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We recently noted that exogenous zinc was capable of counteracting LPS-induced decreases in 

labile [Zn]i (i.e., TPEN chelatable, FluoZin-3 detectable) and simultaneously abrogated LPS-

induced apoptosis in SPAECs. In an abbreviated survey of the effect of LPS on potential zinc 

transporters, we noted that LPS increased mRNA of zinc importer, SLC39A14 or ZIP14 (and 

this effect was mimicked by zinc chelator, TPEN) suggesting that increased expression of 

SLC39A14 may be an homeostatic mechanism to maintain [Zn]i and reduce cellular toxicity to 

LPS. In the current study, we noted that knockdown of SLC39A14 with siRNA rendered 

SPAECs more sensitive to LPS-induced apoptosis and also impaired the ability of exogenous 

zinc to rescue this effect. We also previously noted that iNOS or chemically derived (S-nitroso-

N-acetylpenicillamine (SNAP)) nitric oxide (NO) is associated with resistant phenotype to LPS-

induced apoptosis in a zinc dependent fashion. Since ZIP14 expression has been reported to be 

indirectly upregulated by NO, we pursued this connection in SPAECs by silencing ZIP14 using 

siRNA technology. We noted that NO-mediated resistance to LPS-induced apoptosis was 

independent of ZIP14 but was critically dependent upon the presence of sheep metallothionein 

(MT). In particular, genetic silencing of these collective forms of sheep MT isoforms abrogated 

the NO-dependent resistant phenotype to LPS-induced apoptosis as well as abolishing NO-

mediated increases in [Zn]i. Collectively, these data confirm that increases in labile [Zn]i are an 

important component of ZIP14- or NO-mediated resistance to LPS-induced apoptosis. 
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Cytoprotection via ZIP14 appears to be secondary to transcellular movement of extracellular zinc 

whereas NO mediated protection is secondary to S-nitrosation of MT and redistribution of 

intracellular zinc. 
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1.0  INTRODUCTION 

Functional role of intracellular labile zinc in pulmonary endothelium 

Kalidasan Thambiayya
1
, Murat Kaynar

2
, Claudette M. St. Croix

3
 and Bruce R. Pitt

1,3 

 

1
Departments of Bioengineering, 

2
Critical Care Medicine and 

3
Environmental and 

Occupational Health. University of Pittsburgh and University of Pittsburgh School of Medicine 

and Graduate School Public Health, Pittsburgh, Pennsylvania 15219 

 

Invited Review, Pulmonary Circulation (in submission process) 

 

1.1 ABSTRACT 

After iron, zinc is the most abundant essential trace metal.
 
Intracellular

 
zinc ([Zn]i) is maintained 

across a wide range of cells and species within a tight range (100 to 500 µM) by a dynamic 

process  of transport,
 
intracellular vesicular storage and binding to a large number

 
of proteins 

(estimated at 3-10% of human proteome). As such,
 
zinc is an integral component of numerous 

metalloenzymes, structural
 
proteins, and transcription factors.  It is generally assumed that a 

vanishingly small component of [Zn]i, referred to as free or labile zinc, and operationally defined 

as the pool sensitive to chelation (by agents such as N,N,N‟,N‟‐tetrakis(2‐pyridylmethyl) 

ethylenediamine (TPEN)) and capable of detection by a variety of chemical and genetic sensors, 
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participates in signal transduction pathways. Zinc deficiencies, per se, can arise from acquired 

(e.g., malnutrition, alcoholism) or genetic (e.g., mutations in molecules affecting zinc 

homeostasis, the informative and first example being acrodermatitis enteropathica) factors or as a 

component of various diseases (e.g. sickle cell disease, cystic fibrosis, sepsis).   Hypozincanemia 

has profound effects on developing humans and all facets of physiological function (neuronal, 

endocrine, and immunological) are affected; although considerable less is known regarding 

cardiovascular pathophysiology.  In this review, we provide an update on current knowledge of 

molecular and cellular aspects of zinc homeostasis and then focus on implications of zinc 

signaling in pulmonary endothelium as it relates to programmed cell death, altered contractility 

and septic and aspectic injury to this segment of the lung. 

 

 

1.2 SIGNIFICANCE 

Labile (or free) [Zn]i  is an important effector molecule in signal transduction in many tissues 

including neurons, immunocytes and epithelium. The molecular determinants of zinc 

homeostasis and the impact of perturbations in zinc import, transport and binding on cell 

physiology have recently been described in various extrapulmonary tissues.  Relatively, little is 

known regarding zinc biology in the pulmonary vasculature. Pulmonary endothelium is an 

important component of pulmonary vasoregulation and also the locus of earliest structural and 

functional changes in acute lung injury (ALI), insight into zinc homeostasis in this segment of 

the lung may be important in understanding the etiology of acute and chronic pulmonary 
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vascular disease. Accordingly, in this report we review the current status of zinc homeostasis in 

general and summarize recent findings by our laboratory and others regarding perturbations in 

pulmonary endothelial zinc in health and disease. 

1.3 ZINC OVERVIEW 

The role of zinc was first reported in 1869 when it was discovered to be important for the growth 

of Aspergillus niger (130). Zinc was not recognized to be important for human life until 1963 

when zinc deficiency was discovered as a major contributing factor in nutritional dwarfism 

syndrome and hypogonadism (129). It is now well established that zinc is important for 

numerous cellular functions including cell differentiation (128) and division (128, 156), DNA 

synthesis (127, 156), RNA transcription (127, 156), and maintaining plasma membrane integrity 

(162). Recent approaches using bioinformatics methods to mine existing protein databases 

indicate that approximately 10% of the human proteome is zinc dependent (1). Zinc has three 

major biological roles as a i) structural component of at least 3000 proteins (108), including 

transcription factors (108), cytokines and receptors (108); ii) catalytic component of more than 

300 enzymes (54) that regulate many cellular activities including DNA synthesis and 

maintaining membrane stability (8, 19, 112); and iii) regulator of enzyme and receptor activity 

by acting as an activator or inhibitor ion (112).  Total intracellular zinc is maintained in a 

concentration range from 100μM to 500μM (118) across numerous cell types. Zinc is considered 

a trace metal, however, because more than 99% of intracellular zinc is protein bound. The 

concentration of labile [Zn]i is vanishingly small with estimates between 10
-9 

M (31, 95) to 10
-12 



 4 

M (16) and it is this fraction that may act as a second messenger in cell signaling (168, 172) in a 

fashion well supported for other divalent cations such as calcium.  

            Zinc has been referred to as a „double edged sword‟(64) as both zinc deficiency and zinc 

excess are associated with adverse effects on cell physiology (8, 18, 25, 80, 83, 103, 132). Zinc 

deficiency stimulates inter-nucleosomal DNA fragmentation and apoptosis in intestinal (47), 

neural (62), respiratory epithelium (175) and in systemic endothelium (63), and high levels of 

zinc (>250 M) are associated with concentration dependent
 
increases in cell death in cultured 

pulmonary (146, 170) and cerebral (78) endothelia. In contrast, lower  zinc concentrations 

(10µM) (111, 143, 154) have been shown to inhibit cadmium (143)-, linoleic acid (111)-, and 

tumor necrosis factor-α (TNF-α)- (111) induced apoptosis in systemic endothelial cells. At the 

systemic level, i) labile [Zn]i levels were demonstrated to be affected by changes in fluid shear 

stress levels in mouse aorta and in human umbilical vein endothelial cells indicating that zinc 

dyshomeostasis in the systemic endothelium may contribute to the development and progression 

of cardiovascular diseases and ii) zinc supplementation was shown to reverse systemic 

inflammation and organ damage, with a positive effect on overall mortality in mouse model of 

sepsis (7). Little is known about the signaling role of labile [Zn]i in the pulmonary endothelium 

in the context of lung diseases. In this review, we discuss the impact of zinc homeostasis and 

signaling, as well as its efficacy as a cyto-protectant in pathophysiological processes of 

pulmonary endothelial cell injury and death.   

 



 5 

1.3.1 Zinc homeostasis in the cell  

Intracellular zinc concentration is maintained by the coordinated activity of a large family of zinc 

transporters (ZnT & ZIP) (161) and zinc binding proteins such as metallothionein (MT) (161) 

(Figure 1).  Zinc transporters are encoded by one of two of the solute-linked carrier (SLC) gene 

families: SLC 30 (also known as zinc exporters or ZnT1-10) (13) and SLC39 (also known as 

zinc importers or ZIP1-14) (13). ZnT transporters reduce cytoplasmic zinc by promoting zinc 

efflux from cells or into intracellular vesicles, while ZIP transporters increase cytoplasmic zinc 

by promoting zinc influx from extracellular and, perhaps, from vesicular stores into 

cytoplasm(100).  

 

1.3.2 Metallothionein 

MT: Metallothioneins are major zinc binding proteins that dynamically coordinate up to 7 mol 

Zn
2+

/mol MT via cysteine residues (approximately mol 30%) (9). MT is involved in: (i) 

detoxification of heavy metals like mercury, cadmium, and alkylating cancer drugs (65, 91); (ii) 

scavenging free radicals (65); and (iii) protection against DNA damage (65), oxidative stress 

(65), and apoptosis (45). Mammals express at least four isoforms - MT-1, MT-2, MT-3 and MT-4. 

In humans, there are at least 16 MT genes located in chromosome 16 and most of them are associated 

with the MT-1 isoform (36). MT-1 and MT-2 are expressed in many tissues and are particularly 

abundant in the liver, pancreas, intestine and kidney (116). MT-3 and MT-4 are minor isoforms with 

specific expression patterns in brain (MT-3) and stratified squamous epithelial cells (MT-4) (24). At 

the subcellular level, MT can be localized to a number of cellular compartments (i.e., mitochondria, 
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cytosol and nucleus) (173)  as well as in the extracellular space (61). The reduction potential of MT 

(less than -366mV (9)), makes it highly sensitive to physiological oxidants. We (121) and others 

(85, 86, 104, 107) have shown that MT is sensitive to changes in cellular redox state and 

demonstrated that increases in reactive oxygen (109) or nitrogen (99, 178) intermediates can 

oxidize or transnitrosate cysteines in its zinc sulfur clusters leading to liberation of zinc. As such, 

MT can be viewed as acting as a sensor and switch and connecting changes in cellular redox 

status with alterations in labile zinc (figure 1). 

 

1.3.3 Solute-linked carrier (SLC) gene families: SLC 39 (or ZIP) 

ZIPs: Fourteen ZIP family members have been reported in mammals (46, 75, 96). The majority 

of ZIP family members are located on the plasma membrane (41, 43, 52, 151, 152, 155, 166) 

with the exception of ZIP7-8 and ZIP13 (figure 1), which are present in intracellular organelles. 

Gene knock-out technologies have provided valuable information regarding biological 

significance of the ZIP family members. Knockout (KO) mice lacking ZIP1, ZIP2, and ZIP3 are 

reported to have abnormal embryogenesis under zinc-limiting conditions (41, 42, 123). ZIP4 KO 

mice embryos die during early development, whereas heterozygous mice exhibit a phenotype 

similar to acrodermatitits enteropathica (AE) secondary to impairment of intestinal absorption of 

zinc (44, 89, 165). ZIP13 KO mice suffer from disorganization in hard connective tissue, 

including bone, teeth, skin and eyes (49). In humans, lack of ZIP13 is associated with 

spondylocheiro dysplasia, a form of Ehlers-Danlos syndrome (49, 56). Mice lacking ZIP14 have 

impaired G-protein coupled receptor (GPCR) signaling (51) and exhibit retarded growth and 

impaired gluconeogenesis (see table 1). 
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1.3.4 Solute-linked carrier (SLC) gene families: SLC 30 (or ZnT) 

ZnTs: Ten ZnT family members have been reported in mammals (96). Most ZnTs are located on 

intracellular organelles (i.e., golgi, endosomes and endoplasmic reticulum) (33) (figure 1). ZnT 1 

is the only ZnT exporter located at the plasma membrane, compatible with its role as the primary 

regulator of cellular zinc efflux (120). ZnT1 knockout mice are embryonic lethal (22). Disruption 

of the ZnT genes yields diverse phenotypes providing insight into the biologic function and 

specificity of the various family members. Mutations in ZnT2 (27) and ZnT4 (71) result in the 

production of zinc deficient milk in women and mice, respectively. ZnT3 knockout mice are 

prone to seizures (22). Mice lacking in ZnT5 show growth retardation and osteogenic problems 

(73) and exhibit impaired cytokine production in mast cells (117). Single–nucleotide 

polymorphism (SNPs) in ZnT8 are associated with type 2 diabetes in humans (134), and deletion 

of the ZnT8 gene results in impaired insulin secretion in mice (126)(see table 1). 
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Table 1. Phenotypical profile (in mouse, *human, ** drosophila, *** sheep) of 

mutants of zinc transporters 

 

Gene name     Protein name     Type  Phenotypes                                           

SLC39A1           ZIP1                  -/-      Abnormal embryogenesis (41, 42) 

                                                              

SLC39A2           ZIP2                  -/-      Abnormal embryogenesis (123) 

 

SLC39A3           ZIP3                  -/-      Abnormal embryogenesis (41, 42) 

 

SLC39A4           ZIP4                  -/-      Death of embryos during 

                                                               development (44)  

 

           SLC39A4           ZIP4*                +/-       Inherited disorder acrodermatitits 

                                                                enteropathica (AE), in which the  

                                                                intestines ability to absorb 

                                                                zinc is impaired (89, 165) 

 

SLC39A6           ZIP6                  +/-     ** Abnormal gonad formation (110) and  

                                                                    E-cadherin expression (163) 

 

SLC39A7           ZIP7                  +/-     Impaired melanin synthesis (139) 

SLC39A8           ZIP8                  +/-     Resistance to cadmium-induced  

                                                                testicular damage (35)   

 

SLC39A13        ZIP13                 -/-      a) Disorganization in hard connective 

                                                                   issue, including bone, teeth, skin and eyes (49)  

                                                               b) * Spondylocheiro dysplatic, a form of 

                                                                       Ehlers- Danlos syndrome (14, 35) 

                                

SLC39A14        ZIP14                 -/-      Impaired GPCR signaling. Growth retardation and  

                                                               impaired gluconeogensis (67) 

 

            SLC39A14        ZIP14               KD     a)***Blocked extracellular zinc-mediated 

                                                                                 protection against apoptosis in SPAECs (154) 

                                                               b)*** Lowered base level zinc in SPAECs (154) 

                                                                    

SLC30A1          ZnT1                  -/-        Embryonic lethal (3) 

 

            SLC30A2          ZnT2                 +/-       * Zinc deficiency in milk (27) 

 

SLC30A3          ZnT3                  -/-       Seize (22, 30) 

 

SLC30A4          ZnT4                  -/-       Zinc deficiency in milk (71) 
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            Table 1 (continued) 

 

            SLC30A5         ZnT5                  -/-        (a) Growth retardation and osteogenic 

                                                                                 problem (73) 

                                                                (b) Impaired cytokine production 

                                                                      in mast cells (117) 

 

SLC30A7          ZnT7                  -/-        Growth retardation, low body zinc status  

                                                                 and low fat accumulation (72) 

                                     

SLC30A8          ZnT8                  -/-        Impaired insulin secretion (126)  

                                                   SNPs     * Type 2 diabetes (134)           
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Figure 1.  Subcellular localization of zinc transporters and metallothionein 

 

Figure 1. The labile pool of intracellular zinc is tightly controlled by zinc importers (ZIPs), zinc 

exporters (ZnTs), zinc storing vesicles and zinc binding proteins such as metallothionein (MT). 

MT plays a critical role in zinc homeostasis acting as a buffer in the steady state while 

controlling the cellular distribution of transiently elevated zinc in response to perturbations 

and/or agonists such as nitric oxide (NO)(106). Modified figure from references (50, 51, 114). 

 

            Manipulation of intracellular zinc levels have been shown to influence the expression and 

localization of zinc transporters (96) with reports of increased expression of members of ZIP 
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family and decreased expression of ZnT family members in response to decreases in intracellular 

zinc (17, 37, 90, 119, 158). Most of these studies have been performed in intestinal and 

respiratory epithelial or immune cells. While reported increases in ZIP1 and ZIP14 (90)(90) 

mRNA were shown to be normalized by dietary zinc supplementation in a mouse model of acute 

lung inflammation (90), the mechanisms underlying the association between zinc homeostasis 

and lung disease remain largely unknown.  ZIP6 was shown to play a role in blocking LPS-

induced decreases in intracellular labile zinc and consecutive maturation in mouse dendritic cells 

(81).  Zinc mediated cytoprotection against TNF-α-induced damage in human lung epithelial 

cells was shown to be dependent upon expression ZIP8 (13). We recently reported (154) in 

cultured sheep pulmonary artery endothelial cells (SPAECs) that i) ZIP14 is sensitive to changes 

in intracellular labile zinc and ii) exogenous zinc mediated protection against LPS-induced 

apoptosis is dependent upon ZIP14.  

 

1.4 ZINC HOMEOSTASIS IN THE PULMONARY ENDOTHELIUM 

The Zalewski laboratory in Adelaide, Australia were the first to image labile zinc in the airway 

(19, 159) and provide evidence that zinc chelation ( via TPEN) enhanced hydrogen peroxide-

induced caspase activation (159). As reviewed by Troung Tran et al (156), intracellular zinc has 

also shown to be important for ciliary function, wound healing (via re-epithelialization) and 

suppression of oxidative stress and apoptosis in the airway epithelium. Further evidence suggests 

that zinc deficiency sensitizes the lung to acute lung injury following i) alcohol induced 

epithelial dysfunction (74); ii) hyperoxia (148); and iii) polymicrobial sepsis (7, 82). We have 
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shown that zinc chelation (via TPEN) exacerbates LPS-induced apoptosis in pulmonary 

endothelium (SPAECs) (146). TPEN also reversed the protective effect of nitric oxide (NO) 

donors on LPS-induced apoptosis (147). More recently, we reported that LPS induced time-

dependent  decreases in intracellular labile zinc (figure 2) in SPAECs using both live cell 

imaging and fluorescence-activated cell sorting (FACS) with the zinc-sensitive fluorophore, 

FluoZin-3 (Life Technologies, Grand Island, NY) (153). We further verified the observed 

decrease in FluoZin-3 detectable zinc using a chimeric reporter encoding a zinc-sensitive metal-

response element (MRE) fused to a luciferase gene (153). The LPS-induced changes in labile 

zinc were accompanied by increases in ZIP14 mRNA.  These effects were blocked by addition of 

exogenous zinc, as was LPS-induced apoptosis (increased caspase 3/7 activity and PS 

externalization) (153). In separate studies in SPAEC, siRNA knockdown of ZIP14 decreased 

basal levels of intracellular labile zinc and blocked zinc uptake ( as determined by FluoZin-3), 

and abrogated zinc mediated protection against LPS-induced apoptosis (observed in WT and 

scrambled control) (154). Collectively, these data suggest that endogenous levels of labile zinc 

can modulate the sensitivity of pulmonary endothelium to the proapoptotic effects of LPS (figure 

2) and implicate ZIP14 in affecting the ability of extracellular zinc to inhibit LPS-induced 

apoptosis in SPAEC (figure 3).  

 

            The results we obtained in pulmonary arterial endothelial cells isolated from mature 

sheep are distinct from those obtained in SPAEC from fetal sheep.  We initially noted that 

addition of large concentrations of zinc to the medium of SPAEC was associated with necrosis 

(146). In contrast elevations in intracellular labile zinc (via addition of exogenous zinc (170) or 

after exposure to large doses of H2O2 (169) or NO (170) ) were reported to induce apoptosis in 
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fetal SPAEC.  Alternatively, we have consistently noted that chelation of intracellular zinc with 

TPEN led to dose-dependent apoptosis in mature SPACE whereas a similar maneuver inhibited 

apoptosis in fetal SPAEC (169, 170).  

 

 

Figure 2.  Functional role of labile zinc in LPS-induced apoptosis 

 

Figure 2. LPS caused a decrease in labile zinc in SPAECs (as determined by zinc indicator, 

FluoZin-3, activity of zinc-sensitive MRE, and changes in steady-state mRNA of zinc importer, 

ZIP14). The contributory role of decreases in labile zinc in LPS-induced apoptosis (as 

determined by caspase-3/7 activation, cytochrome c release, and PS externalization) was verified 
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by mimicking the effects of LPS with zinc chelator, TPEN. Blocking LPS- or TPEN- induced 

decreases in labile zinc inhibited consecutive increase in apoptosis and ZIP14 mRNA providing 

support for a signaling role of labile zinc in pulmonary endothelium. 

 

 

Figure 3.  Cytoprotective effect of exogenous zinc is ZIP14 dependent 

 

Figure 3. LPS induced decreases in labile zinc are associated with increases in capsase-3 activity 

and upregulation of zinc importer, ZIP14 to restore the loss of labile zinc mediated by LPS. 

Elevation in labile zinc via ZIP14 inhibits apoptosis by inhibiting caspase-3 activity. siRNA to 
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ZIP14 blocked zinc uptake and abrogated zinc mediated protection against LPS-induced 

apoptosis.  

 

1.4.1 NO-(MT)-Zn
2+

 signaling in pulmonary endothelium 

NO can S-nitrosate metallothionein (88) and cause the release of Zinquin detectable changes in 

labile zinc in intact cells (10). We (121, 138) have confirmed these observations and 

demonstrated that: i) S-nitrosation caused conformational changes of MT (via fluorescence 

resonance energy transfer techniques) in intact pulmonary endothelium consistent with zinc 

release (121, 137); ii) NO caused an increase in labile zinc in pulmonary artery endothelial cells 

(138); and iii) MT was the requisite target for NO resulting in such changes in labile zinc (138). 

Subsequent investigations supported the potential for MT to participate in intracellular signal 

transduction pathways in pulmonary endothelium. 

  

1. Exposure of mouse lung endothelial cells (MLEC) to the NO donor, S-nitroso-N-

acetylpenicillamine (SNAP, 200 µM), caused nuclear translocation of the zinc 

dependent transcription factor, MTF-1 and such activation was not apparent in MT 

null cells. Translocation of MTF-1 was associated with NO mediated increase in MT 

gene expression itself (140) suggested that S-nitrosation of zinc-thiolate clusters in MT 

and subsequent alterations in zinc homeostasis are participants in intracellular NO 

signaling pathways affecting gene expression.  
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2.  We observed that zinc chelation (TPEN) abrogated hypoxic vasoconstriction in 

isolated perfused mouse lungs (IPL), and that IPL from MT null mice showed 

significantly less constriction than wild-type controls. Data obtained using NO-

sensitive FRET reporters supported both enhanced NO production and S-nitrosation of 

MT during hypoxic exposure. These events were accompanied by NO-dependent 

increases in labile zinc (Fluo-Zin-3) in subpleural vessels of MT +/+, but not MT -/- 

mice. These data supported a role for zinc thiolate signaling in pulmonary 

vasoregulation. Subsequent studies in cell-based models revealed a link between 

hypoxia induced elevations in labile zinc and changes in myosin light chain 

phosphatase (MLCP) activity, ultimately leading to stress fiber formation and 

endothelial cell contraction (11) (figure 5).  

 

 

3. Most recently, we showed that zinc chelation abrogates NO-mediated protection 

against LPS-induced apoptosis (154). Relative changes in labile zinc after exposure to 

cytoprotective doses of the NO donor SNAP (250µM) or exogenous zinc (10µM) were 

assessed by Fluozin-3, and a comparable increase in intracellular labile zinc was noted 

in both conditions (154). We further showed that both NO-mediated increases in labile 

zinc, and NO-mediated protection against LPS-induced apoptosis are dependent on 

MT via siRNA to sheep MT isoforms (154), thus implicating NO-MT-Zn
2+

 signaling 

in apoptotic pathways in the pulmonary endothelium (figure 4). 
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Figure 4.  NO elevated zinc from MT inhibits apoptosis in pulmonary endothelial cells 

 

Figure 4. Illustrates the link between apoptosis and elevation in labile zinc (via NO-MT 

signaling), which in turn inhibits capsase-3 activity in pulmonary endothelial cells. Modified 

figure from references (9, 154). 
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Figure 5.  NO elevated zinc from MT causes pulmonary endothelial contraction in hypoxia 

 

Figure 5. Illustrates the link between hypoxia, elevation in labile zinc (via NO-MT signaling), 

and activation of PKC, which in turns acts via CPI-17 to prevent MLCP activation and promote 

MLC phosphorylation, ultimately inducing stress fiber formation and pulmonary endothelial cell 

contraction. Modified figure from references (9, 11). 
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1.4.2 Zinc as an effector molecule in pulmonary endothelium 

Decreases in labile zinc have been reported to precede the earliest detectable alterations in cell 

function (40), morphology (40), and apoptosis (40, 153). We and others have reported that 

chelation of zinc causes spontaneous apoptosis in pulmonary endothelia (146) and epithelia (156) 

and elevations in labile zinc via ZIP14 (154) or iNOS induced NO or NO donors (20, 32, 135, 

136, 153, 160) inhibits apoptosis in cultured pulmonary endothelial cells. An anti-apoptotic role 

of zinc has been reported in relation to a variety of stimuli including TNF-α (131), cadmium 

(142), cholesterol (102) and linoleic acid (111) induced apoptosis. Although the molecular 

mechanism by which zinc inhibits apoptosis is not clear several reports suggest that zinc inhibits: 

i) Ca
2+

/Mg
2+

-dependent endonucleases that are responsible for DNA fragmentation (15); ii) the 

activity of caspase-3, a critical protease in apoptosis (122); iii) the processing of caspase-3 (21, 

113); and iv) bax activation, cytochrome c release, and apoptosome function (167). Zinc also 

increases the ratio of Bcl-2 to Bax resulting in the inhibition of caspase activity (176). We 

reported in SPAECs that: i) decreases in labile zinc mediated by LPS causes casapse-3 activation 

(153); ii) LPS-induced caspase-3 activity is sensitive to pan caspase inhibitor (153); and iii) 

extracellular zinc inhibits LPS-induced caspase-3 activity (153, 154). We posed a question 

whether zinc directly binds capsase-3 and modulates its activity. Our results in-vitro confirmed 

that zinc directly inhibits caspase-3 activity (154). Although NO can S-nitrosate caspase-3 and 

inhibit its activity (94), our results suggest that s-nitrosation of MT by NO leads to a release of 

zinc that is associated with a TPEN dependent cytoprotective caspase-3 inhibition, leading us to 

suggest that direct S-nitrosation of caspase-3 alone is not likely to account for these results. 

Collectively, our observation adds to the elegant studies in airway epithelium (19, 159) that 

revealed: i) labile zinc proximity with procaspase-3 prevents the activation of procaspase-3 and 



 20 

ii) zinc depletion activates procaspase-3 (159). These studies provide support for the 

antiapoptotic role of labile zinc in the lung. 

 

1.4.3 Zinc homeostasis and acute lung injury: complexities of integrated response 

Several studies have demonstrated that zinc deficiency sensitizes the lung to acute injury.  In 

particular, dietary restriction led to enhanced sensitivity to polymicrobial sepsis (7, 82). 

Hyperoxic (149, 150) lung injury in mice and macrophage and epithelial cell dysfunction in 

alcohol fed rats was ascribed to zinc deficiency (74).  Zinc repletion reversed phenotype in all 

three conditions.  Although pulmonary endothelial cell dysfunction may have been a component 

of all these models, any supportive insight into the cellular contributions of zinc dyshomeostasis 

to these observations largely relates to background information on zinc in respiratory epithelium.  

  

            Nonetheless, hyopzincanemia in septic or aseptic (33, 96) conditions is a somewhat 

underappreciated phenomenon.  Transmigration of zinc from tissues, including lung, to liver has 

been noted in hyperoxia (92), bacterial sepsis (124)  and turpentine  injury (101) and has been 

presumed to subserve: i) gluconeogenesis in liver; ii) new protein synthesis in acute phase 

response; or iii) host defense in an analogous fashion to hypoferronemia in bacterial pneumonia 

(101).  Hepatic expression of ZIP14 appears critical in this pheonenom (97).  We recently 

(unpublished observations) noted that hepatic expression of metallothionein was important in 

transmigration of zinc from lung to liver during hyperoxic lung injury apparently contributing to 

the unexpected observation that MT null mice were resistant to hyperoxia. Collectively, these 

observations suggest that additional insight into the mechanisms underlying such transmigration 
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may provide new therapeutic targets and strategies and potentially support exogenous zinc as a 

rational therapeutic agent in acute lung injury.  

 

            In summary, compelling evidence is emerging in pulmonary endothelium to complement 

a larger and growing body of experience in extrapulmonary tissue that labile zinc is a key 

effector molecule. Critical aspects of the magnitude of labile pool of intracellular zinc accounting 

for these signaling pathways awaits more refined ratiometric or quantitative fluorescent 

indicators.   Genetic and acquired aspects of zinc dyshomeostasis and deficiencies await further 

insight into the function and cellular distribution of large family of zinc transporters and metal 

binding proteins.  Nonetheless, it is apparent that the facile and common nature of zinc and nitric 

oxide chemistry support a role for NO-MT-Zn
2+

 pathway and the uqibuitous nature of these 

molecules in sepsis and acute lung injury make them a rational novel therapeutic target.  
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1.5 HYPOSTHESIS AND SPECIFIC AIMS 

The functional role of labile zinc has been characterized in neurons, systemic endothelia and 

immune cells in health and diseases. However, little is known about the functional role of labile 

zinc in the pulmonary endothelium.  These hypotheses will determine the functional role of 

labile [Zni] in pulmonary endothelium in the context of LPS-induced apoptosis.  

 

 

Specific Aim IA: To determine the functional role of changes in [Zni] in SPAEC by LPS 

stimulation. We hypothesize that LPS results in a decrease in intracellular labile zinc and this 

decrease is a critical intracellular signaling component transducing the apoptotic effects of LPS. 

 

Specific Aim IB: To determine the functional role of zinc importer, ZIP14, in LPS signaling 

in SPAECs. We hypothesize that LPS upregulates zinc importer, ZIP14 and elevates labile zinc, 

and elevation in labile zinc is an important contributing factor that inhibits LPS-induced apoptosis. 

 

Specific Aim II: To determine whether nitric oxide (NO) induced elevation of zinc from 

metallothionein (MT) protects cells from the LPS. We hypothesize that the release of zinc from 

MT by NO is an important contributing factor that inhibits LPS-induced apoptosis. 

 

The publications herein (chapters 3 & 4) will discuss our recent findings that delineate labile zinc 

as a signaling molecule and cytoprotectant in LPS-induced pulmonary endothelial apoptosis. 
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2.0  MATERIALS AND METHODS 

2.1 ISOLATION AND CULTURE OF SPAECS 

SPAECs were cultured from sheep pulmonary arteries obtained from a nearby slaughterhouse as 

previously described (137). Early passage cells were sorted to homogeneity based on uptake of 

fluorescent labeled di-LDL and subcultures routinely monitored for PECAM (CD31) expression 

to assure endothelial phenotype and purity. The SPAECs were grown in OptiMEM (GIBCO) 

supplemented with 10% fetal bovine serum, 100 U/ml penicillin, and 100 μg/ml streptomycin at 

37°C in an atmosphere with 5% CO2. 

2.2 REAGENTS 

N,N,N’,N’‐tetrakis(2‐pyridylmethyl)ethylenediamine (TPEN), LPS (0111:B4), active 

recombinant caspase-3 enzyme, and  zinc chloride were purchased from Sigma-Aldrich ( St. 

Louis, MO) and S-nitroso-N-acetylpenicillamine (SNAP) was purchased from Molecular Probes 

(Eugene, OR). Caspase-3 substrate Ac-DEVD-AMC (AMC = 7-Amino-4-methylcoumarin) was 

purchased from  Enzo Life Science (Plymouth Meeting, PA). 
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2.3 FLUORESCENCE MICROSCOPY 

SPAECs were cultured on Lab-Tek™ chambered 1.0 borosilicate coverglass slides (Naperville, 

IL). Cells were washed (2X) with HBSS (Ca
2+

/Mg
2+

) and incubated (37 °C; 20 minutes) with 5 

µM FluoZin-3 AM (Molecular Probes, Eugene, OR) and equal volume of Pluronic F-127 

(Invitrogen, Carlsbad, CA) in HBSS (Ca
2+

/Mg
2+

). Subsequently, cells were washed (2X) with 

HBSS (Ca
2+

/Mg
2+

) and immediately imaged in the presence of HBSS (Ca
2+

/Mg
2+

) before and 

after SNAP (2mM) exposure (10 minutes). All recordings were performed at room temperature 

(20-25 °C). Cells were imaged using a Nikon TE2000E equipped with a 40X 1.3NA 

oil‐immersion objective, Lambda DG4 wavelength switcher, and xenon light source (Sutter 

Instrument, Novato, CA), charge‐couple device camera (Cool-SNAP HQ, Photometrics, Tucson, 

AZ), and NIS-Elements software (Nikon, Melville, N.Y). FluoZin-3 was excited at 488 nm and 

emission was detected using a 505 nm to 550 nm bandpass filter. Cells were randomly selected 

and the mean fluorescence intensity was quantified from the region of interest (ROI) of all 

randomly selected cells. Background subtraction was performed on all images prior to 

quantitation.  
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2.4 FLOW CYTOMETRY 

Quantification of relative changes in [Zni] was also performed via flow cytometry  (115). 

SPAECs were incubated (37 
0
C; 20 min) with 2-5 μM FluoZin-3 AM ester (Molecular Probes) 

with Pluronic F-127 (equal volume) (Invitrogen) in HBSS (Ca
2+

/Mg
2+

) (Invitrogen). LPS treated 

cells were rinsed in PBS, trypsinized, and centrifuged at 1500 rpm for 5 min. The cell pellet was 

resuspended with PBS containing 100 µg/ml propidium iodide and incubated (37°C; 15 minutes) 

in the dark. In a separate series of experiments, phosphatidylserine (PS) externalization was 

determined with an annexin V–FITC apoptosis detection kit (Biovision, Mountain View, CA). 

LPS treated cells were rinsed in PBS, trypsinized, and centrifuged at 1500 rpm for 5 min. The 

cell pellet was resuspended in 300µl binding buffer and supplemented with 3µl of FITC-

Annexin-V and 3µl of PI, and incubated (RT; 15 minutes) in the dark. In some experiments, cells 

were treated with pan-caspase inhibitor Z-VAD-FMK (Calbiochem®, Gibbstown, NJ) at 30µM 

for 1 h and then treated with LPS (100 ng/ml) or buffer (control). Flow cytometric analysis was 

performed using a FACSCanto (BD Biosciences, San Jose, CA). For each sample 10,000 events 

were recorded and analyzed. 
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2.5 TRANSIENT TRANSFECTIONS AND LUCIFERASE ASSAYS 

SPAECs (80-90% confluence) were transfected with 0.6 µg of a luciferase reporter construct 

driven by 4 metal response element (MRE) tandem repeats (pLuc-MCS/MRE) and 0.15 ug of 

pSVβ-galactosidase containing E. coli lac Z gene reporter construct (Promega, Madison, WI) 

using Lipofectamine and PLUS reagents (Invitrogen)  (115). Cells were lysed and luciferase 

assay was performed using the Luciferase Assay System (Promega). Relative light units (RLU) 

were determined in a TD-20/20 luminometer (Turner Designs, Sunnyvale, CA). β-galactosidase 

assay was performed using β-galactosidase Enzymes Assay System (Promega). Absorbance was 

read at 420 nm with a plate reader (Perkin–Elmer, Waltham, MA). Results were expressed as a 

ratio of firefly luciferase activity to β-galactosidase activity. 

2.6 ACCUMULATION OF CYTOCHROME C (CYT C) IN CYTOSOL 

Translocation of cyt c was examined by Western blot. After LPS (100 ng/ml) treatment, SPAECs 

were harvested and resuspended in lysis buffer containing 250 mM sucrose, 20 mM HEPES-

potassium hydroxide(pH 7.5), 10 mMpotassium chloride, 1.5 mM magnesium chloride, 1 mM 

EDTA , 1 mM EGTA, 1 mM dithiothrestol, 1 mM phenylmethylsulfonyl fluoride (PMSF), 1 

mg/mlaprotinin, 1 mg/mlleupeptin, and 0.05% digitonin for 3 min on ice, then centrifuged at 

8,500 × g for 5 min. The resulting cytosolic supernatants were subjected to 12% SDS-PAGEand 

transferred to a nitrocellulose membrane thatwas probed with mouse antibodies against cyt c 

(BD Pharmingen™,San Diego,CA) or β-actin (Sigma-Aldrich), followed by horseradish 

peroxidase–coupled detection. 
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2.7 CASPASE 3/7 ASSAY 

SPAECs were seeded on a 96 well (BD Falcon
TM

 white/clear bottom) plate. After treatment, 

cells were incubated (RT; 1 h) with luminescence Caspase-Glo
R
 3/7 substrate (Promega). 

Luminescence was measured using a Fusion-α plate reader (Perkin–Elmer). 

2.8 VIABILITY ASSAY 

In addition to FACS analysis of PI, viability of SPAECs was determined by quantifying 

reduction of a fluorogenic indicator Alamar Blue (Biosource, Camarillo, CA). Oxidized Alamar 

Blue is taken up by cells andreduced by intracellular dehydrogenases.and Thewater-soluble 

changes in fluorescence emission (590 nm) are utilized as an index of viability (44).  

2.9 RNA ISOLATION AND REAL-TIME RT-PCR 

Total RNA was isolated using RNAqueous®-4PCR Kit (Ambion, Austin, TX) from untreated 

and treated SPAECs. The RNA extract was treated with DNase I (Ambion) to remove genomic 

DNA contamination and quantified by measuring absorbance (260 nm). Total RNA was reverse 

transcribed using iScript
TM

, (Biorad, Hercules, CA) according to manufacturer‟s instructions. 

The cDNA was amplified by real-time PCR using TaqMan® Gene Expression Assays (Applied 

Biosystems, Foster City, CA). 
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2.10 PRIMER DESIGN 

Primer Design and PCR amplification efficiency. For most zinc importers and transporters 

gene, ovine sequences are not available but these genes are conserved across bovine and human 

species (34). Bovine zinc importers and transporters gene sequences were blasted against the 

ovine genome using ovine genome browser version 1.0 (livestockgenomics.csiro.au) and primers 

were designed from bovine sequence (based on conserved regions) using PrimeTime qPCR (IDT 

DNA technologies, Coralville, IA). Housekeeping primers glucose-6-phosphate dehydrogenase 

(G6PD) and target primers MT-I,a, -Ib, -Ic and -II were designed from ovine sequence (NCBI 

database) using PrimeTime qPCR (Integrated DNA Technologies). Amplification efficiency (E) 

was calculated for each gene from the slope of the dependence of amplification cycle vs. RNA 

concentration after running serial dilutions of RNA  using the formula E = [10
(-1/slope)

-1]100. 

2.11 siRNA TRANSFECTION 

Silencer® select scramble siRNA and Silencer® select siRNA constructs for targeted genes 

(MT-Ia,-Ib,-Ic, -II, and ZIP14) were purchased from Ambion. The MT-Ia,-Ib and -Ic genes are 

highly conserved. We designed one siRNA construct to target against these three  genes based on 

their conserved regions. Separate siRNA constructs were used for other targeted genes. 

Lipofectamine
TM

 RNAiMAX transfection reagent (Invitrogen) was used to transfect siRNA into 

SPAECs according to manufacturer‟s instructions. Briefly, Lipofectamine
TM

 RNAiMAX  plus 

siRNA were added into each well containing OptiMEM. After incubation (20 minutes; RT), 
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medium containing cells was added to each well. Cells were transfected with siRNA for 72 h. To 

confirm knockdown, mRNA levels were determined by qPCR.   

2.12 RECOMBINANT CASPASE-3 ASSAY 

The buffer containing caspase-3 enzyme was replaced with Chelex 100 treated 10mM sodium 

phosphate buffer (pH 7.4) containing DTT (100 M). 18 nM (final concentration) of caspase-3 

enzyme and 50 µM (final concentration) of substrate (DEVD-AMC) was added to the reaction 

buffer containing 20 mM HEPES in the presence or absence of indicated amount of zinc. 

Fluorescence (excitation wavelength, 380 nm; emission wavelength, 440 nm) of liberated AMC 

was measured with spectrophotofluorimeter following incubation for the indicated duration at 

RT. 

2.13 STATISTICAL ANALYSIS 

Data are expressed as mean ± SE. Statistical analysis was performed using one-way or two-way 

analysis of variance (ANOVA) with post hoc comparisons to determine whether the mean of 

each treatment is different from the untreated cells (control).  p < 0.05 was considered 

statistically significant. All statistics were performed using GraphPad Prism version 5 (GraphPad 

software, San Diego, CA). 
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3.0  LPS-INDUCED DECREASE IN INTRACELLULAR LABILE ZINC [ZNI] 

CONTRIBUTES TO APOPTOSIS IN CULTURED SHEEP PULMONARY ARTERY 

ENDOTHELIAL CELLS (SPAECS) 

The data presented in this chapter are published in Am. J. Physiol: Lung Cell Mol. Physiol., 2011, 

Apr; 300(4):L624-32. Epub 2011 Jan 14.  PMID: 21239534 
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3.1  ABSTRACT 

A role in signal transduction for a vanishingly small labile pool of intracellular zinc ([Zni]) has 

been inferred by the sensitivity of various physiological pathways to zinc chelators such as 

N,N,N‟,N‟‐tetrakis(2‐pyridylmethyl)ethylenediamine (TPEN) and/or associations with changes 

in non-protein bound zinc sensitive fluorophores.  Although we (146) reported that LPS induced 

apoptosis in cultured sheep pulmonary artery endothelial cells (SPAEC) was exacerbated by 

TPEN, (a) we did not detect acute (30 min) changes in [Zni]; and (b) it is unclear from other 

reports whether LPS increases or decreases [Zni] and whether elevations or decreases in [Zni] are 

associated with cell death and/or apoptosis. In the current study, we used both chemical 

(FluoZin-3 via live cell EPI fluorescence microscopy and FACS) and genetic (luciferase activity 

of a chimeric reporter encoding zinc sensitive metal response element and changes in steady state 

mRNA of zinc importer (SLC39A14 or ZIP14))   techniques to show that LPS caused a delayed 

time dependent (2-4 h) decrease in [Zni] in SPAEC.  A contributory role of decreases in [Zni] in 

LPS-induced apoptosis (as determined by caspase 3/7 activation, annexin-V binding and 

cytochrome c release) in SPAECs was revealed by mimicking the effect of LPS with the zinc 

chelator, TPEN and inhibiting LPS- (or TPEN)-induced apoptosis with exogenous zinc.  

Collectively, these are the first data demonstrating a signaling role for decrease in [Zni] in 

pulmonary endothelial cells and suggest that endogenous levels of labile zinc may affect 

sensitivity of pulmonary endothelium to the important and complex pro-apoptotic stimulus of 

LPS.   
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3.2 INTRODUCTION 

Intracellular zinc ([Zni]) is maintained within a narrow range (100 to 500 M) across numerous 

cell types and species by the coordinate activity of a large family of Zn importers (SLC39A1-14 

or ZIP1-14) and transporters (SLC30A1-10 or ZnT1-10), intracellular storage vesicles and Zn-

binding proteins (33, 46).  Like iron (and other divalent cationic metals), it is considered a trace 

element because its labile concentration is vanishingly small with estimates between10
-9

 M (31, 

95) to 10
-12

 M (16).   Depending upon the species, zinc is associated with 3-10% of the genome 

(2) and in humans is an essential component of more than 300 enzymes, 2000 transcription 

factors and a large number of receptors, cytoskeletal proteins and other potential regulatory 

targets (114). As such, the labile pool of [Zni] has been considered in the context of intracellular 

signal transduction including pathways of cell growth, death and differentiation and 

inflammation, contraction and secretion. Although difficult to quantify, this labile pool is 

operationally defined as the intracellular zinc compartment chelated by molecules such as 

N,N,N‟,N‟‐tetrakis(2‐pyridylmethyl)ethylenediamine (TPEN)  and/or detected by non-protein 

bound zinc sensitive fluorophores (including FluoZin-3).  

 

           In contrast to the role of zinc in the central nervous, immune, reproductive, 

gastrointestinal and/or endocrine systems, considerably less is known about zinc in the lung.  It is 

noteworthy that zinc deficiency (via dietary manipulations) in experimental animals exacerbates 

lung injury secondary to hyperoxia (148), cecal ligation and puncture (82) and alcohol (74).  In 

an analogous fashion to calcium, however,  most studies assessing a role for [Zni] in pulmonary 

endothelium (and other organs and cell types) have focused on transient elevations in [Zni] and 

associations with peroxide induced cell death (146, 170) and contraction (12). A recent report 
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(81), however, noted for the first time that a decrease in [Zni] may be a critical signaling 

component in the context of LPS-induced maturation of cultured mouse dendritic cells. We (146) 

noted that TPEN caused a dose-dependent increase in spontaneous apoptosis in pulmonary 

endothelium  and TPEN exacerbated LPS-induced apoptosis in cultured sheep pulmonary artery 

endothelial cells (SPAEC); a phenomenon noted by others (111) in cytokine  and lipid induced 

apoptosis in cultured systemic endothelium. Nonetheless, in our original study (146), we were 

not able to detect LPS-induced acute (30 min) changes in [Zni].  Others (58) have reported that 

LPS actually acutely increases [Zni] in human leukocytes and that hydrogen peroxide induced 

increases in [Zni] are associated with apoptosis in fetal sheep pulmonary artery endothelial cells 

(169).  Accordingly, we sought to determine if LPS-induced changes in [Zni] occurred somewhat 

later (2-4 h) after exposure of SPAEC to a proapoptotic stimulus of LPS (68-70) and whether 

changes in [Zni] were necessary and sufficient to mediate LPS-induced apoptosis in SPAEC.  As 

decreases in trace metals can be subtle and subject to artifact, we utilized multiple chemical (live 

cell fluorescence; FACS) and genetic (chimeric reporter encoding zinc sensitive region of metal 

responsive element fused to luciferase; steady state mRNA levels of ZIP14) detection systems.  

The ability of TPEN to mimic the effect of LPS-induced apoptosis and rescue of LPS phenotype 

with exogenous zinc are consistent with a central role for decreases in [Zni] and LPS induced 

apoptosis in SPAEC.  
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3.3 RESULTS 

3.3.1 LPS causes a decrease in labile [Zni] as measured by microspectrofluorimetry in live 

SPAECs. 

SPAECs were exposed to LPS or TPEN for 4 h and monitored for changes in FluoZin-3 

fluorescence intensity as an index of labile zinc using live cell epifluorescence microscopy. A 

typical example of such images at 4 h post treatment is shown in Fig1. Compared to control (Fig 

6A), LPS decreased overall fluorescence as shown in Fig 6B. As previously noted (12), FluoZin-

3 reports labile or TPEN sensitive zinc  (Fig 6C).  SPAECs were exposed to LPS for up to 4 h 

and relative changes in mean fluorescence intensity of FluoZin-3 revealed a time-dependent 

decrease in [Zni] as shown in Fig 6D. There was no significant change in overall relative 

fluorescence at either 0.5 or 1.0 h post LPS and then a significant decrease in [Zni] was observed 

at 2 and 4 h of LPS treatment (Fig. 6D, 330-400 cells per time point from 5 independent 

experiments). 
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Figure 6. Effect of LPS on labile [Zni] in live SPAEC as determined by microspectrofluorimetry 

 

 

Figure 6. SPAECs were treated with (B) LPS (100ng/ml) or (C) TPEN (2µM) for 4 h. Cells 

were loaded with 5 µM FluoZin-3 AM and equal volume of Pluronic F-127 and imaged by 

epifluorescence microscope. The images represent fluorescence intensity of FluoZin-3-Zn 

complex in SPAECs. All images were captured with identical gain, 100% light intensity, 1 

millisecond light exposure and 4x4 binning. (D) Time dependent LPS-induced changes in 

FluoZin-3 fluorescence in live SPAEC.  SPAECs were treated with HBSS (Ca
2+

/Mg
2+

) in the 

presence of LPS (100ng/ml) for 30 minutes, 1 h, 2 h and 4 h respectively. Control cells received 

HBSS (Ca
2+

/Mg
2+

) in the absence of LPS for 4 h. The data represents mean ± SEM of mean 

fluorescence intensity (MFI) of 330-400 randomly selected cells from 5 experiments for each 

time point. Images were captured using identical gain and camera settings. For analysis of 
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images, background illumination was subtracted from the readings. ** and *** designates p < 

0.01 and p< 0.001 respectively, compared to control; one-way ANOVA-Tukey).  

3.3.2 LPS causes a decrease in labile [Zni] as determined by flow cytometry 

To confirm LPS induced changes in [Zni] in larger sample size, we used FACS to determine 

relative changes in FluoZin-3 fluorescence for 10,000 cells at each time point (0.5 to 4 h) on 

three different occasions.  Representative histograms of cell number vs relative fluorescence are 

shown for one such subculture of SPAEC treated with LPS (Fig 7A).  The mean relative 

fluorescent intensity (MFI) is calculated for the three experiments at each time point, and 

reported in Fig 7B.  In agreement with the imaging data shown in Fig1, the FACS data (Fig 7A) 

showed a time-dependent leftward shift in MFI indicative of an LPS-induced decrease in [Zni]. 

During the 4 h period of this experiment, cell viability was > 93% (data not shown) as 

ascertained by propidium iodide in either control or LPS treated SPAEC. Although it appears 

that a somewhat earlier decrease in [Zni] was apparent by FACS (Fig 7B) vs live cell imaging 

(Fig 6D), an additional time delay in FACS (e.g. trypsinizing, centrifugation, injection on FACS) 

makes direct temporal comparison between the two methods challenging.  
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Figure 7A 

 

 

Figure 7B 

 

Figure 7. LPS causes a decrease in labile [Zni] as determined by flow cytometry 

 



 38 

Figure 7. (A) Typical histograms of subcultures of SPAEC treated with LPS for up to 4 hrs. 

SPAECs were treated with HBSS (Ca
2+

/Mg
2+

) in the presence of LPS (100ng/ml) for 30 min, 1 

h, 2 h and 4 h respectively. Control cells received HBSS (Ca
2+

/Mg
2+

) in the absence
 
of LPS for 4 

h. Data demonstrates the histogram of mean relative fluorescence intensity (MFI) of 10000 cells 

for each time point. The histograms are representative of one subculture of SPAEC treated with 

LPS. Numbers in each histogram indicates MFI. (B) The bar graph represents mean ± SEM of 

MFI (% of control) of samples measured in triplicates for 3 independent experiments. * 

designates p < 0.01 compared to control; one-way ANOVA-Tukey). 

3.3.3 LPS decreased labile [Zni], as revealed by activity of a zinc-sensitive genetically 

encoded chimeric reporter. 

As an alternative to fluorescence detection of changes in [Zni], we used a genetic approach and 

monitored the activity of a highly selective zinc sensitive chimera (23).  SPAECs were 

transiently cotransfected with pLuc-MCS/MRE and pSVβ-galactosidase.  The former plasmid 

expresses the reporter gene luciferase under the control of tandem repeats of the exclusively zinc 

sensitive metal responsive elements (MRE).  Beta-galactosidase activity was measured to 

account for any differences in transfection efficiency.  As shown in Fig 8A, there was a 

significant decrease in relative luciferase activity in SPAEC exposed to LPS for 4 h.  As was 

noted above in fluorescence based experiments, cell viability (as determined by Alamar Blue) 

was > 92% in cells transfected with above plasmids with or without addition of LPS (Fig 8B).  
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Figure 8.  LPS decreases expression of a chimeric zinc sensitive reporter. 

 

Figure 8. (A) SPAECs were transiently cotransfected with pLuc-MCS/4MREa (0.6ug) and 

pSVβ-galactosidase (0.15ug). 24 h after transfection, cells were treated with or without LPS 

(100ng/ml) for 4 h in the presence of serum (10%) and subsequently assayed for luciferase and 

β-galactosidase activity 4 h post treatment. A significant decrease in luciferase activity was 

observed in LPS stimulated cells with viability greater than 92%. Luciferase activity is expressed 

as a ratio of firefly luciferase (pLucMRE) activity to β-galactosidase activity. Data represents 

mean ± SEM of luciferase activity of samples measured in triplicates for 9 independent 

experiments (* designates p< 0.05; independent, two-tailed t-test). (B) Cell viability was 

assessed by Alamar Blue. Alamar Blue fluorescence was measured as an index of viability 4 h 
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post LPS treatment. Data represents Alamar Blue fluorescence (% of control) of 9 samples 

measured in triplicates. 

 

3.3.4 LPS (and decreases in labile [Zni]) upregulates SLC39A14 (ZIP14) mRNA 

expression 

We surveyed the effect of LPS on steady state mRNA of several representative zinc transporters 

(ZnT 1,4 and 6) and importers (ZIP 6,8,10,14). Using real time PCR, in two subcultures of 

SPAEC (one of which is shown in Fig 4A), we noted detectable levels of all of three transporters 

and four importers.  Only ZIP14 appeared to be affected by 4 h of LPS (Fig 9A), and accordingly 

we expanded our studies on ZIP14 or SLC39A14. We noted that ZIP14 expression (normalized 

to the house keeping gene, glucose-6-phosphate dehydrogenase) was not affected by exogenous 

zinc (in the presence of the zinc ionophore, pyrithione), but was increased approximately 5 fold 

by LPS (Fig 9B).  The effect of LPS was abolished by the addition of exogenous zinc (Fig 9B) 

suggesting that LPS induced increases in ZIP14 mRNA may be secondary to the decreases in 

[Zni] as shown above (Figures 6-8).  This was supported by the sensitivity of ZIP14 mRNA to 

TPEN; an effect, in itself, that was reversible with exogenous zinc (Fig 9C).  Indeed TPEN could 

augment the effect of LPS on increases in ZIP14 mRNA when administered simultaneously (data 

not shown). 
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Figure 9. The effect of LPS and decreased labile [Zni] on representative zinc exporters and importers 

 

Figure 9. (A)  SPAECs were exposed to LPS (100 ng/ml) or HBSS (Ca
2+

/Mg
2+

) for 4 h. otal 

RNA was isolated and ZnT1,4 and 6 and ZIP 6,8,10 and 14  mRNA levels were measured by 

real-time PCR using specific primers and normalized to the house keeping gene G6PD. Figure 

9A is representative of one of two subcultures analyzed in triplicate.  (B) Effect of LPS (and its 

reversibility with exogenous zinc) on ZIP14 mRNA. Values are mean + SEM of mRNA 

expression of samples measured in triplicate for 4 separate subcultures.  (C) Effect of TPEN (and 

its reversibility with exogenous zinc) on ZIP14 mRNA.  Values are mean + SEM of mRNA 
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expression of samples measured in triplicate for 4 separate subcultures  (
a
 designates p< 0.001 

compared to control; 
b
 designates p< 0.001 compared to LPS and TPEN treatment respectively; 

one-way ANOVA-Tukey).  

 

3.3.5 LPS initiates apoptosis via intrinsic mitochondria-dependent pathway 

We previously (70) reported that 100 ng/ml LPS caused DNA damage at 4 h in SPAEC as 

revealed by nuclear morphology, in situ labeling by break extension and internucleosomal DNA 

fragmentation. To confirm that LPS caused apoptosis in SPAEC, we used FACS analysis of 

annexin-V binding and showed (Fig 10A) that there was a time dependent increase in annexin-V 

positive (and propridium iodide negative) SPAEC over 24 h.  LPS-induced annexin-V binding 

was sensitive to Z-VAD, a pan-caspase inhibitor, from 4-24 h, consistent with a process of 

apoptosis (Fig 10A).  This process appeared to be intrinsic mitochondria-dependent as cytosolic 

cytochrome increased in a time dependent fashion after LPS (Fig 10B).  Accordingly, we studied 

the effects of [Zni] on early (4 h) aspects (e.g. caspase 3/7 activation, see below) of LPS-induced 

apoptosis in SPAEC. 
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Figure 10. LPS causes intrinsic mitochondria-dependent apoptosis in SPAEC.  Panel A. LPS causes a time 

dependent Z-VAD sensitive increase in annexin-V binding in SPAEC 

 

Figure 10. SPAECs were treated LPS (100ng/ml) in HBSS (Ca
2+

/Mg
2+

) for 4, 8, 12 and 24 h. 

Control cells received HBSS (Ca
2+

/Mg
2+

) for 24 h. Apoptosis was determined by measuring PS 

externalization (by Annexin-V labeling) and reported as PS positive, PI negative percentage of 

total cell population (via FACS). Four experiments were performed on two subcultures and 

values are mean + SEM.  * and ** designates p < 0.01 and p <0.001 compared to control 

respectively; # designates p <0.05 compared to control. 
a 
designates

 
p < 0.05 and 

b
 designates p< 
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0.001 compared to without Z-VAD pretreatment (24h).  Comparisons were made with two-way 

ANOVA-Bonferroni). Panel B. LPS mediates cyt c release in cytosol of SPAEC. One subculture 

of SPACE wasexposed to LPS (100ng/ml) for 4, 8 and 24 h in HBSS (Ca
2+

/Mg
2+

). Control cells 

received HBSS (Ca
2+

/Mg
2+

) for 24 h. Total protein was isolated and cyt c and β-actin level were 

determined by western blot analysis.  

 

3.3.6 LPS-induced decreases in labile [Zni] contribute to apoptosis in SPAEC 

As previously reported (68-70), acute treatment (4 h) with LPS did not affect cell viability as 

determined by Alamar Blue (Fig 11A or propidium iodide, data not shown). In figure 11B, we 

note that LPS caused a significant increase in caspase 3/7 activity at 4 h.  Although zinc (in the 

presence of pyrithione), by itself, did not affect caspase 3/7 activity, it did rescue the effect of 

LPS on caspase 3/7 activity, consistent with our hypothesis that decreases in [Zni] contributed to 

LPS mediated apoptosis.  This was further confirmed by noting that a concentration of TPEN (2 

uM) sufficient to greatly reduce [Zni] as ascertained by FluoZin-3 (Fig 6C) was sufficient to 

cause comparable increases to LPS in caspase 3/7 activity; and the effect of TPEN was sensitive 

to exogenous zinc (Fig 11C).  We (146) previously ascribed such a TPEN sensitive effect to a 

process of apoptosis in SPAEC. 
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Figure 11.  LPS activates Caspase3/7 in a zinc dependent fashion 

 

Figure 11. (A) Lack of effect of LPS (or exogenous zinc) on cell viability in SPAEC.  Cell 

viability was assessed by Alamar Blue. Data represents mean ± SEM of Alamar Blue 

fluorescence (% of control) of samples measured in triplicate for 4 independent experiments. (B). 

LPS activates caspase 3/7 in SPAEC.  SPAECs were treated with LPS (100ng/ml) or HBSS 

(Ca
2+

/Mg
2+

) for 4 h and caspase 3/7 activity was measured as described. Data represents mean + 

SEM of caspase-3/7activity (fold over control) of samples measured in triplicate for 4 

independent experiments. (C). Zinc chelation activates caspase 3/7 activity in SPAEC. SPAEC 
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were treated with TPEN (2 M) with and without 5 M zinc added to medium for 4 h and 

caspase 3/7 activity was measured as described. Data represents mean + SEM of caspase-

3/7activity (fold over control) of samples measured in triplicate for 4 independent experiments (
a
 

designates p< 0.001 compared to control; 
b
 designates p< 0.01 compared to LPS treatment (panel 

B) or TPEN (panel C) by one-way ANOVA-Tukey. 

3.4 DISCUSSION 

To examine the function of zinc homeostasis in pulmonary endothelial cell apoptosis, we 

exposed SPAECs to LPS (100 ng/ml) for 4 h and then monitored changes in [Zni] by chemical 

(labile zinc fluorophore, FluoZin-3) and genetic approaches (zinc-sensitive chimeric reporter and 

ZIP14 mRNA) assays. Epifluorescence microscopy (Fig. 6) revealed that LPS causes a decrease 

in [Zni] in live cells that was significant at 2 h.  This was confirmed in larger number of cells by 

complementary methodology of flow cytometry (Fig. 7). Additional confirmation of LPS-

induced decreases in [Zni] was achieved by non-chemical genetic approaches (Figs 8 and 9). The 

functional significance of LPS induced decreases in [Zni] was revealed by the ability of 

exogenous zinc to rescue LPS-induced activation of caspase 3/7 (Fig 11B).   

 

3.4.1 Labile [Zni] and signal transduction 

The role of labile [Zni] in signal transduction is an emerging area in cell biology (59, 60, 114) 

and is fostered in part by: a) intricacies of zinc homeostasis including large family of importers, 
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transporters and binding proteins (96); b) extraordinary large number of potential regulatory 

targets (approximately 3-10% of genome; (2); c) association of chronic (and rare) disorders with 

altered zinc homeostasis secondary to mutations/variants in zinc importers and transporters 

and/or interactions with altered zinc nutritional status (39); and d) facileness of inorganic 

chemistry and coordination dynamics of zinc in affecting protein function (108). Major 

limitations in the field are the lack of: a) readily available fluorophores that are quantitative as 

well as specific for putative labile [Zni] (77, 79)  and b) zinc-specific chemical chelators.  While 

progress has been made in both these areas (171) many studies define labile [Zni] as that 

compartment that can alter relative fluorescence of a variety of zinc sensitive fluorophores 

(including FluoZin-3) and is sensitive to chelation by membrane permeant compounds such as 

TPEN.  In this regard, advantageous features of FluoZin-3 include its selectivity (Kd=15nM) for 

zinc (e.g., magnesium, calcium, iron do not bind to the dye at concentrations well above what 

these cations may reach inside mammalian cells) (38, 179). Binding of FluoZin-3 to labile zinc is 

unaffected by low intracellular pH or oxidants (38, 76).  Nonetheless, it is a non ratiometric dye 

and thus issues of loading, bleaching and lack of quantitative calibration persist.  Furthermore as 

with all detectors of this nature, one has to introduce a potential new buffer (of zinc).  As such, 

we took extra steps to confirm relative changes using microscopy (Fig 6) and FACS (Fig 7; to 

recruit large number of cells) as well as genetic (Fig 8: pLucMSC/MRE; Fig 9: mRNA ZIP14) to 

increase our confidence that LPS caused a decrease in [Zni]. 

3.4.2 LPS and [Zni] 

Most studies examining a signal transduction role for labile [Zni] followed the paradigm of 

calcium homeostasis, the other major intracellular non-redox active divalent cation, and looked 
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for rapid and large increases secondary to extracellular flux or more often due to release from 

intracellular stores (172). In the case of LPS treated pulmonary endothelial cells, we initially 

(146) did not detect changes in labile [Zni] 30 min post-LPS treatment.  In the current study, 

there were no changes up to 2 h (Fig 6).  Haase et al (58) did detect increases in labile [Zni] 30 

min post-LPS in human monocytes and granulocytes, but not lymphocytes.  In this same report, 

they noted even earlier increases (within two minutes) in murine macrophage cell line.  

Nonetheless, like the original report of Kitamura et al (81) who detected decreases in labile [Zni] 

6 hrs after treating mouse dendritic cells with LPS, we noted relative delayed decreases in labile 

[Zni] at 2-4 h in SPAEC. This delayed effect was not likely due to artifacts of FluoZin-3 as it was 

reproducible with MRE-Luc chimera (Fig 8) and we suggest it may be important for the 

signaling events associated with cell death and apoptosis. The mechanism underlying this 

delayed LPS-mediated decrease in labile [Zni] remains unclear.  It is possible that an imbalance 

due to changes in members of ZnT or ZIP families might underlie our observations but we did 

not detect LPS-induced increases in mRNA in the former or decreases in the latter group, 

respectively.  Indeed, it appears that ZIP14 mRNA increased (Fig 9A and 9B), presumably 

secondary to a decrease in labile zinc (as it was mimicked by TPEN, Fig 9C), suggesting a 

possible important feedback loop in which ZIP14 expression (perhaps via zinc sensitive 

promoter regions) is modulated to maintain [Zni] homeostasis. Current available information on 

regulation of ZIP14 expression (55) is limited to the role of IL-6 (96) and IL-1 (97) in 

hepatocytes with an obligatory contribution of NO signaling (via AP-1) affecting ZIP14 

expression. We did not examine the potential of such autocrine effects to LPS in our system.  It 

is possible that LPS affected ZnT or ZIP family members at a posttranslational level but the 
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limited availability of antibodies and the lack of electrophysiological assessment of zinc 

transport make such studies challenging. 

 

3.4.3 Zinc and cell death 

Zinc has been a primary anti-apoptotic molecule since the process of apoptosis was described 

(29).  Subsequently earlier and more subtle zinc sensitive targets including caspase-3 (122) and 

poly(ADP-ribose)polymerase (144) emerged as candidates for such antiapoptotic activity of zinc.  

A detailed examination in HL-60 cells by Duffy et al (40) provided convincing evidence that 

decreases in intracellular zinc preceded early indicators of apoptosis in transformed human 

promyelocytic cell (HL60).  We (146) and Virag et al (164) both concluded that high levels of 

intracellular zinc contributed to necrosis and low levels were pro-apoptotic. Nonetheless, in 

dendritic cells, modest (<100 uM) levels of exogenous zinc activated acid sphingomyelinase 

leading to production of ceramide and apoptotic cell death (133).  In fetal SPAEC, hydrogen 

peroxide induced increases in zinc were associated with apoptosis and this effect was blunted by 

zinc chelators including TPEN or overexpression of metallothionein (169).  This suggests that 

some effects of zinc and apoptosis are cell specific and/or dependent upon developmental stage.  

As has been shown in systemic endothelium using different pro-apoptotic stimuli (111), in LPS 

treated SPAEC, TPEN exacerbates apoptosis (146) and exogenous zinc can rescue this 

phenotype (Figure 11B).  In the more complex scenario in which nitric oxide is introduced into 

the milieu of LPS treated SPAEC, we (147) noted that NO mediated resistance to LPS was Zn 

dependent suggesting that elevations in labile [Zni] secondary to either influx from extracellular 
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sources or chemically mediated release of zinc perhaps from metallothionein (138) can produce 

LPS resistant phenotype. 

3.4.4 Zinc and acute lung injury 

 Zinc deficiencies increase the susceptibility of experimental animals to hyperoxic (148), alcohol 

(74) and sepsis (82) -induced lung injury. We (93) and others (177) have reviewed the role of 

zinc in acute lung injury and the majority of our insight is related to airway epithelium (156, 

157).  The proximity of a labile pool of zinc and pro-caspase-3 in ciliary basal bodies of airway 

epithelium and the ability of TPEN to cause apoptosis or exacerbate other pro-apoptotic stimuli 

provided support for an anti-apoptotic role of labile zinc (19, 48, 159) in airway epithelium.  

Further details of an anti-apoptotic role for zinc in human airway epithelium were provided by 

Bao and Knoell (5, 6) who reported zinc depletion exacerbated apoptosis and decreased barrier 

function secondary to Fas antibody, TNF and IFNγ.  These authors extended these studies to 

show that zinc depletion augmented acute lung injury (including apoptosis, enhanced 

inflammation, altered innate immunity) in polymicrobrial sepsis in mice (7, 82).  Collectively, 

these reports underscore the importance of zinc metabolism in the airway and lung and suggest 

that zinc supplementation may be of therapeutic utility and further insights into zinc homeostasis 

may reveal critical aspects of pathogenesis in acute and chronic lung disorders (174). 
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3.5 CONCLUSION 

Our findings show for the first time that a decrease in labile zinc in pulmonary endothelium is an 

important signaling event in LPS-induced apoptosis. Along with the report of Kitamura et al 

(81), it suggests that such a change in labile [Zni] may be an important mechanism by which 

cells respond to exogenous stimuli such as LPS. Critical future efforts should be directed towards 

understanding the mechanism by which [Zni] decreases, the cellular targets affected by such a 

decrease and the overall physiological processes (in addition to apoptosis) that occur in the 

setting of LPS and pulmonary endothelium. 
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4.1 ABSTRACT 

We previously noted an important signaling role for decreased labile intracellular zinc ([Zn]i) in 

LPS-induced apoptosis in cultured sheep pulmonary artery endothelial cells (SPAEC; (147, 

153)).  In the current study, we used siRNA to important contributors of zinc homeostasis 

(SLC39A14 or ZIP14, a zinc importer; metallothionein (MT), a zinc binding protein) to identify 

molecular pathways by which extracellular zinc or nitric oxide (NO) increase labile [Zn]i (e.g. 

zinc-sensitive fluorophore (FluoZin-3) detectable and/or chelatable by N,N.N‟,N‟-tetrakis(2-

pyridylmethyl)ethylenediamine (TPEN)) and reduce the sensitivity of SPAEC to LPS. Addition 

of 10 µM zinc to serum free medium of SPAEC increased [Zn]i and abolished LPS-induced 

apoptosis (e.g., increased annexin-V binding).  The increase in [Zn]i and the protective effect of 

extracellular zinc were sensitive to reduction in ZIP14 expression (by siRNA) but not affected by 

collectively knocking down major isoforms of sheep MT (sMT-Ia,-Ib,-Ic,and -II).  Pretreatment 

of wildtype SPAEC with 250 µM of the NO donor S-nitroso-N-acetylpenicillamine (SNAP) 

increased labile zinc in a relatively similar fashion to addition of extracellular zinc  and reduced 

sensitivity of SPAEC to LPS-induced apoptosis (e.g. caspase-3/7 activation) in a TPEN sensitive 

fashion.  The antiapoptotic effects of SNAP were insensitive to siRNA knockdown of ZIP14 but 

were abolished (along with SNAP-induced increase in [Zn]i) when SPAEC were pretreated with 

siRNA to sheep MT.  Zinc was able to directly inhibit recombinant caspase-3 activity in an in-

vitro assay. Collectively, these data show that increases in labile [Zn]i are an important 

component of ZIP14- or NO-mediated resistance to LPS-induced apoptosis.  Cytoprotection via 

ZIP14 appeared to be secondary to transcellular movement of extracellular zinc whereas NO-

mediated protection was secondary to S-nitrosation of MT and redistribution of intracellular 

zinc.  
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4.2 INTRODUCTION 

Zinc is an essential micronutrient whose total intracellular levels are maintained in a tight quota 

from 100 to 500 µM (118). Although zinc-binding proteins have been reported to be part of 10% 

of the entire proteome (2), the major determinants (51) of the critical, dynamic and vanishingly 

small (and hence the descriptor, “trace”) labile pool of intracellular zinc ([Zn]i) appear to be a 

family of zinc importers (SLC39A1-14; Zrt/Irt-like protein or ZIP), transporters (SLC30A1-10; 

ZnT) and metal binding protein, metallothionein (MT). The labile or transient pool (operationally 

defined as the compartment chelated by molecules such as N,N.N‟,N‟-tetrakis (2-pyridylmethyl) 

ethylenediamine (TPEN) and/or detected by nonprotein-bound zinc-sensitive fluorophores such 

as FluoZin-3 (153)) is thought to function as a signaling molecule (in an analogous fashion to 

better studied metals such as calcium (66)) and contributes to diverse processes including 

neurotransmission, insulin secretion, fertilization and immune function (51).  We have reviewed 

the role of zinc homeostasis in acute lung injury (93, 136) and have particularly focused on the 

role of [Zn]i in pulmonary endothelial cell function including contraction (12) and cell death 

(146, 147, 153). 

 

           We have used a simple model of primary cultures of sheep pulmonary artery endothelial 

cells (SPAEC) to show that: a) extraordinarily high levels of [Zn]i (after addition of zinc to 

medium) cause cell death by necrosis (146); b) very low levels of [Zn]i  (after TPEN) cause 

apoptosis (146); and c) LPS-induced apoptosis (68-70) is associated with a critical time 

dependent decrease in intracellular [Zn]i (153).  We have been able to inhibit LPS-mediated 

apoptosis by exposing SPAEC to supplemental zinc (along with zinc ionophore, pyrithione) in 

the medium (153), exposing SPAEC to nitric oxide donors (147) or after gene transfer of 
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inducible nitric oxide synthase (20, 160).  Collectively the protective effects of addition of 

extracellular zinc or conditioning with NO have in common potential increases in [Zn]i (138, 

146) but the mechanism by which [Zn]i increased in a manner sufficient to inhibit LPS-induced 

apoptosis remained unclear.  

 

            In the current study, we reveal singularly important and discrete contributions of 

SLC39A14 (ZIP14) and MT, in affecting the ability of extracellular zinc or nitric oxide, 

respectively, to inhibit LPS-induced apoptosis in SPAEC. By silencing ZIP14 or sheep MT 

isoforms, we revealed not only the manner, respectively, by which extracellular zinc or nitric 

oxide produce an elevation in [Zn]i but also the central role of zinc dyshomeostasis in LPS-

induced apoptosis in SPAEC. 

4.3 RESULTS 

4.3.1 Extracellular zinc inhibits LPS-induced apoptosis in SPAEC in a ZIP14 (but MT 

independent) dependent fashion. 

We (153) previously reported that addition of 10 µM zinc (with 10 nM pyrithione) to the 

medium of SPAEC was sufficient to prevent apoptosis at 4 h after exposure to LPS.  We now 

show  that 10 µM zinc (in serum free medium without pyrithione) increases labile [Zn]i (Figure 

12) and protects SPAEC for 24 h from the progressive (153) increase in LPS-induced apoptosis 

as reflected in annexin-V positive cells (Figure 13). Of note is that exogenous zinc significantly 

inhibited spontaneous apoptosis due to experimental conditions (i.e. prolonged culture of SPAEC 

in serum free medium). 
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Figure 12.  Fluorescence of FluoZin-3 in response to 10 μM zinc in a time dependent fashion 

 

Figure 12. SPAEC was treated in the presence or absence of zinc (10 µM) for 6 h, 12 h and 24 h 

respectively. Following treatment, cells were incubated with FluoZin-3 AM and equal volume of 

Pluronic F-127 (20 minutes; 37 °C). Cells were trypsinized, centrifuged and injected into FACS. 

Extracellular zinc (10 µM) increased fluorescence of FluoZin-3 by 29.6% (6 h), 24.1% (12 h) 

and 23.6% (24 h). Data represents mean fluorescence intensity (MFI) of FluoZin-3 in up to 

20,000 cells from 6-7 independent experiments for each time point. **p< 0.001 and *p< 0.01 

compared to time point controls; one-way ANOVA-Tukey. 
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Figure 13 .  LPS- (100 ng/ml; 24 h) induced apoptosis as determined by Annexin-V assay 

 

Figure 13. SPAEC was treated with LPS (100 ng/ml; 24 h) in the presence or absence of zinc 

(10μM; 24h) or zinc alone (10 μM; 24 h). Following treatments, cells were trypsinized, 

centrifuged and resuspended with buffer containing Annexin-V-FITC and propidium iodide (PI) 

and analyzed by FACS. Data represent Annexin-V positive cells (mean+SE) from 8 independent 

experiments. **p< 0.001 and ***p< 0.0001 compared to control; 
a
 p< 0.0001 compared to LPS 

treatment; one-way ANOVA-Tukey. 
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            In our previous report (153), we noted that ZIP14 increased at mRNA level in response to 

LPS induced decrease in labile [Zn]i suggesting a possible homeostatic role for ZIP14.  

Accordingly, we designed siRNA against ZIP14 (using bovine genomic information) that 

significantly decreased ZIP14 mRNA to 40% of baseline levels (Figure 14) in SPAEC. siRNA to 

ZIP 14 significantly decreased basal levels of labile [Zn]i and blocked zinc uptake (relative to 

scramble siRNA group) in SPAEC treated with 10 μM zinc (Figure 15). In figure 16, we show 

that zinc dependent inhibition of spontaneous and LPS-induced apoptosis (at 24 h) was abolished 

after SPAEC were treated with siRNA to ZIP14. In contrast, SPAEC treated with scrambled 

siRNA were still responsive to zinc inhibition of spontaneous and LPS-induced apoptosis (Figure 

16) in a manner similar to wildtype SPAEC (Figure 13).   

 

 

Figure 14. ZIP14 mRNA levels in ZIP14 siRNA treated SPAECs 

 

Figure 14. SPAECs were transfected with lipofectamine RNAimax plus scramble or ZIP14 

siRNA (40nM). 72 h after transfection total RNA was isolated and ZIP14 mRNA levels were 

measured by qPCR using specific primers and normalized to the house keeping gene G6PD. 
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Data represents mRNA expression (mean + SEM) of samples measured in triplicates from 5 

independent experiments. 

 

 

 

 

Figure 15. Fluorescence of FluoZin-3 in response to zinc (10 μM; 6 h) in cells treated with siRNA to ZIP14 

 

Figure 15. SPAEC was treated with or without zinc (10 µM) for 6 h. Following treatment, cells 

were incubated with FluoZin-3 AM and equal volume of Pluronic F-127 (20 minutes; 37 °C). 

Cells were trypsinized, centrifuged and injected into FACS. Extracellular zinc (10 μM) increased 

fluorescence of FluoZin-3 by 21% (6 h) in scramble siRNA treated cells. Data represents mean 

fluorescence intensity (MFI) of FluoZin-3 in up to 20,000 cells from 6 independent experiments. 

*p< 0.05 compared to scramble siRNA control; ^^p<0.001 compared to scramble siRNA 

control; ###p<0.0001 compared to scramble siRNA zinc treatment; two-way ANOVA-

Bonferroni. 
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Figure 16. LPS- (100 ng/ml; 24 h) induced apoptosis in cells treated with siRNA to ZIP14 as determined by 

Annexin-V assay 

 

 

Figure 16. SPAEC was transfected with scramble siRNA (40 nM) or ZIP14 siRNA (40 nM)  and 

then treated with LPS (100 ng/ml; 24 h) in the presence or absence of zinc (10 μM; 24 h) or zinc 

alone (10 μM; 24 h). Following treatments, cells were trypsinized, centrifuged and resuspended 

with buffer containing Annexin-V-FITC and propidium iodide (PI) and analyzed by FACS. Data 

represent Annexin-V positive cells (mean+SE) from 7 independent experiments. ***p < 0.0001 

compared to control; 
a
 p <0.0001 compared to LPS treatment; two-way ANOVA-Bonferroni. 

 

           Metallothionein is thought to play a critical role in zinc homeostasis acting as a dynamic 

intracellular zinc buffer (85-87, 105).  Accordingly, we designed siRNA to sheep MT-Ia, -Ib, -Ic 

and II and were able to reduce expression of mRNA of MT-Ia,c and II to less than 10% of 

baseline levels (Figure 17), respectively (there was no detectable sheep MT-Ib at baseline and  

the fifth ovine MT gene is a pseudo gene).  Under conditions of these experiments, LPS-induced 

apoptosis was significantly greater in MT knockdown vs scrambled siRNA treated SPAEC 
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(Figure 18).  Nonetheless, addition of extracellular zinc was still able to rescue MT knockdown 

and scramble siRNA treated SPAEC (Figure 18) suggesting MT was not critical for the 

protective effects of altered [Zn]i after exposure to 10 µM zinc in medium.   

 

 

 

Figure 17. MT mRNA levels in MT-Ia, -Ib, -Ic and II siRNA treated SPAECs 

 

Figure 17. SPAECs were transfected with MT- Ia,-Ib,-Ic (10nM) & MT II siRNA (10nM) or 

scramble siRNA (20nM). 72 h after transfection, total RNA was isolated and  MT Ia,Ib,Ic & II 

mRNA levels were measured by real-time PCR using specific primers for each isoforms and 

normalized to the house keeping gene G6PD. Data represents relative mRNA expression 

(mean+SEM) of MT- Ia,-Ic & II in samples measured in triplicates from 3 independent 

experiments. 
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Figure 18. LPS- (100 ng/ml; 24 h) induced apoptosis in cells treated with siRNA to MT I/II as determined by 

Annexin-V assay 

 

Figure 18. SPAEC was transfected with scramble siRNA (20 nM) or MT I/II (20 nM) siRNA 

and then treated with LPS (100 ng/ml; 24 h) in the presence or absence of zinc (10 μM; 24 h) or 

zinc alone (10 μM; 24 h). Following treatments, cells were trypsinized, centrifuged and 

resuspended with buffer containing Annexin-V-FITC and propidium iodide (PI) and analyzed by 

FACS. Data represent Annexin-V positive cells (mean+SE) from 3 independent experiments. 

***p < 0.0001 compared to control; 
a
 p <0.0001 compared to LPS treatment; two-way ANOVA-

Bonferroni. 

4.3.2 Nitric oxide inhibits LPS-induced apoptosis in SPAEC in an MT- and Zn
2+

- 

dependent (but ZIP14 independent) fashion 

We (147) previously noted that treatment with SNAP (500 µM), a slow NO releaser (t1/2 ~ 6 h), 

reduced sensitivity of wildtype SPAEC to LPS-induced apoptosis (as determined by nuclear 

morphology).  Reversal with large (10 µM) doses of TPEN were consistent with a potential role 

of zinc in mediating such resistance.  In the current study, we extend these observations and 
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show that lower (250 µM) doses of SNAP pretreatment were protective against relatively high (1 

µg/ml) doses of LPS-induced apoptosis at 4h (Figure 19) as well as lower (100 ng/ml) doses of 

LPS at 24h (Figures 20a-b).  In this latter instance, SNAP was equally effective whether SPAEC 

were incubated in serum (Figure 20a) containing approximately 3-11 µM zinc (26, 53) or in zinc 

free HBSS (Figure 20b).  Furthermore, considerably lower and non-toxic doses (1 µM) of TPEN 

abrogated SNAP-induced resistance (Figure 19) in a fashion equally effective to potentially toxic 

(146) dose (10 µM) of  TPEN. Similar results were obtained if annexin-V binding (via FACS) 

instead of caspase 3/7 activation was used to quantify apoptosis (data not shown). 

 

Figure 19. NO (250 μM; 6 h) -mediated protection against LPS (1 ug/ml; 4 h) as determined by caspase 3/7 

assay 

 

Figure 19. SPAEC was treated with LPS (1 μg/ml; 4 h). The protective effect of NO on LPS-

induced apoptosis was assessed by pretreatment with NO donor, SNAP (250 μM; 6 h). The NO 

mediated protection was reversed by nontoxic dose of zinc chelator, TPEN (1 μM; 4 h). 

Apoptosis was determined by measuring caspase-3/7 activity. Data represents caspase-3/7 
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activity (mean+SE) of samples for 5 independent experiments. ***p < 0.0001 compared to 

control; ** p< 0.001 compared to LPS treatment; one-way ANOVA-Tukey. 
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Figure 20A 

 

 

 

Figure 20B 

 

 

Figure 20. NO (250 μM;6 h) -mediated protection against LPS (100 ng/ml; 24 h) as determined by caspase 3/7 

assay 

 

Figure 20. SPAEC was pretreated with NO donor, SNAP (250 μM; 6 h) in serum (A) or in 

HBSS (B) prior to LPS (100 ng/ml; 24 h). Apoptosis was determined by measuring caspase-3/7 



 66 

activity. Data represents caspase-3/7 activity normalized to control (mean+SE) of samples for 3 

independent experiments. ***p < 0.0001 compared to control; ** p< 0.001 compared to LPS 

treatment; one-way ANOVA-Tukey 

 

           In figure 21, we note that NO-mediated protection against LPS at 4 h (as determined by 

annexin-V binding) was not significantly affected by silencing of ZIP14. Although NO has been 

reported by others (97) to increase expression of ZIP14 in hepatocytes, there were no significant 

changes in ZIP14 mRNA at 6 h (as measured by RT-PCR and normalized to G6PD) after 250 to 

1000 µM SNAP (Figure 22). 

 

 

Figure 21. NO-(250 μM;6 h)mediated protection against LPS (1 ug/ml; 4 h) is independent of ZIP14 as 

determined by Annexin-V assay 

 

 

Figure 21. SPAEC was transfected with scramble siRNA (40 nM) or ZIP14 siRNA (40 nM) and 

then exposed to LPS (1 ug/ml) with or without NO donor, SNAP (250 μM; 6 h) pretreatment. 

Following LPS exposure, cells were trypsinized, centrifuged and resuspended with buffer 
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containing Annexin-V-FITC and propidium iodide (PI) and analyzed by FACS. Data represent 

Annexin-V positive cells (mean+SE) from 11-13 independent experiments. ***p < 0.0001 

compared to control; 
a
 p <0.001 and 

b
 p< 0.0001 compared to LPS; two-way ANOVA-

Bonferroni. 

 

 

Figure 22. ZIP14mRNA in response to NO (250 μM; 6 h) 

 

Figure 22. SPAEC was exposed to NO donor, SNAP (250 μM - 1 mM; 6 h). Total RNA was 

isolated and ZIP14 mRNA levels were measured by qPCR using specific primers and normalized 

to the house keeping gene G6PD. Data represents mean + SEM of mRNA expression of samples 

measured in triplicates for 5 independent experiments. 

 

 

           Accordingly, we focused on a potential role for MT in affecting NO-mediated resistance 

to LPS-induced apoptosis since we previously reported that MT was obligatory for NO-mediated 

increases in [Zn]i in cultured lung fibroblasts (138) and mouse lung endothelial cells (147) 
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isolated from MT null mice.  In figure 23, we show typical fluorescent microscopic images of 

SPAEC that were incubated with the zinc sensitive fluorophore, FluoZin-3, and exposed to large 

(2 mM) doses of SNAP for brief (10 min) periods of time.  Significant increases (4-6X) in 

fluorescence were noted in wildtype or scramble siRNA treated SPAEC whereas notably less 

(<2X) change in fluorescence was noted in MT knockdown SPAEC. Relative changes in labile 

zinc were assessed by FACS (using Fluozin-3) after SPAEC were exposed to cytoprotective 

doses of SNAP (250 µM; 6 h) and a 24 +/- 5% increase (P<0.05), comparable to that noted after 

10 µM zinc was added to the medium (Figures 12 and 14), was observed.  

 

 

Figure 23.  NO liberates zinc from MT 

 

Figure 23. SPAEC was transfected with scramble siRNA (20 nM) or MT I/II (20 nM) siRNA. 

Following siRNA treatment, cells (untransfected or transfected) were incubated with FluoZin-3 

AM and equal volume of Pluronic F-127 (20 minutes; 37 °C). Cells were imaged by 
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epifluorescence microscope before and after exposure to NO donor, SNAP (2 mM; 10 minutes). 

The images represent fluorescence intensity of FluoZin-3-Zn
2+

complex in SPAECs. All images 

were captured with identical gain, 100% light intensity, 1 millisecond light exposure and 4x4 

binning. For statistical significance increase in FluoZin-3 fluorescence were quantified in a 

larger number of cells (800-1000 cells) from 5 independent experiments. 

 

           LPS, by itself, was more toxic (as determined by increased caspase-3/7 activity responses; 

Figure 24a) in MT knockdown cells than SPAEC treated with scrambled siRNA (Figure 24b).  

This was in accord with observations at 24 h and using annexin-V as the determinant of 

apoptosis (Figure 18). SNAP was able to significantly inhibit LPS-induced apoptosis in scramble 

siRNA treated SPAEC (Figure 24b) but not in MT knockdown SPAEC (Figure 24a). 
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Figure 24. NO-(250 μM;6 h)mediated protection against LPS (1 ug/ml; 4 h) is dependent on MT I/II as 

determined by caspase 3/7 assay 

 

Figure 24. SPAEC was transfected with (A) MT I/II siRNA (20 nM) or (B) scramble siRNA (20 

nM). 72 h after transfection, cells were treated with LPS (1 μg/ml; 4 h) with or without NO 

donor, SNAP pre-treatment (250 μM; 6 h). The anti-apoptotic effect SNAP was abrogated in MT 

I/II knockdown SPAECs (Figure 24a). The NO-mediated protection was preserved in the 

scramble siRNA treated SPAECs (Figure 24b). Apoptosis was determined by measuring 

caspase-3/7 activity. Data represents caspase 3/7 activity (mean+SE) of samples from 9 

independent experiments. *** designates p < 0.0001 compared to control; 
a
 p< 0.0001 compared 

to LPS; one-way ANOVA-Tukey). 
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4.3.3 Zinc inhibits caspase 3 

To determine whether zinc had a direct inhibitory effect on caspase 3, we studied the effect of 

zinc on purified recombinant caspase-3. Caspase-3 was incubated with the peptide substrate 

DEVD.AFC, in the presence or absence of zinc. After incubation (30 minutes; RT), fluorescence 

of cleaved AFC was measured. As shown in figure 25, zinc inhibits the enzymatic activity of 

caspase-3 in a dose dependent manner such that 50% inhibition in casapse-3 activity was 

achieved with 200 nM zinc and such inhibition was sensitive to zinc chelator, TPEN (200 μM; 

30 minutes). 

 

 

 

Figure 25. Zinc directly modulates caspase 3/7 activity 
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Figure 25. Inhibition of caspase-3 activity by zinc was studied in an in-vitro system. Purified 

caspase-3 enzyme was added to a reaction buffer containing DEVD.AFC in the presence or 

absence of the indicated concentrations of zinc. The fluorescence of the liberated AMC was 

monitored to determine the effect of zinc on the enzymatic activity of purified capsase-3. Data 

represents mean+SE of enzymatic activity of capsase-3 (expressed as % of control). (*p< 0.05 

and ***p<0.0001 compared to without zinc; 
a
 p<0.001 compared to zinc (200nM); one-way 

ANOVA-Tukey) 

 

4.4 DISCUSSION 

We (153) recently reported that a decrease in labile [Zn]i was a critical signaling event in LPS-

mediated apoptosis in SPAEC.  An important observation within that study was the ability of 

exogenous zinc to inhibit LPS-induced apoptosis over 4h and we now extend this to a 24h period 

after LPS (Figure 13).  Previously we (20, 160) had shown that NO can inhibit LPS-mediated 

apoptosis in SPAEC and such inhibition was itself reversed with TPEN (147) lending further 

support to an important role of labile zinc in this simple model of intrinsic apoptosis (68-70, 

153).  In the current study, we show for the first time that genetic reduction of MT and its 

resultant inhibition of NO-mediated zinc release (Figure 23) is coupled to abrogation of the 

ability of NO to prevent LPS- mediated apoptosis in SPAEC (Figure 24a). In combination with 

the requirement for full expression of ZIP14, a plasma membrane bound zinc importer, to 

mediate the protective effects of extracellular zinc (Figure 16), it is apparent that elevations in 

[Zn]i, whether secondary to zinc release from intracellular stores (e.g. MT) or after translocation 
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of zinc across plasma membrane (via ZIP14), are important components of signaling pathways 

accounting for inhibition of LPS-induced apoptosis.  Reduction of MT (<10% of basal levels) by 

siRNA in SPAEC completely inhibited the ability of NO to protect SPAEC against LPS-induced 

apoptosis. NO-mediated resistance was independent of ZIP14 (Figure 21) suggesting that the 

increase in labile zinc occurred by redistribution of cellular sources of zinc and specifically MT 

as outlined above. The mechanism by which elevations in labile [Zn]i are antiapoptotic remain 

unclear although we confirmed (122, 167) that zinc is capable of inhibiting caspase-3 in an in 

vitro assay (Figure 25). A schema summarizing our findings including speculative details 

regarding chemistry of S-nitrosation of MT and caspase-3 inhibition is provided in figure 26.   

4.4.1 Extracellular zinc, ZIP14, MT and zinc homeostasis in SPAEC 

[Zn]i is tightly controlled by a large family of zinc importers (SLC39A1–14 or ZIP1–14) and 

exporters (SLC30A1–10 or ZnT1–10) and an extraordinary large number of proteins that bind 

zinc.  In the current study we focused on ZIP14 and metallothionein because: a) ZIP14, itself, is 

regulated by LPS (and attendant cytokines) in pulmonary endothelium (153) and hepatocytes 

(101); and b) metallothionein is considered to be a major intracellular zinc buffer by binding 7 

mol of Zn
2+

/mol of MT in a dynamic fashion (57, 105, 107). In particular, we recently reported 

that LPS- (100ng/ml; 4h) induced decreases in labile [Zn]i and upregulation in ZIP14 mRNA 

were potentially linked in SPAECs (153). LPS-induced increases in ZIP14 mRNA and apoptosis 

were normalized when labile [Zn]i was elevated by addition of zinc (in the presence of the zinc 

ionophore, pyrithione) suggesting that LPS-induced increases in ZIP14 mRNA may be 

secondary to the decreases in [Zn]i (as it was mimicked by TPEN). Accordingly, we expanded 

our study on ZIP14 in the current work and elucidated its role in LPS-induced apoptosis. Cells 
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exposed to LPS (100 ng/ml; 24 h) in the presence of exogenous zinc (10 μM; sufficient to 

increase FluoZin-3 detectable labile zinc by 20-30% over 24 h (Figure 12)) had a significant 

decrease in apoptosis as determined by Annexin-V labeling (Figure 13) in a ZIP14 dependent 

fashion (Figure 16). siRNA to ZIP14 decreased labile [Zn]i at control levels and blocked 

increases in labile [Zn]i  in SPAEC treated with extracellular zinc (Figure 15). Indeed, under 

conditions of current experiments (prolonged exposure in serum-free zinc free medium after 

treatment with lipid mediated vectors with siRNA), spontaneous apoptosis was relatively high in 

the scrambled siRNA group (Figure 16) and was inhibited by exogenous zinc, itself, in a ZIP14 

dependent fashion.  In contrast, genetic reduction of MT expression did not affect the ability of 

exogenous zinc to prevent LPS-mediated apoptosis in SPAEC (Figure 18) suggesting that 

delivery of zinc via ZIP14 elevates cytosolic zinc in a fashion unaffected by Zn
2+

-MT 

interactions (Figure 26).  siRNA mediated reduction of MT expression did sensitize SPAEC to 

the apoptotic effects of LPS, per se (Figures 18 and 24).  This latter observation is similar to the 

protective role of MT in acute lung injury induced by bacterial endotoxin (145).  We did not 

study the role of other zinc importers noted to be important in inflammation including ZIP6 in 

human dendritic cells (81) and ZIP8 in human airway epithelial cells (13) in part because their 

expression at mRNA was unaffected by LPS in SPAEC (153). In addition to importing zinc, 

ZIP14 is a functional divalent metal ion transporter affecting non-transferrin bound iron (101, 

125, 180). Our treatment medium did not contain iron as well as zinc (according to 

manufacturer‟s specification) and thus it is most likely that ZIP14 is cytoprotective by virtue of 

translocating the only metal, zinc that was experimentally elevated in the extracellular space. The 

exogenous zinc-mediated protection against LPS was absent in ZIP14 knockdown SPAECs 
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(Figure 16). Indeed, it appears that in the endothelium ZIP14 is a survival component in LPS 

signaling. 

 

 

 

Figure 26. Schematic diagram of potential pathways by which elevation in [Zn]i inhibits LPS -induced 

apoptosis 

 

 

Figure 26. ZIP14, a plasma membrane zinc importer, facilitates translocation of zinc from 

extracellular space to cytosol.  Alternatively, NO can S-nitrosate MT leading to an increase in 

[Zn]i.   Elevation in labile zinc is hypothesized to potentially inhibit caspase-3 and block LPS-

induced apoptosis. Of note, as previously shown (126), thioredoxin (along with thioredoxin 



 76 

reductase and NADPH) can denitrosate MT and facilitate its reduction and reincorporation of 

zinc allowing for recycling and persistence of NO-mediated zinc inhibition of caspase-3. 

 

4.4.2 NO, MT, [Zn]i, and LPS mediated apoptosis in SPAEC 

After original reports (10, 88) that NO was capable of causing an increase in detectable labile 

zinc (including cultured aortic endothelial cells), we were able to identify a critical role for MT 

in mediating this effect by demonstrating: a) conformational changes in MT via fluorescence 

resonance energy transfer techniques in live cultured endothelial cells (121) and within the intact 

pulmonary endothelium of isolated perfused mouse lungs (12); and b) an obligatory and unique 

role of MT in lung fibroblasts (138) and pulmonary endothelium (137, 147) cultured from MT 

null mice. In the current study, we extend these observations to another species (sheep) using 

alternative genetic technology (siRNA) and show that MT is uniquely necessary amongst all zinc 

bound proteins in accounting for NO-mediated increases in labile zinc (Figure 23). Previously 

we had coupled NO-MT-Zn
2+

 signaling pathway to aspects of pulmonary endothelial 

contractility including its contribution to hypoxic pulmonary vasoconstriction (12) via activation 

of protein kinases and alterations in myosin light chain kinase and phosphatases (11).  In the 

current study, we show for the first time, a definitive link between this pathway (NO-MT-Zn
2+

) 

and apoptosis.  Our previous report (147) suggested such a link by showing that NO-mediated 

protection against LPS-induced apoptosis was TPEN sensitive.  By selectively genetically 

reducing expression of MT, the sensor and switch for NO and zinc signaling, and hence 

removing the NO-mediated  increase of labile zinc allowing LPS-induced apoptosis to proceed, a 

clear linear pathway is established.  NO-mediated zinc release is likely to occur either via: a) S-
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nitrosation of MT as we have shown in vitro (98); or b) NO activation of protein kinase C and 

phosphorylation of MT (4).  Denitrosation of MT can be facilitated by thioredoxin as we 

previously reported (141) and lead to reversibility and cycling of these events as shown in figure 

26. 

 

           In the current study, siRNA suppression of ZIP14 did not affect NO-mediated inhibition 

of LPS- induced apoptosis (Figure 21).  NO, by itself (either via NO donor, SNAP or iNOS 

derived NO) has been reported to upregulate expression of ZIP14 mRNA (via AP-1) in cultured 

murine hepatocytes (97).  The effect of IL-1β was NO dependent (and MT independent) and 

resulted in an increase in FluoZin-3 detectable zinc that in turn was sensitive to neutralizing 

antibodies to ZIP14 (97).  We did not detect an increase in mRNA for ZIP14 (Figure 22) in 

SPAECs exposed to SNAP (up to 1 mM; 6 h), a time interval similar (8 h) to the peak increase in 

NO-mediated increase in mRNA of ZIP14 in murine hepatocytes (97), suggesting a potential cell 

specific regulation of ZIP14 expression in response to NO.  Changes in mRNA of ZIP14 were 

dynamic in this latter study (97) and included an early decrease at 0.5 h and a return to baseline 

by 16 h suggesting that time dependent kinetics could also possible have contributed to 

differences in the two cell types.  We did not assess posttranslational changes in ZIP14 in NO 

treated SPAEC at either protein level, subcellular location or specific activity and these studies 

are ultimately critical for a more complete functional determination. 

4.4.3 Central Role of [Zn]i in LPS-mediated apoptosis 

A major conclusion from the current study is that elevations in [Zn]i , whether secondary to ZIP-

14 mediated translocation of extracellular zinc or NO mediated intracellular release of zinc from 
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MT, effectively inhibit LPS-mediated apoptosis in SPAEC (Figure 26).  In this regard: a) 

exposure of SPAEC to either 10 µM zinc in extracellular medium (Figures 12 and 15) or 250 µM 

SNAP (Figure 27) increased FluoZin-3 fluorescence by comparable 25-30% at 6 h; b) in 

wildtype SPAEC, either 10 µM zinc (Figure 13) or 250 µM SNAP (Figure 20), reduced 

sensitivity to LPS-induced apoptosis by approximately equivalent 50%; and c) the effect of 

SNAP was apparent whether zinc was present (Figure 20a) or absent (Figure 20b) in the 

extracellular space.  It was difficult to reproduce precisely equivalent conditions (e.g. 24 h and 

100 ng/ml LPS) for experiments involving SNAP and siRNA because: a) in contrast to the 

SNAP experiments in wildtype cells noted above, the additional 6 h period in SNAP, in 

combination with interval of siRNA treatment, was associated with additional baseline toxicity 

that precluded more prolonged (e.g. 24 h) exposure to LPS; and b) readily quantifiable apoptosis 

was routinely apparent at 4 h after 1 ug/ml of LPS whereas 100 ng/ml LPS had variable effects 

on apoptosis between subcultures of SPAEC in these shorter (e.g. 4 h) intervals.  Accordingly, 

some comparisons were made, for practical reasons, using 1 µg/ml LPS for 4 h after SNAP (6 h) 

with a 72 h period of siRNA treatment for either ZIP14 (Figure 21) or MT (Figure 24).   
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Figure 27. NO (250µM) increases intracellular labile zinc 

 

Figure 27. SPAEC was exposed to NO donor, SNAP (250μM; 6h). Following NO exposure, 

cells were incubated with FluoZin-3 AM and equal volume of Pluronic F-127 (20 minutes; 37 

0
C). Cells were trypsinized, centrifuged and injected into FACS. Data represents mean+SEM of 

FluoZin-3 fluorescence (% of control) from 5 independent experiments. 

 

 

           Relatively little is known about the contributions of labile zinc and acute lung injury.  It is 

noteworthy that zinc deficiency, secondary to dietary manipulation or alcohol ingestion in 

rodents is associated with hypersensitivity to polymicrobial sepsis (7, 82) or hyperoxia (149, 

150) or macrophage and alveolar epithelial cell dysfunction (74) and the respective phenotypes 

can be reversed with dietary repletion of zinc.  Elevations in labile zinc have also been shown to 

be antiapoptotic in airway epithelial cells (156, 159).  As pulmonary endothelium is a sensitive 

cell type in acute lung injury and contributes to the maintenance and/or genesis of ARDS from 

several causes, our results with cytoprotective effects of labile zinc and LPS in SPAEC suggest 
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that dietary or NO mediated elevations in intracellular zinc may be rational therapies in acute 

lung injury.   

4.4.4 Zinc and caspase-3 

The mechanism by which elevations in [Zn]i  inhibit LPS-induced apoptosis remain unclear, in 

part because numerous pathways in this process may contain presumptive zinc dependent 

proteins.  This becomes even more complex in consideration of the role of elevated [Zn]i in 

mediating NO dependent protection as NO, itself, has numerous cellular targets many of which 

are anti-apoptotic in their own domain (28). From previous reports (122), we focused on caspase-

3 and confirmed that zinc was capable of inhibiting its activity directly in vitro (Figure 25) and 

indirectly in intact cells (Figures 19-20).  Although NO can S-nitrosate caspase-3 and inhibit its 

activity (94), it is apparent from our results that a TPEN-sensitive effect (Figure 19) and 

requirement of MT (Figure 24a) releasing zinc (Figure 23) in mediating NO protective effect, 

suggest that direct S-nitrosation of caspase-3 was not likely to account for these collective results 

(Figure 26).  Previous study (122) showed zinc inhibited caspase-3 with an IC50 of 100 nM.  

Although the binding constant of caspase-3 for zinc is reported to be in the range of 100 nM to 

10 μM (84), in an ultra-pure system, 50% inhibition in caspase-3 activity was achieved with 1.7 

nM zinc (107).  We noted an IC50 of approximately 200 nM zinc (Figure 25) and possible 

reasons for a lower inhibitor efficiency in our system include: a) presence of the zinc-binding 

components; phosphates (100 μM) and DTT (1 µM) in the reaction buffer; b) at such a low 

concentration of zinc (after buffering) the rate of zinc-binding may be too slow to supply 

caspase-3 with zinc on a biological time scale or c) zinc may not be the sole modulator of 

caspase-3 activity. 
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4.5 CONCLUSION 

This study adds to accumulating observations underlying the importance of zinc as an 

intracellular signaling molecule in numerous cellular systems (66) including pulmonary 

endothelium (11, 12, 153).  It is intriguing to speculate that aspects of the role of zinc in 

regulating LPS-induced apoptosis may provide some insight into the collective experience in 

which zinc deficiency sensitizes the lung to acute lung injury secondary to hyperoxia (148) or 

polymicrobial sepsis (82) or alcohol induced alveolar epithelial and macrophage dysfunction 

(74). Collectively, this study suggests that elevation in labile zinc secondary to zinc release from 

MT or after influx of zinc via ZIP14 is an important component of the signaling pathway 

accounting for the inhibition of LPS-induced pulmonary endothelial apoptosis, a contributing 

factor in LPS-induced lung injury. 
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5.0  SUMMARY AND FUTURE DIRECTION 

5.1 SUMMARY 

a) We have reported that LPS mediates a decrease in intracellular labile zinc and this 

decrease is a critical intracellular signaling component transducing the intrinsic apoptotic 

effects and transcriptional changes in ZIP14 mRNA in SPAECs. 

 

b) We reported in SPAECs that i) ZIP14 is sensitive to changes in intracellular labile zinc 

and ii) exogenous zinc mediated protection against LPS-induced apoptosis is dependent 

upon ZIP14. 

 

c) We reported that NO-mediated protection against LPS-induced apoptosis is dependent 

upon MT via siRNA to sheep MT isoforms. 

 

d) We further showed that NO-mediated increases in labile zinc are sensitive to MT via  

siRNA to sheep MT isoforms. 

 

e) We showed that non-toxic dose of zinc chelator, TPEN abrogates NO-mediated 

protection against LPS-induced apoptosis suggesting that NO-mediated protection against 

apoptosis is zinc dependent and MT is the source of anti-apoptotic zinc during NO 

signaling. 

 

f) Elevation of labile [Zn]i via ZIP14 or NO-MT-Zinc pathway accounts for the decreased 

sensitivity of SPAECs to LPS. 

 

5.2 NOVELTY AND SIGNIFICANCE 

a) Zn
2+  

acts as a second messenger in LPS signaling 

b) ZIP14 is a survival factor in LPS signaling 
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c) Elevation of labile [Zn]i via ZIP14 or NO-MT-Zn
2+

 signal transduction pathway support a 

role for the uqibuitous nature of these molecules in sepsis and acute lung injury and make them a 

rational novel therapeutic target 

 

5.3 FUTURE DIRECTION 

To determine the molecular mechanism by which LPS causes a decrease in labile [Zn]i in 

SPAECs: 

i) Potential changes in activity of zinc exporter, ZnT1 will be measured using Zn
65

 isotope 

in wild type vs ZnT1 knockdown cells to test whether ZnT1 is the molecular pathway by 

which LPS decreases labile [Zn]i. 

 

ii) X-ray fluorescence microscope will be used to monitor the spatiotemporal movements of 

labile [Zn]i. in the cell. 

 

iii) LPS-induced changes in labile [Zn]i and pulmonary endothelial apoptosis will be 

investigated in intact mouse lung using confocal laser scanning microscope. 

 

iv) The protective role of ZIP14 in LPS-induced apoptosis and lung injury will be confirmed 

in ZIP14 knockout mouse or via targeted delivery of siRNA to the mouse lung 
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