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Abstract

Five percent of patients with unexplained mental retardation have been attributed to cryptic unbalanced subtelomeric
rearrangements. Half of these affected individuals have inherited the rearrangement from a parent who is a carrier for a
balanced translocation. However, the frequency of carriers for cryptic balanced translocations is unknown. To determine this
frequency, 565 phenotypically normal unrelated individuals were examined for balanced subtelomeric rearrangements
using Fluorescent In Situ hybridization (FISH) probes for all subtelomere regions. While no balanced subtelomeric
rearrangements were identified, three females in this study were determined to be mosaic for the X chromosome.
Mosaicism for XXX cell lines were observed in the lymphocyte cultures of 3 in 379 women (0.8%), which is a higher
frequency than the 1 in 1000 (0.1%) reported for sex chromosome aneuploidies. Our findings suggest that numerical
abnormalities of the X chromosome are more common in females than previously reported. Based on a review of the
literature, the incidence of cryptic translocation carriers is estimated to be approximately 1/8,000, more than ten-fold higher
than the frequency of visible reciprocal translocations.
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Introduction

Subtelomeres are the most distal sequences of non-repetitive DNA

on the chromosome, and have the highest density of genes in the

genome [1]. Any rearrangement or deletion in these gene-rich regions

could have severe phenotypic consequences. Numerous studies have

shown that 0.5 to 10.7% (variation due to study selection criteria) of

patients with unexplained mental retardation (MR) have an

unbalanced cryptic subtelomeric rearrangement or deletion [2–11].

Cytogenetically visible balanced translocations have an incidence

of 1 in 600 in the general population [12]. Parents, who are carriers of

balanced translocations, are at risk for having children with

unbalanced gene complements. Fifty percent of the gametes

produced by a balanced translocation carrier will have segmental

aneuploidy, which can result in a child with an unbalanced

rearrangement. The most likely way to identify a balanced carrier

is through a child who has been identified with an unbalanced

rearrangement.

Several studies have reported that half of all patients with an

unbalanced cryptic rearrangement have inherited it from a parent

with a cryptic balanced translocation [4,10]. The frequency of

individuals who carry a balanced cryptic translocation is unknown.

In this study, 565 unrelated, phenotypically normal individuals

were screened with subtelomere FISH probes to determine if

balanced cryptic translocation carriers could be identified.

Methods

Subjects for this study were drawn from the Center for Oral

Health Research in Appalachia (COHRA) [13], an ongoing cross-

sectional oral health etiology study. COHRA ascertains families

from two central West Virginia counties and two western

Pennsylvania counties and performs a detailed assessment protocol

after an informed consent process approved by the Institutional

Review Boards (IRB) of the University of Pittsburgh and West

Virginia University (WVU). A total of 484 COHRA subjects were

included in the current study: 164 male and 320 female. In

addition, IRB approval was obtained to use discarded samples

from the WVU cytogenetics laboratory. These 81 (22 males and

59 females) samples were selected on the basis of a normal

karyotype at least the 550+ band level, which were then

deidentified prior to analysis.

PLoS ONE | www.plosone.org 1 June 2009 | Volume 4 | Issue 6 | e5855



Peripheral blood lymphocytes were processed using standard

clinical cytogenetic techniques. Cells were dropped onto slides,

which were then immersed through the following series of washes

in coplin jars: 26SSC for 10 minutes at 37uC, 1% formaldehyde

for 15 minutes at room temperature (RT), 16PBS for 5 minutes at

RT, pepsin solution for 13 minutes at 37uC, 16PBS for 5 minutes

at RT and then air dried. The slides were then placed through a

series of ethanol washes of 70%, 85%, and 100% for 1 minute

each and allowed to air dry at room temperature.

Working probe solutions were prepared by adding 3 ml of

ToTelVysion probe solution (Abbott Molecular Inc, cat# 33-

270000) to 30 ml of cDenHyb (InSitus, cat #D002) in a microfuge

tube and mixed well. Three ml of each working probe solution was

placed in the middle of one of 5 respective circled areas on a slide.

A 12 mm circular coverslip was added and all air bubbles driven

out. When 5 spots per slide were completed, lab tape was placed

across the entire slide and pressed firmly for a tight seal. Slides

were placed on a hotplate for 3 minutes at 90uC, then in a light-

tight box, and incubated overnight in a 37uC water bath.

The next day, in a minimal light room, the slides were removed

from the water bath and de-coverslipped. The slides were then

washed in 0.46 SSC/0.3% NP-40 at 73uC for two minutes

followed by 30 seconds in 26 SSC/0.1% NP-40 at room

temperature. The slides were then completely air dried in the

dark. Twenty ml of 16DAPI counterstain was applied to the slides

and coverslipped.

A Leica epi-fluorescent microscope equipped with a DAPI

single bandpass, aqua single bandpass, and a red/green dual

bandpass filter was used for signal enumeration. Yellow signals

were read using the red/green filter. Five metaphase and 5

interphase cells were scored for each of 15 subtelomeric probe sets

per subject.

To confirm abnormal subtelomere FISH results regarding X

chromosomes, slides were prepared as described previously and

hybridized with X/Y centromere probes. Two scorers analyzed

100 cells each for percentage of abnormal cells.

Results

A total of 565 samples were evaluated for cryptic rearrange-

ments using subtelomeric FISH probes. No balanced cryptic

rearrangements were observed by FISH, all samples showing

normal number and location of signals (Fig. 1).

Among the specimens that were analyzed with subtelomeric

FISH probe sets containing Xp/Yp and Xq/Yq, mosaicism for X

chromosome aneuploidy was identified in 3 of 379 women (0.8%).

The results were confirmed using a separate X/Y centromeric

probe set. The FISH results in interphase cells for these individuals

identified 89% triple X in a 36 year old, 5% triple X chromosome

in a 52 year old, and multiple cell lines including 11% single X,

6% XXX and 2% XXXX in a 54 year old (Fig. 2).

Discussion

Subtelomeric Rearrangements
No balanced cryptic translocations were found among the 565

subjects who were screened by subtelomere FISH. From the small

sample size, it was not possible to determine the frequency of

balanced subtelomeric translocation carriers. Our sample size was

limited due to the number of individuals enrolled in the study who

donated blood, loss due to culture failures, and the cost of FISH

probes.

Since the frequency for a balanced cryptic rearrangement could

not be estimated from our study sample, we estimated the

Figure 1. An example of a FISH hybridized metaphase spread. Four different probe signals are visible: 2p (green signal), 2q (red signal), Xq/Yq
(yellow signal) and X (aqua signal). This pattern represents the pattern seen in a normal diploid cell from a female.
doi:10.1371/journal.pone.0005855.g001
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frequency based on reports in the literature. Carrier frequency (X)

was estimated based on the equation: (A)(B)(C)(D)(E) = X where A

is the 2% of the population with MR[14], B is the 50% of MR

patients with unknown etiology [15], C is the estimated 5%

incidence of subtelomeric abnormalities in MR patients with

unknown etiology [16], D is the 50% percent risk for inheriting the

unbalanced rearrangement from a parent with a balanced

subtelomeric translocation [4], and E is the 50% chance that a

carrier would have a child with an unbalanced rearrangement

(due to chromosome segregation in the gametes).

Using this equation, the incidence of cryptic balanced subtelo-

meric rearrangement carriers in the general population is

approximately 1 in 8000. Therefore, it is not surprising that the

current series of 565 subjects found no one with a cryptic balanced

translocation.

The reported incidence of individuals with unbalanced subtelo-

meric rearrangements in the general population has been

estimated by Knight and colleagues [4] to be 2.1 in 10,000 (,1

in 4762). Because half of these individuals inherited the

rearrangement from a parent [4,10], the frequency of parents

who are balanced translocation carriers would be half as frequent,

or around 1 in 9524. The difference between this calculation and

ours is most likely due to the variation in the reported percentages

and criteria for evaluation of MR. Regardless, the incidence of

balanced subtelomeric rearrangements is at least 13 times more

prevalent than carriers of visible reciprocal translocations.

X Chromosome Mosaicism
Individuals who are mosaic have two or more populations of

somatic cells that are genetically different. Aneuploidy of the X

chromosome can arise by mitotic nondisjunction or anaphase lag.

If this event occurs during early fetal development, higher

percentages of mosaicism will occur. If the error occurs at a later

time during fetal development or after birth, then lower

percentages will be present. Individuals who have low level

mosaicism for the X chromosome are less likely to have a clinically

relevant phenotype and therefore would go undiagnosed in the

general population. There are several factors to consider with low

level mosaicism: are the results due to genuine mosaicism,

technical artifact [17], or age related?

X chromosome aneuploidy has been attributed to premature

centromere division in older women. Several studies have

demonstrated that peripheral blood metaphase cells from women

generally 50 years of age and older could have an average of 4–5%

X chromosome loss and less than 1% gain attributed to mitotic

error [18–21] This finding has been substantiated in interphase

Figure 2. Interphase cells hybridized with a FISH probe for the centromere of the X chromosome. A) A cell with one signal for the
centromere of the X chromosome or monosomy X. B) Two normal cells showing two signals for the X chromosome, and one cell with monosomy X.
C) A cell showing trisomy X. D) A cell with tetrasomy X.
doi:10.1371/journal.pone.0005855.g002
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cells using FISH probes, demonstrating that women older than 60

years of age had an average X chromosome loss of 3.4% (as high

as 9%) and gain of less than 1% [22–23].

FISH studies have shown that cultured lymphocytes reflect in

vivo aneuploidy rates and that there is no significant difference

between cultured lymphocyte and uncultured lymphocyte stability

[22,24]. All 3 of the individuals identified in this study to have X

chromosome mosaicism had gains of X chromosomes. Although

two of the three women were over the ages of 50, all three women

had a cell line with 5% or greater for an extra X chromosome,

suggesting that the aneuploidy is not related to age or tissue culture

artifact.

We were unable to find any literature that has estimated the

incidence of sex chromosome mosaicism in the general population

or the incidence of balanced cryptic subtelomeric rearrangements

in the general population. We estimate that the incidence of

balanced cryptic translocation to be at least 1 in 8,000. To our

knowledge, the finding of mosaicism in 0.8% of women may be

the first reported incidence of low level sex chromosome

mosaicism in the general population, much higher than the

0.1% reported in newborn studies for sex chromosome aneuploi-

dy, which was based on analysis of 3–5 cells [25]. Our findings

suggest that numerical abnormalities of the X chromosome may

be more common in females than previously reported.
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