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The improved capacity to acquire quantitative data in a clinical setting has generally failed to improve outcomes in
acutely ill patients, suggesting a need for advances in computer-supported data interpretation and decision making. In
particular, the application of mathematical models of experimentally elucidated physiological mechanisms could
augment the interpretation of quantitative, patient-specific information and help to better target therapy. Yet, such
models are typically complex and nonlinear, a reality that often precludes the identification of unique parameters and
states of the model that best represent available data. Hypothesizing that this non-uniqueness can convey useful
information, we implemented a simplified simulation of a common differential diagnostic process (hypotension in an
acute care setting), using a combination of a mathematical model of the cardiovascular system, a stochastic
measurement model, and Bayesian inference techniques to quantify parameter and state uncertainty. The output of
this procedure is a probability density function on the space of model parameters and initial conditions for a particular
patient, based on prior population information together with patient-specific clinical observations. We show that
multimodal posterior probability density functions arise naturally, even when unimodal and uninformative priors are
used. The peaks of these densities correspond to clinically relevant differential diagnoses and can, in the simplified
simulation setting, be constrained to a single diagnosis by assimilating additional observations from dynamical
interventions (e.g., fluid challenge). We conclude that the ill-posedness of the inverse problem in quantitative
physiology is not merely a technical obstacle, but rather reflects clinical reality and, when addressed adequately in the
solution process, provides a novel link between mathematically described physiological knowledge and the clinical
concept of differential diagnoses. We outline possible steps toward translating this computational approach to the
bedside, to supplement today’s evidence-based medicine with a quantitatively founded model-based medicine that
integrates mechanistic knowledge with patient-specific information.
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truly individualized, validated care in data-rich environments
like the intensive care unit [4-6]. This incongruence has

Introduction

The amount of quantitative data available to the clinician
at the bedside has grown tremendously because of advances
in medical monitoring and imaging technology. This sit-
uation is particularly evident in the critical care setting,
where patients are monitored and treatments are titrated on
a minute-to-minute basis. The limit of currently available
methods to assimilate this flood of data into the diagnostic
and therapeutic process seems to have been reached, as
suggested by the fact that an improved capacity to acquire
quantitative measurements highly relevant for therapeutic
decision making has failed to improve outcome [1,2]. The
difficulty in translating richer data streams into improved
clinical outcomes may be partly due to insufficient ther-
apeutic options. We contend, however, that this failure may
also be ascribed to human care providers’ limited ability to
integrate the sheer volume of available data and to
quantitatively interpret the complicated and often nonlinear
interactions of the various physiologic subsystems that
contribute to these observations [3]. Additionally, the current
evidence-based medicine paradigm, through its focus on
validating therapeutic strategies for statistically identifiable
subgroups of the population, limits the potential to provide
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clearly hampered more rapid progress in the care of the acute
and critically ill, emphasizing the need for computerized data
interpretation and decision support tools that make optimal
use of the available information while enabling evidence-
based validation of the decision making algorithm.

Traditional Approaches to Computer-Supported Decision
Making in Medicine

The potential of computer-based, algorithmic support for
medical decision making in data-rich environments, and in
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particular in the context of evidence-based practice, was
recognized early on and has been pursued extensively [3,7-
11]. Few of these efforts, which mostly have consisted of rule-
based expert systems, statistical models, or approaches driven
by machine learning ideas such as dynamic Bayesian or
artificial neural networks, have reached a sufficient level of

practicality and usefulness to be accepted into the day-to-day
practice of acute care medicine [8,12,13]. These tools either
attempt to formalize empirical knowledge already available to
a physician (expert systems) or to capitalize on statistical
associations of phenomena and inherent structures of the
available dataset. All largely fail to make direct and
quantitative use of known causalities and dynamics in the
physiologic systems underlying the observed pathophysiology,
which are typically characterized by basic science investiga-
tions.

A promising approach to incorporating this knowledge
into the medical decision making process would be to use
mathematical models of physiologic mechanisms to map
clinical observations to quantitative hypotheses about phys-
iologic conditions, leading to improved insight into current
patient status and, eventually, predictions about responses to
therapeutic interventions. While complex mathematical
models of physiology in general, and the cardiovascular
system and its control in particular, have a long history and
are still actively being developed [14-23], their translation to
clinically useful tools has proved challenging. Early examples
of using mathematical models to quantify “hidden” param-
eters based on clinical measurements include the pioneering
work of Bergman et al. in the late 1970s on glucose control
and insulin sensitivity [24]. More recent work in the same field
has focused on accurately quantifying the uncertainty arising
in the resulting parameter estimation problems using current
methodology, such as Markov chain Monte Carlo approaches

[25].
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Quantitative Differential Diagnoses

In the critical care environment, extremely simple models
of the cardiovascular system have been in use for decades and
are implemented in commercially available products, exam-
ples being the electric circuit analog of the systemic
circulation used to calculate total peripheral resistance,
which can then become a therapeutic target, or pulse contour
analysis, which attempts a model-based assessment of
systemic flow from arterial pressure waveforms [26-28]. The
clinical application of mathematical models of physiology to
date has failed to extend to models of sufficient complexity to
significantly help alleviate the previously discussed problem
of information overload in the diagnostic process.

The Inverse Problem as an Obstacle to Application of
Realistic Mathematical Models of Physiology

We contend that a key obstacle preventing the successful
clinical use of available mathematical models has been the
lack of a robust solution to the inverse problem. That is, any
physiologically reasonable mathematical model of compo-
nents of the human body will typically be nonlinear and have
alarge number of parameters. Despite the complexity of such
models, if the user fixes the parameter values and initial
values of the physiological states in a model, then the model
can be simulated to obtain time courses of the physiological
states (solving the forward problem; Figure 1). However, the
corresponding inverse problem, i.e., inferring parameters
and starting conditions of state variables from measured
physiological data (http://lwww.ipgp.jussieu.fr/~tarantola/Files/
Professional/Books/InverseProblemTheory.pdf ) [29] will usu-
ally be ill-posed in the sense of Hadamard, meaning that it
does not admit a unique solution that depends continuously
on the data [30-32] (Figure 1). This ill-posedness is directly
related to the concept of system identifiability in both the
statistical and engineering senses of the term. The most
popular approaches to the inverse problem in physiology,
such as nonlinear least squares, which seeks a maximum
likelihood estimate by minimizing the sum of squared
residuals, inherently assume the existence of a unique “best”
solution. The ill-posedness of the inverse problem corre-
sponds to a violation of this assumption, which often causes
solution approaches such as least squares to fail completely,
in spite of regularization of the underlying nonlinear
programming problem, or to give meaningless or even
misleading results. More recent work attempts to quantify
the uncertainty of resulting parameter estimates [25]. How-
ever, given the uncertainty stemming from the fundamental
ill-posedness of the inverse problem, together with additional
uncertainty from measurement error and model stochastic-
ity, which affect both forward and inverse problems (Figure
1), a fully probabilistic approach to the inverse problem in
quantitative physiology seems appropriate.

llI-Posedness and Clinical Uncertainty

We hypothesize that the ill-posedness of the inverse
problem is not merely a technical obstacle but reflects
clinical reality in the sense that an experienced physician is
rarely certain about a patient’s status, despite a large number
of available observations. More typically, the physician
entertains an evolving differential diagnosis, consisting of a
list of hypotheses of varying likelihoods about the physio-
logical mechanisms underlying available observations, up-
dated and ranked according to current observations. We
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lllustration of the role of a mechanistic mathematical model in linking measurements with abstract quantitative representations of the underlying
physiological processes. Sources of stochasticity are indicated both for forward/predictive use of the model and inverse/inference use. The forward
problem consists of predicting (distributions of) observations if (distributions of) initial conditions and model parameters are known. The inverse
problem refers to the task of inferring (distributions of) initial conditions and model parameters from observations. It is termed ill-posed if the available

observations are insufficient to define a unique solution.
doi:10.1371/journal.pcbi.0030204.9001

therefore propose to approach the inverse problem in such a
way that uncertainty from all sources is quantitatively
reflected by the solution, which will consequently take the
form of a (typically multimodal) probability distribution on
parameter and state space. This distribution will represent
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Figure 2. Schematic of the Simplified Model of the Cardiovascular
System and Its Control

Blood is driven from the venous compartment with volume V, to the
arterial compartment with volume V, by the monoventricular heart,
which contracts from its end-diastolic volume Vgp to its end-systolic
volume Vgs. Reverse flow is prevented by a valve with resistance Ry jye. TO
complete the systemic circulation, flow from the arterial to the venous
compartment has to overcome the total peripheral resistance Rrpg.
Baroreflex senses pressure P, in the arterial compartment, and it
processes the set point deviation through a sigmoidal nonlinearity and
a linear element with low-pass characteristics, eventually affecting the
actuators Rrpr, unstressed venous volume Vv0, heart rate fyg, and
myocardial contractility cprsw. See text for details.
doi:10.1371/journal.pcbi.0030204.g002
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the relative likelihoods of the possible values of the
physiological elements that these parameters and states
represent, in the patient for whom the clinical observations
are made.

To explore the feasibility of such an approach, we combine
a mechanistic model of cardiovascular physiology with a
stochastic model of the observation process and Bayesian
inference techniques to infer a posterior probability distri-
bution on parameter and state space from prior (population-
level and individual) knowledge and quantitative observa-
tions. We illustrate these ideas in a simplified simulation of a
clinically relevant differential diagnostic procedure and
examine the relationship between the obtained posterior
probability density functions and pertinent qualitative differ-
ential diagnostic concepts.

Results

A simplified ordinary differential equation (ODE) model of
the cardiovascular system was developed, including barore-
flex blood pressure control, with specific focus on a correct
representation of the interaction between myocardial con-
tractility, intravascular volume, and peripheral resistance. We
implemented an innovative conversion of the inherently
discrete beat-to-beat cardiac dynamics to a continuous form,
to allow for coupling to a continuous time representation of
the relevant physiological control loops in a computationally
efficient way. Simulation experiments reveal that the model,
schematically depicted in Figure 2, exhibits qualitatively
correct behavior with regard to the targeted clinically
relevant physiological responses. Specifically, its steady state
responses to alterations in both fluid load and contractility
(Figure 3) agree with physiological expectations, and its blood
pressure and heart rate responses, on medium-to-slow time-
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Figure 3. Starling Curves

Steady state stroke volume with inactive baroreflex feedback loop as a function of venous pressure for various contractility factors ¢ that linearly scale
the range of the baroreflex contractility effector branch [cpsw,,;, ; Crrsw,,]- Simulations were performed by varying total intravascular volume between
3,000 and 8,000 ml and plotting stroke volumes versus venous pressures after 600 s of simulated time.

doi:10.1371/journal.pcbi.0030204.g003

scales, agree with the expected clinical response to dynamic
challenges such as simulated volume loss (e.g., hemorrhage)
and administration (e.g., fluid resuscitation; Figure 4).

A stochastic model of the observation process, simulating a
symmetric Gaussian scatter with standard deviation ¢ of
observed values around the true value, was used to represent
imprecise measurements. Bayesian inference was used to
sequentially assimilate observations on a specific hypothetical
patient into probability density functions on a subset of
lumped model parameters and states, which were assumed to
vary in the patient population. We thus obtained a
probabilistic estimate of the observed patient’s condition in
terms of the abstract physiological mechanisms represented
by the model parameters and states.

The clinical scenario simulated and presented here consists
of an initial observation of low blood pressure in the test
patient, followed by a typical dynamical intervention, namely
the intravenous application of fluid (fluid challenge; [33]).

180
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The virtual patient population was initially assumed to vary
randomly with known distributions in two lumped parame-
ters: hydration status (total intravascular volume) and
myocardial contractility (scaling of contractility response
range, two-dimensional setting; see Methods for details). We
additionally explored the effects of allowing variation in
peripheral vascular tone (scaling of total peripheral resist-
ance response range, three-dimensional setting).

Two-Dimensional Setting, Single Observation

When only one blood pressure measurement was made, the
probable parameter/state range represented a continuum of
various combinations of contractility and hydration status. As
expected, high-precision measurements (¢ = 10 mm Hg;
Figures 5A and 6A) led to more concentrated probability
density functions than low-precision measurements (¢ = 30
mm Hg; Figures 5B and 6B), independent of the type of prior
used. Two peaks, corresponding to the differential diagnoses
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Figure 4. Simulation of Fluid Withdrawal and Reinfusion

4000

Fluid is drawn from or reinfused into the venous compartment at constant rate. Vertical lines indicate the beginning and end of withdrawal and

reinfusion.
doi:10.1371/journal.pcbi.0030204.g004
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Figure 5. The Diagnostic Inference Process, Informative Priors

Quantitative Differential Diagnoses

Probability densities for high-precision (standard deviation 10 mm Hg) (A) and low-precision (standard deviation 30 mm Hg) (B) measurements of blood
pressure for Gaussian prior densities. (A,B1) show the assumed prior densities, (A,B2) show the posterior densities resulting from a single arterial
pressure measurement of 25 mm Hg, (A,B3) show the posterior densities if subsequent to the initial measurement, 1,500 ml of fluid are applied
intravenously resulting in a pressure measurement of 30 mm Hg, while (A,B4) show the posterior densities if the measurement after fluid application is

70 mm Hg.
doi:10.1371/journal.pcbi.0030204.9g005

of “heart failure” (low contractility, normal-to-high total
intravascular volume) and “hypovolemia” (normal contrac-
tility, low intravascular volume), can be discerned in the case
when blood pressure was measured with high precision for
both Gaussian and uniform priors (Figures 5A2 and 6A2).
When the measurement was less precise, the peak corre-
sponding to “heart failure” was nearly absent with a Gaussian
prior, but not with a uniform prior (Figures 5B2 and 6B2).

Two-Dimensional Setting, Fluid Challenge

To illustrate the additional diagnostic knowledge gained
from perturbing the system, we simulated a fluid challenge
[33]. Depending on the system’s response to the intravenous
administration of 1,500 ml of fluid, the updated posterior
densities on parameter space were altered significantly
(Figures 5A3, 5A4, 5B3, 5B4, 6A3, 6A4, 6B3, and 6B4).
Specifically, for a high-precision measurement, a fluid
challenge differentiated between cardiac causes of hypoten-
sion (“heart failure”; low contractility, low responsiveness to
volume resuscitation; Figures 5A3 and 6A3) and lack of
intravascular volume as cause (“hypovolemia”; normal or
high contractility, high responsiveness to volume resuscita-
tion; Figures 5A4 and 6A4). With low-precision measure-
ments, the failure to restore blood pressure following the
fluid challenge did not eliminate hypovolemia as the cause of
hypotension (Figures 5B3 and 6B3).

While the clinician often wonders whether there is a
preferred sequence of diagnostic challenges for ascertaining
an accurate diagnosis, the order of fluid challenges of
different sizes, with consecutive assimilation of intermediate
observations, had little effect on the final posteriors in this
highly simplified setting.

Three-Dimensional Setting, Fluid Challenge

When we allowed three parameters to vary, the posterior
distributions became truly multimodal. We depict two
different visualizations of the grid points accounting for
95% of the total probability mass of posterior densities for
the scenarios described earlier (Figure 7A and 7C), as well as
for a more ambiguous post-resuscitation observation of 50
mm Hg (Figure 7B). As can be seen, the assimilated
observations are still sufficient to meaningfully constrain
the probable region in parameter/state space. In the poor (30
mm Hg post-resuscitation) response to volume scenario, an
additional probability concentration appears. This additional
probability mass corresponds to the possibility of shock
induced by severely decreased peripheral resistance, which
corresponds to the differential diagnostic possibility of a
failure of vasomotor tone, as observed in septic, anaphylactic,
or neurogenic shock states. For intermediate values of the
post-resuscitation observation, the structure becomes even
richer (Figure 7B), while the post-resuscitation observation of
70 mm Hg (good response) concentrates probability mass in a
region of low intravascular volume (Figure 7C).
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Discussion

Mathematical Model of the Cardiovascular System

While a greatly simplified physiological representation, our
mathematical model of the cardiovascular system fulfills its
design objectives: to be qualitatively correct in its response to
variations in hydration status and myocardial contractility
while incorporating enough homeostatic mechanisms to
create realistic ambiguity in the identification of parameter
values underlying observed states.

The conversion of the discrete dynamical system represent-
ing the sequential filling and emptying of the heart (and the
resulting “history awareness” of the system) into a compact
system of ODEs that preserves the physiologic meaning of
parameters of the discrete system is, to our knowledge, novel.
Physiologically constrained cardiovascular simulations done
by previous authors have typically involved either simulating
intra-beat dynamics, which rapidly becomes computationally
prohibitive, using a more ad hoc approximation of the
Starling mechanism at the expense of physiological inter-
pretability of parameters, or resorting to a beat-to-beat
discrete time representation (e.g., [20]). Our model is there-
fore particularly suited for simulation scenarios where an
accurate description of intra-beat details is not required, yet a
continuous form of inter-beat dynamics that preserves
parameter meanings is desired.

Our model derivation aims to achieve a reasonable
compromise between representing all known mechanisms in
full physical detail, which leads to challenges of simulation
expense and intractability of the inverse problem, and model
reduction, which may result in loss of physiological accuracy
and interpretability. The need for such a trade-off is typical
when modeling complex biological systems. From our
perspective, making use of domain-specific knowledge to
arrive at meaningfully interpretable model reductions when-
ever possible, and resorting to multiscale models with a
hierarchical arrangement of submodels of different gran-
ularity and timescales when the assimilation of data on very
different spatial and temporal scales is desired, may be the
most promising way to address this issue. The ideal level of
model complexity will generally depend both on the amount
of data available for assimilation and the specific application
intended. To what extent the growing theoretical under-
standing of model selection based on information theoretical
measures [34] can be leveraged to facilitate or partially
automate this process for physiological applications is an
interesting topic for further investigation.

The Inference Process

As illustrated by this proof-of-concept implementation, the
proposed methodology holds promise as a tool for integrat-
ing existing mechanistic knowledge and data generated by
measurements in a clinical setting into a quantitative assess-
ment of patient status. Our approach offers a means to
achieve this integration in a way that not only incorporates all
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Figure 6. The Diagnostic Inference Process, Uniform Priors

Quantitative Differential Diagnoses

Probability densities for high-precision (standard deviation 10 mm Hg) (A) and low-precision (standard deviation 30 mm Hg) (B) measurements of blood
pressure for uniform prior densities. The panel assignments are analogous to Figure 6. Note that the axes are scaled differently due to the narrower

support of the (compactly supported) priors used.
doi:10.1371/journal.pcbi.0030204.g006

available data, but also quantifies the remaining uncertainty,
thus avoiding unjustified claims of high certainty that could
prove disastrous in a clinical setting. In particular, the clinical
construct of differential diagnoses of different likelihoods is
reflected in the observed multimodality of posterior proba-
bility distributions (Figures 5-7). More generally, representa-
tions of probability densities of states and parameters
provide a natural setting for linking mathematical models
of different scales and levels of detail since the distribution of
states of some detailed small-scale models (“microstates”)
may naturally determine a value or distribution of values for
parameters of larger scale/lumped parameter models.

Multimodal Posteriors and the Clinical Concept of
Differential Diagnosis

The proposed approach aims to map clinical syndromes
described by a set of observations to configurations of
physiologically meaningful pre-observation states and param-
eters appearing within a mathematical model. Based on the
physiological knowledge embodied in the model, certain
regions in parameter and state space may in turn be
associated with differential diagnoses, similar to the con-
ditions of “hypovolemia,” “heart failure,” and “sepsis” in our
simplified example. When this linkage is possible, the
quantitative nature of the method presented here allows for
the estimation and refinement of probability values associ-
ated with certain diagnoses. This, to our knowledge, is the
first time that such a high-level concept central to clinical
decision making is shown to emerge naturally from the
combination of sequential observations, diagnostic chal-
lenges, and physiological principles. Moreover, we believe
that the methods presented herein open novel avenues for
exploring theoretical aspects of clinical epistemology, in-
dependent of practical applications.

Since measurement characteristics are described stochas-
tically, the method we demonstrate is not fundamentally
limited to assimilating data from device-based quantitative
measurements, but can also make use of rather qualitative
clinical observations such as quality of peripheral perfusion,
presence of lung rales, or altered mental status, provided
reasonably informative densities on system states or param-
eters conditional on such observations can be defined.
Similarly, genomic information can be naturally incorpo-
rated, since it can provide probability distributions of
physiological parameters conditional on individuals’ ge-
nomes. To what extent a combination of several subjective
(or inaccurate) observations may exploit physiological cou-
pling of observables and yield informative posterior distri-
butions corresponding, for example, to a carefully performed
clinical examination is a matter of current investigation.

While modifying the order of physiological challenges did
not have a tangible impact on diagnostic discrimination in
our limited exploration, we anticipate that order generally
matters, as a system’s response to a perturbation can be
highly dependent on the system state at the time that the
perturbation is delivered. That is, an initial diagnostic
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challenge will alter the state of the underlying system, which
may impact its response to a subsequent challenge. Our
approach could allow for a theoretical exploration of how to
optimize the selection, and order, of diagnostic challenges for
maximal information gain in the context of specific clinical
scenarios.

The simulations presented here illustrate the importance
of congruence between the accuracy of observations and the
level of information included in prior distributions. In
particular, the inappropriate use of informative priors can
be misleading in this context. In our results, for example, the
combination of informative Gaussian priors with inaccurate
observations effectively eliminates the physiologically rea-
sonable “heart failure” peak in both the posteriors after a
single observation of low blood pressure and the post-
resuscitation posteriors for the low-response case, while the
peak is still clearly evident in the case of uniform priors
(Figures 5B2, 5B3, 6B2, and 6B3). This example demonstrates
that a conscious choice needs to be made as to whether an
interpretation based on population-level probabilities (cor-
responding to the use of informative priors) or an unbiased
assessment of physiological possibilities (corresponding to
the use of uniform priors) is more appropriate, when only
few, low-quality measurements are available. Whether an
optimal degree of incorporation of population-based infor-
mation exists and how such an optimum could be defined are
highly relevant issues that remain to be explored.

lll-Posedness of the Inverse Problem and Regulatory
Mechanisms in Physiology

Our observations suggest that when addressing inverse
problems in quantitative physiology, the traditional approach
of requiring a unique optimal solution may be misleading and
introduce unnecessary information loss, at least in situations
where the additional computational burden of characterizing
the posterior distributions more fully is not prohibitive.
Model reduction to eliminate perceived “overparametriza-
tion” may weaken the correspondence of components of a
physiologically faithful mathematical model with components
of the actual physiological system it describes.

Furthermore, we hypothesize that the ambiguity of the
mapping from observation to parameter space is at least
partially due to a characteristic particular to physiological
systems, namely their ability to tightly control certain system
states via highly tuned, and often nested, internal regulatory
feedback control mechanisms, such as the baroreflex in our
simple example. In situations where such a controlled
variable is observed, the ambiguity in the mapping from
observation to parameter space is naturally exacerbated since
perturbations of the observable will be compensated by
alterations of other, possibly unobserved system states, as has
already been proposed in a neurophysiological context [35].
Since a living organism is a system that maintains a state of
dynamical equilibrium at energy expenditure, this phenom-
enon is likely to be the rule rather than the exception. A more
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Figure 7. Three-Dimensional Inference

Quantitative Differential Diagnoses

Posterior probability densities for post-resuscitation observations of 30 mm Hg (A), 50 mm Hg (B), and 70 mm Hg (C) mean arterial blood pressure. The
left column depicts densities at grid-points corresponding to 95% of the total probability mass, while the right column depicts the approximate surface
enclosing this volume. The origin is in the far bottom corner for all figures. Shadows represent orthogonal projections to the contractility/total

intravascular volume plane.
doi:10.1371/journal.pcbi.0030204.g007

precise formulation of this qualitative observation is the
subject of current investigation.

Future Challenges

Cardiovascular system model. While the current system of
ODEs appears suitable for the purposes of this report, further
investigations relating the theoretical properties of the
underlying hybrid system and of its continuous time
approximation may yield deeper insights into the dynamics
of the physiological system modeled and extend the applic-
ability of the model. Furthermore, the relationship between
the stability of fixed points of the isolated heart model and
the full coupled system incorporating baroreflex warrants
further investigation. Quantitative calibration and validation
would naturally be desirable.

Clinical applicability of a probabilistic approach to inverse
problems in mathematical physiology. There are core
theoretical and methodological challenges in expanding the
proposed approach to realistic settings. A common aspect of
most of these challenges is the “curse of dimensionality,”
which is associated with the challenge of tackling high-
dimensional problems in a computationally tractable fashion.
Specific subproblems of immediate interest include the
optimal inference of prior densities of parameters and
system states from population-level data [36], the estimation
of posterior densities from prior densities given current
observations, the propagation of resulting state densities
using estimated parameters, the visualization and computer-
aided interpretation of high-dimensional posteriors, the
extension of this methodology toward optimization of
diagnosis and therapy, perhaps using control theoretical
approaches, and, finally, the validation of the entire system or
of some practical subcomponents, according to the criteria of
evidence-based medicine. Recent methodological develop-
ments in the areas of sequential and Markov chain Monte
Carlo methods [37,38] and sparse grids, and the continued
exponential growth of available computational power, may
contribute to making these steps feasible for reasonably sized
models and datasets in the near future, possibly for real-time
bedside use.

Conclusion

We believe that our approach provides a conceptually new
quantitative framework for a theoretical description of the
development of differential diagnoses, which may potentially
be harnessed to improve this process. Eventually, this
methodology could be extended to an outcome prediction
tool and could help to optimize diagnostic and therapeutic
interventions in individual patients. Its practical implemen-
tation will require broad interdisciplinary collaborations,
because of the significant challenges involved. We never-
theless believe that the potential gains in diagnostic effective-
ness and efficiency that can be made by taking a quantitative
approach to uncertainty, based on our ever-growing mech-
anistic understanding of physiology, will make the effort
worthwhile.
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Methods

A simplified mathematical model of the cardiovascular system and
its regulation. The model we developed was designed to be
computationally and conceptually simple while achieving a good
qualitative reproduction of system responses to alterations in
contractility and hydration status. It consists of a continuous
representation of the monoventricular heart as a pump, connected
to a representation of the systemic circulation with the large blood
vessels treated as linear capacitors (Windkessel model) and with
arterial pressure controlled by a physiological feedback loop
(baroreflex [39], Figure 2). The pulmonary circulation is excluded
for simplicity, since the perturbations to be studied in our example
are not directly related to it. The physiological variables and
parameters used in the following exposition are summarized in
Table 1.

The heart as a pump. At a basic level, the heart acts analogously to a
piston pump. During each heartbeat, blood from the venous side of
the circulation fills the ventricle (“piston”) during the filling phase
(diastole). When the cardiac rhythm generator (anatomically, the
sinoatrial node) triggers myocardial contraction, the heart starts to
contract, increasing the pressure in the ventricle. This process leads
to the ejection of blood toward the arterial side of the circulation,
and thus emptying of the ventricle, as soon as intraventricular
pressure exceeds the pressure on the arterial side of the circulation.
Simplifying the underlying physiology somewhat, one key factor for
the amount of volume entering the ventricle in diastole is the so-
called preload, which is related to the pressure in the large veins
immediately upstream of the heart. How much blood is ejected
during systole depends on the so-called afterload, corresponding to
the pressure in the large arteries downstream of the heart, the
strength of the contraction of the heart muscle (myocardial
contractility), and the extent to which the ventricle was filled during
diastole. The amount of force the myocardium can develop depends
on its current level of stretch, which gives rise to a relationship
between the amounts of filling during diastole and ejection during
systole, termed the Starling mechanism. We developed an ODE model
of the monoventricular heart, omitting pulmonary circulation, by
considering a single-cycle representation of the emptying (ejection)
and filling of the ventricle.

Systole. The model of ejection was based on the experimentally
observed linearity of the relationship between stroke work Ws, which
refers to the work performed by the heart during ejection, and end-
diastolic volume Vyp, over a wide range of volumes [40]. This linear
relation takes the form

Ws = cersw(Vep — Ve, ), (1)

where the slope factor ¢prsw is termed the preload recruitable stroke
work. The volume axis intercept of this relationship has been found
to be equivalent to the volume at which the passive intraventricular
pressure is 0 mm Hg, Vgp, [40].

Approximating stroke work as pure volume work performed from
Vep to the end-systolic ventricular volume Vg against the arterial
pressure P, yields

Vis

Wg = — / P(V)dV ~ Vs(P, — Pgp), (2)
Vi

where Pgp is the intraventricular pressure at the end of diastole, and

Vs = Vip — Vs (3)

is the stroke volume. Based on the finding that the ventricular volume
will not usually decrease below Vgp,, we define the end-systolic
volume as a function of the end-diastolic volume as follows:

- v if P,>P,
Ve (Vi) — 4 Max(Vepy, Ves(Vep)), if Pa>Pep 4
es(Vi) { Vb, , otherwise 4

The expression for Vs is obtained by equating the expressions for
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Table 1. Glossary of Variables and Parameters of the Cardiovascular Model

Symbol Description Unit

fur Heart rate, i.e., the number of complete cardiac cycles per unit time Hz

Tsys: Toia Duration of systole (ejection period of cardiac cycle) and diastole (filling part of s
the cardiac cycle), thus fuz = ﬁ

Ws Stroke work, the work performed by the heart muscle during cardiac cycle/ejec- mm Hg ml
tion period

Ico Cardiac output, total flow generated by the heart per unit time ml/s

Vs Stroke volume, the volume of blood ejected during 1 cardiac cycle/ejection peri- ml
od

Ves, Veo End-systolic volume, i.e., the ventricular volume at the end of the ejection period, ml

Ve, Poyy » ke

and end-diastolic volume, i.e., the ventricular volume at the end of the filling per-
iod

Constants characterizing the passive empirical ventricular pressure/volume rela-
tionship

ml, mm Hg, ml~!

Rvalve Hydraulic resistance opposing ventricular filling. The valve dynamics imposes uni- mm Hg s/ml
directional flow.

Pep End-diastolic pressure, i.e., the intraventricular pressure at the end of the filling mm Hg
period

P Average ventricular pressure during ejection phase, assumed equal to mean ar- mm Hg
terial pressure

Ppy, P, P, Pressure in ventricular, arterial, venous compartment mm Hg

Vive Va, Vo Volume of ventricular, arterial, venous compartment ml

Vo, Vo Arterial, venous unstressed volume at which the pressure induced by wall tension ml
is 0 mm Hg

Rrer Total peripheral/systemic vascular hydraulic resistance, i.e., the hydraulic resis- mm Hg s/ml
tance opposing the flow through the capillary streambed that is driven by the ar-
terio—venous pressure difference

Ic Flow through capillary streambed, i.e., from arterial to venous compartment ml/s

CpRsW Preload recruitable stroke work, a contractility index describing by how much the mm Hg
stroke work increases with increases in diastolic filling, quantified through end-
diastolic volume

G © Compliance of arterial, venous compartment ml/mm Hg

TBaro Time constant of the baroreflex response, i.e., of the linear low pass characteristic s
of the physiological negative feedback loop controlling arterial pressure

Pa Set point of the baroreflex feedback loop mm Hg

Kwidth Constant determining the shape and maximal slope of the logistic baroreflex mm Hg™'
nonlinearity

doi:10.1371/journal.pcbi.0030204.t001

Ws in Equations 1 and 2, solving for Vs, and substituting the result with constants

into Equation 3 to obtain

(V; Ve, ) ki = ——POW ¢ Fey Vivy
VES(VED) = Vip — CprRSW VED EDg ] ( 5) Ryave
P, — Prp
~ ko = kEL\' (9)

Note that Vg is a continuous function of Vi, since, if Vigp>Vip,, the

limit of VES(VED) as Pgp approaches P, from below is smaller than e — _Pove £ Py,

VEDU . ’ Rvul\rc ’

Diastole. To complete one stroke cycle, we derive an expression for .

the end-diastolic volume as a function of the end-systolic volume. which resolves to

\./entric.ular ﬁlling is modeled as a §imple passive ﬁlling through the | 1 — ke ehahs(t0)

linear inflow resistance Ry,., driven by the difference between V() = ks(t+C) — ln( 1€ ) (10)

pressure in the central veins Pcyp and ventricular pressure Ppy(Viy), ko ks

through the ODE

dViy _ Pcve — Prv(Viy)

= -~ 7 6
dt Rvulue ( )

In Equation 6, the dependence of ventricular pressure on ventricular
volume is governed by the experimentally characterized [40]
exponential relationship:

pI,V(VI,V) — P‘)Lv (eknl_v(VLV*VED”) _ ])_ (7)

Under the assumption of constant Pcyp, Equation 6 is of the
general form

av ;
E: klekﬂ Jrkg, (8)
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by quadrature. By letting ¢ = 0 at the beginning of diastole and
eliminating the unknown constant C using end-systolic volume Vg as
the initial condition, we obtain

1 [k .
V() = kst — —In( 51 (1 — dehaty g haVis (11)
ke \ks

1 ky —hokst —ko(Ves+hst)
—_ — _1 — (e 2R3 'l 2 VESTR3
o n (kg (e )+e ,

where the final expression is numerically advantageous since it avoids
floating point overflow in the exponential terms. At a given heart rate
fur, and assuming an approximately constant duration of systole Ty,
(physiologically, the duration of diastole is much more str()ngly
affected by alterations in heart rate than the duration of systole [41]),
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the end-diastolic volume will therefore be

Vip = V(fim — Tsy), (12)

with V(t) given by Equation 11.

If Pcyp exceeds the intraventricular pressure at the beginning of
diastole, then passive filling can occur and Equation 12 provides the
desired expression for Vgp as a function of Vs, through the Vigg-
dependency of Equation 11. Otherwise, no filling will occur. The
overall expression for Vgp as a function of Vgg is thus

~ VED if Pcyp>Pry ( VES) K
Vi (Vis) = ) : 13
Ep (Vis) { Vs, otherwise 9

note that VED is a continuous function of Vg since the limit of
Vep(Ves) as Pry(Ves) approaches Pcyp from below is Vis.

Joining systole and diastole. We can now define a discrete dynamical
system describing the beat-to-beat evolution of Vi (or, similarly,
Vis). Specifically, given the current end-diastolic volume Vi, we can
use Equation 4 to compute Vs = Vis(V},) and use Equation 13 to
obtain Vgp(V}y). Together, these steps yield

Vi = Vin (Vi) = Vi (Ves (Vi) (14)

To obtain a continuous dynamical system amenable to coupling
with continuous representations of the physiologic control loops and
simulation with available ODE software over long time intervals, we
converted Vs and Vi to state variables of a continuous time system.
This was done by setting their rates of change to the average rates of
change over an entire cardiac cycle that would occur during one
iteration of the discrete time system for the current Vis and Vgp
values, to obtain

T (Ves(Vip) — Vis)fir
av (19
d];D (Vep(Vis) — Vep )fir.

The discrete system (Equation 14) and the continuous system
(Equation 15) share identical sets of fixed points. Indeed, fixed points
of the discrete system (Equation 14) are given by

Vip = Vip(Ves(Ven)), (16)
and by applying VES to Equation 16, we have

Vis = Vis(Vep) = Vis(Ven (Vis(Vip))) = Vis(Vip)s

thus = % = 0 at fixed points of the discrete system. Conversely,
1nspect1<)n shows that fixed points of Equation 15 satisfy Equation 16
and hence are fixed points of Equation 14 as well. The relationship
between the stability of fixed points of Equation 14 and the stability
of fixed points of Equation 15 is not obvious, since the discrete system
(Equation 14) treats systole and diastole sequentially, while Vg and
Vip co-evolve under Equation 15. However, linearization shows that
any fixed point (Vi, Vji,) is stable with respect to both systems if
| dVis(Vip) dVﬂ)(V:;\)
aVen AVis

to both systems if >1. (The stability condition can be
evaluated at all pomts in (VLS, Vip) space, except for on the finite
collection of lines where either derivative fails to exist (see Equations

4 and 13). In the case that %“’)%M —1, the fixed point is
stable with respect to the continuous time system and unstable with
respect to the discrete, suggesting that the continuous approximation
in theory has the potential to eliminate instabilities inherent in the

beat-to-beat dynamics. However, preliminary numerical explorations

suggest that |M%| is significantly smaller than one for the
relevant paramete)r range. ”When the continuous system (Equation 15)
is embedded in the complete circulation model (described below), the
full system very quickly settles to a stable fixed point (Figure 8).

The systemic circulation. The circulation is represented by a simple
Windkessel model. It consists of linear compliances representing the
large arterial vessels of volume V, and venous vessels of volume V,
with respective pressures

dV(-s

| <1, whereas the fixed point is unstable with respect
v, ks(‘m)d‘ e (Vi)
d i

Vo = Ve

P, =
o Cot

(17)

where o is “a” or “v” and where V,, is the respective unstressed
volumes, i.e., the in general non-zero volume at which the pressure in

the respective compartment will be 0 mm Hg. These pressures appear
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in the equation that links the arterial and venous compartments
through a linear resistor, representing the total peripheral resistance
Rypgr regulating the arterio-venous capillary blood flow I, namely
P, —P,
I =—"—" (18)
Rpr
The veno-arterial flow (cardiac output) I¢o generated by the heart
is given by the product of the heart rate fig and the volume Vg
ejected per beat, which by Equation 3 takes the form

Ico = fur (Vep — Vis). (19)

Assuming conservation of volume at the nodes, the evolution of
arterial and venous volumes is described by the following differential
equations:

Vs Ic -1
=1c —Ico
v, ™ av, (20)
dt - di external

where leyiernal T€presents a possible external blood withdrawal or
fluid infusion to or from the venous compartment.

Baroreflex control of blood pressure. Baroreflex control of blood
pressure, which is one of the key regulatory mechanisms in
cardiovascular homeostatis, is implemented based on the established
representation of the central processing component of the baror-
eceptor sensor input as a combination of a sigmoidal nonlinearity
(logistic function, in our case) with a linear system [15,18]. For
simplicity, we reduced baroreflex activity to a single activating
(sympathetic) output instead of the more physiologically accurate
balance of stimulating (sympathetic) and inhibiting (parasympathetic)
outputs. Since our model of the heart is designed to represent
timescales significantly larger than a single beat, the linear part of the
baroreflex feedback loop is simplified to display first-order low-pass
characteristics with a time constant on the order of the slowest
actuator response (unstressed venous volume control). Pure delays
associated with the neural transmission of baroreflex signals are
neglected. Under these assumptions, the temporal evolution of the
stimulating output from baroreflex central processing is governed by
the differential equation

ds 1 1
E = TBaro <1 B 1+ o hwidth (Pa—Page,) - S)' (21)

The stimulating output S(¢) of the feedback loop acts on heart rate

fur, total peripheral resistance Rrpr, myocardial contractility cprsw,

and unstressed venous volume V,, effectors/actuators to adjust blood
pressure according to its current deviation from the set point, based

on the linear transformations

Ol(t) = S(t)(amax -
where o = fyr, Rrpr, OT cprsw, and
Vv”(t) = (1 - S(t))(VV,,‘m -V

The form of Equation 23, in particular, arises since the venous
capacitance vessels contract, reducing their unstressed volume, in
response to drops in blood pressure.

Combining Equations 15 and 17-23, and writing out dependencies
relevant to the coupling of the system explicitly, we obtain a system of
five ODEs:

amin) =+ Olmin (22)

)+ Wy (23)

min ‘min

dVis

a (Vps(VFI)7 Va, 5) VFS)fHR(‘S)
dVg =
dJ;D = (Vep(Ves, Vy) — Vip)fur(S)
dVy,  Py(Va) = Py(V,,S
dt‘ - %(S()) — (Vip — Vis)fur(S) (24)
TPR
dVV dVa
dt = - dt cxlcm;\l(l)

o) S)

s 1 . 1
At Tpare 1+ e hian®u(Va)-P

It should be noted that for I.ema = 0, conservation of total
intravascular volume would allow for elimination of one state
variable (either V, or V) to obtain a four-dimensional system. We
chose to leave the system in the above form, however, to preserve
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Figure 8. Transient Behavior of Continuous Time Cardiac Model

Temporal evolution of actual stroke volume of continuous time system during initial transient of simulation shown in Figure 5 (solid line) and stroke
volume calculated from systolic and end-diastolic volumes that would occur if the discrete dynamical system was advanced one step from the current
values given by the continuous system (dashed line). Note that the state of the continuous system rapidly approaches a fixed point of the discrete
dynamical system, resulting in superposition of the two curves. The transient is caused by starting integration with a non-equilibrium distribution of

fluid between arterial and venous compartments.
doi:10.1371/journal.pcbi.0030204.g008

direct correspondence between anatomical entities and mathemat-
ical representation, at the cost of some loss in computational
efficiency. With regard to the coupling between equations, it should
be noted that the sympathetic nervous system activity S, which serves
as a central control mechanism critical for functional cardiovascular
system homeostasis, links together all components, while the coupling
between the equations describing heart and circulation reflects the
cyclical structure of the cardiac action and the circulation. Numerical
solution of system Equation 24, as well as all other algorithms used for
this work, was implemented in the MATLAB 7 (The MathWorks)
programming environment, using the odelbs solver for numerical
integration. The source code used in generating results is available in
Text S1.

Parameter selection. The parameters Py, = 2.03 mm Hg, Vip, = 7.14
ml, and kg, ,= 0.066 ml™" describing the ventricular pressure-volume
relationship were estimated from experimental data for the left
ventricle from [40] using the Levenberg-Marquard nonlinear least
squares algorithm (Figure 9).

The remaining parameter values and ranges for variables, as well as
the respective sources, are given in Table 2 (for meaning of
parameters, see Table 1). When no explicit source is given, assign-

30
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n
o

o

Enddiastolic pressure [mmHg]
&
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Enddiastolic volume [mi]

_5 . L 1

Figure 9. End-Diastolic Pressure-Volume Relationship

Least squares fit of the empirical exponential pressure-volume relation-
ship used to determine parameters from the experimental end-diastolic
measurements from [40], Figure 6, bottom right panel.
doi:10.1371/journal.pcbi.0030204.g009
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ment was based on the authors’ perception of physiologically
reasonable values for the simplified system, without claiming
quantitative accuracy.

The inference procedure. For the purpose of this exposition, we
are lumping the subset of » initial conditions (states) and parameters
with which the inference is concerned into one product vector space
with elements x € X R". Additionally, for simplicity, we assume a fully
deterministic model M: X —, x +; M(x) of the physiological process
that gives a mapping from X to a finite dimensional observation space
with elements y € ¥ R™. Extending the methodology to stochastic
process models is straightforward but computationally more bur-
densome.

Generation of prior densities. In a practical application, prior
probability densities on parameterf/initial condition space would
have to be inferred from a finite set of observations of a population,
which in itself constitutes an ill-posed inverse problem. For
simplicity, we assume a known prior distribution fyx: X — [0,1] on
parameter/initial condition space and compute an approximation to
the prior density on observation space consistent with the mecha-
nistic model by evaluating

fy(y) =

{reXM(x)=y)

fx (x)dx, (25)

using a Monte Carlo approach. Specifically, we draw N = 102%™

samples x; from fy and compute the corresponding observations y; =
M(x;). A histogram with 50 bins/dimension is computed for
approximate evaluation of fy.

In the two-dimensional simulations, the parameter/initial
condition space X consisted of the total intravascular volume
Viotat = Vi + Vi, corresponding to hydration status, and a positive
scaling constant ¢ applied to the cardiac contractility response range
[CPRSW,y i 5 CPRSWops | [CCPRS W,y s CCPRSW,,, |- Imitial conditions for com-
partmental volumes were generated from Vi, by setting them
proportional to the unstressed volume of the respective compart-
ment and ensuring that observations were taken only after the
system had equilibrated. In the three-dimensional setting, an
additional scaling factor c¢g,, for the arteriolar resistance range
[Rartyn s Rarty ) [6Ru Rartys, > CRu Rartyy ) Was introduced.

The prior densities fx for the informative/Gaussian case were
independent Gaussian distributions with mean one and standard
deviation 0.5 for the scaling constants, while the mean of the
distribution of total intravascular volume was chosen to correspond
to a level of sympathetic nervous activity S(¢) =~ 0.5 in steady state with
both scaling factors at one, with a standard deviation of 1,000 ml. All
distributions were truncated at zero by repeating the sampling if a
negative value was drawn. fx for the uniform/non-informative case
were independent uniform distributions on the intervals two stand-
ard deviations above and below the means of the corresponding
Gaussian distributions, again truncated at zero.

Sequential assimilation of observations. Sequential updating of the
posterior densities was accomplished based on the standard Bayesian
calculation of the conditional density
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Table 2. Parameter Values for the Model of the Cardiovascular System and their Sources

Parameter/Variable Values(s)

Source

CPRSWin 1 CPRSWimax 34.5-138 erg/ml=25.9-103.8 mm Hg
Rvaive 0.0025 mm Hg s/ml

FitRoin s FotRimae 2/3-3 Hz

Tsys 4/15 s

0.5335-2.134 mm Hg s/ml

700 ml; 2,700-3,100 ml

RTPRain s RTPR e
Vao' VVum," ’ V‘/Dmax

G G 4 ml/mm Hg, 111 ml/mm Hg
Pa.. 70 mm Hg

Kuidth 0.1838 mm Hg ™'

TBaro 20s

50%-200% of average control value from [40] (Table 1)

Atrial resistances from [22]

Corresponding to 40-180 bpm

80% of duration of cardiac cycle at maximum heart rate [41] (Figure 4A)
50%-200% of value used in [43] (1.067)

Adapted from [43]

[43]

(Corresponding to 99% saturation at 25 mm Hg deviation from set point)
Time constant for control of unstressed venous volume from [22]

doi:10.1371/journal.pcbi.0030204.t002

fvOl)fx(x) _ g0, M(x))fx (x)
fv(y) fv(y)

where the stochastic measurement model g: Y X Y — [0,1], (y,Yrue) —
20,Yurue) describes the distribution of observations as a function of the
true value of the observable y. ... In Equation 26, the prior
distributions fx and fy are either the original prior distributions
described in the previous paragraph, if the first observation is being
assimilated, or the posterior distribution on X obtained in the
preceding assimilation step, approximated using weighted Gaussian
kernel density estimation as implemented in the KDE toolbox for
MATLAB [42], and its corresponding consistent distribution on Y,
computed as described in the previous paragraph, in all other cases.
For all of the above steps, visual comparisons between simulations
with different and incommensurate grid resolutions were performed
to ascertain that the observed multimodality of the distributions did
not in fact constitute an artifact resulting from aliasing or other
numerical effects.

fx(xb) = : (26)
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Supporting Information
Text S1. Code

This file contains the MATLAB routines used to generate the results.
Please see the README file in the archive for installation and usage
instructions.

Found at doi:10.1371/journal.pcbi.0030204.sd001 (21 KB GZ).
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