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Abstract

Background: Altered expression of DNA polymerase b (Pol b) has been documented in a large percentage of human
tumors. However, tumor prevalence or predisposition resulting from Pol b over-expression has not yet been evaluated in a
mouse model.

Methodology/Principal Findings: We have recently developed a novel transgenic mouse model that over-expresses Pol b.
These mice present with an elevated incidence of spontaneous histologic lesions, including cataracts, hyperplasia of
Brunner’s gland and mucosal hyperplasia in the duodenum. In addition, osteogenic tumors in mice tails, such as osteoma
and osteosarcoma were detected. This is the first report of elevated tumor incidence in a mouse model of Pol b over-
expression. These findings prompted an evaluation of human gastrointestinal tumors with regard to Pol b expression. We
observed elevated expression of Pol b in stomach adenomas and thyroid follicular carcinomas, but reduced Pol b expression
in esophageal adenocarcinomas and squamous carcinomas.

Conclusions/Significance: These data support the hypothesis that balanced and proficient base excision repair protein
expression and base excision repair capacity is required for genome stability and protection from hyperplasia and tumor
formation.
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Introduction

Increasing evidence is emerging that a large percentage of

human tumors have elevated expression of DNA polymerase b
(Pol b) [1] and in many cases, mutations within the Pol b coding

region results in over-expression of dysfunctional Pol b proteins

[2]. High levels of Pol b expression have been demonstrated in

several human cancers and tumor cell lines [3–6]. Specifically,

elevated Pol b expression is observed in esophageal cancer [7],

colorectal cancer [8] and pancreatic cancer [9]. Ectopic Pol b
expression in human cancer cells is associated with aneuploidy,

abnormal localization of centrosome-associated gamma tubulin

protein expression during mitosis, increased microsatellite insta-

bility [8,10] and is found to promote tumorigenesis in immuno-

deficient nude mice [4,5]. Recently, infection by several viruses

associated with elevated cancer incidence, including chronic

myelogenous leukemia (CML) [11], human papillomavirus 16

(HPV16) [12] and Epstein-Barr virus (EBV) [13], has been shown

to induce the expression of Pol b to elevated levels. Furthermore,

approximately 30% of human cancers express mutant or aberrant

forms of Pol b proteins [2,14–16], leading to genomic instability

and possibly conferring a mutator phenotype to cells [3,17,18].

Taken together, current evidence indicates an imbalance in Pol b
expression, either increased or decreased, leads to functional

deficiency of the base excision repair pathway and promotes

genomic instability [3,17,18].

As a key enzyme in the base excision repair (BER) pathway, Pol

b is essential for the efficient repair of DNA lesions damaged by
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endogenous and exogenous genotoxins [19]. Once the base lesion

is removed and the DNA backbone is hydrolyzed by the concerted

action of a lesion-specific DNA glycosylase such as Methyladenine

DNA Glycosylase (MPG) and Apurinic/apyrimidinic endonucle-

ase 1 (APE1), the resulting single-nucleotide gap is ‘tailored’ by the

59dRP lyase activity of Pol b and subsequently, Pol b adds a

nucleotide to fill the gap. Repair is then completed by the

XRCC1/LigIIIa heterodimer [20]. BER is severely attenuated in

the absence of Pol b, leading to an increase in cellular sensitivity to

several genotoxins [21–26], increased spontaneous and damage-

induced mutations and genome rearrangements in knockout (KO)

or knockdown (KD) cells [17,27,28] and KO (+/2) mice [29].

However, complete KO (2/2) is lethal in mice just after birth

[30,31] preventing detailed analysis of Pol b deficiency beyond

embryo development where it is found that Pol b KO neurons die

by p53-dependent apoptosis [32] resulting in an increase in

mutation frequency in the remaining embryonic tissue [33].

Pol b is involved in many essential protein-protein interactions

among the various BER proteins [20], yet some Pol b binding

proteins suggest additional functions outside of BER, as evidenced

by an interaction with the telomere protein TRF2 [34], the ATM

binding protein ATMIN (ASCIZ) [35,36], the 9-1-1 checkpoint

complex [37], the histone acetyltransferase MYST2 [38] or the

transcription factor TAF1D (JOSD3, MGC5306) [39]. The

functional significance of many of these potential interactions has

yet to be revealed. However, Pol b was identified by ChIP analysis

as a component of the telomere protein complex [40], a role that is

likely related to its interaction with TRF2 [34]. These significant

protein-protein interactions and the role of Pol b in BER or other

DNA metabolic functions can clearly be impacted by protein

expression changes that would disrupt complex formation.

In addition to control via transcription or translation, Pol b is

also regulated post-translationally via acetylation [41], methylation

[42,43] and ubiquitylation [44,45]. These varied modes of Pol b
regulation can impact not only Pol b function directly, but changes

in expression or in specific post-translational modifications (PTM)

can alter function (loss of stability or loss of function due to PTM)

or can impact complex formation (loss of protein-protein

interactions due to PTM) [20] and lead to repair defects even

when Pol b is expressed at high levels.

Transgenic mice with over-expression of the Flag-Pol b
transgene were developed here to study the consequences of this

effect on imbalanced base excision repair and carcinogenesis. As

part of the characterization of this animal model, we report the

age-associated histopathological changes present in two-year old

Pol b transgenic mice. We find that mice over-expressing Pol b
develop Brunner’s gland hyperplasia, mucosal hyperplasia in the

duodenum and osteogenic tumors in the tail. This was the impetus

for an analysis of Pol b expression in relevant human

gastrointestinal tumors and the surrounding normal tissue.

Paradoxically, we find that whereas stomach adenocarcinoma

and thyroid follicular carcinoma present with slightly elevated

expression of Pol b, both esophageal squamous carcinoma and

esophageal adenocarcinoma show a significant decrease in Pol b
expression, compared with surrounding pathologically normal

tissue. Overall, these studies support the hypothesis that balanced

and proficient BER protein expression and BER capacity is

required for genome stability and protection from hyperplasia and

tumor formation.

Results

It is our hypothesis that altered expression of Pol b and the

resulting imbalance in BER can predispose to tumor formation.

To test this hypothesis, we analyzed transgenic mice that present

with elevated expression of Pol b [46]. These Pol b transgenic (Tg)

mice express Flag-tagged Pol b (TetOp-Flag-Polb-tTA) and were

described previously [46]. In this present study, the Tg mice were

crossed .5 generations to the C57Bl/6 strain. In rare cases,

Figure 1. Expression of Flag-Pol b in MEFs and tissues from Pol
b Tg mice. (A) Specificity of mouse and human qRT-PCR analysis for Pol
b expression: RNA was isolated from WT and Pol b KO MEFs and MEFs
expressing the Flag-Pol b transgene, as described in the Methods
section. The relative level of expression of both the mouse (open bars)
and human (filled bars) Pol b mRNA (normalized to mouse b-actin) was
determined using mouse and human specific Taqman assays.
Expression across samples was normalized to the expression level in
the WT/Flag-Pol b MEF sample. (B) Expression of the human Pol b
transgene in mouse tissues and tumors: RNA was isolated from the
sample indicated in the plot, as described in the Methods section. The
relative level of expression of human Pol b mRNA (open bars;
normalized to mouse b-actin) was determined using human specific
Taqman assays as in panel A. Expression across samples was normalized
to the expression level in the Tg Brain sample.
doi:10.1371/journal.pone.0006493.g001

Over-Expression of Pol b
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repression of transgene expression has been reported, depending

on the transgene, the promoter used for expression and its location

[47–49]. To verify that expression of the Flag-Pol b transgene was

maintained and was not epigenetically silenced during the

backcrosses from the original Tg strain to C57BL/6 mice,

expression was verified by qRT-PCR of RNA purified from tissue

isolated by laser-capture microdissection. The Pol b human

transgene used herein has 90.8% sequence identity to the mouse

Pol b cDNA (not shown) so we first verified that the Taqman gene

expression assays were specific for each mRNA. RNA was isolated

from wild-type (WT) mouse embryonic fibroblasts (MEFs), Pol b
KO MEFs and WT MEFs that express the Flag-Pol b transgene

used in this study. The relative level of expression of either the

mouse or human Pol b mRNA was determined for each sample

and normalized to the expression of mouse b-actin using the

DDCT protocol, as described in the Methods section. As shown in

Figure 1A, the expression of both mouse and human Pol b was

normalized to the expression level in the transgenic cell line WT/

Flag-Pol b. A similar level of expression of mouse Pol b was

observed in the WT MEF cell line but no expression of mouse Pol

b was detected in the Pol b KO cell line, as expected [21,22].

Similarly, the expression of the human Pol b transgene was only

detected in the WT/Flag-Pol b MEF cells (filled bar, Figure 1A)

with no detectable expression in either the WT MEF cells or the

Pol b KO MEF cells. This analysis demonstrates the specificity of

both the mouse and human Taqman gene expression assays. It

should be noted that we used this approach to validate the

specificity of a second Taqman gene expression assay for human

Pol b (Hs00160263_m1). However, this assay cross-reacted with

the mouse mRNA and was not used.

Using the validated gene expression assays and the DDCT protocol

as described above and in the Methods section, we next determined if

the human Flag-Pol b transgene was expressed in the cells of the tissues

of interest and most importantly, in the tumors. Using laser-capture

microdissection, we isolated and purified RNA from the brain (not

shown) and the normal and tumor samples described in Figure 2, as

well as from cells from a non-transgenic (non-Tg) mouse. Previous

studies (not shown) suggested that the expression of the Flag-Pol b
transgene in the brain was low but detectable [46] and so the relative

quantitation of Flag-Pol b expression was normalized to the level of

expression in the brain (Figure 1B). As shown, the level of expression in

normal duodenum tissue was slightly elevated as compared to the

Figure 2. Representative photomicrographs (H & E stain) of duodenal changes in Pol b Tg mice. (A) Normal duodenum. Note normal
Brunner’s glands (arrows) (magnification620). (B) Diffuse hyperplasia of Brunner’s glands (small arrows) and duodenal crypt epithelium (large arrow).
Note markedly increased mucosal thickness due to glandular hyperplasia, compared to panel A (magnification620). (C) Cystic dilatation of mucosal
crypts and Brunner’s glands with displacement of cystic glands into the tunica muscularis (magnification6200). (D) Focal proliferation of dysplastic
glands in a mouse diagnosed with duodenal adenoma (magnification6400).
doi:10.1371/journal.pone.0006493.g002
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brain, similar to that observed in our previous analysis of this Tg mouse

[46]. However, expression in the hyperplastic duodenum was

approximately 7-fold higher than the brain and 2- to 3-fold higher

than the normal duodenum tissue. These studies therefore confirm that

the Flag-Pol b transgene is expressed at elevated levels depending on

the tissue and most importantly, the transgene expression appears to be

further elevated in the tumors (Figure 1B). Further, these results suggest

that the expression of the Flag-Pol b transgene is elevated in these mice

similar to that reported earlier [46].

We therefore evaluated the spectrum of pathological lesions in a

cohort of our Pol b Tg mice at 2 years of age. Macroscopic lesions

are summarized in Table 1 and non-neoplastic and neoplastic

lesions are summarized in Tables 2 through 4. Morphological

characteristics of some of the main lesions are as follows in the

sections below.

Proliferative lesions of the duodenum
Hyperplasia of Brunner’s glands and hyperplasia of the

duodenal crypt epithelium resulting in markedly thickened

duodenal mucosa was detected in four of 15 male mice (26.7%)

and ten of 21 female mice (47.6%) (compare Figure 2A and 2B).

Proliferative lesions, especially around Vater’s papilla, were

Table 1. Incidence of macroscopic findings observed in DNA
polymerase b Tg mice.

Organ Macroscopic Finding Frequency (%)*

Male
(n = 15)

Female
(n = 21)

Abdominal cavity Fluid 13.3 19.0

Mass/Nodule 6.7 0.0

Heart Enlarged 13.3 0.0

Soft 0.0 4.8

Salivary gland Atrophy 0.0 28.6

Mass/Nodule 0.0 9.5

Liver Cysts 6.7 28.6

Enlarged 0.0 9.5

Mottled 20.0 9.5

Mass/Nodule 20.0 9.5

Duodenum Thickened, red 0.0 14.3

Mass/Nodule 13.3 23.8

Jejunum Mass 6.7 4.8

Ileum Mass 0.0 4.8

Colon Mass 6.7 0.0

Adrenal Enlarged 6.7 4.8

Pituitary gland Dark, cystic 0.0 4.8

Spleen Enlarged 6.7 38.0

White Foci 6.7 0.0

Small/Atrophy 6.7 4.8

Mass/Nodule 6.7 4.8

Thymus Enlarged 0.0 4.8

Mesenteric Lymph Node Enlarged 40.0 48

Mass/Nodule 0.0 4.8

Other Lymph Node Enlarged 20.0 38.1

Testis Dark red 6.7 –

Seminal vesicle Black, cystic 6.7 –

Enlarged 20.0 –

Prostate Enlarged 6.7 –

Ovary Dark red – 19.0

Uterus Dilated – 4.8

Lung Pale 6.7 0.0

Ear Ulcer 0.0 4.8

Eye Lens, white 100 100

Tail Mass/Nodule 33.3 14.3

*Frequency defined as the number of animals with the lesion divided by the
number of animals with the tissue examined macroscopically, multiplied by
100.

doi:10.1371/journal.pone.0006493.t001

Table 2. Incidence of non-neoplastic lesions observed in DNA
polymerase b Tg mice.

Organ Macroscopic Finding Frequency (%)*

Male
(n = 15)

Female
(n = 21)

Heart Polyarteritis 6.7 0.0

Salivary gland Mononuclear cell, infiltration 93.3 45.0

Duodenum Erosion 0.0 9.5

Ectopic pancreas 0.0 4.8

Liver Altered cell foci 6.7 4.8

Biliary cyst 6.7 14.3

Chronic active hepatitis 13.3 0.0

Erythrophagocytosis 0.0 4.8

Extramedullary hematopoiesis 6.7 14.3

Hemorrhage 20.0 4.8

Hyaline bodies, cytoplasm 6.7 0.0

Microgranulation 0.0 4.8

Mononuclear cell, infiltration 53.3 47.6

Necrosis 13.3 14.3

Pigmentation 0.0 4.8

Subcapsular infiltration 0.0 4.8

Gallbladder Hyaline inclusion 27.3 5.0

Pancreas Mononuclear cell, infiltration 0.0 19.0

Adrenal gland Pigmentation 33.3 95.2

Mesenteric Lymph Node Erythrophagocytosis 0.0 8.3

Other Lymph Node Plasmacytosis 6.7 0.0

Spleen Congestion 0.0 4.8

Extramedullary hematopoiesis 73.3 75.0

Mammary gland Lactation – 5.6

Testis Sperm granuloma 14.3 –

Hemorrhage 7.1 –

Tubular, atrophy 7.1 –

Epididymis Hypospermia 7.7 –

Prostate Mononuclear cell, infiltration 6.7

Polyarteritis 6.7

Seminal vesicle Hemorrhage 6.7

*Frequency defined as the number of animals with the lesion divided by the
number of animals with the tissue examined histopathologically, multiplied by
100. Abnormal non-neoplastic changes were not detected in thyroid,
parathyroid, thymus, stomach, jejunum, ileum, cecum, colon and pituitary.

doi:10.1371/journal.pone.0006493.t002
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detected with high incidence. Such changes were characterized by

diffuse epithelial hyperplasia, altered epithelial differentiation,

eosinophilic cytoplasmic inclusions, and herniation/diverticulation

(Figure 2C) of the epithelium into the tunica muscularis and

serosa. Adenoma of relatively small size, was diagnosed in one of

21 female mice (Figure 2D). Proliferative lesions were often

associated with chronic granulomatous inflammation and are

similar to duodenal plaques (avillous hyperplasia, duodenum

polyp) derived from the crypts of Lieberkuhn [50]. Most of these

lesions are regarded as benign hyperplastic lesions, but some may

develop dysplasia, a pre-malignant neoplastic lesion.

Osteogenic tumors in tail
Macroscopically, masses or nodules in the tail were detected in

33.3% (5/15) of male and 14.3% (3/21) of female mice.

Histopathologically, chondro-osseous metaplasia was detected in

one of 3 female mice; osteoma was detected in three of 5 male mice

(Figure 3A and 3B); and osteosarcoma was detected in one of 5 male

and one of 3 female mice (Figure 3C and 3D). Osteosarcoma was

characterized by proliferating spindle tumor cells, associated with

presence of irregular, infiltrating trabecular bone. In this study,

osteogenic tumors were not detected in any other site besides the tail.

Mature Cataract
Mature cataracts were detected in all mice examined (male; 13/

13, female; 21/21), essentially as we described previously [46].

Histopathologically, the lens changes were characterized by

degeneration/necrosis (liquefaction), vacuole formation in most

of the lens fibers, and irregular proliferation of lens fiber spindle

cells, followed by calcification (Figure 4A and 4B). Moreover, lens

epithelia with bizarre nuclei and single cell necrosis in the

proliferative fiber cells were seen. In all cases, lenticular lesions

were diagnosed as a mature type, a final stage of cataract

formation.

Renal lesions
A spectrum of renal lesions was detected in almost all animals

with glomerular changes, basophilic tubules, and mononuclear cell

infiltration occurring in both sexes. Glomerular hyalinization was

detected in almost all mice (male; 15/15, female; 17/20) with

basement membrane thickening (Figure 4C and 4D). In mild

cases, eosinophilic material in glomerular basement membranes

was seen, while densely eosinophilic and amorphous deposits in

glomeruli were seen in severe cases. In addition, glomerular

hypercellularity, consistent with proliferation of mesangial cells,

was present in 3 of 15 male and 4 of 20 female mice. Moreover,

basophilic tubules observed in the cortex of 13 of 15 male and 16

of 20 female mice. These lesions are representative of glomeru-

lonephritis.

Expression of Pol b in human tumors and surrounding
normal tissue

To extend observations in mice, we examined Pol b expression

in human gastrointestinal cancers and in surrounding normal

epithelial tissues (Figure 5A). Because cancers are more likely to

arise in epithelial tissues, we separated scores in epithelial and

stromal (subepithelial) areas. There was no significant difference in

Pol b immunoreactivity scores between stromal areas in cancerous

vs. surrounding non-cancerous tissues. In epithelial tissues, we

observed (Figure 5B) elevated expression of Pol b in stomach

adenocarcinomas compared with surrounding normal gastric

mucosal tissue, although this difference was not significant

(p = 0.19). Compared with paired normal surrounding tissues,

however, there was a significant increase in Pol b in thyroid

follicular carcinomas (p = 0.02), but significantly reduced Pol b
expression in esophageal adenocarcinomas (p = 0.04) and squa-

mous carcinomas (p = 0.005).

Discussion

BER proteins require a finely tuned balance of expression to

ensure complete repair of many mutagenic or genome destabiliz-

ing base lesions [24,46,51–54]. Altered expression or mutations in

BER proteins such as Pol b that impact function or protein-protein

interactions can predispose to sensitivity to genotoxins [22], an

increase in genome alterations [17], mutations [27] and tumor

formation [55]. In total, cellular, epidemiological and pathological

analyses suggested a correlation between several human cancers

and Pol b mutations and/or expression changes.

In cell-based studies, alteration in expression of Pol b impacts

BER capacity and manifests as a genome destabilizing phenotype,

consistent with the observation that greater than 30% of human

tumors have elevated expression of Pol b [1] and in a separate

study it was revealed that greater than 30% of human tumors

express mutant forms of Pol b [2]. Only a few animal models with

altered Pol b expression have been characterized to study how

alterations in Pol b expression might impact tumor formation in

Table 3. Incidence of non-neoplastic lesions observed in DNA
polymerase b Tg mice.

Organ Macroscopic Finding Frequency (%)*

Male
(n = 15)

Female
(n = 21)

Ovary Atrophy – 94.4

Cyst – 60.0

Thrombus – 5.6

Vagina Erosion – 50.0

Lung Mononuclear cell, infiltration 60.0 57.1

Eye Cataract 100.0 100.0

Kidney Basophilic tubules 86.7 80.0

Glomerular, hyalinization 100.0 85.0

Glomerular, hypercellularity 20.0 20.0

Mononuclear cell, infiltration 80.0 85.0

Tubular, vacuolization 93.3 0.0

Hyaline droplet 0.0 15.0

Protein cast 0.0 10.0

Pelvic, dilatation 0.0 5.0

Skin Ulcer 0.0 5.0

Crust 0.0 5.0

Mononuclear cell, infiltration 0.0 10.0

Brain Mineralization 53.3 15.8

Hemosiderin deposition 6.7 0.0

Lateral ventricle, dilatation 13.3 0.0

Mononuclear cell, infiltration 0.0 5.3

Polyarteritis 6.7 0.0

Urinary bladder Mononuclear cell, infiltration 8.3 38.1

Tail Chondro-osseous metaplasia – 33.3

*Frequency defined as the number of animals with the lesion divided by the
number of animals with the tissue examined histopathologically, multiplied by
100. Abnormal non-neoplastic changes were not detected in thyroid, parathyroid,
thymus, stomach, jejunum, ileum, cecum, colon and pituitary.

doi:10.1371/journal.pone.0006493.t003
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the whole animal. Mice with a partial deficiency in Pol b
expression (Pol b heterozygote mice) have an elevated mutant

frequency in male germ cells [27] and a small increase in the

incidence of lymphoid hyperplasia and adenocarcinoma [56].

Mice expressing a truncated form of Pol b (polbetaD) in mammary

glands showed an elevated incidence of tumor formation [55].

This mutant of Pol b is a splice-variant missing amino acids 208–

236 [57] however, this variant is not cancer specific [58]. A second

Pol b Tg mouse was developed but this model only expresses Pol b
in the thymus and elevated tumor formation was not observed

[59].

The development of the Pol b transgenic mice used in this study

and the Pol b expression pattern was described previously [46].

The Pol b Tg mice were backcrossed onto a C57BL background, a

strain widely used for development of transgenic mice and gene-

targeting experiments [60]. The majority of non-neoplastic and

neoplastic lesions observed in the Pol b Tg mice were considered

spontaneous and age-related as previously reported in C57BL and

other mouse strains [50,60–63]. The more commonly occurring

spontaneous lesions in C57BL/6 (e.g., lymphoma and histiocytic

sarcoma) were not increased in the Pol b Tg mice. Lesions unique

to the Pol b Tg mice were found in the duodenum, tail, eye, and

kidney. The increased incidence (100%) of lesions in the eye

(cataract) was described earlier [46].

The 39% incidence of proliferative duodenal lesions in the Pol b
Tg mice is considerably higher than previously reported incidences

of 4% [63] and 21% [64] in aged C57BL mice. Other

spontaneous plaquelike lesions or polyposis in the pyloric area of

the glandular stomach have been observed in C57BL/Ncr6129/

SvTer (B6,129) mice, 129/SvTer mice, Ahr-null mice, TGF b-1

heterozygous mice, Smad4 heterozygous mice, CYP1A2-null

mice, and B6C3F1 mice [65–70]. Moreover, C57BL mice have

been reported to be very susceptible to duodenal neoplasia

following some carcinogen treatments [71]. A majority of the non-

neoplastic lesions are considered spontaneous age-related and

have been reported in C57BL/6 and other mouse strains. The

incidence of the non-neoplastic lesions was not increased in the

DNA Polymerase b over-expressing Tg mice. In particular,

mononuclear cell infiltration in all of the organs (mainly

lymphocytes), ovarian cystic lesions and atrophy, and liver lesions

are very common lesions in aged C57BL/6 mice. As well, there

was no gender differences. Therefore, Pol b Tg mice might also be

suitable models for duodenal carcinogenicity following treatment

with appropriate carcinogens.

Duodenal epithelial tumors that develop from the intestinal type

or the pancreaticobiliary type mucosa of Vater’s papilla [72,73]

are relatively rare tumors in humans; the incidence rate of

adenoma is 0.04–0.62% and that of carcinoma is 0.2% in

postmortem or autopsy studies [74]. Molecular alterations in these

duodenal lesions are similar to those of colorectal tumors and

include K-ras mutation and the overexpression of p53, p21/Waf1,

p16, and/or APC [72,73,75]. Mice which carry a mutation in the

Apc gene have multiple neoplastic lesions in duodenum (42%),

jejunum (38%), stomach (25%), ileum (15%), and colon (8%) [76].

It is not known if altered expression of the above-mentioned genes

might be related to the pathogenesis of duodenal lesions in Pol b
Tg mice. Recently, it was reported that APC directly inhibits BER

[77]. It is therefore possible that APC functions to regulate BER,

Table 4. Incidence of non-neoplastic & neoplastic proliferative lesions in DNA polymerase b Tg mice.

Organ Lesion Frequency (%)* Organ Lesion Frequency (%)*

Male Female Male Female

Salivary gland Lymphoid hyperplasia 0.0 10.0 Other Lymph Node Lymphoid hyperplasia 5.6 3.8

Malignant lymphoma 0.0 15.0 Malignant lymphoma 11.1 15.4

Forestomach Squamous hyperplasia 0.0 5.0 Histiocytic sarcoma 0.0 30.8

Duodenum Bruner’s gland/Mucosa
Hyperplasia,

26.7 47.6 Spleen Lymphoid hyperplasia 13.3 25.0

Malignant lymphoma 6.7 5.0

Histiocytic sarcoma 6.7 5.0

Adenoma 0.0 4.8 Thymus Malignant lymphoma 0.0 50.0

Malignant lymphoma 6.7 4.8 Skin Lymphoid hyperplasia 6.7 5.0

Jejunum Malignant lymphoma 6.7 10.0 Squamous, hyperplasia 0.0 5.0

Liver Adenoma 13.3 0.0 Ovary Malignant lymphoma – 5.6

Histiocytic sarcoma 13.3 14.3 Histiocytic sarcoma – 5.6

Adrenal gland Cortical hyperplasia 16.7 9.5 Uterus Endometrial, hyperplasia – 31.6

Cortical spindle cell hyperplasia 0.0 90.5 Lung Lymphoid hyperplasia 6.7 9.5

Thyroid Follicular cell, hyperplasia 0.0 18.8 Malignant lymphoma 0.0 9.5

Follicular cell adenoma 0.0 6.3 Histiocytic sarcoma 6.7 4.8

Pituitary gland Hyperplasia 0.0 25.0 Bronchiolar-alveolar
adenoma

20.0 0.0

Mesenteric Lymph Node Lymphoid hyperplasia 9.0 0.0 Kidney Malignant lymphoma 0.0 5.0

Malignant lymphoma 63.6 58.3 Tail Osteoma 60.0 0.0

Histiocytic sarcoma 9.0 25.0 Osteosarcoma 20.0 33.3

*Frequency defined as the number of animals with the lesion divided by the number of animals with the tissue examined histopathologically, multiplied by 100. Data
derived from 15 males and 21 females except where noted. No neoplastic changes were detected in gallbladder, parathyroid, thymus, ileum, cecum, colon, pancreas,
brain, eye, urinary bladder, testis, epididymis, prostate, seminal vesicle, oviduct, vagina, and mammary gland.

doi:10.1371/journal.pone.0006493.t004
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suggesting that Pol b over-expression may lead to a similar

phenotype as APC deficiency.

Spontaneous occurrence of osteogenic tumors is extremely rare in

rats and mice, and there are only a few reports published with

incidences of 0.1 to 2% in mice and 0 to 4% in rats [50,78–83].

Therefore, the incidence of osteogenic tumors in Pol b Tg mice is

considerably higher than incidences cited in the literature. While the

vertebral column including caudal vertebrae (tail) has previously

been noted as a common site of osteogenic tumors in mice [81], most

reports do not detail the specific sites of osteogenic bone tumors.

Glomerulonephritis and related renal lesions are common

findings in C57BL/6 mice [60]. However, it is not clear whether

the incidence of glomerulonephritis in the Pol b model is higher

that that in C57BL/6 mice due to lack of available data in two-

year old C57BL/6 mice.

A higher level of Pol b expression has been found in human

intestinal adenocarcinoma than in other organs tumors [3,84]. In this

study, we observed a variable outcome in that ESC and EA presented

with decreased expression of Pol b whereas SA and TFC showed

elevated Pol b expression. In all cases, the efficiency of the DNA

repair system (Pol b) might be compromised due to altered PTM or

complex formation [84]. Unfortunately, there have been no reports

about the relationship between Pol b expression and osteogenic

tumors in humans and animals. Bergoglio and colleagues reported

that tumor induction could not be seen in a Pol b Tg mouse model

with thymus-specific Pol b transgene expression, suggesting that Pol b
over-expression is not sufficient to initiate tumorigenesis in vivo [59]. In

our Pol b Tg mice, over-expression of Pol b in most systemic tissues

was confirmed and the degree of over-expression of Pol b in small

intestine was shown to be similar to that in lens [46]. Therefore, we

believe that the relationship between lesion pathogenesis and over-

expression of Pol b might reflect organ specificity.

The relationship between Pol b over-expression and human

carcinogenesis remains to be elucidated. Previous reviews have

Figure 3. Osteogenic tumors of tails in Pol b Tg mice (H & E stain). (A) Osteoma (arrow) in the central area of tail (magnification620,
Decalcified). (B) Higher magnification of panel A. Irregular trabecular formation by spindle tumor cells (magnification6200). (C) Osteosarcoma. The
tumor occupied almost the entire subcutaneous area of the tail (magnification620). (D) Spindle tumor cells resemble fibroblastic mesenchymal cells
and proliferated with production of a small amount of osteoid deposition (magnification6400).
doi:10.1371/journal.pone.0006493.g003
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reported that greater than 30% of human tumors have elevated

expression of Pol b [1] or express dysfunctional Pol b proteins [2].

Additional research is needed to analyze the relationship between

Pol b over-expression and intestinal carcinogenesis and the

understanding of the potential extrapolations from our model to

humans due to over-expression of Pol b. This mouse model might

be a useful tool for cancer chemotherapy as well as evaluating the

environmental and genetic factors that cooperate with Pol b
expression variation to impact hyperplasia and tumor formation.

Materials and Methods

Animals
DNA polymerase Pol b transgenic mice were described

previously [46]. Genotyping was as described [46]. These mice

(fifteen male and twenty-one female), express Flag-tagged Pol b
(TetOp-Flag_polb-tTA) and were developed in B6SJL-hybrid

females and then back-crossed onto C57BL/6 mice [46]. The Pol

b expression pattern and the level of over-expression was described

previously [46]. These mice over-express Pol b in almost all

organs, including stomach and small intestine [46]. This mouse

strain is available from the NIH-sponsored Mutant Mouse

Regional Resource Centers (MMRRC) (Strain name: B6.Cg-

Tg(TetOp-Polb/tTA)2Sbl/Mmmh, Stock number: 000356-MU).

Details for this strain are available at http://www.mmrrc.org/

strains/356/0356.html. All breeding was at NIH using IACUC

and ALAAS approved protocols for the duration of the study. The

transgenic mice used in the study were crossed to C57BL/6

(Taconic) for .5 generations, as in the previous study [46]. Each

Tg animal is considered a heterozygous Tg mouse in that breeding

was only performed using either a transgenic male and C57BL/6

female or a C57BL/6 male and transgenic female. Transgenic

mice were never inter-bred. Mice were housed in solid-bottom

polycarbonate cages. Filtered room air underwent at least 10

changes per hour. The animal room was maintained at 22 +/2

2uC with 50 +/2 15% relative humidity and a 12-hour light-dark

cycle. Irradiated NTP-2000 pelleted feed (Zeigler Bros., Inc.,

Gardner, PA) and water were available ad libitum. Animal handling

and husbandry were conducted in accordance with NIH

guidelines [85].

Figure 4. Representative photomicrographs (H & E stain) of lenticular and glomerular damages in Pol b Tg mice. (A) Mature cataract
characterized by degeneration/necrosis (liquefaction) and vacuolar formation in lens fibers (magnification620). (B) High-magnification of figure a.
Irregular proliferation of spindle lens fiber cells without production of normal lens fibers; necrosis and calcification are present (magnification6400).
(C) Glomerular hyalinization with basement membrane thickening of Bowman’s capsule, basophilic tubules, and tubular vacuolation in the renal
cortex (magnification6400). (D) Glomerular hypercellularity with basement membrane thickening (magnification6400).
doi:10.1371/journal.pone.0006493.g004
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Pathology
Necropsies were performed on all mice after euthanization at

the age of 24 months. Euthanasia was by asphyxiation with carbon

dioxide and mice were necropsied within 5 min of death. At

necropsy, all tissues including masses and macroscopical abnor-

malities were removed and fixed in 10% neutral buffered formalin.

After fixation, the following tissues were trimmed, dehydrated,

cleared, and paraffin-embedded: liver, gallbladder, lung, thyroid

gland, parathyroid gland, salivary gland, spleen, heart, kidney,

stomach, duodenum, jejunum, ileum, cecum, colon, pancreas,

mesenteric lymph node, skin, mammary gland, brain, eye, urinary

bladder, testis, epididymis, prostate, seminal vesicle, ovary, uterus,

vagina, adrenal gland, and pituitary gland. Other lymph nodes

(mediastinal, pancreatic, cervical, and/or perirenal) were exam-

ined when macroscopical lesions were detected. In addition, for

animals that had macroscopical tail lesions, samples were

decalcified prior to routine processing. Five-micron thick sections

were mounted onto glass slides, stained with hematoxylin and

eosin (H&E), and examined microscopically. The severity of non-

neoplastic lesions was graded on a four-point scale of 1 = minimal,

2 = mild, 3 = moderate, and 4 = marked. Histopathology evalua-

tion was performed by two pathologists (KY and AN). Previously

published histopathological terminology and diagnostic criteria

were used [50,60,63,64].

Laser-Capture Microdisection of Paraffin-Embedded
tissue and tumor samples

RNA was isolated from laser capture micro-dissected Formalin-

Fixed Paraffin-Embedded (FFPE) tissue and tumor samples using

the CellcutTM instrument (Molecular Machines and Industries,

Haslett, MI). Two sections (8 mm) were placed on five polyeth-

ylene terephthalate (PET) foil slides. A detailed protocol for

staining and the LM process is available on the NIEHS Laser

Microdissection Core Facility web site [86,87]. Using the Pure-

LinkTM FFPE RNA Isolation Kit (Invitrogen Life Technologies,

Carlsbad, CA.), the LM samples and whole section controls were

lysed and RNA isolated on the same day.

Quantitative RT-PCR Analysis
Expression of mouse and human Pol b mRNA was measured by

quantitative RT-PCR using an Applied Biosystems StepOnePlus

system. Briefly, 80,000 MEF cells (WT, WT expressing the Flag-

Pol b transgene and Pol b KO) were lysed and reverse transcribed

using the Applied Biosystems TaqmanH Gene Expression Cells-to-

CTTM Kit. Each sample was analyzed in triplicate and the results

shown are an average of all three analyses. Analysis of mRNA

expression was conducted as per the manufacturer (DDCT

method) using Applied Biosystems TaqManH Gene Expression

Assays (human POL b: part #4331182, Hs01099715_m1; mouse

Pol b: part #4331182, Mm00448234_m1) and normalized to the

expression of mouse b-actin (part #4352933E).

For the analysis of the Tg mouse tissue, RNA was extracted as

described above and cDNA was synthesized from 30 ng of RNA

using the Applied Biosystems High Capacity cDNA Reverse

Transcription Kit (part #4375575). The cDNA was pre-amplified

for 10 cycles using the TaqManH PreAmp Master Mix (part #
4391128) and diluted 1:5. The pre-amplified cDNA was next

analyzed using the Applied Biosystems TaqManH Gene Expres-

sion Assays (human POL b: part #4331182, Hs01099715_m1;

mouse Pol b: part #4331182, Mm00448234_m1) and normalized

to the expression of mouse b-actin. Expression analysis was

determined using the DDCT protocol as per the manufacturer to

determine the relative quantitation of Flag-Pol b expression, as

compared to the mouse b-actin among all samples. From the tissue

samples, expression was normalized to the level of expression in

the brain of Tg mice.

Immunohistochemistry for Pol b in human epithelial
tumors

Tissues samples [Esophageal Squamous Carcinoma (ESC),

Esophageal Adenocarcinoma (EA), Thyroid Follicular Carcinoma

(TFC) and Stomach Adenocarcinoma (SA) and surrounding

normal tissue] were obtained through the Tissue and Research

pathology Services (TARPS), University of Pittsburgh Cancer

Institute. Five cases were examined for each of the types of

Figure 5. Decreased expression of Pol b in human esophageal
adenocarcinoma. (A) Photomicrograph of sections of esophageal
adenocarcinoma and esophageal squamous mucosa stained for Pol b
expression by immunohistochemistry. Top images reflect magnifica-
tion640 and the inserts depict magnification6100. (B) Bar graph
representing relative expression level of Pol b in various tumors
(stippled, open bars) and pathologically normal (grey bars) epithelial
tissues. Immunoreactivity Score is the average of 5 different tumor
samples each evaluated in two independent analyses.
doi:10.1371/journal.pone.0006493.g005
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carcinoma. Five-micron thick sections of paraffin-embedded tissue

on glass slides were either stained with hematoxylin and eosin

(H&E) or analyzed for Pol b expression by immunohistochemistry.

Labeling was performed on formalin-fixed, paraffin-embedded

tissues by incubation with antibodies against Pol b (Abcam,

polyclonal, cat#AB53059, diluted 1 in 5000). To ensure even

staining and reproducible results, sections were incubated by slow

rocking overnight in primary antibody (4uC) using the Antibody

AmplifierTM(ProHisto, LLC, Columbia, SC). Following incuba-

tion with primary antibody, sections were processed with a rabbit

polyclonal EnVision+System-HRP kit (DakoCytomation, Carpin-

teria, CA) according to the kit protocols. The chromogen was

diaminobenzidene and sections were counter stained with 1%

methyl green. The negative controls were tissues from Pol b
knockout mice, which were negative for staining. Immunohisto-

chemistry was quantified by two independent investigators in a

blind fashion as previously described [88]. Cases with a

disagreement of both investigators on the immunoreactive score

were discussed using a multiheaded microscope until consensus

was achieved. A score was calculated based of the percentage of

positive tumor cells (,10% = 1; 11–50% = 2; 51–80% = 3;

.80% = 4) multiplied by the staining intensity (negative = 0;

weak = 1; moderate = 2; strong = 3). For the immunoreactive score

(IRS) the scores for the percentage of positive cells and the staining

intensity were multiplied, resulting in a value between 0 and 12.

For immunohistochemical quantification, mean differences be-

tween groups were compared by one-way analysis of variance with

Scheffe multiple comparison tests. The P-value chosen for

significance in this study was 0.05.
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