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INCORPORATING DIAGNOSTIC ACCURACY INTO THE

ESTIMATION OF DISCRETE SURVIVAL FUNCTION

Abidemi K. Adeniji, PhD

University of Pittsburgh, 2012

The Empirical distribution function (EDF) is a commonly used estimator of the popu-

lation cumulative distribution function. The Survival function is estimated as the com-

plement of the EDF. However, the clinical diagnosis of an event is often subject to

misclassification, by which the event is assessed with some uncertainty. In the presence

of such errors, the true distribution of the time to first event is unknown. We develop

a method to estimate the true survival distribution by incorporating negative predictive

values (NPV) and positive predictive values (PPV), which are assumed to be known, into

a product-limit style construction of a survival function. This allows us to quantify the

bias of the EDF that do not account for misclassification due to the presence of misclas-

sified events in the observed data. We present an unbiased estimator of the true survival

function and its variance. In addition to dealing with misclassified clinical outcomes,

this dissertation addresses survival function estimates in the presence of misclassified

and incomplete data. The product limit (KM) estimator is commonly used to estimate

the survival function when follow-up time is incomplete due to drop-outs. Typically this

method is employed assuming that the outcome is known with certainty. We develop a

method to estimate the true survival distribution by incorporating the NPV and PPV

into a Kaplan-Meier-like construction. This allows us to quantify the bias in the KM

survival estimates due to the presence of misclassified events in the observed data. We

present an unbiased estimator of the true survival function and its variance. Asymptotic

properties of the proposed estimators are provided and these properties are examined
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through simulations. We demonstrate our methods using data from the VIRAHEP-C

study.

Estimating the true distribution of time to an event such as time to symptom res-

olution among subgroups of population with certain characteristics is of public health

importance. When the event is measured with error, the actual distribution cannot be

estimated without bias, providing an inaccurate picture of the population. The new

methods provide clinical investigators with a tool to accurately estimate the survival

probabilities in the presence of misclassified events.

Keywords: Misclassification, Measurement error, Diagnostic testing, Product limit es-

timation, Generalized estimating equations, Binary classification.

v



TABLE OF CONTENTS

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

1.0 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 DISCRETE SURVIVAL ANALYSIS . . . . . . . . . . . . . . . . . . . . 1

1.2 KAPLAN-MEIER ESTIMATOR OF SURVIVAL FUNCTION . . . . . . 3

1.3 GENERALIZED ESTIMATING EQUATIONS (GEE) . . . . . . . . . . 3

1.4 MEASURES OF DIAGNOSTIC ACCURACY . . . . . . . . . . . . . . 4

1.5 VIRAHEP-C Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.6 MOTIVATION AND AIMS . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.1 Aim 1: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.2 Aim 2: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6.2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.0 DISCRETE SURVIVAL ANALYSIS WITH MISCLASSIFIED EVENTS 9

2.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 NOTATION, ASSUMPTIONS AND DATA . . . . . . . . . . . . . . . . 17

2.3 INFERENCE FROM COMPLETE DATA: NO DROP-OUT . . . . . . . 19

2.4 SIMULATION STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.5 ANALYSIS OF THE VIRAHEP-C DATA . . . . . . . . . . . . . . . . . 26

2.6 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.7 DERIVATION OF ESTIMATING EQUATIONS . . . . . . . . . . . . . 28

2.8 TABLES AND FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vi



3.0 DISCRETE SURVIVAL ANALYSIS WITH MISCLASSIFIED EVENTS

AND WITH LOST-TO-FOLLOW-UP . . . . . . . . . . . . . . . . . . 35

3.1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 INFERENCE FROM INCOMPLETE DATA: PRESENCE OF DROP-

OUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 SIMULATION STUDY . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.4 ANALYSIS OF THE VIRAHEP-C DATA . . . . . . . . . . . . . . . . . 42

3.5 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.6 TABLES AND FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.0 CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1 CONCLUSION AND DISCUSSION . . . . . . . . . . . . . . . . . . . . 50

4.2 PUBLIC HEALTH SIGNIFICANCE . . . . . . . . . . . . . . . . . . . . 51

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



LIST OF TABLES

1 Count Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Simulation results for estimating P (T ∗ > tk, k = 1, 4, 8) based on 5000

Monte Carlo (MC) samples of size 250. EST is the MC mean of the pro-

posed estimate assuming θ and φ known, SE is the MC mean of the es-

timated standard errors, MCSE is the standard error of MC estimates,

CP is the empirical coverage probablity, EDF is the Empirical distribution

function estimate ignoring misclassification. . . . . . . . . . . . . . . . . . 30

3 Simulation results for estimating P (T ∗ > tk, k = 1, 4, 8) based on 5000

Monte Carlo (MC) samples of size 500. EST is the MC mean of the pro-

posed estimate assuming θ and φ known, SE is the MC mean of the es-

timated standard errors, MCSE is the standard error of MC estimates,

CP is the empirical coverage probablity, EDF is the Empirical distribution

function estimate ignoring misclassification. . . . . . . . . . . . . . . . . . 31

4 Analysis results of the estimation of survival probabilities for time to viral

negativity at selected time points. All is the overall estimated survival esti-

mates by both methods. AA (n=171) and CA (n=184) stands for African

Americans and Caucasians, respectively. EDF is the Empirical distribu-

tion function estimated survival ignoring misclassification. Proposed is our

proposed estimate of the true survival. Right below the estimated survival

probabilities are the 95% confidence intervals of the estimates; p-value

compares survival rates between groups at the designated time point. . . . 32

viii



5 Simulation results for estimating P (T ∗ > tk, k = 1, 4, 8) based on 5000

Monte Carlo (MC) samples of size 250. EST is the MC mean of the pro-

posed estimate assuming θ and φ known, SE is the MC mean of the esti-

mated standard errors, MCSE is the standard error of MC estimates, CP

is the empirical coverage probablity. . . . . . . . . . . . . . . . . . . . . . 45

6 Simulation results for estimating P (T ∗ > tk, k = 1, 4, 8) based on 5000

Monte Carlo (MC) samples of size 250. EST is the MC mean of the pro-

posed estimate assuming θ and φ known, SE is the MC mean of the esti-

mated standard errors, MCSE is the standard error of MC estimates, CP

is the empirical coverage probablity, KM is the Kaplan-Meier estimator

ignoring misclassification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7 Simulation results for estimating P (T ∗ > tk, k = 1, 4, 8) based on 5000

Monte Carlo (MC) samples of size 500. EST is the MC mean of the pro-

posed estimate assuming θ and φ known, SE is the MC mean of the esti-

mated standard errors, MCSE is the standard error of MC estimates, CP

is the empirical coverage probablity, KM is the Kaplan-Meier estimator

ignoring misclassification. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

8 Analysis results of the estimation of survival probabilities for time to viral

negativity at selected time points. All is the overall estimated survival

estimates by both methods. AA (n=196) and CA (n=205) stands for

African Americans and Caucasians, respectively. KM is the Kaplan-Meier

estimator ignoring misclassification. Proposed is our proposed estimate of

the true survival. Right below the estimated survival probabilities are the

95% confidence intervals of the estimates; p-value compares survival rates

between groups at the designated time point. . . . . . . . . . . . . . . . . 48

ix



LIST OF FIGURES

1 Examples of missclassification. E∗ is the true occurence of an event and E

is the potentially misclassified event. Both E∗ and E can take values 1 or

0, indicating the occurence and non-occurence of the event, respectively. . 33

2 Estimated survival curves for time to viral negativity at selected time

points for the VIRAHEP-C study. (Left panel: EDF estimates; right panel:

proposed method). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Estimated survival curves for time to viral negativity at selected time

points for the VIRAHEP-C study. (Left panel: KM estimates; right panel:

proposed method). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

x



PREFACE

I wish to express sincere appreciation to Dr. Abdus S. Wahed for his support, vision,

instruction, and for his vast reserve of knowledge and patience. The completion of this

dissertation would have been impossible without his support, thank you.

It is a pleasure to thank my committee members, Dr. Howard Rockette, Dr. Steven

Belle and Dr. Jong-Hyeon Jeong for their insightful critique of my work. Special grat-

itude to Dr. Howard Rockette for his belief in my capabilities as a graduate student, I

thank you for your financial support at the very beginning of my doctoral studies.

I am grateful to my colleagues and friends for their encouragement and for their

support. Most notably, I wish to offer a sincere gratitude to Jesse Y. Hsu for always

being available to listen to my frustrations, thank you.

xi



1.0 INTRODUCTION

In this chapter, we review some important concepts that will be repeatedly used in this

dissertation. The topics that will be described briefly here are:

• Discrete survival analysis,

• Generalized estimating equations (GEE),

• Measures of diagnostic accuracy and

• VIRAHEP-C.

1.1 DISCRETE SURVIVAL ANALYSIS

Survival analysis is used to study the time until occurence of some event in a population.

This time is called the survival time or failure time. The basic quantity employed to

describe time-to-event is the survival function, the probability of an individual surviving

beyond time x, that is, to experience the event after time x. This function is defined as

S(x) = Pr(X > x),

that is, the probability of not experiencing the event up to and including time x.

When X is a continuous random variable, the survival function is the complement of

the cumulative distribution function, that is, S(x) = 1−F (x), where F (x) = Pr(X ≤ x).

In addition, the survival function is the integral of the probability density function, f(x),

1



that is,

S(x) = Pr(X > x) =

∫ ∞

x

f(t)dt,

therefore,

f(x) = −dS(x)
dx

.

Note that f(x)d(x) may be thought of as the “approximate” probability that the event

will occur at time x and that f(x) is a nonnegative function with the area under f(x)

being equal to one [Klein and Moeschberger, 2003]. Many types of survival curves can

be shown but the important point to note is that they all have the same basic proper-

ties. They are monotone, nonincreasing functions equal to one at zero and zero as time

approaches infinity [Klein and Moeschberger, 2003].

Discrete time survival analysis is used when time is divided into discrete units or

groups. Discrete time arises due to grouping of survival times into intervals, rounding

off time measurements, or when lifetimes refer to an integral number of units. Often,

survival times are grouped into discrete intervals of time (e.g. months). In this case,

the length of time can be summarized using a set of positive integers (1,2,. . . .), that is,

although the underlying process occurs in continuous time, the data are not observed in

such form, hence, the data are summarized discretely rather than continously. Another

reason for discrete time data is when the underlying process is intrinsically discrete.

An example of an intrinsically discrete time process is that of fertility given by Jenkins

(2008)- if one were interested in the duration from puberty to first birth, it might make

sense to measure time in terms of the number of menstrual cycles rather than in terms

of the number of months or days. Suppose that X, the number of menstrual cycles, can

take values xj, j = 1, 2, . . . with probability mass function (p.m.f) p(xj) = P (X = xj),

j = 1, 2, . . ., where x1 < x2 . . . . The survival function for a discrete random variable X

is given by

S(x) = Pr(X > x) =
∑

xj>x

p(xj),

when X is discrete, the survival function is a nonincreasing step function.

2



1.2 KAPLAN-MEIER ESTIMATOR OF SURVIVAL FUNCTION

A common estimator of the survival function, particularly in the presence of censored

data, proposed by Kaplan and Meier Kaplan and Meier [1958], is called the Product-

Limit estimator. Censoring is an incomplete observance of an individual’s survival time.

This estimator is defined as follows for all values of x in the range where there are data:

Ŝ(x) =
∏

xi≤x

(1− di

Yi
)

Ŝ(x) is equal to 1 if x < x1(the time to the first failure), with, at time xi, Yi observations,

di failures, and probability of failure xi,
di
Yi
. The Product-Limit estimator is a step

function with jumps at the observed event times. The size of these jumps depends not

only on the number of events observed prior to and at each event time xi, but also on

the number of censored observations prior to xi [Klein and Moeschberger, 2003].

1.3 GENERALIZED ESTIMATING EQUATIONS (GEE)

Generalized estimating equations (GEE) is a statistical method to estimate the marginal

mean from longitudinal data [Liang and Zeger, 1986, Zeger and Liang, 1986]. The

marginal mean is a mean response, it depends only on the covariates of interest, and

not on any random effects or previous responses. Let Yi = [Yi1, · · · , Yini
]T be a ni × 1

vector of the outcome measurement for subject i and E(Yi|Xi) = Xiβ be the marginal

mean, where XT
i = [xi1, · · · ,xini

] is a ni × p matrix of covariates and β is a p× 1 vector

of parameters, the generalized estimating equations is given by

n∑

i=1

XT
i V

−1
i {Yi −Xiβ} = 0,

where Vi = φA
1

2

i Ri(α)A
1

2

i ; Ri(α) is an ni × ni “working” correlation matrix specified

by a s×1 vector α; Ai is an ni×ni diagonal matrix with vim(Xi;β) as the m
th element,

where vim(Xi,β) is the assumed working variance function of Yim and φ is the dispersion

3



parameter for m ∈ {1, · · · , ni}. The solution of the generalized estimating equations, β̂,

can be obtained through the iterative Gauss-Newton algorithm:

β̂
(r+1)

= β̂
(r)

+

(
n∑

i=1

XT
i Ṽ

−1
i Xi

)−1 n∑

i=1

XT
i Ṽ

−1
i

{
Yi −Xiβ̂

(r)
}
,

where Ṽi = Vi[β̂
(r)
, α̂{β̂(r)

, φ̂(β̂
(r)
)}].

1.4 MEASURES OF DIAGNOSTIC ACCURACY

Two basic measures of diagnostic accuracy are sensitivity and specificity. Their defini-

tions can be illustrated by a table with 2 rows and 2 columns, or decision matrix, where

the rows summarize the data according to the true condition status of the patients and

the columns summarize the test results. We denote the true condition status by the

indicator variable D, where D = 1 if the condition is present and 0 if the condition is

absent. Test results indicating that the condition is present are called positive; those in-

dicating that the condition is absent are called negative. We denote positive test results

as T = 1, negative test results as T = 0. Table 1 has such characteristics; it is called a

count table because it indicates the numbers of participants in various categories. The

numbers of participants with and without the condition, respectively, are denoted by, n1

and n0; the numbers of participants with the condition who test positive and negative

are, respectively, s1 and s0; and the numbers of participants without the condition who

test positive and negative, are respectively, r1 and r0. The total number of participants

in the study group, N , is equal to N = s1 + s0 + r1 + r0 = n1 + n0.

The sensitivity (Se) of a test is its ability to detect the condition when it is present,

so Se = P (T = 1|D = 1), the probability that the test result is positive (T = 1),

given that the condition is present (D = 1). Sensitivity is estimated by, Ŝe = s1
n1

. The

specificity (Sp) of a test is its ability to exclude the condition when it is not present, so

Sp = P (T = 0|D = 0), the probability that the test result is negative (T = 0), given

that the condition is absent (D = 0). Specificity is estimated by, Ŝp = r0
n0

.

4



Table 1: Count Table

Basic 2x2 Count Table

Test Result:

True Condition Status: Pos (T=1) Neg (T=0) total

Present(D=1) s1 s0 n1

Absent (D=0) r1 r0 n0

total m1 m0 N

We now address two questions important to the main result of this dissertation: For a

participant with a positive test result, what is the probability that the participant has the

condition (positive predictive value, PPV)? For a participant with a negative test result,

what is the probability that the patient does not have the condition (negative predictive

value, NPV)? Note PPV and NPV depend not only on the sensitivity and specificity of

the test respectively, but also on the probability of the condition [Xiao-Hua Zhou, 2002].
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1.5 VIRAHEP-C STUDY

Chronic hepatitis C virus (HCV) is a cause of chronic liver disease and the most common

indication for liver transplantation in the United States [CDC, 2012]. Population-based

surveys indicate that 1.3% of the US population, approximately 3.2 million Americans,

have chronic HCV infection, as shown by detection of antibodies to HCV (anti-HCV)

and HCV RNA in serum[G.L. Armstrong, 2006]. Major advances have been made over

the last decade in the field of antiviral therapy for chronic hepatitis C. Combination

therapy with interferon and ribavirin has improved virological sustained response rates

to nearly 40% in people with genotype 1 compared to only 10-15% for patients treated

with interferon alone. Sustained response rates in African American patients appear to

be significantly less than in Caucasian patients treated with the same regimens[John

G. Mchutchison, 2000]. However, recently, the most exciting research aims to minimize

side effects and increase virological sustained response rates by using combinations of

Direct-acting antiviral agents (DAA) without interferon or ribavirin. The benefits of

telaprevir plus peg-interferon and ribavirin over peg-interferon and ribavirin have have

been demonstrated in the PROVE 1 + 2 trials as well as the ADVANCE trials [L. Y. Lee,

2012]. Telaprevir increased SVR up to 75% compared to about 44% with peg-interferon

and ribavirin therapy [L. Y. Lee, 2012].

VIRAHEP-C was a multicenter, collaborative clinical trial, sponsored by NIDDK-

NIH, designed to test the hypothesis that African Americans respond less well to antiviral

therapy than Caucasian patients. A total of 196 African American and 205 Caucasian

American treatment-naive patients with HCV genotype 1 infection were treated with

peginterferon alfa-2a (180 microg/wk) and ribavirin (1000-1200 mg/day) for up to 48

weeks. The primary end point was sustained virologic response (SVR). SVR is defined

as undetectable viral load 24 weeks after completion of antiviral therapy for chronic

hepatitis C virus (HCV) infection.Clinical and virological data from these treatment

cohorts were used to evaluate factors associated with resistance to antiviral therapy

in African Americans and Caucasians with chronic hepatitis C. Pretreatment variables

such as history of alcohol use, HCV RNA levels, hepatic histology, among others, were

6



also investigated to determine which factors were associated with sustained virological

response (SVR).

1.6 MOTIVATION AND AIMS

The primary objective of this dissertation is to incorporate correct classification proba-

bilities (NPV and PPV) into a product limit estimator of the survival distribution and

to examine its large-sample properties. Two specific aims are to:

1.6.1 Aim 1:

Derive an unbiased estimator of the true survival distribution in the presence of mis-

classified events and establish its large-sample properties, including an estimator for the

asymptotic variance and to prove consistency and asymptotic normality of the derived

estimator.

1.6.2 Aim 2:

Derive an unbiased estimator of the true survival distribution in the presence of misclas-

sified events and incomplete data and establish its large-sample properties, including an

estimator for the asymptotic variance.

1.6.2.1 Modify the KM estimator to account for misclassification.

1.6.2.2 Prove consistency and asymptotic normality of the derived estimator in Aim

1.6.2.1.

Standard methods in the analysis of survival data assume no error in classifying the

event of interest. To estimate the time-to-event distribution, one widely used estimator is

the Kaplan-Meier (KM) product limit estimator [Kaplan and Meier, 1958], Greenwood’s

7



formula can be used to estimate its variance [Greenwood, 1926]. However, when there

is uncertainty in classifying the outcome of interest, the KM estimator may be a biased

estimate of the true survival distribution.

One of the challenges in constructing an estimator of the time-to-event in the presence

of misclassification is that the true survival distribution is latent (unseen). If a diagnostic

tool is prone to error, then the true distribution of time to event is unobservable, all that

we are provided is an error prone observance of the truth.

This dissertation is organized into two self-contained manuscripts. Each manuscript

addresses one specifc aim, and are presented in Chapters 2 and 3 respectively. Chapter

4 offers some concluding thoughts and future directions.

8



2.0 DISCRETE SURVIVAL ANALYSIS WITH MISCLASSIFIED

EVENTS

2.1 INTRODUCTION

Diagnoses of many clinical outcomes are given with ambiguity. Maladies such as the

early stages of acute lymphocytic leukemia and pancreatic cancer often have little to no

physical manifestations, so they may not be diagnosed in their earliest stages. On the

other hand, inaccurate test results or symptoms that occur in multiple conditions may

lead to a false diagnosis of an event.

Time-to-event data are common in epidemiologic studies. Standard techniques in

survival analysis can handle fatal events as such events can always be classified correctly

when observed. However, for nonfatal events, classification can be inaccurate. For exam-

ple, the clinical diagnosis of Alzheimers disease is a complex process which includes, but

is not limited to, eliminating all other causes of dementia. The clinical criteria for the

diagnosis of Alzheimers disease involves the progressive deterioration of memory, cogni-

tive skills and behavior (McKhann et al. 1984) . Thus, in the absence of an error-proof

test, diagnoses may be made with error, in both directions. As a consequence, the time

to such a misclassified event will not reflect the true time to event, Figure 1 provides an

illustration.

The negative predictive value and the positive predictive value are the rates of cor-

rect classification of the diagnostic tool. The goals of this dissertation are to incorporate

rates of classification and develop valid methods of inference for time-to-event data in the

presence of misclassified events, to establish its large-sample properties, and to provide

simulations that verify the large-sample properties in moderate samples.

9



An estimator of the population cumulative distribution function is the empirical dis-

tribution function (EDF). Studies have employed this method with several underlying

assumptions including that the time to the outcome of interest is known without error.

However, such is not always the case. Diagnostic tools that are perfectly accurate may

be too costly with respect to time or money to routinely conduct, or may not even be

available. So the question arises as to the accuracy of EDF estimates for estimating the

survival function when the diagnostic test misclassifies a subject as having the outcome,

when in truth he or she does not, or vice-versa. The work presented in this dissertation

deals with the setting in which the observed data are prone to misclassification while the

true status of the individual is unobservable. We will show that when the event is not

accurately determined the EDF method leads to incorrect inferences. We will use the

positive predictive value (PPV) and negative predictive value (NPV) of the diagnostic

tool to construct a bridge between the observed and the unobserved distributions of out-

comes. We will show that when the diagnostic tool used to measure failure is not perfect,

it may lead to incorrect inferences. The bridging will lead to a product-limit estimator

of the true survival distribution that can be recursively calculated using the NPV and

PPV of the diagnostic tool and the observed survival distribution (events measured with

error). The methods developed in this dissertation are applicable to studies investigating

the incidence and timing of an event when the event is determined with uncertainty.

There have been prior investigations into the aforementioned problem. Racine-Poon

(1984) offered a nonparametric estimation of the survival function that is analogous to

the Kaplan-Meier approach for which the cause of death was uncertain. Their work as-

sumed that the estimated probability of the risk of interest being the cause of death can

be estimated without bias. Their endpoint, death, could be determined without error.

The method does not consider the case of multiple endpoints nor does it consider the

estimation of covariate effects. Snapinn (1998) offered methodology that dealt with sce-

narios for which a subject may experience a number of potential nonfatal endpoints. For

example, a patient might experience several episodes of chest pain resembling myocardial

infarctions, only some of which represent true myocardial infarctions. In the complex

process of the diagnosis of myocardial infarction, there may be cases for which experts

10



disagree on the diagnosis. To deal with uncertain endpoints, an adjudication (endpoint)

committee may declare potential endpoints to have occured or not. A shortcoming is

that the boundary for declaring true endpoints from false endpoints is somewhat ar-

bitrary so different committees’ final conclusions could differ. The other issue here is

that when endpoints are classified as true or false, there is a loss of information in the

level of certainty. To bypass the uncertainty in the declaration of a first true event,

they proposed modifying the Cox proportional hazards regression model to incorporate

information from all potential endpoints as well as the level of uncertainty. Although

multiple endpoints were included in the model, the focus was on the time to the first

true endpoint. Their method is similar to the ordinary Cox regression model in the sense

that the focus is with the estimation and inference regarding the first true event only.

A weight was given to each potential endpoint and incorporated into the modified Cox

model; this weight represented the estimated likelihood that the corresponding potential

endpoint is in fact the first true endpoint for a specific patient.

Richardson and Hughes (2000) expressed that low sensitivity or specificity of a di-

agnostic test results in biased estimates of the time to first event using product limit

estimation. Working within the context of infectious diseases, they constructed two spe-

cial cases. The first was a treatable self-limiting infectious disease. In such a case the

disease can be resolved with treatment, for example, a sexually transmitted disease like

gonorrhea. The important point from this situation is that no additional follow-up test-

ing is needed since the disease is cured after the first positive test. The second case is

an infectious disease that remains for the duration of the persons life; an example of this

is HIV-1 infection. In such a scenario, the symptoms of the disease may be treatable

but the disease itself is unresolved. Additional follow-ups after initial detection may be

needed to verify disease status. They developed statistical methods to obtain unbiased

estimates of the distribution of event times when the diagnostic test for the event has

less than perfect sensitivity or specificity. Their method applies to cases in which all

subjects are followed at discrete time points until their first positive test. The EM algo-

rithm was used to obtain unbiased estimates of the conditional probability of disease for

each specified time point. They introduced two EM algorithms: one for the case without
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follow-up after detection (treatable self-limiting infectious disease) and the other for the

case with follow-up after detection (lifelong infectious disease). The methods produced

ways to obtain less biased estimates of the cumulative distribution function of the time

to first event when the outcome may be misclassified; they derived an EM algorithm for

the product limit estimate of the survivor function.

Magder and Hughes (1997) incorporated information on the values of sensitivity and

specificity into the estimation of the parameters in a logistic regression model. The

regression coefficients and their standard errors were estimated using the Expectation

Maximization (EM) algorithm. Neuhaus (1999) showed that ignoring errors in responses

can lead to biased estimates of the associations of covariates with response. They derived

general expressions for the magnitude of the bias in estimating the covariate effects due

to errors in the response. They assumed that the true (unobserved) binary responses

follow a binary regression model in the class of generalized linear models as described

by McCullagh and Nelder (1989). The relationship between the unobserved truth and

the observed error-prone responses are the response classification probabilities, namely

sensitivity and specificity of the measurement. Even when the error probabilities were

less than 0.1, the losses in efficiency were substantial. The paper derived the expressions

for the magnitude of the bias in regression coefficients and efficiency loss due to errors in

binary responses. Neuhaus showed that unless sensitivity and specificity are very high,

the ignorance of errors in the response will yield highly biased covariate effect estimates.

They quantified the magnitude of the bias due to errors in the response in terms of

misclassification probabilities of the diagnostic test. They also showed that when the

true error free response follows a generalized linear model with known misclassification

probabilities, the observed responses also follow such a model with a modified link func-

tion. They showed that errors in the response lead to an increased standard error and a

smaller test statistic, hence loss in estimation efficiency. From investigating the errors in

response in settings with a single observation per subject, Neuhaus (2002) extended his

work to investigate the effects of response misclassification on inference with clustered

and longitudinal binary responses. Neuhaus (1999) investigated the effects of misclassifi-

cation in settings with a single binary response per subject, Neuhaus (2002), some of the
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results were extended to the population-averaged model. In this work, the within-cluster

covariance structure of the response is specified; it is assumed that the misclassification

probabilities do not depend on the random effects and the observed responses follow a

generalized linear model with a modified link function. In the cluster specific case, the

association of the predictors to the response also depends on a modified link function.

It was shown that ignoring the errors in response leads to substantially biased estimates

of the associations of covariates with response. Expressions for the bias due to error in

the response for both approaches were derived.

Meier et al. (2003) proposed an adjusted proportional hazards model (APH) that

accurately estimates both cumulative survival and hazards ratios in the presence of mis-

classified outcomes. The performance of the APH method depends on the accuracy of

the diagnostic test, namely sensitivity and specificity. Unlike the proportional hazards

(PH) model which assumes perfect sensitivity and specificity, the APH model incorpo-

rates sensitivity and specificity of the diagnostic test in the estimation process. This

model estimates the baseline cumulative survival and covariate effects by numerically

maximizing the likelihood. Given accurate estimates of the tests’ sensitivity and speci-

ficity, along with the caveat that a “reasonable” amount of data is available, the APH

method provides unbiased estimates of cumulative survival as well as hazard ratios.

Balasubramanian and Lagakos (2001) developed regression methods for the distri-

bution of the timing of perinatal HIV transmission. The gold standards for determining

whether an infant is infected with HIV are the ELISA and Western Blot antibody tests;

however imperfect diagnostic tests are often used because the ELISA and Western Blot

antibody tests are only reliable when administered to infants beyond 18 months of age

since infants can carry maternal antibodies for more than a year after birth. With no

information on the true infection status of infants, but by assuming perfect specificity

and time-dependent sensitivity, their method provided an estimator of the cumulative

probability of perinatal transmission. All testing occurred after birth, thus, the period of

exposure had ended. In their regression methods, data from different types of diagnostic

tests can be utilized within the same analysis.
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Retaining the context of sequentially-administered and error-prone diagnostic tests,

Balasubramanian and Lagakos (2003) presented statistical methods for estimating the

distribution of the time until an event in settings in which individuals can have different

periods of exposure to the elements that place them at risk for HIV infection. The in-

dividuals could be infected with HIV in utero, at birth or from being breast fed. They

developed a likelihood function and estimated the cumulative distribution function of the

timing of vertical transmission of HIV through maximizing their proposed log likelihood.

Also provided are approximate 95% pointwise confidence intervals based on a normal

approximation using a bootstrap variance estimator.

Current status observation is a form of interval censoring; it refers to the situations in

which the only available information on a survival random variable T is whether or not

T exceeds a random independent monitoring time C (Jewell and van der Laan, 2002).

McKeown and Jewell (2010) extended the nonparametric maximum likelihood estimator

(NPMLE) of the distribution function underlying current status data when there is no

misclassification to allow for time-dependent misclassification rates. They also extended

their model to allow for misclassification rates that varied over time. Pointwise confi-

dence intervals for the NPMLE were obtained through the use of a bootstrap method.

Banerjee and Wellner (2005) provide further information.

McKeown and Jewell (2010) extended their ideas to the regression context. To deal

with outcome misclassification, they adapted the techniques of binary generalized lin-

ear models (Neuhaus 1999). To adjust for errors in classification, they proposed that

the observed outcome follows a generalized linear model with a modified link function.

Rosas and Hughes (2010) extended these ideas by proposing nonparametric maximum

likelihood estimator (NPMLE) of the distribution function of the failure time when sen-

sitivity and specificity may vary among individuals or subgroups. Since the log likelihood

function is concave with respect to the parameters of interest the modified iterative con-

vex minorant (MICM) algorithm (Jongbloed 1998) was utilized to obtain an estimator

of the distribution of failure time. Two sample hypothesis testing was discussed and a

statistic to test for a difference in distribution functions was proposed. Since the data

are subject to outcome misclassification the baseline hazard function was adjusted to
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obtain accurate estimation of the regression coefficients. The Cox proportional hazards

model was adjusted to account for the errors in outcome classification. The estimation of

regression parameters was achieved using an expectation maximization (EM) algorithm.

Event misclassification has been studied in frameworks slightly different from ours.

In many randomized clinical trials, the primary outcome is the time to the first of a num-

ber of possible clinical events. Clinical endpoints such as disease progression in oncology

trials are often determined with uncertainty. The conventional approach is to process

uncertain cases through an endpoint adjudication committee. These cases are classified

as true or false via a voting scheme and only the first confirmed endpoint for each patient

is included in analysis, for instance, a Cox regression analysis. However, when interim

analyses are performed on such trials, the final classifications for many of the reported

events are unknown. Ignoring unconfirmed events may lead to incorrect statistical infer-

ence and analyses making use of all reported events are far more up-to-date than using

only confirmed events (Cook and Kosorok, 2004) .

Cook and Kosorok (2004) studied the problem of event misclassification in the analy-

sis of time-to-event data. They addressed the issue of incomplete adjudication in interim

analysis. In many randomized clinical trials, the primary endpoint is the time to the

first of a number of possible events. It is common in such studies for a selected set of

study events, initially reported and classified by clinical investigators, to be reviewed by

an event classification committee, whose role is to determine whether an event reported

by an investigator is actually true. The use of an endpoint classification committee guar-

antees that criteria are uniformly applied to all reported events; however, it introduces

additional delay between the time that an event is reported and the time that the final

classification is known. This delay has implications for the timeliness of interim analysis

of accumulating study data (Cook and Kosorok, 2004) .

They discussed that analyses that ignore events with incomplete adjudication or

treat them as if they were confirmed events result in bias in the Kaplan-Meier estimates.

They introduced methods to correctly address the statistical issues in the proper inter-

pretation of interim data in the aforementioned setting; we explain the fundamental idea

underlining their proposed methods. Suppose there is a dataset that contains a mixture
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of adjudicated and unadjudicated events. For a subject with a series of unadjudicated

events, a particular event of interest is the first confirmed event provided that all earlier

events are refuted. They considered the outcome of adjudication to be a binary random

variable and assumed the outcomes are independent. Due to the fact that a subset of

reported events underwent the adjudication process, estimates of these probabilities were

obtained and applied to unadjudicated events. Thus events that were confirmed primary

endpoint constituents were considered to have confirmation probability 1. In addition,

subjects with no confirmed events were censored at the end of follow-up with proba-

bility equal to the probability that all reported events were refuted. They augmented

the original dataset by randomly adjudicating all unadjudicated events according to the

estimated probabilities. They then derived the asymptotic properties of the general-

ized Kaplan-Meier estimate of survival, parameter estimates under the Cox proportional

hazards model, and a weighted generalized log-rank test. However variance estimates

were more challenging because there were multiple and likely correlated events within

each subject; that is, one individual may be likely to experience events of a given type

than another individual; this phenomenon was captured using a frailty model. Also,

the weights assigned to each event were estimated from the data. Therefore, standard

martingale techniques were not applicable, and empirical process methods were required.

An important result of their study is that complete adjudication may be unnecessary.

In this chapter, we propose a method to estimate the distribution of the true (latent)

time to event by incorporating the NPV and PPV of the diagnostic test into the observed

distribution of events in a product-limit-type construction. This estimator is a function

of the NPV and the PPV of the diagnostic tool, which are assumed to be known. We

conducted an extensive literature review, to the best of our knowledge, no research study

has taken this approach in handling the issue of outcome misclassification. The other

studies we reviewed have incorporated the sensitivity and specificity of the diagnostic

tool into their estimation techniques. Our estimator differs from other research in that

it uses NPV and PPV instead of sensitivity and specificity which are dependent on the

distribution of events. For instance, sensitivity is the fraction of subjects that tested

positive for an outcome out of all subjects that actually have the outcome. We under-
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take the task of estimating the true (latent) distribution of outcomes. This estimator

is a function of the NPV and the PPV of the diagnostic tool, which are assumed to

be known. An estimator of the variance of this estimator is also proposed. We assume

that all participants are followed for the prespecified time period, and hence there is no

dropout.

This chapter is organized as follows. We introduce notation, data, and assumptions

in Section 2.2. In Section 2.3 we propose an estimate of the true survival function and

derive its formulation. We also estimate the variance of our true survival rate estimator

using the methods of M-estimators. We evaluate the large-sample properties of the pro-

posed methods through simulations in Section 2.4. In Section 2.5 we appply our proposed

methods to analyze data from the VIRAHEP-C study. We conclude our analysis with a

discussion in Section 2.6. Section 2.7 provides a derivation of the estimating equations

used in Section 2.3.

2.2 NOTATION, ASSUMPTIONS AND DATA

Define Ej as the occurence of an event at evaluation time tj, j = {1, 2, . . . K}. To

delineate true (latent) events from potentially misclassified events we use the symbol

‘*’ for true event; hence E∗
j is the true occurence of an event at time tj and Ej is

the potentially misclassified event at time tj. Both E∗
j and Ej can take values 1 or 0,

indicating the occurence or non-occurence of the event, respectively. Let θj and φj be

respectively, the NPV and PPV of the evaluation process at time tj. More specifically,

let θj = P (E∗
j = 0 | Ej = 0) and φj = P (E∗

j = 1 | Ej = 1), where P (.) denotes the

probability of a specified event. Let T ∗ represent the time to the true event {E∗
j = 1}.

Let P ∗
jm be the unconditional probability of the true event {E∗

j = m} at time tj,

and Pjm be the unconditional probability of observing an event {Ej = m} at time

tj, m ∈ {0, 1}; j ∈ {1, 2, . . . , K}. The conditional probability of having the true event

{E∗
j = nj} at time tj given {E∗

j−1 = nj−1}, {E∗
j−2 = nj−2}, . . . , {E∗

1 = n1}, that is P (E∗
j =

nj | E∗
j−1 = nj−1, ..., E

∗
1 = n1), is abbreviated as P ∗

jnj |(j−1)nj−1,..,1n1
, nk ∈ {0, 1}, k ∈
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{1, 2, . . . , j}; j ∈ {1, 2, . . . , K} . The same shorthand notation follows for the observed

events, namely, P (Ej = nj | Ej−1 = nj−1, . . . , E1 = n1) = Pjnj |(j−1)nj−1,...,1n1
.

Our development is based on several assumptions. First, θj and φj do not change

over time, hence the probability of missclassification is constant across time points and

individuals. Thus, we write

θj = θ, and φj = φ, ∀j = 1, 2, . . . , K. (2.1)

In addition, given an observed event Ej at time tj; the probability of the true outcome

E∗
j can be ascertained without the knowledge of the previous true events. That is,

P (E∗
j | Ej, E

∗
k , k = 1, 2, . . . , j − 1) = P (E∗

j | Ej). Thus, for example,

P (E∗
j = 0 | Ej = 0, E∗

j−1 = 0, E∗
j−2 = 0, . . . , E∗

1 = 0) = P (E∗
j = 0 | Ej = 0) = θ,

(2.2)

P (E∗
j = 0 | Ej = 1, E∗

j−1 = 0, E∗
j−2 = 0, . . . , E∗

1 = 0) = P (E∗
j = 0 | Ej = 1) = 1− φ.

(2.3)

Furthermore, given observed and true outcomes at all previous (j − 1) time points,

the probability of an observed outcome Ej at time tj does not depend on the previous

(j − 1) true outcomes. This assumption basically states that the estimation of the

observed probabilities does not depend on the true status at previous time points. More

specifically,

P (Ej | Ek, E
∗
k , k = 1, 2, . . . , j − 1) = P (Ej | Ek, k = 1, 2, . . . , j − 1). (2.4)

We consider only the first occurences of the event. Once the event occurs, follow-up

ends. Thus, P (E∗
j < E∗

j−1) = P (Ej < Ej−1) = 0 ∀j = 1, 2, . . . , K. In other words,

P (Ej = 0 | Ej−1 = 1) = 0, and P (E∗
j = 0 | E∗

j−1 = 1) = 0. As mentioned, our goal

is to estimate the survival distribution of the time to the first event (T ∗) in the latent

population in which the subjects are evaluated for the event at K fixed time points

t1, t2, . . . , tK . Thus, the goal is to estimate S(tK) = P (T ∗ > tK) = 1−P (T ∗ ≤ tK). The

observed data in this setting consist of a set of n identically distributed random vectors

Ẽi = (Ei1, Ei2, . . . , EiK), i = 1, 2, . . . , n, where Eij = 1 if a potentially misclassified event

18



is observed at time tj for subject i, 0, otherwise. Note that Eij’s satisfy the following:

0 ≤ Eij ≤ Ei(j+1) ≤ 1, j ∈ {1, 2, . . . , K − 1} and 0 ≤ ∑K

j=1Eij ≤ 1. The empirical

distribution estimate of S(.) is defined as Ŝ(tk) = 1− 1
n

∑n

i=1

∑k

j=1Eij, k = 1, 2, . . . K.

2.3 INFERENCE FROM COMPLETE DATA: NO DROP-OUT

We first prove the following lemma necessary to develop our estimator for the survival

distribution of T ∗.

Lemma 2.3.1. Under assumptions (2.1)-(2.4), and the notation described in section

2.2,

P ∗
j0|(j−1)0,...,10 = θζ(j−1) + (1− φ)(1− ζ(j−1)), j = 1, . . . , K, (2.5)

where,

ζ(j) = θ

j∏

k=1

Pk0|(k−1)0,...,10

P ∗
k0|(k−1)0,...,10

× P(j+1)0|j0,...,10, j = 1, ..., K − 1.

and ζ(0) = P10.

We outline the proof of Lemma 2.3.1 below.

Suppose follow-up starts at time t0. At this time, no subjects will have an event,

thus P ∗
01 = P (T ∗ ≤ t0) = P (E∗

0 = 1) = 0. The probability that an event does not occur

by time t1 is

P ∗
10 = P (E∗

1 = 0) = P (E∗
1 = 0 | E1 = 0)P (E1 = 0) + P (E∗

1 = 0 | E1 = 1)P (E1 = 1)

= θP (E1 = 0) + (1− φ)P (E1 = 1)

= θP10 + (1− φ)P11. (2.6)
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The probability that a true event does not occur at time t2 given that the event did

not happen at the first time t1,

P ∗
20|10 = P (E∗

2 = 0 | E∗
1 = 0)

= P (E∗
2 = 0 | E2 = 0, E∗

1 = 0)P (E2 = 0 | E∗
1 = 0)

+ P (E∗
2 = 0 | E2 = 1, E∗

1 = 0)P (E2 = 1 | E∗
1 = 0).

By assumptions (2) and (3),

P ∗
20|10 = P (E∗

2 = 0 | E2 = 0)P (E2 = 0 | E∗
1 = 0)

+ P (E∗
2 = 0 | E2 = 1)P (E2 = 1 | E∗

1 = 0)

= θP (E2 = 0 | E∗
1 = 0)

+ (1− φ)P (E2 = 1 | E∗
1 = 0) (2.7)

Our main goal is to express each of the terms on the right hand side of equation (2.7) in

terms of θ, φ, and observed marginal and transitional probabilities so that they can be

estimated from the data given θ and φ. We first work with the term P (E2 = 0 | E∗
1 = 0).

Conditioning on {E∗
1 = 0},

P (E2 = 0 | E∗
1 = 0) = P (E2 = 0 | E1 = 0, E∗

1 = 0)× P (E1 = 0 | E∗
1 = 0)

+P (E2 = 0 | E1 = 1, E∗
1 = 0)× P (E1 = 1 | E∗

1 = 0).

By assumption(4),

P (E2 = 0 | E∗
1 = 0) = P (E2 = 0 | E1 = 0)× P (E∗

1 = 0 | E1 = 0)× P (E1 = 0)

P (E∗
1 = 0)

+P (E2 = 0 | E1 = 1)× P (E∗
1 = 0 | E1 = 1)× P (E1 = 1)

P (E∗
1 = 0)

,

=
P20|10θP10

P ∗
10

, (2.8)

where the second term in the second-to-last line in equation (2.8) is zero since, P (E2 =

0 | E1 = 1) = 0. Thus, from equation (2.7),

P ∗
20|10 = P (E∗

2 = 0 | E∗
1 = 0) = θζ(1) + (1− φ)(1− ζ(1)),

where ζ(1) = θP20|10(
P10

P ∗
10

).
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Now, the probability that a true event does not occur at time t3 given that the event

did not occur at the earlier times,

P ∗
30|20,10 = P (E∗

3 = 0 | E3 = 0, E∗
2 = 0, E∗

1 = 0)P (E3 = 0 | E∗
2 = 0, E∗

1 = 0)

+ P (E∗
3 = 0 | E3 = 1, E∗

2 = 0, E∗
1 = 0)P (E3 = 1 | E∗

2 = 0, E∗
1 = 0).

By assumptions (2) and (3),

P ∗
30|20,10 = P (E∗

3 = 0 | E3 = 0)P (E3 = 0 | E∗
2 = 0, E∗

1 = 0)

+ P (E∗
3 = 0 | E3 = 1)P (E3 = 1 | E∗

2 = 0, E∗
1 = 0)

= θP (E3 = 0 | E∗
2 = 0, E∗

1 = 0)

+ (1− φ)(E3 = 1 | E∗
2 = 0, E∗

1 = 0). (2.9)

Again, our main goal is to express each of the terms on the right hand side of equation

(2.9) in terms of θ, φ, and observed marginal and transitional probabilities. Let us

consider the term P (E3 = 0 | E∗
2 = 0, E∗

1 = 0). Conditioning on {E∗
2 = 0} and

{E∗
1 = 0},

P (E3 = 0 | E∗
2 = 0, E∗

1 = 0) = P (E3 = 0, E2 = 0, E1 = 0 | E∗
2 = 0, E∗

1 = 0)

= P (E3 = 0 | E∗
2 = 0, E∗

1 = 0, E2 = 0, E1 = 0)

× P (E2 = 0 | E∗
2 = 0, E∗

1 = 0, E1 = 0)

× P (E1 = 0 | E∗
2 = 0, E∗

1 = 0)

By assumption (4),

P (E3 = 0 | E∗
2 = 0, E∗

1 = 0) = P (E3 = 0 | E2 = 0, E1 = 0)

× P (E∗
2 = 0, E∗

1 = 0 | E2 = 0, E1 = 0)P (E2 = 0, E1 = 0)

P (E∗
2 = 0, E∗

1 = 0, E1 = 0)

× P (E∗
2 = 0, E∗

1 = 0, E1 = 0)

P (E∗
2 = 0, E∗

1 = 0)

=
P30|20,10θP20|10P10

P ∗
20|10P

∗
10
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Thus, from equation (2.9),

P ∗
30|20,10 = θζ(2) + (1− φ)(1− ζ(2)).

where ζ(2) =
θP30|20,10P20|10P10

P ∗
20|10

P ∗
10

= θP30|20,10(
P20|10P10

P ∗
20|10

P ∗
10

).

Continuing the same way we can write,

P ∗
j0|(j−1)0,...,10 = θζ(j−1) + (1− φ)(1− ζ(j−1)),

where

ζ(j) = θ

j∏

k=1

Pk0|(k−1)0,...,10

P ∗
k0|(k−1)0,...,10

× P(j+1)0|j0,...,10, j = 1, ..., K − 1.

and ζ(0) = P10.

With the true conditional probabilities expressed as a function of θ, φ, and observed

probabilities, we are ready to state the main result.

Theorem 1. Under assumptions (1)-(4), the probability of having a true event by time

tj can be expressed as:

P ∗
j1 = P ∗

(j−1)1 + P ∗
j1|(j−1)0,...,10 ×

j∏

l=1

P ∗
(l−1)0|(l−2)0,...,10, j = 1, 2, . . . , K. (2.10)

Proof. (By Mathematical induction)

First, we note that Equation (2.10) holds for j = 1, since P ∗
11 = P ∗

01 + P ∗
11|00P

∗
00. This

follows from the fact that at the start of follow-up everyone is event free, and hence

P ∗
01 = 0 = 1 − P ∗

00. Assume that equation (2.10) is true for j=m. Now, the probability

that there will be a true event by t(m+1) is

P ∗
(m+1)1 = P (T ∗ ≤ tm+1)

= P (T ∗ ≤ tm) + P (tm < T ∗ ≤ tm+1)

= P ∗
m1 + (1− P ∗

m1)P (E
∗
m+1 = 1 | E∗

j = 0, j = 1, 2, . . . ,m)

= P ∗
m1 + P ∗

m0P
∗
(m+1)1|m0,...,00.

22



P ∗
m0 = P (E∗

j = 0 ∀j = 0, 1, 2, . . . ,m)

= P (E∗
0 = 0)P (E∗

1 = 0 | E∗
0 = 0)P (E∗

2 = 0 | E∗
1 = 0, E∗

0 = 0)× · · · ×

× P (E∗
m = 0 | E∗

m−1 = 0, . . . , E∗
0 = 0)

= P ∗
00P

∗
10|00P

∗
20|10,00. . . . .P

∗
m0|(m−1)0,...,00

=
m∏

l=1

P ∗
l0|(l−1)0,...,00

∴ P ∗
(m+1)1 = P ∗

m1 +

{
m∏

l=1

P ∗
l0|(l−1)0,...,00

}
P ∗
(m+1)1|m0,...,00.

This completes the proof.

Theorem 1 along with Lemma 2.3.1, provides the necessary tools to estimate the

survival distribution of T ∗ at the evaluation times t1, t2, t3, . . . , tK . Note from equation

(2.6) that P ∗
11 = 1 − {θP10 + (1 − φ)P11}. P11 is the probability that a potentially

misclassified event is observed at evaluation time t1. Therefore, P̂11 =
∑n

i=1
Ei1

n
. Hence,

P̂ ∗
11 =

∑n

i=1 {1− [θ(1− Ei1) + (1− φ)Ei1]}
n

.

To estimate P ∗
21, we start with the recursive formula P ∗

21 = P ∗
11 + P ∗

10P
∗
21|10. By equation

(2.7), P ∗
21|10 = 1 − P ∗

20|10 = 1 − θζ(1) − (1 − φ)(1 − ζ(1)), where ζ(1) =
θP20|10P10

P ∗
10

. Now, a

simple estimate of P20|10 is given by P̂20|10 =
∑n

i=1
(1−Ei2)∑n

i=1
(1−Ei1)

. Therefore,

P̂ ∗
21 = P̂ ∗

11 + P̂ ∗
10P̂

∗
21|10,

where P̂ ∗
21|10 = 1− θζ̂(1)− (1−φ)(1− ζ̂(1)) with ζ̂(1) =

θP̂20|10P̂10

P̂ ∗
10

. Continuing this way, we

can alternate between Lemma 2.3.1 and Thereom 1 to obtain the estimates of P ∗
j1, j =

1, 2, . . . , K. Let P̂ ∗
1 = (P̂ ∗

11, P̂
∗
21, . . . , P̂

∗
K1)

T denote the vector of the parameter estimates.

Variance of this estimator can be obtained using the methods of M-estimator as detailed
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by Stefanski and Boos (2002). P̂ ∗
1 can be written as a solution to the estimating equation

∑n

i=1 ψ(Ẽi; P̂
∗
1 ) = 0, where

ψ(Ẽi;P
∗
1 ) =




φ+ (1− θ − φ)(1− Ei1)− P ∗
11

P ∗
11 + φ(1− P ∗

11) + θ(1− θ − φ)(1− Ei2)(1− Ei1)− P ∗
21

...

P ∗
11 + φ[(K − 1)−∑K−1

m=1 P
∗
m1] + θ(1− θ − φ)[

∑K−1
g=1

∏g+1
k=1 (1− Eik)]− P ∗

K1




Then the variance of the estimator P̂ ∗
1 can be estimated using the sandwich estima-

tor. Since M-estimators are consistent and asymptotically normally distributed, P̂ ∗
1 will

be consistent and asymptotically normal. Point-wise confidence intervals for survival

estimates can be constructed using Wald’s method.

2.4 SIMULATION STUDY

In this section we evaluate the large sample properties of the proposed method in small

to moderately large samples. We simulated data from a population with a design similar

to the VIRAHEP-C study. Each individual is followed and evaluated a maximum of

K = 8 times or until an event is observed, at which point that individual is no longer

followed. We specify the population of interest as follows: The true survival distribution

of T ∗, the time to first event in the absence of classification error is specified by the true

survival probabilities of the event at the 8 evaluation times, namely, P∗
0 = (1 − P∗

1) =

(0.550, 0.400, 0.350, 0.325, 0.300, 0.275, 0.250, 0.200)T . For given values of P∗
0, θ and φ,

one can obtain the observed conditional probabilities through the results given in Lemma

2.3.1. At the first evaluation time tj, P10 =
(1−φ)−P ∗

10

(1−θ−φ)
. For time points t2, t3, . . . , tK

Pj0|(j−1)0,...,10 =

∑j−1
m=1

∏m−1
l=0 P ∗

l0|(l−1)0,..,10(1− P ∗
m0|(m−1)0,..,10) + φ

∏j−1
m=1 P

∗
m0|(m−1)0,..,10 − P ∗

j1

θ(θ + φ− 1)
∏j−1

m=1 Pm0|(m−1)0,..,10

.
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Note that in this data generation process, the parameters (θ, φ and P∗
0) need to be chosen

carefully so that the probabilities lie between 0 and 1.

We use these conditional probabilities to generate 5000 Monte Carlo samples; n

error-prone observations were drawn from the true population described above with θ

and φ ranging from (1.00, 1.00) to (0.90, 0.80). Table 2 presents the results for n = 250.

First consider the case of no misclassification (θ and φ equal to 1.0). Here, the proposed

estimator is identical to the EDF estimator, as expected. The proposed estimator of the

true survival probabilities are unbiased. The standard errors of the estimators are close

to the Monte-Carlo standard errors, showing that the estimated variance is consistent.

The coverage probabilities at all time points closely matched the nominal confidence of

95%.

When θ=1 and φ = 0.9, the EDF estimator is biased; at timepoint t1 it is 5.0%

compared to that at timepoint t8 (0.5%). The proposed estimator of the true survival

probabilities were unbiased. The standard errors of the estimators are close to the

Monte-Carlo standard errors, again, showing that the estimated variance of the proposed

estimator is consistent. The coverage probabilities at all time points closely matched the

nominal confidence of 95%. In the case where θ = 1 and φ = 0.8 the EDF estimator

shows even larger bias compared to the previous scenario where φ was set to 0.90. The

bias at timepoint t1 is 11.2% whereas at timepoint t10 it is 1.3%. On the other hand, even

with such decrease in PPV the proposed estimators of the true survival probabilities and

their standard errors remained unbiased. The coverage probabilities of 95% confidence

intervals ranges between 94.5% and 94.9%.

When θ was reduced to 0.95 with φ fixed at 1.0, the bias of the EDF estimator

ranged from 2.8% at timepoint t1 to 2.1% at timepoint t8. The proposed estimator of

the true survival probabilities were unbiased, its standard errors matched the Monte-

Carlo standard errors, and the coverage probabilities were between 94.6% and 95.3%.

Table 2 shows that in the presence of error-prone events the estimates from the EDF

method are biased. This bias increases as the PPV and NPV of the diagnostic tool

decreases. Table 3 presents the results for n = 500. The results are similar to Table 2,

except that (expectedly) the standard errors were smaller compared to Table 2 and the
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coverage probabilities at all time points were even closer to the nominal confidence of

95%. The results from the two tables described above show that if the NPV and PPV

of the diagnostic tool are known, the true survival rates can be estimated with no bias

using the proposed estimator.

2.5 ANALYSIS OF THE VIRAHEP-C DATA

All participants in the VIRAHEP-C study (Conjeevaram et al, 2006) were chronically

infected with Hepatitis C virus (HCV) of genotype 1. The study was designed to test

the hypothesis that African Americans respond less well to anti-viral therapy than Cau-

casians. Viral levels were measured at Days 1, 2, 3, 7, and weeks 2, 3, 4, 8, 12, 24 and 48.

One of the aims of the study was to investigate the time to viral negativity. True viral

negativity is defined as HCV RNA in serum at or below limit of detection (50 IU/ml)

by a qualitative assay. Therefore, in the notation of this paper, E∗ = {viral levels ≤ 50

IU/ml by qualitative assay}. The potentially misclassified events are obtained from the

quantitative assay, hence E = {viral levels ≤ 600 IU/ml by quantitative assay}. Viral

level measurements at Day 3 and Week 3 were discontinued due to limited resources af-

ter the study recruited about one-third of the participants. We therefore excluded those

time points from our analysis. In addition, we limited our analysis to the evaluation

points up to 24 weeks. Thus, the final data consist of the following visits: Days 1, 2, 7,

and weeks 2, 4, 8, 12 and 24.

The definition of the true and observed event above implies that if E = 0 then

E∗ = 0. This is because if viral levels were greater than 600 IU/ml by the quantitative

PCR, they will be detected by the qualitative PCR. Therefore, θ = P (E∗ = 0 | E =

0) = 1. However, if the quantitative PCR detect viral levels of less than 600 IU/ml,

only a fraction of the results will be in agreement with the qualitative PCR. Therefore,

φ = P (E∗ = 1 | E = 1) < 1. To calculate φ, we used the data from the timepoints at

which both qualitative and quantitative assay were performed. Only 31% of the negative

results from the quantitative assay (i.e. viral level < 600 IU/ml) were also negative by
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the qualitative assay (i.e. viral level < 50 IU/ml). Therefore φ was estimated as 0.31.

Thus, for our data analysis, θ is set to 1 and φ to 0.31.

If an evaluation was missing but was followed by an occurrence or nonoccurrence of

an event, then the missing evaluation result was set to a nonoccurrence, this is because

we are interested in the time to the first event. Our methodology thus far only deals with

individuals who are not lost to follow-up, as a consequence, participants with incomplete

data were excluded from the analysis resulting in a total of 355 participants [171 African

Americans (AA); 184 Caucasians (CA)]. The results of the data analysis are shown in

Table 4. If the less sensitive quantitative assay results are used and an EDF estimator is

used to estimate the survival function of time to virus negativity, then at Weeks 2 and 24,

87.9% and 23.7% of the patients are estimated to remain viral positive. These numbers

underestimate the true survival function as seen by the corresponding estimates of 94.5%

and 49.0% respectively using our proposed method; the EDF estimator and the proposed

estimator deviates substantially as time progresses and the event rates increase.

We further investigate results of both methods by testing for differences between

African Americans and Caucasians; tests of statistical significance were calculated by

Wald’s method. For example, the EDF estimate of the probability of survival at Day

1 for AA and CA are 99.4% and 96.7% respectively whereas our proposed estimates of

the probability of survival at the same time of interest are 99.8% for AA and 98.9% for

CA (Table 4). Figure 2 shows a graphical representation of the proportion remaining

viral positive at different time points by race. Although the racial difference in estimated

survival was relatively larger for the EDF estimates as time progressed, compared to the

proposed estimates, the differences were not statistically significant by either method.

2.6 DISCUSSION

Analysis of time-to-event data is common in biomedical research. The timing and cu-

mulative incidence of a disease are essential factors in physician and patient decision

process in all phases of an illness. Accurate rates of survival in advanced chronic dis-
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eases such as Alzheimer’s disease or cancer may have increased importance as patients

approach the end of life, since this presents a time to reconsider the goals of treatment

which for example may change from prolongation of life to alleviating pain. In time to

event analysis with a binary outcome, such as the one analyzed in this article, event mis-

classification may occur. We have shown that when there is misclassification, frequently

used techniques of estimating the survival probabilities e.g. EDF estimator, are biased.

We have proposed a new method to estimate the survival probabilities with no bias by

incorporating the NPV and PPV of the diagnostic tool into a product-limit-type estima-

tor. An estimator of the variance of the proposed estimator is also given and shown to

be consistent through simulation studies. The proposed method may not provide valid

estimates when the PPVs and NPVs are very small, however this may not be a problem

since diagnostic tools with such high rates of misclassification are rarely used in prac-

tice. Our method provides statisticians with a tool to accurately estimate the survival

probabilities in the presence of misclassified events.

While the methods proposed here are useful, they cannot be used when individuals

are lost to follow up. Censoring complicates the formulas derived in this paper, this

problem will be considered in future work.

2.7 DERIVATION OF ESTIMATING EQUATIONS

The estimated probability of truly having an event at time t1 is

P̂ ∗
11 = 1− {θP̂10 + (1− φ)P̂11} (2.11)

= φ+ (1− θ − φ)P̂10

= φ+ (1− θ − φ)(1− Ei1).
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The estimated probability of truly having an event at time t2 is

P̂ ∗
21 = P̂ ∗

11 + P̂ ∗
10 ∗ P̂ ∗

21|10 (2.12)

= P̂ ∗
11 + P̂ ∗

10 ∗ {1− θζ(1) − (1− φ)(1− ζ(1))}

= P̂ ∗
11 + P̂ ∗

10 ∗ {1− (
θ2P̂20|10P̂10

P̂ ∗
10

)− (1− φ)(1− θP̂20|10P̂10

P̂ ∗
10

)}

= P̂ ∗
11 + φ(1− P̂ ∗

11) + θ(1− θ − φ)P̂20|10P̂10

= P̂ ∗
11 + φ(1− P̂ ∗

11) + θ(1− θ − φ)(1− Ei2)(1− Ei1).

The estimated probability of truly having an event at time t3 is

P̂ ∗
31 = P̂ ∗

11 + P̂ ∗
10 ∗ P̂ ∗

21|10 + P̂ ∗
10 ∗ P̂ ∗

20|10P̂
∗
31|20|10 (2.13)

= P̂ ∗
11 + P̂ ∗

10 ∗ {1− θζ(2) − (1− φ)(1− ζ(2))}

= P̂ ∗
11 + P̂ ∗

10 ∗ {1− (
θ2P̂30|20|10P̂20|10P̂10

P̂ ∗
20|10 ∗ P̂ ∗

10

)− (1− φ)(1− θP̂30|20|10P̂20|10P̂10

P̂ ∗
20|10 ∗ P̂ ∗

10

)}

= P̂ ∗
11 + (2− P̂ ∗

11 − P̂ ∗
21) + θ(1− θ − φ)(P̂30|20|10P̂20|10P̂10 + P̂20|10P̂10)

= P̂ ∗
11 + (2− P̂ ∗

11 − P̂ ∗
21) + θ(1− θ − φ)((1− Ei3)(1− Ei2)(1− Ei1) + (1− Ei2)(1− Ei1)).

The above process is repeated to attain subsequent time points. The final formula for

the estimated probability of truly having an event at time tj is

P̂ ∗
j1 = P̂ ∗

11 + φ[(K − 1)−
K−1∑

m=1

P̂ ∗
m1] + θ(1− θ − φ)[

K−1∑

g=1

g+1∏

k=1

(1− Eik)]. (2.14)

2.8 TABLES AND FIGURES
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Table 2: Simulation results for estimating P (T ∗ > tk, k = 1, 4, 8) based on 5000 Monte Carlo (MC) samples of size 250. EST is

the MC mean of the proposed estimate assuming θ and φ known, SE is the MC mean of the estimated standard errors, MCSE

is the standard error of MC estimates, CP is the empirical coverage probablity, EDF is the Empirical distribution function

estimate ignoring misclassification.

(θ = 1.00) (θ = 0.95) (θ = 0.90)

Parameter Truth EDF EST MCSE SE CP% EDF EST MCSE SE CP% EDF EST MCSE SE CP%

(φ = 1) P (T ∗ > t1) 0.550 0.549 0.549 0.031 0.031 94.8 0.578 0.549 0.029 0.029 94.6 0.611 0.550 0.028 0.028 94.9

P (T ∗ > t4) 0.325 0.324 0.324 0.029 0.030 95.4 0.359 0.324 0.028 0.027 95.3 0.400 0.324 0.025 0.025 94.8

P (T ∗ > t8) 0.200 0.199 0.199 0.024 0.025 95.2 0.221 0.199 0.024 0.024 95.2 0.247 0.199 0.021 0.022 94.4

(φ = 0.9) P (T ∗ > t1) 0.550 0.500 0.549 0.029 0.028 94.7 0.528 0.549 0.027 0.026 94.7 0.562 0.549 0.025 0.025 94.6

P (T ∗ > t4) 0.325 0.322 0.325 0.030 0.029 94.2 0.358 0.324 0.028 0.027 94.5 0.402 0.324 0.025 0.025 94.6

P (T ∗ > t8) 0.200 0.195 0.199 0.025 0.024 94.4 0.216 0.199 0.023 0.023 94.6 0.243 0.199 0.022 0.021 94.9

(φ = 0.8) P (T ∗ > t1) 0.550 0.438 0.550 0.024 0.025 94.5 0.466 0.550 0.023 0.023 95.5 0.499 0.549 0.022 0.022 94.8

P (T ∗ > t4) 0.325 0.318 0.324 0.028 0.029 94.9 0.358 0.325 0.026 0.027 95.0 0.404 0.324 0.024 0.024 94.5

P (T ∗ > t8) 0.200 0.187 0.199 0.024 0.024 94.5 0.211 0.200 0.023 0.023 95.3 0.238 0.199 0.021 0.020 94.8
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Table 3: Simulation results for estimating P (T ∗ > tk, k = 1, 4, 8) based on 5000 Monte Carlo (MC) samples of size 500. EST is

the MC mean of the proposed estimate assuming θ and φ known, SE is the MC mean of the estimated standard errors, MCSE

is the standard error of MC estimates, CP is the empirical coverage probablity, EDF is the Empirical distribution function

estimate ignoring misclassification.

(θ = 1.00) (θ = 0.95) (θ = 0.90)

Parameter Truth EDF EST MCSE SE CP% EDF EST MCSE SE CP% EDF EST MCSE SE CP%

(φ = 1) P (T ∗ > t1) 0.550 0.549 0.549 0.022 0.022 94.2 0.578 0.549 0.021 0.020 95.1 0.611 0.550 0.019 0.019 94.9

P (T ∗ > t4) 0.325 0.324 0.324 0.021 0.020 94.8 0.359 0.324 0.019 0.019 94.6 0.401 0.325 0.017 0.018 95.8

P (T ∗ > t8) 0.200 0.199 0.199 0.018 0.018 94.7 0.221 0.199 0.016 0.016 95.3 0.247 0.199 0.015 0.016 95.6

(φ = 0.9) P (T ∗ > t1) 0.550 0.499 0.549 0.020 0.020 94.7 0.529 0.549 0.019 0.018 95.1 0.562 0.549 0.018 0.017 94.9

P (T ∗ > t4) 0.325 0.321 0.324 0.020 0.021 95.2 0.359 0.324 0.020 0.019 94.7 0.403 0.324 0.018 0.017 94.5

P (T ∗ > t8) 0.200 0.194 0.199 0.018 0.018 95.1 0.216 0.199 0.016 0.016 94.8 0.243 0.199 0.015 0.015 94.8

(φ = 0.8) P (T ∗ > t1) 0.550 0.438 0.549 0.018 0.017 94.9 0.467 0.549 0.016 0.017 95.8 0.499 0.549 0.016 0.016 94.3

P (T ∗ > t4) 0.325 0.319 0.325 0.020 0.020 94.5 0.358 0.324 0.019 0.019 95.2 0.404 0.324 0.017 0.017 94.6

P (T ∗ > t8) 0.200 0.188 0.200 0.017 0.017 95.2 0.211 0.200 0.015 0.016 95.1 0.238 0.199 0.015 0.015 94.9
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Table 4: Analysis results of the estimation of survival probabilities for time to viral negativity at selected time points. All is

the overall estimated survival estimates by both methods. AA (n=171) and CA (n=184) stands for African Americans and

Caucasians, respectively. EDF is the Empirical distribution function estimated survival ignoring misclassification. Proposed is

our proposed estimate of the true survival. Right below the estimated survival probabilities are the 95% confidence intervals of

the estimates; p-value compares survival rates between groups at the designated time point.

EDF Proposed

Parameter All AA CA p-value All AA CA p-value

P (T ∗ > 1) 0.980 0.994 0.967 0.24 0.993 0.998 0.989 0.23

(0.966,0.995) (0.983,1.00) (0.942,0.993) (0.989,0.998) (0.994, 1.000) (0.981, 0.997)

P (T ∗ > 14) 0.879 0.912 0.848 0.25 0.945 0.962 0.930 0.24

(0.845,0.913) (0.869,0.954) (0.796,0.899) (0.923,0.962) (0.942, 0.982) (0.904, 0.956)

P (T ∗ > 168) 0.237 0.333 0.147 0.08 0.490 0.575 0.412 0.06

(0.192,0.281) (0.263,0.404) (0.096,0.198) (0.458,0.523) (0.525, 0.623) (0.372, 0.456)
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Figure 1: Examples of missclassification. E∗ is the true occurence of an event and E is the potentially misclassified event. Both

E∗ and E can take values 1 or 0, indicating the occurence and non-occurence of the event, respectively.
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Figure 2: Estimated survival curves for time to viral negativity at selected time points for the VIRAHEP-C study. (Left panel:

EDF estimates; right panel: proposed method).
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3.0 DISCRETE SURVIVAL ANALYSIS WITH MISCLASSIFIED

EVENTS AND WITH LOST-TO-FOLLOW-UP

3.1 INTRODUCTION

Incomplete follow-up is common in longitudinal studies for which time-to-event data are

of primary interest. The structure of our framework is that event free individuals par-

ticipate in a study and are followed by clinical visits until the occurrence of the event

of interest or the individual is lost to follow-up or untill the end of the study. In such

cases, some individuals drop out of the study without adequate follow-up. Also, since

the number of clinical visits is not unlimited, there are some individuals who will be

event free at the conclusion of the study. These scenarios bring about the important

issue of right censored data.

Data from epidemiological studies are frequently used to estimate the survival distri-

bution of the time to event of interest. Methods developed in Section 2 will not work for

this purpose as they are not equipped to handle censored data. To illustrate the effects

of drop-out on our proposed estimator from Theorem 2.10 (Chapter 2) which does not

account for indivividuals lost to follow-up, Table 5 shows results from a simulation study

of complete-case analysis. Under the same framework as in section 2.4 we generate 5000

Monte Carlo samples; n error-prone observations were drawn from the true population

as in section 2.4 with θ and φ ranging from (1.00, 1.00) to (0.90, 0.90). We consider a

sample for which 35% of the observations are lost to follow-up. Table 5 presents the

results for n = 250. First consider the case of no misclassification (θ and φ equal to 1.0),

even in the case of no misclassification error, the proposed estimator is biased to the true

survival probabilities. In fact for all specified ranges of θ and φ the proposed estimator
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is biased. The results of Table 5 clearly show that new methods must be developed to

handle individuals with incomplete follow-up.

The Kaplan-Meier (KM) product limit estimator Kaplan and Meier (1958) is a com-

monly used method for estimating the survival function in the presence of censoring.

Greenwood’s formula (Greenwood, 1926), is widely utilized to obtain an estimate of the

variance of the KM estimator. However, when the outcome of interest is subject to

misclassification, the true survival distribution is latent; thus, the KM estimator pro-

duces inaccurate conclusions. We approach the problem of estimating the true (latent)

survival distribution by constructing a Kaplan-Meier-like estimator; this estimator will

take into account the misclassification probabilities (NPV and PPV) and will also handle

the issue of right censoring. We provide an expression for the variance of the proposed

estimator and a formula for the variance estimate. Unlike Greenwood’s variance formula,

this variance estimate does not assume that the conditional probabilities of survival are

asymptotically independent.

This article is organized as follows. We continue with the same notation, data, and

assumptions as in Section 2.2. In Section 3.2 we propose an estimate of the true survival

function and derive its formulation. We also derive the variance of our true survival

rate estimator using methods due to Breslow and Crowley (1974). In addition, we show

the consistency of our estimator using methods provided by Gill (1983). We evaluate

the large-sample properties of the proposed methods through simulations in Section 3.3.

In Section 3.4 we appply our proposed methods to analyze data from the VIRAHEP-C

study. We conclude our analysis with a discussion in Section 3.5. A brief overview of

future work is introduced in Section 4.

3.2 INFERENCE FROM INCOMPLETE DATA: PRESENCE OF

DROP-OUT

To deal with censoring first note that no subjects have an event at the beginining of

the follow-up (t0). Thus P ∗
01 = P (T ∗ ≤ t0) = P (E∗

0 = 1) = 0. From Equation (2.6) of
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chapter (2) the probability that an event does not occur by time t1 is

P ∗
10 = P (E∗

1 = 0) = θP10 + (1− φ)P11

= (1− φ)− (1− θ − φ)P10.

Setting j=2 in Theorem 2.10, Chapter 2, and taking the compliment, the unconditional

probability that a true event does not occur by time t2 is,

P ∗
20 = P ∗

20|10P
∗
10.

Now, using Lemma 2.3.1,

P ∗
20 = {θζ(1) + (1− φ)(1− ζ(1))}P ∗

10,

where ζ(1) = θP20|10(
P10

P ∗
10

). Further simplification results in the expression

P ∗
20 = (1− φ)2 − (1− φ)(1− θ − φ)P10 − θ(1− θ − φ)P20.

A similar derivation shows that the unconditional probability that a true event does not

occur by time t3 is,

P ∗
30 = (1− φ)3 − (1− φ)2(1− θ − φ)P10 + (1− φ)θ(θ + φ− 1)P20 − θ(1− θ − φ)P30.

The following theorem provides a general expression for the probability of not having an

event by a specific time:

Theorem 2. Under assumptions (2.1)-(2.4), the probability of not having a true event

by time tk can be expressed as:

P ∗
k0 =

k∑

j=0

Pj0(1− φ)k−jθ1(j>1)(θ + φ− 1)1(j>0), k = 1, 2, . . . , K, (3.1)

= aT
k (θ, φ)P0,

37



where P0 = (P00, P10, P20, . . . , PK0)
T , ak(θ, φ)

T = [a0k(θ, φ), a1k(θ, φ), . . . , aKk(θ, φ)],

and

ajk =





(1− φ)k−jθ1(j>1)(θ + φ− 1)1(j>0), j = 0, 1, . . . , k

0, j = k + 1, . . . , K.
(3.2)

Theorem 3.1 gives an expression for the true survival rates (P ∗
j0) as a formulation of the

error prone survival vector (P0). Thus, P ∗
j0 can be estimated through P0, elements of

which can be estimated by the standard Kaplan-Meier approach namely,

P̂j0 =
∏

k≤j

(
1−

∑n

i=1Eik∑n

i=1

(
1− Ei(k−1)

)
)
, j = 1, 2, . . . , K, (3.3)

Thus an expression for the estimate of the true survival distribution is given as:

P̂ ∗
k0 =

k∑

j=0

P̂j0(1− φ)k−jθ1(j>1)(θ + φ− 1)1(j>0), k = 1, 2, . . . , K,

= aT
k (θ, φ)P̂0, (3.4)

where P̂0 = (P̂00, P̂10, P̂20, . . . , P̂K0)
T .

Theorem 3. (Consistency) Under assumptions (2.1)-(2.4), the estimators defined in

(3.4) are consistent.

Proof. The result follows from the fact that KM estimator P̂0 of P0 are consistent (Gill,

1983) and that the estimator P̂ ∗
k0 is a linear combination of P̂0.

The next step is to derive a formula for the variance of our survival rate estimator.

We adapt the techniques of Breslow and Crowley (1974) to estimate the variance of

our survival rate estimator. They studied properties of the life table and product limit

estimates under random censorship and proposed rigorous derivations of many of its for-

mal large sample properties. Their study is particularly important to our investigation

because the type of life table considered in their paper is the cohort table used for esti-

mation of a survival distribution from right censored data. A useful result of their work

is the derivation of the asymptotic covariance between K-M estimates at different time

points. We use this result to derive the asymptotic variance of the KM estimates and
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thus obtain the asymptotic covariance matrix of our proposed estimator in the presence

of right censoring and event misclassification.

Theorem 4. (Asymptotic normality) Under assumptions (2.1)-(2.4), the estimators de-

fined in (3.4) are asymptotically normal with mean P ∗
k0 and variance

V ar(P̂ ∗
k0) = aT

k (θ, φ)Cov(P̂0)ak(θ, φ),

where,

Cov(P̂0) =




V ar(P̂10) Cov(P̂10, P̂20) . . . Cov(P̂10, P̂K0)

Cov(P̂20, P̂10) V ar(P̂20) . . . Cov(P̂20, P̂K0)
...

. . .
...

Cov(P̂K0, P̂10) . . . . . . V ar(P̂K0)




;

the elements of Cov(P̂0) are given by
Cov(Zj ,Zk)

n
.

Proof. By Theorem 5 of Breslow and Crowley (1974), Let tK <∞ satisfy PK1 < 1. Then

the random variable
√
n(P̂j0−Pj0), for 0 < j < k < K, converges weakly to a mean zero

normal random variable Zj , moreover,

Cov(Zj, Zk) = (1− Pj1)(1− Pk1)

j∑

t=0

(1− Pt1)
−2(1−H)−1P (Et = 1), j ≤ k

whereH is right censoring distribution drawn independently of Pj1; Theorem 5 of Breslow

and Crowley (1974) proved the Kaplan-Meier estimator to be asymptotically normal.

Our estimator of the true survival distribution is a linear combination of the Kaplan-

Meier estimator, therefore, it follows that P̂ ∗
k0 is also asymptotically normal.
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The jth diagonal element of Cov(P̂0) is estimated by Greenwood’s formula for vari-

ance of the cumulative probability of survival given by,

ˆV ar(P̂j0) = P̂ 2
j0

∏

k≤j

( ∑n

i=1Eik∑n

i=1(1− Ei(k−1))(
∑n

i=1(1− Ei(k−1))−
∑n

i=1Eik)

)
, j = 1, 2, . . . , K,

(3.5)

and the off-diagonal elements of Cov(P̂0) is estimated by the following,

ˆCov(P̂j0, P̂k0) =
(1− P̂k1)

(1− P̂j1)
ˆV ar(P̂j0), j < k; j = 1, . . . , K. (3.6)

3.3 SIMULATION STUDY

We evaluate the large sample properties of our proposed method in small to mod-

erately large samples. As in the case with no lost-to-follow-up, we simulated data

from a population with a design similar to the VIRAHEP-C study. Each individ-

ual was followed and evaluated a maximum of K = 8 times or until an event is ob-

served, at which point that individual is no longer followed. The true survival distri-

bution of T ∗, the true time to first event in the absence of classification error is spec-

ified by the true survival probabilities of the event at the 8 evaluation times, namely,

P∗
0 = (1 − P∗

1) = (0.550, 0.400, 0.350, 0.325, 0.300, 0.275, 0.250, 0.200)T . For given values

of P∗
0, θ and φ, one can obtain the observed conditional probabilities through the results

given in Lemma 2.3.1. At the first evaluation time tj, P10 =
(1−φ)−P ∗

10

(1−θ−φ)
. For time points

t2, t3, . . . , tK

Pj0|(j−1)0,...,10 =

∑j−1
m=1

∏m−1
l=0 P ∗

l0|(l−1)0,..,10(1− P ∗
m0|(m−1)0,..,10) + φ

∏j−1
m=1 P

∗
m0|(m−1)0,..,10 − P ∗

j1

θ(θ + φ− 1)
∏j−1

m=1 Pm0|(m−1)0,..,10

.

Note that in this data generation process, the parameters (θ, φ and P∗
0) need to be chosen

carefully so that the probabilities lie between 0 and 1.
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These conditional probabilities were used to generate 5000 Monte Carlo samples; n

error-prone observations were drawn from the true population described above with θ

and φ ranging from (1.00, 1.00) to (0.90, 0.80). Additionally, a number of participants

were allowed to drop out for the purpose of illustration based on the following uniform

distribution: U ∼ (a, b). Choices of parameters (a, b) = (0, 15) gave us approximate

drop-out rate of 35%. Table 6 presents the results for n = 250. First consider the case

of no misclassification (θ and φ equal to 1.0). The proposed estimator is identical to the

KM estimator, as expected. The proposed estimator of the true survival probabilities are

unbiased. The standard errors of the estimator are close to the Monte-Carlo standard

error, showing that the estimated variance is consistent. The coverage probabilities at

all time points closely matched the nominal confidence of 95%.

We introduce misclassification errors, first consider changing φ keeping θ fixed. When

θ=1 and φ = 0.9, the KM estimator is biased; at timepoint t1 it is 4.7% compared to

that at timepoint t8 (0.2%). The proposed estimator of the true survival probabilities

are unbiased. The standard error of this estimator are close to the Monte-Carlo standard

error, showing that the estimated variance of the proposed estimator is consistent. The

coverage probabilities at all time points closely matched the nominal confidence of 95%.

In the case where θ = 1 and φ = 0.8 the KM estimator shows even larger bias compared

to the previous scenario. The bias at timepoint t1 is 10.8% whereas at timepoint t10 it

is 0.9%. On the other hand, even with such decrease in PPV the proposed estimator of

the true survival probabilities and their standard error remain unbiased. The coverage

probabilities of 95% confidence intervals range between 94.5% and 95.2%.

When θ was reduced to 0.95 with φ fixed at 1.0, the bias of the KM estimator is 3.1%

at timepoint t1, 3.8% at timepoint t4 and at timepoint t8 the bias is 2.4%. The proposed

estimator of the true survival probabilities are unbiased, its standard error matched the

Monte-Carlo standard error, and the coverage probabilities were between 94.1% and

94.9%. Table 6 shows that in the presence of error-prone events the estimates from the

KM method are biased. This bias increases as the PPV and NPV of the diagnostic tool

decreases. Table 7 presents the results for a sample size of 500. The overall conclusion

remains the same as in Table 6.
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In the presence of error-prone events, the KM method is biased in estimating the

true survival rates. However, there are interesting results, namely the cases where θ is

fixed at 1.0 and φ = 0.9 or 0.8, in the later timepoints the KM method is just as good

as our proposed estimator in estimating the true survival rates. This is because at later

timepoints, most participants have truly had the event of interest, therefore, a missclas-

sification rate of predicting the occurence of an event (1-PPV) of 10% or 20% has little

effect on estimating the true survival probabilities by the KM method.

3.4 ANALYSIS OF THE VIRAHEP-C DATA

VIRAHEP-C was a multicenter, collaborative clinical trial, sponsored by NIDDK-NIH,

that was designed to test the hypothesis that African Americans respond less well to

antiviral therapy than Caucasian patients. A total of 401 chronically infected patients

with Hepatitis C virus (HCV) of genotype 1 were enrolled in the VIRAHEP-C study

(Conjeevaram et al, 2006). Viral levels were measured at Days 1, 2, 3, 7, and weeks

2, 3, 4, 8, 12, 24 and 48. One of the aims of the study was to investigate the time to

viral negativity. True viral negativity is defined as HCV RNA in serum at or below

limit of detection (50 IU/ml) by a qualitative assay. Therefore, in the notation of this

paper, E∗ = {viral levels ≤ 50 IU/ml by qualitative assay}. The potentially misclassified

events are obtained from the quantitative assay, hence E = {viral levels ≤ 600 IU/ml by

quantitative assay}. Viral level measurements at Day 3 and Week 3 were discontinued

due to limited resources after the study recruited about one-third of the participants.

We therefore excluded those time points from our analysis. In addition, we limited our

analysis to the evaluation points up to 24 weeks. Thus, the final data consist of the

following visits: Days 1, 2, 7, and weeks 2, 4, 8, 12 and 24.

The definition of the true and observed event above implies that if the quanti-

tative assay detects a non-event (E = 0) then the qualitative assay will also be in

agreement (E∗ = 0). This is because if viral levels were greater than 600 IU/ml

42



by the quantitative PCR, they will be detected by the qualitative PCR. Therefore,

θ = P (E∗ = 0 | E = 0) = 1. However, if the quantitative PCR detect viral levels

of less then 600 IU/ml, only a fraction of the results will be in agreement with the qual-

itative PCR. Therefore, φ = P (E∗ = 1 | E = 1) < 1. To calculate φ, we used the

data from the timepoints at which both qualitative and quantitative assay were per-

formed. Only 30% of the negative results from the quantitative assay (i.e. viral level

< 600 IU/ml) were also negative by the qualitative assay (i.e. viral level < 50 IU/ml).

Therefore φ was estimated as 0.3.

In our framework, once an individual is observed to have the event of interest, follow-

up ends. If an evaluation was missing but was followed by an occurrence or nonoccurrence

of an event, then the missing evaluation result was set to a nonoccurrence, this is be-

cause we are interested in the time to the first event. The total number of participants

in our data analysis is 401 [196 African Americans (AA); 205 Caucasians (CA)]; 32% of

participants were censored.

The results of the data analysis are shown in Table 8. If the less sensitive quantitative

assay results are used and a KM estimator is used to estimate the survival distribution

of time to viral negativity, then at Weeks 2 and 24, 89.2% and 27.5% of the patients,

respectively, remain viral positive. These numbers underestimate the true survival func-

tion as seen by the corresponding estimates of 95.3% and 53.2% respectively using our

proposed method; the KM estimator and the proposed estimator deviates substantially

as time progresses and the event rates increase.

We take a further investigation into both methods by testing for differences between

African Americans and Caucasians; tests of statistical significance were calculated by

Wald’s method. For example, the KM estimate of the probability of survival at Day 1

for AA and CA are 99.5% and 97.1% respectively whereas our proposed estimates of the

probability of survival at the same time of interest are 99.8% for AA and 99.1% for CA

(Table 8). Figure 3 shows a graphical representation of the proportion remaining viral

positive at different time points by race. Although the difference between the estimated

survival were relatively larger for the EDF estimates towards the end compared to the

proposed estimates, the differences were not statistically significant by either method.
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3.5 DISCUSSION

In the analysis of time-to-event data with a binary outcome, there are times when the

outcome is misclassified. For instance, in clinical diagnosis, if the diagnostic tool used

to measure the event of interest is not perfect, the result may not be indicative of the

participant’s true event status. However, we had to deal with more than just misclassified

events; we had to deal with incomplete data as well. We have shown that when there

is misclassification, the Kaplan-Meier estimator is biased in estimating the true survival

rates. Thus, the problem of event misclassification led us to investigate and develop

methods to address this issue. Retention rates of less than 100% are common occurrences

in studies that accrue large number of participants with a lengthy follow up period, hence,

methods to effectively analyze incomplete data are of utmost importance.

We studied the issue of incomplete data and misclassified outcomes. We proposed

a new method to estimate the survival probabilities with no bias by integrating the

NPV and PPV of the diagnostic tool into the Kaplan-Meier estimator. An estimator

of the variance of the proposed estimator is also provided and shown to be efficient

through simulation studies. If misclassification rates are high, i.e., NPV and PPV are

low, the proposed method may not produce valid estimates of the true survival rates;

poor diagnostic tools are rarely used in practice, thus, this may not be a problem. Our

method provides clinical investigators with a tool to accurately estimate the survival

probabilities in the presence of misclassified events and incomplete data.

3.6 TABLES AND FIGURES
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Table 5: Simulation results for estimating P (T ∗ > tk, k = 1, 4, 8) based on 5000 Monte Carlo (MC) samples of size 250. EST is

the MC mean of the proposed estimate assuming θ and φ known, SE is the MC mean of the estimated standard errors, MCSE

is the standard error of MC estimates, CP is the empirical coverage probablity.

35% Censoring (θ = 1.00) (θ = 0.95) (θ = 0.90)

Parameter Truth EST MCSE SE CP% EST MCSE SE CP% EST MCSE SE CP%

(φ = 1) P (T ∗ > t1) 0.550 0.378 0.037 0.037 0.70 0.376 0.036 0.036 0.24 0.374 0.036 0.036 0.20

P (T ∗ > t4) 0.325 0.100 0.023 0.022 00.0 0.105 0.023 0.023 00.0 0.110 0.023 0.022 00.0

P (T ∗ > t8) 0.200 0.000 0.000 0.000 00.0 0.000 0.000 0.000 00.0 0.000 0.000 0.000 00.0

(φ = 0.9) P (T ∗ > t1) 0.550 0.387 0.032 0.032 0.20 0.382 0.031 0.031 0.08 0.378 0.030 0.030 06.0

P (T ∗ > t4) 0.325 0.105 0.023 0.023 00.0 0.108 0.023 0.022 00.0 0.114 0.022 0.022 00.0

P (T ∗ > t8) 0.200 0.004 0.001 0.001 00.0 0.004 0.001 0.001 00.0 0.004 0.001 0.001 00.0
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Table 6: Simulation results for estimating P (T ∗ > tk, k = 1, 4, 8) based on 5000 Monte Carlo (MC) samples of size 250. EST is

the MC mean of the proposed estimate assuming θ and φ known, SE is the MC mean of the estimated standard errors, MCSE

is the standard error of MC estimates, CP is the empirical coverage probablity, KM is the Kaplan-Meier estimator ignoring

misclassification.

35% Censoring (θ = 1.00) (θ = 0.95) (θ = 0.90)

Parameter Truth KM EST MCSE SE CP% KM EST MCSE SE CP% KM EST MCSE SE CP%

(φ = 1) P (T ∗ > t1) 0.550 0.552 0.552 0.032 0.033 94.9 0.581 0.552 0.030 0.030 94.7 0.614 0.553 0.029 0.029 94.4

P (T ∗ > t4) 0.325 0.328 0.328 0.032 0.032 95.1 0.363 0.327 0.030 0.029 94.9 0.404 0.327 0.027 0.027 94.6

P (T ∗ > t8) 0.200 0.203 0.203 0.031 0.031 94.7 0.224 0.202 0.030 0.029 94.1 0.250 0.203 0.028 0.028 94.6

(φ = 0.9) P (T ∗ > t1) 0.550 0.503 0.553 0.030 0.029 94.1 0.531 0.552 0.028 0.028 94.6 0.565 0.552 0.026 0.025 94.8

P (T ∗ > t4) 0.325 0.326 0.328 0.032 0.031 94.5 0.362 0.327 0.029 0.028 94.5 0.406 0.327 0.026 0.026 94.7

P (T ∗ > t8) 0.200 0.198 0.203 0.010 0.031 94.7 0.220 0.203 0.028 0.029 94.9 0.247 0.203 0.027 0.026 94.5

(φ = 0.8) P (T ∗ > t1) 0.550 0.442 0.553 0.026 0.026 94.9 0.471 0.553 0.024 0.024 95.2 0.503 0.552 0.023 0.022 94.3

P (T ∗ > t4) 0.325 0.322 0.328 0.030 0.031 95.2 0.361 0.328 0.028 0.028 94.9 0.408 0.327 0.026 0.026 94.7

P (T ∗ > t8) 0.200 0.191 0.203 0.030 0.030 94.5 0.214 0.203 0.028 0.028 94.8 0.242 0.203 0.025 0.026 94.9
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Table 7: Simulation results for estimating P (T ∗ > tk, k = 1, 4, 8) based on 5000 Monte Carlo (MC) samples of size 500. EST is

the MC mean of the proposed estimate assuming θ and φ known, SE is the MC mean of the estimated standard errors, MCSE

is the standard error of MC estimates, CP is the empirical coverage probablity, KM is the Kaplan-Meier estimator ignoring

misclassification.

35% Censoring (θ = 1.00) (θ = 0.95) (θ = 0.90)

Parameter Truth KM EST MCSE SE CP% KM EST MCSE SE CP% KM EST MCSE SE CP%

(φ = 1) P (T ∗ > t1) 0.550 0.553 0.553 0.023 0.022 94.4 0.581 0.552 0.022 0.022 94.5 0.614 0.552 0.020 0.020 94.9

P (T ∗ > t4) 0.325 0.328 0.328 0.023 0.023 94.8 0.363 0.327 0.021 0.022 94.6 0.405 0.328 0.018 0.019 95.4

P (T ∗ > t8) 0.200 0.203 0.203 0.022 0.022 94.5 0.225 0.203 0.021 0.021 94.5 0.251 0.203 0.019 0.020 95.2

(φ = 0.9) P (T ∗ > t1) 0.550 0.503 0.553 0.021 0.021 94.8 0.532 0.552 0.019 0.019 94.6 0.565 0.552 0.018 0.018 94.5

P (T ∗ > t4) 0.325 0.326 0.328 0.022 0.022 95.0 0.362 0.328 0.021 0.020 94.6 0.406 0.327 0.019 0.019 94.5

P (T ∗ > t8) 0.200 0.198 0.203 0.022 0.022 94.6 0.220 0.203 0.021 0.020 94.3 0.247 0.203 0.019 0.019 94.9

(φ = 0.8) P (T ∗ > t1) 0.550 0.442 0.554 0.018 0.018 94.7 0.470 0.553 0.016 0.017 95.2 0.503 0.552 0.016 0.016 94.4

P (T ∗ > t4) 0.325 0.323 0.329 0.022 0.022 94.7 0.362 0.328 0.019 0.020 95.2 0.408 0.327 0.018 0.018 94.7

P (T ∗ > t8) 0.200 0.191 0.204 0.021 0.021 94.9 0.215 0.204 0.019 0.020 95.1 0.242 0.203 0.017 0.018 95.1
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Table 8: Analysis results of the estimation of survival probabilities for time to viral negativity at selected time points. All is

the overall estimated survival estimates by both methods. AA (n=196) and CA (n=205) stands for African Americans and

Caucasians, respectively. KM is the Kaplan-Meier estimator ignoring misclassification. Proposed is our proposed estimate of

the true survival. Right below the estimated survival probabilities are the 95% confidence intervals of the estimates; p-value

compares survival rates between groups at the designated time point.

KM Proposed

Parameter All AA CA p-value All AA CA p-value

P (T ∗ > 1) 0.983 0.995 0.971 0.23 0.995 0.998 0.991 0.23

(0.969,0.995) (0.985,1.00) (0.948,0.994) (0.991,0.999) (0.995, 1.000) (0.984, 0.998)

P (T ∗ > 14) 0.892 0.922 0.862 0.24 0.953 0.967 0.939 0.24

(0.861,0.922) (0.885,0.960) (0.815,0.910) (0.938,0.967) (0.950, 0.984) (0.915, 0.962)

P (T ∗ > 168) 0.275 0.367 0.185 0.10 0.532 0.610 0.458 0.07

(0.228,0.321) (0.296,0.439) (0.127,0.242) (0.499,0.564) (0.563, 0.657) (0.416, 0.499)
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Figure 3: Estimated survival curves for time to viral negativity at selected time points for the VIRAHEP-C study. (Left panel:

KM estimates; right panel: proposed method).
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4.0 CONCLUSION

4.1 CONCLUSION AND DISCUSSION

The work presented in this paper is centered on correcting for error in clinical diagnosis.

In the absence of a gold standard test, diagnostic results are prone to misclassification.

We showed that the Kaplan-Meier estimator is biased in estimating the true survival

distribution when events are prone to misclassification, as a result, we derived an unbi-

ased and consistent estimator of the true survival distribution and we showed it to be

asymptotically normal.

Future work on the issue of misclassified events in the analysis of time-to-event data

can take several paths. An interesting course will be to assume no prior knowledge of

the classification probabilities, the NPV and PPV could be directly estimated from the

observed data. Another interesting problem would be to construct a discrete survival

model, hence, estimate hazard ratios. Furthermore, an interesting problem is the devel-

opment of a logrank test to compare survival distributions.

Estimating the true distribution of time to an event such as time to symptom res-

olution among subgroups of population with certain characteristics is important in im-

proving public health. When the event is measured with error, the actual distribution

cannot be estimated without bias, providing an inaccurate picture of the population.

The new methods provide investigators with a tool to accurately estimate the survival

probabilities in the presence of misclassified events. Our method offers the possibility

of obtaining accurate measures of survival despite the use of a less expensive diagnostic

test; hence, a cheaper study could be conducted.
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4.2 PUBLIC HEALTH SIGNIFICANCE

Estimating the true distribution of time to an event such as time to symptom resolution

among subgroups of population with certain characteristics is important in public health.

When the event is measured with error, the actual distribution cannot be estimated

without bias, providing an inaccurate picture of the population. The new methods

provide clinical investigators with a tool to accurately estimate the survival probabilities

in the presence of misclassified events.
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