHC PPPPfr =
+  

),...,,,(
2222 nnnn HCOHCOHHC PPPPfr =

 
 

Teng et al.[89] 
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Table 5 (Cont’d)     

Catalyst Reactor 
Operating Conditions 

Equation Reference 

T , C P , 
MPa 

H2/CO 
feed 

Fe/Cu/K/SiO2 Slurry 250-
290 1.0-2.5 0.67-

1.5 

Detailed kinetics based on insertion of 
methylene (CH2) via alkylidene propagation 
mechanism including α-olefin readsorption 

using LHHW approach 
( )

nnHCHCOHCOHCH PPPPPfr
242224

,...,,,,=
 

( )
nnnn HCHCOHCOHHC PPPPPfr

2422222
,...,,,,=

+

 
( )

nnnn HCHCOHCOHHC PPPPPfr
242222

,...,,,,=
 

Chang et al.[57] 

1 as reported in [76] 
2 CO/H2O feed 
3 as reported in [37] 
4 as reported in [58] 
5.N2 rich (50%) H2/CO feed 
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Table 6: Kinetics Studies for the WGS Reaction on Iron Catalyst 

Catalyst Reactor 
Operating Conditions 

Equation Reference 

T , C P , 
MPa 

H2/CO 
feed 

Fe 
Fixed Bed, 
Fluidized 

Bed 

200-
340 0.5-4.0 1.0-7.3 COWGSWGS Pkr =  Dry [72] 

Reduced Prec. 
Fe/Cu/K2O Fixed Bed 220-

270 1.0-2.0 1.0-6.0 COWGSWGS Pkr =  Feimer et al.[75] 

Fe/Cu/K - 265 - - 

OHCO

eq

HCO
COOH

WGSWGS aPP
K

PP
PP

kr
2

22

2

+











−

=
 

Leib and Kuo [77] 1 

Prec. Fe/Cu/K & 
Reduced Fe/Cu/K/SiO2 

Slurry 235-
265 1.5-3.0 0.6-1.0 

OHCO

eq

HCO
COOH

WGSWGS aPP
K

PP
PP

kr
2

22

2

+











−

=

OHHCO

eq

HCO
COOH

WGSWGS aPPP
K

PP
PP

kr
22

22

2

+











−

=  

Zimmerman and Bukur 
[37] 

Reduced Prec. 
Fe/CuO/K2O/Na2O/SiO2 

Fixed Bed 250-
350 0.6-2.1 3.0-6.0 2

2
1

2
1

2

2

22

2

1













+














−

=

H

OH

eq

HCO
COOH

WGSWGS

P

P
a

K
PP

PP

kr  Lox and Froment [60, 61] 
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Table 6 (Cont’d)     

Catalyst Reactor 
Operating Conditions 

Equation Reference 

T , C P , 
MPa 

H2/CO 
feed 

Prec. Fe/Cu/K Gradientless 230-
264 1.0-2.6 1.1-2.4 

OHHCO

eq

HCO
COOH

WGSWGS aPPP
K

PP
PP

kr
22

22

2

+











−

=

22

22

2

COOHCO

eq

HCO
COOH

WGSWGS bPaPP
K

PP
PP

kr
++











−

=  

Shen et al.[81]2 

Reduced Prec. 
Fe/Cu/K/SiO2 

Spinning 
Basket 250 0.8-4.0 0.25-

4.0 

( )2
2

22

2

1 OHCO

eq

HCO
COOH

WGSWGS bPaP

K
PP

PP
kr

++











−

=

( )2

2
1

2
1

2

22

2

2

1 OHCO

eq

HCO

H

COOH

WGSWGS bPaP

K
PP

P

PP

kr
++














−

=  

van der Laan and 
Beenackers [58, 83, 84] 

Reduced Prec. 
Fe/Cu/K/SiO2 

Slurry 250 1.2-4.0 0.25-
4.0 

( )2
2

22

2

OHCO

eq

HCO
COOH

WGSWGS aPP

K
PP

PP
kr

+











−

=  
van der Laan [58] 

Reduced Prec. Co/MnO Micro-Fixed 
Bed 

210-
250 0.6-2.6 1.6-4.1 











−=

OHeq

HCO
COfWGSWGS PK

PP
PPkr

2

22

with 
( )2505.0 P

f PP −
=

 

Keyser et al.[90] 
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Table 6 (Cont’d)     

Catalyst Reactor 
Operating Conditions 

Equation Reference 

T , C P , 
MPa 

H2/CO 
feed 

Fe/Cu/K - - - - 2

2
1

2
1

2
1

2

2

22

2

2

1













+














−

=

H

COOH

eq

HCO

H

COOH

WGS

P

PP
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Table 6 (Cont’d)     

Catalyst Reactor 
Operating Conditions 

Equation Reference 

T , C P , 
MPa 

H2/CO 
feed 

Fe/Cu/K/SiO2 Slurry 250-
290 1.0-2.5 0.67-

1.5 2

2
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2
1

2
1

2

2

22

2

2

1













+














−

=

H

COOH

eq

HCO

H

COOH

WGS

P

PP
b

K
PP

P

PP

ar
 

Chang et al.[57] 

1 as reported in [37] 
2 as reported in [58] 
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2.1.4.2 Cobalt-Based Catalyst 

The main difference between the kinetics of a cobalt-based catalyst and an iron catalyst is its 

inactivity towards the WGS reaction since H2O is not adsorbed on the catalyst active sites. As a 

result, the WGS reaction can be neglected when modeling the kinetics of F-T synthesis using 

cobalt-based catalysts. Table 7 shows the kinetic rate expressions available in the literature for F-

T cobalt-based catalysts. 

2.1.5 Effect of Water 

Water is produced by the F-T reaction and can be present in the reactor in large quantities, 

especially in the case of cobalt-based catalysts which possess a low WGS activity. The presence 

of water will affect the activity and the selectivity of the F-T synthesis. It has been found to 

increase C5+ selectivity and decrease CH4 selectivity when using cobalt [91]. Also it has been 

reported that in the case of Al2O3 supported cobalt catalyst, the addition of water results in 

increased rate of deactivation [92]. The presence of water affects the solubilities of the syngas. 

Water at saturation level was found to increase the solubilities of both H2 and CO in an F-T 

liquid with a more pronounced effect on H2 (+110%) than CO (+50%) [93, 94]. The same water-

saturated F-T liquid exhibited increased kLa values for CO and reduced kLa values for H2 when 

compared with the water-free F-T liquid under the same total pressure in an agitated slurry 

reactor. This effect of water on the gas solubility and mass transfer in F-T liquids needs further 

investigation to understand such behavior. 
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Table 7: Kinetics Studies for the Fischer-Tropsch Synthesis on Cobalt-Based Catalyst 

Catalyst Reactor 
Operating Conditions 

Equation Reference 

T , C P , 
MPa 

H2/CO 
feed 

Co - - - - 
CO

H
FTFT P

P
kr
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2=  Brotz [65] 1 
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Anderson [67] 2 

Co - - - - 2
1
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Yang et al.[95] 1 
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P
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Pannell et al.[96] 1 
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Table 7 (Cont’d)     

Catalyst Reactor 
Operating Conditions 

Equation Reference 

T , C P , 
MPa 

H2/CO 
feed 

Co/MgO/ThO2/SiO2 & 
Co/SiO2 

Slurry 190-
210 

PH2 = 0.01-1.93 
PCO = 0.05-2.54 2

2/3

, ))/(1(
)/(
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22
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⋅⋅+
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Keyser et al.[90] 
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approach 
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,...,,,,=
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Chang et al.[101] 

Co/Al2O3 
Fixed Bed 
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210-
235 0.8-2.5 1.8-2.7 

Detailed kinetics based on elementary reactions 
in terms of θ (fraction of the catalyst sites 

occupied by species) 
Visconti et al.[102] 

Co/Al2O3 Slurry 220 2.0 1.6-
3.35 

Detailed kinetics based on hydrocarbon 
productions considering olefin readsorption 

based on van Steen and Schulz 
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Anfray et al.[103] 

1 as reported in [48] 
2 as reported in [90] 
3 this catalyst was WGS active 
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2.2 F-T REACTORS 

2.2.1 Fixed-Bed Reactors 

The high exothermicity of the F-T synthesis and consequently the heat removal are major issues 

encountered when operating commercial F-T reactors. The first commercial reactors designed for 

the F-T synthesis came on stream in 1955 at Sasol (South Africa). They consisted of 5 

multitubular ARGE reactors (Figure 7) containing more than 2000 tubes of 0.05 m diameter, 12 

m long packed with iron catalyst and surrounded by water. This type of reactors is relatively easy 

to scale up but has a high capital cost. In these reactors, the syngas flows through small diameter 

tubes packed with the catalyst. Therefore, a high-pressure drop is created inside the reactor due 

to its low voidage [33] (generally < 40%), and high energy is needed to push the syngas through 

the reactor increasing the operating cost. This type of reactor has been successfully used to carry 

out the LTFT process, however, it is risky to use it in the HTFT process since the high 

temperatures used in the latter process could lead to carbon deposits on the catalyst surface and 

serious plugging of the reactor tubes [104]. 

2.2.2 Fluidized-Bed Reactors 

In an attempt to carry out the HTFT process and improve conversion and catalyst life, fluidized 

bed reactors have been developed (see Figure 7). These include Circulating-Fluidized-Bed 

Reactors and Fixed-Fluidized-Bed Reactors. 

2.2.2.1 Circulating-Fluidized-Bed Reactors 

In a circulating-fluidized bed reactor (CFBR), the gas flow entrains some of the fine catalysts 

particles along with it where the reaction takes place. The gaseous products and unreacted gas 

then leave at the top of the reactor through a cyclone while the catalyst particles are recycled 

back through a side arm or standpipe. No liquid products appear in the reactor. 
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Figure 7: Commercial F-T Reactors [105] 
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2.2.2.2 Fixed-Fluidized-Bed Reactors 

In a fixed-fluidized bed reactor (FFBR), the catalyst is also in the form of fine catalyst particles 

which are suspended inside the reactor by the upward flow of gas reactants. The bed of catalyst 

is “fixed”, i.e., the solid particles height is stationary. The FFBR has several advantages over the 

CFBR [104]: its capital cost is 50% lower; the pressure drop and therefore its operating cost is also 

lower; and higher catalysts holdup can be achieved in the FFBR. The FFBR and CFBR require 

the products to be volatile in order to avoid wetting of the catalysts particles which could cause 

particles agglomeration and lead to defluidization of the catalyst bed [104]. They are therefore best 

suited to carry out the HTFT process that yields low carbon number products, such as gasoline. 

2.2.3 Slurry Reactors 

The alternatives to FBRs for the production of heavy wax (LTFT process) are the slurry reactors 

which can be classified into 2 types: Slurry Bubble Column Reactors (SBCRs) and Ebulating 

Bed Reactors (EBRs). 

2.2.3.1 Slurry Bubble Column Reactors 

In an SBCR, the solid phase consists of fine catalyst particles suspended in a stationary or slow 

moving liquid-phase. The mixing and suspension of the solid phase is achieved by the flowing 

gas reactants through the slurry-phase in an upward manner. The presence of a liquid-phase 

allows efficient heat transfer and therefore better temperature control permitting the reactor to be 

run at higher temperatures and subsequently higher conversions. The SBCRs have a relatively 

simple design and thus have smaller capital costs when compared with the multitubular reactors. 

However, their commercial development has been delayed because of a lack of existing reliable 

system to separate the fine catalyst particles from the liquid products. The first efficient filtration 

device was developed in 1990 and 3 years after the first F-T commercial slurry reactor was 

commissioned at Sasol in South Africa [27]. Advantages of slurry reactors over fixed bed reactors 

include [27, 35-37]: better temperature control/removal; lower capital cost (~25% of that of a multi-

tubular reactor) due to their relatively simple design; low pressure drop (4 times less than in 
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fixed bed reactor); ability of using fine catalyst particles (<100 µm) allowing huge surface area 

and better mass transfer; higher yield per reactor volume; and catalyst can be added and removed 

continuously, allowing longer runs since no shutdown are necessary. However, the important 

liquid back-mixing caused by the flow of the large gas bubbles; the high shear created near the 

gas distributor may cause catalyst attrition and deactivation; the important side products obtained 

due to the high liquid to solid ratio; the difficulty in separating the fine solid particles from the 

viscous liquid (wax); and the complex flow dynamics make the scaleup of SBCRs a difficult 

task. 

2.2.3.2 Ebulating Bed Reactors 

An EBR is basically an SBCR in which the solid particles are held in suspension mostly by the 

upward movement of the liquid-phase rather than only the gas-phase as in SBCR. A typical EBR 

therefore operates at higher superficial liquid velocities than those in SBCRs, allowing the use of 

larger and denser catalyst particles. The advantages of slurry reactors over FBRs and the fact that 

FFBRs and CFBRs can only be used under HTFT process conditions make them a technology of 

choice to carry out the LTFT process. This is outlined in Table 8 which represents a list of the 

planned and existing F-T plants around the world. As can be seen in this table, the majority of F-

T plants rely on the slurry technology. Companies such as Sasol and Rentech are already 

focusing on slurry reactors, while Shell seems to favor the old fixed-bed technology. 

2.2.4 Other Types of Reactors 

As a mean to intensify the F-T process, other types of reactors are being investigated at 

laboratory and pilot scales. Such efforts include [106]: honeycomb monolithic reactors which 

could be used to carry out the LTFT process, microstructured reactors, and membrane reactors. 

The monolithic reactors are characterized by low pressure drop, good catalyst utilization, and 

highly efficient mass transfer; also the liquid products can be recycled and used to remove the 

heat of reaction using an external heat exchanger. The costs associated with external heat 

removal and the monolithic geometry; however, remain too high for a commercial-scale. 

Microreactors allow higher conversions and better temperature control than monolithic reactors, 

but are plagued with challenges such as plugging of the micro channels, replacement of 
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deactivated catalyst and the cost of scaling up the “micro-geometry”. Membrane reactors add 

some interesting features, such as distributed feed of reactants, in situ removal of water, forced-

through membrane contactor, in addition to the use of zeolite encapsulated catalysts, which allow 

hydrocracking and isomerization of the products. Concerns about sealing, heat removal, 

membrane material and high cost of membrane module, however, remain important obstacles to 

their commercial development. 

2.3 SBCR HYDRODYNAMICS AND MASS TRANSFER CHARACTERISTICS 

2.3.1 Flow Regimes 

In SBCRs, the gas-phase is conventionally sparged in the slurry from the bottom of the reactor 

through a specially-designed distributor, leading to different flow regimes and complex 

hydrodynamic as well as mass/heat transfer behaviors. There are no flow regime maps available 

in the literature for SBCRs or EBRs, however, several flow regime maps were proposed to 

delineate the hydrodynamic flow regimes in Bubble Column Reactors (BCRs), including the one 

by Oshinowo and Charles [107], which identifies six different flow regimes in an upward flow; 

and that by Deckwer et al. [108] based on the reactor diameter and gas velocity for air/water 

system. From these observations it can be concluded that for 3-phase reactors such as SBCRs 

and EBRs, 3 main types of flow regimes may occur [109-111] depending upon the operating 

conditions and reactor/distributor geometry. 

2.3.1.1 Homogeneous Flow 

In BCRs operating with superficial gas velocities ≤ 0.05 m/s, the homogeneous (also called 

bubbly or dispersed) flow regime prevails, which is characterized by a homogeneous gas bubbles 

distribution, weak interactions among gas bubbles and between gas and liquid phases, almost 

constant gas bubbles residence time, sharp unimodal size distribution of the gas bubbles and 

almost no liquid back-mixing. In this regime, the gas injection point was reported to have a 



 

 36 

strong impact on the gas bubbles formation, whereas the reactor diameter was not as important 
[112, 113]. 

2.3.1.2 Slug Flow 

In small BCRs with internal diameters ≤ 0.15 m, increasing the superficial gas velocity could 

lead to the formation of large gas bubbles in the reactor, which is designated as a slug flow 

regime. In this regime, the wall effect [114, 115] is important and has a strong impact on the 

hydrodynamic and mass transfer parameters. Liquid properties, such as high viscosity has also 

been found to facilitate the formation of slugs even at low superficial gas velocities [116]. The slug 

flow regime exhibits very poor mixing and mass transfer. It is, however, mostly observed in 

small laboratory reactors and would not occur in large-scale industrial reactors. 

2.3.1.3 Heterogeneous or Churn-Turbulent Flow 

In large-scale BCRs, increasing the superficial gas velocity above a certain point ( > 0.05-0.1 

m/s) increases the interactions among the gas bubbles, and enhances the coalescence and break-

up of these bubbles creating a wider bubbles size distribution [109]. This leads the reactor to 

operate in the heterogeneous (also called churn-turbulent or coalesced bubble [110]) flow regime. 

In this regime, large and fast-rising gas bubbles induce strong circulations and create back-

mixing or re-circulation zones wherein the small gas bubbles are entrained [117-119]. This regime is 

therefore characterized by strong gas-liquid mixing and optimal mass/heat transfer. Visual 

observations and photographic methods revealed the coexistence of distinctly two classes of gas 

bubbles (small and large) in BCRs [119-123] operating in the churn-turbulent flow regime. 

2.3.1.4 Transitional Flow 

The transition from homogeneous flow to heterogeneous flow is characterized by the formation 

of local liquid recirculation patterns in the reactor created by the increasing population of large 

gas bubbles [109]. The knowledge of this transitional flow is important for the design and scaleup 

of industrial reactors as the hydrodynamics and mass transfer properties dramatically change 

during this regime. 
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Table 8: Planned and Existing F-T Plants in the World 

Plant Name Country/Location Capacity 
(bbl/day) 

Start 
Date Status Type FT Process Reactor Catalyst Resource 

Sasol South Africa/Sasolburg 8,000 1955 Existing Commercial Sasol Fixed-bed Fe CTL 
Sasol South Africa/Secunda 160,000 1980 Existing Commercial Sasol CFB Fe CTL 

Sasol South Africa/Sasolburg 100 1983 Existing Commercial Sasol Advanced 
Synthol Fe GTL 

Sasol South Africa 100 1990 Existing Pilot Sasol Slurry Fe GTL 
Syntroleum USA/Tulsa, OK 2 1990 Closed Pilot Syntroleum Slurry  GTL 

Rentech Colorado USA/Pueblo, CO 235 1992 Closed Pilot Rentech Slurry Fe/Co GTL 
Petro SA/StatoilHydro/Lurgi South Africa/Mossel Bay 36,000 1992 Existing Commercial Sasol Synthol CFB Fe GTL 

DOE USA/LaPorte, TX 35 1992 Existing Pilot  Slurry  GTL 
Exxon Mobil USA, Baton Rouge, LA 200 1993 Closed Pilot Exxon AGC 21 Slurry Co GTL 

Sasol South Africa/Sasolburg 2,500 1993 Existing Commercial Sasol Slurry Fe GTL 
Shell/Petronas/Mitsubishi Corporation Malaysia/Bintulu 14,700 1993 Existing Commercial SMDS Fixed-bed Co GTL 

BP Amoco/ARCO (Cherry Point) USA/Cherry Point, WA 70 1999 Closed Pilot Syntroleum Slurry Co GTL 
Synergy/Stone Canyon Resources Canada/Calgary 4 2000 Existing Pilot SynGen   GTL 

Synfuels USA/TX 12 2000 Existing Pilot    GTL 
IFP/ENI Italy 20 2001 Existing Pilot IFP/ENI   GTL 

Donyi Polo Petrochemicals Ltd. India/Arunachal Pradesh 360 2001 Existing Commercial Rentech Slurry Fe/Co GTL 
BP Amoco (Nikiski) USA/Nikiski, AK 300 2002 Existing Pilot BP/Kvaerner   GTL 

Conoco USA/Ponca City, OK 400 2002 Closed Pilot Conoco   GTL 
JNOC Tomakomai Japan/Hokkaido 7 2002 Existing Pilot JNOC-TRC   GTL 

Petro SA/StatoilHydro South Africa/Mossel Bay 1,000 2004 Existing Pilot Statoil Slurry Co GTL 
Syntroleum/Marathon USA/Tulsa, OK 70 2004 Existing Pilot Syntroleum Slurry  GTL 

Sasol Chevron/QP (Oryx) Qatar/Ras Laffan 34,000 TBE 
100,000 2007 Existing Commercial Sasol Slurry  GTL 

Compact GTL UK, Wilton 0.15 2008 Existing Pilot Compact GTL Fixed-bed  GTL 
World GTL Inc./Petrotrin Trinidad/Pointe-a-Pierre 2,250 2008 Existing Commercial Worlf GTL Fixed-bed Co GTL 

Shenhua (Erdos CTL) China/Inner Mongolia 22,200 2009 Existing Commercial    CTL 
CHOREN Germany/Freiberg 300 2010 Existing Commercial SMDS Fixed-bed Co BTL 

Peabody Energy/Rentech USA/East Dubuqe, IL 6,000 2010 Planned Commercial Rentech Slurry Fe CTL 
Baard Energy/Ohio Clean Fuels USA/Wellsville, OH 53,000 2012 Planned Commercial Rentech Slurry  GTL 

Rentech USA/Rialto, CA 640 2012 Planned Commercial Rentech Slurry  BTL 
Chevron Nigeria Ltd./Sasol Synfuel 

International (Escravos GTL) Nigeria/Escravos 34,000 2012 Planned Commercial Sasol Slurry Fe GTL 

Sasol Chevron Australia 30,000 2012 Planned Commercial Sasol Slurry  GTL 
Shell (Pearl GTL) Qatar 140,000 2012 Planned Commercial SMDS Fixed-bed Co GTL 
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Table 8 (Cont’d)          

Plant Name Country/Location Capacity 
(bbl/day) 

Start 
Date Status Type FT Process Reactor Catalyst Resource 

Velocys/Toyo Engr/MODEC Offshore Location  2012 Planned Commercial Velocys Microchannels  GTL 
Shell/Shenhua China/Ningxia 70,000 2012 Potential Commercial SMDS Fixed-bed Co CTL 
Sasol/Shenhua China/Shaanxi 80,000 2012 Potential Commercial Sasol   CTL 

Petrobras Brazil/Aracaju 20 2012 Potential Commercial Compact GTL Fixed-bed  GTL 
Sasol South Africa 80,000 2016 Planned Commercial Sasol   CTL 

Sasol/Shenhua China/Ningxia 80,000 2016 Planned Commercial Sasol   CTL 
Anglo American/Shell Australia 60,000 2016 Planned Commercial SMDS Fixed-bed Co CTL 

Narkangan GTL Iran/Shiraz 12,500  Planned Commercial    GTL 
Rentech USA/Natchez, MS 30,000  Planned Commercial Rentech Slurry Fe CTL 

Sicor Ethiopia 20,000  Planned Commercial    GTL 
WMPI USA/Gilberton, PA 5,000  Planned Commercial Sasol   CTL 

KUFPEC/Syntroleum Papua New Guinea/Gulf of 
Papua 50,000  Planned Commercial Syntroleum Slurry Co GTL 

YPFB/Franklin Mining Bolivia/Santa Cruz 10,000  Planned Commercial Rentech Slurry  GTL 
Orobos steel facility Sweden   Potential Commercial Rentech Slurry  GTL 

Peabody Energy/Rentech USA/MT 1,250  Potential Commercial Rentech Slurry Fe CTL 
Sasol Chevron/QP Qatar/Ras Laffan 130,000  Potential Commercial Sasol Slurry  GTL 

Ivanhoe Energy/Egyptian Natural Gas 
Holding Co. Egypt   Potential Commercial Syntroleum Slurry Co GTL 

AK Nat. Gas to Liquids (North Slope) USA/AK 70,000  Potential Commercial Sasol or Rentech Slurry  GTL 

Syntroleum Papua New 
Guinea/Moresby 50,000  Potential Commercial Syntroleum Slurry Co GTL 

Syntroleum/PT Elnusa Indonesia   Potential Commercial Syntroleum Slurry Co GTL 
Sasol India 80,000  Potential Commercial    CTL 

Syntroleum/Sustec Industries AG Germany/Spreetal 3,000 TBE 
20,000  Potential Commercial Syntroleum Slurry Co CTL 

Yakutgazprom Russia/Yakutsk 13,000  Potential Commercial Syntroleum Slurry Co GTL 
Bechtel Bolivia 50,000  Potential Commercial    GTL 

ConocoPhillips/QP Qatar 80,000  Cancelled Commercial ConocoPhillips   GTL 
Exxon Mobil/QP Qatar 154,000  Cancelled Commercial Exxon AGC 21 Slurry Co GTL 

PDVSA Venezuela 15,000  Cancelled Commercial Intevep Slurry Co GTL 
FT Solutions/GTI USA/Des Plaines, IL 10  Cancelled Pilot Rentech Slurry  GTL 

Pertamina Indonesia 15,000  Cancelled Commercial Rentech Slurry  GTL 
Shell Argentina 75,000  Cancelled Commercial SMDS Fixed-bed Co GTL 

Shell/EGPC Egypt/West Demiatta 75,000  Cancelled Commercial SMDS Fixed-bed Co GTL 
ENAP Chile 10,000  Cancelled Commercial Syntroleum Slurry Co GTL 
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Table 8 (Cont’d)          

Plant Name Country/Location Capacity 
(bbl/day) 

Start 
Date Status Type FT Process Reactor Catalyst Resource 

Ivanhoe Qatar 185,000  Cancelled Commercial Syntroleum Slurry Co GTL 
Marathon/QP Qatar 120,000  Cancelled Commercial Syntroleum Slurry Co GTL 

Repsol/Syntroleum Bolivia 103,500  Cancelled Commercial Syntroleum Slurry Co GTL 
Syntroleum Australia/Burrup peninsula 11,500  Cancelled Commercial Syntroleum Slurry Co GTL 

Syntroleum/BPZ Peru/Talara Basin 5,000  Cancelled Commercial Syntroleum Slurry Co GTL 
Forest Oil South Africa 12,500  Cancelled Commercial    GTL 
PDVSA Venezuela 100  Cancelled Pilot  Slurry Co GTL 
Rentech Papua New Guinea/Wewak 15,000  Cancelled Commercial    GTL 

 Algeria/Tinrhert 36,000  Cancelled Commercial    GTL 
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2.3.2 Gas Holdup 

The gas holdup (εG) defined as the fraction of the volume occupied by the gas phase is an 

important hydrodynamic parameter [124]. In SBCRs and EBRs, it can be derived as: 

𝜀𝐺 =
𝑉𝐺

𝑉𝐺 + 𝑉𝐿 + 𝑉𝑆
 (2-32) 

Gas holdup has a direct impact on the performances of the reactor since the heat and mass 

transfer are dependent upon it through the gas liquid interfacial area. It strongly depends upon 

the operating conditions, the physical properties of the gas-liquid-solid system used, and reactor 

geometry (see Figure 9). Thus, the precise knowledge of the effects of all these parameters on the 

gas holdup is therefore of prime importance in order to design and scale-up SBCRs. 

2.3.3 Gas Bubbles Sizes 

The knowledge of the bubble size distribution in SBCRs is important. The size of the gas 

bubbles present combined with the gas holdup will determine how much interfacial area is 

available for the transfer of the gaseous species to and from the liquid-phase. The distribution of 

the sizes and shapes of the gas bubbles will mostly be influenced by the flow regime in which the 

SBCR is operating as described previously and will be affected by the operating conditions, the 

physical properties of the gas-liquid-solid system used as well as the reactor geometry. 

2.3.4 Mass Transfer 

2.3.4.1 Resistances to Mass Transfer 

In an F-T SBCR, all the following steps have to be considered in order to describe the transfer 

process of the reactants and products through the different phases: 

- Transfer of the reactants from the gas-phase to the gas-liquid interface 

- Transfer of the reactants form the gas-liquid interface to the liquid bulk 

- Mixing and diffusion of the reactants in the bulk liquid phase 
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- Transfer of the reactants to the external surface of the catalyst particles 

- Diffusion of the reactants inside the catalyst pores to the catalyst active sites 

- Conversion of the reactants into products on the catalyst active sites 

- Diffusion of the products from the catalyst active sites to the external surface of the 

catalyst 

- Transfer of the products from the catalyst to liquid bulk 

- Mixing and diffusion of products in the liquid bulk 

- Transfer of the products from the liquid bulk to the gas-liquid interface 

- Transfer of the products from the gas-liquid interface to the gas-phase 

A schematic of the concentration profile for a species undergoing all the above mentioned steps 

can be seen in Figure 8. Since the diameter of catalyst particles used are usually very small in the 

range of 30 to 90 µm [125], the interfacial area between the liquid and the catalyst particles is very 

large and accordingly the resistance to the mass transfer due to the steps 4, 5, 7 and 8 can be 

neglected. Steps 3 and 9 can also be neglected if the reactor is operated in the churn-turbulent 

flow regime due to the efficient mixing obtained in this flow regime. The products formed in an 

F-T reactor are liquids, and the gas-phase will consist mainly of the reactants (CO & H2) and 

subsequently the resistance associated with steps 1 and 11 will be negligible. The largest 

resistances in all the steps are then the resistance due to kinetics (step 6), the diffusion of species 

from the gas-liquid interface into the liquid bulk (step 2), and the reverse step (step 10). It 

therefore appears that besides the kinetics, the precise knowledge of the rate of mass transfer 

between the gas-liquid interface and the liquid bulk (i.e., within the liquid film) is of utmost 

importance for designing F-T SBCRs. 

2.3.4.2 Interfacial Area 

The interfacial area between the gas bubbles and the liquid-phase is an important parameter as it 

defines the surface where the transfer of species, from the gas to the liquid-phases and vice versa, 

is taking place. It is usually defined as the ratio of the surface of the gas bubbles per unit liquid-

phase volume. By assuming the gas bubbles to be spherical and using the average bubble 

diameter, it can be written as: 

𝑎 =
6𝜀𝐺

𝑑𝑎𝑣𝑒𝑟𝑎𝑔𝑒(1 − 𝜀𝐺) (2-33) 
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From Equation (2-33), one can determine the behavior of the gas-liquid interfacial area by prior 

knowledge of the average bubble size coupled with the gas holdup. 

 

 
Figure 8: Schematic of the Concentration Profile for a Triphasic System 

 

2.3.4.3 Mass Transfer Coefficient 

The mass transfer flux across the gas-liquid interface can be written according to the two film 

model [126] as: 

𝐽 = 𝑘𝐿𝑎(𝐶∗ − 𝐶𝐿) (2-34) 

Where C* is the equilibrium concentration of the gas species at the gas-liquid interface, CL is the 

liquid bulk concentration, and kLa is the volumetric liquid-side mass transfer coefficient which is 

the product of the interfacial area (a) and the mass transfer coefficient (kL). According to this 

model, kL can be derived as a function of the diffusion coefficient and the film thickness: 

𝑘𝐿 =
𝐷𝑖𝑗
𝛿

 (2-35) 
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Other theoretical models have been proposed, such as the penetration theory and the surface 

renewal theory where the mass transfer coefficient is proportional to the square root of the 

diffusivity �𝑘𝐿 ~ �𝐷𝑖𝑗�. 

2.3.5 Factors Affecting Hydrodynamics and Mass transfer 

The hydrodynamics and mass transfer characteristics in SBCRs are affected by numerous 

parameters ranging from the physico-chemical properties of the gas-liquid-solid system to the 

operating variables and reactor geometry as can be seen in Figure 9. Tables 9 and 10 list most of 

the literature available on experimental work on BCRs and SBCRs, respectively. Due to the 

numerous factors affecting hydrodynamics and mass transfer parameters it is impossible to cover 

every possible condition. Nevertheless, most of the experimental studies found in the literature 

used air-water and most of the mass transfer measurements involved the measurement of kLa for 

O2. Also none of them covered all the conditions encountered in an industrial F-T reactor (T > 

450 K, P > 20 bar, UG > 0.15 m/s, CS > 10 vol%, mixture of hydrocarbons as liquid-phase, H2 

and CO as gas-phase, micron sized Fe or Co-based particles as solid-phase) and fewer studies are 

available for SBCRs than for BCRs. While the literature already available can give important 

qualitative information on the effects of the different factors on the behavior of SBCRs, there is 

still a great need for accurate hydrodynamics and mass transfer quantitative data under actual F-

T conditions. 

2.3.6 Effect of Gas-Liquid-Solid System 

In the following section, the impact of the physico-chemical properties of the gas-liquid-solid 

system on the hydrodynamics and mass transfer parameters of SBCRs operating in the churn-

turbulent flow regime are briefly discussed. 
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Figure 9: Factors Affecting Hydrodynamic and Mass Transfer Parameters in SBCRs [127]  
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2.3.6.1 Molecular Weight and Density of the Gas Phase 

The density of the gas-phase has been mostly reported to have a positive effect on the gas holdup 
[124, 128-132], and denser gases led to higher gas holdups. It was also reported that an increase of 

gas density resulted in the shrinkage of the gas bubbles [120, 123, 132-135]. 

The impact of the molecular weight of the gas phase is similar to that of the gas density. 

Indeed, an increase of the  molecular weight will translate into an increase of gas density and as 

such will lead to higher gas holdup and smaller gas bubbles [132]. It is, however, important to note 

that the increase of gas holdup with density/molecular weight is not true under all conditions. 

Clark [136] for example reported that at low gas velocities below 0.05 m/s (corresponding to the 

homogeneous or bubbly flow regime), the gas holdup of N2 was smaller than that of H2. 

2.3.6.2 Density, Viscosity and Surface Tension of the Liquid Phase 

The effect of the liquid density on the gas holdup has been studied by many investigators, but 

still remains unclear. Some investigators reported an increase [129, 130, 137, 138] of gas holdup with 

increasing the liquid density while others reported a decrease [124, 131, 139]. The volumetric mass 

transfer coefficient was found to decrease with decreasing liquid density [121, 140-143]. 

Increasing the liquid viscosity has been found to decrease the gas holdup [124, 128-130, 137, 138, 

144, 145] and increase the gas bubbles size [146]. The volumetric mass transfer coefficient has been 

reported to decrease with increasing the liquid-phase viscosity [121, 140-143]. 

The liquid surface tension was reported to have a similar effect to that of the liquid 

viscosity on gas holdup, i.e., an increase of liquid surface tension leads to a decrease of gas 

holdup [124, 128-131, 138, 139, 147-149]. Also, an increase of liquid surface tension leads to the formation 

of larger gas bubbles [146] and smaller volumetric mass transfer coefficients [140, 150]. 

2.3.6.3 Size, Density and Wettability of Solid Particles 

Slurry suspensions of denser solid particles led to lower the gas holdup [151] than similar 

suspensions of particles with lower density. 

Increasing the size of solid particles was found to increase [151] the gas holdup for non-

wettable solid particles, however, it was found to decrease [151, 152] the gas holdup for wettable 
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solid particles. The solid particles diameter was reported, in some cases, to have no significant 

effect [153] on gas holdup. 

The wettability of the solid particles has no clear effect on the gas holdup. In some cases, 

it was found to increase the gas holdup [151] and in others to decrease it [153]. 

2.3.7 Effect of Operating Conditions 

2.3.7.1 Temperature 

Increasing temperature has been found to increase the gas holdup [138, 148, 154, 155] through the 

decrease of both liquid surface tension and viscosity. Increasing temperature was also reported to 

increase the volumetric mass transfer coefficient [129, 130] due in part to the increase of the gas 

diffusivity. 

2.3.7.2 Pressure 

The gas holdup was found to increase with pressure [122, 156-165] which was attributed to the 

increase of the gas density. The volumetric mass transfer coefficient was also found to increase 

with pressure [121, 158, 166-168]. 

2.3.7.3 Gas Velocity 

Numerous  experimental studies have shown that increasing the superficial gas velocity led to the 

increase of the gas holdup [108, 124, 128-131, 137-140, 149, 155] and the volumetric mass transfer 

coefficient [158, 166]. 

2.3.7.4 Liquid/Slurry Velocity 

The effect of liquid superficial velocity on the gas holdup has been investigated by several 

authors. Increasing liquid velocity was found to decrease the gas holdup in the absence [169-171] 

and presence [152, 153] of solid particles. 
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2.3.7.5 Solid Loading 

The presence of fine micron-size catalyst particles in the liquid-phase greatly affects the 

properties of the slurry-phase such as density and viscosity. While a few studies [147, 169] have 

found an increase of gas holdup with increasing solid concentration, adding more particles has 

mostly been found to decrease the gas holdup [120, 143, 152, 172-175] by increasing the slurry viscosity. 

A decrease of the volumetric mass transfer coefficient and the formation of larger gas bubbles 

due to the increase of the rate of bubbles coalescence was also reported when increasing the solid 

loading [143, 176]. It was also observed, particularly at low solid concentrations [177, 178] that the 

volumetric mass transfer coefficient appeared to increase with increasing the solid concentration. 

It should be noted that those results have to be considered along with the effects of the physical 

properties of the solids used, such as shape, size and wettability. 

2.3.8 Effect of Reactor Geometry 

The Reactor geometry has a strong influence on the gas holdup. In SBCRs, 3 zones can be 

identified where the gas holdups are significantly different. The first zone corresponds to the 

bottom of the reactor in the vicinity of the gas sparger, which is strongly affected by the sparger 

design. The second zone is the bulk region. The third zone is the top region, where the gas 

holdup will behave very differently from the bulk region, if foaming occurs. It is important to 

note that if the reactor is long enough the effect of the first and third regions on the total gas 

holdup will become negligible [149]. 

2.3.8.1 Column Diameter 

The effect of column diameter on the gas holdup has been found to be strong in the case of small 

diameter reactors with diameter ≤ 0.15 m [141, 179], however, several investigators have found that 

this effect would level off or disappear for diameters ≥ 0.15 m [118, 140, 141, 149, 179-181]. 

2.3.8.2 Column Length 

The length to diameter (L/D) ratio is frequently used instead of the reactor length when studying 

the effects of reactor geometry on the hydrodynamics. Several studies found that the gas holdup 

remained unaffected when the length to diameter ratio was ≥ 6 [149, 180, 182, 183]. 
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2.3.8.3 Gas Distributor 

The design of the gas distributor, the number of openings, their sizes and their orientations play 

an important role in affecting the hydrodynamics of the SBCRs not only in the bottom region at 

the vicinity of the gas distributor but also in the bulk region. The initial bubble size and 

distribution at the orifice could be controlled by the sparger characteristics, but due to the 

balance between coalescence and breakup of gas bubbles, the initial bubble size created at the 

gas sparger would not describe the behavior of gas bubble size distribution in the entire column 
[146]. Under the same operating conditions, different designs of the gas sparger were found to give 

different volumetric mass transfer coefficient values [129]. For 2 different designs of the gas 

distributor, increasing the size of the openings was found to decrease gas holdup due to the 

formation of larger gas bubbles [184]. However, several investigators have reported that the gas 

sparger had a minimal effect on the bubble sizes and gas holdup if the orifice diameters were > 

0.001–0.002 m [146, 149]. This suggests that for a certain size of the openings, the gas bubble size 

and gas holdup reach a maximum and a minimum value, respectively. 

2.3.8.4 Internals 

Since F-T synthesis is an exothermic reaction, cooling tubes are needed in the reactor in order to 

remove the heat released by the reaction. The presence of those internals will affect the 

performance of the reactor in terms of hydrodynamics and mass transfer. Saxena et al. [185] have 

studied 3 different configurations of internals representing 1.9%, 2.7% and 14.3% of the column 

cross section area and could not find any clear effect of the number of internals on the gas 

holdup. O’Dowd et al. [186] found slightly higher gas holdup value in a column equipped with 

cylindrical baffles occupying 15% of the cross section area than in an unbaffled column of the 

same size. However, the difference lies within the range of errors of their experimental 

measuring technique. Also, another study [187] reported slightly higher gas holdup value when 

internals representing 5% of the cross section area were present. Yamashita [188] studied the 

effect of the separation distance between the internals and found out that gas holdup decreased 

when the separation distance was small (0.006 m) and increased when the separation distance 

was larger than 0.008 m. He attributed the decrease and increase in gas holdup values to the 

reduction of the radial mobility of gas bubbles and to the increase in interstitial gas velocity, 

respectively. Indeed, it is important to note that the slight increase in gas holdup reported in the 
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above mentioned studies might be the result of the increase of interstitial velocity inside the 

reactor when adding internals. 

 

2.3.9 Experimental Studies under F-T Industrial Conditions 

Although there are numerous experimental studies in the literature dealing with the 

hydrodynamic and mass transfer parameters in SBCRs (see Tables 9 and 10), only few of them 

covered conditions similar to those encountered in an industrial F-T SBCR (T > 450 K, P > 25 

bar, UG > 0.15 m/s, CS > 10 vol%, mixture of hydrocarbons as the liquid-phase, H2 and CO 

mixture as a gas-phase, micron sized FeOx or Co-based or typical catalyst support as solid-

phase). Deckwer et al.[108] measured the gas holdup and volumetric mass transfer coefficient for 

N2 in a paraffin wax in the presence of up to 16 wt.% of alumina particles at 416 and 543 K. 

However, their experiments were carried out in small columns of 0.04 and 0.1 m ID at low 

superficial gas velocities < 0.04 m/s and pressures < 11 bar. The gas holdup for N2 in paraffin 

wax was also investigated by Bukur et al.[169] who used iron oxide and silica as solid phases. 

Their data, however, were measured in small column of 0.05 m ID and at low range of gas 

velocities and low pressure (1 atm.). Krishna et al. [189] reported gas holdup data obtained in a 

relatively large column of 0.38 m inside diameter with a three-phase system consisting of air, 

paraffin oil and silica particles and covered ranges of solid concentrations and gas velocities 

typical to those of industrial F-T reactor, but they conducted their experiments at ambient 

temperature and atmospheric pressure. Vandu et al. [190] measured the volumetric mass transfer 

coefficients of air in a paraffin oil in the presence of alumina particles, but they used a small 

SBCR of 0.1 m inside diameter operating at ambient temperature and atmospheric pressure. Gas 

holdup data were recently obtained by Woo et al. [191] while carrying out F-T synthesis over 

alumina supported cobalt catalyst in a small SBCR of 0.05 m inside diameter. They reported that 

optimal conditions were reached when using gas velocities in the range of 0.068-0.1 m/s and 

catalyst concentration of 15 wt.%, however, in larger SBCRs, higher gas flow rates and solid 

loading would be expected in order to increase the productivity of the reactor. Behkish et al. [120, 

166] measured the hydrodynamic and mass transfer parameters of H2, CO, N2, CH4 and He in 

Isopar-M (an isoparaffinic liquid mixture of C10 – C16) in the presence of alumina particles under 
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high pressures (up to 30 bar) and temperatures (up to 473 K) as well as high gas velocities (up to 

0.39 m/s) and solid concentrations (up to 36 vol.%). While the typical F-T operating conditions 

were covered, they did not use gas mixtures which could mimic the syngas. Although Isopar-M 

could be used as a startup liquid for an F-T reactor, its composition varies greatly from the 

molten reactor wax which would be present in the SBCR once a steady state operation is 

reached. It should be mentioned that the hydrodynamics in SBCRs have been consistently shown 

to depend on the reactor size and operating conditions and accordingly, using such available data 

in the literature obtained in small reactor diameters or under ambient conditions or with a single 

gas for the design of commercial SBCRs with inside diameter reaching several meters and 

operating in the churn-turbulent flow regime, could be very risky. 
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Table 9: Literature Experimental Hydrodynamics and Mass Transfer Studies in BCRs 

Reference Gas-Liquid-Solid System Reactor 
Geometry [m] Sparger 

Operating 
Conditions 
(UG [m/s]; 
UL [m/s]; 
P [bar]; T 

[K]) 

Parameter 
Measured 

kL/a/kLa/εG/d
B 

Correlation Remarks 

Fair et al.[141] Air, H2O DC=0.4572, 1.0668 
HC=3.048 PfP UG up to 0.18 εG   

Argo and Cova 
[192] N2, H2, H2O DC =0.45 

HC=8.1 S-ON UG up to 0.16 dB  No effect of P 

Hughmark [139] Air, H2O, Kerosene, Oil 
DC =0.0254, 0.0508, 
0.1524, 0.3048, 
0.4064, 1.0668 

N/A Patm 
UG: 0.004-0.45 kLa, εG εG  

Akita and 
Yoshida [140] 

He, Air, O2, Glycol, CCl3, 
Methanol, CO2, Water, Solution 

DC=0.15, 0.3, 0.6 
HC=2 S-ON 

Patm 
UG: 0.003-0.4 
UL: 0-0.044 

εG,  dB,  kLa εG,  dB,  kLa 
Effect of ρG; Effect of DC on 
kLa and d32 
 

Akita and 
Yoshida [146] 

Air, O2, H2O, Glycol, Methanol, 
Glycerol, Na2SO3, CCl4 

DC=0.077, 0.15, 0.30 
HC=2.5 

PfP, PoP, S-
ON UG up to 0.07 kL,, dB  Effect of DC on kLa and d32 

Bach and 
Pilhofer [193] Air, Alcohol, Hydrocarbons DC=0.100 HC=2.000 PfP UG: 0-0.2 εG εG  

Gestrich et al.[194] N/A N/A N/A N/A kLa kLa 
Obtained data and 
measurements from 
different studies 

Mersmann [195] N/A N/A N/A N/A εG εG 
Obtained data and 
measurements from 
different studies 

Hikita et al.[150] 
Air, H2, CO2, CH4, C3H8, H2O, 30, 
50wt% Sucrose, Methanol, n-
Butanol, Aniline 

DC=0.10, 0.19 
HC=1.5, 2.4 S-ON Patm 

UG: 0.042-0.38 εG,, kLa  Effect of UG on kLa 

Godbole et al.[142] Air, Sotrol, Turpentine 5, CMC, N2, 

Sodium Sulfate 
DC=0.305 
HC=3.4 PfP Patm 

UG up to 0.24 εG,, kLa kLa Small and large bubbles 

Tarmy et al.[196] N2, C7H16 
DC=0.61 
HC=8.5 BC UG up to 0.20 dB  Effect of P 

Molerus and 
Kurtin [197] Air, Water, Butanol DC=0.19 

HC=2.5 PfP, PoP Re<2000 dB, εG  
In the bubbly regime, bubble 
sizes deduced from gas 
throughput and εG 

Grover et al.[198] Air, H2O, NaCl, CuCl2 
DC=0.1 
HC=1.5 SP 

Patm 
UG: 0.001-0.045 
T: 303-353 

εG  
εG decreased with T for 
air/H2O. but  increased for 
air/electrolyte at low UG) 

Guy et al.[182] Air, Water, Glycerol, Cellulose, 
Polyacrylamide 

DC=0.254 
HC=0.9 PfP UG up to 0.10 εG  Effect of µL and sparger 

plate on εG 

Idogawa et al.[199] 
H2, He, Air, H2O, CH3OH, 
C2H5OH, Acetone, Aqueous 
Alcohol Solutions 

DC =0.05 PfP P: 1-50 
UG: 0.005-0.05 εG εG  
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Table 9 (Cont’d) 

Reference Gas-Liquid-Solid System Reactor 
Geometry [m] Sparger 

Operating 
Conditions 
(UG [m/s]; 
UL [m/s]; 
P [bar]; T 

[K]) 

Parameter 
Measured 

kL/a/kLa/εG/d
B 

Correlation Remarks 

Kawase et al.[200] Air, Carbopol, Water, CMC DC=0.23, 0.76 
HC=1.22, 3.71 S-ON, R UG up to 0.07 kLa kLa Effect of kLa in Newtonian 

and non-Newtonian systems 
Moo Young and 
Kawase [201] CO2, Water, Poly-acrylamide DC=0.23  

HC=1.22 PfP UG up to 0.07 εG,  kLa  Elasticity increases εG but 
not kLa 

öztürk et al.[202] 

Air, N2,CO2, He, H2, 17 Pure 
Organic Liquid, 5 Inherently Mixed 
Liquids, 17 Adj. Mixtures, Xylene, 
Tetralin, H2O, C7H8, Ethylacetate, 
Decalin, Ligroin A,B 

DC=0.095 
HC=0.85 S-ON Patm 

UG: 0.008-0.1 εG, kLa kLa εG and kLa increases with ρG 

Popovic and 
Robinson [203] Air, Water, Na2SO3 

DC=0.152  
HC=1.88 S-ON UG up to 0.1 kLa  kLa in Newtonian Fluids 

Popovic and 
Robinson [204] Air, Water, CMC, Na2SO3 

DC=0.152  
HC=1.88 S-ON UG up to 0.09 a  Effect of viscosity in re-

circulating BCR 
Cho and Wakao 
[205] 

N2, Aq. Solution, C6H6, CCl4, 
CHCl3, (CH2Cl)2 

DC=0.11  
HC=0.4 S-ON, PG UG up to 0.054 kLa  kLa measured by desorption 

de Bruijn et 
al.[206] H2, Zerice Oil DC=0.0508 

HC=2.4 S-ON 
P: 50-140 
UG up to 0.02 
T: 573 

εG  εG increased with pressure 

Zou et al.[138] Air, H2O, Alcohol, 5% NaCl DC=0.1  
HC=1.05 S-ON 

Patm 
UG: 0.01-0.16 
UL: 0.007 
T: 298-369.56 

εG  εG increased with UG and T. 

Akita [207] Air, Water, Electrolytes Solution DC=0.155  
HC=3 PfP UG: 0.2 kLa  kLa is system dependant 

Allen and 
Robinson [208] Air DC=0.152 PfP 

Filter-Sterilized 
Air Flow 
Rate=65L/min 

kLa  kLa in fermentation sol. 

Halard et al.[209] Air, Water, CMC DC=0.76, 0.35  
HC=3.2 R UG up to 0.053 kLa  kLa in viscous solutions 

Medic et al.[210] Air, Na2SO3, CoCl2 Solution 1x2x6 PfP UG up to 0.045 kLa  kLa decreases with H 

Popovic and 
Robinson [211] Air, Water, CMC DC=0.152 

HC=1.88 PfP UG up to 0.26 a  Down-comer is a dead zone 
for mass transfer 

Uchida et al.[212] Air, Water, Glycerol Butanol 
Solution 

DC=0.046 
HC=1.36 PG, S-ON UL up to 0.11 

T: 293, 308, 323 kLa  kLa not f (gas sparger) 

Vatai and Tekic 
[213] CO2, Water, CMC 

DC=0.05, 0.1, 0.15, 
0.2  
HC=2.5 

S-ON UG up to 0.15 kLa  kLa decreases with DC in 
pseudo-plastic systems 
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Table 9 (Cont’d) 

Reference Gas-Liquid-Solid System Reactor 
Geometry [m] Sparger 

Operating 
Conditions 
(UG [m/s]; 
UL [m/s]; 
P [bar]; T 

[K]) 

Parameter 
Measured 

kL/a/kLa/εG/d
B 

Correlation Remarks 

Seno et al.[214] Air, Water, Glycerol Butanol DC=0.046 
HC=1.36 S-ON UG  up to 0.45 kLa  kLa f(UG, UL, system) 

Huynh et al.[215] Air, Water DC=0.095 
HC=0.79 Venturi UG up to 0.25 kLa,  εG  kLa proportional to εG 

Kawase and 
Moo-Young [216] 

Air, Water, Carboxypoly-
methylene 

DC=0.23  
HC=1.22 PfP UG up to 0.075 kLa  - 

Oyevaar et al.[163] CO2, DEA DC=0.081  
HC=0.081, 0.81 PfP, SP UG: 0.01, 0.03, 

0.05 a   

Rodemerck and 
Seidel [217] Air, n-Pentadecane DC=0.04  

HC=2 SP 
UG : 0.0111, 
0.0221, 0.0553, 
0.1105 

kLa  - 

Suh et al.[218] Air, Water, Sucrose, Xantan P.A.A. DC=0.15  
HC=2.9 PoP, SP UG up to 0.32 kLa  Effect of elastic fluids on 

kLa. 
Terasaka and 
Tsuge [219] Air, Water, Glycerol DC=0.1, 0.2 

HC=1.21, 2.48 M-ON UG up to 0.15 kLa  Effect of viscosity and 
sparger design on kLa. 

Daly et al.[220] N2, FT-300 Paraffin, SASOL wax DC=0.05, 0.20  
HC=3 PfP 

Patm 
UG up to 0.12 
T: 538 

dB  

Effect of axial position, 
column diameter and 
temperature; Sauter-mean 
bubble diameters were 
higher in the smaller column 
for FT-300 wax 

Goto and 
Gaspillo [221] Air, Water DC=0.1  

HC=3.7 S-ON UG up to 0.06 kLa  Mixer increases kLa 

Grund et al.[121] Air, H2O, Oils, CH3OH DC=0.15  
HC=4.3 PfP UG  up to 0.2 εG,  dB  Effect of liquid properties 

Merchuk and 
Ben-Zvi [222] Air, Water DC=0.19  

HC=2.4 R UG up to 0.1 kLa  Analysis is based on the 
power per unit volume 

Muller and 
Davidson [223] Air, Water DC=0.14  

HC=2.5 PfP UG up to 0.08 kLa  kLa of small bubbles is 20-
50% of total 

Wilkinson et 
al.[149] 

N2, n-Heptane, Water, Mono-
ethylene Glycol 

DC=0.16, 0.23 
HC=1.5, 1.2 PfP, S-ON P: 1-20 

UG up to 0.2 εG εG 

Effect of DC, H, sparger 
design, ρG and liquid 
properties on εG and flow 
regime 

Chabot and de 
Lasa [154] N2, Paraffinic Oil (LP-100) DC=0.2  

HC=2.4 PfP 
Patm 
UG: 0.022-0.147 
T: 373-448 

εG, dB  
Effect of T, z and UG on εG 
and dB; Bubble chord length 
increased with decreasing T. 

Kawasaki et 
al.[224] Air, Water DC=0.157 

HC=2.03 S-ON UG  up to 0.1 kLa  kLa proportional to εG 
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Table 9 (Cont’d) 

Reference Gas-Liquid-Solid System Reactor 
Geometry [m] Sparger 

Operating 
Conditions 
(UG [m/s]; 
UL [m/s]; 
P [bar]; T 

[K]) 

Parameter 
Measured 

kL/a/kLa/εG/d
B 

Correlation Remarks 

Kawasaki et 
al.[225] Air, Water DC=0.15  

HC=2 PfP UG up to 0.05 kLa  Number of tubes increases 
kLa 

Reilly et al.[131] Air, N2, He, Ar, CO2, Isopar-G, 
Isopar-M, TCE, Varsol, H2O 

DC=0.15  
HC=2.7 M-ON P up to 11 bar 

UG: 0.006-0.23 εG εG 
Effect of MG on εG under 
bubbly and churn-turbulent 
flow regimes 

Sotelo et al.[226] Air, CO2, H2O, C2H5OH, 
Saccharose, Glycerin 

DC=0.08, 0.04 
HC=2.00, 1.50 PG Patm 

UG: 0-0.2 εG εG  

Wilkinson et 
al.[165] Air, Water, Hydrocarbons DC=0.158, 0.25 PfP UG up to 0.2 kLa, dB  Effect of pressure 

Zhao et al.[227] CO2, Water, Hydrocarbons DC=0.14, 0.09  
HC=2.5 PfP UG up to 0.06 kLa  Internals increases kLa 

Eickenbusch et 
al.[180] 

O2, Xanthan, Hydroxypropyl guar 
Solution 

DC=0.19, 0.29, 0.60  
HC=2.8, 4.5, 5.75 PfP, R UG up to 0.10 kLa  Effect of pseudoplastic 

liquid on kLa 

Salvacion et 
al.[176] 

Air, N2, H2O, Alcohol Solutions, 
Calcium Alginate Gel, Polystyrene DC=0.14, 0.218, 0.30 PfP 

Patm 
UG up to 0.15 
CS: 20 vol.% 

kLa kLa  

DeSwart [228] Air, Oil, H2O, Alcohol 
DC=0.05, 0.174, 
0.19, 0.38  
HC=4 

SP UG up to 0.55 εG, dB   

Krishna and 
Ellenberger [229] 

Air, H2O, H2O, Separan, Paraffin 
Oil, Tetradecane 

DC =0.1, 0.174, 0.19, 
0.38, 0.63 
HC=4 

SP Patm 
UG: 0.001-0.866 εG εG  

Stegeman et 
al.[164] CO2, N2, H2O, DEA, ETG DC=0.156 PfP UG up to 0.06 εG, a  Effect of P, UG, µL on εG and 

a 

Kojima et al.[158] N2, O2, H2O, Enzyme Solutions DC=0.045  
HC=0.9-1.2 S-ON P: 1-11 

UG: 0.005-0.15 εG, kLa εG, kLa  

Laari et al.[230] Air, Water, Phenol DC=0.19, 0.97 
HC=0.67-4.64 M-ON UG up to 0.03 εG, dB, kLa  

Effect of DC, UG, additives 
on εG, dB; Effect of H, UG, C 
on kLa 

Letzel et al.[161] Air, Water, Salt DC=0.10, 0.19  
HC=4.0 PoP UG up to 0.30 εG  

Transition from 
homogeneous to 
heterogeneous flow regime 

Letzel et al.[159] N2, Water DC=0.15  
HC=1.2 PfP UG up to 0.30 εG  Effect of P on flow regimes 

and Utrans 
Miyahara et 
al.[231] 

Air, H2O, Glycerol, Ethanol 
Solutions, CMC, Polystyrene. 

DC=0.10  
HC=0.80 PfP, S-ON UG up to 0.01 dB dB  

Soong et al.[232] N2, Drakeol-10 Oil DC=0.1  
HC=2.44 PfP 

P: 1, 13.6 
UG up to 0.09 
T: 293, 538 

dB,  dB decreased with T 
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Table 9 (Cont’d) 

Reference Gas-Liquid-Solid System Reactor 
Geometry [m] Sparger 

Operating 
Conditions 
(UG [m/s]; 
UL [m/s]; 
P [bar]; T 

[K]) 

Parameter 
Measured 

kL/a/kLa/εG/d
B 

Correlation Remarks 

Letzel et al.[134] N2, Water DC=0.15  
HC=1.2 PfP UG up to 0.30 εG  Effect of ρG on εG of large 

bubble 
Terasaka et 
al.[233] Air, Water, Xanthan, Gellan DC=0.06 

HC=0.114 PfP UG up to 0.15 kLa  Effect of UG on kLa 

Kang et al.[156] Air, CMC DC=0.152  
HC=2.0 PfP P: 1-6 

UG: 0.02-0.2 εG,  kLa kLa Effect of pressure on εG 

Lin et al.[234] N2, Paratherm NF DC=0.0508, 0.1016  
HC=0.8, 1.58 M-ON, R 

P up to 152 
UG: 0.02-0.08 
T up to 351 

εG  

Regime transition delayed 
with P and T; Maximum 
stable bubble size decreased 
with P and T 

Pohorecki et 
al.[148] N2, H2O DC=0.304 

HC=3.99 M-ON 
P: 1-11 
UG up to 0.02 
T: 303-433 

εG,  dB  

εG and dB are independent of 
P and T; No effect of P, T, z 
and sparger on d32, εG only 
dependent on UG 

Sarrafi et al.[113] Air, Water DC=0.08, 0.155 PfP Patm 
UG: 0-0.08 εG εG 

Effect of column geometry, 
sparger on transition 
velocity and εG 

Álvarez et al.[235] CO2, Aqueous Solution of Sucrose 
and Surfactants DC =0.113 PfP Patm 

UG up to 0.0016 kLa kLa  

Krishna et al.[122] Air, Water, Alcohol DC=0.15  
HC=4 SP UG up to 0.5 εG,  dB  Effect of P on the flow 

regime, εG, dB. 
Vázquez et al.[236, 

237] 
CO2, O2, (Na) or (K) Carbonate, 
Bicarbonate, (Na) or (K) Arsenite 

DC=0.113 
HC=1.086 PG UG up to 0.002 a, kLa kLa kL,a decrease with addition 

of surfactant 

Bouaifi et al.[238] Air, Water DC=0.15, 0.20  
HC=2 PfP, SP UG up to 0.04 εG,  dB dB Effect of power input on εG 

Ishibashi et 
al.[239] H2, Oil DC=1  

HC=11 N/A 
P: 168-187 
UG: 0.07-0.08 
T: 322-731 

εG  Coal properties had little 
effect on εG 

Jordan et al.[129, 

130, 240] 
He, N2, Air, C2H5OH,C4H9OH, 
Decalin, C7H8 

DC=0.1, 0.115 
HC=1.3, 1.0 PfP UG up to 0.21 εG,  kLa  

Effect of DAB, distributors, 
UG, ρG and T on kLa; Effect 
of DC, distributors, gas 
velocity, ρG and T on εG 

Jordan and 
Schumpe [129] 

N2, He, Ethanol, 1-butaol, Toluene, 
Decalin 

DC=0.1  
HC=2.4 PfP P: 1-40 

UG: 0.01-0.21 εG,  kLa εG, kLa  

Kemoun et al.[157] Air, Water DC=0.162  
HC=2.5 PfP UG up to 0.18 εG  P delayed the churn–

turbulent regime 

Magaud et al.[112] Air, Water, Polarograhic Solution 0.1x0.3x4 PfP UG up to 0.07 
UL up to 0.125 dB  

Study of the wall and core 
region in the homogeneous 
regime 
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Table 9 (Cont’d) 

Reference Gas-Liquid-Solid System Reactor 
Geometry [m] Sparger 

Operating 
Conditions 
(UG [m/s]; 
UL [m/s]; 
P [bar]; T 

[K]) 

Parameter 
Measured 

kL/a/kLa/εG/d
B 

Correlation Remarks 

Moustiri et al.[181] Air, Water DC=0.15, 0.20 
HC=4.25, 4.5 PfP UG up to 0.055 

UL up to 0.022 εG  Effects of DC on εG and 
liquid mixing 

Pohorecki et 
al.[155] N2, Cyclohexane DC=0.3 

HC=4 M-ON 
P: 2-11 
UG up to 0.06 
T: 303-433 

dB,  εG  
Effects of P and T on d32 
and εG;  εG increased with 
temperature. 

Pohorecki et 
al.[241] 

Air, C6H12, C7H8, CH3OH, n-C7H16, 
CH3COH, CH2O, iso-C3H7OH 

DC=0.09, 0.3 
HC=2, 4 S-ON UG up to 0.027 dB  Effects of UG on d32 

Yang et al.[242] H2, CO, Paraffin Oil, Silica Gel DC=0.37 
HC=0.480 N/A UG up to 0.025 a kL  

Urseanu et al.[243] N2, Tellus Oil, Glucose Solutions DC=0.15, 0.23  
HC=1.22 PfP, R P: 1-10 

UG up to 0.3 εG εG  

Lau et al.[244] N2, Air, Paratherm NF DC=0.0508, 0.1016 PfP 

P up to 42.4 
UG up to 0.4 
UL: 0.0008-
0.0089 
T up to 365 

εG  

εG increased with P and T; 
Influence of column 
diameter. Influence of UG 
and UL on εG. Mass transfer 
was not measured at high T. 
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Table 10: Literature Experimental Hydrodynamics and Mass Transfer Studies in SBCRs 

Reference Gas-Liquid-Solid System Reactor 
Geometry [m] Sparger 

Operating 
Conditions 
(UG [m/s]; 
UL [m/s]; 
P [bar]; T 

[K]) 

Parameter 
Measured 

kL/a/kLa/εG/
dB 

Correlation Remarks 

Deckwer et 
al.[108] N2, Paraffin Wax, Al2O3 DC=0.04, 0.1 SP 

P up to 11 
UG up to 0.04  
T: 416 & 543  
CS up to 16 wt.% 

εG, kLa  

εG decreased with T in small 
column, but independent in 
large column. No effect of P 
on εG 

Kara et al.[152] Air, H2O, Coal, Dried Mineral Ash N/A PfP 

Patm 
UG: 0.03-0.3 
UL: 0-0.1 
CS: 0-40wt.% 

εG εG  

Koide et al.[143] 
N2, H2O, Glycerol, Glycol, Barium 
Chloride, Sodium Sulphate, Glass, 
Bronze 

DC=0.100, 0.140, 
0.218, 0.300 
HC=2.0 

S-ON, PfP, 
PG 

Patm 
UG: 0.03-0.15 
CS: 0-200 kg/m3 

εG, kLa εG, kLa  

Reilly et al.[245] Air, H2O, Solvent, TCE, Glass 
Beads 

DC=0.30  
HC=0.50 

PfP, S-ON, 
M-ON 

Patm 
UG: 0.02-0.2 
CS up to 10 
vol.% 

εG εG  

Fukuma et al.[246] Air, H2O, Glycerol, Glass Beads DC=0.15  
HC=1.2, 1.7, 3.2 M-ON UG up to 0.10 dB dB  

Sauer and 
Hempel [137] Air, H2O, Various Plastics, Sand DC=0.14  

HC=2.6 PfP, SP 
Patm 
UG: 0.01-0.08 
CS: 0-20 vol.% 

εG εG, kLa  

Schumpe et 
al.[178] 

N2, O2, H2O, 0.8M Na2SO4, Carbon, 
Kiselguhr, Aluminum Oxide DC=0.095 HC=0.85 S-ON 

Patm 
UG: up to 0.07 
CS: up to 300 
kg/m3 

εG, kLa, a εG, kLa  

Bukur et al.[169] N2, FT-300 Paraffin Wax, Iron 
Oxide, Silica 

DC=0.05  
HC=3 S-ON 

Patm  
UG: 0.02-0.12 
CS: 10-30 wt.% 
T: 538 

εG  Effect of slurry circulation 
and solid concentrations. 

Clark [136] N2, H2, H2O, CH3OH, Coal Oil, 
Glass 

DC=0.075  
HC=3 SP 

P: Patm-100 
UG up to 0.06 
T: 293-453 

εG  Liquid vapor at high T 
increased εG. εG(H2)>εG(N2) 

Saxena et al.[185] Air, H2O, Glass DC=0.305 HC=3.25 BC 

Patm 
UG up to 0.3 
CS: 0-30 wt.% 
T: 298-363 

εG  Effect of internal tubes on 
the gas holdup. 

Dewes and 
Schumpe [168] 

He, N2, Air, Sulfur Hexafluoride 
(0.8 M) Sodium Sulfate, Xantham 
Gum, Kieselghur, Alumina 

DC=0.115 HC=1.37 PfP 

P: 1-10 
UG: 0.01-0.08 
CS up to 18 
vol.% 

kLa kLa  
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Table 10 (Cont’d) 

Reference Gas-Liquid-Solid System Reactor 
Geometry [m] Sparger 

Operating 
Conditions 
(UG [m/s]; 
UL [m/s]; 
P [bar]; T 

[K]) 

Parameter 
Measured 

kL/a/kLa/εG/
dB 

Correlation Remarks 

Neme et al.[145] 

N2, Fe(CN), NaOH, CMC, 
HNaCO3, Na2CO3, Glass, 
Diatomite, Silicon Carbide, 
Alumina 

DC=0.05 HC=0.750 S-ON UG: 0.007-0.09 kL kL  

Luo et al.[162] N2, Paratherm NF, Alumina DC=0.102 HC=1.37 PfP 

P: 1-56.2 
UG up to 0.4 
T: 301, 351 
CS: 8.1, 19.1 
vol.% 

εG,  dB εG 

Maximum stable bubble 
size is independent of slurry 
concentration at high 
pressure 

Krishna and Sie 
[247] Air, Paraffin Oil, Tellus Oil, Silica DC=0.1, 0.19, 0.38, 

0.63 N/A 
Patm 
UG up to 0.5 
CS: 0-36 vol.% 

εG εG  

Yang et al.[248] N2, Paratherm NF, Glass Beads DC=0.1016 HC=1.37 PfP 

P up to 42 
UG up to 0.2 
CS up to 35 
vol.% 
T up to 354 

kLa, εG  Heat transfer coefficient 
decreases with pressure. 

Chen and Leu 
[249] Air, H2O, Nickel  DC=0.05  

HC=0.5 PfP Patm 
UG up to 0.04 εG, kLa εG, kLa  

Behkish et al.[166] H2, CO, N2, CH4, Isopar-M, 
Hexanes, Glass Beads, Iron Oxide 

DC=0.316  
HC=2.8 S 

P: 1.7-7.9 
UG: 0.05-0.25 
CS: 0-36 vol.% 

kLa kLa  
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3.0  OBJECTIVES 

The overall goal of this research is to investigate the hydrodynamics and mass transfer 

parameters in a pilot-scale SBCR operating under typical F-T industrial conditions and develop a 

mathematical model based on the experimental results to simulate the Fischer-Tropsch synthesis 

in an SBCR in order to optimize and scaleup these reactors. In order to achieve this goal, the 

main objectives of this research are as follows: 

- Obtain the volumetric mass transfer coefficients (kLa), gas holdup (εG), Sauter mean 

bubble diameter (d32), bubble size distribution, and axial catalyst distributions for 

surrogate components (N2 and He) of syngas H2 and CO in three F-T liquids: a Sasol 

molten wax, a reactor wax and a liquid mixture of linear paraffins, in the presence and 

absence of different solid particles (deactivated FeOx catalyst, alumina powder, and 

Puralox alumina). The data will be determined under high pressures and temperatures as 

well as different superficial gas, and catalyst concentrations typical to those used in F-T 

synthesis. The experiments will be performed in a large-scale SBCR of 0.3-m diameter 

and 3-m height; 

- Correlate the experimental data along with those available in the literature for F-T 

synthesis; 

- Build a comprehensive mathematical model and a user-friendly simulator for the SBCR 

operating in the churn-turbulent flow regime; 

- Use the simulator to design, scaleup and optimize the performance of a conceptual 

commercial-scale F-T SBCR. 
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4.0  EXPERIMENTAL 

4.1 EXPERIMENTAL SETUP 

The characteristics of the pilot-scale SBCR used in this study are given in Table 11, the 

mechanical specifications are given in Figure 10 and Figure 11. A schematic diagram and 

photographs of the experimental setup are shown in Figures 17 and 18, respectively. The SBCR 

setup consists mainly of: a reactor (tubular column), a gas sparger, a damper, a filter, a demister, 

a gas compressor, a liquid pump, a vacuum pump, a Coriolis mass flow-meter, a turbine flow-

meter, a gas supply vessel, and various gas cylinders. The reactor is provided with two Jerguson 

sight-windows in order to observe and record the gas bubbles size/behavior. 

 
Table 11: Characteristics of the SBCR 

Nominal Diameter 12 in 
Schedule 80 
Material Stainless Steel 
Outside diameter, m 0.324 
Inside diameter, m 0.289 
Wall thickness, m 0.017 
Inside C.S. area, m2 0.066 
Outside surface area, m2/m 1.017 
Inside surface area, m2/m 0.908 
Weight, kg/m 131.895 
Height, m 3.00 
Height/Diameter ratio 10.38 
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Figure 10: Mechanical Specifications of the SBCR part a 
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Figure 11: Mechanical Specifications of the SBCR part b 
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The reactor hydro-pressure is 85.5 bar at 295 K and its maximum allowable working pressure is 

57 bar at a maximum temperature of 590 K. The reactor is equipped with 8 outside heating 

elements and an internal cooling coil of 0.306 m2 total contact area. The heating elements, 

covered with a heavy-duty insulation jacket, operate with 460 V and are controlled by two Solid 

State Contactors rated up to 50 A. 

The gas is introduced through the bottom of the column using a six-arm spider-type gas 

distributor. The gas sparger is designed so that the reactor could operate in the fully developed 

hydrodynamic regime. This condition is attained if Weber number in Equation (4-1) is 

maintained at a value ≥ 2 within the range of sparger geometry in combinations with the 

operating conditions [127]. 

We =
ρGUG,o

2 do
σ

=
ρGUG

2dR4

No
2do3σ

> 2 (4-1) 

The gas sparger has six identical arms. Each arm has 6 orifices of 0.005 m inside diameter (ID) 

on each side and on the bottom, totaling 18 holes in each arm and a total of 108 on the sparger. 

There are no orifices oriented towards the top of the arms so that solid particles could not block 

the orifices and the gas should be able to lift any solid particles which might settle at the bottom 

flange. The gas sparger is screwed to a 0.0254 m ID pipe and its height from the bottom of the 

column is about 0.152 m (6 in).  

 

 
Figure 12: Photographs of the Gas Sparger 

 

The gas is recycled through the reactor using a single-stage compressor built by Fluitron Inc., Ivy 

land, USA. The compressor has a nominal displacement of 4.8x10-3 m3/rev. using 30 

Horsepower, 1160 RPM electric motor. The gas flow rate is measured using a Coriolis mass and 
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density meter model CMF100M330NU that gives a current output signal through a transmitter 

model RFT9739E4SUJ, manufactured by MicroMotion, USA. The gas velocity can be adjusted 

with a needle valve through a bypass line around the compressor inlet and outlet. The damper 

vessel is placed at the compressor’s outlet and prior to the flow-meter in order to dampen the 

vibrations and fluctuations created by the movements of the piston. 

The demister is placed at the outlet of the column in order to prevent the liquid and solid 

particles from entering the compressor. In addition, a filter manufactured by Parker Hannifin 

Corp., USA is inserted between the demister and the compressor as a second stage device to 

prevent any solid particles or liquid mist from entering the compressor. 

The SBCR is also equipped with a liquid recirculation loop in order to allow the reactor 

to operate as an EBR and recycle liquid from the inside of the reactor through the bottom of the 

reactor. The loop consists of a filtration device, a liquid pump, a flow-meter, a bypass line, a gas 

trap and four Jerguson windows. In order to remove the catalyst particles from the liquid phase 

being recirculated by the pump, 2 different filtration systems, namely hydrocyclone and 

membrane filter were considered. The steps as well as the equations needed to design a 

hydrocyclone to remove the solid particles from the recirculating liquid are described in 

Appendix B. A Stainless steel membrane filter of 50 cm in length and 1” in diameter 

manufactured by GKN Sinter Metals (Addison, IL) was instead selected to remove the particles 

from the liquid phase. In order to avoid the formation of a cake on the surface of the filter, 

pressurized gas such as nitrogen can be flown through the filter between each experiment. This 

filter has a retention capacity of 98% for 35 µm dust particles in water. Table 12 lists the filter 

properties and a schematic of the filter can be seen in Figure 13.  

 
Table 12: Filter Properties 

Filter grade SIKA-R 30 IS 
Inside diameter (mm) 22.1 
Filter thickness (mm) 1.65 
Filter length (mm) 500 
Filter surface (cm2) 347.1 
Permeability coefficient (m2) 17x 10-12 
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Figure 13: Schematic of the Filter Element [250] 

 

A triple-screw pump with magnetic coupling model CGZF 85.48W90 from KRAL AG (Austria) 

is used to recirculate the liquid. This type of pump is typically used for oils and other self-

lubricating liquid. The pump is equipped with a motor/pump coupling housing and a flexible 

magnetic coupling to eliminate any mechanical shaft seal that could leak. A schematic of the 

operating principle of the pump taken from KRAL website [251] is shown in Figure 14. The pump 

is able to operate at temperatures ranging from -10oC to 260oC, with a maximum working 

pressure of 64 bar and a pressure drop between the suction and discharge sections of 5 bar. It is 

driven by an electrical motor of 3.6 kW and 1420 rpm and can deliver a maximum flow rate of 

78 L/min. A photograph of the pump is shown in Figure 15. 

 

 
Figure 14: Schematic of a Triple Screw Pump [251] 
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Figure 15: Triple-screw Pump 

 

A high-temperature (up to 426 oC) Stainless Steel precision turbine-meter with remote display 

from LH Boleky Co. (Coraopolis, PA) is used to measure the flow rate of liquid in the 

recirculation loop. This flow-meter is a cost-effective alternative to Coriolis and vortex flow-

meters and is capable of measuring flow-rate up to 23 gpm with an accuracy and repeatability of 

0.5 % and 0.1 %, respectively. It consists in 3 main units: a turbine, a high-temperature magnetic 

pickup coil with its enclosure and a remote display with 4-20 mA output, which is connected to 

the data acquisition system. The characteristics of the pre-calibrated ¾” stainless steel turbine 

meter are listed in Table 13. 

 
Table 13: Characteristics of the Turbine Flowmeter 

Model GNT-075EHT 
Design Turbine 
Housing  Stainless Steel 
Fitting Size 3/4 inch 
Fitting Type MNPT 
Flow Range 2.3 - 23 GPM (8.7 - 87 LPM) 
Accuracy ± 0.5% of reading 
Repeatability ± 0.1% 
Operating Temperature Range -268 to 426 oC 
Typical K factor 2608 

Wetted Components 

Housing 316 SS 
Sleeve Bearings  Tungsten Carbide 
Shaft Tungsten Carbide 
Rotor CD4MCu 
Rotor Supports Tungsten Carbide 

Frequency Range 100 - 1000 Hz at 2.3 - 23 GPM 
Maximum Internal Fluid Pressure 5000 Psig 
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A gas trap consisting of 1 stainless steel cylinder of 0.146 m inside diameter and 0.902 m length 

is installed before the pump in the liquid recirculation loop in order to prevent gas bubbles from 

entering and damaging the pump by cavitation. Two Jerguson sight-windows are placed 

underneath in order to allow visual monitoring of the liquid level in the gas trap, as can be seen 

in the schematic shown in Figure 16. This setup allows gas bubbles as small as 0.7 mm to 

disengage from the liquid being recirculated. 

 

 
Figure 16: Schematic of the Gas Trap (dimensions are in mm) 

 

There are two differential pressure cells (dP), model IDP10-V20A11F manufactured by Foxboro, 

USA rated at 7.5 kPa connected at different positions on the reactor, which allow the 

measurement of the hydrostatic pressure head between any two levels in the reactor. The 

pressure and the temperature in the system are recorded with 7 pressure transducers 
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manufactured by Wika, Germany, including 2 pressure transmitters type S-10 equipped with a 

protective diaphragm seal, and 7 thermocouples type J manufactured by Omega Engineering 

Inc., USA. The design of the entire unit allows the gas to flow through or bypass the liquid using 

the two pneumatically actuated valves (AV-1 and AV-2); and permits up to 60% of the gas in the 

reactor to be sent back to the supply vessel and recycled later without venting to the gas exhaust. 

An online data acquisition from the thermocouples, pressure transducers, dP cells and the 

Coriolis mass flow meter is performed using the National Instrument FieldPoint modules FP-TC-

120 and FP-AI-110, which are connected to a serial bus module (FP-1000) with RS-232 interface 

to a host PC. The output signals from the host PC are received by the FieldPoint module FP-AO-

V10 for controlling the pneumatically activated valves and the heating elements of the reactor. 

The LabView software is used to monitor the entire process system and perform the appropriate 

programs for I/O applications. 

4.2 GAS-LIQUID-SOLID SYSTEM 

4.2.1 Gas-Phase 

The gases used in this study were Nitrogen and Helium (N2, He) as surrogates of Carbon 

Monoxide (CO) and Hydrogen (H2) respectively. It should be mentioned that CO and H2 could 

not be directly used in this study for safety purposes within the Swanson School of Engineering 

laboratory setting. All gases were purchased from Valley National Gases (USA). Some 

thermodynamic parameters [252] of these gases are given in Table 14. 

 
Table 14: Thermodynamic Properties of the Gases used 

Gas MW (kg/kmol) Tb (K) TC (K) PC (bar) VC (m
3/kmol) ZC ω 

N2 28.013 77.35 126.10 33.94 0.0901 0.292 0.040 
He 4.003 4.22 5.20 2.28 0.0573 0.302 -0.390 
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Figure 17: Schematic of the Experimental Setup 



 

 

70 

 

 

 

 
Figure 18: Photographs of the Experimental Setup With and Without Insulation at Different Angles 
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4.2.2 Liquid-Phase 

The first liquid used in the experiments is a molten Sasol wax (C80), manufactured by Moore & 

Munger, Inc. (The name of this company was changed to Sasol Wax Americas, Inc., effective 

July 1st, 2006). Sasol wax (Paraflint™) is produced by Sasol, South Africa using Fischer Tropsch 

process. This wax consists in saturated and straight chains hydrocarbons with almost no 

branches. Sasol wax is solid at room temperature with a melting point around 83ºC. The molar 

composition of the Sasol wax is given in Figure 19; and as can be seen the carbon number (CN) 

is ranging from C17 up to C79 with a CN between C29 and C53 accounting for almost 93 mol% of 

the total molar composition. 

 

 
Figure 19: Molar Composition of Sasol Wax 

 

The other liquids used are a C12-C13 liquid paraffins mixture and a molten reactor wax produced 

by Sasol, South Africa using the low temperature F-T process. The paraffins mixture 

composition, shown in Table 15, was provided by Sasol. 
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Table 15: Paraffins Mixture Composition 

C11 and lighter ~ 3 wt.% 
C12 50 wt.% 
C13 47 wt.% 
C14+ < 1 wt.% 

 

The reactor wax is solid at room temperature with a melting point around 70ºC (343 K). The 

actual molar composition of the reactor wax was not provided. It was therefore estimated 

assuming the F-T product composition follows the superposition of 2 Anderson-Schulz-Flory 

(ASF) distribution [36]. The values for the different parameters were taken from Donnelly et al. 
[52] and the resulting composition is shown in Figure 6. Since the volatile components with low 

carbon number do not remain in the final reactor wax, only products with carbon number above 

20 were considered for the estimation of the physical properties of the reactor wax. 

4.2.2.1 Molecular Weight and Critical Properties 

The molecular weight of the Sasol wax, reactor wax and the paraffins mixture are 568 kg/kmol, 

408.08 kg/kmol and 176.36 kg/kmol, respectively, as calculated from their compositions 

according to the following equation: 

𝑀𝑤𝑤𝑎𝑥 = �𝑥𝑖

𝑛

𝑖=1

𝑀𝑤𝑖 (4-2) 

xi represents the mole fraction of species i. Other important thermodynamic properties of the 

liquids, given in Table 16, were also estimated [253] from the composition or taken from the work 

of Soriano [254]. 

 
Table 16: Thermodynamic Properties of Sasol Wax [254] 

Liquid MW (kg/kmol) TC (K) PC (bar) ZC ω 
Sasol Wax 568.4 883.23 4.223 0.2165 1.5384 

Reactor Wax 408.1 823.74 7.455 0.2266 1.1785 
Paraffins Mixture 176.4 666.13 17.764 0.2485 0.5876 

 

4.2.2.2 Liquid Densities 

The densities of the molten Sasol wax, the molten reactor wax and the liquid paraffins mixture 

were measured in our laboratory over a wide range of temperatures (290 to 500 K). They were 
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also predicted using the Asymptotic Behavior Correlations (ABC) developed by Marano and 

Holder [255, 256]. From the resulting data, the densities of the 3 liquids were correlated as a 

function of temperature by the expressions shown in Table 17. 

 
Table 17: Liquid Densities Correlations 

Liquid Correlation Equation # 
Sasol Wax 𝜌𝐿 = 959.08 − 0.513 𝑇 (4-3) 

Reactor Wax 𝜌𝐿 = 937.86 − 0.511 𝑇 (4-4) 

Paraffins Mixture 𝜌𝐿 = 958.79 − 0.712 𝑇 (4-5) 
 

The measured densities of the 3 liquids are shown as functions of temperature in Figure 20 along 

with the predicted values using Marano and Holder [255, 256] correlations when considering only 

an average carbon number of 28 (for the reactor wax) as well as when considering the 

composition (for both reactor wax and paraffins mixture). 

4.2.2.3 Liquid Viscosity 

The viscosities of the molten Sasol wax, the molten reactor wax and the paraffins mixture were 

measured in our laboratory over a wide range of temperature (290 to 500 K) using the Cannon-

Fenske routine viscometers. They were also predicted according to the ABC developed by 

Marano and Holder [255, 256]. From the resulting experimental data, the viscosities of the 3 liquids 

were correlated as functions of temperature (see Table 18). 

 
Table 18: Liquid Viscosities Correlations 

Liquid Correlation Equation # 

Sasol Wax 𝑙𝑛(𝜇𝐿) = −4.3284 +
2319.4
𝑇

 (4-6) 

Reactor Wax 𝑙𝑛(𝜇𝐿) = −3.5733 +
1302.7
𝑇

+
1.875 × 105

𝑇2
 (4-7) 

Paraffins Mixture 𝑙𝑛(𝜇𝐿) = −3.9708 +
1043.0
𝑇

+
8.321 × 104

𝑇2
 (4-8) 
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Figure 20: Effect of Temperature on the Densities of the Molten Sasol Wax (a), the Molten Reactor Wax (b) and the Paraffins Mixture (c) 

(a) (b) 

(c) 
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Figure 21: Effect of Temperature on the Viscosities of the Molten Sasol Wax (a), the Molten Reactor Wax (b) and the Paraffins Mixture (c) 

(a) (b) 

(c) 
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The measured viscosities of the 3 liquids are shown as functions of temperature in Figure 21 

along with the predicted values using the correlations by Marano and Holder [255, 256] when 

considering only an average carbon number of 28 (for the reactor wax) as well as when 

considering the composition (for both reactor wax and paraffins mixture). 

4.2.2.4 Liquid Surface Tension 

The surface tensions of the three liquids were predicted using the ABC developed by Marano 

and Holder [255, 256] when considering only an average carbon number of 28 (for the reactor wax) 

as well as when considering the composition (for all liquids). The surface tensions of the 3 

liquids are shown as functions of temperature in Figure 22. The estimated values were used to 

develop correlations for the surface tension of the 3 liquids as simple function of temperature and 

are listed in Table 19. 

 
Table 19: Liquid Surface Tension Correlations 

Liquid Correlation Equation # 

Sasol Wax 𝜎 = 0.001 × (70.57 − 0.1725 𝑇 + 1.404 × 10−4 𝑇2) (4-9) 

Reactor Wax 𝜎 = 0.001 × (69.03 − 0.1703 𝑇 + 1.338 × 10−4 𝑇2) (4-10) 

Paraffins Mixture 𝜎 = 0.001 × (64.05 − 0.1633 𝑇 + 1.123 × 10−4 𝑇2) (4-11) 

 

4.2.2.5 Vapor Pressure 

The vapor pressures of the three liquids were estimated assuming they follow Raoult’s law from 

their molar composition and the vapor pressure data for each hydrocarbons component taken 

from Kudchadker et al.[257] and Yaws [252]. The vapor pressure of the molten reactor wax was 

predicted when considering only an average carbon number of 28 as well as when considering 

the composition. For practical purposes, the vapor pressures of the 3 liquids were correlated as a 

function of temperature as shown in Table 20 and Figure 23. 
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Figure 22: Effect of Temperature on the Surface Tension of Molten Sasol Wax, Molten Reactor Wax and 

Paraffins Mixture 

 

 
Figure 23: Effect of Temperature on the Vapor Pressure of Molten Sasol Wax, Molten Reactor Wax and 

Paraffins Mixture 
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Table 20: Liquid Saturated Vapor Pressure Correlations 

Liquid Correlation Equation # 

Sasol Wax 𝑙𝑜𝑔10(𝑃𝑉) = 6.39159 −
5165.43

𝑇
+

164347.29
𝑇2

 (4-12) 

Reactor Wax 𝑙𝑜𝑔10(𝑃𝑉) = −
9.0041 × 105

𝑇2
−

583.04
𝑇

+ 2.7911 (4-13) 

Paraffins Mixture 𝑙𝑜𝑔10(𝑃𝑉) = −
2.6755 × 105

𝑇2
−

1439.5
𝑇

+ 3.9819 (4-14) 

 

4.2.3 Gas-Liquid Diffusivities 

The diffusivities of H2 and CO and their surrogates He and N2 in the paraffins liquid mixture and 

molten reactor wax were calculated using the widely used Wilke and Chang [258] equation as well 

as a correlation specifically developed for hydrocarbons by Erkey et al. [259] who measured the 

diffusion coefficients of H2, CO, CO2 and several n-alkanes up to C16 into n-alkanes ranging 

from C7 to C28 using the Taylor dispersion technique. The two correlations are given by 

Equations (4-15) and (4-16), respectively. 

𝐷𝑖𝑗 = 1.1728 10−16
𝑇�𝑀𝑗
𝜇𝑗𝜐𝑖0.6 (4-15) 

𝐷𝑖𝑗 =
94.5.10−9√𝑇

𝑀𝑖
0.239𝑀𝑗0.781�𝜎𝑖𝜎𝑗�

1.134 �𝑉𝑗 − �1.206 + 0.0632
𝜎𝑖
𝜎𝑗
�
𝑁𝐴𝜎𝑗3

√2
� (4-16) 

In the above correlations, the subscript i represents the solute and j stands for the solvent; Vj is 

the molar volume of the solvent and υi is the solute molar volume at its boiling point. The 

molecular weight (Mj) and effective hard sphere diameter (σj) of the different liquids, consisting 

mainly of n-alkanes, were estimated from their mole fractions as: 

It should be noted that Equation (4-16) was developed within a temperature range of 298 to 570 

K, which is similar to that covered in this present work. The estimated molecular weight (Mj) and 

diameter (σj) of the 3 liquids and the 4 gases are listed in Table 21. 

𝑀 = �𝑥𝑛𝑀𝑛
𝑛

 (4-17) 

𝜎 = �𝑥𝑛𝜎𝑛
𝑛

 (4-18) 
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Figure 24: Diffusivities of Gases in the Paraffins Liquid Mixture (a), Molten Reactor Wax (b) and Molten Sasol Wax (c) 

(Black curves using Erkey et al. [259] correlation; Red curves using Wilke and Chang [258] correlation) 

(a) (b) 

(c) 
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Table 21: Molecular Weights and Diameters of the Gases and Liquids Used [259-261] 

Liquid or Gas σ (Å) MW (kg/kmol) 
Paraffins Mixture 7.52 176.4 

Reactor Wax 9.78 408.1 
Sasol Wax 10.96 568.4 

H2 2.915 2.016 
CO 3.72 28.01 
N2 3.681 28.01 
He 2.551 4.00 

 

Figure 24 show the diffusivities of the four gases in the 3 liquids as a function of temperature. 

From this figure, the following observations can be made: (1) both correlations predict similar 

diffusivities for He and H2 and identical diffusivities for CO and N2 in each liquid, which 

emphasizes the argument that N2 and He could be used as surrogates for CO and H2, 

respectively; (2) in general, the correlation by Erkey et al. [259] predicts greater diffusivities for 

He and H2 in both liquids than those predicted with the correlation by Wilke and Chang [258]; 

however, both correlations predict similar diffusivities for N2 and CO only in the C12-C13 

paraffins mixture; and (3) the correlation by Erkey et al. [259] predicts H2 diffusivities identical to 

those of He whereas the correlation by Wilke and Chang [258] predicted diffusivities for He 

slightly greater than those of H2 at high temperature. 

4.2.4 Solid-Phase 

4.2.4.1 Alumina 

The first solid-phase used in this study is alumina powder particles (Al2O3) which are commonly 

used in the industry as support for F-T catalysts. Those particles were analyzed by Behkish [127] 

using Scanning Electron Microscopy (SEM) and the particle size distribution was obtained from 

the SEM images. The mean particle size and the Sauter-mean particle diameter were found to be 

32.33 and 42.37 µm, respectively. The density of the particles was measured using the 

displacement method with water and a graduated pycnometer and was found to be 3,218.3 

kg/m3. 
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4.2.4.2 Iron Oxide Catalyst 

The second solid-phase used in this study consisted of a mixture of Iron oxides (FeOx). SEM 

analysis of these particles was performed by Inga [133]. Those particles were found to exhibit a 

bimodal distribution with a “large particles” mode situated at 40 µm and a “small particles” 

mode corresponding to broken particles around 1.5 µm. The bulk and skeletal densities of the 

particles were 2,230 kg/m3 and 4,000 kg/m3 respectively, as reported by Inga [133]. 

4.2.4.3 Puralox Alumina 

The third solid-phase used is Puralox Alumina particles (provided by Sasol) that can be used as 

support for the F-T Co catalyst. The skeletal density of this material is about 3,900 kg/m3 with a 

porosity of 70%. The size distribution of these particles, listed in Table 22, was provided by 

Sasol. 

 
Table 22: Size Distribution of Puralox Alumina Solid Particles 

Diameter (µm) Volume % finer than 
22 1% 
44 10% 

150 65% 
250 98% 

 

4.3 OPERATING CONDITIONS 

The study of the mass transfer and hydrodynamic parameters for a multi-variable system requires 

a huge number of experiments. To avoid this, a statistically designed specific number of 

experiments were carried out using the Central Composite Statistical Design (CCSD) approach 

in order to minimize the number of experiments and obtain statistical correlations with high 

degree of confidence. 

In this study, the CCSD and analysis technique are similar to that employed previously 

by Behkish [127] and Lemoine [262]. This approach determines the effect of the four independents 

variables (k = 4): pressure (P), superficial gas velocity (UG), solid concentration (CS) and 
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temperature (T); at five levels on the hydrodynamics and mass transfer characteristics of the 

SBCR. The operating conditions used in the SBCR are given in Table 23. The numbers of 

replicates at the central point is given by the following equation: 

( ) 2kN2NγN F

2

Fcentral −−+=  
(4-19) 

Where NF is the number of factorial points, and γ is defined by the following equation: 

( )
( )2k4

714k9k3kγ
2

+
−+++

=
 

(4-20) 

The factorial and axial points are equidistant from the central point to offer rotatability properties 

of the design. In fact, this property becomes important in the examination of the response surface 

since the orientation of the design does not influence anymore the precision of estimated surfaces 
[263]. The response surface can be described by the following equation: 

4 k2α =  (4-21) 

The total number of test runs is: 

central
k N2k2n ++=  (4-22) 

For this study, the latter equation leads to a total number of experiments of 25 (four variables at 

five different levels). There are 8 central points (0, 0, 0, 0), 16 factorial points (±1, ±1, ±1, ±1) 

and 8 axial points (±2, 0, 0, 0), (0, ±2, 0,0), (0, 0, ±2, 0) and (0, 0, 0, ±2). Therefore a total of 32 

experiments should be carried out using each gas (N2 and He). However, more than 32 

experiments were performed in order to directly obtain and compare experimental profiles of the 

different hydrodynamic and mass transfer parameters measured over wide ranges of operating 

conditions. 

 
Table 23: Operating Conditions and Values of the Coded Variables for the CCSD with Sasol Wax 

Variable Coded 
variable 

Values of the coded variables 
-2 -1 0 1 2 

T, (K) X1 370 410 450 490 530 
P, (Psig) X2 100 175 250 325 400 

UG, (cm/s) X3 14 17 20 23 26 
CS, (vol.%) X4 0 5 10 15 20 
Gas Phase He; N2 

Liquid Phase Sasol wax 
Solid Phase Al2O3; FeOx 
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The approach described above was applied to the experiments performed with the Sasol wax. For 

the molten reactor wax and paraffins mixture experiments, the CCSD approach was not used as 

the effect of most of the operating conditions were already covered by the Sasol wax 

experiments. Instead the experiments with the 2 latter liquids were focused on the impact of gas 

nature and composition on the hydrodynamics and mass transfer parameters. The ranges of 

operating conditions used in the SBCR with the molten reactor wax and the paraffins mixture are 

shown in Table 24. 

 
Table 24: Operating Conditions for the Molten Reactor Wax and Paraffins Mixture Experiments 

Variable Values 
Pressure (bar) 4 - 31 

Temperature (K) 320 - 500 
Superficial Gas Velocity (m/s) 0.14 - 0.26 
Solid Concentration (vol.%) 0 - 7 

Gas Phase He/N2 Gas Mixture 
He/N2 Gas Mixture Composition (% He) 0 - 100 

Liquid-Phase Paraffins Mixture 
Molten Reactor Wax  

Solid-Phase Puralox 
 

4.4 EXPERIMENTAL PROCEDURE 

The experimental procedures to obtain the volumetric liquid-side mass transfer coefficients (kLa), 

gas holdup (εG), and the Sauter-mean bubble diameter (d32) are detailed in the following sections. 

4.4.1 Volumetric Liquid-Side Mass Transfer Coefficient 

The Transient Physical Gas Absorption (TPGA) technique was employed to obtain kLa for the 

gases into the liquid phase or slurry phase under the operating conditions used. The experimental 

procedure is similar to that used by Behkish et al. [166] and is described below: 

1. A predetermined amount of liquid or slurry is charged into the reactor (95 liters). 

2. Reactor content is heated to the desired temperature. 
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3. The vent valve at the top of the liquid recirculation line is opened fully to ensure that any 

liquid trapped above is allowed to drain. The valve is then shut. 

4. The entire system is vacuumed to remove any gases which might be dissolved in the 

liquid-phase. Once the pressure in the reactor reaches the vapor pressure of the liquid-

phase, the vacuum is stopped. 

5. A small amount of gas is charged to the reactor to ensure enough pressure (2 bar) to fill 

the liquid recirculation line with liquid. 

6. Any gas present in the recirculation line is vented by opening the valve at the top of the 

liquid recirculation line until liquid reaches the top. 

7. The gas is charged to the reactor to a high enough pressure (3 bar) in order to overcome 

the pressure drop in the liquid recirculation line and properly operate the pump. 

8. The pump is turned on and the flow rate is regulated by the bypass valve and the liquid 

inlet valve until the desired liquid flow rate is reached. 

9. The gas is then charged to the reactor from gas cylinder until the desired pressure for the 

experiment is reached. 

10. The cooling water and drain valves for the compressor are opened. 

11. Once the gas is charged, the compressor is turned on and the gas is initially recirculated 

only through the top of the reactor with valve AV-2 open and valve AV-1 closed. The gas 

velocity is adjusted to the desired flow rate, regulated by the gas bypass valve.  

12. The top valve AV-2 is closed while simultaneously opening the bottom gas valve AV-1 

allowing the gas to flow through the liquid or slurry. The reactor pressure is recorded as a 

function of time during the gas absorption in the liquid or slurry phase until 

thermodynamic equilibrium is reached. 

The volumetric mass transfer coefficient, kLa, is then calculated from the transient part of the 

pressure-time data. If performing the experiment without any liquid recirculation, steps 3, 5, 6, 7 

and 8 can be skipped. 
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4.4.2 Gas Holdup 

The manometric method was used to obtain the gas holdup. Once the system reaches 

thermodynamic equilibrium (i.e., steady state), the following procedure for obtaining the gas 

holdup is applied: 

1. The differential pressure (dP) cells legs are purged of liquid or slurry and pressurized 

with the gas being used. 

2. The hydrostatic pressure is measured at different positions along the height of the reactor 

by opening and closing the corresponding valves. 

3. The computer collects the dP cells readings and calculates the gas holdup at any given 

position along the reactor. 

4.4.3 Gas Bubbles Size Distribution and Sauter Mean Diameter 

The Dynamic Gas Disengagement (DGD) technique was employed to obtain the gas bubbles size 

distribution and the Sauter mean diameter. In this procedure, once kLa and εG measurements have 

been successfully completed at given temperature: 

1. The dP cell legs at given positions are opened. 

2. Using the pneumatically actuated valves, the inlet valve at the bottom of the reactor is 

closed while the valve at the top of the reactor is opened, directing the gas from the 

bottom to the top of the reactor, the compressor is turned off and as a result the gas 

retained in the liquid disengages. 

3. The dP cell readings are recorded until all the gas bubbles are completely disengaged and 

the pressure leveled off. 

4. The computer collects the dP cell readings and calculates the gas holdup.  

The bubble sizes are then calculated using the gas holdup versus time data. 



 

 86 

4.4.4 Solid Particles Distribution  

Slurry samples were withdrawn from the sampling ports located on the legs of the dP cells at 

different heights in the reactor in order to measure the mass fraction of solids in the reactor using 

the liquid paraffins mixture at different heights from 0.240 m to 1.309 m. Four sampling ports 

were used and a total of eight samples were withdrawn for each experiment. To collect solid 

particles at a given concentration, the same procedure described in section 4.4.2 to obtain the gas 

holdup was followed; however the dP cells legs were not pressurized in order to allow the slurry 

to flow from the reactor through the dP cell legs and the sampling ports. After flushing the 

sampling line, the slurry was collected from each sampling ports. The samples were placed into 

pre-weighed glass jars and sealed immediately. The solids were then separated from the liquid 

paraffins mixture using the following procedure: 

• The initial sample weight was recorded. 

• The samples were then gravity filtered. 

• After filtering, the filter paper containing the “wet” solid particles as well as the sample 

jars containing some remnants of solids and liquid were placed for 3 days into a furnace 

with the temperature set just above the boiling point of the paraffins mixture. 

Once the samples were dried, the final total weight including the dried glass jar and catalyst was 

recorded to determine the catalyst percentage by weight. 
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5.0  CALCULATIONS 

5.1 PENG-ROBINSON EQUATION OF STATE 

The Peng-Robinson Equation of State (PR-EOS) was used to calculate the number of moles of 

gas in the reactor before and after gas absorption. A general form of the PR-EOS can be written 

as: 

𝑃 =
𝑅𝑇
𝑣 − 𝑏

−
𝑎

𝑣(𝑣 + 𝑏) + 𝑏(𝑣 − 𝑏) (5-1) 

This equation can be expressed in terms of the compressibility factor, Z as:  

𝑍3 − (1 − 𝐵)𝑍3 + (𝐴 − 3𝐵2 − 2𝐵)𝑍 − (𝐴𝐵 − 𝐵2 − 𝐵3) = 0 (5-2) 

Where: 

𝐴 =
𝑎𝑃
𝑅2𝑇2

 (5-3) 

𝐵 =
𝑏𝑃
𝑅𝑇

 (5-4) 

𝑍 =
𝑃𝑣
𝑅𝑇

 (5-5) 

For a single-component, one-phase system, the solution of Equation (5-2) results in three real 

roots or one real and two imaginary roots. The real root is referred to a single gas phase. At the 

critical point:  

𝑎(𝑇𝐶) = 0.45724
𝑅2𝑇𝐶2

𝑃𝐶
 (5-6) 

At any temperature: 

𝑎(𝑇) = 𝑎(𝑇𝐶)𝛼(𝑇𝑅, 𝜔) (5-7) 

𝑏 = 0.07780
𝑅𝑇𝐶
𝑃𝐶

 (5-8) 

Where 
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√𝛼 = 1 + 𝜅�1 − �𝑇𝑅� (5-9) 

𝜅 = 0.37464 + 1.5422𝜔 − 0.26992𝜔2 (5-10) 

5.2 GAS HOLDUP 

The gas holdup was determined using the manometric method (also known as the hydrostatic 

head method) with the following assumptions: (1) the reactor is operating under steady-state 

condition; (2) the liquid or slurry and gas phases are well mixed in the volume between the 2 dP 

cell legs; and (3) the impact of the frictional effects on the pressure drop is negligible [264, 265]. 

The passage of gas bubbles throughout the slurry phase alters the pressure drop along the 

reactor which can be expressed by the following expression: 
𝑑𝑃
𝑑ℎ

= −𝜌𝐷𝑔 (5-11) 

Where ρD is the density of the dispersed phase containing gas, liquid and solid and can be 

derived as: 

𝜌𝐷 = 𝜀𝐺𝜌𝐺 + 𝜀𝐿𝜌𝐿 + 𝜀𝑆𝜌𝑆 (5-12) 

Introducing cV as the volumetric concentration of catalyst in the slurry phase, the equation above 

becomes: 

𝜌𝐷 = 𝜀𝐺𝜌𝐺 + (1 − 𝜀𝐺)[𝑐𝑉𝜌𝑆 + (1 − 𝑐𝑉)𝜌𝐿] (5-13) 

Replacing this expression of ρD in Equation (5-11), the latter can be integrated as follows: 

� 𝑑𝑃

𝑃𝑇

𝑃𝐵

= − � (𝜀𝐺𝜌𝐺 + (1 − 𝜀𝐺)[𝑐𝑉𝜌𝑆 + (1 − 𝑐𝑉)𝜌𝐿])𝑔𝑑ℎ

ℎ𝑇

ℎ𝐵

 (5-14) 

The lower and higher limits are defined by the position of the dP cell legs on the column. If 

assumption #2 is used, the gas holdup and the catalyst concentration can be considered constant 

between the two dP cell legs leading to: 

𝑃𝑇 − 𝑃𝐵 = −�𝜀𝐺𝜌𝐺 + (1 − 𝜀𝐺)[𝑐𝑉𝜌𝑆 + (1 − 𝑐𝑉)𝜌𝐿]�𝑔(𝐻𝑇 − 𝐻𝐵) (5-15) 

The pressure difference between the lower and the upper legs is directly measured by the dP cell 

and since the distance between the legs is known, the following expression for gas holdup can be 

written: 
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𝜀𝐺 =
𝑐𝑉𝜌𝑆 + (1 − 𝑐𝑉)𝜌𝐿

𝑐𝑉𝜌𝑆 + (1 − 𝑐𝑉)𝜌𝐿 − 𝜌𝐺
�1 −

Δ𝑃cell
(𝑐𝑉𝜌𝑆 + (1 − 𝑐𝑉)𝜌𝐿)𝑔Δ𝐻cell

� (5-16) 

5.3 GAS BUBBLES SIZE 

The DGD technique was used to obtain the gas bubbles size distribution and the Sauter mean 

diameter. The corresponding gas holdups of the small and large gas bubbles in the SBCR were 

calculated using the technique introduced by Inga and Morsi [266] and successfully used by 

Behkish et al. [120, 166] and Lemoine et al. [123]. This technique relies on the assumption that large 

gas bubbles have greater rise velocity and therefore disengage first, whereas small gas bubbles, 

retained within the slurry or entrained in the wakes created by the flow of the large gas bubbles, 

have smaller rise velocity and therefore they disengage in a later stage. 

The following assumptions were made in order to derive the equations needed for 

calculating the gas bubble sizes: (1) the rate of gas disengagement of each bubble is constant 

under given experimental conditions; (2) once the gas flow is stopped, there is no coalescence or 

breakup of gas bubbles, meaning that the bubbles sizes remain constant as they disengage; and 

(3) the liquid internal circulation does not affect the bubble rise velocity [267]. 

The assessment of the εG with time after the gas flow inside the SBCR has been stopped 

using Equation (5-16) can lead to the estimation of the rate of disengagement of each bubble 

size. An example of the behavior of εG with time is shown in Figure 25. From t = 0 to t1, the dP 

cell shows no decline in εG, however, no more gas is entering the bottom of the reactor. This 

means that the amount of gas that leaves the dP cell section (from LB to LT) is the same as the 

one which leaves the lower section (from L0 to LB). From t1 to t2, the large gas bubbles having a 

bubble rise velocity (Ub) ranging from LT/t1 to ∆Hcell/t2 = (LT-LB)/t2 disengage from the cell 

region and during this period, the small gas bubbles present in the lower section (L0 to LB) do not 

affect the dP cell reading. From t2 to t3, the small gas bubbles are disengaging from the cell 

region (LB to LT) and the dP cell reflects the small gas bubbles with Ub ranging from ∆Hcell/t2 to 

∆Hcell/t3. 

The volume of the gas bubbles that leaves the dP cell region (∆Hcell = LT-LB) can 

therefore be represented by the decrease of the total gas holdup as follows: 
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Δ𝜀G,i = �
𝑑𝜀G
𝑑𝑡

𝑡𝑖

𝑡𝑖−1

𝑑𝑡
 

(5-17) 

Consequently the total gas holdup is: 

𝜀G = �Δ𝜀G,i

n

i=1

 (5-18) 

The rise velocity of each size class of gas bubbles can then be calculated at any time t from: 

𝑈𝑏,𝑖 =
𝐿𝑇 −

𝐿𝐵
2

𝑡
 (5-19) 

This method is valid when dealing with gas-liquid system, however, the presence of solids 

should be accounted for, due to the settling velocity of the solid particles. In this study, the 

correlation proposed by Fukuma et al. [268], who used up to 50 vol.% glass beads, was used to 

calculate the gas bubble size db,i: 

db,i =
Ub,i
2

1.69g
 (5-20) 

The Sauter-mean bubble diameter was thus calculated using the following equation: 

d32 =
∑ nidb,i

3
i

∑ nidb,i
2

i
 (5-21) 

5.4 VOLUMETRIC LIQUID-SIDE MASS TRANSFER COEFFICIENT 

The volumetric mass transfer coefficient, kLa, was calculated using the Transient Physical Gas 

Absorption technique. During the absorption of the gas into the liquid, the decline of reactor 

pressure was recorded as a function of time until the equilibrium was reached. The rate of mass 

transfer of the solute gas into the liquid phase can be calculated using the two-film model: 

dnL
dt

= kLa(C∗ − CL)VL (5-22) 

This can be rewritten when the liquid is not recirculated as: 

dnL
dt

= kLa(n∗ − nL) (5-23) 

For experiments with liquid recirculation, Equation (5-23) becomes: 
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dnL
dt

= kLa(n∗ − nL) − F
nL
VL

 (5-24) 

In Equation (5-24), F is the flow rate of liquid being recirculated by the pump. Both equations 

are numerically solved using the parameter estimation module from Athena Visual Studio 

Software version 11.0 with FORTRAN compiler g95 until a kLa value which best fits the 

experimental data is obtained. 

5.5 SOLID PARTICLES DISTRIBUTION 

The “dispersion-sedimentation model” is widely employed to describe the behavior of the solid 

in slurry reactors. The solid concentration profile in a slurry bubble column is a result of 

buoyancy and gravitational forces as well as kinetic energy. Quantitative description of the axial 

solid distribution has been frequently expressed by this sedimentation-dispersion model. In this 

model, a steady state material balance for the solid phase over a differential element leads to the 

following differential equation [5]:  

Where Up is the particle settling velocity, DS is solid phase axial dispersion coefficient, and z is 

the height.  

The general solution of Equation (5-25) can be obtained as: 

When z approaches infinity, CS = 0 and we can therefore drop the term C1 and obtain: 

The experimental values of solid concentration obtained from the slurry samples can therefore be 

fitted with an exponential function from which the ratio (Up/DS) can then be estimated. 

 

𝐷𝑆
𝑑2𝐶𝑆
𝑑𝑧2

+ 𝑈𝑃
𝑑𝐶𝑆
𝑑𝑧

= 0 (5-25) 

𝐶𝑆 = 𝐶1 + 𝐶2𝑒𝑥𝑝 �
−𝑈𝑃𝑧
𝐷𝑆

� (5-26) 

𝐶𝑆 = 𝐶2𝑒𝑥𝑝 �
−𝑈𝑃𝑧
𝐷𝑆

� (5-27) 
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Figure 25: Dynamic Gas Disengagement in SBCR [166] 
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6.0  RESULTS AND DISCUSSION 

6.1 HYDRODYNAMIC AND MASS TRANSFER PARAMETERS IN THE PILOT 

SBCR UNDER F-T CONDITIONS 

In this section, the effects of pressure, temperature, gas and liquid velocities, gas nature and 

composition, solid concentration, liquid and solid phases natures on the hydrodynamics (εG and 

d32) and mass transfer (kLa) parameters for N2 and He as single components as well as for 

different mixtures of these two gases obtained in the 3 F-T liquids in the presence and absence of 

3 different solids using the pilot-scale SBCR are discussed. 

6.1.1 Effect of Pressure 

The effect of pressure on the gas holdup for He and N2 as well as their mixtures in the three 

liquids under the operating conditions studied showed that the gas holdup increases with the 

operating pressure as can be seen in Figures 29 (a), 26 and 27. This behavior is in agreement 

with the previous findings of numerous authors [120, 122, 123, 130, 131, 134, 155-165, 266, 269]. This is 

because the increase of operating pressure increases the gas density and consequently its 

momentum. High gas density is known to increase the gas holdup [124, 128-132]. High gas 

momentum was reported to lead to the creation of small and rigid gas bubbles by promoting the 

rate of gas bubbles break-up [120] resulting in high gas holdup values [120, 123, 166]. 

High gas densities are responsible for gas bubbles shrinkage leading to small rigid gas 

bubbles [120, 123, 132-135]. This behavior can be seen in Figures 29 (b), 28 and 31 where the Sauter 

mean bubble diameter generally decreases with increasing pressure under the different sets of 

operating conditions used. It can be noted that an opposite behavior was obtained for the system 

N2-molten reactor wax at 450 K where one set of the bubbles sizes appeared to slightly increase 
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with pressure. By inspecting the gas bubbles size distribution shown in Figure 32, one can note 

that increasing the pressure from 4 to 22 bar increases the population of the small gas bubbles 

with db < 1 mm and decreases the population of gas bubbles having db < 0.1 mm in diameter 

which are responsible for increasing the Sauter-mean bubble diameter as shown in Figure 29 (b). 

The addition of He or solid particles to the system decreased the Sauter mean bubble diameter 

with increasing pressure. Figure 33 illustrates that increasing pressure increases the population of 

gas bubbles with db < 1 mm in diameter and slightly decreases the population of the larger gas 

bubbles. 

 

 
Figure 26: Effect of Pressure and Temperature on εG for N2-Sasol wax 

 

Figures 29 (c), 34 and 35 show the effect of pressure on the volumetric liquid-side mass transfer 

coefficient (kLa) for both gases in the paraffins mixture as well as in the molten reactor wax and 

Sasol wax in the absence and presence of the solid particles under different operating conditions. 

As can be observed, the overall kLa values increase with increasing pressure, which is similar to 

the gas holdup behavior and in agreement with previous studies [121, 158, 166-168]. This behavior can 

be explained by the effect of pressure on the gas holdup and the gas bubbles Sauter mean 

diameter. As mentioned above the gas holdup appeared to increase with pressure, while the gas 
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bubbles size decreased and the combination of these two trends would increase the gas-liquid 

interfacial area, a, according to Equation (2-33). On the other hand, the effect of pressure on the 

mass transfer coefficient kL is less obvious as its value could increase or decrease [123]. In the 

present work, the decrease of the bubble size with pressure would indicate a decrease of kL since 

smaller bubbles are usually associated with low turbulences. The increase of kLa values with 

pressure observed in Figures 29 (c), 34 and 35, however, suggests that kLa in the SBCR 

operating in the churn-turbulent flow regime is controlled by the behavior of the gas-liquid 

interfacial area, a [123, 166, 266], not by kL. 

 

 
Figure 27: Effect of Pressure and Temperature on εG for He-Sasol wax 

 

6.1.2 Effect of Gas Density 

The effect of gas density on the hydrodynamics and mass transfer parameters is related to the 

effect of pressure and actually they are identical when the gas density is increased solely by 

increasing the system pressure. In this case, the same conclusions drawn for the effect of 

pressure on the kLa, εG and d32 given in the preceding section would be similar to that of the gas 
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density. However, when using the He/N2 gas mixture, the gas density can be varied by changing 

the composition of the gas-phase while maintaining a constant total pressure. The effect of such 

variation on the gas holdup is illustrated in Figure 30 (a) and as can be observed for both He/N2-

paraffins mixture and He/N2-reactor wax systems, increasing the gas density at constant pressure 

and temperature by changing the composition of the gas-phase leads to a systematic increase of 

the gas holdup. Figure 30 (a) also shows the increase of gas holdup with  increasing pressure for 

the systems N2-paraffins mixture as well as N2-Sasol wax and He-Sasol wax. Thus, increasing 

the gas density whether by increasing pressure or changing the gas composition is found to 

similarly increase the gas holdup. This increase of gas density leads to the shrinkage of the gas 

bubbles [120, 123, 132-135] as shown in Figure 30 (b), which combined to the increase of gas holdup 

results in the increase of the overall volumetric liquid-side mass transfer coefficients shown in 

Figure 30 (c). These findings confirm that the gas density is an important variable which directly 

affects the hydrodynamics and mass transfer coefficients in SBCRs. 

 

 

 
Figure 28: Effect of Pressure and Temperature on d32 for N2-Sasol Wax 
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Figure 29: Effect of Pressure on εG (a), d32 (b) and kLa (c) 

(a) 

(c) 

(b) 
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Figure 30: Effect of Gas Density on εG (a), d32 (b) and kLa (c) 

(a) 

(c) 

(b) 
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Figure 31: Effect of Pressure and Temperature on d32 for He-Sasol Wax 

 

 
Figure 32: Effect of Pressure on the Gas Bubbles Size Distribution for N2-Molten Reactor Wax 
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Figure 33: Effect of Pressure on the Gas Bubbles Size Distribution for He/N2 Mixture-Molten Reactor Wax 

 

6.1.3 Effect of Temperature 

Figures 37 (a), 26 and 27 represent the effect of temperature on the gas holdup for N2 and He in 

the paraffins mixture as well as in the molten reactor and Sasol waxes in the absence and 

presence of solid particles. As can be seen in these figures, for both N2 and He increasing 

temperature increases the gas holdup. This behavior agrees with many other reported findings 
[138, 148, 154, 155]. The increase of gas holdup with temperature can be related to the alteration of the 

physical properties of the liquid-phase. For instance, increasing temperature decreases the  liquid 

viscosity and surface tension which lead to higher gas holdup values [124, 128, 131, 137-139, 144, 145, 147-

149].  

For the N2-molten reactor wax system in the absence of solid particles, however, the gas 

holdup appeared to remain constant with increasing temperature from 400 to 500 K. Jordan and 

Schumpe [129] found that increasing temperature had little influence on the gas holdup in ethanol 

and decalin. Also, Deckwer et al. [108] did not find any change of the gas holdup when increasing 

temperature from 143 to 285 oC when measuring the gas holdup for N2 in molten paraffin in the 
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presence of 10 wt.% Al2O3 particles in a 10 cm slurry bubble column. Nonetheless, it should be 

noted that Deckwer et al. [108]only used superficial gas velocities up to 0.04 m/s and accordingly 

they were limited to the homogeneous flow regime. 

 

 
Figure 34: Effect of Pressure and Temperature on kLa for N2-Sasol Wax 

 

Figures 37 (b), 28 and 31 depict the effect of temperature on the Sauter mean bubble diameter 

and as can be observed d32 generally decreases with increasing temperature within the range 

studied, such in the case for the 0.25/0.75 (He/N2) gaseous mixture which is similar to literature 

findings [146]. This is because increasing temperature decreases the liquid viscosity and surface 

tension, which are responsible for the formation of small gas bubbles [146]. In the case of 

0.75/0.25 (He/N2) gaseous mixture in the paraffins liquid mixture containing solid particles 

concentration of 2 vol.%, however, d32 values increased with increasing temperature, which 

shows the effect of solid particles on d32. This behavior is similar to that by Behkish et al. [120] 

who reported an increase of d32 values with temperature when increasing the solid concentration 

from 5 to 10 vol.%. They attributed this behavior to the decrease of the froth (foam) stability of 

the liquid phase at high temperature and high solid concentration. As matter of fact, unstable 

foam was observed in this study up to 3 vol.% solid concentration in the paraffins mixture. 
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Furthermore, it seems that increasing the He content in the gas mixture also reduced the froth 

stability which resulted in increasing the Sauter mean bubble diameter with increasing 

temperature.  

 

 
Figure 35: Effect of Pressure and Temperature on kLa for He-Sasol Wax 

 

In the case of N2-molten reactor wax without any solid present, when increasing temperature 

from 400 K to 500 K, d32 values appeared to slightly decrease with increasing temperature. This 

behavior could be attributed the fact that a minimum gas bubble size has been already reached at 

400 K. As can be seen in Figure 38, in the absence of solid particles, the bubble size distribution 

remains almost identical from 400 to 500 K, which could explain why the gas holdup for this 

system remains constant even with increasing temperature. A similar behavior can be observed 

in the case of N2 in Sasol wax also in the absence of solid, when increasing temperature from 

450 K to 490 K at superficial gas velocities around 0.20 m/s (Figure 28). 

Figure 38 also shows that in the presence of Puralox particles, increasing temperature 

increases the population of small gas bubbles and consequently decreases the population of large 

gas bubbles. It is also important to note that at high temperatures, the solid particles have a weak 

effect on the gas bubble size in the N2-molten reactor wax system. In fact, as can be seen in 
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Figure 37 (b), at temperature above 475 K, increasing the solid particles concentration was found 

to have negligible effect on d32. 

Figures 37 (c), 34 and 35 show the effect of operating temperature on the overall liquid-

side volumetric mass transfer coefficients (kLa) for the gases in the paraffins mixture as well as 

in the Sasol and reactor waxes in the absence and presence of solid particles. As can be seen, kLa 

values strongly increase with increasing temperature which is in accordance with previous 

findings [129, 130]. This behavior is due to the decrease of the liquid viscosity and surface tension 

with increasing temperature, which was reported to increase kLa [121, 140-143, 150]. More precisely, it 

can be explained by the effect of temperature on the mass transfer coefficient (kL) and the gas 

liquid interfacial area (a). The increase of temperature results in an increase of gas diffusivity 

which increases kL values (kL ∝ Di
0.5-1). Also, increasing temperature decreases the viscosity and 

surface tension of the liquid which increases the gas-liquid interfacial area (a) due to its effect on 

the gas holdup and gas bubble size. Thus, the effects of temperature on both a and kL led to the 

increase of kLa values. 

 

 
Figure 36: Effect of Ug on εG for N2-Sasol wax 
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Figure 37: Effect of Temperature on εG (a), d32 (b) and kLa (c) 

(a) 

(c) 

(b) 
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Figure 38: Effect of Temperature and Solid Concentration on the Gas Bubbles Size Distribution of N2 in Molten Reactor Wax with Puralox particles 

(CS = 0 vol.% (a), CS = 3 vol.% (b)) 

 

(a) (b) 
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6.1.4 Effect of Superficial Gas Velocity 

The increase of the superficial gas velocity (Ug) appears to increase the gas holdup, as shown in 

Figures 43 (a), 36 and 39, for both gases in the paraffins mixture as well as in the Sasol and 

reactor waxes in the absence and presence of solid particles. Numerous authors [108, 124, 128-131, 137-

140, 149, 155] also reported an increase of gas holdup while increasing the gas flow rate. 

 

 
Figure 39: Effect of Ug on εG for He-Sasol wax 

 

The effect of superficial gas velocity on the Sauter-mean bubble diameter, however, is not clear, 

as it can lead to a decrease (see Figures 43 (b) and 40), an increase (see Figures 43 (b) and 40) or 

have no effect (see Figures 43 (b) and 41) on the Sauter mean bubble diameter depending on the 

conditions used. In fact, the increase of the gas flow rate increases the momentum and leads to 

both higher probabilities of bubbles coalescence and breakage. The increase of the gas 

momentum is responsible for increasing the gas holdup [120, 123, 166]. Under the operating 

conditions used in this study, the increase of the superficial gas velocity led, in some cases, to the 

increase of the frequency of bubble coalescence which resulted in a slight increase of the gas 
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bubbles Sauter-mean diameter [123, 133-135] and in others cases it resulted in the increase of the rate 

of bubbles breakage which showed an opposite effect, i.e., smaller gas bubbles. 

 

 
Figure 40: Effect of Ug on d32 for N2-Sasol wax 

 

The volumetric liquid-side mass transfer coefficient appears to slightly increase with increasing 

the superficial gas velocity as can be observed in Figures 43 (c) and 42. This behavior, which is 

in accordance with previous studies [158, 166], can be related to the effect of the superficial gas 

velocity on the gas holdup and the gas bubbles Sauter-mean diameter. As can be seen in Figures 

43 (a), 36 and 39, increasing the superficial gas velocity increases the gas holdup, which 

increases the gas-liquid interfacial area according to Equation (2-33). Also, increasing the 

superficial gas velocity, in some cases, decreases the Sauter mean-bubble diameter (see Figures 

43 (b) and 40) which further increases the gas-liquid interfacial area according to the same 

equation. When increasing Ug the d32 increases (see Figures 43 (b) and 40), these two opposing 

effects might offset the effect of the superficial gas velocity on the gas-liquid interfacial area, a. 

On the other hand, the larger gas bubbles induce more turbulences leading to high kL values. It 

seems that the resultant effect of gas velocity on the gas-liquid interfacial area and the mass 
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transfer coefficient has always resulted in the increase of kLa under all conditions studied as 

shown in Figures 43 (c) and 42. 

 

 
Figure 41 Effect of Ug on d32 for He-Sasol wax at 453 K 

 

 
Figure 42: Effect of Ug on kLa for He or N2-Sasol wax 
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Figure 43: Effect of Superficial Gas Velocity on εG (a), d32 (b) and kLa (c) 

(a) 

(c) 

(b) 
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6.1.5 Effect of Solid Concentration 

The effect of solid concentration on the gas holdups of N2 and He in the paraffins mixture, the 

molten reactor wax and the Sasol wax in the presence of suspended solid particles under various 

operating conditions is shown in Figures 44 (a), 45 and 46. As can be seen in these figures, the 

presence of solid particles decreases the gas holdup (εG) values for all systems studied, which is 

in agreement with several literature findings [120, 143, 152, 172-175]. This behavior can be attributed to 

the increase of slurry viscosity by adding small solid particles leading to large bubbles and 

consequently small gas holdup [124, 128, 131, 137-139, 144, 145, 147-149]. Literature studies on the gas 

holdup in similar F-T systems, however, reported different behaviors. Bukur et al. [169] used iron 

oxides and silica particles (dP < 44 µm) at solid loading up to 30 wt.% and reported that for an 

upward slurry flow (0.005 m/s), the gas holdup slightly decreased when adding solids. Under 

batch mode conditions they reported that the gas holdup increased with solid loading up to 20 

wt.%, but then decreased with further increase of the solid concentration to 30 wt.%. They 

attributed this behavior to the poor wettability of the particles used which caused the particles to 

adhere to the small gas bubbles and stabilize them thus preventing their coalescence. This effect 

was negated in the presence of liquid circulation due to the increase in the relative velocity 

between the solid and liquid phases leading to smaller contact angles and higher wettability of 

the particles. It should be noted that these authors conducted their experiments in a small 

diameter (5 cm) SBCR and hence the behavior observed could be strongly affected by the wall 

effect. Deckwer et al. [108] found a slight decrease of the gas holdup with increasing solid 

concentration, using alumina particles < 5 µm. In addition, Vandu et al. [190] using Puralox 

alumina particles (10 < dP < 39 µm) in a C9-C11 paraffins mixture, Krishna et al. [189] using silica 

particles (27 < dP < 47 µm) in paraffin oil and Behkish et al. [120] using alumina particles (dP = 32 

µm) in an Isoparaffins mixture (Isopar-M), all reported a significant decrease of the gas holdup 

with increasing solid concentration similar to that obtained in the present work. 
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Figure 44: Effect of Solid Concentration on εG (a), d32 (b) and kLa (c) 

(a) 

(c) 

(b) 
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Figure 45: Effect of Solid Concentration on εG of N2-Sasol Wax 

 

 
Figure 46: Effect of Solid Concentration on εG of He-Sasol Wax 
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Figures 44 (b), 47 and 48 show the effect of solid concentration on the gas bubbles Sauter mean 

diameter under different operating conditions; and as can be seen, under all conditions used, the 

gas bubble size increases with increasing the concentration of the solid particles. Figure 38 

shows that adding solid particles greatly increases the rate of coalescence of the gas bubbles and 

adding only 3 vol.% of Puralox particles to the molten reactor wax led to a dramatic reduction of 

the small gas bubbles population (db < 0.3 mm) accompanied by an increase of the population of 

medium and large gas bubbles. This behavior is in agreement with previous findings that 

reported the formation of large gas bubbles due to the increase of the rate of bubbles coalescence 

when increasing solid loading [143, 176]. This increase in bubble size can be related to the increase 

of slurry viscosity due to the addition of small solid particles, which was reported to increase the 

size of the gas bubbles [146]. As previously described in Figures 38 and 37 (b), higher 

temperatures appeared to hinder this effect. It is also important to note that the impact of the 

solid concentration seems dependent upon the liquid-phase used, as the increase of bubble size 

with solid concentration appears to be greater in the paraffins mixture than in the Sasol wax and 

reactor wax. 

 

 
Figure 47: Effect of Solid Concentration on d32 of N2-Sasol wax-Al2O3 
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Figure 48: Effect of Solid Concentration on d32 of He-Sasol wax-Al2O3 

 

The volumetric liquid-side mass transfer coefficients were found to decrease with increasing the 

solid concentration in the paraffins mixture and both molten waxes as can be seen in Figures 44 

(c), 49 and 50. This finding agrees well with reported literature data [143, 176] and can be explained 

by the increase of the slurry-phase viscosity, which was reported to decrease kLa [121, 140-143]. 

However, Vandu et al. [190] reported that kLa values were independent of solid concentration 

when using a slurry of C9-C11 paraffin oil with Puralox alumina particles. They concluded that 

the nature of the liquid and solid phases play an important role in the behavior of kLa with solid 

concentration. In the present work, however, under similar conditions, the gas holdup decreases 

and the gas bubble size increases with solid concentration suggesting that the interfacial area 

should decrease with the addition of solid particles. Although kL should increase due to the 

presence of large gas bubbles which create more turbulences, the results obtained under the 

conditions used showed that kLa behavior follows that of the gas-liquid interfacial area (a) as 

previously reported [123, 166, 266]. 
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Figure 49: Effect of Solid Concentration on kLa of N2-Sasol wax-Al2O3 

 

 
Figure 50: Effect of Solid Concentration on kLa of He-Sasol wax-Al2O3 
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6.1.6 Effect of Gas Nature and Composition 

Figures 55 (a) and 51 show the effect of gas nature and composition on the gas holdup in the 

molten reactor and Sasol waxes in the absence and presence of solid particles. As can be 

observed in these figures, the gas holdup values decrease with increasing the mole fraction of 

He; and the gas holdup of N2 is always greater than that of He under similar operating 

conditions. This is similar to that reported by Behkish et al. [120] with He and N2 in an 

isoparaffinic mixture (Isopar-M). The presence of the heavier gas (N2) which has a molecular 

weight of about 28 kg/kmol increases the density and momentum of the gaseous mixture when 

compared with that of a gaseous mixture which is rich in the lighter gas (He) with a molecular 

weight of about 4 kg/kmol.  

 

 
Figure 51: Effect of Gas Nature on εG in Sasol Wax 

 

It should be noted that some of the gas holdup values presented in Figure 55 (a) are obtained at 

constant pressure, and therefore changing the composition of the gaseous mixture directly affects 

its density. Figure 30 indicates a similar behavior to that observed in Figures 55 (a) and 51 in the 

3 liquids used. In order to separate the effect of gas composition from the effect of gas density, 
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experiments were carried out in the molten reactor wax under constant gas density by changing 

the gas composition and accordingly the total pressure. The behavior of the gas holdup under 

such conditions is shown in Figure 55 (a) and as can be seen, varying the gas composition while 

keeping the gas density constant has almost no effect on the gas holdup. This confirms the fact 

that the gas holdup is directly related to gas density and consequently the gas momentum as 

reported by Reilly et al. [131]. Thus, higher gas momentum increases the turbulence and mixing 

characteristics of the system, and consequently leads to high gas holdup values. 

 

 
Figure 52: Effect of Gas Nature on d32 in Sasol Wax 

 

Figures 55 (b) and 52 present the effect of gas nature and composition on the Sauter mean bubble 

diameter in the molten reactor and Sasol waxes in the absence and presence of solid particles. As 

can be seen in these figures, d32 values increase with increasing the mole fraction of He; d32 of 

He as a single-gas is much greater than that for N2. This behavior underlines the fact that higher 

gas molecular weight and consequently gas density leads to small gas bubbles [132]. Again, the 

effect of gas density at constant pressure (varied by the gas composition) on the bubble size, as 

shown in Figure 30, underscores the importance of the gas density. However, under constant gas 

density, obtained by varying the total pressure and gas composition the size of the gas bubbles 
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was found to be affected similarly to that when varying the gas composition at constant pressure. 

This can be seen in Figure 55 (b), where d32 values increase with increasing the mole fraction of 

He in the gaseous mixture even though the pressure increases at the same time. This means that 

the gas nature has direct effect on the bubble size independently of its density. This is further 

illustrated in Figure 56 where increasing the He mole fraction in the gas mixture shifts the gas 

bubbles population towards larger gas bubbles. 

 

 
Figure 53: Effect of Gas Nature on kLa in Sasol Wax 

 

Figures 55 (c) and 53 show the effect of gas nature and composition on the overall kLa values for 

He/N2 gas mixtures in the molten reactor and Sasol waxes. As can be seen in these figures, the 

overall kLa values appear to increase with increasing the mole fraction of N2 in the gas mixture 

and kLa values for N2 as a single gas are much greater than those of He under similar conditions. 

The N2-rich mixtures have a greater gas-liquid interfacial area due to their smaller gas bubbles 

and greater gas holdup as a consequence of their higher gas densities (see Figure 30) when 

compared with those of the He-rich mixtures. The N2-rich mixtures exhibit therefore greater kLa 

values since the gas-liquid interfacial area (a) is controlling the behavior of the mass transfer in 

the SBCR [123, 166, 266]. The effect of gas composition on kLa, illustrated in Figure 55 (c), is 
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decreased when keeping the gas density constant. In fact, the overall kLa appeared to remain 

almost constant as the gas holdup. The higher concentration of N2 in the gaseous mixture leads to 

smaller gas bubbles size (see Figure 55 (b)) without changing the gas holdup (see Figure 55 (a)), 

which results in higher gas-liquid interfacial area and lower mass transfer coefficient kL, 

however, the resultant effect of the gas nature on both parameters led to the slight increase of kLa 

values. 

6.1.7 Effect of Liquid and Solid Nature 

The effect of liquid and solid nature on the hydrodynamic and mass transfer parameters of N2 is 

shown in Figures 54 through 60. Under similar operating conditions, the nature of the liquid and 

solid phases appeared to have a significant impact on the gas holdup, the gas bubbles size and the 

overall volumetric mass transfer coefficient.  

 

 
Figure 54: Effect of Liquid and Solid Nature on the Gas Bubbles Size Distribution (CS = 2.4 - 3.5 vol.%) 
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Figure 55: Effect of Gas Composition on εG (a), d32 (b) and kLa (c) under Constant Pressure (triangles) or Gas Density (circles) 

(a) 

(c) 

(b) 
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Figure 56: Effect of Gas Nature and Composition on the Gas Bubbles Size Distribution in Molten Reactor Wax  

(a) CS = 0 vol.%, T = 450 K ; (b) CS = 3 vol.%, T = 400 K 

 

 

(a) (b) 
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The gas holdup and the Sauter mean bubble diameter of N2 obtained in the paraffins mixture and 

in the reactor wax were similar. Figure 54 shows that the least fraction of large gas bubbles was 

obtained when using the Puralox particles in the paraffins liquid mixture. In the molten reactor 

wax, however, the population of both large and small gas bubbles increased, which led to similar 

Sauter mean bubble diameters as shown in Figure 60. Also, the population of small bubbles with 

diameters db < 3 mm is slightly greater in the paraffins mixture than in the molten reactor wax 

and as a result the gas holdup in the paraffins mixture is greater than in the reactor wax. The kLa 

values of N2 in the paraffins liquid mixture are found to be greater than in the reactor wax. When 

increasing the solid concentration, however, kLa values in both liquids became similar. This is 

expected as the diffusivity of N2 and therefore its mass-transfer coefficient kL is greater in the 

paraffins mixture than in the reactor wax under the same temperature according to the correlation 

by Erkey et al. [259]. Moreover, at low solid concentrations the gas-liquid interfacial area is 

similar in both liquids due to similar gas holdup and gas bubbles size. At high solid 

concentrations, on the other hand, the gas bubbles size in the paraffins liquid mixture increases 

with increasing the solid concentration at a greater rate than in the reactor wax, and therefore the 

gas-liquid interfacial area becomes smaller in the paraffins liquid mixture than in the reactor wax 

and as a result kLa values in both liquids become closer as can be observed in Figure 60. 

Operating the SBCR with the molten Sasol wax led to lower gas holdup values and larger gas 

bubbles which result in low interfacial area and consequently kLa values. Figure 54 shows that 

using molten Sasol wax with alumina particles increased the population of large gas bubbles (db 

> 3 mm) and greatly reduced the population of the small gas bubbles (db < 3 mm). Even though 

when using the iron oxides particles more gas bubbles coalescence is expected than with 

alumina, in this case, only a small fraction of gas bubbles (db < 1 mm) does not coalesce. This 

led to high values of the Sauter mean bubble diameter and low gas holdup in the Sasol wax as 

shown in Figure 60. These findings confirm that operating the SBCR with a heavy F-T liquid, 

composed of long hydrocarbon chains having high density and viscosity; will lead to larger gas 

bubbles and lower values of gas holdup and kLa than those to be expected in a lighter F-T Liquid 

with shorter hydrocarbon chains. 

In the case of the Sasol wax, the use of alumina particles led to greater εG (see Figure 57) 

and kLa (see Figure 58) values, and lower d32 values (see Figure 59) than when using Iron oxides 

(FeOx) particles under similar operating conditions. The Iron oxides particles were smaller and 
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denser than the alumina ones (see sections 4.2.4.1 and 4.2.4.2). The decrease of gas holdup with 

the heavier particles (FeOx) is in agreement with some literature finding [151]. The smaller gas 

holdup and larger gas bubbles obtained in the case of FeOx can be due to the higher viscosity of 

the slurry phase observed when using FeOx as compared with that of Al2O3, which is probably 

due to the smaller size of the FeOx particles. As explained previously, higher viscosities lead to 

large gas bubbles [146] and small gas holdup [124, 128, 131, 137-139, 144, 145, 147-149] and kLa values [121, 140-

143]. Under similar conditions the decrease of gas holdup and the increase of the gas bubble size 

resulted in the decrease of the gas-liquid interfacial area and consequently kLa when using FeOx. 

 

 
Figure 57: Effect of Solid Nature on εG of N2-Sasol wax-FeOx/Al2O3 

 

The liquid-solid systems studied showed that increasing the solid particles concentration 

decreased the gas holdup and increased the Sauter mean bubble diameter and consequently led to 

low kLa values as presented in Figures 44 and 60. These figures also show that the impact of 

solid concentration on the hydrodynamics and mass transfer of the SBCR is dependent on the 

nature of the liquid and solid phases used. The Alumina particles in the molten Sasol wax 

appeared to have less impact on the SBCR behavior than that of FeOx particles. Also, the 
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alumina particles in the molten Sasol wax have less effect on the SBCR behavior than that of the 

alumina Puralox particles in the molten reactor wax and in the paraffins mixture. 

 

 
Figure 58: Effect of Solid Nature on d32 of N2-Sasol wax-FeOx/Al2O3 

 

 
Figure 59: Effect of Solid Nature on kLa of N2-Sasol wax-FeOx/Al2O3 
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Figure 60: Effect of Liquid and Solid Nature on εG (a), d32 (b) and kLa (c) 

(a) 

(c) 

(b) 



 

 126 

6.1.8 Solid Particles Distribution Profile 

Figure 61 shows the catalyst concentration profiles measured in the SBCR for various gaseous 

mixtures in the paraffins liquid mixture under similar operating conditions. As can be seen, 

Equation (5-26) fits the experimental data fairly well, validating the model described in section 

5.5. The calculated values of the ratio (Up/DS) are listed in Table 25 as well as other values 

predicted using different literature correlations. As can be seen, the three correlations tested 

failed to account for the effect of the gas composition and that the presence of He gas decreases 

the (Up/DS) values. Also, the correlation by Kato et al. [270] appears to give the best prediction for 

the present system. 

 
Table 25: Ratios of the Particle Settling Velocity to the Solid Phase Axial Dispersion Coefficient 

Gas UP/DS (m
-1) 

UP/DS (m
-1) from Literature Correlations 

Kato et al. [270] O'Dowd et al. [186] Smith and Reuther [271] 

N2 0.330 
0.286 0.397 0.199 He/N2 (50/50) 0.259 

He 0.245 
 

 
Figure 61: Catalyst Concentration Profile in the SBCR 
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The effect of the gas nature and composition can also be seen in Figure 61 as the solid 

concentrations profiles are found to be identical when using He as a single gas or as a 50/50 

(He/N2) gaseous mixture. When using N2 as a single gas, however, the solid concentration values 

obtained were always greater at all heights sampled. The integration of the 3 profiles obtained 

would lead to 2 different average concentrations, while all experiments were carried out at the 

same original solid loading minus the negligible weight of solids withdrawn with the slurry for 

sampling purposes. Also, considering that the expanded bed height does not reach the top of the 

reactor but was always below 2 m, the average solid concentrations calculated were 387 and 293 

kg/m3, which all appear to be above the actual solid loading in the reactor (272 kg/m3). This 

means that either the solid samples were not sufficiently dried or were contaminated and 

therefore the sampled weights were inaccurate, or the solid particles were not distributed 

uniformly in the reactor cross-sectional area, i.e., the solid concentration at the wall is greater 

than that at the reactor’s center. It should be pointed out that the sampling ports are located at the 

walls of the reactor and it is possible that the samples withdrawn reflect only the solid 

distribution near the wall. Analysis of the samples using a Philips XL-30 field emission Scanning 

Electron Microscope (SEM) did not reveal the presence of any paraffins mixture (in fact the 

presence of liquid would have prevented proper operation of the SEM) or contaminants in the 

sample, which means that Figure 61 represents the profiles of the solid concentrations at the wall 

of the reactor. The greater solid concentration at the wall can be explained by the particular flow 

pattern of the churn/turbulent flow regime. At the center of the reactor large and fast-rising gas 

bubbles induce strong circulations and create back-mixing or recirculation zones along the wall 

wherein the small gas bubbles and some solid particles are entrained. This phenomenon leads to 

conclude that the average measured solid concentration is that at the wall. This seems to be 

amplified when using N2 as the gas-phase when compared with He or with 50/50 He/N2 gas 

mixture. As discussed in section 6.1.6, the presence of He in the gas phase was found to increase 

the average gas bubbles size as shown in Figure 62. Using He and the 50/50 He/N2 gas mixture 

led to similar bubble size distributions, while using N2 as a single gas led to a significant increase 

in the population of gas bubbles less than 3 mm in diameter. Thus, the high concentration of 

solid particles at the walls could be related to the large population of small gas bubbles with fine 

solid particles attached to their surfaces. 
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Figure 62: Gas Bubbles Size Distribution during Solid Particles Distribution Experiments 

 

6.2 CORRELATIONS OF THE HYDRODYNAMICS AND MASS TRANSFER 

PARAMETERS 

The knowledge of the hydrodynamics and mass transfer characteristics of small and large bubble 

classes is essential [272-274] for modeling SBCRs. The available literature correlations summarized 

by Behkish et al. [184] and Lemoine et al. [275] along with those proposed by Krishna et al. [189], 

Koide et al. [143] and Fukuma et al [268] could be used to predict the hydrodynamics and mass 

transfer parameters for gases in F-T liquids. These correlations considered the effect of several 

variables, such as liquid/solid properties, operating conditions, and reactor diameter, on these 

parameters. Recently, correlations and a calculation algorithm [184, 262, 275, 276] have been 

developed to predict the hydrodynamics and mass transfer parameters in bubble column reactors 

(BCRs) and slurry bubble column reactors (SBCRs) based on a large experimental database 

covering, among others, typical F-T conditions. The empirical correlations by Behkish et al [184]. 

and Lemoine et al. [277] shown in Table 26, take into account not only the liquid/solid properties, 
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operating conditions, and reactor diameter similar to available literature correlations, but also the 

gas distributor type, number/size of nozzles, catalyst loading, and foamability of the F-T 

products, which have been shown to dramatically impact the hydrodynamics and mass transfer 

characteristics in SBCRs. 

 
Table 26: Gas Holdup, Sauter Mean Diameter and Volumetric Mass Transfer Coefficient Correlations [184, 275] 

Gas holdup [184] 

𝜀𝐺 = 0.00494
𝜌𝐿0.415𝜌𝐺0.177𝑈𝑔0.553𝛤0.053

𝜇𝐿0.174𝜎𝐿0.27𝑒2.231𝐶𝑆+0.157𝜌𝑝𝑑𝑝+0.242𝑋𝑊
�

𝑃
𝑃 − 𝑃𝑣

�
0.203

�
𝑑𝑅

𝑑𝑅 + 1
�
−0.117

 (6-1) 

 Gas holdup of large gas bubbles [184] 

 𝜀𝐺,𝑙𝑎𝑟𝑔𝑒 = 𝜀𝐺0.84 �1 − 3.04. 10−6
𝜌𝐿0.97

𝜇𝐿0.16 𝑒
4.5𝑋𝑊−4.49𝐶𝑆� = 𝜀𝐺0.84(𝐹) (6-2) 

 Gas holdup of small gas bubbles [184] 

 
If εG is > (F) 25/4         𝜀𝐺,𝑠𝑚𝑎𝑙𝑙 = 𝜀𝐺 − 𝜀𝐺,𝑙𝑎𝑟𝑔𝑒  
If εG is ≤ (F) 25/4,         small gas bubbles do not exist 

(6-3) 

Gas bubbles Sauter mean diameter [275] 

𝑑32 = 37.19
𝜇𝐿0.08𝜎𝐿1.22𝜌𝐺0.02𝑈𝑔0.14𝑇1.66(1 − 𝜀𝐺)1.56

𝜌𝐿1.52𝑀𝑊,𝑔𝑎𝑠
0.12 𝛤0.02 �

𝑑𝑅
𝑑𝑅 + 1

�
0.30

𝑒2.81𝐶𝑆+2.77𝜌𝑝𝑑𝑝−2.29𝑋𝑊 (6-4) 

 Sauter mean diameter of large gas bubbles [275] 

 𝑑32,𝑙𝑎𝑟𝑔𝑒 = 𝑑320.96�1 − 10−5𝜌𝐿0.22𝜇𝐿0.03𝜎𝐿8.60𝑈𝑔0.04𝜀𝐺2.37𝜀𝐺,𝑙𝑎𝑟𝑔𝑒
2.74 � (6-5) 

 Sauter mean diameter of small gas bubbles [275] 

 
𝜀𝐺,𝑠𝑚𝑎𝑙𝑙

𝑑32,𝑠𝑚𝑎𝑙𝑙
=

𝜀𝐺
𝑑32

−
𝜀𝐺,𝑙𝑎𝑟𝑔𝑒

𝑑32,𝑙𝑎𝑟𝑔𝑒
 (6-6) 

Volumetric mass transfer coefficient[275] 

𝑘𝐿𝑎 = 6.14. 104
𝜌𝐿0.26𝜇𝐿0.12𝜀𝐺1.21𝐷𝑖𝑗0.5Γ0.11

𝜎𝐿0.52𝜌𝐺0.06𝑈𝑔0.12𝑑320.05𝑇0.68 �
𝑑𝑅

𝑑𝑅 + 1
�
0.40

 (6-7) 

 

In Table 26, XW designates the concentration of the primary liquid in a liquid mixture, and its 

value varies between 0.5 and 1. For a single-component or an organic liquid mixture, consisting 

of different chain length hydrocarbons, such as F-T products, XW equals 1. Also, Г which 

represents the gas sparger type is defined as: 

Γ = 𝐾𝑑𝑁𝑜𝑑𝑜𝛼 (6-8) 

The values of the coefficient Kd and the exponent α for several distributors are given in Table 27. 

For perforated plates, the exponent α depends on ζ, which is expressed as shown in equation (6-

9). 



 

 130 

ζ = 𝑁𝑜 �
𝑑𝑜
𝑑𝑅
�
2

 (6-9) 

Table 28 presents the ranges of the conditions of applicability of the different correlations. It 

should be noted that the correlations listed in Table 26 are valid when the volume of internals, 

commonly used in SBCRs for cooling or heating purposes, is ≤ 20% of the reactor volume. This 

is because several literature findings [115, 185-188, 278-281] showed limited or no effect of internals on 

the hydrodynamic and mass transfer parameters as long as their volume fraction remains under 

20%. Also, these correlations should be valid for reactor height/inside diameter ratio (L/dR) 

varying from 4 to 20, because the considerable data available in the literature used to develop 

these correlations cover such an L/dR range. It should be mentioned also that Lemoine et al. [275] 

have argued that the use of Equation (6-7) to calculate kLa for small and large gas bubbles using 

their corresponding gas holdup and Sauter mean bubble diameter is a more accurate approach 

than the ones used by de Swart and Krishna [272] and Grund et al. [121]; because it underscores the 

fact that the mass transfer behavior of SBCRs is controlled by the gas-liquid interfacial area [123, 

166, 282]. 

 
Table 27: Values of α Used in Equation (6-8) [275] 

Distributor ζ (%) α Kd (m-α) 

PfP 
< 0.055 0.017 1.364 

≥ 0.055 and ≤ 0.3 0.303 1.364 
> 0.3 0.293 1.364 

M-ON  0.303 1.364 
S-ON  0.134 1.205 
R, S  0.015 1.000 
BC  0.500 1.553 

PoP, SP  0.650 1.533 
 

The correlations presented in Table 26 are valid for almost any gas-liquid-solid system. Using 

the experimental data obtained in the pilot-scale SBCR and discussed in the present study, two 

novel correlations to estimate the hydrodynamic and mass transfer parameters of SBCR 

specifically for F-T were developed. The novel empirical correlations for gas holdup (εG) and for 

the mass transfer coefficient (kLa) were based on the ones previously developed by Behkish et al 
[184] and Lemoine et al.,[277] respectively and are shown in Table 26. The terms accounting for the 

solid concentration as well as the gas-liquid-solid system properties have been optimized for F-T 

liquids. The foaming tendency of the liquid-phase was accounted for by introducing the term 
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“X” which equals either 0 for single-component and non-foaming liquid mixtures or 1 for 

foaming liquid mixtures. The gas holdup (εG) and the overall volumetric liquid-side mass transfer 

coefficients (kLa) were thus correlated as: 

𝜀𝐺 = 11241.6
𝜌𝐺0.174𝑈𝑔0.553

𝜌𝐿1.59𝜇𝐿0.025𝜎𝐿0.105 �
𝑃

𝑃 − 𝑃𝑣
�
0.203

�
𝑑𝑅

𝑑𝑅 + 1
�
−0.117

Γ0.053

× exp �−0.0012𝜌𝑝𝐶𝑆 − 0.4 �
𝜌𝑝𝐶𝑆
1000

�
2

− 4339𝑑𝑝 + 0.434𝑋� 

(6-10) 

𝑘𝐿𝑎𝐿 = 7.99 10−9  
𝜌𝐿1.82𝜌𝐺0.270𝑈𝑔0.387

𝜇𝐿0.250𝜎𝐿0.976𝑀𝑊𝐺
0.020 �

𝑃
𝑃 − 𝑃𝑣

�
0.242

�
𝑑𝑅

𝑑𝑅 + 0.3
�
0.1

𝛤0.173

× 𝑒𝑥𝑝 �−0.0013𝜌𝑝𝐶𝑆 + 0.8 �
𝜌𝑝𝐶𝑆
1000

�
2

− �
𝜌𝑝𝐶𝑆
1000

�
3

− 1675.7𝑑𝑝 + 0.176𝑋� 

(6-11) 

 
Table 28: Upper and Lower Limits of the Variables Used in Equations (6-1) through (6-7) [275] 

Variables Units Minimum value Maximum value 
PT MPa 0.1 19.8 
PV MPa 0.0 0.7 
UG m/s 3.5 10-3 0.574 
Cv vol% 0 0.36 
Xw wt.% 0.5 1 
T K 275 538 

MW-Gas kg/kmol 2 44 
DAB 109.m2/s 2.78 10-8 1.25 10-11 
dP 10-6 m 5 300 
ρP kg/m3 700 4000 
ρG kg/m3 0.06 223.77 
ρL kg/m3 633 1583 
μL 10-3 Pa s 0.16 398.80 
σL 10-3 N/m 8.4 75 
dR m 0.0382 7.6200 
Γ - 0.06 143800 
ζ % 0.0097 75 

 
Table 29: Statistical Comparison of Correlations Performances  

Parameter Equation 
This Study’s Data All Available Data 
AARE σ(AARE) AARE σ(AARE) 

εG 
(6-1) 18.2 % 16.1 % 21.6 % 26.0 % 

(6-10) 12.3 % 13.0 % 24.6 % 23.2 % 

kLa (6-7) 52.4 % 38.7 % 38.9 % 61.7 % 
(6-11) 15.2 % 12.2 % 35.7 % 61.4 % 
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Figure 63: Comparison between Experimental Data of Gas Holdup and Predicted Values using Equations (6-1) (a) and (6-10) (b) 

 

 

 

(a) (b) 
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Figure 64: Comparison between Experimental Data of kLa and Predicted Values using Equations (6-7) (a) and (6-11) (b) 

 

(a) (b) 
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All the experimental data obtained in this study were plotted against the predicted values from 

both new correlations as well as the predicted values obtained from the correlations in Table 26 

and were compared as can be seen in Figures 63 and 64. Table 29 also presents a statistical 

comparison between the different correlations that shows that the accuracy is improved when 

using the newly developed correlations which is in accordance with what can be observed in 

Figures 63 and 64. It should be noted that equation (6-11) presents the advantage of not requiring 

the prior knowledge of the gas holdup or gas bubble size contrary to the correlation of Lemoine 

et al. [277]. The different correlations were also tested against all literature data available including 

this present study (3731 gas holdups [119, 121, 127, 129, 133, 138, 147, 149, 154, 155, 160, 162, 165, 167, 172, 180, 185, 186, 

198, 199, 202, 206, 209, 220, 230, 244, 262, 269, 283-300] and 1917 kLa values [119, 121, 127, 129, 130, 133, 160, 165, 167, 180, 

202, 230, 262, 287, 289, 294, 297, 301]) and statistically compared. As can be seen in Table 29 the new 

correlations are able to predict all the data available with better precision than the correlations 

presented in Table 26. For F-T process modeling and scaleup purposes, Equations (6-10) and (6-

11) present therefore a significant increase in precision, while for any other process equations (6-

1) and (6-7) could also be used. 

6.3 MODEL FOR F-T SBCR 

The purpose of this section is to build a comprehensive mathematical model for the SBCRs using 

the correlations and algorithm previously developed [184, 262, 275] and to use this model for the 

design and optimization of a commercial-size F-T SBCR. 

6.3.1 Brief Review of F-T SBCR Models 

Table 30 shows a summary of the F-T SBCR models available in the literature and the following 

comments can be made. Generally, in all models, three distinct phases (gas-phase, liquid-phase 

and solid-phase) are used, and in almost all models, the solid-phase dispersed in the liquid phase 

is referred to as the “slurry-phase”. The solid (catalyst) concentration in the reactor is often 

assumed constant, and in several models, the Sedimentation-Dispersion Model (SDM) is used to 
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estimate the catalyst concentration. The syngas consumption is not always considered or is 

estimated using a linear relationship between the gas consumption and the syngas conversion, 

and in several models, an overall mass balance on the gas-phase is formulated in order to 

simulate the effect of syngas consumption. [302-309]. 

Early models treated the gas phase as plug flow while the slurry-phase is often assumed 

to be perfectly-mixed. This latter assumption is inappropriate for simulating small-scale reactors, 

however, it could be viable for large-scale reactors since the liquid phase back-mixing and the 

dispersion coefficients were found to increase with reactor diameter [310]. Recent models 

introduced the dispersion coefficients in the mass balance equations when using the Axial 

Dispersion Model (ADM) for the gas and slurry phases. Rados et al. [305] showed that utilizing 

the ADM to model the F-T SBCR back-mixing is more versatile than the combination of ideal 

reactor models, such as plug flow and perfectly-mixed. For large-scale F-T reactors, 

nevertheless, the combination the gas-phase as plug flow and the slurry-phase as perfectly mixed 

appeared to give the closest results to those obtained from the ADM [305]. 

Visual observations and photographic methods revealed the coexistence of distinctly two 

classes of gas bubbles (small and large) in Bubble Column Reactors (BCRs) operating in the 

churn-turbulent (heterogonous) flow regime. [119-121, 123, 247] This finding led to the separations of 

the gas phase into two distinct phases, large gas bubbles phase and small gas bubbles phase in 

the latest literature models. The large gas bubbles phase is often modeled as plug flow while the 

small gas bubbles phase is assumed to be perfectly mixed, similar to the slurry-phase. This is an 

adequate assumption since in large-scale F-T SBCRs operating in the churn-turbulent flow 

regime, the fast-rising large gas bubbles induce strong circulations and create back-mixing or re-

circulation zones wherein the small gas bubbles are entrained.[117, 119] Few models employed the 

ADM for the large gas and small gas bubble phases as well as the slurry-phase. de Swart and 

Krishna [272] used the ADM and a 1st order reaction kinetics with respect to H2 to simulate F-T 

reactor. These authors also estimated the gas consumption using a simple linear relationship for 

the conversion. Rados et al. [311] also used the ADM for all phases, however, they introduced a 

gas bubbles interaction term to account for the interactions among gas bubbles of different 

classes. The authors assumed that the magnitude of the interaction is proportional to a 

dimensionless cross-flow coefficient and the slip velocity between the two classes of gas bubbles 

interacting; nonetheless, they only provided a guessed value for this coefficient corresponding to 
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moderate interactions between the small and large gas bubbles. The authors included the change 

of gas holdup and gas velocity due to the syngas consumption and considered all of the variables 

as space-dependent in the derivation of the mass balances. Thus, it is obvious that the reactor 

model by Rados et al. [311] is quite different from earlier models which assumed constant 

parameters along the reactor height or used a linear relationship between the syngas conversion 

and the gas velocity to represent the gas consumption. However, like de Swart and Krishna [272], 

they used 1st order kinetics with respect to H2 in order to simulate the F-T reaction and assumed 

the catalyst to be uniformly distributed. Iliuta et al. [312] introduced a pseudo 2-dimensional 

model based on the two classes of gas bubbles model (2-class model) and the ADM by 

separating the reactor radially into a core region and an annulus region; and included the gas 

bubbles interactions term developed by Rados et al. [311]. They took the Water-Gas-Shift (WGS) 

reaction into account and used detailed kinetics for the F-T reaction; and also estimated the gas 

consumption from the overall mass balance, and the gas phase and liquid phase concentrations 

from the vapor-liquid-equilibria (VLE). Although the reactor model by Iliuta et al. [312] appears to 

be the most complete to date, without considering the field of computational fluid dynamics 

(CFD), it requires the knowledge of many parameters which are not readily available, especially 

for high-pressure, high-temperature systems with organic liquids, such as the F-T synthesis. 

Obviously, this could be a disadvantage, since the estimation of so many unknown parameters 

may compound the errors, leading to significant uncertainties in the reactor model predictions. 

6.3.2 Reactor Model 

The SBCR for F-T synthesis was simulated using an axial dispersion model (ADM) in 

conjunction with the two-class gas bubbles model [117, 123, 228, 272, 311] since visual observations and 

photographic methods revealed the coexistence of distinctly two-class gas bubbles (small and 

large) in BCRs [119-123] operating in the churn-turbulent flow regime. The catalyst particles 

suspension is modeled using the Sedimentation-Dispersion model (SDM). Interactions between 

small and large bubbles are included in the model using the cross-flow mass exchange term from 

Rados et al. [311]. 

The model was built with the following features: (1) The SBCR is operated in the churn-

turbulent flow regime; (2) The gas is sparged at the bottom of the reactor trough a multiple 
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orifices gas distributor; (3) The catalyst used is a cobalt-supported catalyst; (4) The slurry is 

moving upward; (5) The total heat of reaction is removed using saturated water flowing in a 

bundle of cooling tubes. 

The model was also based on the following key assumptions: (1) The mass transfer 

resistance in the bulk gas-phase and liquid-solid interface are negligible when compared with 

that in the liquid film; (2) The slurry superficial velocity is constant, (3) The slurry temperature 

is constant; (4) The catalyst suspension behavior follows the sedimentation-dispersion model [127, 

173, 186, 270, 271]; (5) The reactor is operating in steady-state. 

6.3.2.1 Mass & Energy Balances 

According to the above assumptions and model features, the mass balances of each component in 

the liquid and gas phases over a differential element of the reactor can be derived as: 

∂�εLCi,L�
∂t

=
∂
∂z
�εLDL

∂Ci,L
∂z

� −
∂�ULCi,L�

∂z
+ kLai,large�Ci,large∗ − Ci,L� 

                      + kLai,small�Ci,small∗ − Ci,L� + εLri 
(6-12) 

The following Danckwerts’ type boundary conditions can be used: 

z =  0              ULCi,L − εLDL
∂Ci,L
∂z

= 0 (6-13) 

z =  L              
∂Ci,L
∂z

= 0 (6-14) 

As mentioned before, the gas phase is divided into 2 classes of bubbles (small and large): 

∂�εG,smallCi,G,small�
∂t

=
∂
∂z
�εG,smallDG,small

∂Ci,G,small

∂z
� −

∂�UG,smallCi,G,small�
∂z

 

                                        +
𝐾
𝐿
�UG,large − UG,small��Ci,G,small − Ci,G,large� 

                                        −kLai,small�Ci,small∗ − Ci,L� 

(6-15) 

∂�εG,largeCi,G,large�
∂t

=
∂
∂z
�εG,largeDG,large

∂Ci,G,large

∂z
� −

∂�UG,largeCi,G,large�
∂z

 

                                        +
𝐾
𝐿
�UG,large − UG,small��Ci,G,large − Ci,G,small� 

                                        −kLai,large�Ci,large∗ − Ci,L� 

(6-16) 

The boundary conditions for a multiple bubble class model can be written as in equation (6-17). 
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��UG,φCi,G,φ − εG,φDG,φ
∂Ci,G,φ

∂z
� = �UGCi,G�inlet (6-17) 

In order to obtain a boundary condition for each bubble class we can define UG,inlet: 

UG,inlet = ��UG,φ�inlet (6-18) 

Therefore, the boundary condition for each bubble class becomes: 

UG,φCi,G,φ − εG,φDG,φ
∂Ci,G,φ

∂z
= �UG,φCi,G�inlet (6-19) 

In the case of the 2 bubble-class model, the boundary conditions become: 

z = 0                �
 UG,smallCi,G,small − εG,smallDG,small

∂Ci,G,small

∂z
= UG,smallCi,G,inlet

UG,largeCi,G,large − εG,largeDG,large
∂Ci,G,large

∂z
= UG,largeCi,G,inlet 

 (6-20) 

z =  L              �
 
∂Ci,G,small

∂z
= 0

 
∂Ci,G,large

∂z
= 0

 (6-21) 

The axial dispersion model (ADM) can also be used to derivate the mass balance for the catalyst 

suspension: 

∂�(1 − εG)CS�
∂t

=
∂
∂z
�(1 − εG)DS

∂CS
∂z

� +
∂�((1 − εG)UP − UL)CS�

∂z
 (6-22) 

The average catalyst concentration in the reactor (Caverage) is used to derivate the boundary 

conditions: 

�  CSdz
L

0
= CS��� (6-23) 

z =  L              ULCS = ULCS|inlet (6-24) 

Assuming that the gas and liquid phases have identical temperature, the following energy 

balance can be used: 

∂�(1 − εG)ρSLCpSLT�
∂t

=
∂
∂z
�ρSLCpSL(1 − εG)DH

∂T
∂z
� +

∂(ρSLCpSLULT)
∂z

 

                                             −UHeat(T − Tcool) + (1 − εG)rHeat 
(6-25) 

The boundary conditions are: 

z =  0              ULρSLT − ρSL(1 − εG)DH
∂T
∂z

= (ULρSLT)0 (6-26) 
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z =  L              
∂T
∂z

= 0 (6-27) 

The pressure profile was obtained from the hydrostatic head pressure: 
∂P
∂z

+ [(1 − εG)ρSL + εGρG]𝑔 = 0 (6-28) 

Also, the change of gas velocity due to gas consumption was estimated using the total gas-phase 

mass balance: 

∂UG

∂z
+ ��

kLai,small
Ci,G,small

�Ci,small∗ − Ci,L� +
kLai,large
Ci,G,large

�Ci,large∗ − Ci,L��
𝑖

= 0 (6-29) 

With the following boundary conditions: 

z =  0              UG = UG,inlet (6-30) 

z =  L              
∂UG

∂z
= 0 (6-31) 

The gas velocity of the small bubbles was taken from de Swart [228]: 

UG,small = 2.25
σL
µL
�
σL3ρL
gµL4

�
−0.273

�
ρL
ρG
�
0.03

εG,small (6-32) 

Then the gas velocity of the large bubbles can be calculated from: 

UG,large = UG − UG,small (6-33) 

6.3.3 Model Parameters Estimation 

In order to solve the set of equations derived above, several key parameters need to be estimated, 

such as the settling velocities of solid particles (UP); the axial dispersion coefficients of the liquid 

(DL), small gas bubbles (DG,small), large gas bubbles (DG,large) and solid (DS) phases; the 

volumetric liquid-side mass transfer coefficients of the species in the small gas bubbles (kLai,small) 

and large gas bubbles (kLai,large); the phase holdups for the liquid (εL), small gas bubbles (εG,small) 

and large gas bubbles (εG,large); and the kinetic rate (ri). The estimation of the parameters needed 

is detailed in the following sections. 
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Table 30: Literature F-T SBCR Models 

Authors/Ref. Kinetics Species involved 
in MB 

Gas Phase Liquid/Slurry 
Phase 

Solid 
Phase  Energy Gas 

Consumption 

Steady-State 
or 

Transient? LB SB 
Calderbank et al. [313] FTS, 1st order H2 PF PF Uniform - - - 

Satterfield and Huff [314] FTS, 1st order H2 PF PM Uniform Isothermal No Steady-State 
Deckwer et al. [315] FTS, 1st order H2 PF PM Uniform Isothermal Linear f(X) Steady-State 
Deckwer et al. [316] FTS, 1st order H2 ADM ADM SDM ADM Linear f(X) Steady-State 

Bukur [317] FTS, 1st order H2 PF PM; PF Uniform Isothermal Linear f(X) Steady-State 

Kuo [318] 
FTS, 1st order H2 

PF PF; PM; ADM Uniform Isothermal Linear f(X) Steady-State FTS, L-H 
WGS, L-H H2, CO, H2O, CO2 

Stern et al. [319] FTS, 1st order H2 PF PM Uniform Isothermal No Steady-State 

Leib and Kuo [77] FTS, L-H 
WGS, L-H H2, CO, H2O, CO2 PF Unmixed SDM - Linear f(X) Steady-State 

Stern et al. [308] FTS, 1st order 
WGS, 2nd order 

H2, CO, H2O, CO2, 
CnHm ADM ADM SDM Isothermal Overall gas MB Steady-State 

Bukur and Zimmerman [302] FTS, L-H 
WGS, L-H 

H2, CO, H2O, CO2, 
CnHm PF Unmixed SDM Isothermal Overall gas MB Steady-State 

Turner and Mills [320] FTS, 1st order H2 
MCM; PF MCM Uniform Isothermal 

Linear f(X) Steady-State 
ADM ADM SDM ADM 

Prakash [304] FTS, L-H 
WGS, L-H H2, CO, H2O, CO2 ADM ADM SDM Isothermal Overall gas MB Steady-State 

Leib et al. [321] FTS, 1st order H2 MCM MCM Uniform Isothermal Linear f(X) Steady-State 

Inga and Morsi [322] FTS, L-H 
WGS, L-H H2, CO, H2O, CO2 PF MCM Uniform Isothermal No Steady-State 

Mills et al. [323] FTS, 1st order H2 ADM ADM SDM ADM Linear f(X) Steady-State 
Maretto and Krishna [324] FTS, L-H H2, CO PF PM PM Uniform Isothermal No Steady-State 

van der Laan et al. [34] FTS, L-H 
WGS, L-H 

H2, CO, H2O, CO2, 
n products PF PM PM Uniform Isothermal Linear f(X) Steady-State 

de Swart and Krishna [272] FTS, 1st order H2 ADM ADM ADM SDM ADM Linear f(X) Transient 

Rados et al. [305, 311] FTS, 1st order H2, CO, H2O, 
pseudo product ADM ADM ADM Uniform ADM Overall gas MB Transient 

Song et al.[307] FTS, L-H H2, CO, H2O, 
pseudo product PF PM Uniform Isothermal Overall gas MB Steady-State 

Song et al. [325] FTS, L-H H2, CO, H2O, CO2 PM PM Uniform Isothermal No Steady-State 
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Authors/Ref. Kinetics Species involved 
in MB 

Gas Phase Liquid/Slurry 
Phase 

Solid 
Phase  Energy Gas 

Consumption 

Steady-State 
or 

Transient? LB SB 

Fernandes [326] FTS, L-H 
WGS, L-H 

H2, CO, H2O, CO2, 
n products PF PM PM Uniform Isothermal Linear f(X) Steady-State 

Iliuta et al. [303, 312]  FTS, L-H 
WGS, L-H 

H2, CO, H2O, CO2, 
n pseudo products 

Core 
ADM 

Core & 
Annulus 

ADM 

Core & Annulus 
ADM 

Core & 
Annulus 

ADM 
ADM Overall gas MB Steady-State 

Sehabiague et al. [306] FTS, L-H H2, CO, H2O, CO2, 
N2, n products ADM ADM ADM SDM ADM Overall gas MB Steady-State 

Wang et al. [309] FTS, L-H 
WGS, L-H 

H2, CO, H2O, CO2, 
N2, n products PF PM PM Uniform Isothermal Overall gas MB Steady-State 

Guettel and Turek [327] FTS, 1st order H2 PF PM Uniform PF Linear f(X) Steady-State 
Troshko and Zdravistch 

[328] FTS, L-H H2, CO, H2O, 
pseudo product CFD CFD Uniform Isothermal CFD Transient 

L-H: Overall reaction rate based on Langmuir-Hinshelwood kinetics. 
ADM: Axial-Dispersion Model 
MCM: Mixing-Cell Model 
SDM: Sedimentation-Dispersion Model 
PF: Plug-Flow 
PM: Perfectly Mixed 
MB: Mass Balance 
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6.3.3.1 Dispersion Coefficients 

The dispersion coefficients for the gas, liquid and solid phases were estimated from the available 

literature, although possible experimental methods for measuring the dispersion coefficients in 

the pilot-scale SBCR were considered as presented in Appendix A. 

Liquid-Phase Dispersion 

The axial liquid phase dispersion coefficient (DL) was predicted using Equation (6-34) 

introduced by Baird and Rice [310] who used a large number of experimental data reported by 

various authors to obtain such an equation. 

DL = 0.35dR1.33(gUG)0.33 (6-34) 

It should be noted that Equation (6-35) proposed by Deckwer et al. [108, 316] can also be used 

instead of Equation (6-34) and predicts similar values for the dispersion coefficient. 

D𝐿 = 0.768𝑑𝑅1.34𝑈𝐺0.32 (6-35) 

The dependency of the liquid phase dispersion coefficient (DL) on the reactor diameter was 

accounted for by the scale-up index (n), introduced by Yang et al. [329] and defined as: 

DL~dRn  (6-36) 

These authors found that the operating pressure has an effect on the scale-up index since the 

axial dispersion coefficient was found to decrease with increasing pressure. They proposed the 

following equation to take into account the effect of pressure: 

n
n0

= 1 − 0.11 ln �
ρG
ρG,0

� (6-37) 

In the above equation, n0 and ρG,0 represent the scale-up index and the gas density at atmospheric 

pressure, respectively. 

It should be noted that the decrease of the liquid phase axial dispersion coefficient with 

increasing gas density could be related to the increase of the gas holdup or more precisely to the 

increase and decrease of the populations of small gas bubbles and large gas bubbles, respectively 
[120]. The decrease of the large gas bubbles population results in less back-mixing in the SBCR 

i.e., lower values of the liquid-phase axial dispersion coefficient (DL). 
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Gas-Phase Dispersion 

The axial gas phase dispersion coefficient (DG) can be predicted using several correlations 

available in the literature, such as those by Mangartz and Pilhofer [330], Towell and Ackerman 
[331] or Field and Davidson [332]. These correlations, however, cannot be applied to the 2-class 

ADM because they were developed considering the gas bubbles as only a single-phase. They 

also overpredict the axial dispersion coefficient values for large reactor diameters. While the 

small-bubbles axial dispersion coefficient can adequately be assumed to be identical to that of 

the liquid phase since the small bubbles are entrained by the liquid recirculation, the axial 

dispersion of the large gas bubbles, which rise fast in the reactor in a plug flow, is more difficult 

to estimate. It should be mentioned that to our knowledge, no one has measured the axial 

dispersion of the small or large gas bubbles. de Swart and Krishna [272] assumed a constant value 

of 100 for the Peclet Number of the large gas bubbles (Pe)Large in order to account for this 

phenomena. Their assumption, however, neglected the impact of the other operating variables on 

the size and population of the large gas bubbles and thus on their axial dispersion. In this study, 

the axial dispersion coefficient of the gas-phase was assumed to be a function of the diameters of 

the gas bubbles. For small gas bubbles, the axial dispersion coefficient should be equal or similar 

to that of the liquid-phase, whereas for large gas bubbles the axial dispersion coefficient should 

be small to obtain plug flow like conditions. The following relationship is therefore proposed to 

estimate the dispersion of each class of gas bubbles: 
D𝐺

D𝐿
= 1 −

𝑑𝐵
𝑎

𝑑𝐵,0
𝑎 + 𝑑𝐵

𝑎 (6-38) 

This relationship shows that for small gas bubbles diameter (dB ≈ 0) the gas phase dispersion is 

equal to the liquid-phase dispersion. For large gas bubbles (dB is large) the gas phase dispersion 

approaches 0. The constant dB,0 in Equation (6-38) represents the diameter of the gas bubbles at 

the point of designation as large gas bubbles in the 2-class model and was set at 0.01 m. The 

value of the exponent in Equation (6-38) was chosen so that Equation (6-38) predicts the large 

gas bubbles Peclet number assumption of de Swart and Krishna [272] under the conditions theses 

authors used. 

Solid-Phase Dispersion Coefficient and Particles Settling Velocity 

The direct measurements of the solid concentration performed along the pilot SBCR have shown 

that the dispersion-sedimentation model was able to fit well the data obtained (see Section 6.1.8). 
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Behkish [127] performed similar measurements of the solid concentration using the same reactor; 

and also found that the dispersion-sedimentation model fitted well the data obtained with average 

absolute relative error and standard deviation of 1.5 and 2.5 %, respectively. Unfortunately the 

number of experimental data points obtained by Behkish [127] and in this present study was not 

sufficient to allow a precise estimation of the particles settling velocity and solid dispersion 

coefficient. These two parameters were therefore estimated using the data of several other 

authors [173, 186, 270, 271]. Using the data/correlations developed by the authors listed in Table 31, 

the following two correlations were developed: 

PeS = 8.5FrG0.76ReG−0.052 + 0.025ReP1.07FrG−0.067 (6-39) 

UP = 1.37UG
0.17UTS

0.78(1 − cV)2.43 (6-40) 

 
Table 31: Models used for Predicting the Axial Solid Dispersion Coefficient and Particle Settling Velocity 

Authors Solid System Correlation 

Kato et al. [270] 

Glass beads 
ρP = 2520 kg/m3 
75.5<dP<163 µm 
CS: 48-202 kg/m3 

UGdR
DS

= 13FrG
1 + 0.009RePFrG−0.8

1 + 8FrG0.85  

UP = 1.33Ut,∞ �
UG

Ut,∞
�
0.25

(1 − cV)2.5 

Kojima et al. [173] 
Glass beads 

105 <dP<125 µm 
CS: 3.1-62 kg/m3 

UGdR
DS

= 10FrG0.76 

O’Dowd et al. [186] 

Glass beads 
ρP = 2420 kg/m3 
88<dP<105 µm 

CS: up to 420 kg/m3 

UGdR
DS

= 7.7 �
FrG6

ReG
�
0.098

+ 0.019ReP1.1 

UP = 1.69UG
0.23UT,∞

0.8 (1 − cV)1.28 

Smith and Reuther [271] 

Glass beads 
ρP = 2420, 3990 kg/m3 

48.5<dP<164 µm 
CS: up to 420 kg/m3 

UGdR
DS

= 9.6 �
FrG6

ReG
�
0.1114

+ 0.019ReP1.1 

UP = 1.1UG
0.026UT,∞

0.8 (1 − cV)3.5 

 

The particles terminal settling velocity was estimated as follows [333]: 

UTS =
(ρS − ρL)gdP2

18µL
 (6-41) 

6.3.3.2 Hydrodynamics and Mass Transfer 

The gas holdup, gas bubble sizes, and volumetric liquid-side mass transfer coefficient were 

estimated using the correlations presented in Section 6.1.8. The gas holdup for the large gas 
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bubbles was estimated using Behkish et al. [184] correlation listed in Table 26 and the gas holdup 

for the small bubbles was obtained from: 

𝜀𝐺,𝑠𝑚𝑎𝑙𝑙 = 𝜀𝐺 − 𝜀𝐺,𝑙𝑎𝑟𝑔𝑒 (6-42) 

The bubbles sizes for the large and small gas bubbles were estimated from the correlation by 

Lemoine et al. [277] 

The overall volumetric liquid-side mass transfer coefficient (kLaL) obtained from 

Equation (6-11) includes all gas components and gas bubbles. Its value can be obtained from the 

rate of multicomponent gas absorption in the liquid phase: 

−
𝑑𝑛𝐺
𝑑𝑡

= 𝑘𝐿𝑎𝐿(𝐶∗ − 𝐶𝐿)𝑉𝐿 (6-43) 

Where nG is the total number of moles of gas and C* is the total equilibrium concentration of 

dissolved gas components in the liquid phase. 

In the case of F-T SBCR reactor, the gas phase is composed of a mixture (syngas + gaseous 

products + inert) and is in the form of gas bubbles of different sizes. Therefore, in a bubble “n”, 

we can define a “(kLaL)i,n” for the “i” component of the gas mixture as: 

−
𝑑𝑛𝐺,𝑖,𝑛

𝑑𝑡
= (𝑘𝐿𝑎𝐿)𝑖,𝑛�𝐶𝑖,𝑛∗ − 𝐶𝐿,𝑖�𝑉𝐿 (6-44) 

Where nG,I,n is the number of moles of gas component “i” in the bubble “n”. The overall rate of 

mass transfer is the sum of all the individual rates: 

−
𝑑𝑛𝐺
𝑑𝑡

= ��−
𝑑𝑛𝐺,𝑖,𝑛

𝑑𝑡
𝑖𝑛

= ��(𝑘𝐿𝑎𝐿)𝑖,𝑛�𝐶𝑛,𝑖
∗ − 𝐶𝐿,𝑖�𝑉𝐿

𝑖𝑛

 (6-45) 

Substituting Equation (6-45) into Equation (6-43), we obtain the relationship between the 

individual “(kLaL)i,n” and the overall kLaL coefficient: 

𝑘𝐿𝑎𝐿 =
∑ ∑ (𝑘𝐿𝑎𝐿)𝑖,𝑛�𝐶𝑛,𝑖

∗ − 𝐶𝐿,𝑖�𝑖𝑛

(𝐶∗ − 𝐶𝐿)  (6-46) 

If we assume that at time t = 0, there is no dissolved gas in the liquid phase, the relationship can 

be simplified to: 

𝑘𝐿𝑎𝐿 =
∑ ∑ (𝑘𝐿𝑎𝐿)𝑖,𝑛𝐶𝑛,𝑖

∗
𝑖𝑛

𝐶∗
 (6-47) 

The volumetric liquid-side mass transfer coefficients as well as the solubilities of N2/He gas 

mixtures were measured in the paraffins mixture by Rakymkul [334] using a 4 liters stirred tank 

reactor connected to a mass spectrometer. For each experiment with any N2/He gas mixture, 3 
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volumetric mass transfer coefficients were obtained using a TPGA technique similar to that used 

in the pilot SBCR: one for the overall gas (kLa), one for He (kLaHe), and one for N2 (kLaN2). 

Applying Equation (6-47), an expression for the overall kLa as a function of the individual kLa 

and solubilities is obtained: 

Using the solubility data from Rakymkul [334], equation (6-48) can be used to calculate the 

overall kLa values and compare them to the experimental ones. Figure 65 shows the overall kLa 

values obtained from equation (6-48) presented against the measured overall kLa values obtained 

by Rakymkul,[334] and as can be seen a very good agreement between the measured and predicted 

values is obtained. 

 

 
Figure 65: Overall kLa Obtained from Equation (6-48) Versus Overall kLa Measured  

(He/N2 Gas Mixture; CS = 10 vol.%; N = 1100 RPM) 

 

According to the surface renewal and penetration theories,[335] the mass transfer coefficient of the 

gas component “i” in a bubble “n” is proportional to the square root of its diffusivity into the 

liquid phase. A relationship between the mass transfer coefficients of components “i” and “j” for 

a gas bubble “n” can therefore be suggested as in Equation (6-49). 

𝑘𝐿𝑎 =
𝑘𝐿𝑎𝐻𝑒𝐶𝐻𝑒∗ + 𝑘𝐿𝑎𝑁2𝐶𝑁2∗

𝐶𝐻𝑒∗ + 𝐶𝑁2∗
 (6-48) 
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𝑘𝐿,𝑖,𝑛

𝑘𝐿,𝑗,𝑛
= �

𝐷𝑖
𝐷𝑗
�
0.5

 (6-49) 

Substituting Equation (6-49) into Equation (6-47) leads to: 

𝑘𝐿𝑎𝐿 =
∑ (𝑘𝐿𝑎𝐿)𝑗,𝑛 ∑ �𝐷𝑖𝑖𝑛 𝐶𝑛,𝑖

∗

�𝐷𝑗𝐶∗
 (6-50) 

At this point, if we regroup all the gas bubble into 1 class, we have an expression for the 

individual (kLaL)j of each component “j” in the gas mixture: 

(𝑘𝐿𝑎𝐿)𝑗 =
𝑘𝐿𝑎𝐿�𝐷𝑗𝐶∗

∑ �𝐷𝑖𝑖 𝐶𝑖∗
=
𝑘𝐿𝑎𝐿�𝐷𝑗𝑥∗

∑ �𝐷𝑖𝑖 𝑥𝑖∗
 (6-51) 

Thus, with the knowledge of the overall mass transfer coefficient (kLa), through direct 

measurements using the gas mixture under actual conditions or through the use of adequate mass 

transfer coefficient correlation, and the knowledge of the gas diffusivity (Di) and equilibrium 

solubility (Ci*), one can predict the mass transfer coefficient of each component (kLa)i in the 

mixture in the reactor with high precision using Equation (6-51). 

For the modeling purposes in this study, the gas bubbles distribution is divided into 2 

classes (small and large) according to their size, and subsequently equation (6-50) becomes: 

𝑘𝐿𝑎𝐿 =
(𝑘𝐿𝑎𝐿)𝑗,𝑠𝑚𝑎𝑙𝑙 ∑ �𝐷𝑖𝑖 𝐶𝑠𝑚𝑎𝑙𝑙,𝑖∗ + (𝑘𝐿𝑎𝐿)𝑗,𝑙𝑎𝑟𝑔𝑒 ∑ �𝐷𝑖𝑖 𝐶𝑙𝑎𝑟𝑔𝑒,𝑖

∗

�𝐷𝑗𝐶∗
 (6-52) 

The correlations by Calderbank and Moo-Young [336] of the mass transfer coefficients for small 

and large gas bubbles leads to: 

𝑘𝐿,𝑗,𝑙𝑎𝑟𝑔𝑒

𝑘𝐿,𝑗,𝑠𝑚𝑎𝑙𝑙
= 1.3548 �

𝜇𝑆𝐿
𝜌𝑆𝐿𝐷𝑗

�
1
6�

 (6-53) 

From the assumption that all the gas bubbles have spherical shapes, an expression for the 

interfacial area of a bubble “n” (or class “n”) is derived as: 

𝑎𝐿,𝑛 =
6𝜀𝐺,𝑛

𝑑𝑏,𝑛(1 − 𝜀𝐺) (6-54) 

Where εG is the overall gas holdup, εG,n is the gas holdup of the gas bubbles from the class “n” 

and db,n is their corresponding average diameter. 

From Equations (6-53) and (6-54), the relationship shown in Equation (6-55) between the 

individual “(kLaL)i,n” of two classes of gas bubbles is obtained. 
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(𝑘𝐿𝑎𝐿)𝑗,𝑙𝑎𝑟𝑔𝑒

(𝑘𝐿𝑎𝐿)𝑗,𝑠𝑚𝑎𝑙𝑙
= 1.3548�

𝜇𝑆𝐿
𝜌𝑆𝐿𝐷𝑗

�
1
6� 𝜀𝐺,𝑙𝑎𝑟𝑔𝑒𝑑𝑏,𝑠𝑚𝑎𝑙𝑙

𝜀𝐺,𝑠𝑚𝑎𝑙𝑙𝑑𝑏,𝑙𝑎𝑟𝑔𝑒
 (6-55) 

Substituting in Equation (6-52), the final expression for the individual “(kLaL)i,small” of the small 

bubbles class becomes as follows: 

(𝑘𝐿𝑎𝐿)𝑗,𝑠𝑚𝑎𝑙𝑙 =
𝑘𝐿𝑎𝐿�𝐷𝑗𝐶∗

∑ �𝐷𝑖𝑖 𝐶𝑠𝑚𝑎𝑙𝑙,𝑖∗ + 1.3548 � 𝜇𝑆𝐿
𝜌𝑆𝐿𝐷𝑗

�
1
6� 𝜀𝐺,𝑙𝑎𝑟𝑔𝑒𝑑𝑏,𝑠𝑚𝑎𝑙𝑙
𝜀𝐺,𝑠𝑚𝑎𝑙𝑙𝑑𝑏,𝑙𝑎𝑟𝑔𝑒

∑ �𝐷𝑖𝑖 𝐶𝑙𝑎𝑟𝑔𝑒,𝑖
∗

 (6-56) 

The individual “(kLaL)i,large” of the large bubbles class can then be obtained from equation (6-55). 

The diffusivity coefficients of the different gaseous compounds were estimated using the 

correlation developed by Erkey et al. [259] and presented in Section 4.2.3. 

6.3.3.3 Catalysts and Kinetics 

The kinetic rate expressions for the F-T reactions available in the literature for the iron and 

cobalt-based catalysts are listed in Tables 32 and 34, respectively. Each expression was 

independently used in the simulator; and in the case of iron catalyst, one of the WGS reactions 

given in Table 33 was employed. For instance, the kinetic expressions by Deckwer et al. [80], 

Huff and Satterfield [76], and Ledakowicz et al. [78] were coupled with the rate expression for the 

WGS reaction from Chang et al. [57]. In the case of the kinetic expressions by Zimmerman and 

Bukur,[37] their rate expressions for the WGS reaction were used. It should be noted that these F-

T kinetic rate expressions were obtained in slurry reactors, at different temperatures and were 

easily incorporated in the reactor model. The kinetic rate expressions by Atwood and Bennett [73] 

and Yang et al. [64], however, were obtained in a fixed-bed reactor, and due to the relatively small 

size (300 and 305 µm) of the catalytic particles used, they were used in this study. Also, due to 

the similarity of their catalysts, the rate of F-T from Atwood and Bennett [73] was paired with the 

WGS rate from Yang et al. [64]. Most of the coefficients for the F-T and WGS reactions listed in 

Tables 32 through 34 are expressed as function of the operating temperature in an Arrhenius 

form as: 

𝑘𝐹𝑇 (𝑜𝑟 𝑊𝐺𝑆) = 𝑘0𝑒
−𝐸𝑎𝑅𝑇 (6-57) 

𝑏 = 𝑏0𝑒
−𝐸𝑎𝑅𝑇 (6-58) 
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Table 32: F-T Kinetics and Characteristics of the Iron Catalysts 

Reference Catalyst 
Operating Conditions 

Equation 
kFT b 

ρ 
(g/L) 

d 
(mm) T 

(C) 
P 

(MPa) H2/CO k0 Ea b0 Ea 

Atwood and 
Bennett [73] 

Reduced Nitrided 
Fused 

Fe/K2O/Al2O3/SiO2 

250-
315 2 2 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2𝑃𝐶𝑂
𝑃𝐶𝑂 + 𝑏𝑃𝐻2𝑂

 0.1013 80.4 0.1640 -8.83 5324 300 

Chang et al. 
[57] Fe/Cu/K/SiO2 

250-
290 

0.95-
2.55 

0.65-
1.51 See Chang et al. [57] - - - - 5000 1 < 44 

(34)1 

Deckwer et 
al.[80] Reduced Prec. Fe/K 220-

260 - 0.5-2.0 𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2
2 𝑃𝐶𝑂

𝑃𝐶𝑂𝑃𝐻2 + 𝑏𝑃𝐻2𝑂
 4.239 85.3 0.01847 -80 5389 < 50 

(40)1 

Huff and 
Satterfield [76] 

Reduced Fused 
Fe/K2O/CaO/SiO2 

232-
263 0.4-1.5 0.5-1.8 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2
2 𝑃𝐶𝑂

𝑃𝐶𝑂𝑃𝐻2 + 𝑏𝑃𝐻2𝑂
 1.198 82.2 1.786E-4 -98.1 5414 < 44 

(34)1 

Ledakowicz 
et al. [78] Reduced Prec. Fe/K 220-

260 1.0 0.5-0.6 𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2𝑃𝐶𝑂

𝑃𝐶𝑂 + 𝑏𝑃𝐶𝑂2
 513.9 108 0.0241 -9.2 5389 < 50 

(40)1 

Zimmerman 
and Bukur [37] 

Prec. Fe/Cu/K 235-
265 1.5-3.0 0.6-1.0 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2𝑃𝐶𝑂
𝑃𝐶𝑂 + 𝑏𝑃𝐻2𝑂

 6.763 86 5.3 0 5474 < 44 
(34)1 

Reduced 
Fe/Cu/K/SiO2 

235-
265 1.5-3.0 0.6-1.0 𝑟𝐹𝑇 = 𝑘𝐹𝑇𝑃𝐻2 2.502 86 - 4469 < 44 

(34)1 

1 values assumed 
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Table 33: WGS Kinetics and Characteristics of the Iron Catalysts 

Reference Catalyst 

Operating 
Conditions 

Equation 
kWGS 

b 
Keq 

ρ 
(g/L) 

d 
(mm) T 

(C) 
P 

(MPa) H2/CO k0 Ea k0 Ea 

Chang et al. 
[57] Fe/Cu/K/SiO2 

250-
290 

0.95-
2.55 

0.65-
1.51 𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒𝑞

𝑃𝐻2
0.5 + 𝑏𝑃𝐶𝑂𝑃𝐻2𝑂

 3.16E-6 35.6 0.0183 0.689 -8.14 5000 1 < 44 
(34)1 

Yang et al. [64] Fe/Mn 283-
328 

1.5-
3.05 

1.02-
3.13 𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒𝑞

𝑃𝐻2
0.5 + 𝑏𝑃𝐶𝑂𝑃𝐻2𝑂

 1.08E-4 58.4 8.73E-5 0.689 -8.14 - 305 

Zimmerman 
and Bukur [37] 

Prec. Fe/Cu/K 235-
265 1.5-3.0 0.6-1.0 𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒𝑞

𝑃𝐶𝑂 + 𝑏𝑃𝐻2𝑂
 9.25E+6 132 21 0.0132 -38.1 5474 < 44 

(34)1 

Reduced 
Fe/Cu/K/SiO2 

235-
265 1.5-3.0 0.6-1.0 𝑟𝑊𝐺𝑆 = 𝑘𝑊𝐺𝑆

𝑃𝐶𝑂𝑃𝐻2𝑂 −
𝑃𝐶𝑂2𝑃𝐻2
𝐾𝑒𝑞

𝑃𝐶𝑂𝑃𝐻2
 

5.84E+11 137 - 0.0132 -38.1 4469 < 44 
(34)1 
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Table 34: F-T Kinetics and Characteristics of the Cobalt Based Catalysts 

Reference Catalyst 
Operating Conditions 

Equation 
kFT b 

ρ 
(g/L) 

d 
(mm) T (C) P (MPa) H2/CO k0 Ea b0 Ea 

van Steen and 
Schulz [86] Co/MgO/ThO2/SiO2 

190-
210 

PH2 = 0.01-1.93 
PCO = 0.05-2.54 

𝑟𝐹𝑇 = 𝑘𝐹𝑇
𝑃𝐻2
3 2⁄ 𝑃𝐶𝑂

𝑃𝐻2𝑂 �1 +
𝑏𝑃𝐻2𝑃𝐶𝑂
𝑃𝐻2𝑂

�
2 54003 142 1.24E-11 -40.7 4089 Unknown 

(70)1 

Withers et al. [99] Co/Zr/SiO2 
220-
280 2.1 0.5-2.0 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2
2 𝑃𝐶𝑂

𝑃𝐶𝑂𝑃𝐻2 + 𝑏𝑃𝐻2𝑂 
5962 102 9.38E+5 -18.9 2852 70 

Yates and 
Satterfield [100] Co/MgO/SiO2 

220-
240 1.5-3.5 1.5-3.5 𝑟𝐹𝑇 = 𝑘𝐹𝑇

𝑃𝐻2𝑃𝐶𝑂
(1 + 𝑏𝑃𝐶𝑂)2 2.592E-9 37.4 1.24E-12 -68.5 3154 72 

1 values assumed 
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The skeletal density of each catalyst listed in Tables 32 through 34 was estimated, when it was 

not given, based on its composition. The composition of the catalyst used by Huff and Satterfield 
[76] was estimated assuming the balance of the partial composition provided by the authors and 

the catalyst is equally composed of FeO and Fe2O3. The skeletal density of the catalyst used by 

Withers et al. [99] was estimated according to its composition given by the authors, assuming the 

balance is made only of SiO2. Finally, the density of the catalyst by Chang et al. [57] was assumed 

to be 5,000 kg/m3. 

Neither the mean catalyst particle size nor size distribution was given in most of the 

available literature. The majority of the authors, however, mentioned the maximum particles size 

as they sieved the catalyst prior to their experiments. In these cases, a mean particles size equal 

to 10 microns lower than the maximum size was arbitrarily assumed. Yates and Satterfield [100] 

provided the upper and lower limits of the particles size distribution, and the particles diameter in 

this case was estimated as the average of these two limits. van Steen and Schulz [86] did not 

provide any information about the particle and in this situation, an arbitrarily value of 70 µm was 

assumed. Also, for Withers et al. [99] the particles size was assumed to be identical to the particles 

diameter of the support used to prepare the catalyst (SiO2). 

The values of the kinetic rate constant (kFT) shown in Table 32 are valid for a FT rate expression 

based on the rate of CO disappearance as: 

𝑟𝐹𝑇 = −
𝑑𝑛𝐶𝑂
𝑑𝑡

 (6-59) 

In some literature, however, the value of the rate constant kFT was given based on the rate of 

syngas (H2 + CO) disappearance as: 

𝑟𝐻2+𝐶𝑂 = −
𝑑𝑛𝐶𝑂
𝑑𝑡

−
𝑑𝑛𝐻2
𝑑𝑡

 (6-60) 

It was therefore converted for the rate of CO disappearance using the following relationships 

based on the stoichiometry of the FT (Equation (2-4)) and WGS (Equation (2-5)) reactions: 

𝑟𝐶𝑂 = −
𝑑𝑛𝐶𝑂
𝑑𝑡

= 𝑟𝐹𝑇 + 𝑟𝑊𝐺𝑆 (6-61) 

𝑟𝐻2 = −
𝑑𝑛𝐻2
𝑑𝑡

= �1 +
𝑚
2𝑛
� 𝑟𝐹𝑇 − 𝑟𝑊𝐺𝑆 (6-62) 

𝑟𝐻2+𝐶𝑂 = 𝑟𝐻2 + 𝑟𝐶𝑂 = �2 +
𝑚
2𝑛
� 𝑟𝐹𝑇 (6-63) 
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𝑟𝐹𝑇 =
1

�2 + 𝑚
2𝑛�

𝑟(𝐻2+𝐶𝑂) (6-64) 

The kinetic rate constants by Deckwer et al.,[80] Ledakowicz et al. [78] and Withers et al. [99] were 

based on the slurry concentrations. Those values were converted to pressures using Henry’s Law 

constants taken from Soriano [254] for H2 and CO, and from Marano and Holder [337] for H2O. The 

kinetic rate constant by Atwood and Bennett [73] was based on the catalyst bed concentration. 

Using the bed density mentioned by the authors and the skeletal density of the catalyst, the void 

fraction was calculated and used to convert the bed concentrations into pressures. Zimmerman 

and Bukur [37] provided kinetic rate constants based only on one temperature, although the 

authors reported activation energies for both F-T and WGS first order kinetic rate constants. 

These reported activation energies were used to calculate the kinetic rate constants as given in 

Table 32. 

6.3.3.4 Heat Transfer Coefficient 

The heat transfer coefficient from the dispersed phase (slurry + gas) was estimated using the 

correlation by Cho et al. [338] and including the effect of solids particles by replacing the liquid 

viscosity with the slurry viscosity: 

ho = 11710UG
0.445(µSL × 103)−0.060(P × 10−6)0.176 (6-65) 

6.3.3.5 Slurry Viscosity 

The viscosity of the slurry-phase was estimated using Deckwer et al. [108, 316] correlation: 

µSL = µL(1 + 4.5cV) (6-66) 

6.3.3.6 Gas Solubilities and Products Distribution 

The knowledge of the solubilities of the gases involved in the F-T synthesis is essential to 

correctly estimate the rate of absorption of the gases into the liquid-phase. Since the F-T process 

can produce wide range of products, the nature and properties of the liquid-phase will vary 

depending on the operating conditions of the reactor. The solubilities of the different gases in 

wax were estimated from the work by Soriano [254] who measured the solubilities of H2, CO, N2 
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and He in Sasol wax in a small agitated autoclave under Fischer-Tropsch conditions. The 

Henry’s law constant was expressed as a function of temperature as:  

ln(Hi) = ln�Hi,0� +
A

T2 +
B
𝑇

 (6-67) 

The coefficients of Equation (6-67) are listed in Table 35. 

 
Table 35: Coefficients for Henry’s Law Constant from Soriano [254] 

Gas A B Hi,0 
N2 -2.214 105 1,267 51.62 
He -5.442 105 3,336 53.17 
H2 -1.929 105 1,345 42.18 
CO -3.651 105 1,873 22.87 

 

The solubilities of other gases (H2O, CO2, CH4, etc…) were estimated from Marano and Holder 
[337] using their multi-component vapor liquid equilibria (VLE) model. This model coupled with 

the superposition of 2-α distributions for predicting the product distributions was used to 

perform equilibrium calculations in order to estimate the final composition of the gaseous and 

liquid hydrocarbon products. As explained in Section 2.1.3, two different growth probability 

factors (α1 and α2) are introduced in the 2-α model for the small and long chain products, 

respectively [52]. This model also relies on the term ζ corresponding to the break point of the 

distribution. The mole fraction of the n-carbons chain length products can be expressed as [52]: 

𝑥𝑛 =
𝛼1𝑛−1 + �𝛼1𝛼2

�
𝜉−1

𝛼2𝑛−1

1
1 − 𝛼1

+ �𝛼1𝛼2
�
𝜉−1 1

1 − 𝛼2

 (6-68) 

The values of the chain growth probability factors α1 and α2 as well as the term ζ were estimated 

in the case of iron catalyst from the reported values by Donnelly et al. [52] and are shown in Table 

36 along with the values for cobalt based catalysts that were estimated from the product 

selectivity obtained by Withers et al. [99]. 

 
Table 36: Hydrocarbon Products Distribution Parameters 

Catalyst α1 α2 ζ 
Iron 0.62 0.89 7 

Cobalt 0.78 0.89 13 
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It should be noted that in this expression, xn represents both alkanes and α-olefins products. Few 

studies provide a method to estimate the ratio of α-olefins to alkanes. The data of Fontenelle and 

Fernandes [339] obtained with cobalt based catalyst were used to develop the following 

relationship between carbon number and α-olefins to alkanes ratio: 

𝑖𝑓 𝑛 < 5                𝑅𝑜𝑝𝑛 = −2.68𝑛2 + 16.95𝑛 − 22.8 

𝑖𝑓 𝑛 ≥ 5                𝑅𝑜𝑝𝑛 = 14.69𝑒−0.342𝑛 
(6-69) 

When using Iron catalyst, the data from Chang et al. [57] was used to develop the following 

correlation for the α-olefins to alkanes ratio: 

𝑖𝑓 𝑛 < 5                𝑅𝑜𝑝𝑛 = −1.06𝑛2 + 7.18𝑛 − 6.25 

𝑖𝑓 𝑛 ≥ 5                𝑅𝑜𝑝𝑛 = −0.000115𝑛4 + 0.00804𝑛3 − 0.188𝑛2 + 1.40𝑛 + 1.47 
(6-70) 

6.3.4 Heat Exchanger Model 

An important aspect of the F-T synthesis is its high exothermicity. The successful design of its 

heat exchanger is therefore a critical part in the design of an F-T reactor. The main role of the 

heat exchanger is to remove the heat produced by the reaction, but also to convert this “extra 

heat” into valuable products or commodities such as steam. The different calculations required 

for the design of cooling pipes needed for heat removal from a commercial large-scale SBCR are 

presented in the following sections. 

6.3.4.1 Model Assumptions and Heat Balance 

The cooling medium is pressurized water. The heat exchanger consists of a bundle of vertical 

parallel tubes where water is fed either from the bottom or the top. Depending of the inlet water 

pressure, vaporization may occur and therefore the following assumptions were made: (1) the 

temperatures of the liquid water and vapor phases are equal; (2) the temperature of the two-phase 

fluid inside the cooling tubes is uniform in the radial direction; and (3) no conduction occur in 

the z direction across the tubes. The properties of water and steam were estimated from Wagner 

et al. [340] and Yaws [252], and the size, conductivity and roughness of the cooling tubes were 

taken from Nayyar and Mohinder [341]. The heat balance over a finite volume of cooling tube can 

be written as in equation (6-71). 
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𝑑𝑇
𝑑𝑧

+
2𝑟𝑜𝑈ℎ𝑒𝑎𝑡
𝜌𝐶𝑝𝑣𝑟𝑖2

(𝑇 − 𝑇𝑟) = 0 (6-71) 

Uheat is the overall heat transfer coefficient: 

𝑈ℎ𝑒𝑎𝑡 =
1

𝑟𝑜𝑙𝑛 �
𝑟𝑜
𝑟𝑖
�

𝑘𝑡
+ 1
ℎ𝑜

+ 𝑟𝑜
𝑟𝑖ℎ𝑖

+ 𝑅𝑜 + 𝑟𝑜
𝑟𝑖
𝑅𝑖

 
(6-72) 

The temperature profile inside the cooling tubes can be calculated by integrating Equation (6-71) 

with the following boundary conditions: 

𝑖𝑛𝑙𝑒𝑡: 𝑇 = 𝑇𝑖𝑛𝑙𝑒𝑡 (6-73) 

𝑜𝑢𝑡𝑙𝑒𝑡: 
𝑑𝑇
𝑑𝑧

= 0 (6-74) 

The knowledge of the temperature profile across the cooling pipes is also required: 
𝑑
𝑑𝑟
�𝑟
𝑑𝑇𝑡
𝑑𝑟

� = 0 (6-75) 

With the boundary conditions: 

𝑟 = 𝑟𝑖 : 
1

1
ℎ𝑖

+ 𝑅𝑖
(𝑇𝑡 − 𝑇) = 𝑘

𝑑𝑇𝑡
𝑑𝑟

�
𝑟=𝑟𝑖

 (6-76) 

𝑟 = 𝑟𝑜 :  
1

1
ℎ𝑜

+ 𝑅𝑜
(𝑇𝑟 − 𝑇𝑡) = 𝑘

𝑑𝑇𝑡
𝑑𝑟

�
𝑟=𝑟𝑜

 (6-77) 

 

 
Figure 66: Finite Volume of One Cooling Tube 

ρ Cp v T(z+dz) 

Uheat (Tr – T(z)) 

ρ Cp v T(z) 

ri 
ro 
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Figure 67: Temperature Profile across the Cooling Tube 

6.3.4.2 Heat Transfer 

To find the solutions of this set of equations and correctly design the heat exchanger, precise 

knowledge of all resistances to heat transfer across the cooling tubes as well as pressure drop 

along the tubes is required. The heat transfer coefficient for the outside of the cooling tubes was 

obtained from profiles computed using the developed F-T SBCR model. When a fluid such as 

water is flowing along a heated tube, the heat transfer and flow behavior varies with the heat flux 

and condition of the fluid. Three main regimes can be distinguished [342, 343]: (1) the heat flux is 

low and temperature of the fluid is below its boiling point, convective heat transfer takes place 

across the boundary layer without change of phase; (2) the heat flux is high enough for the wall 

temperature to rise a few degrees above boiling point, nucleate boiling takes place; and (3) at 

even higher heat fluxes the bubbles near the surface become closely packed until a continuous 

vapor film is formed on the surface. The heat transfer coefficient for the inside of the cooling 

tubes will therefore depend on which regime is occurring. In case of convective turbulent flow 

regime in closed pipes containing a fluid being heated, the Dittus and Boelter correlation [344] has 

been widely used. This equation is valid for the following dimensionless number ranges: 

Re > 104 ;  0.7 < 𝑃𝑟 < 100 ;  L
d

> 60 and only for convective heat transfer with no change of 

phase. Pethukov [345] developed other correlations for heat transfer in turbulent flow after 

conducting extensive experiments; and later Gnielinski [346] improved those equations to include 

TSL 

T 

Twall 

To 

ri 
ro 
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transitional flow regime in the range 2300 < 𝑅𝑒 < 5. 106 [347]. Once the temperature of boiling 

point is reached, water starts to vaporize and evaporative forced-flow conditions occur, the heat 

transfer in this case includes both a convective contribution and a nucleate boiling contribution 
[342]. A popular correlation for estimating the heat transfer as the sum of a convection term and a 

nucleation term was developed by Chen [348, 349]. More recently, Steiner and Taborek [350] used 

more than 13,000 data points mostly obtained with water to develop a new correlation for heat 

transfer in evaporative flows. Finally, the dirtiness of the cooling pipes was also accounted for by 

estimating fouling factors for the water-side and the slurry-side using the values from Table 37. 

 
Table 37: Fouling Factors [351] 

Fluid Ri or Ro (10-4 m2.K/W) 
Water in Closed System 88 

River Water 3.5 - 7 
Heavy Fuel Oils 8.8 

 

6.3.4.3 Pressure Drop 

As mentioned above, the pressure drop is also an important parameter for designing the cooling 

tubes. Under forced convective boiling conditions the total pressure drop is the sum of a 

frictional term corresponding to the variation of the fluid kinetic energy due to the friction 

against the walls of the tubes and fittings such as bends and valves, a gravitational term 

corresponding to the change in potential energy and finally an acceleration term due to the 

increase in momentum when water vaporizes. The head loss due to friction in closed pipes can 

be expressed as: 

�
𝑑𝑃
𝑑𝑧
�
𝑓

=
2𝑓𝐺2

𝜌𝑑
 (6-78) 

The frictional factor could be estimated using Haaland [352] correlation: 

1
�𝑓

= −3.6 𝑙𝑜𝑔 �
6.9
𝑅𝑒

+ �
𝑒

3.7𝑑
�
10
9
� (6-79) 

This correlation is valid over the range: 4. 104 < 𝑅𝑒 < 108, and 0 < 𝑒 𝑑⁄ < 0.05. The 

roughness of the stainless steel cooling pipes (e) can be estimated as: e = 0.00015 ft [353]. 

In the case of evaporative flow, the frictional pressure drop in the cooling tubes must be 

corrected for the presence of two phases. One popular model found in the literature is the 
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Lockhart–Martinelli [354] method which introduce a two-phase multiplier to estimate the two-

phase pressure drop based on the liquid phase pressure drop: 

𝛷𝐿𝑂
2 =

�𝑑𝑃𝑑𝑧�𝑓,2𝜑

�𝑑𝑃𝑑𝑧�𝑓,𝐿

 (6-80) 

∆Pf,L is the frictional pressure drop when only water is flowing in the tube. The method, 

however, predicts pressure drop with large errors under high pressure [355]. An improvement of 

this model was latter developed by Armand and Treshchev [348, 356] where they considered the 

total mass flux (water & steam) to calculate �𝑑𝑃
𝑑𝑧
�
𝑓,𝐿

term in Equation (6-80). A simpler 

correlation was later developed by Müller-Steinhagen and Heck [357] and was tested against 

existing literature correlations over a database of 9300 measurements obtained in water and 

several other refrigerants. It was found to be as good or better at predicting 2-phase pressure drop 

and was not limited to certain conditions as most of the correlations tested were. 

There can also be a small increase in the frictional pressure loss due to the effective 

roughness of the tube surface being altered by the bubble formation under evaporative 

conditions. This effect, however, was found to be negligible [343] and therefore was not taken into 

account in the present study. 

The pressure drop due to fittings can generally be expressed as: 

∆𝑃𝑓𝑖𝑡 = 𝐾𝑓𝑖𝑡
𝐺2

2𝜌
 (6-81) 

The values of the coefficient K which depends on the type of fitting were taken from Welty et al. 
[358] and in case of two-phase flow, only the mass flux of liquid was used to estimate the pressure 

loss. 

The pressure drop due to gravity can be estimated as a function of the void fraction [359]: 

�
𝑑𝑃
𝑑𝑧
�
𝑔

= [𝜌𝐿(1 − 𝛼) + 𝜌𝐺𝛼]𝑔 (6-82) 

with 𝛼 = �1 + 0.28 �
1 − 𝑥
𝑥

�
0.64

�
𝜌𝐺
𝜌𝐿
�
0.36

�
𝜇𝐿
𝜇𝐺
�
0.07

�
−1

 (6-83) 

In the case of two-phase convective boiling flows, the pressure drop resulting from the increase 

in momentum of the mixture as water flows through the cooling tubes and vaporizes into steam 
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should also be included in the total pressure drop calculations [343]. The head loss due to 

acceleration can be estimated by the following expression: 

∆𝑃𝑎𝑐𝑐 =
𝐺2

𝜌
𝐾𝑎𝑐𝑐 (6-84) 

Where Kacc is a function of the steam quality and void fraction and can be estimated from [359]: 

𝐾𝑎𝑐𝑐 =
𝑥2

𝛼
�
𝜌𝐿
𝜌𝐺
� +

(1 − 𝑥)2

(1 − 𝛼) − 1 (6-85) 

Thom [343] provided direct values of the acceleration coefficient obtained from experimental data 

with water and steam in vertical heated tubes. From his listed values, Kacc was correlated as a 

function of steam quality and operating pressure instead of void fraction: 

𝐾𝑎𝑐𝑐 = �−28.9248 +
31.7224𝑃

350.8551 + 𝑃
� × �1 − (1 + 𝑥)�

119
𝑃0.8839+1.9546�� 

𝑤𝑖𝑡ℎ 𝑃 𝑖𝑛 𝑃𝑠𝑖 
(6-86) 

6.3.5 Numerical Solution 

All differential material balance equations for all components along with the equation parameters 

and boundary conditions were incorporated in a simulator with a graphical user interface 

developed for both Windows and Mac operating systems (see Figure 68). The set of equations 

are numerically solved using the finite elements method (Galerkin Weighted Residual Approach 
[360]) with the free FORTRAN compiler g95. The equations of the heat exchanger model are 

solved numerically by the iterative method included in the MS Excel software. 
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Table 38: Heat Transfer Correlations for Fluid Flows in Vertical Tubes 

Authors Heat Transfer Correlation 

Dittus and 
Boelter [344] 𝑁𝑢 = 0.023𝑅𝑒0.8𝑃𝑟0.4 

Gnielinski [346] 𝑁𝑢 =
𝑓
8 (𝑅𝑒 − 1000)𝑃𝑟

1 + 12.7�𝑓8 (𝑃𝑟2 3⁄ − 1)
                         𝑓 =

1
(1.82𝑙𝑜𝑔𝑅𝑒 − 1.64)2 

Chen [349] 

ℎ𝑖 = ℎ𝐿 + ℎ𝑁𝐵                                         ℎ𝐿 = 0.023𝑅𝑒0.8𝑃𝑟0.4 𝑘𝑤𝑎𝑡𝑒𝑟
𝑑𝑖

𝐹 

𝑋𝑡𝑡 = �
(1 − 𝑥)

𝑥
�
0.9

�
𝜌𝑠𝑡𝑒𝑎𝑚
𝜌𝑤𝑎𝑡𝑒𝑟

�
0.5
�
𝜇𝑤𝑎𝑡𝑒𝑟
𝜇𝑠𝑡𝑒𝑎𝑚

�
0.1

                         

⎩
⎪
⎨

⎪
⎧𝑖𝑓 

1
𝑋𝑡𝑡

≤ 0.1 𝑡ℎ𝑒𝑛 𝐹 = 1                                         

𝑖𝑓 
1
𝑋𝑡𝑡

> 0.1 𝑡ℎ𝑒𝑛 𝐹 = 2.35 �0.213 +
1
𝑋𝑡𝑡

�
0.736 

ℎ𝑁𝐵 = 0.00122
𝑘𝑤𝑎𝑡𝑒𝑟0.79 𝐶𝑃,𝑤𝑎𝑡𝑒𝑟

0.45 𝜌𝑤𝑎𝑡𝑒𝑟0.49

𝜎𝑤𝑎𝑡𝑒𝑟0.5 𝜇𝑤𝑎𝑡𝑒𝑟0.29 𝛥𝐻𝑣𝑎𝑝0.24𝜌𝑠𝑡𝑒𝑎𝑚0.24 𝛥𝑇𝑠𝑎𝑡0.24𝛥𝑃𝑠𝑎𝑡0.75𝑆 

𝑅𝑒𝑇𝑃 = 𝐹1.25𝑅𝑒𝑤𝑎𝑡𝑒𝑟                             𝑆 =
1

1 + 2.53. 10−6𝑅𝑒𝑇𝑃1.17 

𝛥𝑇𝑠𝑎𝑡 = 𝑇𝑤𝑎𝑙𝑙 − 𝑇𝑤𝑎𝑡𝑒𝑟                         ΔPsat = 𝑃𝑤𝑎𝑙𝑙 − 𝑃𝑤𝑎𝑡𝑒𝑟  

Steiner and 
Taborek [350] 

ℎ𝑖 = �(ℎ𝐿𝐹)3 + �ℎ𝑁𝐵,0𝐹𝑁𝐵�
3�

1
3�                           𝑞𝑁𝐵 =

2𝜎𝑇𝑠𝑎𝑡ℎ𝐿
𝑟𝑛𝑢𝑐𝜌𝐺∆𝐻𝑣𝑎𝑝

 

⎩
⎪
⎨

⎪
⎧𝑖𝑓 𝑞 > 𝑞𝑁𝐵: 𝐹 = �(1 − 𝑥)5 + 1.9𝑥0.6 �

𝜌𝑤𝑎𝑡𝑒𝑟
𝜌𝑠𝑡𝑒𝑎𝑚

�
0.35

�
1.1

                                                                                                              

𝑖𝑓 𝑞 < 𝑞𝑁𝐵: 𝐹 = �(1 − 𝑥)5 + 1.9𝑥0.6(1 − 𝑥)0.01 �
𝜌𝑤𝑎𝑡𝑒𝑟
𝜌𝑠𝑡𝑒𝑎𝑚

�
0.35

�
−2.2

+ �
ℎ𝐺
ℎ𝐿
𝑥0.01[1 + 8(1 − 𝑥)0.7] �

𝜌𝑤𝑎𝑡𝑒𝑟
𝜌𝑠𝑡𝑒𝑎𝑚

�
0.67

�
−0.5 

𝐹𝑁𝐵 = �2.816𝑃𝑅0.45 + �3.4 +
1.7

1 − 𝑃𝑅7
� 𝑃𝑅3.7�  ×  �

𝑞
𝑞0
�
0.8−0.1𝑒𝑥𝑝(1.75𝑃𝑅)

�
𝑑𝑖
𝑑𝑖,0

�
−0.4

�
𝑒
𝑒0
�
0.133

 

×  [0.377 + 0.199𝑙𝑛(𝑀𝑊) + 0.000028427𝑀𝑊
2 ] 
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Table 39: 2-Phase Pressure Drop Correlations 

Authors Frictional Pressure Drop Correlation 

Lockhart and 
Martinelli [354] 

�
𝑑𝑃
𝑑𝑧
�
𝑓,2𝜑

= 𝛷𝐿𝑂
2 �

𝑑𝑃
𝑑𝑧
�
𝑓,𝐿

                      �
𝑑𝑃
𝑑𝑧
�
𝑓,𝐿

=
2𝑓𝐺2(1 − 𝑥)

𝜌𝑑
 

𝑅𝑒𝐿 =
𝐺(1 − 𝑥)𝑑

𝜇𝐿
                   

⎩
⎪
⎨

⎪
⎧𝑅𝑒𝐿 < 2300            𝑓 =

64
𝑅𝑒𝐿

                                                             

𝑅𝑒𝐿 > 2300           𝑓 =
0.079
𝑅𝑒𝐿0.25                 𝛷𝐿𝑂

2 = 1 +
20
𝑋𝑡𝑡

+
1
𝑋𝑡𝑡2

 

Xtt is the Martinelli parameter as defined in Table 38 

Armand and 
Treshchev [356] 

�
𝑑𝑃
𝑑𝑧
�
𝑓,2𝜑

= 𝛷𝐿𝑂
2 �

𝑑𝑃
𝑑𝑧
�
𝑓,𝐿

                                 �
𝑑𝑃
𝑑𝑧
�
𝑓,𝐿

=
2𝑓𝐺2

𝜌𝑑
 

𝛽 =
𝑥

𝑥 + (1 − 𝑥) 𝜌𝐺𝜌𝐿
                                   RG = 𝛽(0.833 + 0.05𝑙𝑛𝑃)    with P in bar 

⎩
⎪⎪
⎨

⎪⎪
⎧

If   β < 0.9

⎩
⎪
⎨

⎪
⎧if RG < 0.5                  𝛷𝐿𝑂

2 =
(1 − x)1.75

(1 − RG)1.2                                                    

if RG > 0.5                  𝛷𝐿𝑂
2 =

0.48(1 − x)1.75

(1 − RG)1.9+0.00148P         with P in bar  

If    β > 0.9    𝛷𝐿𝑂
2 =

0.0025𝑃 + 0.055
(1 − 𝛽)1.75 (1 − 𝑥)1.75                                                          

 

Müller-Steinhagen 
and Heck [357] 

�
𝑑𝑃
𝑑𝑧
�
𝑓,2𝜑

= ��
𝑑𝑃
𝑑𝑧
�
𝑓,𝐿

+ 2 ��
𝑑𝑃
𝑑𝑧
�
𝑓,𝐺

− �
𝑑𝑃
𝑑𝑧
�
𝑓,𝐿
� 𝑥� (1 − 𝑥)1 3� + �

𝑑𝑃
𝑑𝑧
�
𝑓,𝐺

𝑥3 

�
𝑑𝑃
𝑑𝑧
�
𝑓,𝐿

=
2𝑓𝐿𝐺2

𝜌𝐿𝑑
                                    �

𝑑𝑃
𝑑𝑧
�
𝑓,𝐺

=
2𝑓𝐺𝐺2

𝜌𝐺𝑑
 

⎩
⎪
⎨

⎪
⎧𝑅𝑒𝐿 ;  𝑅𝑒𝐺 < 1184                 𝑓𝐿 =

64
𝑅𝑒𝐿

            ;        𝑓𝐺 =
64
𝑅𝑒𝐺

      

𝑅𝑒𝐿 ;  𝑅𝑒𝐺 > 1184                 𝑓𝐿 =
0.3164

𝑅𝑒𝐿
1
4�

     ;        𝑓𝐺 =
0.3164

𝑅𝑒𝐺
1
4�
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Figure 68: Graphical User Interface of the Simulator 

 

6.4 SIMULATION OF A CONCEPTUAL COMMERCIAL-SCALE REACTOR 

The purpose of this section is to use the model developed for the design of a commercial-size F-

T SBCR to produce 10,000 barrel per day (bbl/day) of synthetic liquid hydrocarbons. The model 

will be also used to optimize the performances of such a commercial reactor. 

The reaction rate expression from Yates and Satterfield [100] was chosen to describe the 

Fischer-Tropsch kinetics in the presence of a cobalt-based catalyst. As mentioned before, this 

reaction rate was developed with the reactants concentrations expressed as partial pressures. 

Therefore in the present model, Henry’s coefficients were introduced to express the rate in terms 

of liquid concentrations in a similar manner to Inga and Morsi [322]. Also, the resistance to mass 

transfer between the liquid bulk and the catalyst active sites can be neglected due to the small 

size of the catalyst particles and consequently the huge surface area available for adsorption. 

Finally the Water-Gas-Shift reaction is neglected as water does not adsorb on the catalyst 
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surface. The rate of reaction for the Fischer-Tropsch synthesis over cobalt-based catalyst finally 

becomes: 

rFT,Co = kFTCo
PH2PCO

(1 + aPCO)2 = kFT,Co
HeH2CL,H2HeCOCL,CO

�1 + aHeCOCL,CO�
2  (6-87) 

kFT,Co = k0e−
E1
RT (6-88) 

a = a0e−
E2
RT (6-89) 

The constants values can be found in Table 40. 

 
Table 40: Kinetic Constants Used in the Simulations 

Constant Value Unit 
k0 8.037 10-9 mol/kgcatakyst Pa2 s 
E1 37,369.5 J/mol 
a0 1.243 10-12 Pa-1 
E2 -68,474.1 J/mol 

 

The reaction term in the liquid phase mass balance (see Equation (6-12)) becomes: 

ri = υFT,iCSrFT,Co (6-90) 

The term for the rate of heat released by the reaction (see Equation (6-25)) becomes: 

rHeat = −∆HR,FTrFT,Co (6-91) 

It should be noted that in the following simulations, the value of the cross-flow mass exchange 

term in Equations (6-15) and (6-16) was set to 0. Moreover, the axial dispersion coefficient for 

the large gas bubbles was estimated from the correlation of Field and Davidson [332] while the 

dispersion coefficient of the small gas bubbles was assumed to be equal to that of the liquid 

phase. 

The simulator was used to study the effects of different operating variables, including 

reactor inside diameter, reactor height, superficial gas velocity, and catalyst concentration on the 

performance of an SBCR operating in the churn-turbulent flow regime. The ranges of all 

operating variables in addition to sparger type/geometry, catalyst particle size/density, slurry 

superficial velocity, and cooling pipes number/size used in the simulator are given in Table 41. 

The performance of the reactor was evaluated using the CO conversion, the liquid 

hydrocarbon yield, space time yield (STY) and catalyst productivity. The STY is defined similar 

to de Swart [228] as the mass of liquid hydrocarbons produced (kg) per reactor volume (m3) per 
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unit time (hour). The catalyst productivity was also defined as the mass of liquid hydrocarbons 

produced (kg) per mass of catalyst in the reactor (kg) per unit time (hour). 

The effects of reactor inside diameter (ID) and height (L) on the performances of an F-T 

SBCR operating at constant superficial gas velocity (UG = 0.3 m/s) and catalyst concentration 

(CS = 37.5 wt %) are shown in Figure 69. As can be seen in Figure 69-(a), CO conversion 

appears to increase by more than 50% with increasing reactor height from 30 to 50 m. This 

behavior agrees with that by de Swart [228] who reported an increase of CO conversion with 

increasing the height of a 7.5 m ID SBCR from 10 to 30 m. Figure 69-(a) also shows that CO 

conversion slightly decreases with increasing reactor ID. The effect of reactor ID and height on 

the hydrocarbon yield, depicted in Figure 69-(b), can be directly related to their effects on CO 

conversion. The increase of hydrocarbon yield with increasing reactor ID and height was 

expected since larger diameter and height leads to larger gas throughput and consequently 

greater hydrocarbon production. 

 
Table 41: Operating Variables Used in the Simulator for F-T SBCR 

System H2/CO (2/1) - Al2O3-supported cobalt-based catalyst 

Reactor and Sparger Geometry 

L, m 30 - 50 
dR , m 6 - 8 
NO, - 1033 - 1367 

dorf., m 0.065 - 0.075 
Sparger type M-ON 

Operating Variables 

T , K 500 
P , MPa 3 
UG , m/s 0.15 - 0.45 
USL , m/s 0.01 
dP , µm 42 

ρP , kg/m3 3218 
CS , wt.% 25 - 50 

 

Figure 69 also shows the effects of reactor height and ID on the space time yield (STY) (c) and 

the catalyst productivity (d). As can be seen, at constant reactor length, both STY and catalyst 

productivity appear to slightly decrease with increasing reactor ID; whereas at constant reactor 

diameter, both STY and catalyst productivity appear to increase with reactor length by about 5% 

and then level off after a reactor height of 40 m. This can be related to the fact that the overall F-

T reaction rate and accordingly the volumetric hydrocarbons production rate is expected to 

decrease due to the decrease of the syngas velocity, CO and H2 partial pressures, and catalyst 

concentrations with the reactor height. Thus, Figure 69 leads one to conclude that in order to 
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produce about 10,000 bbl/day of liquid hydrocarbons, an SBCR with an internal diameter of 7 m 

and a height of 30 m, could be used. 

 

  

  
Figure 69: Effect of Reactor Geometry on the Performances of the F-T SBCR (UG = 0.3 m/s, CS = 37.5 wt.%) 

 

The effects of the superficial gas velocity and catalyst concentration on the performance of an 

SBCR with the geometry given above (ID = 7 m and 30 m height) are illustrated in Figure 70. As 

can be seen in Figure 70-(a), the CO conversion decreases with increasing superficial gas 

velocity suggesting a small increase of the mass transfer rate compared to the decrease of the 

residence time of the gaseous reactants (CO and H2) which becomes too short for converting 

more CO. Figure 70-(a) also shows that increasing catalyst concentration, on the other hand, 
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increases the CO conversion. For low gas velocity (~ 0.15m/s) CO conversion appears to level 

off at high catalyst loading. This can be attributed to the fact that increasing catalyst 

concentration above 40 wt.% (or 13 vol.%) decreases the mass transfer coefficients (kLa) and 

consequently the mass transfer rate, which drives the SBCR to operate in a mass transfer-

controlled regime, leading to a maximum of CO conversion ( ~ 86 %). This effect of catalyst 

concentration on the CO conversion agrees with the findings by Inga and Morsi [322] who 

simulated a 4.8 m ID and 12 m height F-T SBCR using iron catalyst and reported that the syngas 

conversion reached a maximum and then decreased with increasing catalyst loading. It should be 

pointed out that few studies [34, 247] found a plateau of conversion at lower superficial gas 

velocities when increasing solid concentration; and other authors [228, 324, 326], who did not find a 

maximum of conversion when increasing catalyst concentration up to 35 vol%. This could be 

related to the difference in the catalyst size, density and activity as well as the absence of catalyst 

concentration in the mass transfer coefficients correlations used by these authors. Figure 70-(a) 

also shows that increasing gas velocity will shift the region of mass transfer controlled regime 

towards higher catalyst concentrations. Figure 70-(b) illustrates the effects on superficial gas 

velocity and catalyst concentration on the liquid hydrocarbon yield, and as can be observed at 

constant superficial gas velocity, the liquid hydrocarbon yield increases with increasing catalyst 

concentration, which is similar to the behavior of the CO conversion. At low catalyst 

concentration (< 35 wt. %), the hydrocarbon yield decreases with increasing the superficial gas 

velocity, whereas, for catalyst concentrations greater than 35 wt. %, the liquid hydrocarbons 

yield appears to increase with superficial gas velocity, reach a maximum and then decrease. 

Figure 70-(c) shows the effects of catalyst concentration and superficial gas velocity on 

the space time yield (STY); and as expected the STY follows the same trend of the yield because 

the reactor volume under these conditions is constant. Figure 70-(d) illustrates the effects of 

catalyst concentration and superficial gas velocity on the catalyst productivity; and as can be 

observed the catalyst productivity reaches a maximum at catalyst concentration of 25 wt. % and 

superficial gas velocities between 0.2 and 0.25 m/s; and generally decreases with increasing 

catalyst concentration up to 40 wt. %. At catalyst concentrations > 40 wt. %, however, the 

catalyst productivity appears to increase with increasing the superficial gas velocity. At 

superficial gas velocities > 0.25 m/s, the catalyst productivity increases with catalyst 

concentrations, levels off, and then decreases. From these four plots, Figure 70 clearly shows that 



 

 168 

maximum STY can be achieved using operating conditions (high catalyst loading and high 

superficial gas velocities) which are fundamentally different from those needed to obtain 

maximum catalyst productivity (low catalyst loading and average superficial gas velocities). 

  

  
Figure 70: Effect of Superficial Gas Velocity and Catalyst Concentration on the Performances of the F-T 

SBCR (dR = 7 m, L = 30 m) 

 

Thus, Figure 70 leads to conclude that it is possible to produce a 10,000 bbl/day of liquid 

hydrocarbons using different operating conditions; however, since the conditions for maximum 

STY would require greater capital and operating costs than those for maximum catalyst 

productivity, the conditions corresponding to the maximum productivity should be used. 
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Table 42 summarizes the geometry and operating conditions of the optimized F-T SBCR 

with the ancillaries given in Table 41 in order to produce a 10,000 bbl/day of liquid 

hydrocarbons. Table 42 also shows the performance characteristic of this SBCR. 

 
Table 42: Geometry and Operating Conditions of the Optimized F-T SBCR to Produce 10,000 bbl/day of 

Liquid Hydrocarbons 

Variable Units Value 
Reactor Inside Diameter (dR) m 7 

Reactor length (L) m 30 
Superficial gas velocity (UG) m/s 0.255 

Catalyst loading (CS) wt.% 37.5 
CO conversion % 60.6% 

Yield bbl/day 10,808 
Space-Time-Yield (STY) kgHC/m3

reactor/hr 55.04 
Catalyst productivity kgHC/kgcatalyst/hr 0.225 

Heat Produced MW 206.5 
 

The total heat produced by the optimized reactor amounts to 206.5 MW. This energy is 

potentially worth between 24.7 to 42.0 million $/y depending on the steam (pressure) it would be 

converted into. The reactor also produces 83 ton/h of water directly through the F-T reactions. 

This water ends up leaving the reactor mostly in the form of steam mixed with the unreacted 

syngas as well as the gaseous hydrocarbon products. This stream is generally cooled to condense 

and separate the hydrocarbons products and water from the volatile products such as methane gas 

and the unreacted syngas which can then be recycled or burned for power generation. Once the 

water has been separated from the condensed products and cleaned using conventional processes, 

it can then be used as a cooling utility. Assuming a price of 0.4 $/ton, this water represents a 

potential value of 0.29 million $/year minus the cost of its treatment.  

 
Table 43: Heating & Cooling Utilities Costs and Potential Savings 

Utility 
Low-Pressure Steam 13.6 $/MW [361] 
High-Pressure Steam 23.2 $/MW [361] 

Water 0.4 $/ton [361] 
Total Heat Produced 211.4 MW 

Potential Value/Cost Savings 24.7 – 42.3 million $/year 
 

The heat exchanger model described in section 6.3.4 was used to predict the steam quality and 

the heat of reaction removal efficiency with a given safety factor. It should be emphasized that 

the volume fraction of the pipes in the reactor should not exceed 20 vol.% since the correlations 
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used in the SBCR model (detailed in section 6.1.8) would not be applicable when the volume of 

internals exceeds 20 vol.%, and the SBCR should be operating at almost isothermal conditions. 

Actually, operating the SBCR under isothermal conditions in needed to avoid the wide spectrum 

of the products distribution which will be obtained if the reactor is not operating isothermally. 

Considering the above facts, the cooling pipes (heat exchanger) should meet the 

following requirements: (1) the temperature change of the water (cooling fluid) should be 

minimum so the water can be directly recycled; (2) the temperature difference between the 

cooling medium and the slurry inside the reactor should be small so that assumption of uniform 

temperature in the reactor is valid, (3) the cross-section area occupied by cooling tubes must 

remain below 20 % of the reactor cross section area, and (4) the heat exchanger should be able to 

remove enough heat for the reactor to operate isothermally.  

The heat exchanger considered is composed of a bundle of cooling pipes made of carbon steel 

schedule 40. Table 44 lists the maximum number of different pipes that can be used depending 

on their size and safety factor with the condition that its volume remain below 20 % of the 

reactor volume. 
Table 44: Maximum Number of Cooling Pipes 

Pipe Nominal 
Diameter 

Maximum Number 
of Cooling Pipes 

Relative Amount 
of Material 

1” 8,785 1 
1 ¼” 5,513 0.85 
1 ½” 4,208 0.78 

2” 2,693 0.67 
2 ½” 1,838 0.72 

3” 1,241 0.64 
3 ½” 950 0.59 

4” 751 0.55 
 

Using the different configurations listed in Table 44, simulations were performed by varying the 

water inlet temperature and pressure for a fixed mass flow rate of 70 kg/m2/s. Figure 71 shows 

that all the configurations listed in the table are able to remove the heat from the reactor and 

easily reach safety factor values ≥ 30 %. It should be noted that in all cases, the difference in 

temperature between the inlet water stream and the outlet steam/water stream is less than 3 K. 

However, the larger the pipes size used is the smaller would be the surface area available for heat 

transfer and accordingly higher temperature difference between the slurry inside the reactor and 

the cooling water is required to efficiently remove the heat of the F-T reactions. By using 1” 
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pipes, maximum temperature differences between the reactor slurry and the cooling pipes 

(∆Tmax) as low as 10 K can be achieved allowing proper isothermal operation of the F-T reactor. 

For 4” pipes, however, the temperature difference (∆Tmax) above 30 K is required, which is 

undesirable conditions for the SBCR operation. 

 

 
Figure 71: Effect of Pipes Size and Water-Reactor Temperature Gradient on the Performance of the Heat 

Exchanger 

 

Based on the profiles shown in Figure 71 and the relative amount of materials listed in Table 44, 

2” pipes appear to be a good compromise in order to minimize the temperature gradient between 

the slurry inside the reactor and the cooling pipes below 20 K at a relatively low cost. Indeed 

only 67% of the amount of material required to build the heat exchanger with 1” pipes is needed 

when using 2” pipes. Several simulations using 2” pipes were performed at different water flow 

rates and the effect water flow rate on the pressure drop, steam quality and safety factor can be 

seen in Figure 72. The steam quality decreases with increasing the water flow rates while both 

the amount of heat removed (safety factor) and the pressure drop increase. In order to minimize 

the steam required and stay within the domain of application of the different correlations used in 

the heat exchanger model, water flow rates above 150 kg/m2/s should be selected. This is 

because under different water inlet flow rates, the steam quality remain under 15 %; the pressure 
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drop values in the heat exchanger remain low (< 16 Psi) and all the heat produced by the F-T 

reactions is removed with a safety factor above 10 %. 

 

 
Figure 72: Safety Factor, Steam Quality and Pressure Drop across the Heat Exchanger Made of 2” pipes 

 

6.5 COMPARATIVE SIMULATIONS OF AN F-T SBCR OVER VARIOUS 

CATALYSTS 

The F-T SBCR performance is affected by the hydrodynamics, heat and mass transfer as well as 

the reaction kinetics, where the latter is strongly dependent on the type of catalyst used. There 

are several studies on the F-T reaction kinetics available in the literature; however, most of 

modeling attempts of F-T SBCRs were carried out taking into account only one kinetic rate 

expression. Literature data, however, showed that for the same catalyst, iron for instance, 

different kinetic rate expressions are available which is rather confusing for F-T SBCRs 

simulation. 
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The aim of this section is to investigate the effect of the different kinetic rate expressions 

for iron and cobalt-based catalysts available in the literature on the performance of a conceptual 

commercial-scale SBCR for F-T synthesis whose dimensions are similar to that of the latest large 

commercial F-T reactors of the Oryx GTL plant in Qatar (9-m ID and 50-m height). Also, the 

effects of various operating variables, such as pressure, temperature, superficial gas velocity, 

syngas inlet composition (H2/CO ratio) and catalyst concentration on the performance of this 

conceptual commercial-scale SBCR are discussed. This large-scale SBCR was simulated using 

the reactor model described in sections 6.3.2 and 6.3.3.  

6.5.1 Effect of Catalyst Concentration 

The influence of catalyst concentration on the syngas conversions for cobalt and iron catalysts is 

shown in Figures 74 and 73, respectively. The three different cobalt catalysts and corresponding 

kinetics used led to different behaviors. When using the catalyst with high activity (van Steen 

and Schulz [86]), the conversion is surprisingly high (above 90%) and remains at first unaffected 

by the increase of catalyst concentration. Upon reaching higher catalyst concentrations the 

conversion starts to quickly decline. On the other hand, the catalyst by Withers et al. [99] displays 

low activity and over the range of catalyst concentration simulated, the conversion only increases 

up to 30 %, levels off and then decreases slowly with further increase of catalyst concentration. 

The third catalyst by Yates and Satterfield [100] exhibits a behavior in between these other two 

catalysts, where the conversion starts low at low solid loadings, increases with increasing 

catalyst concentration, reaches a maximum of 65 % and then quickly drops.  

 
Table 45: Operating Variables Used in the Simulator for F-T SBCR 

System Catalyst Iron or Cobalt 
H2/CO 0 - 4 

Reactor and Sparger Geometry 

L, m 50 
dR , m 9 
NO, - 1000 

dorf., m 0.05 
Sparger Type M-ON 

Operating Variables 

T , K 480 - 540 
P , MPa 1 - 5 
UG , m/s 0.1-0.5 
USL , m/s 0.01 
CS , vol.% Up to 50 
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Figure 73: Effect of Catalyst Concentration on Conversions using Fe Catalysts  

(Lighter Lines: mass transfer resistance not included in model) (H2/CO ratio = 1, and UG = 0.3 m/s) 

(a) (b) 

(c) 
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Similar behaviors were obtained when using iron catalysts. As shown in Figure 73 for all iron 

catalysts/kinetics used, both CO and H2 conversions increase more or less rapidly with increasing 

catalyst concentration, reach a maximum and then drop at high catalyst concentrations. 

Increasing catalyst concentration is supposed to raise the kinetic rate and CO and H2 

conversions, however, at high catalyst concentrations, the gas-liquid mass transfer coefficients 

decrease leading to the sharp drop of the syngas, H2 and CO conversions. Thus, increasing 

catalyst concentration changes the SBCR operation from kinetic-controlled to mass transfer-

controlled regime. This was confirmed by performing simulations in which the mass transfer 

resistance was made negligible by assigning an arbitrarily high value for kLaL. The resulting 

syngas conversions are represented in Figures 74 and 73 by the gray lines and as can be seen, in 

the absence of mass transfer resistance the conversion continues to increase for all kinetics 

expressions considered. 

 

 
Figure 74: Influence of Solid Loading on the Conversion using Cobalt-Based Catalysts  

(Lighter Lines: mass transfer resistance not included in model) 

 

Several authors [315-317, 322] have attempted to characterize the relative importance of the gas-

liquid mass transfer resistance in the overall process using Equation (6-92). 
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βi =
Rmass transfer

Rtotal
=

1
𝑘𝐿𝑎𝑖

1
𝑘𝐿𝑎𝑖

+ 1
𝑘𝐻𝜀𝐿

 (6-92) 

It should be noted that the above equation is valid assuming that the F-T reaction follows first 

order kinetic for H2 with kH representing the rate constant for hydrogen consumption. In order to 

include the full kinetic expressions of both the F-T and WGS reactions, Inga and Morsi [322] 

introduced a pseudo first-order rate constant ki defined as: 

𝑘𝑖 =
𝐶𝑆𝑟𝑖
𝐶𝑖,𝐿

 (6-93) 

Using this pseudo first-order rate constant in Equation (6-92), the relative importance of the mass 

transfer resistance for H2 and CO were calculated for the conditions simulated in Figures 74 and 

73.  

 

 
Figure 75: Influence of Solid Loading on the Relative Extent of the Mass Transfer Resistance using Cobalt-

Based Catalysts (Darker Lines: CO, Lighter Lines: H2) 

 

The influence of catalyst concentration on the relative relevance of the mass transfer resistance 

(β) is illustrated in Figures 75 and 76; and as can be noticed in all cases, β values for both H2 and 

CO increases with increasing catalyst concentration. It should be noted that when using cobalt-
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based catalyst and H2/CO ratio similar to the stoichiometry of the F-T synthesis, the β values for 

CO and H2 are almost identical at first then deviate from each other as the catalyst concentration 

increases. In the case of the catalyst by Yates and Satterfield, [100] β values for CO increase above 

50% for catalyst concentration above 38 vol.% indicating that the resistance due to mass transfer 

becomes significant and accordingly the SBCR moves from kinetics-controlled to mass transfer-

controlled regime. This leads to the maximum and the subsequent decrease of the conversion 

shown in Figure 74. The highly active cobalt-based catalyst is also affected in a similar way. In 

this case, the SBCR reaches the mass transfer-controlled region leading to a drop in conversion 

according to Figure 74 for catalyst concentration above 20 vol.% corresponding to β values for 

CO and H2 about 35%. The SBCR operated with the catalyst by Withers et al. [99] reaches the 

mass transfer-controlled regime at solid concentrations above 35 vol.% as can be seen in Figure 

74. This corresponds to low β value for CO about 10 % as depicted in Figure 75.  

 

 
Figure 76: Influence of Solid Loading on the Relative Extent of the Mass Transfer Resistance using Iron 

Catalysts (darker lines: CO; lighter lines: H2) 

 

Similar behavior was obtained for the iron catalysts as can be observed in Figure 76. In these 

cases, β values for H2 or CO range from 10% to 45% at the transition from kinetics-controlled to 

mass transfer-controlled regions. Therefore, there is no particular value of β which will 
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characterize the transition from kinetic-controlled to mass transfer-controlled region because the 

β value at this transition varies depending on the catalyst and kinetic rate expression used (see 

Table 46). ). This means that Equation (6-92) cannot be used alone to predict where the transition 

from kinetics-controlled to mass transfer-controlled regime will take place. 

 
Table 46: Values of the Relative Extent of the Gas-Liquid Mass Transfer Resistance at the Regimes 

Transition 

Catalyst F-T Rate Reference WGS Rate Reference Limiting 
Reactant β 

Reduced Nitrided Fused 
Fe/K2O/Al2O3/SiO2 Atwood and Bennett [73] Yang et al. [64] H2 10% 

Fe/Cu/K/SiO2 Chang et al. [57] Chang et al. [57] H2 18% 
Reduced Prec. Fe/K Deckwer et al.[80] Chang et al. [57] H2 17% 

Reduced Fused 
Fe/K2O/CaO/SiO2 Huff and Satterfield [76] Chang et al. [57] H2 16% 

Reduced Prec. Fe/K Ledakowicz et al. [78] Chang et al. [57] H2 20% 
Prec. Fe/Cu/K Zimmerman and Bukur [37] Zimmerman and Bukur [37] CO 45% 

Reduced Fe/Cu/K/SiO2 Zimmerman and Bukur [37] Zimmerman and Bukur [37] CO 10% 
Co/MgO/ThO2/SiO2 van Steen and Schulz [86] - H2 & CO 35% 

Co/Zr/SiO2 Withers et al. [99] - CO 10% 
Co/MgO/SiO2 Yates and Satterfield [100] - CO 50% 

 

Under the same operating conditions, depending on the kinetic rate expression used, the limiting 

reactant varies between CO and H2. Among the iron catalysts considered, β values are greater for 

CO in the case of Zimmerman and Bukur [37] kinetics expressions, while for the others iron 

catalysts/kinetics H2 exhibits greater values of β. This behavior corresponds to the differences in 

the values of CO and H2 conversions shown in Figure 73 due to the presence of the WGS 

reaction and the relative differences in the respective rates of the F-T and WGS reactions. 

According to reaction kinetics by Zimmerman and Bukur,[37] most of the CO is consumed 

rapidly by the WGS reaction to produce H2 leading to high CO conversions above 90 % under 

high catalyst concentration while the rates of the WGS predicted by Chang et al. [57] and Yang et 

al. [64] are much lower, leading to higher H2 conversions under the conditions used. Table 46 

shows also that when using the rate of Chang et al. [57] for the WGS coupled with 4 different F-T 

reaction rates, the transition from kinetic-controlled to mass transfer-controlled region occurs at 

similar values of β for H2 within the range 16-20. This underscores the impact of the WGS 

reaction on the performance of the F-T SBCR. 
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Figure 77: Influence of Solid Loading on Catalyst Productivity using Cobalt Catalyst 

 

While increasing catalyst concentration in the F-T SBCR leads to high H2 and CO conversions 

provided that the reactor is in kinetic-controlled regime, the productivity of the reactor, defined 

as the amount of hydrocarbons produced per mass of catalyst per unit of time, decreases as 

shown in Figures 77 and 78 for cobalt and iron catalyst, respectively. The productivity appears to 

greatly decrease with increasing catalyst concentration. However, when using the kinetic rate 

expressions by Yates and Satterfield [100] and Atwood and Bennett, [73] the productivity remains 

unaffected until the mass transfer-controlled regime is reached. 

6.5.2 Effect of Inlet H2/CO Ratio 

The composition of the syngas to the F-T SBCR will vary depending on the feedstock used for 

its production. The gasification of biomass and/or coal for example produces syngas with low 

H2/CO ratio values less or about 1, while natural gas reforming or partial oxidation provides 

syngas with significantly higher H2/CO ratio values (≈ 2). The syngas from biomass and/or coal 

may be shifted in a dedicated WGS unit prior to the F-T SBCR in order to increase the H2/CO 

ratio. 
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Figure 78: Influence of Solid Loading on Catalyst Productivity using Iron Catalyst 

 

Figure 79 shows the effect of the inlet H2/CO ratio on the syngas conversions. As can be seen 

higher H2/CO ratios increase the CO conversion for all the kinetic rate expressions used. The H2 

conversion, however, follows different trends as it decreases when using the kinetic rate 

expressions by van Steen and Schulz, [86] increases in the case of Yates and Satterfield, [100] while 

for Withers et al. [99] it increases sharply at low H2/CO ratios before decreasing. These behaviors 

result in a maximum syngas (H2 + CO) conversion at an inlet H2/CO ratio of 2, except when 

using the kinetics by Yates and Satterfield [100] where the syngas conversion appears to always 

increase with H2/CO ratios. Iliuta et al. [303] reported an identical behavior to this latter one when 

simulating an F-T SBCR with cobalt catalyst over a range of H2/CO inlet ratio values from 1.4 to 

2.2. When using iron catalysts, the F-T SBCR was found to behave similarly for all the kinetic 

rate expressions used. Figure 80 shows that CO conversion always increases with increasing 

H2/CO ratios in the feed gas, whereas H2 conversion increases sharply at low inlet H2/CO ratios 

and then decreases or levels off. Again, this behavior is in agreement with the findings of Iliuta 

et al. [303] for an iron catalyst. The maximum syngas conversion occurs at different H2/CO ratios 

varying from 0.8 to 3 depending on the kinetic rate expression used. The maximum syngas 

conversion occurring at an inlet ratio of 0.8 in the case of precipitated iron catalyst by 

Zimmerman and Bukur[37] agrees well with experimental data obtained by Deckwer et al. [362] 
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and Kuo [318] as well as with simulations carried out by Stern et al. [308] and Bukur and 

Zimmerman.[302] No maximum is reached using the kinetics rate expressions by Zimmerman and 

Bukur [37] for their reduced catalyst as well as the F-T kinetics by Ledakowicz et al. [78] coupled 

with WGS kinetics by Chang et al.[57] It is important to note that all the kinetic rate expressions 

considered in this study except that by Zimmerman and Bukur [37] for precipitated catalyst, 

predict better SBCR performances for both catalysts at inlet H2/CO ratios of 2 or above.  

 

 
Figure 79: Effect of Inlet H2/CO Ratio on Syngas Conversion in the Presence of Co Catalyst 

(a) 

(b) 
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Figure 80: Effect of Inlet H2/CO Ratio on Syngas Conversion in the Presence of Fe Catalyst (UG = 0.3 m/s) 

 

Figure 81, however, shows that when using the kinetic expression by Chang et al. [57] a 

maximum conversion occurs at a H2/CO ratio of 3. It should be mentioned that increasing the 

H2/CO ratio above 1 appears to increase the production of lighter distillates, such as CH4 and 

other gases and the selectivity of heavier and more valuable products, such as wax greatly 

decreases at H2/CO ratios greater than 2. The selectivity of diesel and wax products appears to 

(a) 

(b) 



 

 183 

peak at a H2/CO ratio of 1.5. This behavior can be attributed to the higher hydrogen 

concentration present in the liquid bulk at high H2/CO ratios, which increases the termination of 

the adsorbed olefins and subsequently decreases the chain growth probability. These results are 

similar to those by Wang et al. [309] whose simulations predicted an increase of lighter distillates 

and a decrease of heavier distillates products with increasing H2/CO ratio in the inlet feed with 

an optimum gasoline and diesel products selectivity for H2/CO ratios between 1 to 1.5. van der 

Laan et al. [34] also reported that increasing the H2/CO ratio in the feed increased the selectivity 

of CH4 and light gases and decreased the selectivity of the diesel-wax fraction when simulating 

an F-T SBCR over an iron catalyst. 

 

 
Figure 81: Effect of Inlet H2/CO Ratio on Product Selectivity in the case of Chang et al [57] kinetics (Fe 

Catalyst) 

 

6.5.3 Effect of Superficial Gas Velocity 

The effect of the superficial gas velocity on the syngas conversion and the hydrocarbons space 

time yield (STY), expressed in kg of hydrocarbons produced per unit reactor volume per unit 

time, is presented in Figures 82 through 85. As can be observed in these figures, increasing the 
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superficial gas velocity decreases the syngas conversion and increases the STY for all the 

catalysts and kinetic rate expressions used. Under the operating conditions employed in the 

simulation, the smallest superficial gas velocities lead to the highest syngas conversion due 

primarily to the long residence time of the gaseous reactants in the reactor; whereas the highest 

superficial gas velocities give the greatest STY. The STY, however, is improved by about 50 % 

up to 200 % when increasing the superficial gas velocity from 0.15 m/s to 0.45 m/s. It can also 

be observed that the kinetic rate expressions by Yates and Satterfield, [100] Atwood and Bennett 
[73] as well as by Zimmerman and Bukur [37] for their reduced catalyst, lead to a decrease of the 

syngas conversion and no improvements in STY with increasing the superficial gas velocity. 

Figure 86 shows that when using the kinetic rate expression by Chang et al.,[57] increasing the 

superficial gas velocity decreases the selectivity of lighter hydrocarbon distillates, such as CH4, 

gases and gasoline while the selectivity of heavier hydrocarbons, such as diesel and wax is 

increased. Thus, the choice of an optimal superficial gas velocity for a commercial-scale F-T 

SBCR should be made considering higher throughputs of the valuable products versus lower 

syngas conversion and high operating costs associated with running the SBCR at high superficial 

gas velocities. 

 

 
Figure 82: Effect of Superficial Gas Velocity on Syngas Conversion using Cobalt Catalyst 



 

 185 

 
Figure 83: Effect of Superficial Gas Velocity on Syngas Conversion using Iron Catalyst 

 

 
Figure 84: Effect of Superficial Gas Velocity on STY using Cobalt Catalyst 
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Figure 85: Effect of Superficial Gas Velocity on STY using Iron Catalyst 

 

 
Figure 86: Effect of Superficial Gas Velocity on Product Selectivity in the case of Chang et al [57] kinetics (Fe 

Catalyst) 
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6.5.4 Effect of Temperature 

The effect of operating temperature on the F-T SBCR performance can be seen in Figures 18 

through 89, which show that increasing the reactor temperature increases the rate of CO and H2 

consumption and leads in all cases investigated to higher syngas conversions. Running the SBCR 

at high temperatures, however, produces large quantities of gaseous products and significantly 

decreases the throughput of valuables heavy product which is illustrated in Figure 89. For 

instance, when using the kinetic rate expression by Chang et al. [57] in the temperature range from 

480 to 540 K, the selectivities for gases and gasoline cuts increases from 40 to 400 % while the 

selectivities for diesel and wax cuts drops by 30 and 63 %, respectively. 

 

 
Figure 87: Effect of Temperature on Syngas Conversion 
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Figure 88: Effect of Temperature on Syngas Conversion 

 

 
Figure 89: Effect of Temperature on Product Selectivity in the case of Chang et al [57] kinetics (Fe Catalyst) 
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6.5.5 Effect of Pressure 

The effect of pressure on the performance of the SBCR is illustrated in Figures 90 and 91; and as 

can be observed depending on the catalyst and kinetic rate expression used, the behavior of the 

SBCR reacts differently to the increase of the operating pressure. The syngas conversion appears 

to decrease as with the kinetic rate expressions by Yates and Satterfield [100] and Zimmerman and 

Bukur [37] for cobalt and iron catalysts, respectively. The syngas conversion, on the other hand, 

appears to increase as with the other kinetics expression for cobalt catalysts and the kinetic rate 

expressions by Deckwer et al. [80] and Huff and Satterfield [76] for iron catalysts. In the case of the 

other kinetics expressions for iron catalysts, the syngas conversion remains unaffected by the 

operating pressure. When using the kinetic rate expression by Chang et al.,[57] a maximum 

syngas conversion is reached for an operating pressure of 25 bar. Also, the selectivities of diesel 

and wax cuts increases by increasing the operating pressure as can be seen in Figure 92. The 

selectivities of CH4 and light cuts, however, decrease and the gasoline selectivity displays a 

maximum about 22 bar. Similar behavior of the product selectivities was reported by Wang et al 
[309] for their simulated F-T SBCR over iron catalyst. 

 

 
Figure 90: Effect of Pressure on Syngas Conversion 
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Figure 91: Effect of Pressure on Syngas Conversion 

 

 
Figure 92: Effect of Pressure on Product Selectivity in the case of Chang et al [57] kinetics (Fe Catalyst) 
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7.0  CONCLUSIONS 

The volumetric mass transfer coefficients, the gas holdup, the Sauter mean bubble diameter and 

bubble size distribution profiles were obtained for N2 and He as single gases and for N2/He 

gaseous mixtures in three different F-T liquids: a paraffins mixture, a molten F-T reactor wax 

and a molten Sasol wax in the absence and presence of three different solids using a pilot-scale 

SBCR. The reactor was operated in the churn-turbulent flow regime within a wide range of 

operating conditions typifying those of the Fischer-Tropsch synthesis with solid concentrations 

up to 20 vol. %. 

Increasing the total pressure was found to increase the overall kLa values and gas holdup 

in the three liquids used under most of the operating conditions investigated. High pressures or 

high gas density decreased the Sauter mean bubble diameter by increasing the population of the 

small gas bubbles. Increasing temperature increased the gas holdup in the liquids used, except for 

N2-molten reactor wax, where the gas holdup remained constant from 400 to 500 K. Increasing 

temperature, however, decreased the Sauter mean bubble diameter, whereas, the addition of solid 

particles was found to reverse this trend in some cases, especially for light gaseous mixtures with 

high He mole fractions. The addition of solid particles decreased the gas holdup and the overall 

mass transfer coefficients and increased the Sauter mean bubble diameter under all conditions 

used. At high temperature, the presence of solid particles had less effect on the Sauter mean 

bubble diameter than at lower temperatures. The kLa values for the gaseous mixture in the three 

liquids used strongly increased with increasing temperature due to the decrease of the liquid 

viscosity and surface tension.  

Operating the SBCR at high superficial gas velocities led to high gas holdups and overall 

volumetric mass transfer coefficients while the Sauter mean bubble diameter either increased or 

decreased due to high rates of gas bubbles breakup and coalescence. Increasing the mole fraction 

of He in the He/N2 gaseous mixture at constant pressure led to lower gas holdup while it 
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increased the Sauter mean bubble diameter. Under similar conditions, kLa values of He as a 

single gas were always lower than those of N2 as a single gas. The increase of N2 mole fraction 

in the N2/He gaseous mixture increased the interfacial area and consequently kLa values of both 

gases, whereas increasing the He mole fraction in the gaseous mixture had the opposite effect. At 

constant gas density, however, the gas mixture composition was found to have little effect on the 

gas holdup and kLa. The gas bubbles size distribution and Sauter mean diameter, however, were 

directly affected by the gas mixture composition. The gas holdup and gas bubbles size were 

slightly larger for N2 in the paraffins mixture than in the molten reactor wax. However, the gas 

bubble population was narrower in the paraffins mixture and a greater number of large gas 

bubbles were present when using the molten reactor wax. Due to the low viscosity, the resulting 

high kLa values for N2 were greater in the paraffins mixture, especially at low solid 

concentrations. With the addition of solid particles, the gas-liquid interfacial area decreased 

faster in the paraffins mixture than in the molten reactor wax. Operating the SBCR with the 

molten F-T wax led to the lowest gas holdup and the largest gas bubble sizes resulting in the 

lowest gas-liquid interfacial area and consequently kLa values. 

The solid particles distribution profile at the wall of the reactor was obtained in the pilot 

SBCR using the paraffins mixture containing Puralox alumina particles as slurry-phase. The 

“dispersion-sedimentation model” was found to fit well the experimental solid concentration 

data. The solid concentrations measured at the wall indicated that the dispersion of the solid 

particles was not uniform throughout the cross-sectional area of the reactor; and the gas nature 

and composition were found to affect the solid distribution profile at the reactor wall by affecting 

the bubbles size distribution. Larger population of small gas bubbles led to greater solid 

concentrations at the reactor wall. 

A model was developed to simulate a commercial F-T SBCR. Novel empirical 

correlations for the hydrodynamic and mass transfer parameters were developed using the data 

obtained in this study along with available literature values. The new correlations as well as a 

new relationship between the axial dispersion of the large gas bubbles and their average diameter 

were included in the model. The simulator predictions for F-T SBCR indicated the following: 

• At constant superficial gas velocity (0.3 m/s) and catalyst concentration (37.5 wt %), the 

CO conversion and liquid hydrocarbon yield increased with increasing reactor height. 

Also, the CO conversion slightly decreased with increasing reactor ID, whereas the 
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hydrocarbon yield increased with increasing reactor ID. Both the space-time-yield and 

reactor productivity increased with reactor length by about 5% and then leveled off after 

a reactor height of 40 m. Also, both space-time-yield and reactor productivity appeared to 

slightly decrease with increasing reactor ID. 

• At constant reactor inside diameter (7 m) and height (30 m), the CO conversion 

decreased with increasing the superficial gas velocity and increased with catalyst 

concentration. Increasing the catalyst concentration above 40 wt% drove the SBCR to 

operate in a mass transfer-controlled regime. Also, the liquid hydrocarbon yield and 

space-time-yield increased with increasing catalyst concentration at constant superficial 

gas velocity. At low catalyst concentration (< 35 wt %), both the hydrocarbon yield and 

space-time-yield decreased with increasing the superficial gas velocity, whereas, for 

catalyst concentrations > 35 wt %, the liquid hydrocarbons yield increased with 

superficial gas velocity, reached a maximum and then decreased. The catalyst 

productivity reached a maximum at the lowest catalyst concentration of 25 wt% and 

superficial gas velocities between 0.2 and 0.25 m/s, and generally decreased with 

increasing catalyst concentration up to 40 wt%. At catalyst concentrations greater than 40 

wt%, however, the catalyst productivity increased with superficial gas velocity. At 

superficial gas velocities > 0.25 m/s, the catalyst productivity increased with catalyst 

concentrations, levels off, and then decreased. Thus, the maximum space-time-yield 

occurred at the highest superficial gas velocity and catalyst concentration, whereas the 

maximum catalyst productivity occurred at a medium superficial gas velocity and the 

lowest catalyst concentration. 

• An SBCR  (7 m ID and 30 m height), operating with 37.5 wt% of cobalt-supported 

catalyst at 0.255 m/s superficial gas velocity, 3 MPa, and 500 K, was found to be able  to 

produce 10,000 bbl/day of F-T liquid hydrocarbons. The SBCR should be provided with 

a multi-nozzle distributor with (1200) nozzles, and (2693) 2” cooling pipes representing 

20% of the total reactor volume in order to remove all the heat of the F-T reaction with a 

safety factor above 10%. Cooling water flow rates above 150 kg/m2/s were found 

sufficient to keep the steam quality below 15 % with pressure drops not exceeding 16 Psi. 

The reactor would produce 10,808 bbl/day of liquid hydrocarbons at CO conversion of 
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60.6% with space-time-yield of 55.04 kgHC/m3
reactor/hr and catalyst productivity of 0.225 

kgHC/kgcatalyst/hr. 

Different kinetic rate expressions from the available literature were tested in the simulator to 

predict the performances of a conceptual commercial-scale F-T SBCR (9-m ID, 50-m height) 

operating with iron or cobalt-based catalyst. The performance of the F-T SBCR was found to be 

strongly dependent on the catalyst/kinetic rate expressions used for both catalysts. At low 

catalyst concentrations, the SBCR operated in kinetic-controlled regime with increased syngas 

conversion and catalyst productivity, however, increasing catalyst concentration led the reactor 

to operate in a mass transfer-controlled regime with decreased syngas conversion and catalyst 

productivity. The transition from kinetic- to mass transfer-controlled regimes occurred at 

different solid concentrations depending on the kinetic rate expressions and operating conditions 

used. High H2/CO ratios in the inlet syngas feed to the SBCR resulted in high syngas conversion, 

whereas the selectivity of the valuable products, such as wax cuts and diesel appeared to 

decrease. Increasing the superficial velocity of the syngas to the SBCR decreased the gas 

residence time which decreased the syngas conversions, however, it led to high selectivity of 

diesel and wax cuts for both catalysts and kinetic rate expressions used. High temperature always 

resulted in high syngas conversion; yet, increasing temperature resulted in significant decrease in 

the selectivity of the valuable products, such as wax cuts. The effect of operating pressure on the 

SBCR performance was dependent on the catalyst and kinetic rate expressions used; since 

increasing pressure led to low or high or no effect on the syngas conversion. 
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APPENDIX A 

DISPERSION COEFFICIENT MEASURING TECHNIQUES 

The possibility of modifying the existing pilot scale SBCR in order to carry out gas and liquid 

phases dispersion coefficients measurements was considered. Shah et al. [363], and more recently 

Wild and Poncin [110] and Boyer et al. [264] reviewed different techniques used for measuring the 

liquid-phase dispersion coefficient in multiphase reactors. A short summary of these techniques 

as well as comments regarding the present study and existing setup follows. 

A.1 LIQUID PHASE DISPERSION 

Salt tracers with conductimetry measurements or titration [192, 364-366] 

This technique is essentially used with aqueous liquids and therefore cannot be employed with 

the hydrocarbons liquids used in this study. 

Colored tracers with optical measurements [367] 

Since the SBCR is opaque (stainless steel walls), colored tracers cannot be used for RTD 

experiments. 

Radioactive isotope tracers [368] 

This technique could be applied to the existing system; however, numerous modifications would 

have to be implemented on the experimental setup to handle safely radioactive materials and to 

create a space for the radiation measuring apparatus. 

Tracers interacting with neutrons [369] 
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Instead of using hazardous radioactive materials, a tracer that interacts with neutrons could be 

used. This technique has already been used in high temperature and pressure conditions [370] (coal 

liquefaction process). However it involves the purchase of an expensive neutron source. 

Refractory technique [264] 

For the investigations of RTD in petrochemical reactors, Boyer et al. [264] recommended the use 

of a liquid tracer with a refractive index different from the liquid phase used. Optical probes 

placed at different positions along the reactor can then be used to measure tracer concentrations 

and dispersion. However in this technique, the slurry phase is simulated using a liquid with a 

viscosity similar to that of the slurry. 

Electromagnetic buoyant particles [110] 

Due to the presence of the solid suspension, this technique cannot be applied to measure liquid 

dispersion; instead it can be used to measure solid dispersion. 

Heat [371, 372] 

Thermocouples can be used to measure the temperature profile along the reactor and estimate 

liquid dispersion. However the presence of heating elements in the existing setup around the 

reactor walls will introduce errors in the recorded temperature profiles. 

A.2 GAS-PHASE DISPERSION 

Investigation of the gas dispersion is more difficult [264] than that of liquid since absorption and 

desorption phenomena of the gas tracer in the liquid phase also take place and have to be taken 

into account [373]. Furthermore, measuring the concentrations of the gas tracer in the existing 

system would be a complicated task, since the techniques to measure concentrations in the gas-

phase which are mainly optical ones cannot be employed in this case due to the presence of the 

solid phase and the opaque stainless steel walls. 
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APPENDIX B 

HYDROCYCLONE DESIGN FOR SOLID SEPARATION 

Hydrocyclones are used to separate solid-liquid suspensions by means of centrifugal 

sedimentation. The advantages of hydrocyclones reside in their high capacity when compared 

with equipment size, wide capacity range, small floor space requirements, low investment cost, 

and wide cut sizes [374]. Their disadvantages, however, include inflexibility (a given cut size can 

be achieved only with a give hydrocyclone sizes), performance limitations, and sometimes high 

operating cost. The hydrocyclone performance depends on the slurry flow rate and solids 

concentrations. In some cases, multi-hydrocyclones arranged in parallel have to be used in order 

to improve the separation efficiency. 

A hydrocyclone consists of a principal cylindrical pipe bounded at the top by a plate 

having an opening in the form of small cylindrical tube (vortex finder), which allows the liquid 

to exit at the top. The bottom of the main cylinder is a conical shape with an aperture to allow the 

liquid exit as can be seen in Figure 93. The slurry phase is injected tangentially into the upper 

part of the cylindrical section, causing rotation in the hydrocyclone. When the solid phase has a 

density greater than the liquid phase, the upper tube discharges the clarified liquid (overflow), 

while the bottom outlet discharges the concentrated solids (underflow). 

The hydrocyclone diameter can be selected from the slurry flow-rate needed to be 

separated using Figure 94 [374]. Once the hydrocyclone diameter is selected from, the other 

dimensions of the hydrocyclone can be obtained from the following equations [374]: 

Height of the cylindrical body of hydrocyclone:  

hcyl = [0.7D − 2D] (B-1) 

Length of cyclone from top plate to apex: 
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L = [3D − 8D] (B-2) 

Vortex finder diameter: 

Do = [2.3D − 8D] (B-3) 

Inlet diameter: 

Di = [0.14D − 0.33L] (B-4) 

Vortex finder lengths: 

h = [0.33D − 1D] (B-5) 

Apex diameter: 

Du =  0.2D (B-6) 

 

 
Figure 93: Schematic of a Hydrocyclone 

 

The cut size (d50) can be calculated using one of the following equations [374-378]: 

d50 =  3 × 103
(DoDi)0.68

F0.53�(ρS − ρSL)
 (B-7) 
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d50 =  0.2 × 106
D0.1Do

0.8Di
0.6�µSL

�F�(ρS − ρSL)
 (B-8) 

d50 =  85.1
D0.46Do

1.21Di
0.6exp(6.3cV)

Du
0.71h0.58F0.45�(ρS − ρSL) 

(B-9) 

d50 =  64.4
D0.46Do

1.21Di
0.6�µSLexp(6.3cV)

Du
0.71h0.58F0.45 (ρS − ρSL)

(ρSkv − ρSL)

 (B-10) 

 

 
Figure 94: Hydrocyclone Capacity versus Hydrocyclone Diameter 

 

The separation parameter (M), the ratio of the underflow rate to the feed rate (Rv), and the 

separation efficiency (η) can be estimated using the following equations [374-378]: 

M =  2.96 �
D2h

F
�
0.15

exp(−1.58Rν) (B-11) 

Rν =
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S + 1
 (B-12) 
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The separation efficiency can be calculated from [374]: 

η = 1 − exp �−0.693 �
d

d50
�
M

� (B-14) 

Once the geometry of the hydrocyclone has been chosen, the pressure drop across the 

hydrocyclone can be calculated [374] using the following equation : 

ΔP = 2.86
F2ρSL �1 − Di

D�
1.6
�� D

Do
�
1.6
− 1�

D2.26Do
1.6  (B-15) 

In this study, the geometric characteristics of the hydrocyclone chosen are listed in Table 47 and 

its efficiency as a function of the particles size is shown in Figure 95. The efficiency of the 

hydrocyclone was estimated using different correlations found in the literature [375-378]. 

 
Table 47: Characteristics of the Hydrocyclone 

Parameter Value Units 
D 0.061 

m 

hcyl 0.082 
L 0.335 

Do 0.012 
Di 0.012 
h 0.030 
Du 0.012 

 

The overall efficiency of the hydrocyclone was calculated using the solid distribution of the 

catalyst that was measured in our laboratory. The resulting efficiencies are listed in Table 48. As 

can be seen in Figure 95 and Table 48 the efficiency predicted varies between 49.7% and 99.9% 

depending upon the correlation is used. Thus, it was decided it would be risky to rely on any of 

such correlations to design a hydrocyclone for our solid separation and other options were 

sought. 

 
Table 48: Hydrocyclone Overall Efficiency 

Equation Overall Efficiency 
Yoshioka and Hotta [378] 49.7% 

Dahlstrom [375] 92.3% 
Flintoff et al. [376] 98.5% 

Plitt et al. [377] 99.9% 
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Figure 95: Hydrocyclone Efficiency 
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APPENDIX C 

DIMENSIONLESS MASS & ENERGY BALANCES 

C.1 LIQUID-PHASE 

∂�εLCi,L′ �
∂τL

=
∂
∂ξ
�
εL

PeL
∂Ci,L′

∂ξ
� −

∂Ci,L′

∂ξ
+ StL,i,large�Ci,G,large

′ − Ci,L′ �

+ StL,i,small�Ci,G,small
′ − Ci,L′ � + εLri 

(C-1) 

Steady state developed form: 

1
PeL

��−
εL

PeL
∂PeL
∂ξ

+
∂εL
∂ξ
�
∂Ci,L′

∂ξ
+ εL

∂2Ci,L′

∂ξ2
� −

∂Ci,L′

∂ξ
+ StL,i,large�Ci,G,large

′ − Ci,L′ �

+ StL,i,small�Ci,G,small
′ − Ci,L′ � + εLri = 0 

(C-2) 

Boundary conditions: 

ξ =  0                                    
εL

PeL
∂Ci,L′

∂ξ
− Ci,L′ = 0 (C-3) 

ξ =  1                                               
∂Ci,L′

∂ξ
= 0 (C-4) 

The reaction term in the liquid phase mass balance can be written in dimensionless form for the 

cobalt-based catalyst as: 

ri = υFT,iKFT,irFT,Co (C-5) 

With the following dimensionless terms: 

rFT,Co =
CS′ CH2,L

′ CCO,L
′

1 + aRTinletCCO,L
′ CCO,G,inlet

 (C-6) 
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KFT,i,Co =
LC0kFT,CoRθTinletCH2,G,inletCCO,G,inletHei

ULCi,G,inlet
 (C-7) 

In the case of iron catalyst, the reaction term in the liquid phase mass balance becomes: 

ri = υFT,iKFT,irFT + υWGS,iKWGS,irWGS (C-8) 

With the dimensionless terms: 

rFT,Fe =
CS′ CH2,L

′ CCO,L
′

CCO,L
′ CCO,G,inlet + aCH2O,L

′ CH2O,G,inlet
 

(in m3/mol) 

(C-9) 

rWGS,Fe =
CS′ �CCO,L

′ CCO,G,inletCH2O,L
′ CH2O,G,inlet −

CH2,L
′ CH2,G,inletCCO2,L

′ CCO2,G,inlet
Keq

�

CCO,L
′ CCO,G,inlet + aCH2O,L

′ CH2O,G,inlet
 

(in mol/m3) 

(C-10) 

KFT,i,Fe =
LC0kFT,FeCH2,G,inletCCO,G,inletHei

ULCi,G,inlet
 

(in mol/m3) 
(C-11) 

KWGS,i,Fe =
LC0kWGS,FeHei

ULCi,G,inlet
 

(in m3/mol) 
(C-12) 

C.2 GAS-PHASE 

∂�εG,smallCi,G,small
′ �

∂τG

=
∂
∂ξ
�
εG,small

PeG,small

∂Ci,G,small
′

∂ξ
� −

∂�UG,small
′ Ci,G,small

′ �
∂ξ

− StG,i,small�Ci,G,small
′ − Ci,L′ �

− �UG,large
′ − UG,small

′ �𝐾�CG,small
′ − CG,large

′ � 

(C-13) 
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∂�εG,largeCi,G,large
′ �

∂τG

=
∂
∂ξ
�
εG,large

PeG,large

∂Ci,G,large
′

∂ξ
� −

∂�UG,large
′ Ci,G,large

′ �
∂ξ

− StG,i,large�Ci,G,large
′ − Ci,L′ �

− �UG,large
′ − UG,small

′ �𝐾�CG,large
′ − CG,small

′ � 

(C-14) 

Steady state developed form: 

1
PeG,small

��−
εG,small

PeG,small

∂PeG,small

∂ξ
+
∂εG,small

∂ξ
�
∂Ci,G,small

′

∂ξ
+ εG,small

∂2Ci,G,small
′

∂ξ2
�

− UG,small
′ ∂Ci,G,small

′

∂ξ
− Ci,G,small

′ ∂UG,small
′

∂ξ
− StL,i,small�Ci,G,small

′ − Ci,L′ �

− �UG,large
′ − UG,small

′ �𝐾�CG,small
′ − CG,large

′ � = 0 

(C-15) 

1
PeG,large

��−
εG,large

PeG,large

∂PeG,large

∂ξ
+
∂εG,large

∂ξ
�
∂Ci,G,large

′

∂ξ
+ εG,large

∂2Ci,G,large
′

∂ξ2
�

− UG,large
′ ∂Ci,G,large

′

∂ξ
− Ci,G,large

′ ∂UG,large
′

∂ξ
− StL,i,large�Ci,G,large

′ − Ci,L′ �

− �UG,large
′ − UG,small

′ �𝐾�CG,large
′ − CG,small

′ � = 0 

(C-16) 

Boundary conditions: 

ξ =  0 

εG,small

PeG,small

∂Ci,G,small
′

∂ξ
− UG,small

′ �Ci,G,small
′ − 1� = 0 

εG,large

PeG,large

∂Ci,G,large
′

∂ξ
− UG,large

′ �Ci,G,large
′ − 1� = 0 

(C-17) 

ξ =  1 

∂Ci,G,small
′

∂ξ
= 0 

∂Ci,G,large
′

∂ξ
= 0 

(C-18) 
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C.3 GAS VELOCITY 

∂UG
′

∂ξ
+ ��

StG,i,small

Ci,G,small
′ �Ci,G,small

′ − Ci,L′ � +
StG,i,large

Ci,G,large
′ �Ci,G,large

′ − Ci,L′ ��
𝑖

= 0 (C-19) 

Boundary conditions: 

ξ =  0                                                   UG
′ = 1 (C-20) 

ξ =  1                                                
∂UG

′

∂ξ
= 0 (C-21) 

C.4 SOLIDS SUSPENSION 

∂�(1 − εG)CS′ �
∂τL

=
∂
∂ξ
�

(1 − εG)
PeS

∂CS′

∂ξ
� +

∂ ��(1 − εG)UP
′ − 1�CS′ �

∂ξ
 (C-22) 

Steady state developed form: 

1
PeS

�(1 − εG)
∂2CS′

∂ξ2
−
∂CS′

∂ξ
�
∂εG
∂ξ

+
(1 − εG)

PeS
∂PeS
∂ξ

��

+
∂CS′

∂ξ
[(1 − εG)UP

′ − 1] + CS′ �(1 − εG)
∂UP

′

∂ξ
− UP

′ ∂εG
∂ξ
� = 0

 

(C-23) 

Boundary conditions: 

ξ =  0                       
(1 − εG)

PeS
∂CS′

∂ξ
+ [(1 − εG)UP

′ − 1]CS′ + x = 0 (C-24) 

ξ =  1 

CS′ = �
1

(1 − εG)UP
′ − 1

� �
BoL

1 − e−BoL
�x +

(1 − εG)UP
′ − 1

1
� e−BoL − x�

 

(C-25) 
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C.5 ENERGY BALANCE 

∂�(1 − εG)ρSL′ θ�
∂τL

=
∂
∂ξ
�ρSL′

(1 − εG)
PeH

∂θ
∂ξ
� −

∂(ρSL′ θ)
∂ξ

− StH(θ − θcool)

+ (1 − εG)rHeat 

(C-26) 

Steady state developed form: 

ρSL′

PeH
��−

(1 − εG)
PeH

∂PeH
∂ξ

−
∂εG
∂ξ
�
∂θ
∂ξ

+ (1 − εG)
∂2θ
∂ξ2

� +
(1 − εG)

PeH
∂ρSL′

∂ξ
∂θ
∂ξ

− ρSL′
∂θ
∂ξ
− θ

∂ρSL′

∂ξ
− StH(θ − θcool) + (1 − εG)rHeat = 0 

(C-27) 

Boundary conditions: 

ξ =  0                      ρSL′
(1 − εG)

PeH
∂θ
∂ξ
− [ρSL′ θ − (ρSL′ θ)0] = 0 (C-28) 

ξ =  1                                                 
∂θ
∂ξ

= 0 (C-29) 

 



 

 207 

BIBLIOGRAPHY 

1. Energy Information Administration.  2008; Available from: http://www.eia.gov/. 

2. Hubbert, M.K., Energy from Fossil Fuels. Science, 1949. 109(2823): p. 103-109. 

3. Hubbert, M.K., The Energy Resources of the Earth. Energy and Power, 1971. 3: p. 31-40. 

4. Cavallo, A.J., Predicting the Peak in World Oil Production. Natural Resources Research, 
2002. 11(3): p. 187-195. 

5. Hakes, J. Long Term World Oil Supply. Proceedings of the Meeting of the American 
Association of Petroleum Geologists. 2000. New Orleans, LA. 

6. Laherrère, J.H. Estimates of Oil Reserves. Proceedings of the IIASA International Energy 
Workshop. 2001. Luxembourg. 

7. Hirsch, R.L., et al., Peaking of World Oil Production: Impacts, Mitigation, & Risk 
Management. 2005, U.S. Department of Energy, National Energy Technology 
Laboratory. 

8. Bakhtiari, A.M.S., World Oil Production Capacity Model Suggests Output Peak by 2006-
07. Oil & Gas Journal, 2004. 

9. Simmons, M.R. Proceedings of the ASPO Workshop. 2003. 

10. Skrebowski, C., Oil Field Mega Projects - 2004. Petroleum Review, 2004. 

11. Deffeyes, K.S., Hubbert’s Peak -The Impending World Oil Shortage. 2003: Princeton 
University Press. 

12. Goodstein, D., Out of Gas – The End of the Age of Oil. 2004: W.W. Norton. 

13. Campbell, C.J., Industry Urged to Watch for Regular Oil Production Peaks, Depletion 
Signals. Oil & Gas Journal, 2003. 

14. Drivers of the Energy Scene. 2003, London, United Kingdom: World Energy Council. 

15. Laherrere, J. Proceedings of the Seminar Center of Energy Conversion. 2003. Zurich. 

http://www.eia.gov/


 

 208 

16. Long Term World Oil Supply. 2000, U.S. Department of Energy, Energy Information 
Administration. 

17. Jackson, P., et al., Triple Witching Hour for Oil Arrives Early in 2004 – But, As Yet, No 
Real Witches. CERA Alert., 2004. 

18. Davis, G., Meeting Future Energy Needs. The Bridge. 2003: National Academies Press. 

19. Lynch, M.C., Petroleum Resources Pessimism Debunked in Hubbert Model and Hubbert 
Modelers’ Assessment. Oil & Gas Journal, 2003. 

20. Dry, M.E., Commercial conversion of carbon monoxide to fuels and chemicals. Journal 
of Organometallic Chemistry, 1989. 372(1): p. 117-127. 

21. Stranges, A.N. Germany’s Synthetic Fuel Industry 1927-45. Proceedings of the AIChE 
2003 Spring National Meeting. 2003. New Orleans, LA. 

22. Survey of Energy Resources. 2004, London, United Kingdom: World Energy Council. 

23. International Energy Annual 2004. 2004, U.S. Department of Energy, Energy 
Information Administration. 

24. Schulz, H., Short history and present trends of Fischer-Tropsch synthesis. Applied 
Catalysis A: General, 1999. 186: p. 3-12. 

25. WEC, 2004 Survey of Energy Resources. 2004, Amsterdam, The Netherlands: Elsevier. 

26. WEC, 2007 Survey of Energy Resources. 2007, London, United Kingdom: World Energy 
Council. 

27. Dry, M.E., The Fischer-Tropsch process: 1950-2000. Catalysis Today, 2002. 71(3-4): p. 
227-241. 

28. Dry, M.E., Present and future applications of the Fischer-Tropsch process. Applied 
Catalysis A: General, 2004. 276(1-2): p. 1-3. 

29. Vosloo, A.C., Fischer-Tropsch: a futuristic view. Fuel Processing Technology, 2001. 
71(1-3): p. 149-155. 

30. Wilhelm, D.J., et al., Syngas production for gas-to-liquids applications: technologies, 
issues and outlook. Fuel Processing Technology, 2001. 71(1-3): p. 139-148. 

31. Schill, S.R., The Fischer-Tropsch/Fat Connection, in Biomass Magazine. 2007. 

32. Financial Forecast Center.  2006; Available from: 
http://www.neatideas.com/data/data/OILPRICE.htm. 

33. Espinoza, R.L., et al., Low temperature Fischer-Tropsch synthesis from a Sasol 
perspective. Applied Catalysis A: General, 1999. 186(1-2): p. 13-26. 

http://www.neatideas.com/data/data/OILPRICE.htm


 

 209 

34. van der Laan, G.P., et al., Multicomponent reaction engineering model for Fe-catalyzed 
Fischer-Tropsch synthesis in commercial scale slurry bubble column reactors. Chemical 
Engineering Science, 1999. 54(21): p. 5013-5019. 

35. Nigam, K.D.P. and A. Schumpe, Three-Phase Sparged Reactors. Topics in Chemical 
Engineering, ed. R. Hughes. Vol. 8. 1996, Amsterdam, The Netherlands: Gordon and 
Breach Science Publishers. 

36. Satterfield, C.N. and G.A. Huff, Product Distribution from Iron Catalyst in Fischer-
Tropsch Slurry Reactors. Industrial & Engineering Chemistry Process Design and 
Development, 1982. 21(3): p. 465-470. 

37. Zimmerman, W.H. and D.B. Bukur, Reaction kinetics over iron catalysts used for the 
Fischer-Tropsch synthesis. Canadian Journal of Chemical Engineering, 1990. 68(2): p. 
292-301. 

38. Fox, J.M., Fischer-Tropsch Reactor Selection. Catalysis Letter, 1990. 7: p. 281. 

39. Sabatier, P. and J.D. Senderens, Nouvelles Syntheses du Methane. Comptes Rendus, 
1902. 134: p. 514. 

40. Steynberg, A. and M. Dry, Fischer-Tropsch Technology. Studies in Surface Science and 
Catalysis, ed. G. Centi. Vol. 152. 2004: Elsevier Science. 

41. Callaghan, C.A., Kinetics and Catalysis of the Water-Gas-Shift Reaction: A Microkinetic 
and Graph Theoretic Approach. Ph.D. Dissertation, Worcester Polytechnic Institute, 
Worcester, USA, 2006 

42. Osaki, T. and T. Mori, Kinetics of the reverse-boudouard reaction over supported nickel 
catalysts. Reaction Kinetics and Catalysis Letters, 2006. 89(2): p. 333-339. 

43. Steynberg, A.P. and H.G. Nel, Clean coal conversion options using Fischer–Tropsch 
technology. Clean coal technology, 2004. 83(6): p. 765-770. 

44. Zhang, J., et al., Recent Technological Developments in Cobalt Catalysts for Fischer-
Tropsch Synthesis. Journal of Natural Gas Chemistry, 2002. 11(3): p. 99-108. 

45. Brady, R.C. and R. Pettit, On the Mechanism of the Fischer-Tropsch Reaction. The Chain 
Propagation Step. Journal of the American Chemical Society, 1981. 103(5): p. 1287-
1289. 

46. van Dijk, H.A.J., The Fischer-Tropsch synthesis: A mechanistic study using transient 
isotopic tracing. Ph.D. Dissertation, Technische Universiteit Eindhoven, Eindhoven, 
Netherlands, 2001 

47. Inderwildi, O.R., et al., Fischer-Tropsch Mechanism Revisited: Alternative Pathways for 
the Production of Higher Hydrocarbons from Synthesis Gas. The Journal of Physical 
Chemistry C, 2008. 112: p. 1305-1307. 



 

 210 

48. Jager, B. and R. Espinoza, Advances in low temperature Fischer-Tropsch synthesis. 
Catalysis Today, 1995. 23(1): p. 17-28. 

49. Komaya, T. and A.T. Bell, Estimates of rate coefficients for elementary processes 
occurring during Fischer-Tropsch synthesis over Ru/TiO2. Journal of Catalysis, 1994. 
146(1): p. 237-248. 

50. Kuipers, E.W., et al., Non-ASF Product Distributions Due to Secondary Reactions during 
Fischer–Tropsch Synthesis. Journal of Catalysis, 1996. 158(1): p. 288-300. 

51. Wojciechowski, B.W., The Kinetics of the Fischer-Tropsch Synthesis. Catalysis Reviews 
Science and Engineering, 1988. 30(4): p. 629-702. 

52. Donnelly, T.J., et al., Analysis and Prediction of Product Distributions of the Fischer-
Tropsch Synthesis. Energy & Fuels, 1988. 2(6): p. 734-739. 

53. Dictor, R.A. and A.T. Bell, Fischer-Tropsch synthesis over reduced and unreduced iron 
catalysts. Journal of Catalysis, 1986. 97(1): p. 121-136. 

54. Donnelly, T.J. and C.N. Satterfield, Product Distributions of the Fischer-Tropsch 
Synthesis on Precipitated Iron Catalysts. Applied Catalysis, 1989. 52(1): p. 93-114. 

55. Sarup, B. and B.W. Wojciechowski, Studies of the Fischer-Tropsch Synthesis on a 
Cobalt Catalyst. I. Evaluation of Product Distribution Parameters from Experimental 
Data. Canadian Journal of Chemical Engineering, 1988. 66(5): p. 831-842. 

56. Patzlaff, J., et al., Studies on product distributions of iron and cobalt catalyzed Fischer-
Tropsch synthesis. Applied Catalysis A: General, 1999. 186(1-2): p. 109-119. 

57. Chang, J., et al., Kinetic modeling of Fischer–Tropsch synthesis over Fe-Cu-K-SiO2 
catalyst in slurry phase reactor. Chemical Engineering Science, 2007. 62(18-20): p. 
4983-4991. 

58. van der Laan, G.P., Kinetics, Selectivity and Scale Up of the Fischer-Tropsch Synthesis. 
Ph.D. Dissertation, University of Groningen, Groningen, Netherlands, 1999 

59. Satterfield, C.N., et al., Effect of water on the iron-catalyzed Fischer-Tropsch synthesis. 
Industrial & Engineering Chemistry Product Research and Development, 1986. 25(3): p. 
407-414. 

60. Lox, E.S. and G.F. Froment, Kinetics of the Fischer-Tropsch reaction on a precipitated 
promoted iron catalyst. 2. Kinetic modeling. Industrial & Engineering Chemistry 
Research, 1993. 32(1): p. 71-82. 

61. Lox, E.S. and G.F. Froment, Kinetics of the Fischer-Tropsch reaction on a precipitated 
promoted iron catalyst. 1. Experimental procedure and results. Industrial & Engineering 
Chemistry Research, 1993. 32(1): p. 61-70. 



 

 211 

62. Wang, Y.-N., Modelization and Simulation of Fixed-Bed Fischer-Tropsch Synthesis: 
Kinetics, Pellet and Reactor. Ph.D. Dissertation, Institute of Coal Chemistry, Chinese 
Academy of Sciences, Taiyuan, China, 2001 

63. Wang, Y.-N., et al., Kinetics modelling of Fischer–Tropsch synthesis over an industrial 
Fe–Cu–K catalyst. Fuel, 2003. 82(2): p. 195-213. 

64. Yang, J., et al., Detailed Kinetics of Fischer-Tropsch Synthesis on an Industrial Fe-Mn 
Catalyst. Industrial & Engineering Chemistry Research, 2003. 42(21): p. 5066-5090. 

65. Brotz, W.Z., Zur Systematik der Fischer-Tropsch-Katalyse. Zeitschrift für Elektrochemie, 
1949. 5: p. 301-306. 

66. Hall, C.C., et al., A comparison of the fixed-bed, liquid phase ('slurry'), and fluidized-bed 
techniques in the Fischer-Tropsch synthesis. Journal of the Institute of Petroleum, 1952. 
38: p. 845-876. 

67. Anderson, R.B., Catalysis, ed. Reinhold. Vol. 4. 1956, New York: P. H. Emmet  

68. Anderson, R.B. and F.S. Karn, A Rate Equation for the Fischer-Tropsch Synthesis on 
Iron Catalysts. The Journal of Physical Chemistry, 1960. 64(6): p. 805-808. 

69. Kölbel, H., et al., Kinetics and reaction mechanism of the hydrocarbon synthesis from 
carbon monoxide and water vapor on iron, cobalt, and nickel catalysts. Actes du 2ème 
Congrès International de Catalyse. Paris, 1960. 1: p. 953-972. 

70. Anderson, R.B., et al., Kinetics of the Fischer-Tropsch Synthesis on Iron Catalysts. US 
Bureau of Mines, Bulletin 614, 1964. 

71. Dry, M.E., et al., Rate of the Fischer-Tropsch reaction over iron catalysts. Journal of 
Catalysis, 1972. 25(1): p. 99-104. 

72. Dry, M.E., Advances in Fishcher-Tropsch Chemistry. Industrial & Engineering 
Chemistry Product Research and Development, 1976. 15(4): p. 282-286. 

73. Atwood, H.E. and C.O. Bennett, Kinetics of the Fischer-Tropsch Reaction over Iron. 
Industrial & Engineering Chemistry Process Design and Development, 1979. 18(1): p. 
163-170. 

74. Thomson, W.J., et al., Applied Fischer-Tropsch kinetics for a flame sprayed iron catalyst. 
Preprint Papers - American Chemical Society, Division of Fuel Chemistry 1979. 25(2): p. 
101-118. 

75. Feimer, J.L., et al., Steady-state study of the Fischer-Tropsch reaction. Industrial & 
Engineering Chemistry Product Research and Development, 1981. 20(4): p. 609-615. 



 

 212 

76. Huff, G.A. and C.N. Satterfield, Intrinsic kinetics of the Fischer-Tropsch synthesis on a 
reduced fused-magnetite catalyst. Industrial & Engineering Chemistry Process Design 
and Development, 1984. 23(4): p. 696-705. 

77. Leib, T.B. and J.C.W. Kuo. Modeling the Fischer-Tropsch Synthesis in Slurry Bubble-
Column Reactors. Proceedings of the AIChE Annual Meeting. 1984. San Fransisco, CA. 

78. Ledakowicz, S., et al., Kinetics of the Fischer-Tropsch Synthesis in the Slurry Phase on a 
Potassium-Promoted Iron Catalyst. Industrial & Engineering Chemistry Process Design 
and Development, 1985. 24(4): p. 1043-1049. 

79. Nettelhoff, H., et al., Studies on the kinetics of Fischer-Tropsch synthesis in slurry phase. 
German Chemical Engineering, 1985. 8: p. 177-185. 

80. Deckwer, W.D., et al., Kinetic studies of Fischer-Tropsch synthesis on suspended 
iron/potassium catalyst - rate inhibition by carbon dioxide and water. Industrial & 
Engineering Chemistry Process Design and Development, 1986. 25(3): p. 643-649. 

81. Shen, W.J., et al., Kinetics of Fischer-Tropsch synthesis over precipitated iron catalyst. 
Journal of Natural Gas Chemistry, 1994. 4: p. 385-400. 

82. Liu, Z.-T., et al., Intrinsic kinetics of Fischer–Tropsch synthesis over an Fe–Cu–K 
catalyst. Journal of the Chemical Society, Faraday Transactions, 1995. 91(18): p. 3255-
3261. 

83. van der Laan, G.P. and A.A.C.M. Beenackers, Hydrocarbon Selectivity Model for the 
Gas-Solid Fischer-Tropsch Synthesis on Precipitated Iron Catalysts Industrial & 
Engineering Chemistry Research, 1999. 38(4): p. 1277-1290. 

84. van der Laan, G.P. and A.A.C.M. Beenackers, Intrinsic kinetics of the gas–solid Fischer–
Tropsch and water gas shift reactions over a precipitated iron catalyst Applied Catalysis 
A: General, 2000. 193(1-2): p. 39-53. 

85. Jess, A., et al., Fischer-Tropsch-synthesis with nitrogen-rich syngas: Fundamentals and 
reactor design aspects. Applied Catalysis A: General, 1999. 186(1-2): p. 321-342. 

86. van Steen, E. and H. Schulz, Polymerisation kinetics of the Fischer-Tropsch CO 
hydrogenation using iron and cobalt based catalysts. Applied Catalysis A: General, 
1999. 186(1-2): p. 309-320. 

87. Eliason, S.A. and C.H. Bartholomew, Reaction and deactivation kinetics for Fischer-
Tropsch synthesis on unpromoted and potassium-promoted iron catalysts. Applied 
Catalysis A: General, 1999. 186(1-2): p. 229-243. 

88. Wang, Y.-N., et al., Modeling of Catalyst Pellets for Fischer-Tropsch Synthesis Industrial 
& Engineering Chemistry Research, 2001. 40(20): p. 4324-4335. 



 

 213 

89. Teng, B.-T., et al., A comprehensive kinetics model of Fischer-Tropsch synthesis over an 
industrial Fe-Mn catalyst. Applied Catalysis A: General, 2006. 301(1): p. 39-50. 

90. Keyser, M.J., et al., Fischer-Tropsch Kinetic Studies with Cobalt-Manganese Oxide 
Catalysts. Industrial & Engineering Chemistry Research, 2000. 39(1): p. 48-54. 

91. Blekkan, E.A., et al., Fischer-Tropsch synthesis on cobalt catalysts: the effect of water. 
Catalysis, 2007. 20: p. 13-32. 

92. Storsoeter, S., et al., Effect of Water on the Fischer-Tropsch Synthesis on Supported 
Cobalt Catalysts. Fuel Chemistry Division Preprints, 2002. 47(1): p. 158-159. 

93. Karandikar, B.M., et al., Effect of water on the solubility and mass transfer coefficients of 
CO and H2 in a Fischer-Tropsch liquid. The Chemical Engineering Journal, 1986. 33(3): 
p. 157-168. 

94. Karandikar, B.M., et al., Effect of water on the solubilities and mass transfer coefficients 
of gases in a heavy fraction of Fischer-Tropsch products. Canadian Journal of Chemical 
Engineering, 1987. 65(6): p. 973-981. 

95. Yang, C.H., et al. Advances in Chemistry Series. Vol. 178. 1979. 35. 

96. Pannell, R.B., et al. Proceedings of the 7th International Congress on Catalysis. 1980. 
Tokyo. 

97. Rautavuoma, A.O.I. and H.S. van der Baan, Kinetics and mechanism of the fischer 
tropsch hydrocarbon synthesis on a cobalt on alumina catalyst. Applied Catalysis, 1981. 
1(5): p. 247-272. 

98. Sarup, B. and B.W. Wojciechowski, Studies of the Fischer-Tropsch Synthesis on a 
Cobalt Catalyst. II. Kinetics of Carbon Monoxide Conversion to Methane and to Higher 
Hydrocarbons. Canadian Journal of Chemical Engineering, 1989. 67(1): p. 62-74. 

99. Withers, H.P., Jr., et al., Slurry-Phase Fischer-Tropsch Synthesis and Kinetic Studies 
over Supported Cobalt Carbonyl Derived Catalysts. Industrial & Engineering Chemistry 
Research, 1990. 29(9): p. 1807-1814. 

100. Yates, I.C. and C.N. Satterfield, Intrinsic kinetics of the Fischer-Tropsch synthesis on a 
cobalt catalyst. Energy & Fuels, 1991. 5(1): p. 168-173. 

101. Chang, J., et al., Detailed kinetic study of Fischer-Tropsch synthesis on Co/ZrO2/SiO2 
catalyst II. Construction and regression of kinetic models. Chinese Journal of Catalysis, 
2005. 26(10): p. 859-868. 

102. Visconti, C.G., et al., Development of a complete kinetic model for the Fischer-Tropsch 
synthesis over Co/Al2O3 catalysts. Chemical Engineering Science, 2007. 62(18-20): p. 
5338-5343. 



 

 214 

103. Anfray, J., et al., Kinetic study and modeling of Fischer-Tropsch reaction over a 
Co/Al2O3 catalyst in a slurry reactor. Chemical Engineering Science, 2007. 62(18-20): 
p. 5353-5356. 

104. Dry, M.E., The fischer-tropsch process - commercial aspects. Catalysis Today, 1990. 
6(3): p. 183-206. 

105. Spath, P.L. and D.C. Dayton, Preliminary Screening — Technical and Economic 
Assessment of Synthesis Gas to Fuels and Chemicals with Emphasis on the Potential for 
Biomass-Derived Syngas. 2003, U.S. Department of Energy, National Renewable Energy 
Laboratory. 

106. Guettel, R., et al., Reactors for Fischer-Tropsch Synthesis. Chemical Engineering & 
Technology, 2008. 31(5): p. 746-754. 

107. Oshinowo, T. and M. Charles, Vertical Two-Phase Flow. Part I. Flow Pattern 
Correlations. Canadian Journal of Chemical Engineering, 1974. 52(1): p. 25-35. 

108. Deckwer, W.-D., et al., Hydrodynamic Properties of the Fischer-Tropsch Slurry Process. 
Industrial & Engineering Chemistry Process Design and Development, 1980. 19(4): p. 
699-708. 

109. Vial, C., et al., Study of hydrodynamic behaviour in bubble columns and external loop 
airlift reactors through analysis of pressure fluctuations. Chemical Engineering Science, 
2000. 55(15): p. 2957-2973. 

110. Wild, G. and S. Poncin, Hydrodynamics of Three-Phase Sparged Reactors. Three-Phase 
Sparged Reactors, ed. K.D.P. Nigam and A. Schumpe. 1996, New York: Gordon and 
Breach Science Publishers. 

111. Zahradník, J., et al., Duality of the gas-liquid flow regimes in bubble column reactors. 
Chemical Engineering Science, 1997. 52(21-22): p. 3811-3826. 

112. Magaud, F., et al., Experimental study of bubble column hydrodynamics. Chemical 
Engineering Science, 2001. 56(15): p. 4597-4607. 

113. Sarrafi, A., et al., Gas Holdup in Homogeneous and Heterogeneous Gas-Liquid Bubble 
Column Reactors. Canadian Journal of Chemical Engineering, 1999. 77(1): p. 11-21. 

114. Lee, S.-Y. and Y.P. Tsui, Succeed at gas/liquid contacting. Chemical Engineering 
Progress, 1999. 95(7): p. 23-48. 

115. Saxena, S.C. and Z.D. Chen, Hydrodynamics and Heat Transfer of Baffled and Unbaffled 
Slurry Bubble Columns. Reviews in Chemical Engineering, 1994. 10(3-4): p. 195-400. 

116. Anderson, J.L. and J.A. Quinn, The transition to slug flow in bubble columns. Chemical 
Engineering Science, 1970. 25(2): p. 338-340. 



 

 215 

117. de Swart, J.W.A., et al., Size, Structure and Dynamics of "Large" Bubbles in a Two-
Dimensional Slurry Bubble Column. Chemical Engineering Science, 1996. 51(20): p. 
4619-4629. 

118. Shah, Y.T., et al., Design Parameters Estimations for Bubble Column Reactors. AIChE 
Journal, 1982. 28(3): p. 353-379. 

119. Vermeer, D. and R. Krishna, Hydrodynamics and mass transfer in bubble columns in 
operating in the churn-turbulent regime. Industrial & Engineering Chemistry Process 
Design and Development, 1981. 20(3): p. 475-482. 

120. Behkish, A., et al., Gas holdup and bubble size behavior in a large-scale slurry bubble 
column reactor operating with an organic liquid under elevated pressures and 
temperatures. Chemical Engineering Journal, 2007. 128(2-3): p. 69-84. 

121. Grund, G., et al., Gas-Liquid mass transfer in a bubble column with organic liquids. 
Chemical Engineering Science, 1992. 47(13-14): p. 3509-3516. 

122. Krishna, R., et al., Gas holdup in bubble columns: influence of alcohol addition versus 
operation at elevated pressures. Chemical Engineering and Processing, 2000. 39(4): p. 
371-378. 

123. Lemoine, R., et al., Hydrodynamic and Mass Transfer Characteristics in Organic Liquid 
Mixtures in a Large-Scale Bubble Column Reactor for the Toluene Oxidation Process. 
Industrial & Engineering Chemistry Process Design and Development, 2004. 43(19): p. 
6195-6212. 

124. Fan, L.S., et al., Some aspects of high-pressure phenomena of bubbles in liquids and 
liquid–solid suspensions Chemical Engineering Science, 1999. 54(21): p. 4681-4709. 

125. Raje, A., et al., Fischer-Tropsch synthesis: Process considerations based on performance 
of iron-based catalysts. Fuel, 1997. 76(3): p. 273-280. 

126. Lewis, W.K. and W.G. Whitman, Principles of Gas Absorption. Industrial & Engineering 
Chemistry, 1924. 16(12): p. 1215-1220. 

127. Behkish, A., Hydrodynamic and Mass Transfer Parameters in Large-Scale Slurry Bubble 
Column Reactors. Ph.D. Dissertation, University of Pittsburgh, Pittsburgh, USA, 2004 

128. Hikita, H., et al., Gas hold-up in bubble columns. The Chemical Engineering Journal, 
1980. 20(1): p. 59-67. 

129. Jordan, U. and A. Schumpe, The gas density Effect on Mass Transfer in Bubble Columns 
with Organic Liquids. Chemical Engineering Science, 2001. 56(21-22): p. 6267-6272. 

130. Jordan, U., et al., Mass transfer in High-Pressure Bubble Columns with Organic Liquids. 
Chemical Engineering & Technology, 2002. 25(3): p. 262-265. 



 

 216 

131. Reilly, I.G., et al., The Role of Gas Phase Momentum in Determining Gas Holdup and 
Hydrodynamic Flow Regimes in Bubble Column Operations. Canadian Journal of 
Chemical Engineering, 1994. 72(1): p. 3-13. 

132. Wilkinson, P.M. and L.L. v. Dierendonck, Pressure and gas density effects on bubble 
break-up and gas hold-up in bubble columns. Chemical Engineering Science, 1990. 
45(8): p. 2309-2315. 

133. Inga, J.R., Scaleup and Scaledown of Slurry Reactors: A New Methodology. Ph.D. 
Dissertation, University of Pittsburgh, Pittsburgh, USA, 1997 

134. Letzel, H.M., et al., Effect of Gas Density on Large-Bubble Column Reactors. AIChE 
Journal, 1998. 44: p. 2333-2336. 

135. Lin, T.J., et al., Bubble Flow Characteristics in Bubble Columns at Elevated Pressure 
and Temperature. AIChE Journal, 1998. 44(3): p. 545-560. 

136. Clark, K.N., The effect of high pressure and temperature on phase distributions in a 
bubble column. Chemical Engineering Science, 1990. 45(8): p. 2301-2307. 

137. Sauer, T. and D.-C. Hempel, Fluid dynamics and mass transfer in a bubble column with 
suspended particles. Chemical Engineering & Technology, 1987. 10(1): p. 180-189. 

138. Zou, R., et al., Studies on gas holdup in a bubble column operated at elevated 
temperatures. Industrial & Engineering Chemistry Research, 1988. 27(10): p. 1910-1916. 

139. Hughmark, G.A., Holdup and Mass Transfer in Bubble Columns. Industrial & 
Engineering Chemistry Process Design and Development, 1967. 6(2): p. 218-220. 

140. Akita, K. and F. Yoshida, Gas Holdup and Volumetric Mass Transfer Coefficient in 
Bubble Columns. Effects of Liquid Properties. Industrial & Engineering Chemistry 
Process Design and Development, 1973. 12(1): p. 76-80. 

141. Fair, J.R., et al., Heat Transfer and Gas Holdup in a Sparged Contactor. Industrial & 
Engineering Chemistry Process Design and Development, 1962. 1(1): p. 33-36. 

142. Godbole, S.P., et al., Hydrodynamics and mass transfer in non-Newtonian solutions in a 
bubble column. AIChE Journal, 1984. 30(2): p. 213-220. 

143. Koide, K., et al., Gas holdup and volumetric liquid-phase mass transfer coefficient in 
solid-suspended bubble columns. Journal of Chemical Engineering of Japan, 1984. 17(5): 
p. 459-466. 

144. Godbole, S.P., Study of hydrodynamic and mass transfer characteristics of multiphase 
bubble column reactor. Ph.D. Dissertation, University of Pittsburgh, Pittsburgh, USA, 
1983 



 

 217 

145. Neme, F., et al., Gas holdup and mass transfer in solid suspended bubble columns in 
presence of structured packings. Chemical Engineering & Technology, 1997. 20(5): p. 
297-303. 

146. Akita, K. and F. Yoshida, Bubble size, Interfacial Area, and Liquid-Phase Mass Transfer 
Coefficient in Bubble Columns. Industrial & Engineering Chemistry Process Design and 
Development, 1974. 13(1): p. 84-91. 

147. Kluytmans, J.H.J., et al., Gas Holdup in a Slurry Bubble Column: Influence of Electrolyte 
and Carbon Particles. Industrial & Engineering Chemistry Research, 2001. 40(23): p. 
5326-5333. 

148. Pohorecki, R., et al., Hydrodynamics of a bubble column under elevated pressure. 
Chemical Engineering Science, 1999. 54(21): p. 5187-5193. 

149. Wilkinson, P.M., et al., Design Parameters Estimation for Scale-up of High-Pressure 
Bubble Columns. AIChE Journal, 1992. 38(4): p. 544-554. 

150. Hikita, H., et al., The Volumetric Mass Transfer Coefficient in Bubble Columns. The 
Chemical Engineering Journal, 1981. 22(1): p. 61-69. 

151. Jamialahmadi, M. and H. Müller-Steinhagen, Effect of Solid Particles on Gas Hold-Up in 
Bubble Columns. Canadian Journal of Chemical Engineering, 1991. 69(1): p. 390-393. 

152. Kara, S., et al., Hydrodynamics and axial mixing in a three-phase bubble column. 
Industrial & Engineering Chemistry Process Design and Development, 1982. 21(4): p. 
584-594. 

153. Kelkar, B.G., et al., Hydrodynamics and axial mixing in a three-phase bubble column. 
Effects of slurry properties. Industrial & Engineering Chemistry Process Design and 
Development, 1984. 23(2): p. 308-313. 

154. Chabot, J. and H.I. Lasa, Gas Holdups and Bubble Characteristics in a Bubble Column 
Operated at High Temperature. Industrial & Engineering Chemistry Research, 1993. 
32(11): p. 2595-2601. 

155. Pohorecki, R., et al., Hydrodynamics of a Pilot Plant Bubble Column Under Elevated 
temperature and Pressure. Chemical Engineering Science, 2001. 56(3): p. 1167-1174. 

156. Kang, Y., et al., Diagnosis of Bubble Distribution and Mass Transfer in Pressurized 
Bubble Columns with Viscous Liquid Medium. Chemical Engineering Science, 1999. 
54(21): p. 4887-4893. 

157. Kemoun, A., et al., Gas holdup in bubble columns at elevated pressure via computed 
tomography. International Journal of Multiphase Flow, 2001. 27(5): p. 929-946. 

158. Kojima, H., et al., Effect of pressure on volumetric mass transfer coefficient and gas 
holdup in bubble column. Chemical Engineering Science, 1997. 52(21-22): p. 4111-4116. 



 

 218 

159. Letzel, H.M., et al., Characterization of regimes and regime transitions in bubble 
columns by chaos analysis of pressure signals. Chemical Engineering Science, 1997. 
52(24): p. 4447-4459. 

160. Letzel, H.M., et al., Gas holdup and mass transfer in bubble column reactors operated at 
elevated pressure. Chemical Engineering Science, 1999. 54(13-14): p. 2237-2246. 

161. Letzel, H.M., et al., Influence of elevated pressure on the stability of bubbly flows. 
Chemical Engineering Science, 1997. 52(21-22): p. 3733-3739. 

162. Luo, X., et al., Maximum Stable bubble size and gas holdup in high-pressure slurry 
bubble columns. AIChE Journal, 1999. 45(4): p. 665-680. 

163. Oyevaar, M.H., et al., Interfacial areas and gas hold-ups in gas--liquid contactors at 
elevated pressures from 0.1 to 8.0 MPa. Chemical Engineering Science, 1991. 46(5-6): p. 
1217-1231. 

164. Stegeman, D., et al., Interfacial Area and Gas Holdup in a Bubble Column Reactor at 
Elevated Pressures. Industrial & Engineering Chemistry Research, 1996. 35(11): p. 
3842-3847. 

165. Wilkinson, P.M., et al., Mass Transfer and Bubble Size in a Bubble Column under 
Pressure. Chemical Engineering Science, 1994. 49(9): p. 1417-1427. 

166. Behkish, A., et al., Mass transfer characteristics in a large-scale slurry bubble column 
reactor with organic liquid mixtures. Chemical Engineering Science, 2002. 57(16): p. 
3307-3324. 

167. Dewes, I., et al., Gas Density effect on Mass Transfer in Three-Phase Sparged Reactors. 
Transactions of the Institution of Chemical Engineers, 1995. 73(A): p. 697-700. 

168. Dewes, I. and A. Schumpe, Gas density effect on mass transfer in the slurry bubble 
column. Chemical Engineering Science, 1997. 52(21-22): p. 4105-4109. 

169. Bukur, D.B., et al., Gas holdup and solids dispersion in a three-phase slurry bubble 
column. AIChE Journal, 1990. 36(11): p. 1731-1735. 

170. Jianping, W. and X. Shonglin, Local hydrodynamics in a gas-liquid-solid three-phase 
bubble column reactor. Chemical Engineering Journal, 1998. 70(1): p. 81-84. 

171. Jin, H., et al., Measurement of gas holdup profiles in a gas liquid cocurrent bubble 
column using electrical resistance tomography. Flow Measurement and Instrumentation, 
2007. 18(5-6): p. 191-196. 

172. Gandhi, B., et al., Hydrodynamic behavior of slurry bubble column at high solids 
concentrations. Powder Technology, 1999. 103(2): p. 80-94. 



 

 219 

173. Kojima, H., et al., Axial mixing in bubble column with suspended solid particles. Journal 
of Chemical Engineering of Japan, 1986. 19(3): p. 232-234. 

174. Krishna, R., et al., Design and scale up of a bubble column slurry reactor for Fischer-
Tropsch synthesis. Chemical Engineering Science, 2001. 56(2): p. 537-545. 

175. Lee, D.J., et al., Gas disengagement technique in a slurry bubble column operated in the 
coalesced bubble regime. Chemical Engineering Science, 1999. 54(13-14): p. 2227-2236. 

176. Salvacion, J.L., et al., Effects of Alcohols on Gas Holdup and Volumetric Liquid-Phase 
Mass Transfer Coefficient in Gel-Particle-Suspended Bubble Column. Journal of 
Chemical Engineering of Japan, 1995. 28(4): p. 434-442. 

177. Quicker, G., et al., Gas-liquid interfacial areas in a bubble column with suspended solids. 
Chemical Engineering Science, 1984. 39(1): p. 179-183. 

178. Schumpe, A., et al., Gas/liquid mass transfer in a slurry bubble column. Chemical 
Engineering Science, 1987. 42(7): p. 1787-1796. 

179. Yoshida, F. and K. Akita, Performance of Gas Bubble Columns: Volumetric Liquid-
Phase Mass Transfer Coefficient and Gas Holdup. AIChE Journal, 1965. 11(1): p. 9-13. 

180. Eickenbusch, H., et al., Mass transfer into viscous pseudoplastic liquid in large-diameter 
bubble columns. Chemical Engineering and Processing, 1995. 34(5): p. 479-485. 

181. Moustiri, S., et al., A unified correlation for predicting liquid axial dispersion coefficient 
in bubble columns. Chemical Engineering Science, 2001. 56(3): p. 1041-1047. 

182. Guy, C., et al., Mixing Characteristics and Gas Holdup of a Bubble Column. Canadian 
Journal of Chemical Engineering, 1986. 64(1): p. 23-35. 

183. Pino, L.Z., et al., Effect of Operating Conditions on Gas Holdup in Slurry Bubble 
Columns with a Foaming Liquid. Chemical Engineering Communications, 1992. 117(1): 
p. 367-382. 

184. Behkish, A., et al., Novel Correlations for Gas Holdup in Large-Scale Slurry Bubble 
Column Reactors Operating under Elevated Pressures and Temperatures. Chemical 
Engineering Journal, 2006. 115(3): p. 157-171. 

185. Saxena, S.C., et al., Gas Phase Holdup in Slurry Bubble Column for Two- and Three-
Phase Systems. The Chemical Engineering Journal, 1992. 49(3): p. 151-159. 

186. O’Dowd, W., et al., Gas and solids behavior in a baffled and unbaffled slurry bubble 
column. AIChE Journal, 1987. 33(12): p. 1959-1970. 

187. Chen, J., et al., Fluid dynamic parameters in bubble columns with internals. Chemical 
Engineering Science, 1999. 54(13-14): p. 2187-2197. 



 

 220 

188. Yamashita, F., Effects of Vertical Pipe and Rod Internals on Gas Holdup in Bubble 
Columns. Journal of Chemical Engineering of Japan, 1987. 20(2): p. 204-206. 

189. Krishna, R., et al., Gas Holdup in Slurry Bubble Columns: Effect of Column Diameter 
and Slurry Concentrations. AIChE Journal, 1997. 43: p. 311-316. 

190. Vandu, C.O., et al., Volumetric mass transfer coefficient in a slurry bubble column 
operating in the heterogeneous flow regime. Chemical Engineering Science, 2004. 59(22-
23): p. 5417-5423. 

191. Woo, K.-J., et al., Performance of a slurry bubble column reactor for Fischer-Tropsch 
synthesis: Determination of optimum condition. Fuel Processing Technology, 2010. 
91(4): p. 434-439. 

192. Argo, W.B. and D.R. Cova, Longitudinal Mixing in Gas-Sparged Tubular Vessels. 
Industrial & Engineering Chemistry Process Design and Development, 1965. 4(4): p. 
352-359. 

193. Bach, H.F. and T. Pilhofer, Variation of Gas Hold-Up in Bubble Columns with Physical 
Properties of Liquids and Operating Parameters of Columns. German Chemical 
Engineering, 1978. 1(5): p. 270-275. 

194. Gestrich, W., et al., Liquid-side mass transfer coefficient in bubble layers. International 
Chemical Engineering, 1978. 18(1): p. 38-47. 

195. Mersmann, A., Design and Scale-up of Bubble and Spray Columns. German Chemical 
Engineering, 1978. 1: p. 1-11. 

196. Tarmy, B.L., et al. Three Phase Hydrodynamic Characteristics of The EDS Coal 
Liquefaction Reactors: Their Development and Use in Reactor Scaleup. Proceedings of 
the Institution of Chemical Engineers Symposium Series. 1984. 

197. Molerus, O. and M. Kurtin, Hydrodynamics of Bubble Columns in the Uniform Bubbling 
Regime. Chemical Engineering Science, 1985. 40: p. 647-652. 

198. Grover, G.S., et al., Effect of temperature on flow regime and gas holdup in a bubble 
column. Canadian Journal of Chemical Engineering, 1986. 64: p. 501-504. 

199. Idogawa, K., et al., Effect of gas and liquid properties on the behavior of bubbles in a 
column under high pressure. International Chemical Engineering, 1987. 27(1): p. 93-99. 

200. Kawase, Y., et al., Theoretical Prediction of Volumetric Mass Transfer Coefficients in 
Bubble Columns for Newtonian and Non-Newtonian Fluids. Chemical Engineering 
Science, 1987. 42: p. 1609-1617. 

201. Moo Young, M.K., Y., Gas Holdup And Mass Transfer In A Bubble Column With 
Viscoelastic Fluids. Canadian Journal of Chemical Engineering, 1987. 65(1): p. 113-118. 



 

 221 

202. öztürk, S.S., et al., Organic liquids in a bubble column: Holdups and mass transfer 
coefficients. AIChE Journal, 1987. 33(9): p. 1473-1480. 

203. Popovic, M. and C.W. Robinson, The specific interfacial area in external-circulation-
loop airlifts and a bubble column-I. Aqueous sodium sulphite solution. Chemical 
Engineering Science, 1987. 42(12): p. 2811-2824. 

204. Popovic, M. and C.W. Robinson, The specific interfacial area in external-circulation-
loop airlifts and a bubble column-II. Carboxymethyl cellulose/sulphite solution. 
Chemical Engineering Science, 1987. 42(12): p. 2825-2832. 

205. Cho, J.S. and N. Wakao, Determination of liquid-side and gas-side volumetric mass 
transfer coefficients in a bubble column. Journal of Chemical Engineering of Japan, 
1988. 21(6): p. 576-581. 

206. de Bruijn, T.J.W., et al., Gas Holdup in a Two Phase Vertical Tubular Reactor at High 
Pressure. Canadian Journal of Chemical Engineering, 1988. 66(2): p. 330-333. 

207. Akita, A., Effect Of The Electrolyte On The Mass Transfer Characteristics Of A Bubble 
Column. International Chemical Engineering, 1989. 29(1): p. 127-135. 

208. Allen, D.G. and C.W. Robinson, Hydrodynamics and mass transfer in Aspergillus niger 
fermentations in bubble column and loop bioreactors. Biotechnology and 
Bioengineering, 1989. 34(6): p. 731-740. 

209. Halard, B., et al., Mass Transfer in a Pilot Plant Scale Airlift Column with non-
Newtonian Fluids. Industrial & Engineering Chemistry Research, 1989. 28(2): p. 243-
245. 

210. Medic, L., et al., Volumetric gas-liquid mass transfer coefficients in a rectangular bubble 
column with a rubber aeration pad. The Chemical Engineering Journal, 1989. 41(3): p. 
B51-B54. 

211. Popovic, M.K. and C.W. Robinson, Mass transfer studies of external-loop airlifts and a 
bubble column. AIChE Journal, 1989. 35(3): p. 393-405. 

212. Uchida, S., et al., Flow Regimes And Mass Transfer In Counter-Current Bubble Columns. 
Canadian Journal of Chemical Engineering, 1989. 67(5): p. 866-869. 

213. Vatai, G.Y. and M.N. Tekic, Gas hold-up and mass transfer in bubble columns with 
pseudoplastic liquids. Chemical Engineering Science, 1989. 44(10): p. 2402-2407. 

214. Seno, T., et al., Mass transfer in countercurrent and cocurrent bubble columns. Chemical 
Engineering & Technology, 1990. 13(1): p. 113-118. 

215. Huynh, L.X., et al., Hydrodynamics and mass transfer in an upward venturi/bubble 
column combination. Canadian Journal of Chemical Engineering, 1991. 69(3): p. 711-
722. 



 

 222 

216. Kawase, Y. and M. Moo-Young, Oxygen transfer in slurry bioreactors. Biotechnology 
and Bioengineering, 1991. 37(10): p. 960-966. 

217. Rodemerck, U. and A. Seidel, Analysis of transient mass transfer measurements in 
bubble columns. Chemical Engineering Science, 1991. 46(3): p. 908-912. 

218. Suh, I.S., et al., Gas Liquid Mass Transfer in the Bubble Column with Viscoelastic 
Liquid. Canadian Journal of Chemical Engineering, 1991. 69(2): p. 506-512. 

219. Terasaka, K. and H. Tsuge, Mass transfer in highly viscous liquids in a bubble column 
with constant-flow nozzles. Journal of Chemical Engineering of Japan, 1991. 24(4): p. 
424-429. 

220. Daly, J.G., et al., Measurement of gas holdups and sauter mean bubble diameters in 
bubble column reactors by dynamics gas disengagement method. Chemical Engineering 
Science, 1992. 47(13–14): p. 3647-3654. 

221. Goto, S. and P.D. Gaspillo, The effect of static mixer on mass transfer in draft tube 
bubble column and in external loop column. Chemical Engineering Science, 1992. 47(13-
14): p. 3533-3539. 

222. Merchuk, J.C. and S. Ben-Zvi, A novel approach to the correlation of mass transfer rates 
in bubble columns with non- Newtonian liquids. Chemical Engineering Science, 1992. 
47(13-14): p. 3517-3523. 

223. Muller, F.L. and J.F. Davidson, On the Contribution of Small Bubbles to Mass Transfer 
in Bubble Columns Containing Highly Viscous Liquids. Chemical Engineering Science, 
1992. 47(13-14): p. 3525-3532. 

224. Kawasaki, H., et al., Relationship between Gas Holdup and Volumetric Mass Transfer 
Coefficient in a Bubble Column with Single Hole Orifice. Journal of Chemical 
Engineering of Japan, 1994. 27(5): p. 667-668. 

225. Kawasaki, H., et al., Effect of Multiple Draft Tubes with Perforated Plates on Gas 
Holdup and Volumetric Mass Transfer Coefficient in a Bubble Column. Journal of 
Chemical Engineering of Japan, 1994. 27(5): p. 669-670. 

226. Sotelo, J.L., et al., Gas holdup and mass transfer coefficients in bubble columns. 1. 
Porous glass-plate diffusers. International Chemical Engineering, 1994. 34(1): p. 82-90. 

227. Zhao, M., et al., Mass transfer to viscous liquids in bubble columns and air-lift reactors: 
influence of baffles. Chemical Engineering Science, 1994. 49(14): p. 2359-2369. 

228. de Swart, J.W.A., Scale-Up of a Fischer-Tropsch Slurry Reactor. Ph.D. Dissertation, 
University of Amsterdam, Amsterdam, Netherlands, 1996 

229. Krishna, R. and J. Ellenberger, Gas holdup in bubble column reactors operating in the 
churn-turbulent flow regime. AIChE Journal, 1996. 42(9): p. 2627-2634. 



 

 223 

230. Laari, A., et al., Gas-liquid mass transfer in bubble columns with a T-junction nozzle for 
gas dispersion. Chemical Engineering & Technology, 1997. 20(8): p. 550-556. 

231. Miyahara, T.H., H., et al., Gas Holdup Gas-Liquid Interfacial Area and Mass Transfer 
Coefficient in External-Loop Airlift Bubble Column Containing Low Density Particles. 
Journal of Chemical Engineering of Japan, 1997. 30: p. 958-961. 

232. Soong, Y., et al., Hydrodynamic study in a slurry-bubble-column reactor. Catalysis 
Today, 1997. 35(4): p. 427-434. 

233. Terasaka, K., et al., Mass Transfer in Bubble Columns studied with an oxygen optode. 
Chemical Engineering Science, 1998. 53(17): p. 3181-3184. 

234. Lin, T.J., et al., On the measurements of regime transition in high-pressure bubble 
columns. The Canadian Journal of Chemical Engineering, 1999. 77(2): p. 370-374. 

235. Álvarez, E., et al., Mass Transfer and Influence of Physical Properties of Solutions in a 
Bubble Column. Chemical Engineering Research and Design, 2000. 78(6): p. 889-893. 

236. Vázquez, G., et al., Application of the Danckwerts method in a bubble column: Effects of 
surfactants on mass transfer coefficient and interfacial area. Chemical Engineering 
Journal, 2000. 78(1): p. 13-19. 

237. Vázquez, G., et al., Determination of Interfacial Areas in a Bubble Column by Different 
Chemical Methods. Industrial & Engineering Chemistry Research, 2000. 39(7): p. 2541-
2547. 

238. Bouaifi, M., et al., A comparative study of gas hold-up, bubble size, interfacial area and 
mass transfer coefficients in stirred gas-liquid reactors and bubble columns. Chemical 
Engineering and Processing, 2001. 40(2): p. 97-111. 

239. Ishibashi, H., et al., Gas holdup in slurry bubble column reactors of a 150 t/d coal 
liquefaction pilot plant process. Fuel, 2001. 80(5): p. 655-664. 

240. Jordan, U., et al., Stoffubergang in Druckblasensaulen mit Organischen Flussigkeiten. 
Chemie Ingenieur Technik, 2001. 73-8. 

241. Pohorecki, R., et al., Modelling of the coalescence/redispersion processes in bubble 
columns. Chemical Engineering Science, 2001. 56(21-22): p. 6157-6164. 

242. Yang, W., et al., Mass Transfer Characteristics of Syngas Components in Slurry System 
at Industrial Conditions. Chemical Engineering & Technology, 2001. 24(6): p. 651-657. 

243. Urseanu, M.I., et al., Influence of operating pressure on the gas hold-up in bubble 
columns for high viscous media. Chemical Engineering Science, 2003. 58(3-6): p. 697-
704. 



 

 224 

244. Lau, R., et al., Gas−Liquid Mass Transfer in High-Pressure Bubble Columns. Industrial 
& Engineering Chemistry Research, 2004. 43(5): p. 1302-1311. 

245. Reilly, I.G., et al., A Correlation for Gas Holdup in Turbulent Coalescing Bubble 
Columns. Canadian Journal of Chemical Engineering, 1986. 64: p. 705-717. 

246. Fukuma, M., et al., Specific Gas-Liquid Interfacial Area and Liquid-Phase Mass Transfer 
Coefficient in a Slurry Bubble Column. Journal of Chemical engineering of Japan, 1987. 
20: p. 321-324. 

247. Krishna, R. and S.T. Sie, Design and Scale-up of the Fischer-Tropsch bubble Column 
Slurry Reactor. Fuel Processing Technology, 2000. 64(1): p. 73-105. 

248. Yang, G.Q., et al., Heat-Transfer Characteristics in Slurry Bubble Columns at Elevated 
Pressures and Temperatures. Industrial & Engineering Chemistry Research, 2000. 39(7): 
p. 2568-2577. 

249. Chen, C.-M. and L.-P. Leu, Hydrodynamics and mass transfer in three-phase magnetic 
fluidized beds. Powder Technology, 2001. 117(3): p. 198-206. 

250. GKN Sinter metals. Filter-Elements/Metal Membranes. Available from: http://www.gkn-
filters.com/. 

251. KRAL-USA. Operating Principle. Available from: http://www.kral.at/. 

252. Yaws, C.L., Chemical Properties Handbook. 1999: McGraw-Hill. 

253. Gao, W., et al., Improved Correlations for heavy n-paraffin physical properties. Fluid 
Phase Equilibria, 2001. 179(1-2): p. 207-216. 

254. Soriano, J.P., Mass Transfer Characteristics in an Agitated Slurry Reactor Operating 
Under Fischer-Tropsch Conditions. M.S. Thesis, University of Pittsburgh, Pittsburgh, 
USA, 2005 

255. Marano, J.J. and G.D. Holder, A General Equation for Correlating the Thermophysical 
Properties of n-Paraffins, n-Olefins, and Other Homologous Series. 3. Asymptotic 
Behavior Correlations for Thermal and Transport Properties. Industrial & Engineering 
Chemistry Research, 1997. 36(6): p. 2399-2408. 

256. Marano, J.J. and G.D. Holder, General Equation for Correlating the Thermophysical 
Properties of n-Paraffins, n-Olefins, and Other Homologous Series. 2. Asymptotic 
Behavior Correlations for PVT Properties. Industrial & Engineering Chemistry 
Research, 1997. 36(5): p. 1895-1907. 

257. Kudchadker, A.P. and B.J. Zwolinski, Vapor pressures and boiling points of normal 
alkanes, C21 to C100. Journal of Chemical & Engineering Data, 1966. 11(2): p. 253-255. 

http://www.gkn-filters.com/
http://www.gkn-filters.com/
http://www.kral.at/


 

 225 

258. Wilke, C.R. and P. Chang, Correlation of diffusion coefficients in dilute solutions. AIChE 
Journal, 1955. 1: p. 264-270. 

259. Erkey, C., et al., A Correlation for Predicting Diffusion Coefficients in Alkanes. The 
Canadian Journal of Chemical Engineering, 1990. 68: p. 661-665. 

260. Chang, M.Y., Mass Transfer Characteristics of Gases in Aqueous and Organic Liquids 
at Elevated Pressures and Temperatures in Agitated Reactors. Ph.D. Dissertation, 
University of Pittsburgh, Pittsburgh, USA, 1991 

261. Poling, B.E., et al., The Properties of Gases and Liquids (5th Ed.). 2001, New York, NY: 
McGraw-Hill. 

262. Lemoine, R., Hydrodynamics, Mass Transfer and Modeling of the Liquid-Phase Toluene 
Oxidation Process. Ph.D. Dissertation, University of Pittsburgh, Pittsburgh, USA, 2005 

263. Mason, R.L., et al., Statistical design and analysis of experiments : with applications to 
engineering and science, New York: Wiley. 

264. Boyer, C., et al., Measuring techniques in gas-liquid and gas-liquid-solid reactors. 
Chemical Engineering Science, 2002. 57: p. 3185-3215. 

265. Gharat, S.D. and J.B. Joshi, Transport phenomena in bubble column reactors, II: 
pressure drop. The Chemical Engineering Journal, 1992. 48(3): p. 153-166. 

266. Inga, J.R. and B.I. Morsi, Effect of Operating Variables on the Gas Holdup in a Large-
Scale Slurry Bubble Column Reactor Operating with an Organic Liquid Mixture. 
Industrial & Engineering Chemistry Research, 1999. 38(3): p. 928-937. 

267. Sriram, K. and R. Mann, Dynamic Gas Disengagement: A New Technique for Assessing 
the Behavior of Bubble Columns. Chemical Engineering Science, 1977. 32(6): p. 571-
580. 

268. Fukuma, M., et al., Properties of bubble swarn in a slurry bubble column. Journal of 
Chemical Engineering of Japan, 1987. 20(1): p. 28-33. 

269. Tarmy, B., et al., Hydrodynamic characteristics of three phase reactors. The Chemical 
Engineer, 1984. 407: p. 18-23. 

270. Kato, Y., et al., The behavior of suspended solid particles and liquid in bubble columns. 
Journal of Chemical Engineering of Japan, 1972. 5(2): p. 112-118. 

271. Smith, D.N. and J.A. Ruether, Dispersed solid dynamics in a slurry bubble column. 
Chemical Engineering Science, 1985. 40(5): p. 741-754. 

272. de Swart, J.W.A. and R. Krishna, Simulation of the transient and steady state behavior of 
a bubble column slurry reactor for Fisher-Tropsch synthesis. Chemical Engineering and 
Processing, 2002. 41(1): p. 35-47. 



 

 226 

273. Gupta, P., et al., Comparison of single- and two-bubble class gas-liquid recirculation 
models-application to pilot-plant radioactive tracer studies during methanol synthesis. 
Chemical Engineering Science, 2001. 56(3): p. 1117-1125. 

274. Shah, Y.T., et al., Two-bubble class model for churn turbulent bubble-column reactor. 
Industrial & Engineering Chemistry Process Design and Development, 1985. 24(4): p. 
1096-1104. 

275. Lemoine, R., et al., An Algorithm for Predicting the Hydrodynamic and Mass Transfer 
Parameters in Slurry Bubble Column Reactors for Fischer-Tropsch Synthesis. 
Proceedings of the Twenty Second Annual International Pittsburgh Coal Conference, 
Pittsburgh, PA, September 12-16, 2005. 

276. Behkish, A., et al., Prediction of the Gas Holdup in Industrial-Scale Bubble Columns and 
Slurry Bubble Column Reactors using Back-Propagation Neural Networks. International 
Journal of Chemical Reactor Engineering, 2005. 3(A53). 

277. Lemoine, R., et al., An Algorithm for Predicting the Hydrodynamic and Mass Transfer 
Parameters in Bubble Column and Slurry Bubble Column Reactors. Fuel Processing 
Technology, 2008. 89(4): p. 322-343. 

278. De, S.K., et al., Gas hold-up in two-phase system with internals. Indian Chemical 
Engineer, 1999. 41(2): p. 112-116. 

279. Forret, A., et al., Liquid dispersion in large diameter bubble columns, with and without 
internals. Canadian Journal of Chemical Engineering, 2003. 81(3-4): p. 360-366. 

280. Joseph, S., Hydrodynamic and Mass Transfer Characteristics of a Bubble Column. Ph.D. 
Dissertation, University of Pittsburgh, Pittsburgh, USA, 1985 

281. Shah, Y.T., et al., Back-Mixing Characteristics of a Bubble Column with vertically 
Suspended Tubes. Transactions of the Institution of Chemical Engineers, 1978. 56(2): p. 
107-112. 

282. Inga, J.R. and B.I. Morsi, Effect of Catalyst loading on Gas/Liquid Mass Transfer in a 
Slurry Reactor: a Statistical Experimental Approach. Canadian Journal of Chemical 
Engineering, 1997. 75(5): p. 872-881. 

283. Botton, R., et al., Influence of Column Diameter and High Gas Throughputs on the 
Operation of a Bubble Column. The Chemical Engineering Journal, 1978. 16: p. 107-115. 

284. Bukur, D.B. and J.G. Daly, Gas hold-up in bubble columns for Fischer-Tropsch 
synthesis. Chemical Engineering Science, 1987. 42: p. 2967-2969. 

285. Camarasa, E., et al., Influence of Coalescence Behavior of the Liquid and Gas Sparging 
on Hydrodynamics and Bubble Characteristics in Bubble Column. Chemical Engineering 
and Processing, 1999. 38: p. 329-344. 



 

 227 

286. Chen, W., et al., Scale-up effects on the time-averaged and dynamic behavior in bubble 
column reactors. Chemical Engineering Science, 2001. 56(21-22): p. 6149-6155. 

287. Choi, K.H., et al., Comparative evaluation of hydrodynamic and gas-liquid mass transfer 
characteristics in bubble column and airlift slurry reactors. The Chemical Engineering 
Journal and the Biochemical Engineering Journal, 1996. 62(3): p. 223-229. 

288. Ellenberger, J. and R. Krishna, A unified approach to the scale-up of gas-solid fluidized 
bed and gas-liquid bubble column reactors. Chemical Engineering Science, 1994. 49: p. 
5391-5411. 

289. Han, L. and M.H. Al-Dahhan, Gas-liquid mass transfer in a high pressure bubble column 
reactor with different sparger designs. Chemical Engineering Science, 2007. 62(1-2): p. 
131-139. 

290. Hyndman, C.L., et al., Understanding gas-phase hydrodynamics in bubble columns: a 
convective model based on kinetic theory. Chemical Engineering Science, 1997. 52(1): p. 
63-77. 

291. Idogawa, K., et al., Behavior of bubbles of the air-water system in a column under high 
pressure. International Chemical Engineering, 1986. 26(3): p. 468-474. 

292. Jiang, P., et al., Flow Visualization of High Pressure (21mpa) Bubble Column: Bubble 
Characteristics. Transactions of the Institution of Chemical Engineers, 1995. 73(A): p. 
269-274. 

293. Jordan, U., et al., Dynamic Gas Disengagement in a High-Pressure Bubble Column. 
Canadian Journal of Chemical Engineering, 2003. 81: p. 491-498. 

294. Kataoka, H., et al., Mass Transfer in a Large Bubble Column. Journal of Chemical 
Engineering of Japan, 1979. 12(12): p. 105-110. 

295. Li, H., et al., Effect of micron-sized particles on hydrodynamics and local heat transfer in 
a slurry bubble column. Powder Technology, 2003. 133: p. 177-184. 

296. Pino, L.R.Z., et al., Hydrodynamics of a semibatch slurry bubble column with a foaming 
liquid. AIChE Journal, 1990. 36: p. 1758-1762. 

297. Shimizu, K., et al., Phenomenological model for bubble column reactors: prediction of 
gas hold-ups and volumetric mass transfer coefficients. Chemical Engineering Journal, 
2000. 78(1): p. 21-28. 

298. Vandu, C.O. and R. Krishna, Volumetric mass transfer coefficients in slurry bubble 
columns operating in the churn-turbulent flow regime. Chemical Engineering and 
Processing, 2004. 43(8): p. 987-995. 

299. Veera, U.P., et al., Gas hold-up in foaming liquids in bubble columns. Chemical 
Engineering Journal, 2001. 84: p. 247-256. 



 

 228 

300. Wezorke, H., Einflüss von Grössblasen in Blasensäulenreaktoren. Ph.D. Dissertation, 
University of Dortmund, Dortmund, Germany, 1986 

301. Kastanek, F., et al., Scaling-up of bubble reactors on basis of laboratory data. Chemical 
Engineering Science, 1980. 35: p. 456-462. 

302. Bukur, D.B. and W.H. Zimmerman, Modeling of bubble column slurry reactors for 
multiple reactions. AIChE Journal, 1987. 33(7): p. 1197-1206. 

303. Iliuta, I., et al., Comparative Simulations of Cobalt- and Iron-Based Fischer-Tropsch 
Synthesis Slurry Bubble Column Reactors. Industrial & Engineering Chemistry Research, 
2008. 47(11): p. 3861-3869. 

304. Prakash, A., On the effects of syngas composition and water-gas-shift reaction rate on FT 
synthesis over iron based catalyst in a slurry reactor. Chemical Engineering 
Communications, 1994. 128(1): p. 143-158. 

305. Rados, N., et al., Dynamic Modeling of Slurry Bubble Column Reactors. Industrial & 
Engineering Chemistry Research, 2005. 44(16): p. 6086-6094. 

306. Sehabiague, L., et al., Modeling and optimization of a large-scale slurry bubble column 
reactor for producing 10,000 bbl/day of Fischer-Tropsch liquid hydrocarbons. Journal of 
the Chinese Institute of Chemical Engineers, 2008. 39(2): p. 169-179. 

307. Song, H.-S., et al., Multiplicity and sensitivity analysis of Fischer-Tropsch bubble column 
slurry reactors: plug-flow gas and well-mixed slurry model. Chemical Engineering 
Science, 2003. 58(12): p. 2759-2766. 

308. Stern, D., et al., A theoretical model for the performance of bubble-column reactors used 
for Fischer-Tropsch synthesis. Chemical Engineering Science, 1985. 40(9): p. 1665-
1677. 

309. Wang, Y., et al., Modeling of the Fischer-Tropsch synthesis in slurry bubble column 
reactors. Chemical Engineering and Processing: Process Intensification, 2008. 47(2): p. 
222-228. 

310. Baird, M.H.I. and R.G. Rice, Axial dispersion in large unbaffled columns. The Chemical 
Engineering Journal, 1975. 9(2): p. 171-174. 

311. Rados, N., et al., Modeling of the Fischer–Tropsch synthesis in slurry bubble column 
reactors. Catalysis Today, 2003. 79-80: p. 211-218. 

312. Iliuta, I., et al., Multicomponent multicompartment model for Fischer-Tropsch SCBR. 
AIChE Journal, 2007. 53(8): p. 2062-2083. 

313. Calderbank, P.H., et al., Catalysis in Practice. Proceedings of the Symposium of The 
Institution of Chemical Engineers, 1963: p. 66. 



 

 229 

314. Satterfield, C.N. and G.A. Huff, Effects of mass transfer on Fischer-Tropsch synthesis in 
slurry reactors. Chemical Engineering Science, 1980. 35(1-2): p. 195-202. 

315. Deckwer, W.-D., et al., On the relevance of mass transfer limitations in the Fischer-
Tropsch slurry process. Chemical Engineering Science, 1981. 36(4): p. 765-771. 

316. Deckwer, W.D., et al., Modeling the Fischer-Tropsch synthesis in the slurry phase. 
Industrial & Engineering Chemistry Process Design and Development, 1982. 21(2): p. 
231-241. 

317. Bukur, D.B., Some comments on models for Fischer-Tropsch reaction in slurry bubble 
column reactors. Chemical Engineering Science, 1983. 38(3): p. 440-446. 

318. Kuo, J.C.W., Slurry Fischer-Tropsch/Mobil Two Stage Process of Converting Syngas to 
High Octane Gasoline. 1983, U.S. Department of Energy: Washington, DC. 

319. Stern, D., et al., Effects of mass transfer on the performance of slurry reactors used for 
fischer-tropsch synthesis. Chemical Engineering Science, 1983. 38(4): p. 597-605. 

320. Turner, J.R. and P.L. Mills, Comparison of axial dispersion and mixing cell models for 
design and simulation of fischer-tropsch slurry bubble column reactors. Chemical 
Engineering Science, 1990. 45(8): p. 2317-2324. 

321. Leib, T.M., et al., Evaluation of Neural Networks for Simulation of Three-Phase Bubble 
Column Reactors. Chemical Engineering Research and Design, 1995. 73(A6): p. 690. 

322. Inga, J.R. and B.I. Morsi, A Novel Approach for the Assessment of the Rate-Limiting Step 
in Fischer-Tropsch Slurry Process. Energy & Fuels, 1996. 10(3): p. 566-572. 

323. Mills, P.L., et al., Three-Phase Sparged Reactors; The Fischer-Tropsch Synthesis in 
Slurry Bubble Column Reactors: Analysis of reactor Performance Using the Axial 
Dispersion Model. Topics in Chemical Engineering, ed. R. Hughes. Vol. 8. 1996, 
Amsterdam, The Netherlands: Gordon and Breach Science Publishers. 

324. Maretto, C. and R. Krishna, Modelling of a bubble column slurry reactor for Fischer-
Tropsch synthesis. Catalysis Today, 1999. 52(2-3): p. 279-289. 

325. Song, H.-S., et al., Operating Strategies for Fischer-Tropsch Reactors: A Model-Directed 
Study. Korean Journal of Chemical Engineering, 2004. 21(2): p. 308-317. 

326. Fernandes, F.A.N., Modeling and Product Grade Optimization of Fischer-Tropsch 
Synthesis in a Slurry Reactor. Industrial & Engineering Chemistry Research, 2006. 45(3): 
p. 1047-1057. 

327. Guettel, R. and T. Turek, Comparison of different reactor types for low temperature 
Fischer-Tropsch synthesis: A simulation study. Chemical Engineering Science, 2009. 
64(5): p. 955-964. 



 

 230 

328. Troshko, A.A. and F. Zdravistch, CFD modeling of slurry bubble column reactors for 
Fisher-Tropsch synthesis. Chemical Engineering Science, 2009. 64(5): p. 892-903. 

329. Yang, G.Q. and L.S. Fan, Axial Liquid Mixing in High Pressure Bubble Columns. AIChE 
Journal, 2003. 49(8): p. 1995-2008. 

330. Mangartz, K.-H. and T. Pilhofer, Untersuchungen zur Gasphasendispersion in 
Blasensaulenreaktoren. Verfahrenstechnik (Mainz) 1980. 14: p. 40-44. 

331. Towell, G.D. and G.H. Ackerman, Axial mixing of liquid and gas in large bubble 
reactors. Proceedings of Fifth European/Second International Symposium on Reaction 
Engineering, Amsterdam, 1972. B-1. 

332. Field, R.W. and J.F. Davidson, Axial dispersion in bubble columns. Transactions of the 
Institution of Chemical Engineers, 1980. 58(4): p. 228-236. 

333. Ramachandran, P.A. and R.V. Chaudhari, Three phase catalytic reactors. 1983, New 
York, NY: Gordon and Breach. 

334. Rakymkul, Y., Solubilities and Mass Transfer Coefficients of Gases in Heavy Synthetic 
Hydrocarbon Liquids. M.S. Thesis, University of Pittsburgh, Pittsburgh, USA, 2011 

335. Cussler, E.L., Diffusion: Mass Transfer in Fluid Systems. 1997, New York: Cambridge 
University. 

336. Calderbank, P.H. and M.B. Moo-Young, The continuous phase heat and mass-transfer 
properties of dispersions. Chemical Engineering Science, 1961. 16: p. 39-54. 

337. Marano, J.J. and G.D. Holder, Characterization of Fischer-Tropsch liquids for vapor-
liquid equilibria calculations. Fluid Phase Equilibria, 1997. 138(1-2): p. 1-21. 

338. Cho, Y.J., et al., Dynamic characteristics of heat transfer coefficient in pressurized 
bubble columns with viscous liquid medium. Chemical Engineering and Processing, 2002. 
41(8): p. 699-706. 

339. Fontenelle, A.B. and F.A.N. Fernandes, Comprehensive Polymerization Model for 
Fischer-Tropsch Synthesis. Chemical Engineering & Technology, 2011. 34(6): p. 963-
971. 

340. Wagner, W., et al., The IAPWS Industrial Formulation 1997 for the Thermodynamic 
Properties of Water and Steam. Journal of Engineering for Gas Turbines and Power, 
2000. 122(1): p. 150-182. 

341. Nayyar and L. Mohinder, Piping Handbook (7th Edition). 2000: McGraw-Hill. 

342. Bejan, A. and A.D. Kraus, Heat Transfer Handbook. 2003: John Wiley & Sons. 



 

 231 

343. Thom, J.R.S., Prediction of Pressure Drop During Forced Circulation Boiling of Water. 
International Journal of Heat and Mass Transfer, 1964. 7(7): p. 709-724. 

344. Dittus, F.W. and L.M.K. Boelter, Heat transfer in automobile radiators of the tubular 
type. University of California Publications in Engineering, 1930. 2: p. 443. 

345. Pethukov, B.S., Heat Transfer and friction in turbulent pipe flow with variable physical 
properties. Advances in Heat Transfer, ed. T.F. Irvine and J.P. Hartnett. Vol. 6. 1970, 
New York: Academic Press, Inc. 504-564. 

346. Gnielinski, V., New equations for heat and mass transfer in turbulent pipe and channel 
flow. International Chemical Engineering, 1976. 16: p. 359-368. 

347. Lienhard, J.H., IV and J.H. Lienhard, V, A Heat Transfer Textbook. 3rd edition ed. 2000, 
Cambridge, MA: J. H. Lienhard V. 

348. Bergles, A.E., et al., Two-Phase Flow and Heat Transfer in the Power and Process 
Industries. 1981: Mc Graw-Hill. 

349. Chen, J.C., Correlation for Boiling Heat Transfer to Saturated Fluids in Convective 
Flow. Industrial & Engineering Chemistry Process Design and Development, 1966. 5(3): 
p. 322-329. 

350. Steiner, D. and J. Taborek, Flow Boiling Heat Transfer in Vertical Tubes Correlated by 
an Asymptotic Model. Heat Transfer Engineering, 1992. 13(2): p. 43 - 69. 

351. Frankel, M., Facility Piping Systems Handbook (2nd Edition). 2002: McGraw-Hill. 

352. Haaland, S.E., Simple and explicit formulas for the friction-factor in turbulent pipe flow. 
Transactions of the American Society of Mechanical Engineers, Journal of Fluids 
Engineering, 1983. 105: p. 89. 

353. Moody, L.F., Friction factors for pipe flow. Transactions of the American Society of 
Mechanical Engineers, 1944. 66(8): p. 671-684. 

354. Lockhart, R.W. and R.C. Martinelli, Proposed correlation of data for isothermal two 
phase, two-component flow in pipes. Chemical Engineering Progress, 1949. 45: p. 39–48. 

355. Das, S.K. and A.R. Balakrishan, Process Heat Transfer. 2005: Alpha Science Int'l Ltd. 

356. Armand, A.A. and G.G. Treshchev, Investigation of the resistance during the movement 
of steam-water mixtures in a heated boiler at high pressures. AERE Lib./Trans., 1959: p. 
816. 

357. Müller-Steinhagen, H. and K. Heck, A simple friction pressure drop correlation for two-
phase flow in pipes. Chemical Engineering and Processing, 1986. 20(6): p. 297-308. 



 

 232 

358. Welty, J.R., et al., Fundamentals of Momentum, Heat, and Mass Transfer (4th Ed.). 
2000: Wiley & Sons. 

359. Yildiz, S., Effect of porous coating on two-phase pressure drop of water during up-flow 
boiling in tubes. International Communications in Heat and Mass Transfer, 2008. 35(3): 
p. 326-337. 

360. Hoffman, J.D., Numerical Methods for Engineers and Scientists. 2nd ed. 2001, New 
York: Marcel Dekker, Inc. 

361. Bao, B., et al., Simulation, integration, and economic analysis of gas-to-liquid processes. 
Fuel Processing Technology, 2010. 91(7): p. 703-713. 

362. Deckwer, W.D., et al., Fischer-Tropsch synthesis in the slurry phase on manganese/iron 
catalysts. Industrial & Engineering Chemistry Process Design and Development, 1982. 
21(2): p. 222-231. 

363. Shah, Y.T., et al., Backmixing in Gas-Liquid Reactors. AIChE Journal, 1978. 24(3): p. 
369-400. 

364. Eissa, S.H. and K. Schugerl, Holdup and Backmixing Investigations in Cocurrent and 
Countercurrent Bubble Columns. Chemical Engineering Science, 1975. 30: p. 1251. 

365. Gondo, S., et al., Liquid Mixing by Large Gas Bubbles in Bubble Columns. Chemical 
Engineering Science, 1973. 28: p. 1437. 

366. Hikita, H. and H. Kikukawa, Liquid-Phase Mixing in Bubble Columns: Effect of Liquid 
Properties. The Chemical Engineering Journal, 1974. 8: p. 191. 

367. Reith, T., et al., Gas hold-up and axial mixing in the fluid phase of bubble columns. 
Chemical Engineering Science, 1968. 23: p. 619-629. 

368. Blet, V., et al., Characterization of a Packed Column Using Radioactive Tracers. 
Chemical Engineering Science, 1999. 54: p. 91-101. 

369. Clark, K.N. and N.R. Foster, Application of Neutron Techniques to Studies of Reactor 
Fluid Dynamics. The Chemical Engineering Journal, 1987. 34: p. 35-46. 

370. Sakai, N., et al., Fluid dynamics in coal liquefaction reactors using neutron absorption 
tracer technique. AIChE Journal, 2000. 46: p. 1688-1693. 

371. Cova, D.R., Axial Mixing in the Liquid Phase in Gas-Sparged Columns. Industrial & 
Engineering Chemistry Process Design and Development, 1974. 13(3): p. 292-296. 

372. Deckwer, W.-D., et al., Mixing and Mass Transfer in Tall Bubble Column. Chemical 
Engineering Science, 1974. 29(11): p. 2177-2188. 



 

 233 

373. Joseph, S. and Y.T. Shah, Errors Caused by Tracer Solubility in the Measurement of Gas 
Phase Axial Dispersion. Canadian Journal of Chemical Engineering, 1986. 64: p. 380-
386. 

374. Heiskanen, K., Particle Classification. 1993: Chapman & Hall. 

375. Dahlstrom, D.A., Cyclone operating factors and capacities on coal refuse slurries. 
Transactions of the American Institute of Mechanical Engineers, 1949. 184: p. 331-344. 

376. Flintoff, B.C., et al., Cyclone modeling: a review of present technology, in CIM Bulletin. 
1987. p. 39-50. 

377. Plitt, L.R., et al. Modeling the hydrocyclone classifier. Proceedings of the European 
Symposium of Particle Technology, 224th event EFCE. 1980. Amsterdam. 

378. Yoshioka, N. and Y. Hotta, Liquid cyclone as a hydraulic classifier. Journal of Chemical 
Engineering of Japan, 1955. 19: p. 632-640. 

 

 


	TITLE PAGE

	COMMITTEE MEMBERSHIP PAGE

	ABSTRACT

	DESCRIPTORS
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1: Projections of the Peaking of World Oil Production
	Table 2: Worldwide Fossil Energy Reserves [22, 23]
	Table 3: LTFT and HTFT Processes Characteristics [27, 43]
	Table 4: Comparative prices of different catalysts based on Fe [27]
	Table 5: Kinetics Studies for the Fischer-Tropsch Synthesis on Iron Catalyst
	Table 6: Kinetics Studies for the WGS Reaction on Iron Catalyst
	Table 7: Kinetics Studies for the Fischer-Tropsch Synthesis on Cobalt-Based Catalyst
	Table 8: Planned and Existing F-T Plants in the World
	Table 9: Literature Experimental Hydrodynamics and Mass Transfer Studies in BCRs
	Table 10: Literature Experimental Hydrodynamics and Mass Transfer Studies in SBCRs
	Table 11: Characteristics of the SBCR
	Table 12: Filter Properties
	Table 13: Characteristics of the Turbine Flowmeter
	Table 14: Thermodynamic Properties of the Gases used
	Table 15: Paraffins Mixture Composition
	Table 16: Thermodynamic Properties of Sasol Wax [254]
	Table 17: Liquid Densities Correlations
	Table 18: Liquid Viscosities Correlations
	Table 19: Liquid Surface Tension Correlations
	Table 20: Liquid Saturated Vapor Pressure Correlations
	Table 21: Molecular Weights and Diameters of the Gases and Liquids Used [259-261]
	Table 22: Size Distribution of Puralox Alumina Solid Particles
	Table 23: Operating Conditions and Values of the Coded Variables for the CCSD with Sasol Wax
	Table 24: Operating Conditions for the Molten Reactor Wax and Paraffins Mixture Experiments
	Table 25: Ratios of the Particle Settling Velocity to the Solid Phase Axial Dispersion Coefficient
	Table 26: Gas Holdup, Sauter Mean Diameter and Volumetric Mass Transfer Coefficient Correlations [184, 275]
	Table 27: Values of α Used in Equation (6-8) [275]
	Table 28: Upper and Lower Limits of the Variables Used in Equations (6-1) through (6-7) [275]
	Table 29: Statistical Comparison of Correlations Performances 
	Table 30: Literature F-T SBCR Models
	Table 31: Models used for Predicting the Axial Solid Dispersion Coefficient and Particle Settling Velocity
	Table 32: F-T Kinetics and Characteristics of the Iron Catalysts
	Table 33: WGS Kinetics and Characteristics of the Iron Catalysts
	Table 34: F-T Kinetics and Characteristics of the Cobalt Based Catalysts
	Table 35: Coefficients for Henry’s Law Constant from Soriano [254]
	Table 36: Hydrocarbon Products Distribution Parameters
	Table 37: Fouling Factors [351]
	Table 38: Heat Transfer Correlations for Fluid Flows in Vertical Tubes
	Table 39: 2-Phase Pressure Drop Correlations
	Table 40: Kinetic Constants Used in the Simulations
	Table 41: Operating Variables Used in the Simulator for F-T SBCR
	Table 42: Geometry and Operating Conditions of the Optimized F-T SBCR to Produce 10,000 bbl/day of Liquid Hydrocarbons
	Table 43: Heating & Cooling Utilities Costs and Potential Savings
	Table 44: Maximum Number of Cooling Pipes
	Table 45: Operating Variables Used in the Simulator for F-T SBCR
	Table 46: Values of the Relative Extent of the Gas-Liquid Mass Transfer Resistance at the Regimes Transition
	Table 47: Characteristics of the Hydrocyclone
	Table 48: Hydrocyclone Overall Efficiency

	LIST OF FIGURES
	Figure 1: Order of Magnitude of Energy Resources (EJ = 1018 J) [25, 26]
	Figure 2: Crude Oil Prices (World Average) over the Last 15 Years [1, 32]
	Figure 3: GTL, CTL and BTL Processes or XTL Process
	Figure 4: Main F-T Mechanisms [46]
	Figure 5: Typical F-T Products Distribution (ASF Model)
	Figure 6: F-T Products Distribution (2-alpha Model)
	Figure 7: Commercial F-T Reactors [105]
	Figure 8: Schematic of the Concentration Profile for a Triphasic System
	Figure 9: Factors Affecting Hydrodynamic and Mass Transfer Parameters in SBCRs [127]
	Figure 10: Mechanical Specifications of the SBCR part a
	Figure 11: Mechanical Specifications of the SBCR part b
	Figure 12: Photographs of the Gas Sparger
	Figure 13: Schematic of the Filter Element [250]
	Figure 14: Schematic of a Triple Screw Pump [251]
	Figure 15: Triple-screw Pump
	Figure 16: Schematic of the Gas Trap (dimensions are in mm)
	Figure 17: Schematic of the Experimental Setup
	Figure 18: Photographs of the Experimental Setup With and Without Insulation at Different Angles
	Figure 19: Molar Composition of Sasol Wax
	Figure 20: Effect of Temperature on the Densities of the Molten Sasol Wax (a), the Molten Reactor Wax (b) and the Paraffins Mixture (c)
	Figure 21: Effect of Temperature on the Viscosities of the Molten Sasol Wax (a), the Molten Reactor Wax (b) and the Paraffins Mixture (c)
	Figure 22: Effect of Temperature on the Surface Tension of Molten Sasol Wax, Molten Reactor Wax and Paraffins Mixture
	Figure 23: Effect of Temperature on the Vapor Pressure of Molten Sasol Wax, Molten Reactor Wax and Paraffins Mixture
	Figure 24: Diffusivities of Gases in the Paraffins Liquid Mixture (a), Molten Reactor Wax (b) and Molten Sasol Wax (c)(Black curves using Erkey et al. [259] correlation; Red curves using Wilke and Chang [258] correlation)
	Figure 25: Dynamic Gas Disengagement in SBCR [166]
	Figure 26: Effect of Pressure and Temperature on G for N2-Sasol wax
	Figure 27: Effect of Pressure and Temperature on G for He-Sasol wax
	Figure 28: Effect of Pressure and Temperature on d32 for N2-Sasol Wax
	Figure 29: Effect of Pressure on G (a), d32 (b) and kLa (c)
	Figure 30: Effect of Gas Density on G (a), d32 (b) and kLa (c)
	Figure 31: Effect of Pressure and Temperature on d32 for He-Sasol Wax
	Figure 32: Effect of Pressure on the Gas Bubbles Size Distribution for N2-Molten Reactor Wax
	Figure 33: Effect of Pressure on the Gas Bubbles Size Distribution for He/N2 Mixture-Molten Reactor Wax
	Figure 34: Effect of Pressure and Temperature on kLa for N2-Sasol Wax
	Figure 35: Effect of Pressure and Temperature on kLa for He-Sasol Wax
	Figure 36: Effect of Ug on G for N2-Sasol wax
	Figure 37: Effect of Temperature on G (a), d32 (b) and kLa (c)
	Figure 38: Effect of Temperature and Solid Concentration on the Gas Bubbles Size Distribution of N2 in Molten Reactor Wax with Puralox particles (CS = 0 vol.% (a), CS = 3 vol.% (b))
	Figure 39: Effect of Ug on G for He-Sasol wax
	Figure 40: Effect of Ug on d32 for N2-Sasol wax
	Figure 41 Effect of Ug on d32 for He-Sasol wax at 453 K
	Figure 42: Effect of Ug on kLa for He or N2-Sasol wax
	Figure 43: Effect of Superficial Gas Velocity on G (a), d32 (b) and kLa (c)
	Figure 44: Effect of Solid Concentration on G (a), d32 (b) and kLa (c)
	Figure 45: Effect of Solid Concentration on G of N2-Sasol Wax
	Figure 46: Effect of Solid Concentration on G of He-Sasol Wax
	Figure 47: Effect of Solid Concentration on d32 of N2-Sasol wax-Al2O3
	Figure 48: Effect of Solid Concentration on d32 of He-Sasol wax-Al2O3
	Figure 49: Effect of Solid Concentration on kLa of N2-Sasol wax-Al2O3
	Figure 50: Effect of Solid Concentration on kLa of He-Sasol wax-Al2O3
	Figure 51: Effect of Gas Nature on G in Sasol Wax
	Figure 52: Effect of Gas Nature on d32 in Sasol Wax
	Figure 53: Effect of Gas Nature on kLa in Sasol Wax
	Figure 54: Effect of Liquid and Solid Nature on the Gas Bubbles Size Distribution (CS = 2.4 - 3.5 vol.%)
	Figure 55: Effect of Gas Composition on G (a), d32 (b) and kLa (c) under Constant Pressure (triangles) or Gas Density (circles)
	Figure 56: Effect of Gas Nature and Composition on the Gas Bubbles Size Distribution in Molten Reactor Wax (a) CS = 0 vol.%, T = 450 K ; (b) CS = 3 vol.%, T = 400 K
	Figure 57: Effect of Solid Nature on G of N2-Sasol wax-FeOx/Al2O3
	Figure 58: Effect of Solid Nature on d32 of N2-Sasol wax-FeOx/Al2O3
	Figure 59: Effect of Solid Nature on kLa of N2-Sasol wax-FeOx/Al2O3
	Figure 60: Effect of Liquid and Solid Nature on G (a), d32 (b) and kLa (c)
	Figure 61: Catalyst Concentration Profile in the SBCR
	Figure 62: Gas Bubbles Size Distribution during Solid Particles Distribution Experiments
	Figure 63: Comparison between Experimental Data of Gas Holdup and Predicted Values using Equations (6-1) (a) and (6-10) (b)
	Figure 64: Comparison between Experimental Data of kLa and Predicted Values using Equations (6-7) (a) and (6-11) (b)
	Figure 65: Overall kLa Obtained from Equation (6-48) Versus Overall kLa Measured (He/N2 Gas Mixture; CS = 10 vol.%; N = 1100 RPM)
	Figure 66: Finite Volume of One Cooling Tube
	Figure 67: Temperature Profile across the Cooling Tube
	Figure 68: Graphical User Interface of the Simulator
	Figure 69: Effect of Reactor Geometry on the Performances of the F-T SBCR (UG = 0.3 m/s, CS = 37.5 wt.%)
	Figure 70: Effect of Superficial Gas Velocity and Catalyst Concentration on the Performances of the F-T SBCR (dR = 7 m, L = 30 m)
	Figure 71: Effect of Pipes Size and Water-Reactor Temperature Gradient on the Performance of the Heat Exchanger
	Figure 72: Safety Factor, Steam Quality and Pressure Drop across the Heat Exchanger Made of 2” pipes
	Figure 73: Effect of Catalyst Concentration on Conversions using Fe Catalysts (Lighter Lines: mass transfer resistance not included in model) (H2/CO ratio = 1, and UG = 0.3 m/s)
	Figure 74: Influence of Solid Loading on the Conversion using Cobalt-Based Catalysts (Lighter Lines: mass transfer resistance not included in model)
	Figure 75: Influence of Solid Loading on the Relative Extent of the Mass Transfer Resistance using Cobalt-Based Catalysts (Darker Lines: CO, Lighter Lines: H2)
	Figure 76: Influence of Solid Loading on the Relative Extent of the Mass Transfer Resistance using Iron Catalysts (darker lines: CO; lighter lines: H2)
	Figure 77: Influence of Solid Loading on Catalyst Productivity using Cobalt Catalyst
	Figure 78: Influence of Solid Loading on Catalyst Productivity using Iron Catalyst
	Figure 79: Effect of Inlet H2/CO Ratio on Syngas Conversion in the Presence of Co Catalyst
	Figure 80: Effect of Inlet H2/CO Ratio on Syngas Conversion in the Presence of Fe Catalyst (UG = 0.3 m/s)
	Figure 81: Effect of Inlet H2/CO Ratio on Product Selectivity in the case of Chang et al [57] kinetics (Fe Catalyst)
	Figure 82: Effect of Superficial Gas Velocity on Syngas Conversion using Cobalt Catalyst
	Figure 83: Effect of Superficial Gas Velocity on Syngas Conversion using Iron Catalyst
	Figure 84: Effect of Superficial Gas Velocity on STY using Cobalt Catalyst
	Figure 85: Effect of Superficial Gas Velocity on STY using Iron Catalyst
	Figure 86: Effect of Superficial Gas Velocity on Product Selectivity in the case of Chang et al [57] kinetics (Fe Catalyst)
	Figure 87: Effect of Temperature on Syngas Conversion
	Figure 88: Effect of Temperature on Syngas Conversion
	Figure 89: Effect of Temperature on Product Selectivity in the case of Chang et al [57] kinetics (Fe Catalyst)
	Figure 90: Effect of Pressure on Syngas Conversion
	Figure 91: Effect of Pressure on Syngas Conversion
	Figure 92: Effect of Pressure on Product Selectivity in the case of Chang et al [57] kinetics (Fe Catalyst)
	Figure 93: Schematic of a Hydrocyclone
	Figure 94: Hydrocyclone Capacity versus Hydrocyclone Diameter
	Figure 95: Hydrocyclone Efficiency

	NOMENCLATURE
	ACKNOWLEDGEMENTS
	1.0  INTRODUCTION
	2.0  LITERATURE REVIEW
	2.1 THE FISCHER-TROPSCH SYNTHESIS
	2.1.1 Catalysts
	2.1.2 Reaction Mechanism
	2.1.3 Products Distribution
	2.1.4 Kinetics of the Fischer-Tropsch Synthesis
	2.1.4.1 Iron Catalyst
	2.1.4.2 Cobalt-Based Catalyst

	2.1.5 Effect of Water

	2.2 F-T REACTORS
	2.2.1 Fixed-Bed Reactors
	2.2.2 Fluidized-Bed Reactors
	2.2.2.1 Circulating-Fluidized-Bed Reactors
	2.2.2.2 Fixed-Fluidized-Bed Reactors

	2.2.3 Slurry Reactors
	2.2.3.1 Slurry Bubble Column Reactors
	2.2.3.2 Ebulating Bed Reactors

	2.2.4 Other Types of Reactors

	2.3 SBCR HYDRODYNAMICS AND MASS TRANSFER CHARACTERISTICS
	2.3.1 Flow Regimes
	2.3.1.1 Homogeneous Flow
	2.3.1.2 Slug Flow
	2.3.1.3 Heterogeneous or Churn-Turbulent Flow
	2.3.1.4 Transitional Flow

	2.3.2 Gas Holdup
	2.3.3 Gas Bubbles Sizes
	2.3.4 Mass Transfer
	2.3.4.1 Resistances to Mass Transfer
	2.3.4.2 Interfacial Area
	2.3.4.3 Mass Transfer Coefficient

	2.3.5 Factors Affecting Hydrodynamics and Mass transfer
	2.3.6 Effect of Gas-Liquid-Solid System
	2.3.6.1 Molecular Weight and Density of the Gas Phase
	2.3.6.2 Density, Viscosity and Surface Tension of the Liquid Phase
	2.3.6.3 Size, Density and Wettability of Solid Particles

	2.3.7 Effect of Operating Conditions
	2.3.7.1 Temperature
	2.3.7.2 Pressure
	2.3.7.3 Gas Velocity
	2.3.7.4 Liquid/Slurry Velocity
	2.3.7.5 Solid Loading

	2.3.8 Effect of Reactor Geometry
	2.3.8.1 Column Diameter
	2.3.8.2 Column Length
	2.3.8.3 Gas Distributor
	2.3.8.4 Internals

	2.3.9 Experimental Studies under F-T Industrial Conditions


	3.0  OBJECTIVES
	4.0  EXPERIMENTAL
	4.1 EXPERIMENTAL SETUP
	4.2 GAS-LIQUID-SOLID SYSTEM
	4.2.1 Gas-Phase
	4.2.2 Liquid-Phase
	4.2.2.1 Molecular Weight and Critical Properties
	4.2.2.2 Liquid Densities
	4.2.2.3 Liquid Viscosity
	4.2.2.4 Liquid Surface Tension
	4.2.2.5 Vapor Pressure

	4.2.3 Gas-Liquid Diffusivities
	4.2.4 Solid-Phase
	4.2.4.1 Alumina
	4.2.4.2 Iron Oxide Catalyst
	4.2.4.3 Puralox Alumina


	4.3 OPERATING CONDITIONS
	4.4 EXPERIMENTAL PROCEDURE
	4.4.1 Volumetric Liquid-Side Mass Transfer Coefficient
	4.4.2 Gas Holdup
	4.4.3 Gas Bubbles Size Distribution and Sauter Mean Diameter
	4.4.4 Solid Particles Distribution 


	5.0  CALCULATIONS
	5.1 PENG-ROBINSON EQUATION OF STATE
	5.2 GAS HOLDUP
	5.3 GAS BUBBLES SIZE
	5.4 VOLUMETRIC LIQUID-SIDE MASS TRANSFER COEFFICIENT
	5.5 SOLID PARTICLES DISTRIBUTION

	6.0  RESULTS AND DISCUSSION
	6.1 HYDRODYNAMIC AND MASS TRANSFER PARAMETERS IN THE PILOT SBCR UNDER F-T CONDITIONS
	6.1.1 Effect of Pressure
	6.1.2 Effect of Gas Density
	6.1.3 Effect of Temperature
	6.1.4 Effect of Superficial Gas Velocity
	6.1.5 Effect of Solid Concentration
	6.1.6 Effect of Gas Nature and Composition
	6.1.7 Effect of Liquid and Solid Nature
	6.1.8 Solid Particles Distribution Profile

	6.2 CORRELATIONS OF THE HYDRODYNAMICS AND MASS TRANSFER PARAMETERS
	6.3 MODEL FOR F-T SBCR
	6.3.1 Brief Review of F-T SBCR Models
	6.3.2 Reactor Model
	6.3.2.1 Mass & Energy Balances

	6.3.3 Model Parameters Estimation
	6.3.3.1 Dispersion Coefficients
	6.3.3.2 Hydrodynamics and Mass Transfer
	6.3.3.3 Catalysts and Kinetics
	6.3.3.4 Heat Transfer Coefficient
	6.3.3.5 Slurry Viscosity
	6.3.3.6 Gas Solubilities and Products Distribution

	6.3.4 Heat Exchanger Model
	6.3.4.1 Model Assumptions and Heat Balance
	6.3.4.2 Heat Transfer
	6.3.4.3 Pressure Drop

	6.3.5 Numerical Solution

	6.4 SIMULATION OF A CONCEPTUAL COMMERCIAL-SCALE REACTOR
	6.5 COMPARATIVE SIMULATIONS OF AN F-T SBCR OVER VARIOUS CATALYSTS
	6.5.1 Effect of Catalyst Concentration
	6.5.2 Effect of Inlet H2/CO Ratio
	6.5.3 Effect of Superficial Gas Velocity
	6.5.4 Effect of Temperature
	6.5.5 Effect of Pressure


	7.0  CONCLUSIONS
	APPENDIX A. DISPERSION COEFFICIENT MEASURING TECHNIQUES
	A.1 LIQUID PHASE DISPERSION
	A.2 GAS-PHASE DISPERSION

	APPENDIX B. HYDROCYCLONE DESIGN FOR SOLID SEPARATION
	APPENDIX C. DIMENSIONLESS MASS & ENERGY BALANCES
	C.1 LIQUID-PHASE
	C.2 GAS-PHASE
	C.3 GAS VELOCITY
	C.4 SOLIDS SUSPENSION
	C.5 ENERGY BALANCE

	BIBLIOGRAPHY



