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Abstract

There is need for improved human influenza vaccines, particularly for older adults who are at greatest risk for severe disease,
as well as to address the continuous antigenic drift within circulating human subtypes of influenza virus. We have
engineered an influenza virus-like particle (VLP) as a new generation vaccine candidate purified from the supernatants of Sf9
insect cells following infection by recombinant baculoviruses to express three influenza virus proteins, hemagglutinin (HA),
neuraminidase (NA), and matrix 1 (M1). In this study, a seasonal trivalent VLP vaccine (TVV) formulation, composed of
influenza A H1N1 and H3N2 and influenza B VLPs, was evaluated in mice and ferrets for the ability to elicit antigen-specific
immune responses. Animals vaccinated with the TVV formulation had hemagglutination-inhibition (HAI) antibody titers
against all three homologous influenza virus strains, as well as HAI antibodies against a panel of heterologous influenza
viruses. HAI titers elicited by the TVV were statistically similar to HAI titers elicited in animals vaccinated with the
corresponding monovalent VLP. Mice vaccinated with the TVV had higher level of influenza specific CD8+ T cell responses
than a commercial trivalent inactivated vaccine (TIV). Ferrets vaccinated with the highest dose of the VLP vaccine and then
challenged with the homologous H3N2 virus had the lowest titers of replicating virus in nasal washes and showed no signs
of disease. Overall, a trivalent VLP vaccine elicits a broad array of immunity and can protect against influenza virus challenge.
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Introduction

The influenza A virus, a member of the Orthomyxoviridae family,

is an enveloped segmented, negative-strand RNA virus with a

genome consisting of eight individual genes that encode at least ten

proteins [1]. Influenza A viruses are further subdivided by

antigenic characterization of the hemagglutinin (HA) and

neuraminidase (NA) surface glycoproteins. Currently, there are

16 identified HA and 9 NA subtypes [2]. Waterfowl, such as ducks

and geese, serve as a natural reservoir for all known subtypes of

influenza A virus [3]. Annually, human outbreaks of influenza

types A subtypes, currently H1N1 and H3N2 and influenza B are

responsible for substantial morbidity and mortality in humans [4].

High-risk groups, such as elderly, infants, and immunocompro-

mised individuals are most susceptible to infection and severe

disease.

Prevention is the most effective method of reducing transmission

of influenza [5] and protection is primarily mediated by antibodies

to the HA and NA (see reviews [6,7]. The HA is responsible for

attachment of the virus to human epithelial cells that line the

upper respiratory tract as well as fusion of the viral and cellular

lipid membranes during initial stages of infection. The NA has

enzymatic properties that are associated with the release of nascent

virions from cell membranes following viral replication [8].

Annual influenza epidemic and periodic pandemic outbreaks

result from continuous antigenic changes within HA and NA

proteins, known as antigenic drift and shift. During antigenic drift,

HA and NA surface antigens undergo progressive amino acid

substitutions that can result in evasion of the previously acquired

immunity. Therefore, currently licensed influenza vaccines can

vary widely in their level of efficacy from year to year due to

selection of a vaccine strain does not sufficiently match the

circulating virus strain within a population. Surveillance within

avian and human populations is a cornerstone of the World

Health Organization’s influenza surveillance network which each
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year identifies newly emerging influenza strains circulating among

humans throughout the northern and southern hemisphere and

convenes bi-annually to recommend new influenza strains believed

to be suitable for subsequent annual vaccine manufacture based

on epidemiological and antigenic considerations and their

anticipated prevalence during the coming season [9].

Traditionally, inactivated whole, split or purified influenza A

and B virus vaccines are prepared by culturing live virus in

embryonated chicken eggs. There are limitations to relying on an

egg-based manufacturing system including egg allergies in a small

percentage of the population as well as potential issues with egg

supply for surge capacity or potential depletion of egg supply due

to avian influenza outbreaks. Alternative influenza vaccine

manufacturing platforms based upon scalable and recombinant

approaches could therefore be of great public benefit.

Recently, we have described the development of influenza A

H3N2, H5N1, and H9N2 VLP vaccine candidates that were

comprised of three influenza virus structural proteins, HA, NA,

and M1 and expressed from insect cells [10–13] and others have

described similar VLPs based upon a lentiviral core [14]. This new

generation vaccine candidate has potential advantages over

current egg-based methods, particularly for immunogenicity and

high-yielding, inexpensive production. In this study, VLP vaccines

were constructed for a seasonal trivalent vaccine using isolates

from influenza A H1N1 (A/New Caledonia/20/1999), H3N2 (A/

New York/55/2004), and influenza B (B/Shanghai/367/2002) to

match strains recommended for the commercially marketed

seasonal 2005–2006 Northern Hemisphere vaccine formulation.

This investigational seasonal influenza vaccine is composed of

non-infectious, non-replicating VLPs that exhibit functional HA

and NA properties. These vaccines were tested in both mice and

ferrets for the induction of immune responses that correlate with

protection and these elicited immune responses were compared to

immune responses elicited from the corresponding monovalent

VLP in the same animal study. In addition, immune responses

elicited in mice by the TVV and by the commercial TIV were

compared.

Materials and Methods

Cloning of HA, NA, and M1 genes and the generation of
recombinant baculoviruses

Abbreviations for the H3N2 viral isolates or proteins used in this

study were: A/Brisbane/10/2007 (Bris/10/07), A/Wisconsin/67/

2005 (Wisc/05), A/New York/55/2004 (NY/04), A/Wyoming/

4/2003 (Wyo/03), Fujian/411/2002 (Fuj/02), A/Panama/2007/

99 (Pan/99), A/Aichi/2/1968 (Aichi/68). Abbreviations for the

H1N1 viral isolates or proteins used in this study were: A/

Brisbane/59/2007 (Bris/59/07), A/Solomon Island/3/2006 (SI/

06), A/New Caledonia/20/1999 (NC/99), A/Puerto Rico/8/

1934 (PR/8/34). Abbreviations for influenza B viruses or proteins

used in this study were B/Florida/4/2007 (B/FL/07), B/

Malaysia/2506/2004 (B/May/04), B/Shanghai/361/2002 (B/

Shang/02), B/Sichuan/379/99 (B/Sich/99). Influenza VLPs

representing NY/04, NC/99, B/Shang/02 were constructed

and purified from a baculovirus/insect cell expression system as

previously described [11,13]. Particle production was analyzed by

sucrose gradient ultracentrifugation and chromatography followed

by Western blot as described [11].

Comparative antigens and controls
Wyo/03 virus was inactivated using 0.1% Formalin (Center for

Biological Evaluation and Research (CBER), Food and Drug

Administration (FDA), Rockville, MD, USA) and rHA (Lot # 45-

04028) derived from Wyo/03 virus was purified from the

supernatants of Sf9 insect cells following baculovirus infection

(Protein Sciences Corp., Meriden, CT, USA). The previously

described the HIV-1 VLP [15], expressed from the HIV-1NL4-3

Gag plasmid was used as a negative viral particle control in this

study. 2007–2008 commercial trivalent split FLUARIX (Glax-

oSmithKline, Research Triangle Park, NC, USA) vaccine was

used as a comparator control.

Animals and vaccinations
BALB/c mice (Mus musculis, females, 6–8 weeks) were purchased

from Harlan Sprague Dawley, (Indianapolis, IN, USA) and

housed in microisolator units and allowed free access to food

and water and were cared for under USDA guidelines for

laboratory animals. Mice (12–21 mice per group) were vaccinated

with purified VLPs (3 mg, 0.6 mg, or 0.12 mg), based upon HA

content from a SRID potency assay, via intramuscular injection at

week 0 and then boosted with the same dose at week 3. A subset of

mice was vaccinated with the FLUARIX TIV vaccine (TIV) at a

0.6 mg HA dose to match the dose of VLP vaccine. Blood was

collected from anesthetized mice via the orbit and transferred to a

microfuge tube. Tubes were centrifuged and sera was removed

and frozen at 28065uC. All procedures were in accordance with

the NRC Guide for the Care and Use of Laboratory Animals, the

Animal Welfare Act, and the CDC/NIH Biosafety in Microbio-

logical and Biomedical Laboratories.

Fitch ferrets (Mustela putorius furo, male, 6–12-months of age),

influenza naı̈ve and descented were purchased from Marshall

Farms (Sayre, PA, USA). Ferrets were pair housed in stainless steel

cages (Shor-line, Kansas City, KS, USA) containing Sani-chips

Laboratory Animal Bedding (P.J. Murphy Forest Products,

Montville, NJ, USA). Ferrets were provided with Teklad Global

Ferret Diet (Harlan Teklad, Madison, WI, USA) and fresh water

ad libitum. Influenza VLPs were diluted in PBS, pH 7.2 to achieve

final concentration. Ferrets (n = 6) were vaccinated with one of

three doses (15 mg, 3 mg, 0.6 mg) of purified VLPs (NY/04, NC/

99, and B/Shang/02 in monovalent or trivalent formulations) in

the left hind leg muscle in a volume of 0.5 ml. Vaccines were

stored at 4uC prior to use. Control animals were mock vaccinated

with an HIV-1 VLP (ADA strain) as a negative control. Animals

were monitored for weight loss, temperature, loss of activity, nasal

discharge, sneezing and diarrhea weekly during the vaccination

regimen and each day during viral challenge. Prior to vaccina-

tions, animals were confirmed by HAI assay to be seronegative for

circulating influenza A (H1N1 and H3N2) and influenza B viruses.

Blood was collected from anesthetized ferrets via the anterior

vena cava. Blood was transferred to a tube containing a serum

separator and clot activator and allowed to clot at room

temperature. Tubes were centrifuged and sera was removed and

frozen at 28065uC. All procedures were in accordance with the

NRC Guide for the Care and Use of Laboratory Animals, the

Animal Welfare Act, and the CDC/NIH Biosafety in Microbio-

logical and Biomedical Laboratories.

HAI antibody levels in sera
The hemagglutination inhibition (HAI) assay was adapted from

the CDC laboratory-based influenza surveillance manual (3). To

inactivate non-specific inhibitors, sera were treated with receptor

destroying enzyme (RDE) prior to being tested (6, 7). Briefly, three

parts RDE was added to one part sera and incubated overnight at

37uC. RDE was inactivated by incubation at 56uC for ,30 min

and then six parts of saline were added, creating a 1:8 dilution of

serum. RDE-treated sera were two-fold serially diluted in v-

bottom microtiter plates. An equal volume of virus, adjusted to

VLPs Elicit Immunity
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approximately 4 HAU/25 ml was added to each well. The plates

were covered and incubated at room temperature for 15 min

followed by the addition of 0.5% turkey erythrocytes (TRBC)

(Lampire Biologicals, Pipersville, PA, USA). The TRBCs were

adjusted with PBS to achieve a 0.5% vol/vol suspension. The cells

were stored at 4uC and used within 72 hours of preparation (2).

The plates were mixed by agitation, covered, and the TRBC were

allowed to settle for 30 min at room temperature. The HAI titer

was determined by the reciprocal dilution of the last well which

contained non-agglutinated TRBC. Positive and negative serum

controls were included for each plate. All mice and ferrets were

negative (HAI#10) for pre-existing antibodies to currently

circulating human influenza viruses prior to vaccination (1).

ELISPOT assays
Spleens and lung tissue were harvested from vaccinated mice at

day 6 post-challenge (day 41 of the study) and collected cells were

isolated for ELISPOT assays, as previously described [16,17].

Whole lungs or spleens were removed and forced into a single cell

suspension using a cell strainer (BD Biosciences, Bedford, MA,

USA) in a total volume of 4 ml. Red blood cells were then lysed

using 5 ml of ACK buffer (0.15 M NH4Cl, 10 mM KHCO3 and

0.1 mM Na2EDTA). The lung and spleen cells were then

resuspended in 1 ml and 3 ml, respectively, of RPMI medium

with 10% fetal bovine serum (cRPMI). Cell viability was

determined by trypan blue exclusion staining.

Briefly, splenocytes were depleted of erythrocytes by treatment

with ammonium chloride (0.1 M, pH 7.4). Following thorough

washing with PBS, cells were resuspended in RPMI medium with

10% fetal bovine serum (cRPMI). Cell viability was determined by

trypan blue exclusion staining. The number of anti-HA or anti-M1

specific murine IFN-c (mIFN-c) secreting splenocytes was

determined by enzyme-linked immunospot (ELISPOT) assay (R

& D Systems, Minneapolis, MN, USA). Briefly, pre-coated anti-

mIFN-c plates were incubated (25uC for 2 h) with cRPMI (200 ml)

and then were incubated with splenocytes or lung cells (56105/

well) isolated from vaccinated mice. Splenocytes or lung cells were

stimulated (48 h) with peptides (BEI Research Resources Repos-

itory, Manassas, VA, USA). For HA, six pools of peptides (15mers

overlapping by 11 amino acids) and for M1, four peptides pools

(15mers overlapping by 11 amino acids) from the A/New

Calendonia/20/1999 were used to stimulate cells. Additional

wells of cells were stimulated with PMA (50 ng)/ionomycin (500

ng) or were mock stimulated. In addition, IL-2 was added to all

wells (10 units/ml). Plates were washed with PBS-Tween (3X) and

were and were incubated overnight at 4C with anti-IFN-c
antibody. The plates were washed and then incubated (25uC for

2 h) with strepavidin conjugated to alkaline phosphatase. Follow-

ing extensive washing, cytokine/antibody complexes were incu-

bated (25uC for 1 h) with stable BCIP/NBT chromagen. The

plates were rinsed with dH2O and air dried (25uC for 2 h). Spots

were counted by an ImmunoSpot ELISPOT reader (Cellular

Technology Ltd., Cleveland, OH, USA).

Flow cytometry
A multi-parameter flow cytometry assay combining MHC class

I pentamer with intracellular cytokine staining was employed to

detect influenza specific CD8+ T cells. The CD8+ T cell responses

to nucleoprotein (NP) 147 (TYQRTRALV) are dominant followed

by hemagglutinin (HA) 533 (IYSTVASSL) responses in influenza-

virus-infected BALB/c mice. HA533 was originally described for

the HA of PR8 (H1N1) [18]. This epitope is conserved in H1N1

viruses. Lung lymphocytes and splenocytes of infected mice were

stimulated for 5 h with 1 mg/ml of HA533, NP147, or an

ovalbumin Ova257 control peptide in the presence of the Golgi-

blocking agents brefeldin A and monensin. The cells were washed

with FACS buffer (PBS, 1% FBS, 0.1% sodium azide) and were

blocked with anti-CD16/CD32 mouse Fc receptor block (BD

Biosciences, San Jose, CA, USA), followed by staining with a

murine MHC-I encoded allele Kd-specific pentamer for the

immunodominant HA 533 epitope or NP147 epitope (ProImmune,

Oxford, UK) conjugated with phycoerythrin (PE). Lymphocytes

were then stained with anti-CD8 antibodies conjugated with

Pacific Blue and anti-CD19 antibodies conjugated with APC-Cy7

(BD Biosciences, San Jose, CA, USA). The cells are then incubated

with a viability dye (Molecular Probes, Invitrogen, Eugene, OR,

USA). Once the surface staining is complete the cells are fixed and

permeabilized with BD Cytofix/Cytoperm solution (BD Biosci-

ences, San Jose, CA, USA). The cells were washed in Perm/Wash

buffer (BD Biosciences, San Jose, CA, USA) and the intracellular

antibodies were added in Perm/Wash buffer. Cells were stained

intracellular with FITC conjugated anti-IL-2 (eBioscience, San

Diego, CA, USA), PE-Cy7 conjugated anti-IFN-c (BD Bioscienc-

es, San Jose, CA, USA) and Alexa Fluor 488H conjugated anti-

TNFa (eBiosciences, San Diego, CA, USA). Cells were fixed in

1% formalin/PBS and data acquired using a LSRII flow

cytometer (BD Biosciences, San Jose, CA, USA). The data were

analyzed with FlowJo software (Treestar, Ashlend, OR, USA).

Challenge with influenza virus
Mice were challenged intranasally with 7.256105 pfu of mouse-

adapted (ma) NC/99 (H1N1). Mice were monitored daily for

morbidity and body weights were recorded each day. Mice that

lost greater than 20% of body weight were euthanized. The ability

of each vaccine to protect against challenge was compared to

separate groups of mock vaccinated control mice that were

challenged with the virus.

Vaccinated ferrets were challenged intranasally with

5.06105 pfu of influenza NY/04 virus (H3N2). Nasal wash

samples were taken from ferrets on days 1, 3, and 5 post-challenge

and influenza virus was titrated in MDCK cells to determine virus

shedding in upper respiratory tissues [19]. Samples were collected,

snap frozen at 270uC and later thawed, homogenized in 1 ml of

cold PBS and pelleted by centrifugation. Clarified homogenates

were titrated in MDCK cells for virus infectivity from initial

dilutions of 1:10. The limit of virus detection was 16102 pfu/ml.

Statistical analysis
Statistical analyses were performed using the Student’s t-test.

Samples from VLP-vaccinated mice and ferrets were compared to

TIV-vaccinated or mock vaccinated mice and significance was

considered at a p-value ,0.05.

Results

Serum HAI antibody measurements following VLP
immunizations

Individual recombinant baculoviruses were used to infect Sf9

insect cells that subsequently expressed HA, NA, and M1 proteins

from either NC/99 (H1N1), NY/04 (H3N2), or B/Shang/02

strains of influenza virus to spontaneously form VLPs that were

then purified as previously described [11]. Immunogenicity of

VLPs was examined in BALB/c mice (6–8 weeks) inoculated by

intramuscular injection (i.m.) at 0 and 3 weeks with purified

monovalent (3 mg) or a trivalent mixtures (3 mg, 0.6 mg, 0.12 mg) of

the antigen (Fig. 1). Post-vaccination antisera were evaluated for

the ability to prevent virus-induced agglutination of turkey RBCs

(Fig. 2). These results were compared to mice vaccinated with the

VLPs Elicit Immunity
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commercial split TIV (3 mg). At week 3, following the priming

dose, 75% of the mice vaccinated with 3 mg of the TVV had

measurable titers of HAI antibodies ($1:40) against the NC/99

(Fig. 2A) while forty-seven percent had HAI titers against NY/04

(Fig. 2C) and 100% of the mice had HAI titers against B/Shang/

02 (Fig. 2E). At week 5, following two vaccinations, all mice

immunized with the TVV at 3 mg had HAI titers against NC/99

(GMT 640), NY/04 (GMT 423) and B/Shang/02 (GMT 640).

Mice that were vaccinated with a 3 mg dose of each monovalent

VLP vaccine had HAI titers to homologous strains that were

statistically similar to the corresponding HAI titer elicited by the

TVV at the same dose (Fig. 2B, 2D, and 2F). All mice vaccinated

with monovalent VLPs had HAI titers $1:40. There was little, if

any, HAI cross-reactivity against viruses from non-corresponding

subtypes (data not shown). In contrast, 70–75% of the mice

vaccinated with TIV had HAI titers $1:40 to one of the three

homologous viruses (Fig. 2). In addition, mice vaccinated with

TVV had statistically higher HAI GMT compared to mice

vaccinated with TIV, regardless of influenza strain tested. For

NC/99 and B/Shang/02, HAI titers elicited in mice vaccinated

with 0.12 mg of TVV were statistically higher than mice

vaccinated with 3 mg of TIV. Therefore, in general, the TVV

was inducing higher HAI titers than the TIV, with broader cross-

protection.

Influenza virus challenge of TVV and TIV vaccinated mice
Mice vaccinated with H1N1 VLPs, the TVV, or the TIV were

challenged with a mouse-adapted NC/99 (ms-NC/99) (Fig. 3). We

had a limited number of mouse-adapted viruses to choose for these

studies. The NC/99 virus matched the H1N1 component in these

vaccines. HIV-1 VLP vaccinated mice challenged with virus

showed physical signs of infection (ruffled fur, dyspnea, lethargy)

and they lost 15–20% of their original body weight between days

4–6 post-challenge (Fig. 3). Sixty percent of these mice died by day

8 post-infection and the remaining mice recovered. Surprisingly,

mice vaccinated with the H1N1 VLP, TVV, or TIV and then

challenged with ma-NC/99 virus lost a similar amount of weight

as the mock control animals, but appeared to recover more quickly

(Fig. 3A). Even though, all vaccinated and mock-vaccinated mice

had similar high viral lung titers at day 3 post-challenge (Table 1),

all the mice vaccinated with the H1N1 VLP, TVV, or TIV

survived challenge. As a control, mice were vaccinated with a

mouse-adapted B influenza virus (ma-B/Sich/02) and all the

monovalent B, TVV and TIV mice showed no signs of weight loss

and had no outward signs of disease, had little or no B/Sich/02

virus detected in the lungs, whereas HIV-1 VLP vaccinated died

by day 6 post-infection (data now shown).

Cell-mediated immunity elicited by VLP vaccines
It was an unexpected finding that vaccinated mice, subsequently

challenged with the mouse-adapted NC/99 virus, lost ,15% of

their original body weight, since all the vaccines contained NC/99

HA and they both elicited high HAI titers against NC/99 virus

(Fig. 2). Therefore, we tested the antisera against the mouse-

adapted NC/99 virus used for challenge. Interestingly, there was

very low HAI activity against the mouse-adapted NC/99 virus

(Fig. 4A) and only 20% of the mice had titers $1:40, whereas all

the mice had high titers against the wild-type human NC/99 virus

(Fig. 2A). The vaccines contained the human sequences. The virus

was mouse-adapted. The HAI titers elicited by the TVV and TIV

Figure 1. Antibodies elicited by vaccination. Mice (n = 8) were vaccinated via intramuscular injection at weeks 0 and 3 with VLPs representing a
H1N1 virus (NC/99), a H3N2 VLP (NY/04), or a B VLP (B/Shang/02) individually (3 ug) or in a trivalent mixture at one of three doses (3 mg, 600 ng, or
120 ng). A) Schematic of the vaccine regimen. B) Vaccines and doses administered.
doi:10.1371/journal.pone.0006032.g001
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were compared to the human strains. Then, as described on page

10, we verified if the vaccines that contained the human NC/99

HA elicited HAI antibodies that recognized mouse-adapted NC/

99 HA. The number of differences in the mouse adapted HA and

the human HA are 12.

Viral infection and subsequent weight loss in vaccinated mice

challenged with ma-NC/99 virus provided an opportunity to

examine the cellular responses in these mice post-challenge, since

vaccinated mice did appear to recover more quickly from NC/99

virus infection than unvaccinated mice (Fig. 3A). Splenocytes and

lung cells were collected at day 6 post-challenge from mice

vaccinated with TVV, TIV, or mock control animals. At 6 day

post infection, the T cell response was low, unless there was

preexisting memory allowing for a quicker recall response.

Splenocytes were stimulated in vitro in an IFNc-ELISPOT assay

with 6 pools of overlapping peptides representing the HA protein

or with peptides stimulation CD8+ T cells specific for the

immunodominant epitopes HA533 (IYSTVASSL) or NP147

(TYQRTRALV). In both H1N1 vaccine strains in the TVV and

TIV, the HA533 epitope is conserved in the HA protein and

therefore allows for direct comparison of the CD8+ T cell

responses. As expected, mice vaccinated with the TIV had high

HAI titers against the three homologous viruses in the TIV (data

not shown). In contrast, HA-specific cellular responses were

elicited by the TVV, but not the TIV (Fig. 5). T cell responses

were directed against epitopes throughout the HA (pools 2, 3, 5,

Figure 2. Hemaggutination-inhibition (HAI) titers. Week 0, 3, and 5 serum HAI antibody responses were assessed against H1N1 (NC/99), H3N2
(NY/04), B, (B/Shang/02) viruses. Bars indicate geometric mean titer (GMT) +/2 SEM. Mice vaccinated with one of three doses of the TVV (A, C, E) or
each VLP individually; H1N1 VLP (B), H3N2 VLP (D), B VLP (F).
doi:10.1371/journal.pone.0006032.g002

VLPs Elicit Immunity
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and 6) following vaccination with the TVV. In addition,

approximately 3 times the number of HA533 specific CD8+ T

cells was detected in mice vaccinated with the TVV compared to

TIV-vaccinated mice (Fig. 5). As expected, CD8+ T cells specific

for the NP147 epitope were only detected above background in

TIV vaccinated mice, since the VLP vaccines did not contain NP.

There were no differences in the number of low cellular responses

detected against M1 antigen (data not shown). In mice vaccinated

with VLPs, there were approximately twice as many HA533-

pentamer positive CD8+ T cells in the lung compared to TIV

vaccinated mice, as shown by flow cytometry (Fig. 5B). Intracel-

lular cytokine staining for IFN-c revealed that approximately 6%

of CD8+ T cells in the lungs of VLP vaccinated mice produce

IFNc after in vitro stimulation with the HA533 peptide (Fig. 5C),

which was significantly higher than in TIV-immunized mice (1%).

As expected, control mice had few HA-specific responses 6 days

post-challenge.

Influenza challenge of VLP vaccinated ferrets
To confirm the effectiveness of these VLP vaccines, ferrets were

vaccinated with 15 mg dose of the, monovalent H3N2 VLPs,

TVV, or TIV. At week 3, all ferrets vaccinated with the TVV had

high HAI titers against B/Shang/02, NC/99 and NY/04, albeit

lower titers than against the influenza B virus (data not shown).

The monovalent H3N2 VLP elicited similar titers after a single

vaccination at week 3 as the TVV against NY/04. At week 5, all

TVV vaccinated ferrets had HAI titers $1:40 against all three

viruses (NC/99, NY/04, B/Shang/02) in the vaccine (Fig. 6A).

The HAI GMT against NC/99 was 1:80, against NY/04 was

1:727, and against B/Shang/02 was 1:1280. Ferrets vaccinated

with 15 mg dose of the monovalent H3N2 VLP had HAI titers

against NY/04 (1:367), but no cross-reactive HAI antibodies

against NC/99 or B/Shang/02 (Fig. 6B). No ferrets vaccinated

with lower doses of TVV (3 mg or 0.6 mg) had HAI titer $1:40

against NC/99 or NY/04 (data not shown). The TVV elicited

little or no cross-reactive HAI antibodies against the closely related

SI/06 (H1N1) or B/May/04 viruses (Fig. 6A). However, both the

TVV and the monovalent H3N2 VLP elicited HAI antibodies in

50–67% of ferrets against related H3N2 viruses, Pan/99, Fuj/02,

Wisc/05, or Bris/10/07.

Ferrets were challenged intranasally with the H3N2 NY/04

virus (56105 pfu). HIV-1 VLP vaccinated ferrets showed clinical

signs of infection (lethargy), a spike in temperature (,2uC) in the

first 24 hours post-challenge, and an increase in virus was detected

in the nasal wash (8.256105 pfu/ml) (Fig. 7 and Table 2). Similar

viral titers were observed in ferrets vaccinated with a 0.6 mg dose

of TVV (1.576106 pfu/ml). However, there was a dose dependent

decrease in viral titers that correlated with increasing doses of

TVV. Ferrets vaccinated with 15 mg of TVV had similar viral

titers in the nasal wash as ferrets vaccinated with 15 mg of the

monovalent H3N2 VLP vaccine. In contrast, mice vaccinated with

15 mg of TIV had titers similar to the 15 mg of TVV. Viral titers

dropped precipitously by day 3 post-challenge and no viruses were

detected in the nasal wash after day 5 in any of the groups.

Discussion

Immune responses elicited by a trivalent mixture of influenza

virus-like particles expressing antigens from influenza A H1N1,

H3N2, and influenza B viruses were shown to elicit immune

responses in mice and ferrets as measured by serum HAI antibody

titers and protection following viral challenge. For human

influenza vaccinations, formalin-inactivated split virus that elicits

HAI antibody titers in the range of 1:40 are required to confer

Figure 3. Influenza virus challenge. At week 5, mock vaccinated
mice or mice vaccinated with vaccines (3 mg) were challenged
intranasally with the mouse-adapted influenza ma-NC/99 virus
(2.66105 pfu). Mice were monitored daily for weight loss, activity, and
survival. Body weight is plotted as percentage of the average initial
weight. Mice that lost greater than 20% body weight were sacrificed.
doi:10.1371/journal.pone.0006032.g003

Table 1. Virus titers in lungs of mice challenged with mouse-
adapted H1N1.

Vaccinea Virus titer (pfu/ml) in lungs

NC/99 (H1N1)

TVV 2.3610e+5

H1N1 VLP 6.3610e+4

TIV 1.0610e+5

HIV-1 VLP 9.0610e+5

aVaccine administered at weeks 0 and 3.
doi:10.1371/journal.pone.0006032.t001

Figure 4. HAI titers against mouse-adapted viruses. Week 5
serum HAI antibody responses were assessed against ma-NC/99 virus.
Bars indicate geometric mean titer (GMT) +/2 SEM.
doi:10.1371/journal.pone.0006032.g004
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50% protection against infection (PD50) [20]. HAI antibody titers

$1:40 are generally considered an immunological correlate of

protection threshold beyond which it is unlikely that serious illness

will occur [12,19]. Following two vaccinations with the TVV, all

mice and ferrets vaccinated with the highest doses of VLPs had

HAI titers $1:40 against the matched homologous viruses. Mice

vaccinated with the each monovalent VLP elicited HAI titers

against the homologous virus, whereas the TVV mixture elicited

immune responses against all three influenza viruses (Fig. 2). There

was a dose-dependent decline in the HAI titer in ferrets vaccinated

with lower doses of TVV. There was no significant loss in HAI

titer to a specific virus when the VLP was formulated in a trivalent

mixture compared to the same monovalent VLP little immune

interference or dominance of one VLP over others in the TVV.

HAI results from ferrets that were administered the same

trivalent and monovalent VLP vaccines showed similar results as

the mice against the homologous viruses to the vaccines (Fig. 6).

However, only 50% of ferrets vaccinated with the TVV or the

monovalent H3N2 VLP vaccine had cross-reactive HAI titers

against a panel of H3N2 viruses isolated from 1999–2007. None of

the ferrets had cross-reactivity against contemporary H1N1 viruses

and only modest levels of cross-reactive HAI antibodies against

influenza B viruses. Three of the ferrets had HAI titers $1:256

and only sera from these three ferrets reacted against other H3N2

viruses. Mice and ferrets vaccinated with TIV had average HAI

GMT greater than 1:40, however, these titers were generally lower

than those elicited by TVV.

Although HAI antibody titer is a generally accepted correlate of

protection against influenza, these VLPs were effective at eliciting

cellular responses, which may have contributed to protection or

hastened the recovery of infected animals compared to TIV-

vaccinated or mock vaccinated animals. Even though detection of

cellular responses was low and sporadic prior to challenge, the

induction of HA-specific, CD8+ IFN-c secreting memory T cells

Figure 5. T cell responses. A. IFN-gamma ELISPOT. Splenocytes were collected on day 6 post-infection with mouse-adapted NC/99 (H1N1). B.
Intracellular cytokine staining of CD8+ HA533-specific pentamer positive lung lymphocytes collected on day 6 post challenge from mice immunized
with TVV, TIV or non-immunized (Mock). C. Percentage of the positive cells in panel B expressing IFN-gamma detected by intracellular cytokine
staining. *represents p,0.05.
doi:10.1371/journal.pone.0006032.g005
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was significantly higher in TVV-vaccinated mice compared to mice

vaccinated with TIV (Fig. 3). To examine cell-mediated memory

responses, we chose to collect splenocytes 6 days post-challenge to

differentiate between primary and memory cellular responses. Even

though CD8+ cytotoxic T cells (CTL) do not prevent infection, T

cells provide some level of protection against influenza by

promoting viral clearance and reducing the severity of symptoms

[21–23]. Influenza-specific CTLs mostly target internal proteins,

such as NP, [24–28] and can provide partial protection across

heterologous strains [29]. VLPs evaluated in the study do not

contain NP and therefore, only TIV-vaccinated mice elicited NP-

specific CD8+ T cells over the background responses induced by

primary viral infection. We cannot rule out that these NP-specific

responses could have aided in the recovery of TIV-vaccinated mice.

The VLPs used in this study induced CD8+ IFN-c secreting cells

that were directed at the HA that were significantly higher than the

inactivated, split TIV indicating that CD8+ T cell responses against

HA may be important in viral clearance. The elicitation of cross-

reactive CD4+ and CD8+ T cell memory responses has been

detected in healthy adults exposed to live influenza virus [29,30].

While we did not directly measure CD4+ specific influenza

responses, and the ELISPOT results presented in this study may

be CD4+ T cell specific (Fig. 5), previous studies from our group

demonstrated that our influenza VLP vaccines elicit a predomi-

nately IgG2a and IgG2b anti-HA antibodies, indicative of a T-helper

type 1 biased CD4+ response [10–12].

We expected mice vaccinated with NC/99 VLPs to be

protected against a NC/99 challenge. However, vaccinated mice

lost weight and showed signs of morbidity. Mice are not a natural

host for influenza infection and therefore, viruses need to be

adapted to efficiently replicate in the mouse. During this process,

mutations are introduced. Twelve amino acids were changed in

the HA of the mouse-adapted NC/99 virus and the original

human sequence. Since the vaccine contained the human

sequences, the antibodies elicited recognized the HA sequence

from the human virus, but not the mouse-adapted virus (Fig. 4).

Four of these changes occurred in putative antigenic regions of

HA. Future studies will be needed in order to determine which

mutations are important for this phenomenon. We took advantage

of the mouse-adapted virus to stimulate recall T cell responses

elicited by the VLP vaccine.

Ferrets are generally considered a more relevant animal model

for human influenza infection compared to mice [31]. While cross-

reactive HAI antibodies were detected in mice, there was

Figure 6. Trivalent vs. Monovalent comparison. HAI titers of ferrets vaccinated at the 15 mg dose with (A) trivalent VLP or (B) H3N2 VLP against
a panel of influenza viruses as described in the legend to figure 6.
doi:10.1371/journal.pone.0006032.g006
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variability in homotypic cross-reactive HAI antibodies in ferrets,

particularly at lower doses of VLP vaccine. Interestingly, there was

a dose dependent correlation between the TVV dose and the viral

titer isolated from the nasal wash of NY/04 infected ferrets (Fig. 7).

In addition, viral titers were similar between ferrets vaccinated

with the TVV and the monovalent H3N2 VLP vaccine

administered at the same 15 mg dose, once again indicating that

mixing the VLPs in a trivalent mix did not reduce immunogenic-

ity. We cannot rule out that cellular immune responses played a

role in the protection and fast decline in viral lung titers in TVV-

vaccinated ferrets, since we were not able to measure cellular

responses in ferrets. However, TVV-vaccinated ferrets did have

antibodies that recognized NA that inhibited infection (data not

shown). Humoral immunity elicited by neuraminidase (N1) can

partially protect against H5N1 infection in a mammalian host [32]

and anti-NA (N2) antibodies may have reduced the severity of

disease associated with the antigen shift to H3N2 circulating

viruses in 1968 [33–35]

An advantage of a VLP vaccine approach is a non-infectious

mimicking particle with multiple viral antigens and epitopes that

stimulate a diverse set of immune responses with less

reactogenicity associated with a live-attenuated or whole-

inactivated, split vaccine [10,11]. In general, VLPs have the

potential to activate both endogenous and exogenous antigen

pathways leading to the presentation of viral peptides by MHC

class I and class II molecules [36]. In this study, we showed that

anti-HA specific CD8+ T cells were elicited by a seasonal

influenza VLP vaccine indicating that a multi-epitope vaccine is

more likely than an inactivated, split vaccine to generate a

broad-based immune response. However, it is important to note

that the CD8+ T cell epitopes studied in the mouse model have

not been identified in humans. Particles, unlike single proteins,

have the ability to bind and enter cells using appropriate surface

receptors. These viral proteins can be processed and presented

on MHC class I molecules, therefore promoting presentation to

T-cells by professional antigen presenting cells. In addition, cell-

free VLPs bound with antibodies could be taken up by

phagocytic cells via Fc receptors, thus increasing MHC class

II presentation [36]. Antigens expressed in their native three-

dimensional conformational form can elicit more effective

antibody responses compared to proteins in their non-native

forms [37]. Many neutralizing antibodies directed against viruses

are elicited against conformational epitopes only present in the

native form of envelopes, and some epitopes are only exposed

after binding to receptors during entry. Indeed, both HAI

functional antibody was detected following vaccination with

these VLP vaccines.

In humans, protection and clearance of influenza virus

following infection is not only dependent upon virus virulence,

but also the specific innate immunity, specific serum IgG antibody,

and cell-mediated immunity of the individual infected. Our results

show induction of complementary responses following vaccination

with VLPs – antibodies that block HA binding and CD8+ T cell

responses – that may likely contribute to protection from disease as

demonstrated in the ferret model. In addition to a desirable

immune response, trivalent preparations of VLPs benefit the

public because they can easily be engineered and produced in a

timely fashion, overcoming potential limitations of production of

current egg-based influenza vaccines.
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Figure 7. Protection of ferrets from influenza virus challenge.
At week 5, ferrets vaccinated with TVV, H3N2 VLPs, TIV or HIV-1 VLPs
were challenged intranasally with a 56105 pfu of NY/04 influenza virus.
At days 1, 3, 5, and 7, ferret nasal washes were collected and virus titers
were determined by plaque assay on MDCK cells. The data is plotted as
the pfu/ml of virus in the nasal wash.
doi:10.1371/journal.pone.0006032.g007

Table 2. Viral titers in vaccinated ferrets.

Vaccine/Dose

TVVa 15 mg TVV 3 mg TVV 0.6 mg H3N2 VLP HIV-1 VLP

Virus Titer 6.7610e+3b 1.1610e+5 3.2610e+6 4.3610e+3 5.1610e+5

1.3610e+4 9.9610e+4 2.0610e+6 2.9610e+3 1.9610e+6

1.7610e+4 2.3610e+4 5.9610e+5 1.8610e+4 4.5610e+5

3.2610e+3 3.3610e+4 1.2610e+6 3.8610e+3 3.9610e+5

4.8610e+4 3.0610e+4 8.0610e+5 6.0610e+3 1.1610e+5

5.3610e+3 4.1610e+4 4.8610e+5 2.1610e+4 2.3610e+5

aVaccine administered at weeks 0 and 3.
bpfu/ml on day 1 post-infection.
doi:10.1371/journal.pone.0006032.t002
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