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Head and neck squamous cell carcinomas (HNSCC) afflict 600,000 persons and cause 300,000 

deaths annually worldwide. Recent changes in HNSCC epidemiology demonstrate the 

importance of disease heterogeneity in prevention and treatment. This research investigated 

heterogeneity in HNSCC pathobiology, etiology, and survival in three separate studies. In the 

first study, N=67 formalin-fixed, paraffin-embedded HNSCC (27 human papillomavirus (HPV)-

positive, 40 HPV-negative) were retrieved from storage and expression of three tumor 

angiogenesis markers--epidermal growth factor receptor (EGFR), vascular endothelial growth 

factor (VEGF), and NOTCH receptor 1 (NOTCH1)--were compared according to HPV status 

using immunohistochemistry. HPV-positive tumors under-expressed  EGFR relative to HPV-

negative (P<0.01) but VEGF (P=0.82) and NOTCH1 (P=0.68) were unrelated to HPV status. 

EGFR-VEGF, and NOTCH1-VEGF associations were observed in HPV-negative tumors only; 

and the NOTCH1-EGFR association was observed in HPV-positive tumors only. HPV-positive 

HNSCC may be less angiogenic than HPV-negative HNSCC. 

The second study assessed the association between childhood passive smoke exposure 

(CPSE) and HNSCC using a case-control design (N=862 cases, N=806 frequency-matched 

controls). CPSE was associated with HNSCC (odds ratio (OR)=1.28, 95% confidence interval 

(CI): 1.01-1.63) after controlling for adult smoking. Among never-adult-smokers (N=184 cases, 

N=415 controls) CPSE was associated with oropharyngeal cancer (which is typically HPV-
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related) more strongly than other HNSCC  (OR=2.04, 95% CI: 1.02-4.08 vs. OR=1.08, 95% CI: 

0.71-1.66; P-for-heterogeneity=0.08). Assuming a causal association, 16.9% (95% CI: 0.8%-

29.4%) of HNSCC would not occur without CPSE. Limiting CPSE may reduce HNSCC risk. 

The third study assessed overall and disease-specific survival associated with metabolic 

enzyme genotype in N=159 HNSCC cases. After adjustment for tumor site and stage, N-

acteyltransferase-2 (NAT2) fast acetylators had improved survival (vs. slow acetylators) when 

treated with surgery alone (hazard ratio (HR)=0.26; 95% CI: 0.10-0.66) but not 

chemoradiotherapy (HR=1.21; 95% CI: 0.54-2.73) or radiotherapy (HR=0.67; 95% CI: 0.31-

1.59) (P-for-interaction=0.04). Reduced activity glutathione S-transferase pi-1 (GSTP1) was 

associated with improved disease-specific survival in men only (HR=0.12; 95% CI: 0.02-0.91; 

women: HR=2.29; 95% CI=0.41-12.69; P-for-interaction=0.02). Metabolic enzyme genotype 

modifies HNSCC survival. 

This research contributes to public health by demonstrating biological differences in 

HNSCC exploitable for therapy; encouraging public policy to reduce HNSCC incidence; and 

supporting individualized therapy. 
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1.0  INTRODUCTION 

Head and neck squamous cell carcinomas (HNSCC) are epithelial malignancies occurring in the 

oral cavity, pharynx, and larynx, and contribute substantially to the worldwide burden of cancer, 

accounting for over 630,000 new cancer cases and 360,000 deaths worldwide in 2008.1 The 

strongest risk factors for HNSCC are tobacco and alcohol use, and recent declines in incidence of 

HNSCC in the United States, Canada, and Europe have been attributed to declines in smoking.2-4 

However, despite the decline in incidence of HNSCC overall, the incidence of oropharyngeal 

cancer has risen among younger persons with little or no smoking history.2,3,5,6 It is now known 

that these tumors are caused by the sexually transmitted human papillomavirus (HPV).7 Thus, 

the United States and other developed nations are now experiencing an epidemic of HPV-

positive HNSCC believed to have emerged as a result of changes in sexual behavior over time.7 

HPV-positive HNSCC are recognized as a distinct disease entity, as they are associated with 

better prognosis, have unique histopathology, and exhibit molecular abnormalities that HPV-

negative HNSCC do not.7 The emergence of HPV-positive HNSCC as a public health problem 

has stimulated the need to explore heterogeneity in HNSCC that might reveal unique therapeutic 

approaches for patient subgroups, improved understanding of disease etiology necessary for 

prevention of HNSCC, and identification of factors influencing HNSCC survival.7 

One possibly important source of heterogeneity in HNSCC is angiogenesis: the 

development of tumor-infiltrating blood vessels in response to growth factors released from the 
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tumor.8 Angiogenesis is required for tumor growth and can facilitate metastasis by providing a 

path to other anatomical sites via the vasculature.8 Immunohistochemical (IHC) studies showing 

lower expression of proteins upstream of proximal angiogenesis markers in HPV-positive 

compared with HPV-negative HNSCC,9-13 combined with clinical observations linking HPV-

positive tumors with smaller size14-17 are suggestive of reduced growth potential in HPV-positive 

HNSCC. However, it is unclear whether this specifically reflects differences in angiogenesis in 

HPV-positive and HPV-negative HNSCC. In addition, preliminary evidence has identified a 

potentially unrecognized actor in HNSCC angiogenesis--the NOTCH1 receptor.18,19 NOTCH1 is 

involved in cell-to-cell signal transduction events associated with cellular differentiation, yet its 

function in cancer as an oncogene or tumor suppressor appears to vary across tumor types.20 The 

function of NOTCH1 in HNSCC is yet to be defined,21,22 although some studies suggest it may 

be associated with angiogenesis in oral and oropharyngeal cancer.18,19 However, no studies have 

compared NOTCH1 with well known markers of angiogenesis in HNSCC stratified by tumor 

HPV status. Anti-angiogenesis therapies are currently being tested in clinical trials for HNSCC,23 

although it is not yet understood how the heterogeneity of HNSCC might effect response to these 

therapies. Exploration of differences in angiogenesis comparing HPV-positive and HPV-negative 

HNSCC might reveal patient subgroups likely to respond to anti-angiogenesis therapy, and 

identify potential biomarkers of treatment response or new therapeutic targets. 

The increasing importance of HPV in HNSCC has also stimulated the need for improved 

understanding of etiologic cofactors in HPV-positive HNSCC.7 Although patients diagnosed 

with HPV-positive HNSCC are less likely to have a smoking history themselves,7 these patients 

were born during a time when smoking was more common and had substantial opportunity for 

exposure to passive cigarette smoke during childhood.6,24 The International Agency for Research 
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on Cancer identifies passive smoke as a human carcinogen25 and the United States Surgeon 

General concluded that adult exposure to passive smoke causes lung cancer in lifetime never-

smokers.26 The health of children is particularly threatened by passive smoke as children are 

more likely to live with a smoker than non-smoking adults.26 Childhood passive smoke exposure 

is associated with reduced lung function, increased risk of respiratory and ear infections, 

development of asthma, and suppression of humoral and cellular immune responses.26 While 

studies have shown increased risk of adult nasopharyngeal carcinoma associated with childhood 

passive smoke exposure,27,28 this head and neck tumor is pathologically distinct from 

HNSCC.29,30 The relationship between childhood passive smoke exposure and HNSCC is not 

extensively explored,31 and no studies have examined this exposure separately in HPV-positive 

and HPV-negative HNSCC.  

Exploration of heterogeneity in HNSCC also has the potential to yield badly needed 

improvements in survival for HNSCC patients, who continue to experience five-year relative 

survival of only 60% whereas patients suffering from more common tumors such as breast and 

prostate cancers experience five-year relative survival in excess of 90%.32 Although several 

determinants of survival have been identified in HNSCC, studies have focused mainly on 

characteristics of the tumor rather than germline genetics.7 Germline variation in tobacco 

metabolizing enzymes modifies the risk of HNSCC in the presence of smoking.33-35 However, it 

is unclear whether polymorphisms in these genes also effect survival. This is a concern given 20-

40% of HNSCC patients continue smoking after cancer diagnosis,36-39 and given the additional 

role of these enzymes in metabolism of chemotherapy used in HNSCC treatment,40 and 

carcinogens present in burned fossil fuels41 and cooked meat.42  
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The pursuit of discoveries leading to novel therapies in HNSCC, a reduction in 

population burden of HNSCC, and improved survival for HNSCC patients are unique efforts 

with a common theme embodied in the translational research approach: to quickly bring results 

of scientific research to bear on reducing cancer morbidity and mortality at the population 

level.43 The objective of the research described here is to apply epidemiology to make 

discoveries that ultimately impact the lives of HNSCC patients and those at risk for developing 

the disease. Specifically,  this research seeks to: 1) explore the role of the NOTCH pathway in 

tumor angiogenesis in HPV-positive and HPV-negative HNSCC, 2) evaluate the association 

between childhood passive smoke exposure and adult HNSCC, and 3) evaluate the association 

between polymorphisms in tobacco and alcohol metabolizing enzymes and survival in HNSCC. 
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2.0  LITERATURE REVIEW 

2.1 BACKGROUND 

The World Health Organization (WHO) classifies solid tumors occurring at a variety of anatomic 

sites in the head and neck as "head and neck tumors," with the notable exceptions of the thyroid, 

esophagus and brain.44 Approximately 85-95% of these tumors are squamous cell carcinomas 

(SCC) occurring in the oral cavity, pharynx, and larynx.44,45 HNSCC are caused by tobacco 

smoking, alcohol abuse, and HPV infection.46 The following literature review discusses the 

epidemiology of HNSCC with a focus on data from the United States. SCC of the lip are not 

discussed here (unless otherwise noted) as the primary etiology for these tumors is prolonged sun 

exposure.47 

2.2 THE EPIDEMIOLOGY OF HEAD AND NECK SQUAMOUS CELL 

CARCINOMA (HNSCC) IN THE UNITED STATES 

HNSCC accounted for 3.2% of incident cancers and 2.0% of cancer deaths in the United States 

during 200848 and are the ninth most common cancer in American men and the fourteenth most 

common cancer in American women.49 The epidemiological picture of HNSCC is complex, with 

changing incidence patterns over time according to sex, race, and tumor site; persistent racial 
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disparities; and an emerging viral etiology.46 The following sections describe these trends and 

provide a brief discussion of the epidemiological evidence for the emergence of HPV-related 

HNSCC. A more detailed discussion of HNSCC etiology is provided later. 

2.2.1 Overview of Incidence Trends in HNSCC in the United States 

Systematic collection of cancer incidence data in the United States dates back to 1935 when the 

Connecticut Tumor Registry was established.50 This registry is now part of the National Cancer 

Institute (NCI) Surveillance, Epidemiology, and End Results (SEER) program, which provides 

statistics on cancer cases occurring in the United States since 1973 among a representative* 

sample of United States residents.51 Data from the Connecticut Tumor Registry and SEER show 

notable changes in HNSCC incidence over time in the United States. First, HNSCC incidence 

increased substantially from 1935-1984, with distinct patterns according to age, birth cohort, and 

sex.52 Second, incidence of  HNSCC overall began to decline after 1984.2,53 However, as the 

overall incidence of HNSCC declined, the incidence of oropharyngeal cancer began to increase 

among younger white males.54 These incidence patterns separate the occurrence of HNSCC into 

two etiologic eras: the tobacco/alcohol era spanning approximately the first 75% of the 20th 

century, and the HPV-related era, which began in the early 1970s.6,54 

2.2.2 Incidence of HNSCC and Tobacco Use in the United States.  

Using data from the Connecticut tumor registry, Chen et al.52 examined incidence of oral cavity 

cancers from 1935 to 1984. Incidence of oral cavity cancer increased substantially during this 
                                                 

* In terms of income, education, urban/rural residence, and foreign/native birth status. 
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period, although more drastically among women (6.6-fold increase) compared with men (1.7-

fold).52 Because of this drastic increase among women, the male:female ratio of oral cavity 

cancers decreased rapidly over time from 8.4:1 in 1935-1939, to 4.8:1 in 1955-1959, and finally 

to 2.0:1 in 1980-1985.52 The peak age at diagnosis in both sexes was 60-69 and the majority of 

tumors diagnosed during this time period were tongue (which included base of tongue and 

lingual tonsil; 41.2%) and floor of mouth (FOM; 24.2%) cancers.52 Tumors at these sites were 

also the top two incident cancers for men (tongue: 41.8%, FOM: 25.8%) and women (tongue: 

39.5%, FOM: 19.3%).52 Increases in incidence among men were primarily due to increases 

among men aged 50-69, whereas incidence increased over the study period in women aged 40 

and over.52 Birth cohort analysis showed incidence rates began to level off or decrease among 

men at age 75 in successive birth cohorts after 1880.52 An opposite pattern was observed in 

women: the incidence rate among women aged 55 and older increased with successive birth 

cohorts starting in 1910.52 

Morse, et al.53 analyzed data on pharyngeal cancer incidence in Connecticut during 1935-

1994 and found a similar pattern, with men experiencing a 1.7-fold increase in incidence and 

women experiencing a 3.2-fold increase. When examining oral cavity and pharynx cancers 

combined, incidence among men increased starting with cohorts born in 1890 and 1900, peaked 

with the 1920 birth cohort, and leveled off or declined in subsequent birth cohorts.53 In women, 

incidence increased among women age 35-74 starting with the 1910 birth cohort and then began 

to drop in women of all ages starting with cohorts born after 1930.53 

These patterns in the occurrence of oral and pharyngeal cancer in Connecticut have been 

attributed to patterns in cigarette smoking during this time, which mirror the incidence trends 

almost exactly.52,55 For example, by 1920 approximately 1/2 of adult men were smokers, but it 
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wasn't until 1950 that 1/3 of all women were smokers.55 The number of ever-smoking men 

dropped precipitously with each birth cohort after 1920, but a similar decline was not observed in 

women until post-1940 birth cohorts.55 In addition, smoking cessation rates have been 

consistently higher among American men than women across all birth cohorts.55 These data are 

consistent with the observation that smoking became socially acceptable among young adult 

women around 1920-1940, well after it had become common among men.52 

2.2.3 Recent Incidence Trends in HNSCC and Evidence Suggesting An Emerging Viral 

Etiology 

Approximately 75% of HNSCC are caused by smoking and heavy alcohol consumption.56 

Therefore, as smoking rates have declined in the United States there has been a concomitant 

decline in incidence of HNSCC.2 However, the incidence of oropharyngeal cancer in the United 

States has been rising--at first gradually and then at a much steeper rate in recent years--despite 

continuingly unprecedented low rates of smoking.54 During this period, there have been no 

dramatic changes in alcohol consumption or in detection methods for oropharyngeal tumors. 

Therefore, it is suspected that an alternate etiology exists for at least a subset of oropharyngeal 

tumors. 

2.2.3.1 Incidence Trends in HNSCC vs. Oropharyngeal Cancer 

During 1965, 43% of American adults reported being current smokers.2 This number declined by 

approximately half to 21% in 2005. During roughly the same period (1970-2005) the per-capita 

consumption of cigarettes in the United States decreased by approximately 50%.2 Approximately 

10 years after the start of the decline in cigarette consumption there were noticeable declines in 
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incidence of HNSCC in the United States.2 When examining tumor site in more detail however, 

subtle trends are evident in oropharyngeal cancer incidence rates. Using SEER data from 1975-

2004, Chaturvedi, et al.54 observed an increasing trend in oropharyngeal cancer incidence during 

1975-2004 (annual percent change (APC) 0.80, P < .001). This upward trend in incidence was 

attributable to increases in base of tongue (APC=1.27, P < .001) and tonsil (APC=0.60, P < .001) 

cancer incidence as incidence of other oropharyngeal tumors did not change during this period 

(APC=-0.35, P = .196).54  Increasing incidence of oropharyngeal cancer was particularly notable 

among persons aged 40-49 (1.93 APC, 1975-2004, P < .05) and 50-59 (4.85 APC, mid 1990s to 

2004, P < .05).54 Finally, while oropharyngeal cancer incidence was increasing during 1975-

2004, the incidence of oral cavity cancers was declining.54 The pattern of increasing incidence of 

oropharyngeal cancers was noted only in white and other-race males, with incidence of both 

oropharyngeal and oral cavity cancers declining over time in black males and females, white 

females, and males and females of other races.54 

Although the decrease in incidence of HNSCC in the United States from the mid 1980s 

through the mid 1990s may have been due to decreasing prevalence of smoking,2 the moderate 

increase in incidence of oropharyngeal tumors during the same period, followed by a drastic 

increase beginning in the mid 1990s,  combined with the continued low prevalence of smoking is 

suggestive of an alternate etiology for a subset of oropharyngeal cancers. The specificity of the 

incidence trend--occurring in a younger white male demographic, and primarily affecting 

incidence of tonsil and base of tongue cancers--is further suggestive of a unique etiology for 

these tumors. In fact, evidence suggests a sexually transmitted viral infection, HPV, may be 

responsible for the rising incidence of tonsil and base of tongue cancers. HPV is known to be 

oncogenic in epithelial tissue--particularly in the uterine cervix--through a well-described 
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mechanism, and the virus is also known to infect oral and oropharyngeal mucosa.7 First 

recognized as having a potential role in oral cancer in the 1980s, etiological studies suggest 

associations between HPV infection and risk of oropharyngeal cancer; e.g., patients who have 

HPV-related anal or genital cancers are at higher risk of tonsil SCC, husbands of cervical cancer 

patients have an elevated risk of tonsil cancer compared to husbands of women without cervical 

cancer, number of lifetime oral sexual partners is positively associated with diagnosis of HPV-

positive oral or oropharyngeal cancer, and patients with HPV-positive tumors typically have 

little or no history of smoking or heavy alcohol use.57 Furthermore, HPV DNA has been detected 

in approximately half of all tonsil cancers, with the predominant viral subtype being the 

oncogenic HPV-16.57 It is currently believed that oral HPV infection may be associated with as 

many as 60% of tumors occurring in the oropharynx, where it appears to have a particular 

affinity for the tonsils.7 

2.2.3.2 Epidemiological Data Supporting an HPV-related Etiology 

The HPV-related etiological hypothesis for the increasing incidence of tonsil and base of tongue 

cancer is supported by comparing the clinical and molecular profile of HPV-positive tumors with 

epidemiological trends. Specifically, patients with HPV-positive tumors tend to be younger, have 

little or no history of alcohol and tobacco use, have better response to radiation and 

chemotherapy and experience better survival--despite presentation with later stage, higher grade 

tumors (possibly due to the more frequent presence of wild type p53 in HPV-positive tumors)--

compared with patients who have HPV-negative tumors.7 These clinical observations are borne 

out in the epidemiological literature, which shows a declining age at diagnosis over time for 

putatively HPV-related tumors,54 an increase in incidence of moderate and poorly differentiated 

tongue and tonsil tumors over time (with concomitant decrease in well-differentiated tumors), a 



11 

shift in grade (e.g., the ratio of grade 3 to grade 1 tonsil tumors in 1975 was 1.4:1, whereas in 

2006 it had become 10.6:1), and a stunning 105% increase in survival for poorly differentiated 

tonsil cancer between 1975-1979 and 2000-2004 that is not attributable to advances in screening 

or treatment.6 Furthermore, at least one study in the United States has demonstrated an increase 

over time in the ratio of HPV-positive to HPV-negative tumors present in a clinical tumor 

archive (from 8:11 in during 1990-1995 to 42:11 during 1995-2001) using polymerase chain 

reaction (PCR) techniques to detect HPV DNA in paraffin-embedded tumor blocks.58  

The aforementioned patterns are not unique to the United States and have been observed 

in other countries where smoking rates are also declining. Investigators in Canada have noted 

nearly identical patterns in incidence and survival of oropharyngeal and oral cavity cancers as 

have occurred in the United States.3 In England, investigators observed increasing incidence 

during 1985-2006 of tonsil (men: 5.7% annually, women: 4.3% annually) and base of tongue 

cancers (men: 6.7% annually, women: 6.5% annually).59 In Sweden, the incidence of tonsil 

cancer increased 1.1% annually in women and 2.6% annually in men between 1960-1964 and 

2000-2003, mostly among people between the ages of 40-44 and 64-69.5 A study of N=203 

paraffin-embedded tonsil cancers diagnosed in Stockholm, Sweden between 1975 and 2002 

showed an increasing prevalence of PCR-detected HPV DNA in the tumor blocks over time, 

with an HPV DNA prevalence of 23% in the 1970s, 29% during the 1980s, 57% in the 1990s, 

and 68% during 2000-2002.60 These findings were observed during the same time period when 

tonsil cancer incidence increased 2.8-fold in Stockholm.60 In addition, the mean age of patients 

in this study with HPV-positive tumors was 55 years vs. a mean age of 65 years among patients 

with HPV-negative tumors.60 
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The pattern of increasing oropharyngeal cancer incidence at younger ages is not globally 

universal, however. For example, although incidence of base of tongue and tonsil cancers 

increased in both men and women in the Netherlands during 1989-2006, incidence of these 

cancers increased in both the 45-59 and 60-74 age groups.61 While smoking has also become less 

common in the Netherlands over the last thirty years, the authors of this study suggest the reason 

they observed increases in oropharynx cancer at all ages may be due to shifting patterns in other, 

non-HPV (or non-sexually related) risk factors; e.g., an increasing prevalence of heavy 

drinking.61 Therefore, although this study cannot rule out the influence of HPV in oropharynx 

tumors in the Netherlands, it does serve to demonstrate the complexity of HNSCC etiology as it 

relates to risk factor patterns in different geographic areas. 

2.2.3.3 Root Causes 

Because tonsil and base of tongue cancer incidence has increased in younger persons in recent 

years, and because sexual behavior may be associated with the development of HPV-positive 

tumors, it has been proposed that an increasing prevalence of HPV-infection and/or changing 

sexual practices among younger generations--especially regarding oral sexual acts--may explain 

the rising incidence of tonsil and base of tongue cancers.7 However, there is little direct evidence 

to support these hypotheses as the epidemiology of oral HPV infection is not well described, 

including trends in prevalence over time, natural history of infection, and risk factors related 

specifically to oral (as opposed to uterine cervical) HPV infection; there is no direct evidence of 

changing sexual behavior over time; and it is unclear why males--and white males in particular--

would be most susceptible to HPV-related oropharyngeal cancer.7 

Furthermore, it is not immediately clear whether the rising incidence of oropharyngeal 

cancer represents a true increase in the occurrence of these tumors, or whether secular trends in 
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other factors associated with HPV-related oropharyngeal cancer are responsible for the apparent 

increase. For example, one alternate etiological possibility is a decrease in incidence of 

tonsillectomy, which may have given rise to a higher prevalence of in-tact adult tonsils over 

time. Given the predilection of HPV for infection of the tonsils, this could plausibly explain at 

least a portion of the observed increase in tonsil cancer incidence. Indeed, the incidence of 

adenotonsillectomy (tonsillectomy with adenectomy) performed in an inpatient setting at short-

stay hospitals in the United States declined by nearly 50%  from 1970-1977.62 However, tonsil 

cancer is primarily localized to the palatine and lingual tonsils,57 and the incidence of 

tonsillectomy without adnoidectomy remained constant from 1970-1977, although there was a 

43% decline in incidence among men aged 20-29 (a demographic that would be at risk for tonsil 

cancer during the time period of increasing incidence starting in the middle 1990s).62 A further 

decline in adenotonsillectomy rates performed in an inpatient setting was observed over the 

period 1977 to 1987 in children under the age of 15, and the tonsillectomy rate was higher in 

females than in males over this period (again, corresponding to a pattern observed in tonsil 

cancer incidence: a primarily male phenomenon).63 However, more recent data that accounted 

for adenotonsillectomy and tonsillectomy performed in both the inpatient and outpatient setting 

among persons under 18 years old during 1996-2006 actually observed an increase in 

adenotonsillectomy over this period and no change in tonsillectomy rates.64 At least one "back of 

the envelope" analysis determined that changes in tonsillectomy rates, if they impacted tonsil 

cancer incidence at all, were insufficient to account for the entire increase in incidence rates of 

tonsil cancer in the United States.65 Furthermore, regardless of whether tonsillectomy (or 

adenotonsillectomy) rates affected tonsil cancer rates, it is unclear whether or how tonsillectomy 

could affect base of tongue cancer incidence.  
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2.2.3.4 Current Opinion Regarding HPV and Oropharyngeal Cancer 

Several lines of evidence have combined to form the current prevailing opinion that the increase 

in oropharyngeal cancer incidence is real and is related to HPV infection. Specifically, the 

increasing incidence of tonsil and base of tongue cancer, combined with the unchanging 

incidence of tumors at other oropharyngeal sites, the increasing frequency of clinicopathological 

factors known to be associated with HPV-positive tumors (e.g., declining age at diagnosis, 

increasing ratio of poorly differentiated to well differentiated tumors, and  improvements in 

survival despite a lack of dramatic improvements in detection and treatment), the association 

between sexual behavior (especially oral sexual behavior) and risk of tonsil cancer, a 

substantially reduced prevalence of smoking and the concomitant decline of oral cavity and 

larynx cancers, and an increasing prevalence of HPV in tumor archives over time, are all offered 

as evidence in support of HPV infection as a newly emerging etiological factor in HNSCC.7 

2.2.4 Disparities in HNSCC 

Several studies have reported on national trends in HNSCC rates according to sex, race, and 

socioeconomic status (SES). However, most of these studies, which have been conducted using 

SEER data, have used the de-facto SEER tumor site classification that includes lip cancer (not 

strongly associated with tobacco, alcohol, or HPV), salivary gland tumors (rarely SCC), and 

group base of tongue and lingual tonsil cancers (often HPV-related) in the same category with 

typically tobacco-related sites of the oral cavity.66-70 Therefore, the trends in rates among 

population subgroups reported in these studies are difficult to interpret in light of what is known 

regarding the etiology of these tumors. Nevertheless, some of these studies do report disparities 

by specific tumor site and therefore offer some valuable insight. However, deeper insight into 
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disparities--especially racial disparities in survival--are available from cohort studies that 

examine end points for etiologically relevant groupings of tumor sites. The following discussion 

centers on trends in HNSCC incidence and mortality, stage at diagnosis, and survival according 

to race and sex--all in the context of tumor sites putatively associated with HPV vs. tobacco and 

alcohol. 

2.2.4.1 Incidence and Mortality 

Only 1 study reports trends in incidence during 1975-2004 using the SEER database according to 

HPV-related and HPV-unrelated tumor sites in the oral cavity and oropharynx.54 The incidence 

of all tumors (regardless of HPV-relatedness) was generally higher in men than women, and in 

blacks than whites.54 However, different trends were observed in the HPV-related vs. HPV-

unrelated tumors according to sex and race.54 The incidence of HPV-related tumors increased in 

white and other-race men during the entire period 1975-2004, while the incidence in black men 

first increased during 1973-1987 (APC=4, P=.009) and then decreased through 2004 (APC=-

2.31, P=0.006) when the rate approximately matched that in white men.54 The pattern of 

occurrence of HPV-related tumors in women was quite different, with the trend in incidence 

being consistently downward among all women over the entire period.54 However, black women 

consistently had the highest incidence of HPV-related tumors, followed by white women, and 

women of other races.54 

The incidence of HPV-unrelated tumors showed an entirely different pattern.54 The 

incidence of these tumors consistently decreased over time among men and women of all races.54 

Declines in men were especially sharp for whites during 1984-2004 (APC=-2.11, P < .001) and 

for blacks during 1992-2004 (APC=-6.76, P < .001). 54 Although rates were generally higher in 

black men compared with white men during 1975-2004, a precipitous decline among black men 
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starting in the early 1990s and resulted in an equalization of incidence with white men by 2004.54 

Among women, the incidence of HPV-unrelated cancers declined for all races and rates were 

approximately equal for white, black, and other-race women in 2004.54 

Morse, et al.69 reported on mortality rates by HNSCC sub-sites. Despite white and black 

men having similar incidence of HNSCC during recent years--both for HPV-related and HPV-

unrelated tumor sites--racial disparities exist in male mortality rates.69 The age-adjusted mortality 

rate for tonsil cancer (typically HPV-related) was 2.3-fold higher among black men than white 

men during 1998-2002, and the mortality rate for tumors of the floor of mouth as well as gum 

and other oral cavity cancers (typically HPV-unrelated) was approximately 2-fold higher in black 

men compared to white men during this period.69 In contrast to male mortality rates, there was 

little difference in mortality rates for these tumors between black and white females.69 

Goodwin, et al.68 used SEER data to report on the incidence and mortality of laryngeal 

cancers in the United States during 1975-2003. The incidence of laryngeal cancer was 

consistently higher among blacks than whites during this period, although racial differences in 

incidence were larger in men than women.68 While the incidence trend was downward for both 

black and white men over time, it remained relatively flat for black and white women.68 

Mortality rates from larynx cancer show essentially the same pattern as incidence rates for the 

same period. Black men continue to experience higher mortality compared with white men, 

while mortality rates are nearly the same in black and white women.68 

2.2.4.2 Survival 

Five-year relative survival for HNSCC is substantially lower among blacks compared with 

whites in the United States (Table 1).45 For example, 5-year relative survival for tumors of the 

oral cavity and pharynx in whites during 1998-2002 was 56.7%, but among blacks the figure was 
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only 35.6%.45 Differences in socioeconomic status and access to health care have been proposed 

to explain some of these racial disparities in survival. However, emerging evidence suggests this 

racial disparity may be due to underlying patterns in the occurrence of HPV-positive 

oropharyngeal tumors between blacks and whites. 
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Table 1. Five Year Relative Survival for Cases Diagnosed 1998-2002 (N=15,450), SEER 17 Areas 

  

White Black Other/Unknown 

  
N 

5-Year RS 
(%) N 

5-Year RS 
(%) N 

5-Year RS 
(%) 

Oral cavity and pharynx Male and female 12,582 56.7 1,704 35.6 1,164 58.1 

 

Male 8,756 57.5 1,281 33.6 773 57.5 

 

Female 3,826 54.9 423 41.7 391 59.3 

Larynx Male and female 6,900 64.3 1,266 52.7 376 69.3 

 

Male 5,532 65.2 1,003 54.7 321 69.1 

 

Female 1,368 60.7 263 45.6 55 70.0 

RS=relative survival. 
Survival is calculated with SEER*Stat using the actuarial method. 
Included cases were malignant tumors only, actively followed, known age, and in the Limited Use Database. 
Exclusions were death certificate and autopsy only cases, cases with multiple primaries, and persons who are 
known to be alive but have no survival time recorded.  
Oral cavity and pharynx cancers: ICDO-3 codes 019-024,028-052,058-069,090-091,098-119,130-139. 
Larynx cancers: ICDO-3 codes 320-329. 
All cases are squamous cell histology as defined by the following ICDO-3 morphology codes: 8050-
8076,8078,8083-8084,8094. 

 

Arbes, et al.71 investigated sources of racial disparity in HNSCC survival using cases of 

oropharyngeal and oral cavity cancer diagnosed in the SEER 9 areas during 1973-1993. In this 

study, blacks were 50% more likely to die from HNSCC than whites in an unadjusted analysis 

(HR=1.5, 95% CI: 1.3-1.7). However, blacks were more likely than whites to present with distant 

stage disease (17.7% of blacks vs. 9.6% of whites), have tumor sizes >= 4.1 cm (18.2% of blacks 

vs. 10.6% of whites), present with lymph node involvement (53.2% of blacks vs. 39.0% of 

whites), and to live in a census tract where the median level of education was less than high 

school (21.1% of blacks vs. 2.6% of whites) and the per capita income was under $10,000 per 

year (69.0% of blacks vs. 9.6% of whites).71 All of these variables were significantly associated 
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with poor survival. After adjustment for these and other factors, 5-year disease-specific survival 

(DSS) in blacks was not statistically different from whites (HR=1.1, 95% CI: 0.9-1.4).71 In this 

study, the factors most strongly associated with lower survival in blacks were measures of SES at 

the census tract level, such as median education level and per capita income. Therefore, the 

authors propose that racial differences in SES could reflect racial differences in access to health 

care that might in part determine why black patients have worse survival, e.g., through 

presentation with more advanced disease or receiving different (or no) treatment.71 

In fact, in a large single-institution study of N=1,128 patients at the Medical College of 

Georgia, Gourin, et al.72 demonstrated that after controlling for race, tumor site, comorbidities, 

and treatment received, the only significant predictor of survival was insurance status. The 

relationship between insurance status and survival was complex however, with results differing 

by race. Specifically, insured blacks (HR=0.66, 95% CI: 0.77-1.34) and insured whites 

(HR=0.55, 95% CI: 0.39-0.78) had a lower risk of death relative to uninsured blacks.72 However, 

uninsured whites (HR=0.53, 95% CI: 0.38-0.76) still fared better than uninsured blacks, 

suggesting that insurance does not fully explain the racial difference in survival.72 

Other single institution studies have also demonstrated residual black/white survival 

disparities among patients with similar characteristics, particularly in survival from 

oropharyngeal cancer. For example, Chen, et al.73 studied N=362 HNSCC patients who were 

diagnosed and treated at MD Anderson Cancer Center during 1995-2008 using a paired case-

case study in which black HNSCC patients were matched 1-to-1 with non-Hispanic white 

HNSCC patients (81 blacks/81 whites), and Hispanics were matched 1-to-1 with whites (100 

Hispanics/100 whites). The matched factors were age, sex, smoking status, stage, tumor site, 

nodal status, and treatment received.73 No difference was observed in recurrence-free, DSS, or 
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overall survival (OS) between blacks and whites or between Hispanics and whites for all cancer 

sites combined.73 However, when analyzing oropharyngeal cancer alone, blacks and Hispanics 

combined had higher risk of recurrence (OR=3.2, 95% CI: 1.12-11.7), death from disease 

(OR=3.25, 95% CI: 1.0-13.68) and death from any cause (OR=5.67, 95% CI: 1.64-30.18) than 

whites.73 The observed survival disparities for oropharyngeal cancer were stronger in blacks than 

Hispanics; e.g., recurrence in blacks compared with whites: OR=5.0, 95% CI: 1.07-46.93, and 

recurrence in Hispanics compared with whites: OR=2.00, 95% CI: 0.43-12.36.73  

In a study of N=202 patients (47% black, 53% white) receiving combination 

chemotherapy and radiation therapy at the University of Maryland during 1995-2006 for stage III 

or IV HNSCC, Settle, et al.74 observed that race was a significant prognostic factor. In this study, 

median disease-free survival (DFS) was 33 months in whites but only 12 months in blacks 

(P=.028).74 This disparity appeared to be due specifically to racial disparity in survival from 

oropharyngeal cancer.74 In a subgroup analysis that included N=106 former smoking patients 

who were similar with respect to prognostic factors (with the exception of higher former alcohol 

abuse among blacks) 49% of blacks died from their cancer whereas only 34% of whites died 

from their cancer (P=.084).74 A racial survival disparity remained after controlling for the 

difference in prior alcohol abuse between whites and blacks, with 3-year DFS of 20% in blacks 

and 53% in whites (P = .003).74 In a future update of this cohort, Settle et al.75 reported OS to be 

vastly different in whites (median: 52.1 months) compared with blacks (median: 23.7 months; 

P=.009) for all tumor sites. This disparity was due to worse OS from oropharyngeal cancer 

among blacks (median: 25.2 months) than whites (median: 69.4 months; P=.0006) as there was 

no difference in OS between blacks and whites for other tumor sites (P=.58).75 
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Approximately 60% of oropharyngeal tumors are HPV-positive and these tumors are 

associated with better prognosis.7 Therefore, one possible reason that blacks appear to have 

worse survival than whites from oropharyngeal cancer is differing prevalence of HPV-related 

oropharyngeal tumors. This question has been addressed by at least two studies.75,76 In a 

prospective study of patients recruited for a clinical trial, Settle, et al.75 examined the prevalence 

of HPV in oropharyngeal tumors from blacks vs. whites and estimated OS. In this study of 

N=224 patients with previously untreated tumors and no prior history of cancer, 29% of HNSCC 

were HPV-positive and the majority of these were in the oropharynx, which had an HPV-

positivity rate of 50%.75 A total of 34% of whites had HPV-positive tumors whereas only 4% of 

blacks (1 patient) had an HPV-positive tumor.75 As expected, OS was higher for HPV-positive 

tumors than HPV-negative tumors (P < .0001).75 HPV-positive tumors in whites had better 

survival than HPV-negative tumors in whites and all tumors in blacks combined (P < .0001).75 

No difference in median OS was observed between HPV-negative tumors in whites (30.1 

months) and tumors in blacks (20.9 months; P = 0.78).75 Furthermore, HPV-positive 

oropharyngeal cancers (98% of which were in white persons) had better OS than HPV-negative 

oropharyngeal cancers (P < .0001).75  

In a retrospective analysis of N=140 patients treated at the Medical College of Georgia, 

HPV status of tumors was classified as HPV-active (HPV DNA positive by PCR and high 

expression of p16 by IHC), HPV-inactive (HPV DNA positive and low p16 expression), and 

HPV-negative (HPV DNA negative, low expression of p16).76 The 5-year OS was higher among 

patients with HPV-active tumors (59.7%) compared with HPV-inactive and HPV-negative (21%; 

P=.003).76 No black patients (0%) had HPV-active tumors whereas 21% of white patients had 

HPV-active tumors (P=.017).76 
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The reason for the apparent lower prevalence of HPV in oropharyngeal tumors among 

blacks is unknown but several hypotheses have been proffered, including bias due to selection of 

patients (possible in retrospective studies73,74,76 but unlikely in the prospective analysis by Settle, 

et al.75), a lower likelihood of blacks to engage in oral sexual behavior compared with whites, 

and earlier exposure to genital HPV in blacks that may reduce the likelihood of future oral HPV 

infection through antibody response.77 Therefore, while it appears that the survival disparity 

between blacks and whites in HNSCC may be due primarily to differences in survival from 

oropharyngeal tumors, perhaps due to a lower prevalence of HPV in these tumors among blacks, 

the root cause of these disparities is for the moment unclear. 

2.3 ETIOLOGY 

Numerous exposures have been investigated as putative causal factors in the development of 

HNSCC, including body mass index (BMI), diet, marijuana smoking, smokeless tobacco, oral 

hygiene practices, and family history.78 By far, the most important etiologic factors identified for 

HNSCC are cigarette smoking, alcohol consumption, and HPV infection.46 Together, these risk 

factors account for approximately 90% of HNSCC, with 75% of HNSCC attributable to smoking 

and drinking and 15% of HNSCC attributable to HPV infection.7 The following discussion 

focuses on evidence that establishes these three exposures as the predominant risk factors in 

HNSCC. In addition, a brief discussion of body size and prior history of cancer in relation to 

HNSCC risk is provided. 
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2.3.1 Cigarette Smoking and Alcohol Consumption 

Tobacco and alcohol have been linked to HNSCC since at least the 1950s.79 Since this time, 

many etiologic case-control studies have been performed around the world, providing a large 

body of evidence showing substantially elevated risk for HNSCC associated with these lifestyle 

factors.80,81 These studies consistently show strong associations, tumor site-specific effects, and 

dose-responses.80,81 However, because smoking and alcohol drinking are highly correlated 

behaviors, it is difficult in any single study to assess the individual contribution of each factor 

and to study effects of these factors in subgroup analyses; e.g., blond vs. black tobacco smokers, 

filter vs. non-filter smokers, and consumers of single vs. multiple alcoholic beverage types. The 

previous conduct of a large number of studies has allowed the formation of consortia such as the 

International Head and Neck Cancer Epidemiology Consortium (INHANCE), which brings 

together data on over 26,000 cases and 34,000 controls.82 The development of this consortium 

provided the opportunity to conduct studies with sufficient power to examine the independent 

effects of alcohol and smoking on the risk of all HNSCC overall, as well as perform analyses by 

tumor site and within population subgroups. Therefore, important insights have been gained from 

analysis of this consortium data that were otherwise difficult to obtain from single studies. 

Specifically, studies in the INHANCE consortium have confirmed earlier evidence that: cigarette 

smoking is a stronger risk factor for HNSCC than alcohol consumption and smoking-related risk 

is particularly strong for cancer of the larynx;56 alcohol consumption is primarily related to 

cancers of the oral cavity, oropharynx, and hypopharynx;56 there is a synergistic effect of alcohol 

and tobacco on HNSCC risk that exceeds what would be expected under a multiplicative 

model;83 important differences exist in tobacco and alcohol-related risk of HNSCC by sex and 

age group;83 alcohol itself, rather than other constituents of alcoholic beverages, is likely 
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associated with HNSCC risk;84 usage patterns (e.g., heavy smoking for a short duration vs. light 

smoking for a long duration) affect HNSCC risk differently;85 and quitting smoking and drinking 

is associated with a reduction in risk of HNSCC.86 

2.3.1.1 Independent Association of Smoking and Alcohol With HNSCC 

Insight into the individual contribution of cigarette smoking and alcohol consumption to HNSCC 

risk comes from a study of N=10,244 HNSCC cases and N=15,227 controls from Europe, North, 

Central, and South America, India, and the African nation of Sudan.56 In this study, the 

association between cigarette smoking and HNSCC was studied in never-drinkers (N=1,598 

cases and N=4,051 controls), and the association between alcohol and HNSCC was studied in 

never-smokers (N=1,072 cases and N=5,775 controls).56 Among never-drinkers, ever-smoking 

was associated with 2-times the odds of HNSCC compared with never smoking (OR=2.13, 95% 

CI: 1.52-2.98).56 Dose responses were observed for frequency (cigarettes/day), duration (years), 

and cumulative lifetime exposure to smoking (pack-years; P < .001 for all).56 Odds ratios at the 

highest levels of cumulative lifetime exposure were 3.46 (95% CI: 1.97-6.09) for 41-50 pack-

years and 5.40 (95% CI: 3.06-9.03) for >50 pack-years.56 Ever-smoking (among non-drinkers) 

was associated most strongly with cancers of the larynx (OR=6.84, 95% CI: 4.25-11.01) 

compared to the oropharynx/hypopharynx (OR=2.02, 95% CI: 1.34-3.05) and oral cavity 

(OR=1.35, 95% CI: 0.90-2.01).56 This study estimated that 24% (95% CI: 16%-31%) of HNSCC 

in the population would be prevented if never-drinkers had not smoked.56 

Alcohol was observed to be much more weakly associated with HNSCC in this study, 

with ever-drinking (among never-smokers) being associated with a non-significant 18% increase 

in odds of HNSCC compared with never drinking (OR=1.18, 95% CI: 0.93-1.50).56 While a 

trend was observed with frequency (drinks/day) of consumption and cumulative exposure (drink-
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years; P < .001 for both), no trend was observed for duration of drinking (years; P= .319).56 The 

association between alcohol use and HNSCC was significant only when comparing consumers of 

>=3 drinks/day with non-drinkers (OR=2.04, 95% CI: 1.29-3.21).56 The tumor site most strongly 

associated with ever-drinking was the oropharynx/hypopharynx (OR=5.5, 95% CI: 2.26-13.36) 

while other sites showed weaker associations with ever-alcohol use (larynx: OR=2.98, 95% CI: 

1.72-5.17; oral cavity: OR=1.17, 95% CI: 0.92-1.48).56 The population attributable risk (PAR) 

estimated in this study showed a non-significant 7% (95% CI: -4%-16%) of HNSCC attributable 

to alcohol use.56 

2.3.1.2 Synergy Between Alcohol and Tobacco 

While the independent contribution of cigarette smoking appears to be greater than alcohol use in 

HNSCC, it is well known that these two behaviors are highly correlated. It is therefore natural to 

ask whether there are synergistic effects of these factors on HNSCC risk. Previous case-control 

studies of American and European populations had estimated that alcohol and tobacco combined 

account for approximately 75% of HNSCC.87,88 A study in the INHANCE consortium verifies 

these earlier reports and examines in more detail the interaction between these factors, providing 

updated estimates of the PAR associated with each factor alone and in combination.83 This study, 

including N=11,211 cases and N=16,152 controls, demonstrated the combined effect of alcohol 

and smoking on HNSCC risk exceeds that which would be expected if their joint effect was 

multiplicative.83 Estimation of PARs showed 72% (95% CI: 61.2%-79.1%) of HNSCC is 

attributable to drinking or smoking, with only 4% (95% CI: 1.5%-5.3%) of cases attributable to 

alcohol alone and 33% (95% CI: 42.6%-25.9%) attributable to tobacco alone.83 The 

simultaneous use of alcohol and cigarettes was estimated to account for 34.9% (95% CI: 17.2%-

48%) of HNSCC.83 The tumor site most strongly related to alcohol alone was the 
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oropharynx/hypopharynx, with 5.6% (95% CI: 1.9%-7.3%) of these tumors in the population 

attributable to alcohol.83 The use of cigarettes alone was most strongly associated with larynx 

cancers, with 52.2% (95% CI: 36.0%-77.8%) of these cancers attributable to smoking.83 The use 

of both tobacco and alcohol was most deleterious in the oropharynx/hypopharynx, where 41.6% 

(95% CI: 25%-53%) of the tumors in the population are attributable to combined use of alcohol 

and cigarettes.83 Subgroup analyses showed 74% (95% CI: 59.9%-82.8%) of HNSCC among 

men and 57.4% (95% CI: 45.6%-65.3%) of HNSCC among women would be prevented if 

tobacco and alcohol use were eliminated from the population.83 It was also estimated that 

tobacco and alcohol account for a significant proportion of HNSCC only among older persons 

(age 45-60: PAR=76.8%, 95% CI: 63.1%-84.8%; age >=60: PAR=72.7%, 95% CI: 62.8%-

79.5%) and is not a significant contributor to HNSCC among young persons (age <45: 

PAR=33.5%, 95% CI: -6.7%-56.8%).83 

2.3.1.3 Alcoholic Beverage Type and HNSCC 

Although metabolites of alcohol, notably acetaldehyde, are carcinogenic it is also known that 

alcoholic beverages contain other carcinogenic ingredients such as N-nitrosamines and 

polycyclic aromatic hydrocarbons.89 The type and concentration of these ingredients has been 

found to vary in different alcoholic beverages such as hard liquor, wine, and beer.89 In addition, 

some beverages (notably red wine) are known to contain certain levels of antioxidants, which 

may be protective against cancer.89 Therefore, it is reasonable to expect that the carcinogenic 

effect of alcoholic beverages may be due to ingredients other than (or in addition to) alcohol; and 

the carcinogenic effect of alcoholic beverage types may vary. Because of small sample sizes in 

individual studies, however, it is often difficult to analyze subgroups of beverage drinkers. 

Again, the INHANCE consortium has provided insight into the relationship between alcoholic 
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beverage type and HNSCC using a pooled analysis of case-control studies that included N=9,107 

cases and N=14,219 controls.84 This analysis included N=1,844 beer-only drinkers (858 cases; 

986 controls); N=1,026 liquor-only drinkers (499 cases; 527 controls); N=3,481 wine-only 

drinkers (1,021 cases; 2,460 controls); N=12,364 drinkers of multiple beverage types (5,605 

cases; 6,759 controls); and N=4,611 never drinkers (1,124 cases; 3,487 controls). The following 

odds ratios were observed for ever-drinking vs. never-drinking:84 

• Beer only: OR=2.1, 95% CI: 1.6-2.7 

• Liquor only: OR=2.2, 95% CI: 1.4-3.4 

• Wine only: OR=1.6, 95% CI: 1.0-2.6 

A positive dose-response with frequency (drinks/week) was observed for all beverage 

types (P < .0001 for all), although odds ratio estimates for wine consumption were only 

significant at high levels (>30 drinks/week: OR=6.3, 95% CI: 2.2-18.6).84 The authors attributed 

this pattern to potential residual confounding; e.g., by healthier diet associated with wine-only 

drinking and a potential for "alcohol washing" (whereas wine is typically consumed with food, 

the chewing and swallowing of food may impair the carcinogenic effect of wine on the oral 

mucosa).84  

Analyses by tumor site showed each beverage type to have stronger associations with 

oral cavity and oropharynx/hypopharynx cancers rather than larynx cancers.84 Beer was 

significantly associated with cancer at these sites for <15 drinks/week (oral cavity: OR=2.0, 95% 

CI: 1.4-2.8; pharynx: OR=2.3, 95% CI: 1.7-3.1) and >= 15 drinks/week (oral cavity: OR=6.4, 

95%CI: 3.9-10.3; pharynx: OR=4.3, 95% CI: 2.7-6.8).84 Liquor was significantly associated with 

these tumor sites only for >= 15 drinks/week (oral cavity: OR=3.2, 95% CI: 1.6-6.4; pharynx: 
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OR=3.6, 95% CI: 2.0-6.3) and the same was observed for wine (oral cavity: OR=5.9, 95% CI: 

2.3-15.4; pharynx: OR=4.4, 95% CI: 2.0-9.6).84  

Overall, the results of this large pooled analysis of case-control studies, which do not 

show appreciable differences in risk of HNSCC associated with different beverage types, is 

suggestive of an ethanol-specific carcinogenic effect rather than a carcinogenic effect of 

particular beverage ingredients. 

2.3.1.4 Patterns of Drinking and Smoking Associated With HNSCC 

Cumulative lifetime exposure to smoking and alcohol is typically measured in pack-years (for 

smoking) and drink-years (for alcohol). These measures are calculated simply by multiplying the 

usual frequency of consumption (e.g., in cigarettes/day or drinks/day) times the duration of the 

behavior in years. Because of the nature of these calculations, it is possible to obtain a given 

magnitude of cumulative exposure by measuring either a low frequency and long duration, or a 

high frequency and short duration. Thus, it is possible that examination of cumulative exposure 

alone in relation to disease risk can obscure a relationship in which the pattern of use is more 

important than the cumulative exposure. A study by Lubin, et al.85 addressed this concern in 

HNSCC using INHANCE data and observed that while cigarette smoking patterns were 

important in HNSCC, the effect of alcohol was due mainly to cumulative exposure. Two 

opposite patterns of HNSCC risk were evident for smoking: one pattern for smoking up to 15 

cigarettes/day, and another for smoking over 15 cigarettes per day.85 For a fixed pack-year 

history, up to 15 cigarettes per day, smoking more cigarettes/day for a short duration was 

associated with higher risk of disease than smoking a less cigarettes/day for a long duration.85 

However, for a fixed pack-year history, above 15 cigarettes/day, smoking less cigarettes/day for 
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a long time was with higher risk of disease compared with smoking more cigarettes/day for a 

short time.85 These patterns were similar for all tumor sites but strongest for laryngeal cancer.85  

While different disease risk was noted according to cigarette smoking habits, a more 

consistent pattern was observed for alcohol consumption.85 Specifically, drinking a large number 

of drinks/day for a short time period was worse than drinking a small number of drinks/day for a 

long duration.85 This pattern was evident regardless of the number of drinks per day consumed.85 

2.3.1.5 Cessation of Smoking and Drinking 

While the effects of smoking and drinking are clearly deleterious to the health of the oral cavity, 

pharynx, and larynx, data from INHANCE also show that cessation of these behaviors can have 

a beneficial effect on disease risk. In an analysis of N=9,167 cases and N=12,593 controls, 

quitting smoking was associated with a significant 30% reduction in risk of HNSCC compared 

with current smoking (OR=0.70, 95% CI: 0.61-0.81).86 However, risk of HNSCC became 

equivalent to that of never-smokers (never vs. current: OR=0.25, 95% CI: 0.17-0.36) only at 

>=20 years after quitting (>=20 years quit vs. current: OR=0.23, 95% CI: 0.18-0.31).86 

Significant reductions in risk for most tumor sites were observed after only 1-4 years since 

quitting.86  Risk of laryngeal cancer was reduced 30% after 1-4 years since quitting (compared 

with current smoking: OR=0.70, 95% CI: 0.56-0.87) and by 89% with >=20 years since quitting 

(compared with current smoking: OR=0.11, 95% CI: 0.08-0.16).86 Cessation of drinking was 

associated with much weaker decreases in risk, with significant reductions observed only after 

>= 20 years (compared with current drinking: OR=0.60, 95% CI: 0.40-0.89).86 
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2.3.1.6 Prospective Studies of Smoking and Alcohol in HNSCC 

Several large prospective studies have been conducted that examine the risk of "upper 

aerodigestive tract" cancers associated with cigarette smoking and alcohol consumption.90-94 

While these studies typically include some of the same tumor sites covered under the 

classification of HNSCC, not all HNSCC sites are included and the grouping of tumor sites is 

different. For example, two studies included lip cancers, base of tongue, and lingual tonsil 

tumors as "oral cavity" cancer.90,91 Lip cancers are not typically included in studies of HNSCC 

because the primary etiology for these tumors is sun exposure,47 while base of tongue and lingual 

tonsil tumors are often included as oropharynx (rather than oral cavity) tumors in studies of 

HNSCC. Thus, it is nearly impossible to relate results of the aforementioned prospective studies 

conducted under the heading of "upper aerodigestive tract cancers" with prior case-control 

studies of HNSCC.  

Only one prospective study classified tumor site according to the typical HNSCC 

classification, and this study included only oral cavity cancers.92 This study used Cox 

proportional hazards regression to estimate risk of oral cavity cancer associated with alcohol 

consumption in a cohort of N=32,347 Indian men (mean duration of follow-up: 8.7 years).92 This 

study found that, compared with never drinking, current drinking was associated with an 49% 

increased risk of oral cavity cancer (HR=1.49, 95% CI: 1.01-2.21).92 Former drinking in this 

cohort was associated with an even higher risk (HR=1.90, 95% CI: 1.13-3.18) although this may 

reflect disease-related cessation of drinking.92 Significant dose-responses were evident for 

frequency (days/week drinking; P=.006) and duration (years; P = .005).92 
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2.3.2 Passive Smoking and HNSCC 

Although the association between active smoking and risk of HNSCC is well established, the 

role of passive smoke exposure in HNSCC etiology is less clear. The body of evidence 

examining this relationship consists largely of case-control studies (Table 2). In aggregate, these 

studies imply a positive relationship between passive smoke exposure and HNSCC.31,95-97 In 

addition, three case-control studies27,28,98 investigated nasopharyngeal carcinoma, with two of 

these studies reporting a positive association with passive smoke exposure.27,28 Nasopharyngeal 

carcinoma is not typically considered under the umbrella of HNSCC because, despite arising in 

epithelial tissue, this tumor is characterized by a unique histology involving infiltration of the 

tumor by inflammatory cells.30 In addition, nasopharyngeal carcinoma is strongly associated with 

Epstein-Barr virus (EBV) and certain dietary constituents common in Asian populations.29 

However, because the literature on passive smoke exposure and upper airway cancer is limited, 

these studies are included here for illustration of the carcinogenic  effect of passive smoke 

exposure in epithelium at sites in the head and neck, and for comparison with tumor sites 

typically considered under the classification of HNSCC. 

2.3.2.1 Case-Control Studies of Passive Smoke Exposure and Cancer in the Head and Neck 

Three of the seven case-control studies (Table 2) were hospital-based27,96,97 while four were 

population-based.28,31,95,98 The majority of studies were of nasopharyngeal carcinoma (one in 

Serbia,27 one in Taiwan,98 and one in mainland China28); one study examined maxillary sinus 

cancer in a Japanese population;95 one study from Germany analyzed larynx cancer;31 and only 

two studies from the United States looked more broadly at HNSCC: one examining oral cavity, 

pharynx, larynx, and sinus cancers;96 the other looking at these sites in addition to lip, salivary 
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gland, and esophagus cancers.97 Only two studies enrolled previously untreated patients.97,98 In 

three studies, the case series had no prior history of the cancer under study27,97,98 and in only one 

study were the cases verified to have no prior history of any cancer.97 None of the studies 

verified the controls had no prior history of cancer.27,28,31,95-98 All seven studies used matching 

and some used logistic regression modeling in the analysis.27,28,31,95-98 All except for one study27 

analyzed never-smokers separately from ever-smokers.  

Among the three studies of nasopharyngeal carcinoma,27,28,98 one found an association 

with adult passive smoke exposure28 and two found an association with childhood27,28 exposure. 

However, two studies observed no association with adult exposure27,98 and one study observed 

no association with childhood exposure.98 Three of the four31,95-97 studies examining HNSCC 

observed associations between adult passive smoke exposure at home28,31,95-97 or at work.28,96,97 

Only one study examined childhood passive smoke exposure and HNSCC and did not observe an 

association.31 

Passive Smoke Exposure as an Adult 

In a study of Japanese men and women, Fukuda, et al.95 noted a significant association between 

passive smoke exposure and maxillary sinus cancer in women only. Although passive smoking 

was identified as an independent risk factor for maxillary sinus cancer after controlling for 

sinusitis, woodworking, and active smoking in a logistic regression model, the authors do not 

report odds ratios from this model.95 Rather, the  reported odds ratios and tests for trend are 

adjusted only for the matching factors of age, sex, and residence.95 Among all women, odds 

ratios (relative to 0 smokers in the household) increased with increasing numbers of household 

smokers (1 smoker: OR=1.66; >1 smoker: 4.47).95 A similar pattern was noted among never 

smoking women (1 smoker: OR=1.40; >1 smoker: OR=5.73).95 These increases represented a 
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significant (P < 0.05) trend among all and never smoking women.95 Similar data are not provided 

for men, and the formal test of interaction between sex and passive smoke exposure is not 

reported.95 

Using N=59 never-smoking HNSCC cases from the Cleveland Clinic and N=177 never-

smoking internal medicine patients as controls (matched on age, sex, race, and drinking status) 

Tan, et al.96 observed a significant association between exposure to passive smoke either in the 

workplace or home and HNSCC (either setting vs. neither: OR=5.32, P<.001).96 Exposure in the 

workplace (ever vs. never: OR=10.16, P < .001) was more strongly related to HNSCC than 

exposure at home (OR=2.8, P=.006).96 It should be noted, however, that the case series included 

in this study was atypical. Notably, these 59 cases exhibited a male:female ratio (0.84:1) that 

differed significantly from the entire set of N=853 HNSCC cases seen at the Cleveland Clinic 

during the study period (2.27:1).96  The distribution of tumor sites also varied between the 59-

person case series and the entire group of N=853 cases.96 Whereas the most common tumor 

among all patients seen during the study period was laryngeal cancer, the most common tumor in 

the selected N=59 cases was tongue cancer (it is not clear whether base of tongue was included 

as "tongue" cancer).96 The gender imbalance in the case series may have arisen due to the way 

cases were selected: by looking for evidence of lifelong non-smokers in the medical record.96 

Such information is typically not reliably recorded  in the medical record and may have been 

recorded differently for men and women. In addition, the case series included a 14-year old boy 

as well as ten people with second primary HNSCC.96 The exposure status of these patients was 

not reported and it is uncertain whether the heterogeneity in the case series introduced by 

inclusion of these cases would have biased odds ratio estimates.96 Finally, the control group used 

in this study may not have been representative of non-diseased persons in the source population 
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that gave rise to the cases. Specifically, the controls were selected from the internal medicine 

department during an unspecified 2-week time period, whereas the cases were diagnosed 

between 1986 and 1993 (the study was published in 1997).96 Some opportunity for information 

bias is also present in this study. Specifically, while controls themselves were interviewed to 

verify lifelong never-smoking and to collect data on passive smoke exposure, interviews for 

cases may have been conducted with spouses.96 

Zhang, et al.97 studied N=173 first primary HNSCC cases (26 never smokers) recruited 

from Memorial Sloan-Kettering Cancer Center and N=173 controls (59 never smokers) recruited 

from the Sloan-Kettering blood bank. This study demonstrated an increasing risk of HNSCC 

with increasing intensity of passive smoke exposure (never exposed, either home or work 

exposure [moderate], or both home and work exposure [heavy]; P=0.025) after controlling for 

pack-years of smoking, age, sex, race, education, alcohol, and marijuana use.97  Marijuana use, 

alcohol consumption, and mutagen sensitivity† modified the association between passive smoke 

exposure and HNSCC in this study after controlling for pack-years of smoking, age, sex, race, 

and education.97 Compared to persons never exposed to passive smoke and who consumed <100 

drinks/month, the addition of passive smoke exposure alone (OR=2.5, 95% CI: 0.8-7.6) or heavy 

drinking alone (>=100 drinks/month; OR=4.9, 95% CI: 0.3–75.8) was not associated with 

HNSCC, while passive smoke exposure and heavy drinking together were significantly 

associated with HNSCC (OR=10.2, 95% CI: 2.7-37.8).97 Relative to persons never exposed to 

passive smoke and who never used marijuana, the addition of  marijuana use (OR=3.5, 95% CI: 

0.4–28.4) or passive smoking alone (OR=2.6, 95% CI: 0.7-9.0) was not associated with HNSCC, 

although the presence of both risk factors was associated with a 7-fold increase in odds of 
                                                 

†Mutagen sensitivity was defined as the number of chromosome breaks/cell induced by in vitro exposure of 
peripheral blood lymphocytes to Bleomycin. 
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HNSCC (OR=7.1, 95% CI: 1.5-34.5).97 Compared with persons never exposed to passive smoke, 

and who had <1 break/cell, the addition of passive smoking (OR=2.0, 95% CI: 0.2-17.7) or 

having >=1 break/cell (OR=2.6, 95% CI: 0.1–71.1) not associated with HNSCC whereas the 

exposure to passive smoking and having >=1 break/cell was associated with a nearly 18-fold 

increase in odds of HNSCC (OR=17.5, 95% CI: 1.9-162.0).97 

Yuan, et al.28 studied nasopharyngeal carcinoma in Chinese people from Shanghai using 

the largest sample of never smokers of any of the studies reviewed here (N=429 cases and 

N=546 controls). Among never smokers, results were suggestive of an association between adult 

exposure and NPC among women only (ever vs. never exposed in the home among men: 

OR=1.29, 95% CI: 0.62-2.68; among women: OR=1.95, 95% CI: 1.18-3.21; P-for-interaction: 

p=0.08).28 A significant positive trend was observed among women with number of years living 

with a smoking spouse (p=0.004), number of cigarettes/day smoked by the spouse (p=0.02), and 

pack-years of smoking by the spouse (p < .001).28 Results were similar for adult exposure to 

passive smoke in the workplace (coworker ever smoked vs. never among women: OR=2.84, 95% 

CI: 1.34-6.00; P-for-interaction of sex and passive smoking=0.02).28 

Ramroth, et al.31 studied laryngeal cancer in a German population. In analyses controlling 

for smoking there was no association with exposure to passive smoke through a partner/spouse 

(OR=1.1, 95% CI: 0.78-1.7), at work (OR=1.2, 95% CI: 0.82-1.7), or combined exposure from 

work and a spouse/partner (OR=1.2, 95% CI: 0.77-1.8).31 However, a dose-response was 

detected for number of hours exposed to smoke from a spouse/partner during the lifetime.31 The 

reported odds ratio for 20,000 hours of exposure (vs 0 hours) is 1.2 (95% CI: 1.0-1.4) and the 

authors indicated that 20,000 hours is equivalent to 2.5 hours of exposure per day for twenty-two 

years.31 No such dose-response was detected for exposure to passive smoke in the workplace.31 
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Passive smoke exposure among never smokers was unrelated to laryngeal cancer in this study 

(ever exposed vs. never: OR=2.0, 0.39-10.7) although this study included only N=9 never-

smoking cases.31 

Finally, Cheng, et al.98 studied passive smoke exposure in the home among Chinese 

people from Taipei and Taiwan and found no association with nasopharyngeal carcinoma (ever 

vs. never: OR=0.7, 95% CI: 0.5-1.2). No trend was observed with increasing number of smokers 

in household (P=0.9), duration of exposure in person-years (P=0.7), or cumulative lifetime 

exposure (pack-person-years; P=0.5) after controlling for age, sex, race, educational level, family 

history of NPC, and drinking status.98 

Passive Smoke Exposure During Childhood 

Data on the association between childhood passive smoke exposure and cancer in the head and 

neck are more limited in comparison to adult exposure to passive smoke. A total of four case-

control studies27,28,31,98 examined this relationship and two of the four observed a positive 

association27,28 between childhood passive smoke exposure and nasopharyngeal carcinoma. 

Yuan, et al.28 studied N=429 never-smoking cases (242 women) and N=546 never-smoking 

controls (306 women) and found childhood passive smoke exposure to be related to 

nasopharyngeal carcinoma in women (ever vs. never exposed: OR=1.95, 95% CI: 1.18-3.21) but 

not in men (ever vs. never exposed: OR=1.29, 95% CI: 0.62-2.68; P-for-interaction=0.06). 

Among women, a significant positive trend was observed for the number of cigarettes/day 

smoked by the mother (p=0.003) and father (p=0.001) and for all household members (p=0.01).28 

No such dose-responses were observed for men.28  

Nesic, et al.27 also observed a positive association between childhood passive smoke 

exposure and nasopharyngeal carcinoma in Serbian men and women (ever vs. never exposed: 
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OR=4.04, 95% CI: 1.10-14.85) in a matched (sex, age, and residence) case-control study. This 

study did not attempt to control for active smoking, nor did it analyze never smokers separately; 

however, the authors indicate that the proportion of ever smokers is similar in the case and 

control groups (specific numbers are not provided in the report).27  

One other study of nasopharyngeal carcinoma found no association with childhood 

passive smoke exposure.98 Cheng, et al.98 studied N=178 never-smoking cases and N=173 never-

smoking controls and observed a borderline inverse association between childhood passive 

smoke exposure and nasopharyngeal carcinoma (ever vs. never exposed: OR=0.6, 95% CI: 0.4-

1.0). However, no trend was observed with the number of smokers in the household (P=0.1), 

duration of exposure in person-years (P=0.0), or cumulative lifetime exposure in pack-person-

years (P=0.0).98 

Finally, Ramroth, et al.31 studied laryngeal cancer in a German population and observed 

no relationship with childhood passive smoke exposure after controlling for smoking (OR=0.96, 

95% CI: 0.67-1.4). 

2.3.2.2 Prospective Studies of Passive Smoke Exposure and HNSCC 

Adult exposure to passive smoke at home and in the workplace in relation to pharyngeal and 

laryngeal cancer was studied in the European Prospective Investigation into Cancer and Nutrition 

(EPIC) cohort.99 Among N=102,923 never smokers a total of thirteen pharyngeal and laryngeal 

cancers were diagnosed during a median follow-up of seven years per person.99 Adult passive 

smoke exposure was not a risk factor for development of pharyngeal and laryngeal cancers 

among never-smokers (HR=1.02, 95% CI: 0.63-1.66) after controlling for sex, age, country of 

residence, years of schooling, total energy intake, consumption of fruit and vegetables, and 

physical activity.99 However, adult passive smoke exposure was associated with pharyngeal and 
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laryngeal cancer among former smokers after controlling for the aforementioned factors 

(HR=2.32, 95% CI: 1.07-5.01).99 
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Table 2. Summary of Case-Control Studies of Passive Smoke Exposure and HNSCC 

Study Population Never 
Smokers 

Tumor Site Time Period 
of Exposure 

Results 

Fukuda95 • Hokkaido, Japan 1982-
1986  

• 169 cases 

• 338 controls matched on 
age, sex, residence 

• 35 cases 

• 74 controls† 

• Maxillary sinus • Adult (home) • Dose response with increasing number 
of smokers in the household in women 
only; among all and never smoking 
women‡ 

Tan96 • Cleveland Clinic 1986-
1993 

• 59 never-smoking cases 

• 177 never-smoking 
Internal Medicine 
outpatients  matched on 
age, sex, race, alcohol 
use  

• 59 cases 

• 177 controls 

• Oral cavity, 
pharynx, larynx, 
sinus 

• Adult 
(home,work) 

• Home (ever vs. never): OR=2.8, 
P=.006‡  

• Work (ever vs. never):  OR=10.16, 
P<.001+ 

Cheng98 • Taipei and Taiwan 
1991-1994 

• 375 cases  

• 327 community controls 
matched on sex, age, 
residence 

• 178 cases 

• 173 controls 

• Nasopharynx • Childhood 

• Adult 

• No association between passive 
smoking and nasopharyngeal carcinoma 
among ever-smokers or never-smokers# 
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Table 2 continued 

Study Population Never 
Smokers 

Tumor Site Time Period 
of Exposure 

Results 

Zhang97 • Sloan Kettering 1992-
1994 

• 173 first primary cases  

• 176 controls  from 
Sloan Kettering blood 
bank; frequency 
matched on age/sex; no 
history of cancer  

• 26 cases 

• 59 controls 

• Oral cavity, 
pharynx, larynx, 
sinus, lip, salivary 
glands, esophagus 

• Adult 
(home,work) 

• Trend with increasing intensity 
(P=0.025) controlling for smoking$ 

• Never smokers only: OR=1.5 (0.3-6.5)$  

• Marijuana use and mutagen sensitivity 
may modify risk 

Yuan28 • Shanghai, China 

• 935 cases from 
Shanghai tumor 
registry 

• 1,032 controls 
randomly chosen from 
Shanghai; frequency-
matched on sex/age 

• 429  cases 

• 546 controls 

• Nasopharynx • Childhood 

• Adult 
(home,work) 

• Among never smokers, passive smoke 
associated with nasopharyngeal cancer 
in women only 

• P-for-interaction: 0.06 (childhood), 0.08 
(home), 0.02 (work)€ 

Ramroth31 • Germany 1998-2000 

• 257 cases  

• 769 controls randomly 
selected from 
population registries 
where cases lived; 
frequency matched on 
age, sex 

• 9 cases 

• 203 controls 

• Larynx • Childhood 

• Adult (home, 
work) 

• No association with childhood 
exposure% 

• Dose response with number of hours 
exposed at home as an adult, 
controlling for smoking% 
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Table 2 continued 

Nesic27 • Belgrade, Serbia 2001-
2003 

• 45 cases at a single 
clinic 

• 90 controls treated by 
orthopedists at 2 other 
clinics in Belgrade; 
matched on sex, age, 
and residence 

• Not reported 
 

• Nasopharynx • Childhood 

• Adult 
(work) 

• Ever vs. never exposed during 
childhood: OR=4.04 (1.10-14.85)‡ 

• No association with adult exposure 

*All studies enrolled incident cases. OR=odds ratio. Intervals cited are 95% confidence intervals. 
†Non-smoking cases and controls shown here are all women. The number of non-smoking male cases and controls is not specified in the 
manuscript. 
‡Adjusted only for the matching factors. 
#Adjusted for matching factors as well as education, family history of NPC, and alcohol drinking 
$Adjusted for matching factors as well as pack-years of smoking, education, alcohol drinking, and marijuana use 
€Adjusted for matching factors as well as education, frequency of eating preserved foods, tangerines and oranges, exposure to rapeseed oil 
smoke, burning coal while cooking, exposure to chemical fumes at the workplace, history of chronic ear and nose conditions, and family 
history of NPC 
%Adjusted for matching factors as well as smoking (log-pack-years+1), ex-smoking (yes/no), alcohol drinking, and education 
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2.3.3 HPV Infection 

HPV is a sexually transmitted DNA virus that has been established as a necessary cause of 

uterine cervical cancer.100  Although there are over one hundred different types of HPV, only a 

few are considered to be associated with cancer; particularly HPV-16 and HPV-18.100 The virus 

is capable of transforming infected cells forcing cells to enter into the cell cycle, and through 

abrogation of p53-mediated apoptosis.100 Specifically, the viral oncogene E7 binds to the 

retinoblastoma (Rb) protein causing Rb to release the transcription factor E2F, which is required 

for advancing the cell cycle from G1 to S phase; and the viral oncogene E6 binds to p53, causing 

is ubiquitination.100 Molecular evidence of oncogenic capability alone cannot be sufficient to 

establish a viral agent as a causative factor in cancer, however.101 In 1990 Evans and Mueller101 

published a set of guidelines for establishing a virus as a causative agent in cancer, including a 

description of the epidemiological evidence required to draw such conclusions, which are 

paraphrased as follows: 

1. The geographic distribution of the virus should match the geographic distribution of the 

tumor after adjustment for age of infection and the presence of cofactors required for 

tumorigenesis; and 

2. The virus (or a marker for it) should be found more often in cancer cases than in matched 

controls within the same geographic area; and 

3. Infection with the virus should occur prior to development of the tumor and a higher 

incidence of the tumor should follow in infected persons compared with uninfected 

persons; and 

4. Preventing infection (e.g., through vaccination) should reduce the incidence of the tumor. 
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The following is a brief overview of studies that address guidelines 1-3 in relation to 

HNSCC. To our knowledge, no studies have yet shown vaccination against HPV to reduce the 

incidence of HNSCC. 

2.3.3.1 Distribution of HPV Infection in the United States 

Markowitz, et al.102 estimated the prevalence of HPV in the United States by establishing the 

presence of antibodies to HPV among N=4,303 persons included in the National Health and 

Nutrition Examination Survey (NHANES) during 2003-2004. A total of 10.3% of persons 

surveyed were seropositive for the oncogenic HPV-16.102 Seropositivity was more common in 

women (15.6% were seropositive) than men (5.1% were seropositive).102 Seropositivity was 

observed in women of all ages beginning with 14-19 year olds (4%), 20-24 year olds (13.4%), 

and 30-39 year olds (21.9%).102 Seropositivity was also high among older women; e.g., those 

aged 50-59 (13.9%).102 The age-specific pattern of seropositivity was similar in men, although 

the magnitude at each age was substantially smaller (e.g., 0.3% of 20-24 year old men were 

seropositive).102 Non-Hispanic Black men (7%) and women (18.5%) had higher seropositivity 

rates than their white counterparts (5.6% and 16.2% respectively).102 Older age and lifetime 

number of sexual partners were positively associated with seroprevalence in men and women.102 

Data from the NHANES study102 match the pattern of viral exposure that might be 

expected given the occurrence of putatively HPV-related HNSCC in the United States. For 

example, evidence of infection is present at younger ages (in agreement with the occurrence of 

putatively HPV-related cancers at younger ages7) and more blacks show evidence of infection 

that whites (agreeing with the higher incidence of HPV-related tumors among blacks in the 

United States during and prior to the survey period54). However, seroprevalence is not 

necessarily evidence of oral infection with HPV and could instead represent genital exposure, 
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and the association between seroprevalence and number of sexual partners is not necessarily 

associated with oral sex (a possible route of transmission for oral HPV).  

The prevalence of oral HPV infection was addressed by D'Souza, et al.103 in a study of 

N=332 healthy persons age 25-87 (mean age of 57) using PCR to detect HPV DNA in exfoliated 

cells from the oral cavity. A total of 4.8% of this cohort had a prevalent oral HPV infection.103 

Ten persons were positive for high risk HPV types but only one person was infected with HPV-

16.103 Factors associated with oral HPV infection (using multivariable logistic regression) were 

lifetime number of sexual partners (P=0.007), lifetime number of oral sex partners (P=0.003), 

and current tobacco smoking (compared to never smokers: OR=3.86, 95% CI: 1.17-12.7).103 In 

the same study, lifetime number of vaginal sex partners was not associated with oral HPV 

infection in a separate cohort of college-aged men (P=0.91), whereas lifetime number of oral 

sexual partners (P=0.31) and number of people open-mouth kissed in the past year (P=0.023) 

were associated with oral HPV infection.103 Thus, these data provide some evidence that oral 

HPV infection is found in young people and that transmission of the infection may be through 

oral sexual acts and open-mouth kissing, and risk of infection may be modified by cigarette 

smoking. 

To cause cancer, HPV must integrate into the host cell genome and become 

transcriptionally active.100 Therefore, a crucial factor for the development of HPV-related 

HNSCC is persistence of the virus.100 Unfortunately, the natural history of oral HPV infection is 

not as well defined as it is in the uterine cervix. However, some preliminary data suggest 

persistence in the oral cavity is possible and risk factors for viral persistence in the oral cavity 

may differ from factors associated with persistence in the uterine cervix. D'Souza, et al.104 

evaluated the 6-month natural history of HPV infection in a convenience sample of N=199 



45 

women (63 human immunodeficiency virus (HIV)-negative) from the Women's Interagency HIV 

Study and compared this with the natural history of cervical HPV infection during the same 

period. The presence of HPV in the oral cavity was ascertained using PCR to detect HPV DNA 

in oral rinse specimens collected at baseline and at a 6-month follow-up visit.104 Persistent oral 

HPV infection was associated with age > 44 (compared to age <= 30: OR=20, 95% CI: 4.1-83.0) 

and current smoking (compared to not currently smoking: OR=8.0, 95% CI: 1.3-53.0) after 

controlling for age and CD4-count, while these factors were unrelated to HPV persistence in the 

uterine cervix (using PCR with cervical vaginal lavage samples).104 HPV persistence rates were 

higher in the cervix than the oral cavity for HIV-negative women (32% vs. 7% respectively) and 

HIV-positive women (65% vs. 15%).104 While these data demonstrate oral HPV infections do 

persist, and suggest the existence of unique risk factors for persistence in the oral cavity, 

generalizability is limited as this study included only women at high risk for, or already infected 

with, HIV.104  

The studies discussed above show HPV is present in the United States where the 

incidence of putatively HPV-related tumors is in the rise, and that the age and race-specific 

patterns of HPV exposure match what might be expected if HPV caused HNSCC. Furthermore, 

the above studies--although preliminary--provide evidence that prevalent oral HPV infection is 

associated with oral sexual behavior, and that oral HPV infections are capable of persisting. 

What is not known from these studies however is whether any persons developed HNSCC, 

whether the rate of HNSCC was higher in persons exposed to HPV vs. persons not exposed to 

HPV, and whether the prevalence of oral HPV infection (or associated sexual behaviors) has 

changed over time. 
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2.3.3.2 Case-Control Studies of HNSCC Associated With HPV Exposure 

At least thirty case-control studies have examined the association between HPV exposure  and 

HNSCC. Exposure to HPV is generally measured in three different ways: sexual behavior, and 

especially oral sexual behavior (presumed to be a surrogate for HPV infection), serology (usually 

antibodies to the capsid antigens L1 or L2, or the early genes E6 and E7), or through the 

presence of HPV DNA in oral exfoliated cells. The following discussion provides background on 

a representative set of such studies. 

Sexual Behavior and HNSCC 

The association between sexual behavior and HNSCC was studied in the INHANCE consortium 

via a pooled case-control analysis including N=5,642 cases and N=6,069 controls from eleven 

different countries.105 Ever having oral sex was inversely associated with oral cavity cancers 

(OR=0.80, 95% CI: 0.67-0.95) and was not associated with oropharyngeal cancer (OR=1.05, 

95% CI: 0.87-1.26).105 However, ever having oral sex was associated with tonsil cancer in men 

only (OR=1.59, 95% CI: 1.09-2.33) as was having 4 or more lifetime sexual partners (OR=3.36, 

95% CI: 1.32-8.53).105 Base of tongue cancer was also associated with ever having oral sex but 

in women only (OR=2.02, 95% CI: 1.19-3.46).105 No dose responses were observed with number 

of lifetime sexual or oral sexual partners for either men or women.105 

HPV Serology 

A hospital case-control study conducted during 2000-2005 at Johns Hopkins University enrolled 

N=100 oropharyngeal cancer cases and N=200 individually matched (on sex and age) controls 

from the same clinics where the cases were identified.106 This study measured HPV exposure by 

testing for the presence of antibodies to HPV-16 L1, E6, and E7 in serum collected from cases 
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and controls.106 Seropositivity to L1 was associated with 32-times the risk of oropharyngeal 

cancer (OR=32.2, 95% CI: 14.6-71.3) after controlling for age, sex, smoking, drinking, tooth 

brushing, and family history of HNSCC.106 Seropositivity to E6 and E7 was associated with even 

greater risk of oropharyngeal cancer (OR=58.4, 95% CI: 24.2-138.3).106  

A similar study enrolled N=485 cases of HNSCC from nine clinics in the Boston 

metropolitan area along with N=594 population controls (frequency matched to cases on age, 

sex, and town of residence) during 1999-2003.107 The presence of antibodies to HPV-16 L1 in 

this study was associated with 4.5 times the risk of HNSCC relative to seronegative status 

(OR=4.5, 95% CI: 3.1-6.5) after controlling for sex, age, race, education, alcohol, and tobacco 

use.107 The association between L1 antibodies and HNSCC was strongest for pharyngeal cancers 

(OR=10.0, 95% CI: 6.6-15.3), weaker for laryngeal cancers (OR=1.7, 95 %CI: 1.5-5.1) and oral 

cavity cancers (OR=1.7, 95% CI: 1.0-2.8).107 

The association between HPV-positive serostatus and HNSCC is not limited to the 

United States. Similar results to the aforementioned United States studies were observed in an 

international hospital-based case-control study that enrolled N=1,670 cases of oral cavity and 

oropharyngeal cancer and N=1,732 controls from eleven different countries (not including the 

United States).108 In this study, the presence of HPV-16 L1 antibodies was associated with 

oropharyngeal (OR=3.5, 95% CI: 2.1-5.9) and oral cavity cancers (OR=1.5, 95% CI: 1.1-2.1) 

after controlling for sex, country, age, smoking, drinking, and paan chewing.108 The presence of 

antibodies to either or both E6 or E7 was also associated with oropharyngeal (OR=9.2, 95% CI: 

4.8-17.7) and oral cavity cancers (OR=2.9, 95% CI: 1.7-4.8).108 
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HPV DNA in Oral Exfoliated Cells 

Because HPV serology is not necessarily indicative of oral infection with HPV, case-control 

studies that demonstrate an association between seropositivity to HPV antigen and HNSCC are 

not definitive. Other studies have attempted to address this issue by establishing the presence of 

HPV DNA in cells exfoliated from the oral cavity. In a study that enrolled N=201 HNSCC cases 

from the University of Iowa Hospitals and the Iowa City VA Medical Center along with N=333 

controls from the hospitals' family and internal medicine clinics, 28% of cases and 18% of 

controls had an oral HPV infection.109 More cases (23%) than controls (11%) were positive for 

high risk HPV.109 High risk oral HPV infection was associated with HNSCC (OR=2.5, 95% CI: 

1.5-4.2) after controlling for age, pack-years of smoking, and number of drinks per week, and 

oral HPV infection was associated with the presence of HPV DNA in the tumor as determined by 

PCR.109 Similar methods were used to detect HPV DNA in oral exfoliated cells in the 

aforementioned case-control study of oropharyngeal cancer conducted at Johns Hopkins during 

2000-2005 (oral HPV infection vs. no infection: OR=12.3, 95% CI: 5.4-26.4).106 However, no 

association was observed between oral HPV infection and oropharyngeal (OR=1.0, 95% CI: 0.4-

2.5) and oral cavity cancers (OR=0.6, 95% CI: 0.3-1.1) in the IARC international case-control 

study, which detected HPV DNA in oral exfoliated cells from only 10% of patients who had 

HPV-positive tumors.108 The results of the IARC study call to question whether the presence of 

HPV DNA in oral exfoliated cells is a good indicator of HPV DNA in the tumor.108 In addition, 

while the Iowa and Johns Hopkins studies found an association between oral HPV infection and 

HNSCC,106,109 the case-control design cannot establish whether oral HPV infection preceded 

HNSCC. 
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2.3.3.3 Infection With HPV Occurs Prior to HNSCC 

Mork, et al.110 conducted a case-control study nested within a N=900,000-person Norwegian and 

Finnish cohort who had donated blood at baseline. A total of  N=292 cases who had donated 

blood >= 1 month prior to diagnosis with HNSCC were selected.110 Matched controls (on age, 

sex, and length of serum storage) were selected for each case from the living, cancer-free 

members of the cohort at the time the cases were diagnosed, yielding a total of N=1,568 

controls.110 Serum was assayed for antibodies to HPV-16 and HPV-18 L1 and L2 proteins, and 

HPV-73 L1 protein.110 Risk of HNSCC was associated with seropositivity to HPV-16 (OR=2.1, 

95% CI: 1.4-3.2) after controlling for cotinine levels (a biomarker for smoking).110 Risk was 

especially high for oropharyngeal (OR=14.4, 95% CI: 3.6-58.1) and tongue cancers (OR=2.8, 

95% CI: 1.2-6.6).110 Although this study does not offer conclusive evidence of oral HPV 

infection preceding development of HNSCC, it does demonstrate a clearly higher risk of HNSCC 

after exposure to HPV; a critical criterion in establishing a causal link between a virus and a 

cancer.101 

2.3.4 Body Mass Index (BMI) and HNSCC 

Higher BMI is typically associated with increased risk of cancer; e.g., colon and rectum, 

endometrial, and non-Hodgkin lymphoma.111 However, there are a small number of cancers--

notably lung and pre-menopausal breast cancer--for which higher BMI is associated with lower 

risk.111 Lower risk has also been observed with increasing BMI in HNSCC.78 The INHANCE 

data confirm the previously detected inverse dose-response (P < .00001).112 Compared with 

being normal weight (BMI 18.5-24.9 kg/m2: OR=1.0), odds ratios decreased from underweight 

(BMI < 18.5 kg/m2: OR=2.13, 95% CI: 1.75-2.58) to overweight (BMI 25.0-29.9 kg/m2: 
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OR=0.52, 95% CI: 0.44-0.60) and obese (BMI >= 30 kg/m2: OR=0.43, 95% CI: 0.33-0.57).112 

When stratified by drinking and smoking status, there was no association between BMI and 

HNSCC among never drinkers/never smokers (P=0.49) but there was an inverse dose-response 

among ever drinkers/ever smokers (P < .00001).112  

Because these results are obtained from pooled case-control data, they are subject to 

recall bias and the possibility of reverse-causality (i.e., HNSCC cases have lower BMI because 

their illness causes them to lose weight prior to diagnosis). However, the possibility of reverse-

causality is somewhat refuted in this study because the aforementioned inverse dose-response 

was detected for BMI 2-5 years prior to diagnosis (or interview for controls; P=0.17 for never 

smokers/never drinkers, P=0.00042 for ever drinkers/ever smokers).112 However, this does not 

eliminate the possibility of recall bias. Only a prospective study can adequately address these 

issues and to our knowledge none are currently available. 

2.3.5 Prior History of Cancer 

The SEER program provides population level data on risk of cancer after diagnosis with primary 

HNSCC in its monograph titled New Malignancies Among Cancer Survivors: SEER Cancer 

Registries, 1973-2000.113 Risk of buccal cavity and pharynx cancers after primary tumors at 

other sites is significantly elevated (P < 0.05) over the expected risk in the general population for 

esophageal cancer (SIR=9.39), anal cancer (SIR=2.55), lung and bronchus (SIR=2.39), uterine 

cervix (SIR=1.91), vulva cancer (SIR=2.52), penis cancer (SIR=2.33), non-melanoma and non-

retinoblastoma ocular cancer (SIR=5.07), Hodgkin (SIR=3.21) and non-Hodgkin lymphoma 

(SIR=1.40), acute lymphocytic leukemia (SIR=4.61), chronic myeloid leukemia (SIR=1.99), and 

any childhood (age 0-17) cancer (SIR=16.06).113 Risk of HNSCC is also elevated after initial 
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HNSCC. For example, risk of buccal cavity and pharynx cancer is significantly elevated after 

larynx cancer (SIR=5.69) and nose, nasal cavity, and middle ear cancer (SIR=3.88).113 In 

addition, risk of  second buccal cavity or pharynx cancer after a first tumor of this type is 

extremely high <1 year after diagnosis (SIR=16.19), 1-4 years after diagnosis (SIR=21.46), 5-9 

years after diagnosis (SIR=24.89), and at any point after diagnosis (SIR=21.83; P < 0.05 for 

all).113 Increased risk of HNSCC after cancer at other sites, or after initial HNSCC, may be 

related to genetic predisposition, tobacco and alcohol use, and oncogenic infections like HPV 

that may be responsible for cancers at multiple sites.113 It should be noted, however, that cancer 

at certain sites is associated with significantly (P < .05) decreased risk of second primary 

HNSCC: uterine corpus (SIR=0.71), prostate (OR=0.80), kidney parenchyma (OR=0.71), and 

multiple myeloma (OR=0.62), and that there exist cancer sites for which there is no association 

with increased risk of second primary HNSCC.113 

2.4 ANGIOGENESIS, THE NOTCH PATHWAY, AND HPV IN HNSCC 

It has long been recognized that tumors require a blood supply to grow beyond 1-2 cm3 in size, as 

blood provides the tumor with nutrients and growth factors necessary for expansion.114 It is now 

known that tumors gain access to nutrient-rich blood supply through angiogenesis: the formation 

of new, tumor-infiltrating blood vessels from existing vasculature.115 Furthermore, angiogenesis 

is believed to facilitate metastasis of cancer by providing tumor cells a pathway to other 

anatomical sites.116 Because metastasis is the primary cause of death in cancer patients,116 

angiogenesis has long been recognized as an important factor in malignancy and is now viewed 

as a therapeutic target in cancer, including HNSCC.117  
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The NOTCH pathway is the key regulator of cellular differentiation and is activated 

through direct cell-to-cell contact.118 While NOTCH has a variety of roles relevant to 

carcinogenesis in general, its effects appear to vary across tumor types and the exact role of 

NOTCH in HNSCC is currently unclear.21,118 The NOTCH pathway is also active within blood 

vessels where signaling between adjacent endothelial cells regulates angiogenesis.119 In addition, 

NOTCH signaling takes place between tumor and other cell types in the tumor environment, e.g., 

tumor-cell-to-endothelial-cell signaling.18 Tumors therefore may influence angiogenesis through 

transduction of NOTCH signals in adjacent blood vessel endothelium.18 

Evidence from IHC studies (Table 3) suggests angiogenesis may differ in HPV-positive 

and HPV-negative HNSCC, and this may hold important consequences for anti-angiogenesis 

therapy, e.g., in terms of subgroups most likely to respond or selection of therapeutic targets and 

biomarkers of response. Furthermore, a small number of studies suggest the NOTCH pathway 

may be associated with angiogenesis in HNSCC (Table 4) but it is unclear whether this 

association differs in HPV-positive and HPV-negative HNSCC. The following discussion 

provides background on these topics. First, angiogenesis is described and its importance in 

HNSCC is discussed. Then, commonly used markers of angiogenesis are discussed along with 

findings related to these markers in HPV-positive and HPV-negative HNSCC. Finally, the 

NOTCH pathway is introduced and its potential role in HNSCC angiogenesis is discussed. 

2.4.1 Description of Angiogenesis and its Importance in HNSCC 

Tumor angiogenesis begins with secretion of growth factors by the tumor that interact with 

receptors on existing blood vessels to increase permeability of those vessels.117 This allows 

endothelial cells to break free from the vessel wall, enter the interstitial space, proliferate, and 
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form new vessels.117 While angiogenesis is a normal physiological process, occurring for 

example during embryo development and in response to injury, key differences exist between 

angiogenesis in normal tissues and tumors.117 For example, endothelial cell division is normally 

a rare event that takes place approximately every seven years.117 However, endothelial cells 

involved in tumor angiogenesis divide on the order of every seven to ten days.117 In addition, 

whereas normal angiogenesis results in the formation orderly networks of mature vessels, tumor 

angiogenesis results immature, poorly organized microvessel networks.117 

Tumor angiogenesis is mediated through expression of several key proteins. Most notable 

among these are the epidermal growth factor receptor (EGFR)9 and the vascular endothelial 

growth factor (VEGF).8 EGFR is expressed in nearly all HNSCC and plays a key role in tumor 

growth and metastasis by initiating intracellular signaling through several critical pathways in 

response to extracellular ligand binding.9 In vitro studies show that EGFR is associated with 

angiogenesis through its ability to activate the signal transducer and activator of transcription 3 

(STAT3).9 STAT3 in turn induces transcription of the vascular endothelial growth factor 

(VEGF),9 which is secreted by tumors to stimulate angiogenesis.8 The VEGF pathway is the 

primary mediator of tumor angiogenesis.8 This pathway consists of a family of growth factors 

(released by tumors) and receptors (on existing blood vessels nearby the tumor) with specific 

functions.8 The VEGF-A growth factor, referred to simply as VEGF, is the most important 

growth factor in tumor angiogenesis.8 Release of VEGF by tumors is associated with increased 

blood vessel permeability as well as growth, division, migration, and survival of endothelial 

cells.8  
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2.4.2 Studies Comparing Expression of Angiogenesis Markers in HPV-Positive and HPV-

Negative HNSCC Using Immunohistochemistry (IHC) 

Expression of EGFR and VEGF, both markers of tumor angiogenesis, has been detected in 

HNSCC using IHC with paraffin-embedded tumor specimens. Several studies show lower 

expression of EGFR in HPV-positive compared with HPV-negative HNSCC, suggesting 

possible differences in angiogenesis in these two HNSCC subgroups. However, few studies have 

examined expression of the primary angiogenesis mediator, VEGF, according to HPV status in 

HNSCC, and no studies have examined the EGFR-VEGF association separately in HPV-positive 

and HPV-negative HNSCC. 

2.4.2.1 EGFR Expression in HNSCC 

As shown in Table 3, several studies have demonstrated lower EGFR expression in HPV-

positive compared with HPV-negative OOSCC,10-13 although results reported in some studies 

were not statistically significant120,121 and one study reported no association between EGFR and 

tumor HPV status.122 Studies showing non-significant or null associations tended to include 

small sample sizes and/or low HPV prevalence,120-122 whereas studies showing statistically 

significant differences in EGFR expression comparing HPV-positive and HPV-negative HNSCC 

had larger samples sizes and/or HPV prevalence.10-13 
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Table 3. Immunohistochemical Studies of EGFR Expression in HPV-Positive and HPV-Negative HNSCC 

Author Tumor Site HPV Positivity Rate EGFR-HPV Association 

Fei10 • Tonsil • 42/85=49% • HPV-positive have low EGFR 
• HPV-positive: 67% EGFR+ 
• HPV-negative: 90% EGFR+ 
• P=.008 

Al-Swiahb11 • Oropharynx • 45/274=16.4% • HPV-positive have low EGFR 
• HPV-positive: 30% EGFR+ 
• HPV- negative: 99% EGFR+ 
• P=0.01 

Hong12 • Oropharynx • 94/249=38% • HPV-positive have low EGFR 
• HPV-positive: 78% EGFR+ 
• HPV- negative: 93% EGFR+ 
• P=.0005 

Kong13 • Oral cavity, 
pharynx, 
larynx 

• 36/82=44% • HPV-positive have low EGFR  
• HPV-strong: 6.1% EGFR-strong 
• HPV-weak: 29.3% EGFR-strong 
• P=0.0006 

Kumar120 • Oropharynx • 25/39=64% • HPV-positive have low EGFR 
• HPV-positive: 60% low EGFR 
• HPV- negative: 29% low EGFR 
• P=0.10 

Reimers121 • Oropharynx • 30/96=31% • EGFR-positive tumors are less likely to be 
p16-positive 

• EGFR-positive: 34.5% p16+ 
• EGFR-: 65.5% p16+ 
• P=0.08 

Lindquist122 • Tonsil, base 
of tongue 

• 20/56=36% • Not associated (data not tabulated) 
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2.4.2.2 VEGF Expression in HNSCC 

Expression of VEGF in HNSCC was studied in a large meta-analysis that included N=1,002 

cases from twelve studies that used IHC.123 In this study, positive expression of VEGF was 

associated with higher tumor stage and lymph node metastasis.123 In addition, VEGF-positive 

tumors were associated with an 88% increased risk of death relative to VEGF-negative tumors 

(RR=1.88, 95% CI: 1.43-2.45).123 However, this estimate was not adjusted for tumor stage or 

nodal status.123 Therefore, while it appears that VEGF expression is important in HNSCC 

survival, it is unclear whether it exerts this importance through a direct influence on survival or 

associations with other prognostic indicators.  

Expression of VEGF with respect to tumor HPV status is reported in two studies.10,124  

One study used PCR to detect VEGF mRNA in N=13 fresh-frozen oropharyngeal biopsy 

specimens and found elevated levels of VEGF mRNA in HPV-positive compared with HPV-

negative tumors (P<0.01).124 However, another study of N=85 tonsil cancers did not observe any 

relationship between HPV status and VEGF expression measured by immunohistochemistry 

(P=0.9).10 

2.4.2.3 Association Between EGFR and VEGF Expression in HNSCC 

Only a small number of studies examined the association between expression of EGFR and 

VEGF in HNSCC using IHC. One study reported a positive association in a heterogeneous group 

of HNSCC,125 and two studies showed a null association in tonsil10 and oral cavity cancer.126 No 

studies examined the EGFR-VEGF association stratified by tumor HPV status. 
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2.4.3 The NOTCH Pathway in HNSCC and Angiogenesis 

The NOTCH signal transduction pathway was first identified as a critical pathway in embryonic 

organogenesis where it effects cellular differentiation, apoptosis, and proliferation in a wide 

variety of cell types.118 The functions that NOTCH controls in normal cells are also important in 

carcinogenesis and therefore NOTCH is recognized as an important pathway in cancer.20 The 

NOTCH pathway is activated through direct cell-to-cell contact.20 Signal transduction is 

accomplished through interaction between NOTCH ligands (JAGGED1, JAGGED2, Delta-like 

ligand [DLL] 1, DLL3, and DLL4) and receptors (NOTCH1-NOTCH4) on the surface of 

neighboring cells.20 Although there are several structural differences among the ligands and 

among the receptors, the overall signaling scheme appears to be similar for all receptor/ligand 

interactions.20 Upon ligand/receptor binding, the intracellular domain of the NOTCH receptor 

(NOTCH-IC) undergoes two successive cleavages (first by tumor-necrosis-factor-alpha-

converting enzyme, and then by the gamma-secretase enzyme), after which NOTCH-IC 

translocates to the nucleus and binds to the CSL transcription factor.20 The CSL transcription 

factor normally represses transcription when NOTCH-IC is not present.20 However, upon 

binding with NOTCH-IC, CSL becomes a transcriptional activator.20 The complete list of genes 

that are transcribed as a result of the NOTCH-IC/CSL interaction is still under investigation.20 

Among the known targets is p21, which helps bring the cell cycle to a halt and promotes cellular 

differentiation.20 However, the physiological consequences of NOTCH signaling are not entirely 

predictable.20 The effects of NOTCH ligands may vary (e.g., NOTCH pathway signals induced 

by DLL1 result in differentiation of hematopoietic precursor cells in vitro whereas signals 

induced by JAGGED1 block differentiation in these cells).20 In addition, the cell type and 

concurrent activity in intersecting pathways might determine effects of NOTCH signaling.20 This 
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makes NOTCH particularly enigmatic in cancer as it appears to function either as an oncogene or 

a tumor suppressor depending on the tumor type.20 For example, NOTCH1 acts as an oncogene 

in adult T-cell leukemia where a chromosomal translocation leaves precursor T-cells in a 

permanently undifferentiated and proliferating state.20 However, NOTCH1 expression appears to 

be suppressed in basal cell skin cancer, suggesting it functions as a tumor suppressor in this 

cancer.20  

The role of NOTCH in HNSCC is still being explored.21,22 Mutations in NOTCH1-4 have 

been observed in 22% of HNSCC.21 NOTCH1 in particular was mutated in 15% of  HNSCC, 

making it the second most commonly mutated gene in HNSCC next to p53.22 The mutations 

observed in NOTCH1 are consistent with inactivating mutations, suggesting NOTCH1 may act 

as a tumor suppressor in HNSCC.22 Inactivation of the tumor suppressing function of NOTCH1 

in HNSCC may result in a blockage normal differentiation in squamous epithelial cells, thus 

promoting malignant growth.22 

NOTCH signaling also plays a critical role in normal and pathological angiogenesis 

through signaling between adjacent endothelial cells.119 For example, angiogenesis begins with 

sprout formation, a process in which VEGF-stimulated endothelial cells break free from the 

blood vessel wall and adopt the tip cell phenotype, characterized by the presence of filopodia that 

facilitate migration of the blood vessel sprout towards the source of secreted VEGF (e.g., a 

tumor).119 Following behind the tip cell are endothelial stalk cells, which eventually form the 

vessel lumen when the sprout connects with other sprouts.119 The adoption of endothelial sprout 

or stalk phenotype is governed by NOTCH signaling between adjacent endothelial cells.119 In 

addition, signals transmitted between adjacent endothelial cells initiated by the JAGGED1 ligand 
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are associated with increased sprout formation, whereas signals induced by DLL4 are associated 

with reduced sprouting.119 

In addition to interactions between NOTCH receptors and ligands expressed on cells of 

the same type (e.g., endothelial cell-to-cell NOTCH signaling, or tumor cell-to-cell NOTCH 

signaling), the NOTCH ligand/receptor interaction  has been observed between cells of different 

types.119 For example, a recent study of HNSCC demonstrated formation of microvessel 

networks in vitro as a result of interaction between NOTCH ligands expressed  on tumor cells 

and NOTCH receptors expressed on endothelial cells.18 In this study, endothelial cells were 

cultured with two different populations of oropharyngeal tumor cells, one expressing JAGGED1 

and one not expressing JAGGED1.18 More sprouts were formed in the culture containing 

JAGGED1-expressing tumor cells.18 In addition, a visually apparent network of microvessels 

appeared in the culture containing JAGGED1-expressing tumor cells whereas no such 

phenotypic change was observed in the culture lacking JAGGED1-expressing tumor cells.18 The 

appearance of this microvessel network was also shown to be concomitant with activation of 

NOTCH1 in endothelial cells.18 Therefore, while VEGF may be the primary driver of 

angiogenesis, the NOTCH pathway is an important mediator of blood vessel differentiation.119 

Furthermore, while maturation of blood vessels can occur via interactions between neighboring 

endothelial cells, as is seen in normal human development, it may also occur due to interaction 

between NOTCH ligands and receptors on tumors and adjacent endothelial cells.119  

2.4.4 IHC Studies of the NOTCH Pathway and Angiogenesis in HNSCC 

Immunohistochemical studies of HNSCC show expression of JAGGED1,127-129 JAGGED2,129 

NOTCH1,19,127-131 and NOTCH319,129 in tumors and endothelial cells129 in normal tissue adjacent 
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to the tumor (Table 4). Furthermore, expression of these proteins in HNSCC has been associated 

with advanced stage,129 lymph node metastasis,19,129 depth of invasion,19 non-response to 

platinum chemotherapy,131 poor survival,128 expression of VEGF,19 and  tumor microvessel 

density (MVD) measured using the CD34 immunostain.19 The majority of studies included oral 

cancer only,19,127,129,130 with two studies including pharyngeal tumor sites,128,131 and only one 

study including laryngeal cancer.131 One study assessed NOTCH1 expression in conjunction with 

EGFR expression.130 Finally, none of these studies examined expression of NOTCH proteins by 

tumor HPV status.19,127-131 
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Table 4. Summary of Immunohistochemical Studies of NOTCH in HNSCC 

Author, National 
Origin, and Sample 

Findings* 
Protein Expression Disease Progression Outcome Angiogenesis 

• Joo19 
• Korea 
• N=51 T1 or T2 

oral tongue 
cancer 

• N=5 normal 
tongue samples†  

• NOTCH1, 
NOTCH3 not 
expressed in normal 
tongue 

• NOTCH1 expressed 
in 35 of 51 (69%) 
tumors 

• NOTCH3 expressed 
in 23 of 51 (45%) of 
tumors 

• NOTCH1 expression 
associated with LN+ 
and greater depth of 
invasion 

• NOTCH3 unrelated 
to LN status or depth 
of invasion 

• NOTCH1 and 
NOTCH3 are not 
associated with 
disease-specific 
survival 

• VEGF expression was 
associated with LN+ 
tumors 

• MVD was higher in 
VEGF-positive 
compared to VEGF-
negative tumors 

• MVD was higher in 
NOTCH1-positive 
compared to 
NOTCH1-negative 
tumors 

• Higher MVD was 
associated with greater 
depth of invasion, but 
not LN status 

• Hijioka127 
• Japan 
• N=4 oral cavity 

tumors 
 

• Nuclear expression 
of the NOTCH1 
intracellular domain 
was observed 

• JAGGED1 
expressed only in 
the cytoplasm of 
tumors 

• NA NA • NA 
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Table 4 continued 

Author, National 
Origin, and Sample 

Findings* 
Protein Expression Disease Progression Outcome Angiogenesis 

• Lin128 
• Taiwan 
• N=59 T1-T4 

tumors  (21 
oropharynx, 38 
oral cavity) 

• JAGGED1 
expressed in 37 of 
59 tumors (62.7%) 

• NOTCH1 expressed 
in 25 of 59 tumors 
(42.4%) 

• NA • High expression of 
NOTCH1 or 
JAGGED1 alone is 
associated with 
worse overall 
survival than low 
expression 

• Tumors with high 
expression of both 
NOTCH1 and 
JAGGED1 have the 
worst survival 

• NA 

• Zhang TH129 
• China  
• N=74 Tis-T3 oral 

tongue tumors 
• N=74 adjacent 

normal tissues 
adjacent to the 
tumor 

• No significant 
difference in 
expression of 
JAGGED1/2 
comparing tumor vs. 
normal 

• NOTCH1 and 
NOTCH3 are 
expressed at higher 
levels in tumor vs. 
normal tissue 

• NOTCH1, 
NOTCH3, and 
JAGGED1 are 
expressed in 
endothelial cells in 
normal tissue 

• JAGGED1 and 
NOTCH1 are 
associated with LN+ 
tumors 

• Higher stage tumors 
are more likely to 
express NOTCH1/3 
than lower stage 
tumors 

• NA • NA 
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Table 4 Continued 

Author, National 
Origin, and Sample 

Findings* 
Protein Expression Disease Progression Outcome Angiogenesis 

• Huang130 
• China 
• N=41 oral tongue 

tumors 
• N=7 normal 

tongue specimens 
from tumor-free 
margins 

 

• Expression of 
NOTCH1 increased 
with increasing 
differentiation (poor, 
moderate, well) 

• EGFR expression 
was inversely 
related to 
differentiation‡ 

• NA • NA • NA 

• Zhang ZP131 
• China 
• N=25 (10 oral, 7 

pharyngeal, 6 
laryngeal, 1 
maxillary sinus, 
1 esophagus) 

• N=25 normal 
squamous 
epithelium†# 

• All tumors 
expressed NOTCH1 
whereas only 35% 
of normal squamous 
epithelium 
expressed NOTCH1 

• NA • Expression of 
NOTCH1 showed 
strong negative 
correlation with 
response to Cisplatin; 
i.e., low NOTCH1 
expression=sensitive, 
high NOTCH1 
expression=insensitive 

• NA 

MVD = microvessel density, Tis = T-stage in situ, LN+ = lymph node positive, LN- = lymph node negative, NA=not assessed 
*All findings are statistically significant (P < 0.05) unless otherwise noted 
†It is unclear from this report whether the normal specimens are taken from the same patients who donated tumor tissue 
‡No direct correlation between NOTCH1 and EGFR expression is reported in this paper. However, the results suggest tumors 
expressing high levels of NOTCH1 also express low or no EGFR. 
#The anatomic site for normal squamous epithelium is not stated 
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Expression of NOTCH Ligands in HNSCC 

A total of three studies127-129 examined JAGGED1 or JAGGED2 expression in HNSCC (Table 

4). Hijioka, et al.127 observed expression of JAGGED1 in a small sample (N=4) of oral cavity 

tumors from Japan. JAGGED1 was also expressed in 62.7%  of oral and oropharyngeal tumors 

in a larger study (N=59) from Taiwan by Lin, et al.128 Using the Kaplan-Meier method, this 

study showed high expression (>50% of cells staining) of JAGGED1  was associated with worse 

overall survival (median=15.6 months) than low expression (<=50% of cells staining) of 

JAGGED1 (median=65.1 months) (P=0.0001).128 In the same study, high expression of 

JAGGED1 was also associated with increased risk of death from any cause  in a multivariable 

Cox proportional hazards regression model (HR=3.28, 95% CI: 1.67-6.44).128 Expression of  

JAGGED1 and JAGGED2 was observed in another study of a Chinese oral tongue cancer case 

series reported by Zhang TH, et al.129 although no significant differences were observed in the 

expression of either ligand comparing tumor with normal tissue. However,  the expression of 

JAGGED1 was associated with LN status, with 42.9%  of LN+ tumors expressing JAGGED1 

(>30% of cells staining) compared with only 15.2% of LN- tumors (P=0.03).129 Expression of 

JAGGED2 was not related to LN status (LN+ tumors: 82.6% positive for JAGGED1, LN- 

tumors: 85.7% positive for JAGGED2, P=0.73).129 

Expression of NOTCH Receptors in HNSCC 

A total of six studies19,127-131 examined expression of NOTCH receptors in HNSCC (Table 4). In 

a Korean oral tongue cancer case series  reported by Joo, et al.,19 NOTCH1 and NOTCH3 were 

expressed in 69% and 45% of tumors respectively, with no expression of either protein detected 

in normal tongue. Zhang TH, et al.129 also reported higher expression of NOTCH1 and NOTCH3 
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in oral tongue tumors compared with normal tissue (NOTCH1: tumor=56.8% stained, 

normal=36.5% stained, P=0.01; NOTCH3: tumor=63.5% stained, normal=47.3%  stained,  

P=0.05).  Similar results were observed in a Chinese HNSCC case series reported by Zhang ZP, 

et al.131 in which all tumors (including oral, pharyngeal, laryngeal, maxillary sinus, and 

esophagus) expressed NOTCH1 whereas only 35% of normal squamous epithelial specimens 

expressed NOTCH1. In addition, three studies observed NOTCH expression in tumors without 

comparison to normal tissue: 1) Lin, et. al128 observed NOTCH1 expression in 42.4% of oral and 

oropharyngeal tumors in a Taiwanese case series, 2) Huang, et al.130 observed NOTCH1 

expression in 82.9% of oral tongue tumors in a Chinese case series, with stronger NOTCH1 

expression in well differentiated tumors compared with poorly differentiated tumors, and 3) 

Hijioka, et al.127 observed expression of the intracellular domain of NOTCH1 in a small sample 

(N=4) of oral cancers from Japan.  

Two studies examined NOTCH receptor expression in relation to indicators of disease 

progression in oral tongue cancer, each reporting similar results.19,129 Joo, et al.19 observed an 

association between NOTCH1 expression and LN status, with 88.9% of LN-positive tumors 

expressing NOTCH1 and 57.6% of LN-negative tumors expressing NOTCH1 (P=0.02). The 

mean depth of tumor invasion (+/- SE)  was also higher in NOTCH1-expressing tumors 

(11.51mm +/- 5.54) compared with tumors not expressing NOTCH1 (5.69mm +/- 4.33) 

(P=0.001).19  Expression of NOTCH3 was unrelated to LN status (P=0.25) or depth of invasion 

(P-value not reported) in this study.19 Zhang TH, et al.129 also reported an association between 

NOTCH1 expression and LN status. In this study, 75.0% of LN-positive cases expressed 

NOTCH1 whereas only 45.7% of LN-negative cases expressed NOTCH1 (P=0.01).129 NOTCH3 

was unrelated to LN status in this study (P=0.11).129  This study also examined tumor stage and 
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found that stage III and IV tumors more often expressed NOTCH1 (P=0.002) and NOTCH3 

(P=0.003) than stage I and II tumors.129 

Three studies examined NOTCH receptor expression in HNSCC and response to 

treatment or survival.19,128,131 Zhang ZP, et al.131 observed a strong inverse correlation between 

response to platinum chemotherapy and NOTCH1 expression (R-Spearman= -0.71, P < 0.01) in 

a HNSCC case series that also included esophageal and maxillary sinus cancers. Lin, et al.128 

used the Kaplan-Meier method to analyze overall survival associated with NOTCH1 in oral and 

oropharyngeal cancer. Tumors expressing high levels of NOTCH1 (>30% of cells staining) were 

associated with reduced survival (median=11.5 months) compared with tumors expressing low 

levels of NOTCH1 (<=30% of cells staining) (median=47.6 months) (P=0.004).128 This study 

also observed statistically significant differences in survival (P < 0.001) associated with joint 

expression of NOTCH1 and JAGGED1.128 Survival was best for cases with low expression of 

both NOTCH1 and JAGGED1 (median=65.1 months).128 Cases with high expression of 

NOTCH1 (and low JAGGED1) had reduced survival (median=40.0 months), as did cases with 

high expression of JAGGED1 (and low NOTCH1) (median=9.41 months).128 High expression of 

both NOTCH1 and JAGGED1 was associated with the worst survival (median=5.0 months).128 

In contrast to these results, Joo, et al.19 did not observe any association between expression  of 

NOTCH1 (P=0.34) or NOTCH3 (P=0.48) and disease-specific survival in oral tongue cancer. 

Only one study examined NOTCH1 expression in relation to expression of EGFR.130 

Huang, et al.130 reported that NOTCH1 expression was strongest in well and moderately 

differentiated oral tongue cancer and not present in poorly differentiated tumors. In contrast, 

EGFR was expressed in all tumors regardless of grade, but expression was strongest in poorly 

differentiated tumors.130 
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Finally, only one study examined NOTCH receptor expression in relation to proximal 

markers of angiogenesis in HNSCC.19 Joo, et al.19 reported that VEGF was expressed in 46.9% 

of oral tongue tumors. A total of 72.2% of LN-positive tumors expressed VEGF (>30% of cells 

staining) compared with only 32.3% of LN-negative tumors (P=0.009).19 In addition,  MVD (+/- 

SE) was greater in VEGF-positive tumors (22.5 vessels/mm2 +/- 6.53) than VEGF-negative 

tumors (13.42 vessels/mm2 +/- 5.80) (P < 0.001).19 MVD was also higher in NOTCH1-positive 

(any staining) tumors (19.91 vessels/mm2 +/- 7.05) compared with NOTCH1-negative tumors 

(12.40 vessels/mm2 +/- 5.99) (P=0.001).19 In addition, MVD was correlated with the depth of 

tumor invasion (R=0.36, P=0.01).19 However, MVD was not significantly correlated with LN 

status (correlation coefficient is not specified; P=0.08).19 Finally, NOTCH3 expression was 

unrelated to MVD in this study.19 

2.5 HNSCC SURVIVAL AND METABOLIC ENZYME GENOTYPE 

Metabolism of endogenous and xenobiotic compounds is accomplished by a 2-phase enzyme 

system.132 The Phase I (functionalization) enzymes are responsible for detoxication whereas 

Phase II (conjugation) enzymes form hydrophilic compounds (by conjugating Phase I products 

with other molecules) to facilitate excretion from the body. In addition to their detoxicating role, 

Phase I enzymes are capable of metabolically activating some xenobiotic compounds. This 

results in formation of reactive oxygen intermediates (ROMs) that are mutagenic through their 

ability to readily form covalent bonds with specific sites on DNA molecules. Thus, some 

xenobiotic compounds are termed 'procarcinogens'-- compounds that become carcinogenic only 

after their enzymatic activation.132 Genetic variation in Phase I and Phase II enzymes can result 
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in different metabolic phenotypes, classically defined as combinations of either "high" or "low" 

Phase I and Phase II enzyme activity, each with different relationships to cancer risk in the 

context of procarcinogenic xenobiotic exposure. For example, the high Phase I/low Phase II 

phenotype (denoting the presence of more mutagenic ROMs due to high expression of Phase I 

enzymes, and the slower excretion of those ROMs due to deficient activity of Phase II enzymes) 

is generally associated with higher risk of cancer after high levels of procarcinogenic xenobiotic 

exposure compared with the low Phase I/high Phase II phenotype.132 This enzyme system is 

assumed to have evolved for beneficial endogenous purposes, and the activation of xenobiotics is 

viewed as an accidental consequence of the wide-ranging substrate specificity of many of the 

metabolic enzymes.132 This consequence is of particular relevance in HNSCC, as several 

procarcinogens are found in tobacco smoke.132 In addition, alcohol is metabolized to the 

genotoxic acetaldehyde.133 Thus, genetic variation in some of these metabolic enzymes is 

associated with increased risk of HNSCC.33,134 While the etiologic role of such polymorphisms 

has been explored in many studies of HNSCC, the relationship between these polymorphisms 

and survival from HNSCC has received less attention in the literature. The association between 

genotype and survival is potentially relevant for patients who continue to drink or smoke during 

therapy, and given the roles of some of these enzymes in metabolization of drugs.132 

2.5.1 Cytochrome P450 Enzymes 

The human cytochrome P-450s (CYP450s) are a set of fifty-seven genes organized into eighteen 

different families that comprise approximately 80% of the human Phase I enzymes.132 These 

enzymes have special relevance to HNSCC as alcohol and procarinogenic xenobiotics in tobacco 

are metabolically activated by CYP450s.132,133 For example, CYP2E1 accounts for 
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approximately 10% of ethanol metabolism133 and activates benzene (found in cigarette 

smoke);132 and CYP1A1, CYP1B1, and CYP2E1 have activity against polycyclic aromatic 

hydrocarbons (PAHs), which are found in cigarette smoke.132 Although the CYP450s are 

primarily localized in the liver,132 PCR showed CYP2E1 was expressed in normal oral epithelial 

cells as well as those infected with HPV-16 after exposure to PAHs;135 microarray-based gene 

expression profiling showed CYP1A1 and CYP1B1 expression in tonsil SCC cells increased 

after exposure to cigarette smoke condensate;135 and PCR and Western blot showed increased 

expression of CYP1A1 and CYP1B1 after exposure to benzo[a]pyrene in cell lines from oral 

cavity, hypopharyngeal, and laryngeal SCC, as well as gingival tissues specimens from dental 

patients surgically treated for non-malignant conditions.136 

Data on the association between germline polymorphisms in CYP450s and clinical 

behavior of HNSCC is limited. In a 250-person case series consisting entirely of North Indian 

males treated with combination chemotherapy (Cisplatin + 5-FU) and radiation, the presence of 

variant alleles (i.e., *1A/non-*1A + non-*1A/non-*1A) of the CYP2A6 gene was associated with 

lack of response to chemotherapy.137 In this study, 57% of variant genotypes were non-

responders whereas 43% of patients with wild type *1A/*1A had partial or complete response (P 

< 0.0001).137 No estimate of survival associated with CYP2A6 variants was given in this study, 

however.137 Another study of N=385 German men and women diagnosed with first primary 

larynx, pharynx, or oral cavity cancer showed CYP2E1*5B (allele frequency of only 5.8%) to be 

unrelated to stage at diagnosis or nodal status (both of which are associated with poor survival in 

HNSCC) after adjusting for age, sex, tobacco, and alcohol use.138 However, a study of N=153 

HNSCC cases from Brazil identified CYP2E1*5B in ~13% of cases and showed this 

polymorphism was associated with advance stage at diagnosis (P=0.022), although the presence 
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of this polymorphism did not predict survival in a Kaplan Meier analysis (survival estimates and 

P-value not reported).139 However, the presence of CYP1A2*1C (homozygous + heterozygous) 

in the same Brazilian case series was associated with significantly worse disease-free survival 

(~35% at 60 months) compared to the homozygous wild type (~80% at 60 months; Plog-

rank=0.0161).139 

2.5.2 Glutathione S-Transferases 

The glutathione S transferases (GST) are Phase II enzymes that catalyze the conjugation of 

ROMs to glutathione, which detoxifies the ROMs.140 Two of the GST genes--GSTT1 and 

GSTM1--are frequently deleted in humans.  Homozygous deletion of one or both genes (denoted 

by GSTT1*0 or GSTM*0) results in complete absence of protein expression and therefore lack of 

enzyme function. Deletion of these genes is particularly relevant in HNSCC as these enzymes 

detoxify carcinogens found in tobacco smoke, as well as procarcinogens activated by Phase I 

enzymes like CYP450s.140 There is wide variability in deletion of these enzymes across 

populations; e.g., with GSTT1*0 found in 62% of Chinese and Koreans vs. 10% in Mexican 

Americans.140 Overall, GSTM1 is deleted in approximately 50%, and GSTT1 is deleted in 

approximately 15% of Caucasians.40 Another GST important in detoxifying chemical 

compounds in cigarette smoke is GSTP1. Polymorphisms in this gene create four different forms 

of this protein (Table 5) with different levels of enzymatic activity.40,141 In addition to their 

activity against carcinogens found in tobacco smoke, these enzymes also have activity against 

anti-cancer chemotherapies.40 Therefore, while deletions or polymorphisms in these genes may 

increase risk of head and neck cancer33 through the absence of their detoxifying activity, they 

may actually improve response to therapy (due to the lack of detoxification of the drug).40 On the 
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other hand, such genetic variation could plausibly have negative effects on survival in patients 

who continue to smoke during therapy. 

 

Table 5. GSTP1 Polymorphisms 

GSTP1 Variant Amino Acid @ 105 Amino Acid @ 114 Nucleotides Enzyme 
Activity 

GSTP1*A (wild type) Ile Ala AC Normal  
GSTP1*B Val Ala GC Reduced 
GSTP1*C Val Val GT Reduced 
GSTP1*D Ile Val AT Normal 
*A total of 10 genotypes are possible: A/A, A/B, A/C, A/D, B/B, B/C, B/D, C/C, C/D, or D/D 

 

Limited information is available on the relationship between GST polymorphisms and 

survival in HNSCC patients. In the aforementioned study of North Indian men, Ruwali, et al.137 

identified polymorphisms in GSTP1 at position 105 and noted non-response to therapy among 

75% of those with the wild type allele (Ile/Ile) and 62% of heterozygotes (Ile/Val).137 Patients 

homozygous for the polymorphism at position 105 (Val/Val)--a change associated with reduced 

enzyme activity--had the lowest rate of non-response (25% were non-responders).137 Since all 

patients were treated with chemotherapy in this study, these findings agree with previous 

findings of improved survival associated with the reduced activity GSTP1 phenotype in lung, 

colorectal, and ovarian cancers treated with chemotherapy.40 

Minard, et al.142 studied the risk of second primary tumors associated with GSTM1 and 

GSTT1 deletion in survivors of stage I or II SCC of the oral cavity, pharynx, and larynx enrolled 

in placebo-controlled trial of 13-cis-retinoic acid (30 mg/day for 3 years) for reduction in risk of 

second primaries. Subjects (N=1,081) enrolled in the trial were recruited during 1991-1999 at 

several centers in the United States and were 18 years or older, had been free of HNSCC for at 

least sixteen months, and had no prior history of other cancers within five years of enrollment. 
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Randomization to placebo or active treatment was stratified on disease stage, tumor site, and 

smoking status. The trial revealed no difference in risk of second primary tumors between 

treatment groups after 7 years of follow-up (3 years on treatment, plus 4 additional years). 

Minard, et al.142 selected 303 Caucasians (from both the active and placebo groups) from among 

the 1,081 enrolled subjects who had blood available and studied the association between GSTM1 

and GSTT1 null genotypes and risk of second primary tumors. The GSTM1 non-null genotype 

was associated with increased risk of any second primary tumor (compared to null: HR=1.99, 

95% CI: 1.11-3.56) and  risk of tobacco related second primary cancer (head and neck, lung, 

kidney, bladder, and pancreas; HR=2.16, 95% CI: 1.01-4.62) after controlling for age, smoking 

status, alcohol use, tumor site, stage, and treatment group (placebo or 13-cis-retinoic acid).142 

The GSTT1 non-null genotype was unrelated to risk of any second primary tumor (compared to 

null: HR=0.59, 95% CI: 0.25-1.41) or tobacco related second primary tumors (HR=0.66, 95% 

CI: 0.23-1.92).142 

Geisler, et al.143 investigated overall and disease-specific survival associated with 

GSTM1, GSTT1, and GSTP1 genotypes in a consecutive series of 190 incident cases of 

laryngeal, pharyngeal, and oral cavity cancer enrolled in a case-control study of genetic pre-

disposition to HNSCC at the UNC Chapel Hill Memorial Hospital during 1994-1997. A total of 

47% of patients were treated with surgery and radiation, 26% received surgery only, 8% received 

radiation only, and 19% received both chemotherapy and radiation.143 A total of 123 patients 

(65%) experienced an event in this study: 79 (42%) died during follow-up (65 of them from 

HNSCC) and 44 (23%) had a recurrence.143 In an unadjusted analysis the GSTT1 non-null 

genotype was associated with greater risk of death overall (HR=1.95, 95% CI: 0.97-3.92) and 

death from HNSCC (HR=2.97, 95% CI: 1.19-7.42) compared with the null genotype.143 This 
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association strengthened after adjusting for stage, age, and treatment differences (death from any 

cause: HR=2.37, 95% CI: 1.13-4.97; death from HNSCC: HR=3.35, 95% CI: 1.33-8.41).143 

Polymorphisms in GSTP1 (all reduced activity genotypes compared with Ile105/Ile105) were not 

associated with overall mortality (HR=1.05, 95% CI: 0.64-1.72) or disease specific mortality 

(HR=1.03, 95% CI: 0.60-1.76) in adjusted analyses.143 Likewise, deletions in GSTM1 were not 

associated with overall mortality (non-null compared to null: HR=0.80, 95% CI: 0.50-1.29) or 

disease-specific mortality (HR=1.25, 95% CI: 0.75-2.09) in adjusted analyses.143 Finally, 

deletions in GSTT1 and GSTM1, and polymorphisms in GSTP1 were not associated with disease 

recurrence either in the crude or adjusted analyses.143 The association between functional GSTT1 

and poor survival in this study was observed irrespective of treatment. Although the reason for 

this is unclear, residual confounding by smoking history is unlikely as an earlier report that 

included a subset (N=170) of these cases showed 94% of patients with non-null GSTT1 were 

ever smokers whereas 91% of patients in whom GSTT1 was deleted were ever-smokers.144 

Furthermore, patients with each genotype had similar pack-year histories of smoking.144 It 

remains possible however, that selection factors produced this result. Approximately 12% of the 

215 cases invited to participate in the study refused, and DNA was unavailable for 5 (2.6%) of 

the 190 enrolled participants.143  Differences between the 215 invited and 190 enrolled are not 

discussed, nor are differences between those with and without available DNA.143 If participation 

in the study or availability of DNA were related to survival this may have produced biased 

results. 
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3.0  SUMMARY 

HNSCC is a worldwide public health problem,46 and recent changes in the epidemiology of this 

disease have revealed previously unrecognized heterogeneity that will complicate prevention and 

treatment.7 In particular, the molecular heterogeneity, disparate risk factor profiles, and 

persistently poor survival across subgroups of HNSCC require a renewed focus on development 

of impactful interventions for HNSCC patients and those at risk for developing the disease.7 All 

of this work is the domain of a newly emerged paradigm called translational research.145 The 

earliest concept of the translational approach was that of "bench to bedside" research, in which 

experimental evidence from the basic sciences is joined with clinical research to develop and test 

new therapies, and integrate these therapies into clinical practice expeditously.145 The paradigm 

of translational research has now been expanded to public health, where the outcome of interest 

is health improvement at the population level; e.g., reduction in population prevalence of high-

risk behaviors or changes in morbidity and mortality rates.146  

Khoury, et al.147 describe a framework within which epidemiology--the core science of 

public health--can contribute to translational research at various phases: T0) description and 

discovery of new knowledge concerning the occurrence, natural history, or biological 

pathogenesis of disease, T1) applying T0 discoveries to identify candidate applications, e.g., new 

tests, biomarkers, or therapies, T2) testing of candidate applications in observational studies and 

clinical trials, T3) development of evidence-based guidelines to incorporate proven candidate 
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applications as standard clinical practice, and T4) evaluation of the effectiveness of candidate 

applications by examining trends in population health. Much progress has already been made in 

translational cancer research and epidemiology has clearly contributed to successes in HNSCC, 

e.g., through implication of cigarette smoking in HNSCC etiology and the resulting influence of 

tobacco control efforts on reduction in HNSCC incidence,2 the identification of shifting patterns 

in disease incidence that assisted with identification of the HPV-related HNSCC epidemic,54 and 

in the development of the targeted therapy cetuximab.23 However, this represents what can only 

be the beginning of the impact of epidemiology in HNSCC, as the need for population sciences 

is rapidly becoming apparent in addressing the complex heterogeneity of HNSCC.7 

The research described here applies epidemiology, in the translational context, to 

HNSCC to make basic discoveries relevant to the T0 phase of translational research,147 with the 

goal of informing such pursuits as the development of new therapies for HNSCC, providing a 

scientific basis for public policy aimed at reducing the burden of HNSCC in the population, and 

by informing selection of therapies based on individual patient characteristics. Therefore, the 

specific aims of this research are to: 1) explore the role of the NOTCH pathway in tumor 

angiogenesis in HPV-positive and HPV-negative HNSCC, 2) evaluate the association between 

childhood passive smoke exposure and adult HNSCC, and 3) evaluate the association between 

polymorphisms in tobacco and alcohol metabolizing enzymes and survival in HNSCC. 
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4.1 ABSTRACT 

Background. Angiogenesis may differ in human papilloma virus (HPV)-positive and HPV-

negative oral and oropharyngeal squamous cell carcinomas (OOSCC). The NOTCH pathway is 

implicated in OOSCC angiogenesis but expression of NOTCH proteins and markers of OOSCC 

angiogenesis are not reported by HPV status. Methods. Expression of the epidermal growth 

factor receptor (EGFR), vascular endothelial growth factor (VEGF), and NOTCH1 were 

measured using immunohistochemistry in N=67 cases (27 HPV-positive, 40 HPV-negative, by in 

situ hybridization) who completed an interviewer-administered lifestyle questionnaire. A 

pathologist scored the slides (intensity x percent of cells staining) blinded to HPV status. Box 

plots and the Wilcoxon rank sum or Kruskall-Wallis tests were used to compare the score by 

HPV status and lifestyle factors. Associations between EGFR, VEGF, and NOTCH1 were 

assessed using box plots and Spearman correlation (Rho) in all cases, and stratified by HPV 

status. Results. EGFR and VEGF were unrelated to T- or N-stage (P > 0.20 for all). NOTCH1 

was over-expressed in T1/2 (median score [range]: 50 [0-240]) compared with T3/4 tumors (20 

[0-160]) (P=0.01). HPV-positive OOSCC under-expressed EGFR (7.5 [0-200]) relative to HPV-

negative OOSCC (30 [0-300]) (P=0.006). VEGF (P=0.82) and NOTCH1 (P=0.68) were 

unrelated to HPV status. EGFR was associated with VEGF in HPV-negative (Rho=0.40, P=0.01) 

but not HPV-positive tumors (Rho=0.25, P=0.20). NOTCH1 and VEGF were associated in 

HPV-negative (Rho=0.40, P=0.01) but not HPV-positive tumors (Rho= -0.12, P=0.57). 

NOTCH1 and EGFR exhibited a non-linear association in HPV-positive (P=0.01) but not HPV-

negative cases (P=0.57). Alcohol drinking was associated with EGFR over-expression (P=0.03) 

and obesity was associated with VEGF under-expression (P=0.03). Conclusions. HPV-positive 

OOSCC may be less angiogenic than HPV-negative OOSCC. The NOTCH pathway is 
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associated with angiogenesis in HPV-negative OOSCC. Further study may identify subgroups 

likely to respond to anti-angiogenesis therapies, and identify novel anti-angiogenesis targets and 

biomarkers of treatment response. 

4.2 INTRODUCTION 

Oral and oropharyngeal squamous cell carcinomas (OOSCC) are typically associated with 

tobacco and alcohol use and represent a significant worldwide burden of cancer, totaling 400,000 

new cases and causing 200,000 deaths in 2008.1,56 However, despite declining smoking rates in 

the United States and other developed nations, the incidence of oropharyngeal tumors has 

increased among persons with little or no smoking history.2,6,54,60 It is now known that these 

tumors are caused by the sexually transmitted human papilloma virus (HPV).7 HPV-positive 

OOSCC are recognized as a distinct disease entity due to their unique histopathology and 

improved survival compared with stage-matched HPV-negative OOSCC.7,23 Certain molecular 

characteristics unique to HPV-positive OOSCC have been identified. For example, HPV proteins 

E6 and E7 interact with host cell p53 and Rb to maintain the malignant phenotype.148 However, 

these interactions are not sufficient to drive carcinogenesis and thus, the full extent of 

heterogeneity between HPV-positive and HPV-negative OOSCC is yet to be elucidated.148 One 

potentially important difference in HPV-positive and HPV-negative OOSCC is angiogenesis: the 

process by which new, tumor-infiltrating blood vessels are formed from existing vasculature in 

response to the release of growth factors from the tumor.114,115  These blood vessels supply the 

tumor with nutrients and growth factors necessary for expansion beyond 1-2 cm3 in size, and 

provide a path for metastasis to other sites in the body.114,115 Because of the role of angiogenesis 
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in tumor growth and metastasis,114,115 clinical observations linking HPV-positive tumors with 

smaller size14-17 are highly suggestive of differences in angiogenic potential comparing HPV-

positive and HPV-negative OOSCC. 

The strongest biological evidence for differences in angiogenesis comparing HPV-

positive and HPV-negative OOSCC comes from immunohistochemistry (IHC) studies of the 

epidermal growth factor receptor (EGFR), which is expressed at lower levels in HPV-positive 

compared with HPV-negative OOSCC.10-13 Results from in vitro studies show EGFR is 

associated with angiogenesis through its ability to activate the signal transducer and activator of 

transcription 3 (STAT3).9 STAT3 induces transcription of the vascular endothelial growth factor 

(VEGF),9 which is secreted by tumors.8 VEGF stimulates angiogenesis by binding to receptors 

expressed on endothelial cells in existing vasculature nearby the tumor.8 IHC studies show 

VEGF is over-expressed in OOSCC and is associated with higher tumor stage, lymph node 

metastasis, and increased risk of death.123 However, we are aware of only two studies reporting 

on VEGF expression with respect to tumor HPV status and results are equivocal.10,124 One study 

of oropharyngeal tumors observed higher levels of VEGF in HPV-positive compared with HPV-

negative tumors.124 However, another study did not observe any association between VEGF 

expression and HPV status in tonsil cancer.10  In addition, few studies have examined the 

association between expression of EGFR and VEGF in OOSCC using IHC, with one study 

reporting a positive association in a heterogeneous group of head and neck tumors,125 and two 

studies showing a null association in tonsil10 and oral cavity cancer.126 We are unaware of any 

studies that examined the EGFR-VEGF association separately in HPV-positive and HPV-

negative OOSCC. 
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Recent studies suggest the NOTCH pathway may also be associated with OOSCC 

angiogenesis.18,19 The NOTCH pathway, consisting of four cell surface receptors (NOTCH1-

NOTCH4) and five membrane-bound ligands (JAGGED1, JAGGED2, Delta-like ligand [DLL] 

1, DLL3, and DLL4) is associated with cellular differentiation, apoptosis, and proliferation in a 

wide variety of cell types and was first recognized as important in embryonic organogenesis.118 

Because many functions of NOTCH are also important in tumor growth, this pathway is also 

considered important in cancer, although its function in promoting or suppressing growth 

appears to differ across tumor types, and its role in OOSCC is yet to be determined.20-22 Of 

particular interest is NOTCH1, which is the second most commonly mutated gene in head and 

neck tumors after p53.21,22 NOTCH1 is expressed in OOSCC19,127-129,131 and has been associated 

with microvessel density in oral tongue cancer.19 In addition, at least one study of oropharyngeal 

cancer demonstrated development of a microvessel network in vitro as a result of NOTCH 

signaling between tumor and endothelial cells.18 Although these studies are suggestive of a 

potential role of NOTCH1 in OOSCC angiogenesis, replication of these findings is required. 

Furthermore, we are unaware of any studies comparing NOTCH1 with canonical mediators of 

angiogenesis--VEGF and EGFR--in OOSCC. 

OOSCC angiogenesis may also be influenced by lifestyle factors associated with OOSCC 

etiology.149 For example, head and neck tumors are more often EGFR-positive in smokers than 

non-smokers.150 In addition, one study reported increasing intensity of EGFR expression across 

oropharyngeal tumors from non-smokers, to past smokers, and current smokers.120 However, 

studies of EGFR expression in OOSCC and lifestyle are not conclusive, as one study showed 

smoking to be associated with lower tumor EGFR expression compared to non-smoking,151 and 

another study showed no association between smoking history alone, or in combination with 
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alcohol use, and expression of EGFR.152 It is difficult to interpret these results in aggregate, 

however, as most studies were based on small sample sizes,120,150,152 relied on medical records 

for assessment of lifestyle factors, and did not apply a uniform definition of smoking or alcohol 

use.120,150,151 We are aware of only one study reporting on VEGF expression in relation to 

smoking in OOSCC.153 This study showed no association between VEGF and smoking in a small 

and heterogeneous group of head and neck tumors, and also relied on medical record data for 

assessment of smoking habit.153 Finally, we are unaware of any prior reports examining 

expression of NOTCH pathway proteins in OOSCC in relation to lifestyle factors. 

To explore differences in angiogenesis comparing HPV-positive and HPV-negative 

OOSCC, we performed an IHC study of EGFR, VEGF, and NOTCH1 expression in an OOSCC 

case series derived from a case-control study of head and neck cancer etiology. All cases in our 

study completed an interviewer-administered risk factor questionnaire that included data on 

tobacco/alcohol use and anthropometry, allowing us the unique opportunity to systematically 

explore associations between lifestyle factors and expression of angiogenic factors in OOSCC. 

Based on existing literature, we hypothesized the following: 1) EGFR expression is positively 

associated with VEGF expression; 2) EGFR is expressed at lower levels in HPV-positive tumors 

compared with HPV-negative tumors; and 3) VEGF expression is lower in HPV-positive 

compared with HPV-negative tumors. In addition, we engaged in a hypothesis-generating study 

of NOTCH1 expression in relation to EGFR and VEGF in HPV-positive and HPV-negative 

OOSCC. Finally, we hypothesized that cigarette smoking and alcohol consumption are 

associated with increased EGFR expression, and we conducted exploratory investigations of 

cigarette smoking, alcohol drinking, and body mass index (BMI) in relation to expression of 

VEGF and NOTCH1 in OOSCC. 
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4.3 METHODS 

4.3.1 Study Population 

Between 2000-2010, N=1,170 cases of squamous cell carcinoma (SCC) of the head and neck 

were recruited at University of Pittsburgh Medical Center otolaryngology clinics for 

participation in a case-control study of head and neck cancer etiology. Cases were age 18-79 at 

diagnosis with biopsy-verified primary lip, oral cavity (mouth or anterior tongue) or 

oropharyngeal (base of tongue, tonsil fossa, or soft palate) SCC within one year of interview, and 

completed an interviewer-administered questionnaire soliciting tobacco/alcohol use, 

anthropometry, and personal cancer history. This study provided the basis for the case series 

included in our report. Because our primary interest was the expression of NOTCH1 and markers 

of angiogenesis in OOSCC according to tumor HPV status, we began by restricting our search 

for cases diagnosed during the time period when HPV testing became common (starting in 

2007), and later routine practice (pending availability of tissue and starting in 2009), at our 

institution. Therefore, we first identified from this case series all OOSCC diagnosed during 

2007-2010, and who self-reported no prior history of cancer (to remove the effect prior disease 

or treatment on our results) (N=322). Furthermore, we specifically sought cases with tumor HPV 

status recorded in the pathology report, as determined by in situ hybridization (ISH) (performed 

on the index tumor in cases later presenting with second or higher order primary tumors) 

(N=103). Formalin-fixed, paraffin-embedded (FFPE) tumors were requested from storage for 

these N=103 cases, and tumor blocks were retrieved for N=71 cases. Our analytic sample 

included cases with more recent diagnoses, consisted of more oropharyngeal tumors, and more 

often represented node-positive disease than excluded cases (P < 0.01 for all) (Appendix A). 
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4.3.2 Immunohistochemistry 

Paraffin tumor blocks were retrieved from off-site storage (N=50) and project archives (N=21) 

and cut into 5 micron thick sections.  Slide preparation and immunostaining were performed by 

the Tissue and Research Pathology Services laboratory at the University of Pittsburgh Medical 

Center (Rajiv Dhir, MD, Director). Three slides were prepared per tumor block to be stained 

with commercially available antibodies to VEGF (Santa Cruz Biotechnology #SC-152), 

NOTCH1 (Cell Signaling #3608), and EGFR (Sigma Chemical #E3138 (in this order).  A single 

tumor block was available for N=62 cases and two blocks for N=9 cases.  Slides were prepared 

as follows. Heat-induced antigen retrieval was performed in the Dako Biocare Decloaking 

Chamber using Biocare Medical Borg buffer (catalog # BD1000G1) (EGFR) or Dako PH6 

citrate buffer (VEGF and NOTCH1). Engodenous peroxidase was blocked by quenching with 

3% hydrogen peroxide (Fisher Scientific) for 10 minutes, after which the reagent was tapped off 

(not rinsed). Specimens were then incubated with primary antibody as indicated in Table 6, 

followed by incubation with Biocare Mach 4 Universal HRP (EGFR), Dako Dual Envision+ 

(VEGF), and Dako Rabbit Envision+ (NOTCH1) secondary antibodies for 30 minutes. All 

specimens were then washed for five minutes in tris-buffered saline. This was followed by 

incubation with Dako Substrate Chromagen (catalog #K3468) for five (NOTCH1) or ten (VEGF 

and EGFR) minutes. All specimens where then washed with deionized water, counterstained 

with Harris hematoxylin for ten seconds, washed in tap water, blued in ammonia and water, 

dehydrated, cleared and cover-slipped. Staining was performed on the Dako Autostainer Plus. 

All incubations were performed at room temperature. Paraffin-embedded tissues were used as 

positive controls in all experiments (EGFR: squamous cell head and neck cancer, VEGF: normal 

kidney, NOTCH1: lung cancer). Stains were interpreted as both intensity (0=no stain, 1=weak 
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stain, 2=moderate stain, 3=strong stain) and the percentage of cells staining. Interpretation was 

done by a single pathologist (Lin Wang, MD, PhD) who was blinded to tumor HPV status. 

Representative weak and strong intensity stains for each marker are shown in Figure 1, Figure 2, 

and Figure 3. A total of N=67 cases (of 71, or 94%) had enough tumor for staining of one or 

more markers. Cases with insufficient tumor were more often HPV-positive than other cases 

(Appendix B). Protein expression and tumor HPV status were unrelated to surrogate markers of 

variation in specimen handling (Appendix C). 

4.3.3 Dependent Variable 

The primary dependent variable in our analysis was the staining score for EGFR, VEGF, and 

NOTCH1. This continuous measure was created by multiplying the staining intensity times the 

percentage of cells staining. For the N=9 cases with two tumor blocks, the average staining score 

was used. We conducted sensitivity analyses using the maximum score instead and observed no 

difference in results compared with using the average (data not shown). 

4.3.4 Independent Variables 

The primary independent variable of interest in this study was tumor HPV status (positive or 

negative), as determined by ISH. In addition, we defined the following variables to explore 

confounding and interaction: age at diagnosis (< 50, 50-59, 60-69, and >=70 years), sex (male or 

female), race (white or other/unknown), year of diagnosis (nominal; 2007-2010), tumor site (oral 

cavity or oropharynx), clinical T-stage (nominal; 1/2, 3/4, or X [not evaluable]), clinical N-stage 

(nominal; negative, positive, or X [not evaluable]), clinical M-stage (nominal; positive, negative, 
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or X [not evaluable]), smoking status (ever/never, where ever-smoking was defined as smoking 

at least one cigarette per day for 6 months or longer), drinking status (ever/never, where ever-

drinking was defined as drinking at least one drink per month for one year or longer), childhood 

passive smoke exposure (ever/never; defined as ever being exposed to passive cigarette smoke in 

the home up to age eighteen), and body mass index (BMI) one year prior to diagnosis (<30 kg/m2 

[not obese] or >=30 kg/m2 [obese]). 

4.3.5 Statistical Analysis 

We began our analysis by exploring differences in subgroups of the case series defined by 

demographic, pathological, and lifestyle factors using Fisher's exact test. We then used 

quantitative and graphical methods to analyze expression of EGFR, VEGF, and NOTCH1 as 

measured by the protein staining score. First, the median and range of each protein's staining 

score were compared between HPV-positive and HPV-negative tumors. In addition, we prepared 

box plots for each protein stratified by clinical T- and N-stage and tumor HPV status. We also 

used box plots to examine all possible two-way associations between the markers under study in 

all cases combined, and stratified by tumor HPV status. Associations between 

demographic/lifestyle factors and protein expression were examined by comparing the median 

and range of the staining score across subgroups defined by these factors. Statistical significance 

in these analyses was assessed using the Wilcoxon rank sum and Kruskal-Wallis tests. Finally, 

we examined the Spearman correlation coefficient (Rho) to assess correlations between protein 

staining scores for all markers under study. All statistical tests were two-sided and results were 

considered statistically significant at alpha=0.05. Analyses were performed in SAS 9.2 (SAS 

Institute, Cary, NC). 
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4.4 RESULTS 

Table 7 shows characteristics of the N=67 cases included in this study. Median age at diagnosis 

was 55.6 years (range: 20.0-77.1). Cases were predominantly male (74.6%) and white race 

(94.0%). The majority represented oropharyngeal tumors (58.2%), were diagnosed during 2009 

and 2010 (70.1%), and the most common procedure type was resection/excision (68.7%). Most 

tumors were early clinical T-stage (59.7% stage 1/2) and node-positive (73.1%). Only one case 

showed clinical evidence of distant metastases. The majority of cases (74.6%) reported ever-

smoking or ever-drinking (82.1%). Childhood passive smoke exposure was also common in the 

case series (79.1%), and a majority (67.2%) were not obese one year prior to cancer diagnosis. A 

total of N=27 tumors (40.3%) were HPV-positive (2 oral, 25 oropharyngeal) and N=40 tumors 

(59.7%) were HPV-negative (26 oral, 14 oropharyngeal). 

4.4.1 Factors Associated With Tumor HPV Status 

Table 7 shows factors associated with tumor HPV status. HPV-positive cases tended to be 

younger (77.7%  <= 59 years old) than HPV-negative cases (62.5% <= 59 years old), but this 

difference was not significant (P=0.31). We also noted non-significant differences among HPV-

positive (85.2% male) and HPV-negative (67.5% male) cases with regard to sex (P=0.15). The 

majority of HPV-positive cases (92.6%) were oropharyngeal tumors whereas only 35.0% of 

HPV-negative tumors were oropharyngeal (P < 0.001). The HPV-positivity rate among 

oropharyngeal tumors was 64.1% (25 HPV-positive out of 39 total). In general, HPV-positive 

cases were more often diagnosed prior to 2010 (92.6%) than HPV-negative cases (52.5%) 

(P<0.01). We noted substantial but non-significant differences in tumor size and nodal status 
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comparing HPV-positive and HPV-negative tumors. A total of 66.7% of HPV-positive tumors 

were staged clinically as T1/2, whereas only 55.0% of HPV-negative tumors were staged as T1/2 

(P=0.09). HPV-positive tumors were also more often node-positive (81.5%) than HPV-negative 

tumors (67.5%) (P=0.27). Sensitivity analyses treating indeterminate T-stage tumors as T1/2 or 

T3/4 did not alter these results (data not shown). Cigarette smoking, alcohol drinking, childhood 

passive smoke exposure, and BMI one year prior to diagnosis were unrelated to tumor HPV 

status (P > 0.05 for all). 

4.4.2 Protein Expression According to Clinical Stage and Tumor Site 

Expression of three proteins--EGFR, VEGF, and NOTCH1 --was measured in N=67 cases (27 

HPV-positive [2 oral, 25 oropharyngeal] and 40 HPV-negative [26 oral, 14 oropharyngeal]) 

(Table 7). Expression of EGFR (Figure 4) and VEGF (Figure 5) were unrelated to clinical T- or 

N-stage (P > 0.05 for all).  However, as shown in Figure 6, we noted a statistically significant 

difference in expression of NOTCH1 according to clinical T-stage, in which NOTCH1 was over-

expressed in T1/2 (median score [range]: 50 [0-240]) compared with T3/4 tumors (median score 

[range]: 20 [0-160]) (P=0.01). The association between NOTCH1 and T-stage was similar in 

analyses stratified by tumor site as well as tumor HPV status (data not shown). We did not 

observe any association between NOTCH1 and clinical N-stage (P=0.57) (Figure 6). In addition, 

there was no difference in expression of EGFR (Figure 7), VEGF (Figure 8), or NOTCH1 

(Figure 9) comparing oral cavity and oropharyngeal cancer (P > 0.05 for all). 
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4.4.3 Protein Expression According to Tumor HPV Status 

Table 8 shows results of our analysis comparing expression of EGFR, VEGF, and NOTCH1 in 

HPV-positive and HPV-negative cases. EGFR was evaluated in N=67 cases and was expressed 

(i.e., stained > 0% of cells) in fifty-six cases (83.6%). Evaluation of the staining score showed 

substantial under-expression of EGFR in HPV-positive tumors (median score [range]: 7.5 [0-

200]) compared with HPV-negative tumors (median score [range]: 30 [0-300]) (P=0.006). HPV-

positive tumors displayed both a lower percentage of cells staining (P=0.004) and a reduced 

intensity of stain (P=0.03) for EGFR compared with HPV-negative tumors. Expression of EGFR 

remained lower in HPV-positive tumors even after restricting our analysis to oropharyngeal 

cases only (Figure 10). VEGF was positive in 64/67 (95.5%) cases but showed no difference in 

expression comparing HPV-positive and HPV-negative tumors on staining score, percent of cells 

staining, and intensity (P > 0.05 for all). NOTCH1 was expressed in 58/66 cases (87.9%). There 

was no difference in expression of NOTCH1 comparing HPV-positive and HPV-negative tumors 

according to the staining score, percent of cells staining, or intensity (P > 0.05 for all). 

4.4.4 Associations Between Expression of EGFR, VEGF, and NOTCH1 in All Cases and 

Stratified By Tumor HPV Status 

Figures Figure 11, Figure 12, and Figure 13 show associations between EGFR, VEGF, and 

NOTCH1 in all cases and stratified by tumor HPV status. EGFR was positively associated with 

VEGF in all cases combined (P < 0.01). However, when stratified by HPV status, the EGFR-

VEGF association was evident in HPV-negative (P=0.03) but not HPV-positive (P=0.16) tumors 

((Figure 11)). Results of our Spearman correlation analysis (Table 9) also echoed this finding, 
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with a moderate positive correlation between EGFR and VEGF in HPV-negative tumors 

(Rho=0.40, P=0.01) and no evidence of a correlation in HPV-positive tumors (Rho=0.25, 

P=0.20). NOTCH1 was not associated with VEGF in all cases combined (P=0.11) or in HPV-

positive cases (P=0.77). However, we noted a significant positive association between NOTCH1 

and VEGF in HPV-negative cases (P=0.02) (Figure 12). Again, Spearman correlation (Table 9) 

also showed a stronger association between NOTCH1 and VEGF expression in HPV-negative 

(Rho=0.40, P=0.01) than HPV-positive (Rho= -0.12, P=0.57) tumors. Finally, we also observed 

a statistically significant, and apparently non-linear, relationship between NOTCH1 and EGFR 

expression in (P=0.02) in all cases combined, although this association was statistically 

significant only in HPV-positive tumors (P=0.01) and not HPV-negative tumors (P=0.57) 

(Figure 13). Results of our Spearman correlation analysis (Table 9) were also suggestive of a 

relationship between NOTCH1 and EGFR in HPV-positive tumors (Rho=0.32, P=0.11) and not 

in HPV-negative tumors (Rho= -0.04, P=0.79), although these results were not statistically 

significant. 

4.4.5 Demographic and Lifestyle Factors Associated With Protein Expression 

Table 10 shows results of an analysis of protein expression according to demographic and 

lifestyle factors collected using our interviewer-administered questionnaire. Overall, 

demographic and lifestyle factors were not strongly related to protein expression. However, we 

did observe significantly higher expression of EGFR among ever-drinkers (median score [range]: 

25.0 [0-300]) compared with never-drinkers (median score [range]: 7.5 [0-60]) (P=0.03). 

However, we did not observe any evidence of increasing EGFR expression associated with 

increasing drinks/day or years drinking among ever-drinkers (data not shown). Obesity (BMI >= 
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30 kg/m2) was associated with reduced expression of VEGF (median score [range]: 32.5 [0-150]) 

compared with not being obese (BMI < 30 kg/m2) (median score [range]: 80.0 [0-200]) (P=0.03). 

All other tested associations were not statistically significant. 

4.5 DISCUSSION 

In this single-institution study of OOSCC, we used IHC to identify statistically significant 

differences in expression of tumor angiogenesis markers comparing HPV-positive and HPV-

negative tumors that we believe have not been previously reported. Specifically, we observed a 

positive association between EGFR and VEGF that was restricted to HPV-negative tumors. We 

also observed a positive association between NOTCH1 and VEGF that was evident in HPV-

negative tumors only. In addition, we observed associations between NOTCH1 and EGFR, and 

between NOTCH1 and tumor size.  Our study also confirms previous reports that HPV-positive 

tumors express lower levels of EGFR than HPV negative tumors. Finally, to our knowledge we 

present the first report of the association between lifestyle factors and tumor angiogenesis in 

OOSCC based on data collected using a standardized, interviewer-administered questionnaire. 

Our results showed higher EGFR expression in alcohol drinkers compared with non-drinkers, 

and an inverse association between VEGF expression and body size. In total, these results 

suggest: 1) there are biological differences in angiogenesis in HPV-positive and HPV-negative 

OOSCC, with HPV-positive OOSCC being possibly less angiogenic; 2) the NOTCH pathway 

may be involved in OOSCC angiogenesis; and 3) lifestyle risk factors for OOSCC are associated 

with tumor angiogenesis. 
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4.5.1 Angiogenesis in HPV-Positive and HPV-Negative OOSCC 

Our observation that EGFR is associated with VEGF is consistent with biological evidence 

showing a relationship between EGFR, STAT3, and VEGF in head and neck cancer cell lines.9 

In addition, EGFR and VEGF were positively associated (using a polymerase chain reaction 

(PCR) assay) in a prior study of oral, pharyngeal, and laryngeal tumors.125 Although we observed 

a statistically significant association between EGFR and VEGF in all cases combined, our data 

indicate that this result was driven largely by an association between EGFR and VEGF in HPV-

negative tumors. However, a previous study of oral cancer, which is typically HPV-negative,7 

reported a null association between EGFR and VEGF.126 While this study appears to be at odds 

with our findings, the sample size (N=40) was considerably smaller than our study.126 A larger 

study (N=85) of an Australian tonsil cancer case series also reported a null association between 

EGFR and VEGF in all cases combined.12 Our analytic sample included a higher proportion 

(60%) of HPV-negative tumors (compared with 51% in the Australian study12), possibly 

allowing us to detect an association in the entire case series that was driven by HPV-negative 

tumors whereas the Australian study did not.12 Unfortunately, the Australian study did not report 

results for EGFR-VEGF stratified by HPV status, so our results are not directly comparable.12 

However, we cannot ignore an important weakness of our result. Specifically, HPV-negative 

cases in our study included a mixture of oral cavity (N=26) and oropharyngeal (N=14) tumors 

(Table 7) whereas the HPV-negative cases in the Australian study included tonsil 

(oropharyngeal) cancer only.12 Due to small subgroup sizes, we were unable to compare the 

EGFR-VEGF association between HPV-positive and HPV-negative cancers separately for 

oropharyngeal and oral cancers. Therefore, we were unable to determine whether the association 

we observed between EGFR and VEGF was truly a phenomenon restricted to HPV-negative 
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tumors, or whether it was attributable to tumor site. Thus, replication of our results is necessary 

in a larger sample. 

The association between HPV-positive tumors and low EGFR expression we observed in 

our case series has been reported previously,10-13,120,121 and may be suggestive of differences in 

angiogenesis comparing HPV-positive and HPV-negative OOSCC. A possible explanation for 

the under-expression of EGFR in HPV-positive tumors may be a reduction in EGFR copy 

number in HPV-positive compared with HPV-negative tumors, which has been reported in 

studies of oropharyngeal cancer.154-157 Reduced expression of EGFR in HPV-positive tumors 

might suggest a reduction in EGFR/STAT3-mediated transcription of VEGF,9 and therefore 

reduced angiogenesis in HPV-positive tumors. However, we observed no difference in VEGF 

expression comparing HPV-positive and HPV-negative tumors in our case series. We are aware 

of one similar study that also found no difference in VEGF expression according to tumor HPV 

status.10 However, it is possible that differences in VEGF expression are slight when comparing 

HPV-positive and HPV-negative tumors, and that our study and others10 were underpowered to 

detect this difference. Nonetheless, our observation of reduced EGFR expression in HPV-

positive OOSCC, combined with no difference in VEGF expression according to HPV status, is 

suggestive of an EGFR-independent mechanism of angiogenesis in HPV-positive tumors. 

Indeed, the fact that EGFR was not significantly associated with VEGF in HPV-positive tumors 

in our study supports this hypothesis. Replication of our results in a larger sample is required. 

Finally, in agreement with prior reports,10-13,120,121 we observed a subset of HPV-positive 

tumors in our study that expressed high levels of EGFR. This phenomenon is clinically relevant 

as tumors with this profile have worse disease-specific survival compared with HPV-positive 

tumors that express low levels of EGFR.120 In our study, the six HPV-positive cases in the top 
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tertile of EGFR expression were less likely to be ever-smokers (4/6, or 66.7%) than HPV-

positive cases with lower EGFR expression (17/21, or 81.0%), suggesting smoking history may 

not be related to poor survival in high-EGFR HPV-positive OOSCC.120 However, HPV-positive 

cases with high EGFR expression all had a history of drinking, all had a history of cancer in a 

blood relative, all were exposed to passive smoke during childhood, and were more often female 

(2/6, or 33.3%) compared with HPV-positive cases  expressing lower levels of EGFR (19/21, or 

90.5% drinkers; 14/20, or 70.0% having a blood relative with cancer; 16/21, or 76.2% with 

childhood passive smoke exposure; and 2/21, or 9.5% female). Over-expression of EGFR in 

HPV-positive OOSCC may result from the viral protein E5 acting as a ligand for EGFR.158 It is 

conceivable that other genetic or environmental factors may influence the degree to which EGFR 

expression occurs as a result of this interaction between viral and host cell proteins. However, 

because high-EGFR tumors make up the minority of HPV-positive OOSCC,10-13,120,121 and 

because HPV-positive tumors account for a minority of OOSC in general,7 studying the etiology 

and clinical features of these tumors is difficult. Pooled analyses of case series with available 

tumor specimens and questionnaire data on lifestyle and family cancer history will be required. 

4.5.2 The NOTCH Pathway and Angiogenesis in HPV-Positive and HPV-Negative 

OOSCC 

We observed an association between NOTCH1 and VEGF in our case series in which NOTCH1 

expression increased across tertiles of VEGF expression, but in HPV-negative tumors only. To 

our knowledge, this is the first report of an association between NOTCH1 and VEGF according 

to HPV status in OOSCC. However, we are not the first to implicate NOTCH1 in angiogenesis in 

OOSCC.19 At least one prior showed study NOTCH1 expression was associated with 
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microvessel density in early stage (T1/2) oral tongue cancer.19 This study did not report on the 

NOTCH1-VEGF association, but it did demonstrate an association between microvessel density 

and VEGF.19 While tumor HPV status was not assessed in this study,19 oral tongue cancer is 

frequently HPV-negative7 and therefore we believe our results for HPV-negative OOSCC to be 

in agreement with these findings. Our observation that NOTCH1 was associated with VEGF, but 

not EGFR, in HPV-negative tumors suggests NOTCH1 may influence angiogenesis 

independently of EGFR in HPV-negative tumors. In fact, NOTCH1 expression has been 

positively correlated with STAT3 expression in oral tongue cancer,159 and STAT3 activates 

transcription of VEGF.9 

While our data suggest NOTCH1 is associated with angiogenesis independently of EGFR 

in HPV-negative tumors, our data also suggest NOTCH1 plays a different role in HPV-positive 

OOSCC, and this role may be unrelated to angiogenesis. Specifically, our data suggest a 

relationship between NOTCH1 and EGFR expression that is more evident in HPV-positive 

tumors. In addition, both NOTCH1 and EGFR were unrelated to VEGF in HPV-positive tumors 

in our study. We reviewed the literature on this topic and were unable to identify any studies that 

examined all three markers--EGFR, VEGF, and NOTCH1--simultaneously in HPV-positive and 

HPV-negative OOSCC. However, we did identify one study that examined expression of 

NOTCH1 and EGFR in OOSCC.130 Huang, et. al.130 used IHC to measure expression of both 

proteins in N=41 oral tongue cancers. Although NOTCH1 and EGFR are not directly compared 

in this study, the authors reported increasing expression of NOTCH1 with increasing 

differentiation (poorly differentiated: 0% of cells stained; moderately differentiated: 

mean=12.5% of cells stained; well differentiated: mean=23.1% of cells stained; P < 0.05 ).130 

However, expression of EGFR decreased with increasing differentiation (poorly differentiated: 
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mean=68.1% of cells stained; moderately differentiated: mean=45.7% of cells stained; well 

differentiated: 24.3% of cells stained; P < 0.05).130 These results suggest an inverse association 

between NOTCH1 and EGFR in oral cancer. However, we did not detect this pattern when we 

restricted our analysis of NOTCH1 and VEGF to oral cancers only (data not shown). 

Furthermore, our results contradict those of Huang, et al.130 as our data indicate the NOTCH1-

EGFR association may be stronger in HPV-positive tumors, which are rare in the oral cavity.7 

Furthermore, we must point out that Huang, et al.130 observed NOTCH1 expression in the 

metaplastic tissue surrounding the tumor but not within the tumor itself. Again, this is at odds 

with our findings in which we observed NOTCH1 expression directly in the tumor, in agreement 

with several other IHC studies of OOSCC.19,127-129,131 

We also observed higher NOTCH1 expression in T1/2 tumors compared with T3/4 

tumors. This association was independent of tumor site and HPV status in our case series, 

suggesting a role for NOTCH1 in the early phase of tumor development in OOSCC in general. 

Unfortunately, among all the studies of NOTCH1 expression in OOSCC that we identified, none 

compared NOTCH1 expression with T-stage.19,127-131,159 However, one study reported increasing 

NOTCH1 expression with increasing stage group in oral tongue cancer.129  However, we did not 

observe any association between NOTCH1 and stage group, in the entire case series or after 

stratification by tumor site or HPV status (data not shown). Two studies reported higher 

expression of NOTCH1 in node-positive compared with node-negative oral tongue cancer.129 

However, we observed no association between NOTCH1 and lymph node metastasis in all cases 

combined, or after stratification by tumor site (oral vs. oropharyngeal) and HPV status. 

Unfortunately, due to small sample size, we were unable to separate tongue cancer from other 
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oral cancers. Therefore, our results for NOTCH1 and nodal status may not be directly 

comparable to prior reports.129 

4.5.3 Lifestyle Risk Factors for OOSCC and Markers of Tumor Angiogenesis 

We also provide as part of this study a report on the association between lifestyle risk factors for 

OOSCC and tumor biology using a standardized questionnaire. While it is established that 

tobacco smoking and alcohol drinking are etiological factors in OOSCC,56 it is unclear what 

relationship, if any, these exposures have with tumor angiogenesis. In our study we observed 

higher expression of EGFR in alcohol drinkers compared with non-drinkers. We are aware of 

only two studies reporting on this association in OOSCC, both showing a null result.150,152 

However, both studies used small sample sizes and may not have been powered to detect a 

difference in EGFR expression between drinkers and non-drinkers.150,152 Furthermore, these 

studies relied on medical records for assessment of lifestyle factors, and such data may not be 

reliably recorded in the medical record. The lack of association between EGFR expression and 

increasing consumption (drinks/day) or years drinking in our study argues against a biological 

association, and the mechanism through which alcohol drinking might increase expression of 

EGFR in OOSCC is unclear. The relationship between cigarette smoking and EGFR signaling is 

better defined, however. Specifically, exposure to cigarette smoke increases expression of EGFR 

and its ligand transforming growth factor (TGF)-alpha in oral mucosa,149 and smoking is strongly 

associated with OOSCC etiology in epidemiological studies.56 In addition, Bergler, et al.160 

demonstrated that EGFR expression was nearly non-existent in mucosa from non-smoking and 

non-drinking patients undergoing tonsillectomy, frequent in healthy volunteers with a regular 

smoking or drinking habit, and ubiquitous in oral cancer patients. In addition, smoking has been 
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associated with higher EGFR expression in IHC studies of oral, pharyngeal, and largyneal 

cancer.150,151  While we detected higher EGFR expression in smokers compared with non-

smokers in our case series, this difference was not statistically significant. At least two other 

studies show null or inverse151,152 relationships between smoking and EGFR expression. These 

results appear counter to what is known about the effect of cigarette smoke on EGFR and its 

ligands,9 the importance of smoking in OOSCC etiology,56 and the ubiquitous expression of 

EGFR in these tumors. It is possible that the associations reported in these studies are a result of 

bias related to missing data, possibly due to reliance on the medical record for assessment of 

smoking status.151,152 Finally, we detected an inverse association between body size and VEGF 

expression. Cases who were categorized as obese within one year of their diagnosis (BMI > 

30kg/m2) had statistically significantly lower expression of VEGF compared with cases who 

were not obese (i.e., overweight, normal weight, or underweight). To our knowledge, we are the 

first to report an association between BMI and VEGF expression in OOSCC. The direction of the 

association we observed supports the frequent observation in epidemiological studies that higher 

BMI is associated with reduced risk of OOSCC112 and suggests impaired angiogenesis as a 

potential mechanism that might reduce the risk of developing frank tumors. Indeed, obesity is 

associated with a wide variety of vascular impairments in patients without a cancer diagnosis, 

including reduced microvessel density in skeletal muscle and skin, as well as development of 

peripheral vascular disease, which is characterized by poor perfusion of tissue in the limbs.161,162 

We are unaware of any studies examining the effect of obesity on expression of VEGF in human 

oral tissues, however. In addition, higher serum levels of VEGF have been detected in obese 

persons compared with non-obese persons and it is unclear what meaning this has in the context 

of OOSCC pathogenesis.163 
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4.5.4 Strengths and Limitations 

Our results are accompanied by strengths in several areas. First, assessment of protein staining 

scores was performed by an expert head and neck pathologist who was blinded to tumor HPV 

status, thus reducing the possibility of biased assessment of protein expression according to 

tumor HPV status. We were also able to verify that variation in specimen handling did not effect 

our results (Appendix C). Antibody quality can also effect measurement of protein expression in 

IHC studies. To mitigate this, we used commercially available antibodies--including two 

monoclonal antibodies (to NOTCH1 and EGFR), which are less likely to exhibit background 

staining than polyclonal antibodies--and we tested these antibodies with positive controls. 

Finally, HPV positivity was more common among the five cases missing one or more markers 

compared with cases in whom all markers were assessed. If HPV-positive cases missing EGFR 

were those that under-expressed EGFR, then our results may under-estimate the true difference 

in EGFR expression comparing HPV-positive and HPV-negative OOSCC. However, we cannot 

ignore the possibility that the HPV-positive cases for whom EGFR data were missing may 

represent the minority of HPV-positive cases that express high levels of EGFR. In this case, our 

results would overestimate the true difference in EGFR expression comparing HPV-positive and 

HPV-negative OOSCC. However, we are able to point to internal consistencies within our results 

that strengthen our observations. Specifically, our observation of lower EGFR expression in 

HPV-positive OOSCC, and therefore possibly lower angiogenic potential in HPV-positive 

OOSCC,  is consistent with the tendency we observed for these tumors to be associated with 

smaller size, as indicated by clinical T-stage. Although this association was not statistically 

significant, this may have been due to sample size. In addition, we also noted a tendency for 

HPV-positive tumors to be node-positive. This may suggest a predilection for HPV-positive 
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tumors to metastasize through the lymph system and is consistent with our observation that the 

EGFR-VEGF association, which is relevant to angiogenesis rather than lymphangiogenesis, was 

not present in HPV-positive tumors, suggesting hematogenous metastasis may be less important 

in HPV-positive tumors. 

Our study is also accompanied by several limitations. In particular, we studied 

angiogenesis in HPV-positive and HPV-negative OOSCC using a relatively small sample and we 

conducted many statistical tests without correction for Type I error. However, as our study is one 

of the first to contribute data on expression of angiogenesis markers in HPV-positive and HPV-

negative OOSCC using IHC, we view our results primarily as hypothesis-generating. In addition, 

we must consider the external validity of our results because the ultimate goal of this research is 

to provide impetus for further investigation that will lead to translational applications in OOSCC 

on a population level. The primary reason for exclusion of cases from our study was missing 

tumor HPV status. When comparing cases enrolled in our study to those who would have been 

eligible if HPV status were known, we observed that cases in our study were more likely to 

represent oropharyngeal cancer and node-positive disease (Appendix A). However, we do not 

see this as limiting the external validity of our study as these are factors associated with HPV-

positive OOSCC,7 and we specifically selected cases for our study such that HPV status would 

be over-represented. Finally, perhaps the greatest limitation of our study is that our results can 

only speak to associations between biological factors and cannot describe mechanisms through 

which these associations are produced. However, this is not the purpose of our research. Rather, 

our data provide the impetus to conduct future studies that evaluate such mechanisms, and that 

might inform translational discoveries such as biomarker development, novel combinations of 
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existing therapies, development of new therapies, or addition of biological endpoint assessments 

in clinical trials. 

4.5.5 Conclusions 

In summary, our study suggests that HPV-positive OOSCC may have lower angiogenic potential 

than HPV-negative OOSCC as evidenced by lower expression of EGFR in HPV-positive tumors, 

a lack of association between EGFR and VEGF in HPV-positive OOSCC, and a tendency for 

smaller tumor size in HPV-positive OOSCC. In addition, we showed that the NOTCH pathway 

may play a role in tumor growth in OOSCC in general, and that the NOTCH pathway may be 

associated with angiogenesis in HPV-negative OOSCC while possibly playing a different role in 

HPV-positive OOSCC. Our study represents an early investigation into differences in 

angiogenesis in HPV-positive and HPV-negative OOSCC. Therefore, our results require 

replication. Further study of this topic may prove worthwhile in determining which patients are 

most likely to respond to anti-angiogenesis therapies, as well as help to identify potential 

biomarkers of treatment response, or new therapeutic targets. Finally, while our results suggest 

HPV-positive tumors may be less angiogenic than HPV-negative tumors, our data also reiterate 

the existence of a unique subgroup of HPV-positive tumors that expresses high levels of EGFR, 

which are known to have poor prognosis.120 Whether poor prognosis in this subgroup is related 

to differences in angiogenesis is unclear from our data and this should be explored in future 

studies as these cases may represent a subgroup of OOSCC that are good candidates for anti-

angiogenesis therapies. In conclusion, we believe that our research reveals biological differences 

in HPV-positive and HPV-negative OOSCC that have potential to be translated into impactful 
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interventions for OOSCC patients, and that our results will serve as the launching point for future 

translational investigations in OOSCC. 

4.6 TABLES 

Table 6. Antibodies Used for Immunohistochemistry 

Staining 
Order 

Protein Antibody Origin and Binding Site Dilution Positive 
Control 

Localization 

1 VEGF Santa Cruz 
Biotechnology SC-
152 

• Rabbit polyclonal antibody to 
the N-terminus of VEGF-A  

• Detects the 189, 165 
(predominant), and 121 amino 
acid sequence isoforms of 
VEGF-A 

1:400 for 60 
minutes 

Normal 
kidney 

Cytoplasm and 
nuclei 

2 NOTCH1 Cell Signaling 
Technologies 3608 

• Rabbit monoclonal antibody to 
proline 2439  

• Recognizes the whole (in-tact) 
NOTCH1 protein or the 
transmembrane/intracellular 
region 

1:400 for 45 
minutes 

Lung cancer Membrane and 
cytoplasm 

3 EGFR Sigma Chemical 
E3138 
 

• Mouse monoclonal antibody to 
the intracellular domain of the 
receptor 

1:7,500 for 
60 minutes 

Head and 
neck cancer 

Membrane and 
cytoplasm 
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Table 7. Analytic Cohort for Immunohistochemistry 

 
All 

(N=67) 

HPV 
Negative 
(N=40) 

HPV 
Positive 
(N=27)  

 n (%) n (%) n (%) P-Value* 

Age     0.31 

<50 19 ( 28.4) 8 ( 20.0) 11 ( 40.7)  

50-59 27 ( 40.3) 17 ( 42.5) 10 ( 37.0)  

60-69 16 ( 23.9) 11 ( 27.5) 5 ( 18.5)  

>=70 5 (  7.5) 4 ( 10.0) 1 (  3.7)  

Sex     0.15 

Male 50 ( 74.6) 27 ( 67.5) 23 ( 85.2)  

Female 17 ( 25.4) 13 ( 32.5) 4 ( 14.8)  

Race     0.64 

Non-White/Unknown 4 (  6.0) 3 (  7.5) 1 (  3.7)  

White 63 ( 94.0) 37 ( 92.5) 26 ( 96.3)  

Tumor Site     < .001 

Oral Cavity 28 ( 41.8) 26 ( 65.0) 2 (  7.4)  

Oropharynx 39 ( 58.2) 14 ( 35.0) 25 ( 92.6)  

Year of Diagnosis     < .01 

2007 5 (  7.5) 3 (  7.5) 2 (  7.4)  

2008 15 ( 22.4) 6 ( 15.0) 9 ( 33.3)  

2009 26 ( 38.8) 12 ( 30.0) 14 ( 51.9)  

2010 21 ( 31.3) 19 ( 47.5) 2 (  7.4)  

Procedure Type     0.43 

Biopsy 21 ( 31.3) 11 ( 27.5) 10 ( 37.0)  

Resection/excision 46 ( 68.7) 29 ( 72.5) 17 ( 63.0)  

T clinical     0.09 

1/2 40 ( 59.7) 22 ( 55.0) 18 ( 66.7)  

3/4 25 ( 37.3) 18 ( 45.0) 7 ( 25.9)  

X 2 (  3.0) 0 (  0.0) 2 (  7.4)  

N clinical     0.27 

Negative 18 ( 26.9) 13 ( 32.5) 5 ( 18.5)  

Positive 49 ( 73.1) 27 ( 67.5) 22 ( 81.5)  

M clinical     > 0.99 

0 65 ( 97.0) 38 ( 95.0) 27 (100.0)  

1 1 (  1.5) 1 (  2.5) 0 (  0.0)  

X 1 (  1.5) 1 (  2.5) 0 (  0.0)  
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Table 7 Continued 

 
All 

(N=67) 

HPV 
Negative 
(N=40) 

HPV 
Positive 
(N=27)  

 n (%) n (%) n (%) P-Value* 

Ever Smoked     0.78 

No 17 ( 25.4) 11 ( 27.5) 6 ( 22.2)  

Yes 50 ( 74.6) 29 ( 72.5) 21 ( 77.8)  

Ever Drank Alcohol     0.10 

No 12 ( 17.9) 10 ( 25.0) 2 (  7.4)  

Yes 55 ( 82.1) 30 ( 75.0) 25 ( 92.6)  

Childhood Passive Smoke     0.77 

No 14 ( 20.9) 9 ( 22.5) 5 ( 18.5)  

Yes 53 ( 79.1) 31 ( 77.5) 22 ( 81.5)  

BMI 1 year pre-diagnosis     0.60 

<30 kg/m2 45 ( 67.2) 28 ( 70.0) 17 ( 63.0)  

>=30 kg/m2 22 ( 32.8) 12 ( 30.0) 10 ( 37.0)  

*Fisher's exact test 

 

 

Table 8. Results of Immunohistochemistry: Analysis of Protein Expression and HPV Status 

Marker 
HPV 

Status N 
Positive 
n (%)* Score†# 

Percent 
Staining Intensity 

EGFR All 67 56 (83.6) 20.0 (0-300) 15.0 (0-100) 1.0 (0-3) 

 Negative 40 37 (92.5) 30.0 (0-300) 22.5 (0-100) 1.0 (0-3) 

 Positive 27 19 (70.4) 7.5 (0-200) 7.5 (0-100) 1.0 (0-2) 

 P-value‡   0.006 0.004 0.03 

VEGF All 67 64 (95.5) 70.0 (0-200) 60.0 (0-100) 1.0 (0-2) 

 Negative 40 38 (95.0) 60.0 (0-200) 60.0 (0-100) 1.0 (0-2) 

 Positive 27 26 (96.3) 70.0 (0-180) 70.0 (0-100) 1.0 (0-2) 

 P-value‡   0.82 0.97 0.87 

NOTCH1 All 66 58 (87.9) 40.0 (0-240) 20.0 (0-100) 2.0 (0-3) 

 Negative 40 35 (87.5) 42.5 (0-240) 20.0 (0-100) 2.0 (0-3) 

 Positive 26 23 (88.5) 40.0 (0-160) 22.5 (0-80) 1.5 (0-3) 

 P-value‡   0.68 1.0 0.29 
EGFR=epidermal growth factor receptor; VEGF=vascular endothelial growth factor; 
NOTCH1=notch receptor 1; HPV=human papillomavirus. 
 
*Positive is defined as having greater than 0% of cells staining 
† Numbers are median (min-max) 

#Score represents the product of Percent Staining and Intensity 
‡p-value is from a Wilcoxon Rank Sum test comparing HPV-positive and HPV-
negative tumors 
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Table 9. Spearman  Correlations For Markers Detected by Immunohistochemistry 

All Cases HPV-Positive Cases HPV-Negative Cases 
 NOTCH1 EGFR VEGF 

NOTCH1  0.11 
0.37 

66 

0.22 
0.08 

66 
EGFR 0.11 

0.37 
66 

 0.33 
0.007 

67 
VEGF 0.22 

0.08 
66 

0.33 
0.007 

67 

 

 

 NOTCH1 EGFR VEGF 
NOTCH1  0.32 

0.11 
26 

-0.12 
0.57 

26 
EGFR 0.32 

0.11 
26 

 0.25 
0.20 

27 
VEGF -0.18 

0.57 
26 

0.25 
0.20 

27 

 

 

 NOTCH1 EGFR VEGF 
NOTCH1  -0.04 

0.79 
40 

0.40 
0.01 

40 
EGFR -0.04 

0.79 
40 

 0.40 
0.01 

40 
VEGF 0.40 

0.01 
40 

0.40 
0.01 

40 

 

 

Numbers are: 
Rho (correlation coefficient) 
P-value 
N 
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Table 10. Demographic and Lifestyle Factors Associated With Protein Expression 

 EGFR VEGF NOTCH1 

 N, median (min-max) N, median (min-max) N, median (min-max) 

Age     

<50 19, 30.0 (0-80) 19, 40.0 (0-160) 19, 40.0 (5-180) 

50-59 27, 20.0 (0-300) 27, 60.0 (0-180) 27, 20.0 (0-240) 

60-69 16, 60.0 (0-200) 16,  100 (0-140) 15, 60.0 (0-160) 

>=70 5, 10.0 (0-300) 5,  100 (20-200) 5, 30.0 (0-120) 

P-value 0.50 0.27 0.77 

Sex     

Female 17, 60.0 (0-300) 17, 90.0 (0-150) 17, 40.0 (0-195) 

Male 50, 20.0 (0-300) 50, 60.0 (0-200) 49, 40.0 (0-240) 

P-value 0.08 0.46 0.69 

Race     

White 63, 20.0 (0-300) 63, 70.0 (0-200) 62, 40.0 (0-240) 

Non-White/Unknown 4, 60.0 (0-180) 4, 60.0 (30-100) 4, 50.0 (20-100) 

P-value 0.49 0.95 0.58 

Ever Smoked     

Yes 50, 22.5 (0-300) 50, 70.0 (0-200) 49, 40.0 (0-195) 

No 17, 15.0 (0-80) 17, 50.0 (0-140) 17, 60.0 (0-240) 

P-value 0.32 0.71 0.41 

Childhood Passive 
Smoke  

   

Yes 53, 20.0 (0-300) 53, 70.0 (0-200) 52, 40.0 (0-240) 

No 14, 17.5 (0-180) 14, 60.0 (0-160) 14, 45.0 (0-160) 

P-value 0.46 0.61 > 0.99 

Ever Drank Alcohol     

Yes 55, 25.0 (0-300) 55, 70.0 (0-200) 54, 40.0 (0-180) 

No 12,  7.5 (0-60) 12, 35.0 (0-150) 12, 50.0 (5-240) 

P-value 0.03 0.25 0.57 

BMI 1 year pre-diagnosis     

<30 kg/m2 45, 25.0 (0-300) 45, 80.0 (0-200) 45, 40.0 (0-240) 

>=30 kg/m2 22, 15.0 (0-200) 22, 32.5 (0-150) 21, 60.0 (0-195) 

P-value 0.20 0.03 0.15 
EGFR=epidermal growth factor receptor; VEGF=vascular endothelial growth factor; NOTCH1=notch receptor 1; 
HPV=human papillomavirus. Numbers (N, median [min-max]) refer to the protein staining score. P-values are 
from the Wilcoxon rank sum test (for dichotomous variables) or the Kruskal-Wallis test (for multi-level nominal 
variables). 



106 

4.7 FIGURES 

EGFR Weak Intensity EGFR Strong Intensity 

  

Figure 1. Representative Weak and Strong Intensity IHC Stains for EGFR (400x) 

 

VEGF Weak Intensity VEGF Strong Intensity 

  

Figure 2. Representative Weak and Strong Intensity IHC Stains for VEGF (400x) 
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NOTCH1 Weak Intensity NOTCH1 Strong Intensity 

  

Figure 3. Representative Weak and Strong Intensity IHC Stains for NOTCH1 (400x) 

 

  
Figure 4. EGFR Expression According to Clinical T- and N-Stage 
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Figure 5. VEGF Expression According to Clinical T- and N-Stage 

 

  

Figure 6. NOTCH1 Expression According to Clinical T- and N-Stage 
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Figure 7. EGFR Expression Stratified By Tumor Site 

 

 

Figure 8. VEGF Expression Stratified By Tumor Site 
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Figure 9. NOTCH1 Expression Stratified By Tumor Site 

 

All Cases Oropharyngeal Cases Only 

  
Figure 10. EGFR Expression According to HPV Status in All Cases and Oropharyngeal Cases 
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All Cases HPV Positive HPV Negative 
Rho=0.33, P=0.007 Rho=0.25, P=0.20 Rho=0.40, P=0.01 

   
HPV=human papilloma virus; EGFR=epidermal growth factor receptor; VEGF=vascular endothelial growth factor. Whiskers on the box plots indicate the range of protein staining score. The lower and upper 
boundaries of the box indicate the 25th and 75th percentiles, respectively. The solid line in the center of the box indicates the median value, and the diamond indicates the mean. P-valves shown on box 
plots are from the Kruskall-Wallis test. Rho=Spearman correlation coefficient. 

Figure 11. Association Between EGFR and VEGF in All Cases and Stratified By Tumor HPV Status 
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All Cases HPV Positive HPV Negative 
Rho=0.22, P=0.08 Rho= -0.12, P=0.57 Rho=0.40, P=0.01 

   
HPV=human papilloma virus; NOTCH1=NOTCH receptor 1; VEGF=vascular endothelial growth factor. Whiskers on the box plots indicate the range of protein staining score. The lower and upper 
boundaries of the box indicate the 25th and 75th percentiles, respectively. The solid line in the center of the box indicates the median value, and the diamond indicates the mean. P-valves shown on box 
plots are from the Kruskall-Wallis test. Rho=Spearman correlation coefficient. 

Figure 12. Association Between NOTCH1 and VEGF in All Cases and Stratified By Tumor HPV Status 
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All Cases HPV Positive HPV Negative 
Rho=0.11, P=0.37 Rho=0.32, P=0.11 Rho= -0.04, P=0.79 

   
HPV=human papilloma virus; NOTCH1=NOTCH receptor 1; EGFR=epidermal growth factor receptor. Whiskers on the box plots indicate the range of protein staining score. The lower and upper boundaries 
of the box indicate the 25th and 75th percentiles, respectively. The solid line in the center of the box indicates the median value, and the diamond indicates the mean. P-valves shown on box plots are from 
the Kruskall-Wallis test. Rho=Spearman correlation coefficient. 

Figure 13. Association Between NOTCH1 and EGFR in All Cases and Stratified By Tumor HPV Status 
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5.1 ABSTRACT 

Introduction. Passive smoke is carcinogenic but its association with head and neck squamous 

cell carcinoma (HNSCC) is uncertain. Methods. We conducted a case-control study of 

childhood passive smoke exposure (CPSE) and HNSCC in N=862 cases (262 with human 

papillomavirus [HPV] status) and N=806 frequency-matched controls using an interviewer-

administered questionnaire. Odds ratios (OR) and 95% confidence intervals (CI) were estimated 

with logistic regression controlling for smoking, and in never-smokers (N=186 cases, N=415 

controls).  Adjusted population attributable risk percent for CPSE was estimated. In addition, 

CPSE was studied in oropharyngeal separately from other HNSCC, and HPV-positive separately 

from HPV-negative HNSCC, using polytomous logistic regression.  Finally, HPV-CPSE 

interaction was assessed in case-only analyses. Results. CPSE was associated with HNSCC 

(OR=1.28, 95% CI: 1.01,1.63) controlling for smoking, but not in never-smokers (OR=1.22, 

95% CI: 0.83,1.81). However, CPSE was associated with oropharyngeal (OR=2.04, 95% CI: 

1.02,4.08) and not other HNSCC in never-smokers (OR=1.08, 95% CI: 0.71,1.66) (P-for-

heterogeneity=0.08). CPSE was not associated with HPV-positive (OR=1.60, 95% CI: 0.91, 

2.81) or HPV-negative HNSCC (OR=1.34, 95% CI: 0.89,2.01) (P-for-heterogeneity=0.57), and 

CPSE was unrelated to HPV in never-smoking cases (P=0.37). Assuming causality, 16.9% (95% 

CI: 0.8%,29.4%) of HNSCC would not occur without CPSE. Conclusions. These data suggest 

limiting CPSE may reduce HNSCC risk. 
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5.2 INTRODUCTION 

Head and neck squamous cell carcinomas (HNSCC)  occur in the oral cavity, pharynx, and 

larynx,46 and are a significant contributor to the worldwide burden of cancer.1 Historically, these 

tumors are linked with tobacco and alcohol and use, but declining smoking rates have revealed 

an epidemic of oropharyngeal tumors caused by the human papilloma virus (HPV).2,6,7,54,56 

Although this epidemic is occurring in patients with little or no smoking history, most patients 

were born when smoking rates remained high and may have had childhood passive smoke 

exposure (CPSE).2,54 CPSE is associated with increased risk of childhood infections.26 However, 

little is known about CPSE and risk of HNSCC as an adult, and whether this risk differs for 

HPV-positive or HPV-negative HNSCC. 

Passive smoke is a human carcinogen and is associated with increased risk of lung cancer 

in never-smokers.25 However, we are aware of only one study that examined CPSE and HNSCC, 

showing no association with larynx cancer after adjustment for smoking.31 One other study 

reported on risk of smoking-related cancers associated with CPSE in former and never-smokers, 

but did not report results separately for HNSCC.99 Furthermore, no studies have examined CPSE 

and tumor HPV status in HNSCC.31,99 Finally, reports of CPSE and nasopharyngeal 

carcinoma28,98 may not be relevant to HNSCC, as nasopharyngeal carcinoma is histologically 

and etiology distinct from HNSCC.29,30 

Therefore, we conducted a case-control study of CPSE and HNSCC in a United States 

population of N=862 cases (186 never-smokers) and N=806 controls (415 never-smokers). CPSE 

and adult risk factors for HNSCC were collected using an interviewer-administered 

questionnaire. Tumor HPV status was available for N=262 cases (58 never-smokers). Our 

objectives were to evaluate the association between CPSE and HNSCC after controlling for 
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smoking, to investigate CPSE separately in oropharyngeal and other HNSCC in never-smokers, 

and to explore the role of CPSE in HPV-positive and HPV-negative HNSCC. To our knowledge, 

ours is the first report of CPSE and HNSCC in a United States population. 

5.3 METHODS 

5.3.1 Study Population 

Between August 4, 2004 and December 31, 2010, N=907 HNSCC cases and N=807 cancer-free 

controls were recruited from the University of Pittsburgh Medical Center otolaryngology clinics 

for a case-control study of HNSCC etiology. Cases were age 18-79 at diagnosis with 

pathologically verified HNSCC within 1 year of interview (primary tumors [excluding in situ 

cancer] of the lip, oral cavity, pharynx [including base of tongue, soft palate, and uvula], larynx, 

nasal cavity, and paranasal sinuses). Controls were age 18-80 at enrollment, had no history of 

HNSCC (verified by clinical examination) and were frequency matched to cases on age, sex, 

race and enrollment time period. Participants completed an interviewer-administered 

questionnaire, collecting demographic, personal/family cancer history, tobacco/alcohol use, 

anthropometry, diet, usual oral care habits, and history of CPSE. Eligibility was verified and 

informed consent was obtained prior to enrollment. 
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5.3.2 Eligibility for the Present Analysis 

We selected cases from the parent study who were diagnosed with squamous cell carcinoma 

(SCC) of the oral cavity, pharynx, or larynx representing, to the best of our knowledge, the 

patient's first-ever HNSCC (history of cancer at other sites was allowed) and who provided data 

on CPSE. Beginning with the N=907 cases in the parent study, we excluded 9 lip, 6 nasal 

cavity/middle ear, 8 sinus tumors, 11 tumors with ill-defined/overlapping sites, 6 unknown 

primaries, and 2 cases of in situ disease. Finally, we excluded 3 cases with missing CPSE data. 

Therefore, we included N=862 cases in our analysis. We excluded only 1 control due to missing 

CPSE data, leaving N=806 controls for analysis. Excluded cases did not differ from included 

cases with respect to age, sex, race, smoking, drinking, Body Mass Index (BMI) one year before 

diagnosis, or CPSE (P > 0.20 for all). 

5.3.3 Exposure Variables 

Our primary interest was CPSE: exposure to passive cigarette smoke in the home up to age 18 

(yes/no). We also defined the following for exposed persons: father smoked, mother smoked, 

sibling(s) smoked, and other person(s) in the household smoked (yes/no for each),  number of 

household smokers (continuous), years of CPSE (maximum duration of smoking among all 

household smokers, up to 18 years), number of cigarettes/day smoked in the household (sum of 

cigarettes/day for each household smoker), and pack-years of CPSE (product of cigarettes/day 

smoked in household [divided by 20] and years of CPSE). The frequency-matched factors were 

defined as: age (continuous), sex, race (White, non-White/unknown), and enrollment time period 

(early [2004,2005], middle [2006-2008], and late [2009,2010]). We also defined other variables 
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to explore confounding and interaction: smoking status (ever/never, where ever-smoking was 

defined as smoking at least one cigarette/day for six months or longer), drinking status 

(ever/never, where ever-drinking was defined as drinking at least one drink/month for one year 

or longer), BMI at reference (one year prior to diagnosis [for cases] or ascertainment [for 

controls])  (continuous [kg/m2] and using WHO categories: underweight [<18.5], normal [18.5-

24.9], overweight [25.0-29.9], and obese [>=30]), level of education (grade school, high school, 

vocational, or college), cigar smoking (ever/never, defined as smoking at least one cigar per 

week for six months or longer), pipe smoking (ever/never, defined as smoking at least one pipe 

per day for six months or longer), smokeless tobacco (ever/never, defined as using 

tobacco/chew/snuff at least once a day for three months or longer), servings (continuous) of fruit 

or vegetables (separately) consumed per day, United States vs. non-United States birthplace, 

times/week teeth were brushed (continuous), times/week mouthwash was used (continuous), 

personal history of any cancer (yes/no), and history of HNSCC in a blood relative (natural 

parents, brothers, sisters, or children) (yes/no). Finally, tumor HPV status (positive/negative, 

determined by in situ hybridization) was available from pathology reports. 

5.3.4 Statistical Analysis 

First, descriptive statistics were calculated for the entire sample and comparison of risk factors 

by tumor site within the case series was performed using Fisher's exact test. Then, univariable 

logistic regression was used to explore factors associated with CPSE in the control group. Crude 

comparisons of cases and controls were performed using logistic regression adjusted for the 

frequency-matched factors. Factors associated with both CPSE and HNSCC (alpha=0.10) were 

entered simultaneously into a base model that included the frequency matched factors, smoking 
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status, drinking status, and CPSE. Next, we identified other important main effects by testing 

factors (one-at-a-time) known to be associated with HNSCC, or that might be associated with 

cancer risk in general. All significant (alpha=0.10) factors were entered into the model 

simultaneously. We then removed factors with the highest p-value (one at a time) until all 

remaining factors were part of our base model or were significant at alpha=0.05. No first-order 

interactions were observed between any of the remaining factors. The final model included the 

frequency matched factors, smoking status, drinking status, personal history of cancer, education, 

and CPSE. The same covariates were used in polytomous logistic regression comparing 

oropharyngeal and other cases [oral cavity, other pharynx, or larynx] with controls, or comparing 

HPV-positive and HPV-negative cases with controls. All models were run with control for 

smoking and in subgroup analyses of never-smokers. Odds Ratios (OR) were interpreted as risk 

estimates. Finally, we performed a case-only analysis of CPSE and HPV status in never-smokers 

using contingency table methods to evaluate interaction between CPSE and HPV in HNSCC 

risk. 

Model fit was evaluated using the Hosmer-Lemeshow test. Delta-deviance plots and 

sensitivity analyses were used to verify there were no influential covariate patterns. Statistical 

significance was evaluated using the likelihood ratio chi-square test. Categorical variables were 

treated as indicators. Continuous variables were separated into categories according to their 

distribution in the control group. Tests for trend in log-odds of HNSCC (interpreted as a trend in 

risk) were performed among participants with the factor of interest by entering a continuous 

variable into the model, or by treating ordinal variables as continuous. Interactions were treated 

as indicators except for those involving two continuous variables. Formal tests of heterogeneity 

of ORs in polytomous models were done using the Wald chi-square test. Adjusted population 
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attributable risk percent (aPAR-p) for CPSE was calculated using results from our dichotomous 

response models.164 

Analyses were performed using SAS 9.2 (SAS Institute, Cary, NC), except for aPAR-p, 

which was performed using aflogit in Stata 11 (StataCorp, College Station, TX). 

5.4 RESULTS 

A total of N=862 cases and N=806 controls were included in this analysis (Table 11). The 

median age of participants was 59 years (range: 18-80). The majority were male (67.9%) and 

White (95.3%). A total of 64.0% of participants reported ever smoking as an adult. CPSE was 

reported by 69.0% of participants. The case series represented primarily oral cavity (44.4%), 

laryngeal (26.9%), and oropharyngeal (23.1%) tumors, and included few hypopharyngeal (4.1%) 

and nasopharyngeal (1.5%) tumors (Appendix D).  Differences between oropharyngeal and other 

cases were consistent with prior reports7 (Appendix D).  N=516 (64.0%) controls reported CPSE 

(Table 12). Older age, birth cohort, ever-smoking, ever-drinking, and history of cancer in a blood 

relative, were associated with CPSE in controls (P < 0.05 for all) (Table 12). 

Table 11 shows crude comparisons between cases and controls. CPSE was associated 

with a 59% increased risk of HNSCC (OR=1.59, 95% CI: 1.29, 1.97). Ever-smoking (OR=3.60, 

95% CI: 2.89, 4.48), ever-drinking (OR=1.69, 95% CI: 1.32, 2.17), United States birthplace 

(OR=4.55, 95% CI: 2.02, 10.22), use of smokeless tobacco (OR=1.53, 95% CI: 1.10, 2.12), 

personal history of cancer (OR=1.89, 95% CI: 1.40, 2.55), and were also associated with 

increased risk of HNSCC. Higher education and higher BMI were generally associated with 

reduced risk of HNSCC (P-trend < 0.0001 for both). Ever use of pipes (OR=0.82, 95% CI: 0.54, 
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1.24) and cigars (OR=1.30, 95% CI: 0.90, 1.87) and history of cancer in blood relatives 

(OR=1.05, 95% CI: 0.85, 1.29)  were not associated with HNSCC. 

5.4.1 Childhood Passive Smoke Exposure And Head And Neck Cancer After Adjustment 

For Smoking 

Table 13 shows results of multivariable logistic regression modeling among 858 cases and 806 

controls with data available on confounding factors. CPSE was associated with a 28% increased 

risk of HNSCC after adjustment for smoking (OR=1.28, 95% CI: 1.01, 1.63). Based on this 

model, we estimated aPAR-p for CPSE to be 16.9% (95% CI: 0.8%, 29.4%). We did not observe 

any trends in HNSCC risk with respect to years of exposure, cigarettes/day smoked in the 

household, pack-years of exposure, number of household smokers, or the presence of maternal, 

paternal, sibling, or other household smokers (P > 0.05 for all). Polytomous logistic regression 

showed similar associations of CPSE with oropharynx (OR=1.44, 95% CI: 0.99, 2.10) and other 

HNSCC (OR=1.25, 95% CI: 0.97, 1.62) (P-for-heterogeneity=0.47). Finally, because United 

States birthplace was associated with high risk of HNSCC we repeated our analyses restricted to 

subjects born in the United States, but results were unchanged (data not shown). 

5.4.2 Childhood Passive Smoke Exposure In Never-Smokers And Risk Of Head And 

Neck Cancer 

As shown in Table 14, CPSE was unrelated to HNSCC in never-smokers after multiple 

adjustment (OR=1.19, 95% CI: 0.80, 1.76). However, among exposed persons, having siblings 

who smoked was associated with increased risk of HNSCC (OR=3.46, 95% CI: 1.28, 9.39), and 



123 

risk among the exposed increased with the number of household smokers (P=0.04). Years of 

exposure, cigarettes/day smoked in the household, pack-years, or smoking by the mother, father, 

or other household members were unrelated to HNSCC (P > 0.05 for all). 

Polytomous logistic regression in never-smokers (Table 15) showed CPSE was 

associated with oropharynx (OR=2.02, 95% CI: 1.01, 4.06) but not other HNSCC (OR=1.04, 

95% CI: 0.68, 1.60), although this difference was not significant (P-for-heterogeneity=0.08). 

However, we noted increasing risk of oropharynx cancer with an increasing number of 

cigarettes/day smoked in the household (P=0.01), with > 20 cigarettes/day associated with 

substantially higher risk than <= 20 cigarettes/day (OR=3.78, 95% CI: 1.40, 10.22). We noted a 

similar results for pack-years of CPSE. Risk of oropharynx cancer also increased with the 

number of household smokers (P=0.01). The presence of two or more smokers was associated 

with twice the risk of oropharynx cancer vs. one household smoker (OR=2.15, 95% CI: 1.03, 

4.46). Duration of CPSE,  and having a mother, father, sibling, or other household members who 

smoked were unrelated to oropharynx cancer (P > 0.05 for all). In contrast to these results, risk of 

HNSCC at sites other than the oropharynx was, with the exception of  having siblings who 

smoked (OR=3.99, 95% CI: 1.42, 11.22), generally unrelated to CPSE (Table 15). 

5.4.3 Childhood Passive Smoke Exposure And HPV In Head And Neck Cancer 

HPV status was available for N=262 cases (30.5%) included in multivariable regression models 

(Appendix E).  Cases with known HPV status were younger and more often male than cases 

whose HPV status was unknown, but HPV testing was unrelated to smoking, drinking, or CPSE 

(data not shown). Risk of HPV-positive (OR=1.60, 95% CI: 0.91, 2.81) and HPV-negative 

(OR=1.34, 95% CI: 0.89, 2.01) HNSCC were similar after adjustment for smoking (P-for-
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heterogeneity=0.57). In never-smoking cases, CPSE was more frequent among HPV-positive 

(40.5%) compared with HPV-negative (25.0%) cases, although this difference was not 

statistically significant (P=0.37). 

5.5 DISCUSSION 

In this large, single-institution case-control study, CPSE was associated with increased risk of 

HNSCC after adjustment for smoking. Assuming a causal association, we estimate 17% of 

HNSCC would be prevented if CPSE were eliminated, thus making CPSE an important 

contributor to HNSCC risk. In addition, our data are highly suggestive of an association between 

CPSE and oropharynx cancer in never-smokers. However, CPSE was not specifically associated 

with HPV-positive or HPV-negative HNSCC, and we did not observe statistically significant 

interaction between CPSE and HPV in HNSCC among never-smokers. 

Studies of CPSE and cancer in the head and neck are few in number and have included 

histologies other than SCC,27,28,98 which are etiologically and histologically distinct from 

HNSCC.29,30 We identified only two studies that examined CPSE and HNSCC. The first was a 

case-control study showing no association between CPSE and larynx cancer after adjustment for 

smoking.31 This result is consistent with our observation that CPSE is not a strong risk factor for 

non-oropharyngeal HNSCC. The second study was a prospective cohort study of smoking-

related cancers (tumors at several sites, including HNSCC) in former and never-smokers.99 

Although no association was reported between CPSE and smoking-related cancers, it is difficult 

to interpret these results for HNSCC alone.99 
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Despite the small number of corroborating reports, our results are bolstered by certain 

strengths. We enrolled incident cases of HNSCC and frequency-matched controls to cases based 

on age and time period, helping insure controls were representative of the exposure experience of 

the non-diseased source population from which the cases arose. CPSE temporally preceded the 

cancer under study, and we noted a strong and statistically significant association for cancer at a 

specific anatomical site (the oropharynx) in never-smokers. In addition, we noted trends in risk 

wherein various patterns of CPSE was associated with oropharynx cancer but not other HNSCC 

in never-smokers. Using our extensive questionnaire, we were able to explore confounding and 

interaction with a variety of other lifestyle factors related to HNSCC or cancer in general. In 

addition, HPV status was available for a subset of our case series, enabling us evaluate the joint 

role of CPSE and HPV in HNSCC. 

Passive smoke consists of sidestream smoke (emitted from the cigarette) and mainstream 

smoke (exhaled by the smoker) and contains at least fifty carcinogens, including polycyclic 

aromatic hydrocarbons (PAH) and N-nitrosamines, which are found in the bloodstream of non-

smokers exposed to passive smoke.26 The United States Surgeon General has concluded there is 

sufficient evidence to demonstrate a causal relationship between passive smoke and lung cancer 

in lifetime never-smokers.26  Active cigarette smoking causes cancer through a variety of 

mechanisms, including formation of DNA adducts, disruption of DNA repair and cell cycle 

control, and activation of cytoplasmic signaling networks relevant to cell growth and 

proliferation.165 The carcinogenic mechanisms of passive smoke exposure are likely similar.26 

However, our observation of increased risk of oropharyngeal cancer in never-smokers is 

particularly compelling given the frequent HPV-related etiology of these tumors.7 Therefore, it is 

natural to ask whether and how CPSE and HPV act together to promote oropharynx cancer. Our 
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results indicate CPSE is associated with HNSCC regardless of tumor HPV status, and we did not 

observe strong evidence of interaction between CPSE and HPV in never-smoking HNSCC cases. 

However, we were unable to explore CPSE and HPV in never-smoking oropharynx cases due to 

small sample size. However, such investigation might not be fruitful. While oral166-169 and 

oropharyngeal168,170 HPV infection is detectable in children, these infections are transient171 and 

unrelated to parental smoking.166,167 Therefore, it seems unlikely that childhood HPV infection 

and interaction with CPSE promote adult HNSCC. However, this does not rule out long-term 

effects of CPSE on the immune system that may increase susceptibility to, or facilitate 

persistence of, HPV later in life. CPSE is associated with increased risk of respiratory and 

middle ear infections in children, likely through a broad range of effects on the immune 

system.172 It is unclear whether such immunological effects last when CPSE is removed, and 

whether they effect risk of HPV infection or clearance later in life. However, at least 1 lasting 

immunological consequence of CPSE is known: asthma.172 

Our results are accompanied by several limitations. First, the exposure in our study was 

measured via questionnaire and it was not possible to obtain biological evidence of exposure. We 

asked participants to recall exposures that happened several decades in the past. Therefore, it is 

possible that recall was different in cases and controls, particularly in never-smokers who might 

place blame on others for their diagnosis with a typically smoking-related illness. However, the 

specificity of our findings within the never-smoking subgroup, i.e., increased risk of oropharynx 

cancer and not other HNSCC, refutes the possibility of recall bias. If such bias were present, we 

might expect it to affect our risk estimates for HNSCC at all anatomic sites. 

Our study used clinic controls and this is known to result in bias if the controls' disease is 

associated with the exposure, as this yields a control group with a different prevalence of 
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exposure than would be observed in the source population.173 However, our controls had a 

variety of non-malignant conditions of the head and neck not known to be related to CPSE (data 

not shown). Finally, we frequency matched controls to cases on age and enrollment time period, 

avoiding selection of controls based on birth cohort, which is associated with CPSE (Table 12). 

Residual confounding is also possible. In particular, we did not have data on adult passive 

smoke exposure (APSE) although this appears to be a weak risk factor for head and neck tumors. 

A study of maxillary sinus cancer in Japan showed a positive association with APSE in the home 

among never-smoking women and noted increasing risk with an increasing number of household 

smokers.95 In the United States, a case-control study of never-smokers observed an association 

between APSE in the home and the workplace and cancer of the oral cavity, pharynx, larynx, or 

sinus.96 However, APSE was not related to cancer of the oral cavity, pharynx, larynx, sinus, lip, 

salivary glands, and esophagus among never-smokers in another United States study.97 

Furthermore, there was no association between lifetime passive smoke exposure and larynx 

cancer in German never-smokers.31 Finally, a prospective study that examined risk of HNSCC 

associated with APSE at home and in the workplace observed no association between passive 

smoke exposure and pharyngeal or laryngeal cancers among never smokers.99 It must be 

recognized, however, that these null results may derive from the combination of tumors weakly 

related to passive smoke with tumors that are strongly related to passive smoke, thus masking an 

association such as the one we observed by studying oropharyngeal tumors separately from other 

HNSCC. Finally, residual confounding is possible due to other environmental exposures related 

to cancer risk. In particular, the Pittsburgh, Pennsylvania area has a history of industrial steel 

production that created various chemical pollutants associated with respiratory cancer risk.174 We 

are unaware of our study participants' occupation, length of residence in areas affected by 
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industrial pollution, or their extent of exposure, and this information might be relevant in the 

study of cancer risk in never-smokers. 

In summary, our results support an etiologic role for CPSE in HNSCC. In particular, 

CPSE may be carcinogenic in the oropharynx of never-smokers. The biological mechanism 

through which this occurs is uncertain and may involve direct effects of carcinogens in passive 

smoke, or disruptions in immunological development effecting response to HPV infection later 

in life. Pooled analyses of CPSE and tumor HPV status in never-smoking oropharyngeal cancers 

may improve understanding of this mechanism. Finally, despite declining smoking rates,2 

children in the United States continue to suffer ill effects of passive smoke exposure.175 Our data 

suggest these effects include an increased risk of HNSCC. This should be considered in the 

making of public policy that protects that health of children through restricting the opportunity 

for CPSE. 
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5.6 TABLES 

Table 11. Crude Analysis of Factors Associated With Head and Neck Cancer 

 

All 
Participants 

(N=1,668) 
Cases 

(N=862) 
Controls 
(N=806)  

 n(%)* n(%)* n(%)* OR (95% CI)† 

Age      

<50 322 ( 19.3) 153 ( 17.7) 169 ( 21.0) - 

50-59 562 ( 33.7) 277 ( 32.1) 285 ( 35.4) - 

60-69 507 ( 30.4) 279 ( 32.4) 228 ( 28.3) - 

>=70 277 ( 16.6) 153 ( 17.7) 124 ( 15.4) - 

Sex      

Male 1,133 ( 67.9) 630 ( 73.1) 503 ( 62.4) - 

Female 535 ( 32.1) 232 ( 26.9) 303 ( 37.6) - 

Race      

White 1,589 ( 95.3) 821 ( 95.2) 768 ( 95.3) - 

Non-White/Unknown‡ 79 (  4.7) 41 (  4.8) 38 (  4.7) - 

Recruitment Period      

Early 281 ( 16.8) 138 ( 16.0) 143 ( 17.7) - 

Middle 887 ( 53.2) 421 ( 48.8) 466 ( 57.8) - 

Late 500 ( 30.0) 303 ( 35.2) 197 ( 24.4) - 

Birth Cohort      

<=1920 66 (  4.0) 33 (  3.8) 33 (  4.1) 1.05 (0.50-2.19) 

1930 305 ( 18.3) 172 ( 20.0) 133 ( 16.5) 1.15 (0.76-1.74) 

1940 524 ( 31.4) 285 ( 33.1) 239 ( 29.7) 1.00 

1950 508 ( 30.5) 251 ( 29.1) 257 ( 31.9) 0.74 (0.50-1.09) 

1960 190 ( 11.4) 96 ( 11.1) 94 ( 11.7) 0.71 (0.36-1.41) 

>=1970 75 (  4.5) 25 (  2.9) 50 (  6.2) 0.36 (0.11-1.18) 

Childhood Passive Smoke      

No 517 ( 31.0) 227 ( 26.3) 290 ( 36.0) 1.00 

Yes 1,151 ( 69.0) 635 ( 73.7) 516 ( 64.0) 1.59 (1.29-1.97) 

Ever Smoked      

No 601 ( 36.0) 186 ( 21.6) 415 ( 51.5) 1.00 

Yes 1,067 ( 64.0) 676 ( 78.4) 391 ( 48.5) 3.60 (2.89-4.48) 

Ever Drank Alcohol      

No 397 ( 23.8) 159 ( 18.5) 238 ( 29.5) 1.00 

Yes 1,269 ( 76.2) 701 ( 81.5) 568 ( 70.5) 1.69 (1.32-2.17) 
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Table 11 continued 

 

All 
Participants 

(N=1,668) 
Cases 

(N=862) 
Controls 
(N=806)  

 n(%)* n(%)* n(%)* OR (95% CI)† 

BMI 1 year pre-diagnosis      

<18.5 25 (  1.5) 20 (  2.3) 5 (  0.6) 3.75 (1.36-10.32) 

18.5-24.9 480 ( 28.8) 270 ( 31.5) 210 ( 26.1) 1.00 

25.0-29.9 606 ( 36.4) 292 ( 34.0) 314 ( 39.0) 0.64 (0.50-0.82) 

>=30 553 ( 33.2) 276 ( 32.2) 277 ( 34.4) 0.71 (0.55-0.92) 

Highest Level of Education      

Grade school 42 (  2.5) 39 (  4.5) 3 (  0.4) 5.61 (1.71-18.42) 

High school 778 ( 46.7) 533 ( 62.0) 245 ( 30.4) 1.00 

Vocational 100 (  6.0) 48 (  5.6) 52 (  6.5) 0.47 (0.31-0.73) 

College 746 ( 44.8) 240 ( 27.9) 506 ( 62.8) 0.22 (0.17-0.27) 

Birth Country      

Outside United States 36 (  2.2) 8 (  0.9) 28 (  3.5) 1.00 

United States 1,632 ( 97.8) 854 ( 99.1) 778 ( 96.5) 4.55 (2.02-10.22) 

Ever Smoked Cigars      

No 1,527 ( 91.5) 775 ( 89.9) 752 ( 93.3) 1.00 

Yes 141 (  8.5) 87 ( 10.1) 54 (  6.7) 1.30 (0.90-1.87) 

Ever Used Smokeless Tobacco      

No 1,479 ( 88.7) 742 ( 86.1) 737 ( 91.4) 1.00 

Yes 189 ( 11.3) 120 ( 13.9) 69 (  8.6) 1.53 (1.10-2.12) 

Ever Smoked Pipe      

No 1,563 ( 93.7) 805 ( 93.4) 758 ( 94.0) 1.00 

Yes 105 (  6.3) 57 (  6.6) 48 (  6.0) 0.82 (0.54-1.24) 

Personal History of Cancer      

No 1,433 ( 85.9) 707 ( 82.0) 726 ( 90.1) 1.00 

Yes 235 ( 14.1) 155 ( 18.0) 80 (  9.9) 1.89 (1.40-2.55) 

Blood Relative Had Cancer      

No 642 ( 38.8) 322 ( 37.7) 320 ( 40.1) 1.00 

Yes 1,011 ( 61.2) 533 ( 62.3) 478 ( 59.9) 1.05 (0.85-1.29) 
OR=odds ratio; CI=confidence interval. 
*Number may not sum to total due to missing values for some variables. 
†Odds ratios and 95% confidence intervals were calculated using logistic regression models 
adjusted for the frequency matched factors (age, sex, race, and recruitment period). Estimates 
are not shown for the frequency matched factors. 
‡Non-White participants included 69 African Americans (36 cases, 33 controls), 6 Asians (3 
cases, 3 controls), 1 American Indian/Eskimo control, 2 Other races (1 case, 1 control), and 1 
case who did not report a race. 
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Table 12. Factors Associated With Childhood Passive Smoke Exposure in the Control Group 

 
Exposed 
N=(516) 

Unexposed 
(N=290)   

 n(%)* n(%)* OR (95% CI)† P-Value‡ 

Age     <.001 

<50 92 ( 17.8) 77 ( 26.6) 1.00  

50-59 194 ( 37.6) 91 ( 31.4) 1.78 (1.21-2.64)  

60-69 163 ( 31.6) 65 ( 22.4) 2.10 (1.38-3.19)  

>=70 67 ( 13.0) 57 ( 19.7) 0.98 (0.62-1.57)  

Birth Cohort     0.002 

<=1920 18 (  3.5) 15 (  5.2) 0.46 (0.22-0.96)  

1930 77 ( 14.9) 56 ( 19.3) 0.52 (0.34-0.82)  

1940 173 ( 33.5) 66 ( 22.8) 1.00  

1950 169 ( 32.8) 88 ( 30.3) 0.73 (0.50-1.07)  

1960 56 ( 10.9) 38 ( 13.1) 0.56 (0.34-0.93)  

>=1970 23 (  4.5) 27 (  9.3) 0.33 (0.17-0.61)  

Sex     0.07 

Male 334 ( 64.7) 169 ( 58.3) 1.00  

Female 182 ( 35.3) 121 ( 41.7) 0.76 (0.57-1.02)  

Race     0.43 

White 494 ( 95.7) 274 ( 94.5) 1.00  

Non-White/Unknown 22 (  4.3) 16 (  5.5) 0.76 (0.39-1.48)  

Ever Smoked     0.02 

No 250 ( 48.4) 165 ( 56.9) 1.00  

Yes 266 ( 51.6) 125 ( 43.1) 1.40 (1.05-1.88)  

Ever Drank Alcohol     <.001 

No 131 ( 25.4) 107 ( 36.9) 1.00  

Yes 385 ( 74.6) 183 ( 63.1) 1.72 (1.26-2.34)  

BMI 1 year pre-diagnosis     0.35 

<18.5 2 (  0.4) 3 (  1.0) 0.44 (0.07-2.66)  

18.5-24.9 127 ( 24.6) 83 ( 28.6) 1.00  

25.0-29.9 202 ( 39.1) 112 ( 38.6) 1.18 (0.82-1.69)  

>=30 185 ( 35.9) 92 ( 31.7) 1.31 (0.91-1.91)  

Highest Level of Education     0.56 

Grade school 1 (  0.2) 2 (  0.7) 0.25 (0.02-2.82)  

High school 163 ( 31.6) 82 ( 28.3) 1.00  

Vocational 33 (  6.4) 19 (  6.6) 0.87 (0.47-1.63)  

College 319 ( 61.8) 187 ( 64.5) 0.86 (0.62-1.18)  
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Table 12 continued 

 
Exposed 
N=(516) 

Unexposed 
(N=290)   

 n(%)* n(%)* OR (95% CI)† P-Value‡ 

Birth Country     0.45 

Outside United States 16 (  3.1) 12 (  4.1) 1.00  

United States 500 ( 96.9) 278 ( 95.9) 1.35 (0.63-2.89)  

Ever Smoked Cigars     0.65 

No 483 ( 93.6) 269 ( 92.8) 1.00  

Yes 33 (  6.4) 21 (  7.2) 0.88 (0.50-1.54)  

Ever Used Smokeless Tobacco     0.63 

No 470 ( 91.1) 267 ( 92.1) 1.00  

Yes 46 (  8.9) 23 (  7.9) 1.14 (0.67-1.92)  

Ever Smoked Pipe     0.93 

No 485 ( 94.0) 273 ( 94.1) 1.00  

Yes 31 (  6.0) 17 (  5.9) 1.03 (0.56-1.89)  

Personal History of Cancer     0.35 

No 461 ( 89.3) 265 ( 91.4) 1.00  

Yes 55 ( 10.7) 25 (  8.6) 1.26 (0.77-2.08)  

Blood Relative Had Cancer     0.01 

No 189 ( 36.9) 131 ( 45.8) 1.00  

Yes 323 ( 63.1) 155 ( 54.2) 1.44 (1.08-1.94)  
*Numbers may not sum to total due to missing values for some variables  
†Odds ratios and 95% confidence intervals were calculated using univariable logistic 
regression models.  
‡P-values represent likelihood ratio Chi-square tests comparing the factor of interest with the 
null model. All  variables were treated as indicators. 
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Table 13. Childhood Passive Smoke Exposure and Head and Neck Cancer, Adjusted for Smoking 

 
Cases 

(N=858)* 
Controls 
(N=806)   

 n (%)† n (%)† OR (95% CI)‡ P-trend# 

Childhood Passive Smoke     0.04 

No 225 ( 26.2) 290 ( 36.0) 1.00  

Yes 633 ( 73.8) 516 ( 64.0) 1.28 (1.01-1.63)  

Years Exposed     0.38 

<18 110 ( 17.5) 126 ( 24.6) 1.00  

18 519 ( 82.5) 386 ( 75.4) 1.17 (0.84-1.62)  

Cigarettes/Day     0.80 

<=10 72 ( 13.1) 69 ( 14.9) 1.00  

11-20 147 ( 26.8) 135 ( 29.2) 0.86 (0.54-1.38)  

21-40 187 ( 34.1) 148 ( 32.0) 0.97 (0.61-1.52)  

>40 142 ( 25.9) 110 ( 23.8) 0.96 (0.60-1.55)  

Pack-Years     0.82 

<=15 109 ( 20.0) 113 ( 24.6) 1.00  

>15-25 132 ( 24.2) 107 ( 23.3) 0.96 (0.63-1.47)  

>25-40 169 ( 31.0) 137 ( 29.8) 0.99 (0.66-1.47)  

>40 136 ( 24.9) 103 ( 22.4) 1.02 (0.67-1.56)  

Number of Household Smokers     0.84 

1 356 ( 56.3) 307 ( 59.5) 1.00  

2 235 ( 37.2) 188 ( 36.4) 0.97 (0.73-1.28)  

>=3 41 (  6.5) 21 (  4.1) 1.13 (0.61-2.09)  

Mother Smoked     0.47 

No 314 ( 49.7) 249 ( 48.3) 1.00  

Yes 318 ( 50.3) 267 ( 51.7) 0.90 (0.69-1.19)  

Father Smoked     0.53 

No 103 ( 16.3) 103 ( 20.0) 1.00  

Yes 529 ( 83.7) 413 ( 80.0) 1.12 (0.79-1.59)  

Sibling(s) Smoked     0.55 

No 579 ( 91.6) 487 ( 94.4) 1.00  

Yes 53 (  8.4) 29 (  5.6) 1.18 (0.69-2.01)  

Other Household Members Smoked     0.70 

No 610 ( 96.5) 493 ( 95.5) 1.00  

Yes 22 (  3.5) 23 (  4.5) 0.88 (0.44-1.73)  
OR (odds ratio) and CI (confidence interval) are from logistic regression models 
*4 cases (2 oropharynx, 1 oral cavity, and 1 larynx) were dropped from this analysis due to missing data on 
alcohol drinking status or education. 
†Numbers may not sum to total due to missing values for some variables.  
‡Odds ratios and 95% confidence intervals are adjusted for age, sex, race, recruitment period, alcohol 
drinking status, active smoking status, personal history of cancer, and education. 
#P-values represent likelihood ratio Chi-square tests of continuous variables representing a 1-unit change in 
the factor of interest. 
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Table 14. Childhood Passive Smoke Exposure and Head and Neck Cancer in Never-Smokers 

 
Cases 

(N=184) 
Controls 
(N=415)   

 n (%)* n (%)* OR (95% CI)† P-trend‡ 

Childhood Passive Smoke     0.38 

No 64 ( 34.8) 165 ( 39.8) 1.00  

Yes 120 ( 65.2) 250 ( 60.2) 1.19 (0.80-1.76)  

Years Exposed     0.74 

<18 30 ( 25.4) 74 ( 30.0) 1.00  

18 88 ( 74.6) 173 ( 70.0) 1.21 (0.69-2.11)  

Cigarettes/Day     0.25 

<=10 18 ( 18.2) 41 ( 18.6) 1.00  

11-20 20 ( 20.2) 65 ( 29.4) 0.62 (0.28-1.41)  

21-40 37 ( 37.4) 63 ( 28.5) 1.29 (0.60-2.75)  

>40 24 ( 24.2) 52 ( 23.5) 1.07 (0.48-2.40)  

Pack-Years     0.24 

<=15 26 ( 26.5) 65 ( 29.5) 1.00  

>15-25 16 ( 16.3) 47 ( 21.4) 0.65 (0.29-1.45)  

>25-40 33 ( 33.7) 59 ( 26.8) 1.26 (0.63-2.51)  

>40 23 ( 23.5) 49 ( 22.3) 1.14 (0.55-2.39)  

Number of Household Smokers     0.04 

1 70 ( 58.8) 163 ( 65.2) 1.00  

2 40 ( 33.6) 83 ( 33.2) 1.06 (0.63-1.78)  

>=3 9 (  7.6) 4 (  1.6) 6.76 (1.82-25.06)  

Mother Smoked     0.54 

No 57 ( 47.9) 129 ( 51.6) 1.00  

Yes 62 ( 52.1) 121 ( 48.4) 1.17 (0.72-1.90)  

Father Smoked     0.84 

No 24 ( 20.2) 56 ( 22.4) 1.00  

Yes 95 ( 79.8) 194 ( 77.6) 1.06 (0.58-1.96)  

Sibling(s) Smoked     0.01 

No 108 ( 90.8) 241 ( 96.4) 1.00  

Yes 11 (  9.2) 9 (  3.6) 3.46 (1.28-9.39)  

Other Household Members Smoked     0.66 

No 114 ( 95.8) 237 ( 94.8) 1.00  

Yes 5 (  4.2) 13 (  5.2) 0.77 (0.24-2.50)  
OR (odds ratio) and CI (confidence interval) are from logistic regression models 
*Numbers may not sum to total due to missing values for some variables.  
†Odds ratios and 95% confidence intervals are adjusted for age, sex, race, recruitment period, drinking status, 
personal history of cancer, and education. 
‡P-values represent likelihood ratio Chi-square tests of continuous variables representing a 1-unit change in 
the factor of interest.. 
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Table 15. Childhood Passive Smoke Exposure as a Risk Factor for Oropharyngeal and Other Head 

and Neck Cancers in Never-Smokers 

 Controls 
N=(415) 

Oropharyngeal Case 
(N=52) 

Other Case 
(N=132)* 

 n(%) n (%) OR (95% CI)† P-trend‡ n (%) OR (95% CI)† P-trend‡ 

Childhood Passive Smoke     0.05   0.84 

No 165 ( 39.8) 13 ( 25.0) 1.00  51 ( 38.6) 1.00  

Yes 250 ( 60.2) 39 ( 75.0) 2.02 (1.01-4.06)#  81 ( 61.4) 1.04 (0.68-1.60)#  

Years Exposed     0.99   0.72 

<18 74 ( 30.0) 10 ( 25.6) 1.00  20 ( 25.3) 1.00  

18 173 ( 70.0) 29 ( 74.4) 1.39 (0.60-3.24)  59 ( 74.7) 1.16 (0.62-2.16)  

Cigarettes/Day     0.01   0.78 

<=20 106 ( 48.0) 6 ( 20.0) 1.00  32 ( 46.4) 1.00  

>20 115 ( 52.0) 24 ( 80.0) 3.78 (1.40-10.22)  37 ( 53.6) 1.15 (0.64-2.08)  

Pack Years     0.01   0.79 

<=20 111 ( 50.5) 7 ( 23.3) 1.00  31 ( 45.6) 1.00  

>20 109 ( 49.5) 23 ( 76.7) 3.62 (1.40-9.36)  37 ( 54.4) 1.33 (0.74-2.41)  

Number of Household Smokers     0.01   0.28 

1 163 ( 65.2) 18 ( 46.2) 1.00  52 ( 65.0) 1.00  

>=2 87 ( 34.8) 21 ( 53.8) 2.15 (1.03-4.46)  28 ( 35.0) 1.03 (0.59-1.80)  

Mother Smoked     0.12   0.76 

No 129 ( 51.6) 13 ( 33.3) 1.00  44 ( 55.0) 1.00  

Yes 121 ( 48.4) 26 ( 66.7) 1.86 (0.86-4.03)  36 ( 45.0) 0.92 (0.53-1.58)  

Father Smoked     0.32   0.86 

No 56 ( 22.4) 7 ( 17.9) 1.00  17 ( 21.3) 1.00  

Yes 194 ( 77.6) 32 ( 82.1) 1.64 (0.62-4.34)  63 ( 78.8) 0.94 (0.48-1.85)  

Sibling Smoked     0.53   0.01 

No 241 ( 96.4) 37 ( 94.9) 1.00  71 ( 88.8) 1.00  

Yes 9 (  3.6) 2 (  5.1) 1.71 (0.32-9.12)  9 ( 11.3) 3.99 (1.42-11.22)  

Other Smoked     0.50   0.99 

No 237 ( 94.8) 38 ( 97.4) 1.00  76 ( 95.0) 1.00  

Yes 13 (  5.2) 1 (  2.6) 0.47 (0.05-4.22)  4 (  5.0) 1.01 (0.29-3.46)  
OR (odds ratio) and CI (confidence interval) are from polytomous logistic regression models 
*Other Cases include squamous cell cancers of the oral cavity, hypopharynx, nasopharynx, and larynx.  
†Odds ratios and 95% confidence intervals are adjusted for age, sex, race, recruitment period, drinking status, personal history of cancer, and 
education (high school or less vs beyond high school). 
‡Wald P-value for the model parameter predicting the log-odds of oropharynx (or other HNSCC) obtained by entering a continuous variable, 
representing a 1-unit change, into the polytomous model. 
#P-for-heterogeneity=0.08 comparing odds ratios for oropharyngeal and other cases. 
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Table 16. Childhood Passive Smoke Exposure as a Risk Factor for HPV-Positive and HPV-Negative 

Head and Neck Cancers, Adjusted for Active Smoking 

 
Controls 
N=(806) 

HPV Negative Case  
(N=180)* 

HPV Positive Case 
(N=82)* 

 n(%) n (%) OR (95% CI)† P-trend‡ n (%) OR (95% CI)† P-trend‡ 

Childhood Passive Smoke     0.16   0.10 

No 290 ( 36.0) 48 ( 26.7) 1.00  20 ( 24.4) 1.00  

Yes 516 ( 64.0) 132 ( 73.3) 1.34 (0.89-2.01) #  62 ( 75.6) 1.60 (0.91-2.81) #  

Years Exposed     0.10   0.62 

<18 126 ( 24.6) 18 ( 13.6) 1.00  14 ( 22.6) 1.00  

18 386 ( 75.4) 114 ( 86.4) 1.60 (0.89-2.91)  48 ( 77.4) 1.01 (0.51-2.03)  

Cigarettes/Day     0.22   0.69 

<=20 204 ( 44.2) 35 ( 31.5) 1.00  16 ( 32.7) 1.00  

>20 258 ( 55.8) 76 ( 68.5) 1.42 (0.87-2.33)  33 ( 67.3) 1.25 (0.63-2.47)  

Pack Years     0.17   0.63 

<=20 212 ( 46.1) 35 ( 31.5) 1.00  18 ( 36.7) 1.00  

>20 248 ( 53.9) 76 ( 68.5) 1.61 (0.98-2.64)  31 ( 63.3) 1.20 (0.61-2.35)  

Number of Household Smokers     0.99   0.79 

1 307 ( 59.5) 72 ( 54.5) 1.00  37 ( 59.7) 1.00  

>=2 209 ( 40.5) 60 ( 45.5) 0.99 (0.64-1.54)  25 ( 40.3) 0.75 (0.42-1.35)  

Mother Smoked     0.73   0.43 

No 249 ( 48.3) 58 ( 43.9) 1.00  28 ( 45.2) 1.00  

Yes 267 ( 51.7) 74 ( 56.1) 0.92 (0.59-1.45)  34 ( 54.8) 0.79 (0.44-1.42)  

Father Smoked     0.09   0.79 

No 103 ( 20.0) 18 ( 13.6) 1.00  14 ( 22.6) 1.00  

Yes 413 ( 80.0) 114 ( 86.4) 1.68 (0.92-3.08)  48 ( 77.4) 0.91 (0.45-1.82)  

Sibling Smoked     0.75   0.74 

No 487 ( 94.4) 125 ( 94.7) 1.00  58 ( 93.5) 1.00  

Yes 29 (  5.6) 7 (  5.3) 0.86 (0.33-2.21)  4 (  6.5) 1.22 (0.38-3.98)  

Other Smoked     0.18   0.51 

No 493 ( 95.5) 130 ( 98.5) 1.00  58 ( 93.5) 1.00  

Yes 23 (  4.5) 2 (  1.5) 0.35 (0.08-1.64)  4 (  6.5) 1.50 (0.45-5.05)  
OR (odds ratio) and CI (confidence interval) are from polytomous logistic regression models 
*HPV status is determined by in-situ hybridization  
†Odds ratios and 95% confidence intervals are adjusted for age, sex, race, recruitment period, drinking status, smoking status, personal history of 
cancer, and education (high school or less vs beyond high school). 
‡Wald P-value for the model parameter predicting the log-odds of oropharynx (or other HNSCC) obtained by entering a continuous variable, 
representing a 1-unit change, into the polytomous model. 
#P-for-heterogeneity=0.57 comparing odds ratios for HPV-positive and HPV-negative cases. 
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Table 17. Case-Only Analysis of Childhood Passive Smoke Exposure and Tumor HPV Status in 

Never-Smokers 

 Childhood Passive Smoke 

 Exposed 
(N=42) 

Unexposed 
(N=16) 

 n (%) n (%) 

HPV Positive Case 17 (40.5) 4 (25.0) 

HPV Negative Case 25 (59.5) 12 (75.0) 

PFisher's exact=0.37 
Empirical odds ratio (95% CI)= 2.04 (0.56-7.39) 
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6.1 ABSTRACT 

Background. Polymorphisms in Phase I/II enzymes that metabolize tobacco/alcohol and 

chemotherapy may be determinants of survival in oral and oropharyngeal squamous cell 

carcinoma (OOSCC). Methods. N=159 OOSCC cases treated during 2000 -2004 were 

genotyped for eight Phase I/II enzymes. Overall and disease-specific survival were analyzed 

using Kaplan-Meier plots. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated 

using Cox regression. Results. N-acteyltransferase-2 (NAT2) fast acetylators had improved 

survival (vs. slow acetylators) when treated with surgery alone (HR, 0.26; 95% CI, 0.10-0.66) 

but not chemoradiotherapy (HR, 1.21; 95% CI, 0. 54-2.73) or radiotherapy (HR, 0.67; 95% CI, 

0.31-1.59) after adjustment for tumor site and stage (P-for-NAT2/treatment-interaction=0.04). 

Reduced activity glutathione S-transferase pi-1 (GSTP1) was associated with improved disease-

specific survival in men only (HR, 0.12; 95% CI, 0.02-0.91; women: HR, 2.29; 95% CI, 0.41-

12.69; P-for-interaction=0.02). Conclusions. Metabolic enzyme genotype is associated with 

OOSCC survival and may inform selection of therapy. 

6.2 INTRODUCTION 

Oral and oropharyngeal squamous cell carcinomas (OOSCC) represent the world's 10th most 

common cancer and 7th most common cause of cancer death,46 and 5-year relative survival 

remains low despite therapeutic advances.23,176 Although tobacco and alcohol use are responsible 

for the majority of OOSCC, the risk of OOSCC associated with these behaviors is modified by 

genetic variation in xenobiotic metabolism, which is accomplished by a 2-phase enzyme system 
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that detoxifies (Phase I) xenobiotics and forms hydrophilic compounds (Phase II) to facilitate 

excretion.33-35,56,83,132  For example, polymorphisms in GSTM1, CYP1A1, and meH modify 

OOSCC risk in the presence of cigarette smoking.33-35 However, it is unclear whether 

polymorphisms in tobacco/alcohol metabolizing enzymes are associated with OOSCC survival. 

This may be of concern for patients who continue to smoke during treatment, and given the 

additional role of some tobacco/alcohol metabolizing enzymes in metabolism of chemotherapy 

used to treat OOSCC,40 as well as dietary and environmental carcinogens such as  heterocyclic 

amines in cooked meat,42 and polycyclic aromatic hydrocarbons (PAH) produced by burning 

fossil fuels.41 In fact, polymorphisms in Phase I/II enzymes are associated with survival in lung, 

colorectal, and ovarian cancer.40 However,  data on genetic variation in Phase I/II enzymes and 

OOSCC survival is scant. Reduced disease-free survival has been associated with the 

CYP1A2*1C polymorphism,139 reduced overall survival was associated with non-null GSTT1,143 

and an elevated risk of second primary tumors was associated with non-null GSTM1.142 

However, at least one study showed no association between GSTM1 or GSTP1 and overall or 

disease-specific survival.143 

To further investigate the association between polymorphisms in Phase I/II enzymes and 

OOSCC survival, we selected 8 genes associated with metabolism of tobacco, alcohol, or cancer 

chemotherapies (NAT2, mEH, MPO, CYP1A1, CYP2E1, GSTP1, GSTT1, and GSTM1) and 

explored polymorphisms in these genes in relation to survival in OOSCC. NAT2 activates 

carcinogenic heterocyclic amines such as those found in cigarette smoke and roasted meat.42 At 

least 60 NAT2 polymorphisms are grouped into "slow" and "fast" acetylator phenotypes and have 

been associated with cancer risk.177,178 An association between NAT2 and survival was observed 

in colorectal179 and gastric cancer,180 but not in several other cancers.181-184 We are unaware of 
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any reports of NAT2 and survival in OOSCC. The mEH gene encodes a Phase I enzyme 

expressed in  the oral cavity and oropharynx and activates PAHs.35 Polymorphisms in mEH have 

been associated with overall survival in breast cancer patients.185 MPO is expressed in neutrophil 

lysosomes and activates PAHs and heterocyclic amines.186 A common polymorphism in MPO 

(463G>A) is associated with decreased enzyme expression186 and has also been linked to 

improved survival in breast cancer patients.187 We are unaware of any studies of mEH or MPO 

and survival in OOSCC. CYP2E1 is responsible for 10% of ethanol metabolism and activates 

benzene. Both CYP2E1 and CYP1A1 activate PAHs.132,133 CYP2E1 and CYP1A1 were not 

associated with known prognostic factors, including tumor stage and nodal status, in a German 

oral, pharyngeal, and laryngeal cancer case series,138 although CYP2E1 was associated with 

higher tumor stage in a Brazilian case series.139 We are unaware of any data on OOSCC survival 

associated with polymorphisms CYP2E1 or CYP1A1. Homozygous deletion of two glutathione 

S-transferases (GST) --GSTT1 and GSTM1--that metabolize chemotherapies used to treat 

OOSCC is common and results in absence of protein expression and therefore lack of enzyme 

function.40,140 In addition, polymorphisms in the GSTP1 enzyme, also a chemotherapy-

metabolizing GST, result in four different forms of this protein with different levels of enzymatic 

activity.40,141 To date, there are a small number of reports on these GSTs and OOSCC survival 

and evidence of an association is equivocal.142,143 

To clarify the prognostic relevance of polymorphic forms of tobacco, alcohol, or 

chemotherapy metabolizing enzymes in OOSCC, we conducted a study of germline variation in 

NAT2, mEH, MPO, CYP1A1, CYP2E1, GSTP1, GSTT1, GSTM1 and overall and disease-specific 

survival in an OOSCC case series with a history of smoking and/or drinking, and who were 

treated with surgery, radiotherapy, or chemoradiotherapy. All cases completed an interviewer-
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administered questionnaire soliciting tobacco and alcohol use, anthropometry, diet, and oral care 

habits.188 Our objective was to determine whether polymorphisms in these genes are associated 

with survival in OOSCC,  to evaluate interaction between genotype and treatment, and to explore 

gene/environment interactions using our standardized questionnaire. 

6.3 MATERIALS AND METHODS 

6.3.1 Patients 

OOSCC cases (N=203) were recruited at University of Pittsburgh Medical Center 

otolaryngology clinics during 2000-2004 for participation in a case-control study of OOSCC 

etiology, including polymorphisms in tobacco and alcohol metabolizing enzymes.188 Cases were 

enrolled during 2000-2004, were age 18-79 at diagnosis with biopsy-verified primary lip, oral 

cavity (mouth or anterior tongue) or oropharyngeal (base of tongue, tonsil fossa, or soft palate) 

squamous cell carcinoma within 1 year of interview (excluding in-situ cancer), white race only, 

and were self-reported smokers or drinkers (smoked >= 1 cigarette per day for >= 6 months or 

consumed >= 1 drink/month for >= 1 year). Surgery was the standard primary therapy for oral 

cancer whereas radiotherapy or chemoradiotherapy was used for oropharyngeal cancer. All cases 

completed an interviewer-administered questionnaire that included data on tobacco/alcohol use, 

anthropometry, and diet.188 

In our analysis, we included oral and oropharyngeal cases only, treated at our institution 

for their first-ever OOSCC, and who consented to follow-up. We excluded 44 (22%) of the 

original 203 cases: 6 lip cancers, 5 cases later found ineligible for the original study (3 with in 



143 

situ and 2 with recurrent disease), 22 cases who did not consent to follow-up, 4 cases not treated 

at our institution, 3 cases with undocumented tumor site, 1 case with unknown diagnosis date, 

and 3 cases treated at our institution for a second primary tumor or recurrence.  This left 159 

cases (92 oral cavity and 67 oropharyngeal) for analysis. Excluded cases were more likely to be 

underweight (22.7%) than included cases (2.5%) (P < 0.001) and more often had wild type 

CYP1A1 (95.5%) than included cases (78.6%) (P=0.03).  

All cases consented to the use of their genotype, questionnaire, and follow-up 

information. This study was approved by the University of Pittsburgh Institutional Review 

Board. 

6.3.2 Genotype Assays 

Genotyping of this case series has been described in detail previously.188 Briefly, polymorphisms 

in CYP1A1, CYP2E1, MPO, GSTP1, and mEH were identified by polymerase chain reaction 

(PCR) and restriction fragment length polymorphism; homozygous deletions of GSTT1 and 

GSTM1 were identified by differential PCR; and NAT2 phenotype was predicted using 

international consensus criteria after genotyping 13 SNPs using a Nanogen NanoChip Molecular 

Biology Workstation and algorithmic gametic phasing check.178,188 

6.3.3 Exposure Variables 

The following variables were of primary interest: CYP1A1 (wild type [*1/*1] vs. mutant), 

CYP2E1 (wild type [G/G, C/C] vs. mutant), mEH (slow, normal, and rapid), MPO463G>A (wild 

type [G/G] vs. mutant), GSTP1 (normal activity diplotype [*A/*A, *A/*B, *A/*D ] vs. reduced 
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activity diplotype [*A/*C, *B/*B,*B/*C, *B/*D, *C/*C, *C/*D, and *D/*D] where *A, *B, *C, 

and *D refer to conventional Ile105Val-Ala114Val haplotypes as follows: *A=Ile-Ala (wild 

type), *B=Val-Ala, *C=Val-Val, and *D=Ile-Val),141 GSTT1 and GSTM1 (homozygous null vs. 

any non-null), and NAT2 (fast vs. slow acetylator). We also defined: sex, tumor stage (I/II, 

III/IV), age at diagnosis (continuous), tumor site (oral cavity or oropharynx), cigarette smoking 

(ever vs. never), alcohol drinking (ever vs. never), BMI [kg/m2] 1 year before diagnosis 

(underweight [<18.5], normal [18.5-24.9], overweight [25.0-29.9], and obese [>=30]), education 

(grade school, high school, vocational, or college), servings/day (continuous) of fruit and 

vegetables (separately), eating habits at interview unchanged compared with 3-5 years ago 

(yes/no), United States vs. non-United States birthplace, teeth brushing frequency (continuous; 

times/day), personal history of cancer (yes/no), and cancer in a blood relative (yes/no). For 

smokers, we defined: maximum number of cigarettes smoked/day (continuous), duration of 

smoking (continuous), pack-years (continuous; product of maximum number of cigarettes/day 

and duration), and years since quitting (continuous). Finally, treatment was defined as surgery 

only, radiotherapy (with or without surgery), or chemoradiotherapy (with or without surgery). 

6.3.4 Survival Endpoints and Outcome Ascertainment 

We designated 5-year survival as a clinically relevant primary endpoint. Overall survival time 

was calculated from the procedure date (the date of primary treatment [surgery or first radio- or 

chemoradiotherapy]) to the date of death from any cause. Disease-specific survival time was 

calculated from the procedure date to the date of death from OOSCC. Deaths were ascertained 

by monthly analysis of an electronic patient registry and verified using the Social Security Death 

Index. Cause of death was assigned using information recorded at the time of death or last 
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contact prior to death. Cases were censored if they were not known to have died during the study 

period (all analyses) or if they died of causes other than OOSCC (disease-specific survival). We 

considered follow-up through December 31, 2010. 

6.3.5 Statistical Analysis 

Descriptive statistics were calculated for clinicopathological characteristics and germline 

polymorphisms. Subgroup comparisons were performed using the Wilcoxon rank sum test or 

Fisher's exact test. Associations between clinicopathological factors and survival were assessed 

using the Kaplan-Meier method. We also applied the Kaplan-Meier method to screen each of 8 

genes for associations with survival, selecting genes with log-rank P-values <= 0.10 for 

regression modeling. For each selected gene, Cox proportional hazards regression was used to 

identify the best model to predict the risk of death associated with that gene. The gene of interest, 

as well as tumor site, stage, and treatment, were forced into the model. Other main effects were 

tested 1 at a time, with the final model including all significant (alpha=0.20) main effects 

identified by this process. Continuous first-order interactions between the gene of interest and 

other predictors were tested 1 at a time. Tests for statistical significance were conducted using 

the likelihood ratio Chi square test. Tests for trend were conducted only among cases with the 

factor of interest by adding a continuous variable (symbolizing a 1-unit change) to the final 

model. All statistical tests based on the final model used a 2-sided alpha=0.05. The proportional 

hazards assumption was verified graphically and no violations were observed. 

Due to overlap in substrate specificity of glutathione S-transferases (GST),189 we 

examined the joint impact of GSTP1, GSTT1, and GSTM1 on disease-specific survival using Cox 

proportional hazards regression. First, we explored univariable associations between these genes 
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and OOSCC death. Then, we summed the number of conjugation-reducing mutations per patient 

(i.e., GSTM1-null, GSTT1-null, and reduced activity GSTP1) and modeled this as a continuous 

predictor of OOSC death. 

Analyses were performed with PROC LIFETEST and PROC PHREG in SAS 9.2 (SAS 

Institute, Cary, NC). 

6.4 RESULTS 

The 159 cases included in this study (Table 18) were predominantly male (77.4%), between the 

ages of 50-69 (61.0%), stage III/IV (69.0%), and represented primarily oral cancer (57.9%).  All 

cases were either ever-smokers or ever-drinkers, with the majority of cases (76.1%) reporting a 

history of both. A total of 95 (60.1%) cases had a blood relative with cancer while only 16 

(10.1%) reported a personal cancer history. Details of treatments administered by tumor site and 

stage are shown in Table 19. Among cases receiving chemotherapy, 17 (29.8%) received a single 

platinum agent, 5 cases (8.8%) received platinum with 5-fluorouracil, 28 (49.1%) received 

platinum with a taxane, and type of chemotherapy was undocumented for 7 (12.3%) cases. 

Median follow-up was 5.3 years (range: 0.1-10.8). A total of 79 (49.7%) cases died, including 40 

deaths from OOSCC. 

6.4.1 Overall Survival 

Kaplan-Meier analysis of clinicopathological factors (Table 18) showed older age (P=0.02), 

combined smoking/drinking (P=0.05), radiotherapy (P=0.02), and higher stage (P=0.09) were 
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associated with reduced overall survival.  Analysis of polymorphisms (Table 20) showed NAT2 

fast acetylators experienced a 19.7% higher 5-year survival rate than slow acetylators (P=0.03) 

and this association was similar in oropharynx and oral cancer (Figure 14, Figure 15, Figure 16). 

No other polymorphisms were associated with outcome.  NAT2 phenotype was unrelated to other 

polymorphisms or clinicopathological factors (P > 0.10 for all; data not shown). Improved 

survival associated with the NAT2 fast acetylator phenotype was no longer significant after 

multiple adjustment (HR, 0.64; 95% CI, 0.40-1.04) (Table 21). However, we noted statistically 

significant interaction with treatment (P=0.04), in which a survival benefit was evident among 

cases receiving surgery alone (HR, 0.26; 95% CI, 0.10-0.66) but not radiotherapy (HR, 0.67; 

95% CI, 0.31-1.59) or chemoradiotherapy (HR, 1.21; 95% CI, 0.54-2.73) after  controlling for 

tumor site and stage. No trends were observed for duration of smoking, cigarettes/day, pack-

years, or years since quitting (P >0.05 for all). In addition, our results were unchanged after 

further adjustment for level of education, BMI, daily servings of fruit or vegetables, consistency 

of eating habits, United States vs. non-United States birthplace, number of times per day teeth 

were brushed, and personal or blood relative cancer history (P > 0.10 for all). Finally, we did not 

observe any interaction between NAT2 and age, gender, smoking status, and daily servings of 

fruit or vegetables (P > 0.20 for all). 

6.4.2 Disease-Specific Survival 

Late stage (P=0.04) and radiation treatment (P=0.01) were associated with worse disease-

specific survival in our Kaplan-Meier analysis (Table 18). In addition, normal activity GSTP1 

was associated with a significant 19.2% reduction in 5-year disease-specific survival (P=0.04) 

(Table 20; Figure 17). However, GSTP1 was not significantly associated with disease-specific 
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survival in a multivariable model (Table 22) (HR, 0.33; 95% CI, 0.10-1.06) and GSTP1 did not 

interact with treatment (P=0.12) but we did observe significantly different associations between 

GSTP1 and OOSCC death by sex (P=0.02). Reduced-activity GSTP1 was associated with an 

88% reduction in risk of OOSCC death among men (HR, 0.12; 95% CI, 0.02-0.91). However, 

women did not experience such a benefit (HR, 2.29; 95% CI, 0.41-12.69). Additional adjustment 

for education, BMI, daily servings of fruit or vegetables, consistent eating habits, United States 

vs. non-United States birthplace, teeth brushing frequency, and personal or blood relative cancer 

history did not alter these results (P > 0.10 for all). 

We also analyzed the combined effects of GST polymorphisms on OOSCC death. There 

were no associations between the GST polymorphisms themselves, and each was unrelated to 

polymorphisms in the other genes we studied (P > 0.20 for all). When considering the total 

number of conjugation-reducing polymorphisms in each patient, we noted each additional 

polymorphism was associated with a 35% reduction in risk of OOSCC death (HR, 0.65; 95% CI, 

0.43-0.98). Results were unchanged after controlling for gender (HR, 0.64; 95% CI, 0.43-0.97) 

and treatment (HR, 0.67; 95% CI, 0.45-1.0), and no interaction was observed with either factor 

(gender: P=0.78; treatment: P=0.70). 

6.5 DISCUSSION 

During 700 person-years of follow-up among 159 cases, we observed improved overall survival 

among NAT2 fast acetylators treated with surgery alone, and improved disease-specific survival 

among men with reduced activity GSTP1. 
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NAT2 fast acetylators experienced a 36% reduction in all-cause mortality after adjustment 

for age, gender, smoking history, treatment, and tumor site. However, this benefit was strongest 

in cases treated with surgery alone, where fast acetylators experienced a 74% reduced risk of 

death. The interaction of NAT2 phenotype with treatment remained significant after additional 

control for tumor stage, suggesting aspects of advanced disease did not produce the pattern we 

observed. In addition, NAT2 phenotype was unrelated to treatment or any other 

clinicopathological factors. We were unable to identify previous reports of NAT2 polymorphisms 

and survival in OOSCC, and NAT2 is not strongly associated with survival in other cancers.179-184 

Our positive finding for NAT2 might be explained by an improvement in NAT2 phenotype 

prediction based on 13 SNPs. In addition, we were able to adjust for clinicopathological factors 

associated with survival and explore gene-environment interaction using a standardized 

questionnaire. 

The mechanism through which NAT2 might effect survival is unclear. NAT2 is a phase II 

enzyme expressed primarily in the liver and its substrates are commonly found in the 

environment, including heterocyclic and aromatic amines in cigarette smoke, diesel exhaust, and 

roasted meat.42  Therefore, our observation of improved survival among fast acetylators treated 

with surgery alone may reflect an impact of NAT2 on environmental exposures in patients 

unencumbered by treatments that otherwise overwhelm the benefits of fast acetylation. In 

addition, radiation and platinum chemotherapies are not substrates of NAT2 and their impact on 

survival is not expected to be modified by NAT2. Provided NAT2 modifies the effects of 

environmental exposures on survival, it seems reasonable that the NAT2-associated risk of death 

would become apparent only after prolonged exposure. Indeed, we observed survival curves did 

not separate until 2 years after cases underwent their first medical procedure. Examples of 
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prolonged exposures might include continued smoking and dietary patterns. While we did not 

detect significant modification of the NAT2-survival association by fruit or vegetable 

consumption, our questionnaire did not directly measure the major dietary source of NAT2 

substrates--roasted meat.42 While smoking status post-diagnosis was not recorded in our study, 

other reports show 20%-40% of head and neck cancer patients continue to smoke after their 

diagnosis.36-39 

Our Kaplan-Meier analysis also showed GSTP1 was associated with disease-specific 

survival, but this association did not persist after adjustment for gender and treatment, and we 

observed no interaction with treatment. Instead, we were surprised to observe benefits of reduced 

activity GSTP1 in men only. GSTP1 is a Phase II enzyme expressed throughout the body and is 

known to detoxify platinum chemotherapies used in our case series.189,190 Previous research 

shows an association between reduced activity GSTP1 and improved response to chemotherapy 

in head and neck cancer,137 as well as improved survival in lung, colorectal, and ovarian 

cancers.40 We are aware of only 1 prior report of GSTP1 and overall or disease-specific survival 

that included OOSCC, and this report showed no association between reduced activity GSTP1 

and disease-specific survival among 190 oral, pharyngeal, and laryngeal cancer cases.143 

However, only 19% of cases in this study received chemotherapy.143 In our study, 35.8% of 

cases received chemotherapy and platinum agents were used extensively. We likely failed to 

observe interaction between GSTP1 and treatment due to small subgroup sizes defined by 6 

combinations of GSTP1 activity and treatment. Finally, a more comprehensive assessment of 

GST activity may be a better indicator of survival than any single GST, as shown by our 

observation of progressively improving survival with decreasing ability to conjugate substrates 

to glutathione. 
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The association between reduced activity GSTP1 and improved survival was restricted to 

men in our case series. We noted that a low proportion of women (19.4%) in our case series 

received chemotherapy compared with men (40.7%) (P=0.02). However, we cannot ignore that 

our estimate of this interaction was based on a small number of female deaths. Despite this, 

differences in survival between sexes with the same GSTP1 polymorphism seem plausible as 

GSTP1 conjugates DNA-reactive catechol estrogens to glutathione191 and women have higher 

levels of lifetime endogenous estrogen exposure than men. Unfortunately, we were not able to 

explore exogenous estrogen exposures as these data were not available for the women in our case 

series. 

Our results are accompanied by limitations. If genetic variants of Phase I/II enzymes not 

included in our study are inherited with NAT2 or GSTP1 polymorphisms, this may confound our 

results through associations with NAT2 or GSTP1 and survival. In addition, measurement of 

NAT2 alone may not adequately classify acetylator phenotype as this enzyme shares substrates 

with NAT1.42 Our method of vital status ascertainment may have resulted in failure to record 

deaths during the study period. However, this should not impact our results as cases were known 

to be alive when censored at last contact.  In addition, we observed similar survival comparing 

oral and oropharyngeal cases. While oropharyngeal tumors are often associated with improved 

survival due to a more frequent HPV-related etiology, our results apply largely to smoking-

related OOSCC as smokers were specifically selected for our study. Finally, our results are based 

on a small sample and we estimate our study provided only 60% power to detect the main effect 

of NAT2 on overall survival that we observed (details not shown). 

In summary, we observed a benefit of NAT2 fast acetylation on overall survival in 

OOSCC, which we believe has not been reported previously, and improved disease-specific 



152 

survival associated with reduced activity GSTP1. Our results for NAT2 may reflect interaction 

with lifestyle or other environmental exposures post-diagnosis and future studies of NAT2 and 

survival in OOSCC should assess such factors. Our observation that women did not benefit from 

reduced activity GSTP1 may reflect interaction with estrogens and future studies should collect 

such information in a larger sample of women. We observed an association between the 

cumulative number of null genotypes at GSTP1, GSTT1, and GSTM1 and OOSCC survival. This 

observation is consistent with a commonly held notion that a reduced capacity to metabolize 

chemotherapy can result in better cancer survival.40 Therefore, measurement of germline 

polymorphisms in GSTs may inform the decision to opt for standard therapy in OOSCC patients 

likely to benefit, or conversely, to identify ideal candidates for clinical trials of novel therapies. 
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6.6 TABLES 

Table 18. Clinicopathological Characteristics and Outcome Among N=159 Oral and Oropharyngeal Cases 

 Overall Survival Disease-Specific Survival 

 N % Deaths 

% 
Surviving 
5 Years* P-value† Deaths 

% 
Surviving 
5 Years* P-value† 

Age      0.02   0.59 

< 50 39 24.5 15 66.2  8 79.5  

50-59 57 35.8 24 65.7  18 68.8  

60-69 40 25.2 22 57.5  11 71.2  

>=70 23 14.5 18 35.2  3 76.4  

Gender      0.19   0.15 

Female 36 22.6 15 66.6  6 82.1  

Male 123 77.4 64 57.4  34 70.3  

Race      0.19   0.15 

White 159 100.0 79 59.5  40 73.1  

Site      0.78   0.54 

Oral cavity 92 57.9 44 58.3  21 74.6  

Oropharynx 67 42.1 35 61.1  19 70.9  

Stage‡      0.09   0.04 

Stage I/II 49 31.0 21 72.4  8 84.9  

Stage III/IV 109 69.0 58 53.4  32 67.3  

Smoking/Drinking      0.05   0.76 

Ever drinker only 33 20.8 11 72.7  8 75.5  

Ever smoker only 5 3.1 2 80.0  1 80.0  

Ever drank & ever smoked 121 76.1 66 54.8  31 71.9  

BMI 1 year pre-diagnosis      0.75   0.70 

<18.5 4 2.5 2 75.0  0 100.0  

18.5-24.9 67 42.1 37 50.3  18 70.4  

25-29.9 52 32.7 24 67.8  13 75.2  

>=30 36 22.6 16 63.0  9 71.8  

Blood Relative Had Cancere      0.71   0.56 

Yes 95 60.1 48 61.1  22 75.6  

No 63 39.9 31 56.3  18 68.9  



154 

Table 18 continued 

 Overall Survival Disease-Specific Survival 

 N % Deaths 

% 
Surviving 
5 Years* P-value† Deaths 

% 
Surviving 
5 Years* P-value† 

Treatment      0.02   0.01 

Radiotherapy 39 24.5 27 44.8  15 60.0  

Chemoradiotherapy 57 35.8 27 59.6  16 69.3  

Surgery Only 63 39.6 25 68.6  9 84.9  

Personal History of Cancerǁ      0.22   0.40 

Yes 16 10.1 10 43.8  5 64.3  

No 143 89.9 69 61.3  35 74.0  
*Kaplan-Meier survival estimate 
†Log-rank test 
‡Stage is missing for 1 case 
$32 cases (82.1%) who received radiotherapy also received surgery and 21 cases (36.8%) who received 
chemoradiotherapy also received surgery. A total of 39 (61.9%) of cases treated with surgery only, 8 (20.5%) of 
cases treated with radiotherapy, and 2 (3.6%) of cases treated with chemoradiotherapy were diagnosed as Stage 
I/II. 
ǁPersonal and blood relative cancer history is missing for 1 case 

 

Table 19. Treatment of Oral and Oropharyngeal Cancer Cases (N=159) 

 Oral cavity Oropharynx Stage 1/2 Stage 3/4 Unknown 
Stage 

Radiotherapy (w/ or w/out surgery) N=39 n (%) 20 (51.3) 19 (48.7) 8 (20.51) 31 (79.49)  

Chemoradiotherapy (w/ or w/out surgery) N=57 n (%) 19 (33.3) 38 (66. 7) 2 (3.51) 54 (94.74) 1 (1.75) 

Surgery Only N=63 n (%) 53 (84.1) 10 (15.9) 39 (61.90) 24 (38.10)  
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Table 20. Genotype and Outcome Among N=159 Oral and Oropharyngeal Cancer Cases 

 Overall Survival Disease-Specific Survival 

 N* % Deaths 

% 
Surviving 
5 Years† P-value‡ Deaths 

% 
Surviving 
5 Years† P-value‡ 

NAT2      0.03   0.06 

Fast 79 53.7 34 68.1  14 80.6  

Slow 68 46.3 39 48.4  22 64.1  

GSTP1      0.14   0.04 

Reduced Activity 28 17.7 11 75.0  3 88.7  

Normal Activity 130 82.3 67 56.5  37 69.5  

CYP1A1      0.74   0.67 

*1/*1 125 82.2 62 62.5  31 74.2  

non-1/1 27 17.8 14 46.1  8 64.7  

CYP2E1      0.16   0.20 

G/G C/C 140 92.1 71 59.2  36 72.8  

non-G/G C/C 12 7.9 3 83.3  1 90.9  

MEH      0.64   0.69 

Slow/Very Slow 61 38.6 33 57.1  18 69.3  

Normal 71 44.9 33 60.3  16 76.3  

Rapid 26 16.5 12 65.4  6 74.2  

MPO463G>A      0.18   0.57 

Variants 60 37.7 33 58.8  16 72.9  

Wild Type 99 62.3 46 59.9  24 73.2  

GSTT1      0.30   0.37 

Non-null 101 64.3 52 56.9  28 70.2  

Null 56 35.7 25 66.5  12 77.9  

GSTM1      0.92   0.40 

Non-null 57 36.1 26 64.1  17 69.8  

Null 101 63.9 52 57.4  23 74.9  
*Genotype is missing for some cases due to insufficient blood volume or assay failure 
†Kaplan-Meier survival estimate 
‡Log-rank test 
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Table 21. Results of Cox Proportional Hazards Regression: Predicted NAT2 Phenotype and Risk of Death 

from Any Cause 

 N Deaths Person-Years HR (95% CI)* 

NAT2 Phenotype†     

Slow 68 39 285.6 1.00 

Fast 78 34 407.3 0.64 (0.40-1.04) 

Radiation     

Slow 21 14 76.0 1.00 

Fast 16 11 70.4 0.67 (0.31-1.59) 

Chemoradiotherapy     

Slow 21 10 102.5 1.00 

Fast 32 16 159.0 1.21 (0.54-2.73)  

Surgery Only     

Slow 26 15 107.1 1.00 

Fast 30 7 177.9 0.26 (0.10-0.66) 
HR, hazard ratio from Cox proportional hazards regression model, 
CI=confidence interval. 
NAT2 phenotype is inferred from genotype as described under Materials and 
Methods. 
*Adjusted for gender, continuous age, smoking status (ever vs. never), 
treatment (radiation, chemoradiotherapy, or surgery only), tumor site 
(oropharynx vs. oral cavity), and tumor stage (stage III/IV vs. stage I/II). 
†The interaction between NAT2 and treatment is significant (P=0.04) 
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Table 22. Results of Cox Proportional Hazards Regression: Predicted GSTP1 Activity and Risk of Head and 

Neck Cancer Death 

Genotype N Deaths Person-Years HR (95% CI)* 

GSTP1†     

Normal Activity‡ 130 37 591.4 1.00 

Reduced Activity‡ 28 3 156.8 0.33 (0.10-1.06) 

Men‡     

Normal Activity 103 33 439.0 1.00 

Reduced Activity 19 1 121.5 0.12 (0.02-0.91) 

Women     

Normal Activity 27 4 152.4 1.00 

Reduced Activity 9 2 35.3 2.29 (0.41-12.69)  
HR, hazard ratio from Cox proportional hazards regression model, CI=confidence 
interval. 
*Adjusted for gender, treatment (radiotherapy, chemoradiotherapy, or surgery 
only), tumor site (oropharynx vs. oral cavity), and tumor stage (stage III/IV vs. 
stage I/II). 
†The interaction between GSTP1 and gender is significant (P=0.02). 
‡Normal activity GSTP1 genotypes are: A/A, A/B, A/D. Reduced activity genotypes 
are: B/B, B/C, C/C, C/D, D/D, A/C, B/D.  
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6.7 FIGURES 

Figure 14. Kaplan-Meier Plot of NAT2 and Overall Survival in All Cases 
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Figure 15. Kaplan-Meier Plot of NAT2 and Overall Survival in Oral Cavity Cases 
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Figure 16. Kaplan-Meier Plot of NAT2 and Overall Survival in Oropharyngeal Cases 
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Figure 17. Kaplan-Meier Plot of GSTP1 and Disease-Specific Survival 
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7.0  CONCLUSIONS AND PUBLIC HEALTH SIGNIFICANCE 

HNSCC are the sixth most common cancers in the world and are the eighth leading cause of 

cancer death worldwide, representing approximately 600,000 new cases and 300,000 deaths 

annually.23 Molecular differences in HNSCC,9 the emergence of a new virus-associated subtype 

of HNSCC,7 and wide variation in survival across patient subgroups32 emphasize the importance 

of considering disease heterogeneity in the quest to reduce HNSCC morbidity and mortality. 

Therefore, it was the objective of this research to apply epidemiology, in the translational 

context, to make basic discoveries related to the heterogeneity of HNSCC that would reveal 

candidate applications for HNSCC therapy and prevention.147 Specifically, this research 

investigated heterogeneity in HNSCC with respect to tumor angiogenesis, risk of HNSCC 

associated with CPSE, and HNSCC survival associated with germline variation in metabolic 

enzymes. 

Angiogenesis is the process by which new, tumor-infiltrating blood vessels develop from 

existing vasculature.8 Angiogenesis is required for tumor growth and also contributes to 

metastasis, which is the primary cause of cancer death.8,116  However, it remains unclear whether 

angiogenesis is a universally consistent process across all HNSCC.9-13,124 This research 

represents one of the first attempts to address this concern through a comprehensive investigation 

of differences in expression of angiogenesis markers in HPV-positive and HPV-negative 

HNSCC. Specifically, this research demonstrated that: 1) there are biological differences in 
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angiogenesis comparing HPV-positive and HPV-negative HNSCC, with HPV-positive tumors 

exhibiting lower potential for angiogenesis as indicated by reduced expression of EGFR, a lack 

of association between EGFR and VEGF, and a tendency for smaller size compared with HPV-

negative tumors; 2) the NOTCH pathway is associated with angiogenesis in HPV-negative 

HNSCC; and 3) the NOTCH pathway may be associated with tumor development through other 

means, possibly unrelated to angiogenesis, in HPV-positive HNSCC. These results represent an 

initial investigation into differences in expression of angiogenesis markers in HPV-positive and 

HPV-negative HNSCC and should be replicated in larger samples. Nonetheless, these results 

provide impetus for studying the mechanisms of angiogenesis in vitro using HPV-positive and 

HPV-negative cell lines. Furthermore, clinical studies of anti-angiogenesis therapies should 

assess response to therapy separately in HPV-positive and HPV-negative cases. 

This research also sought to characterize the relationship between CPSE and risk of 

HNSCC, and explore heterogeneity in this association according to tumor site and HPV status. A 

case-control study design was used to achieve this goal, and results showed that CPSE is 

associated with an increased risk of HNSCC, even after control for adult smoking. In addition, 

this research identified CPSE as a significant contributor to HNSCC risk in the population, with 

as much as 17% of HNSCC being attributable to CPSE (assuming causality). Furthermore, this 

study demonstrated a strong and specific association between CPSE and cancer of the 

oropharynx in never-smokers. These results add to the literature demonstrating the carcinogenic 

effects of cigarette smoke in never-smokers and provides further impetus for aggressive public 

policy efforts to reduce environmental tobacco smoke pollution.26 In addition, this research 

further underscores the particular vulnerability of children to environmental tobacco smoke 

exposures, and demonstrates that these exposures may have effects that last into adulthood.26 
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Finally, this research demonstrated an intriguing possibility in HNSCC etiology. Specifically, 

this research suggests CPSE may interact with adult HPV infection to promote HNSCC in never-

smokers. Given the small sample size that this observation is based on, results of this research 

are inconclusive in this regard but warrant further exploration in larger case series in which both 

CPSE and tumor HPV status are available. Pooled studies are likely to be necessary to achieve 

this. 

Finally, this research sought to identify genetic determinants of survival in HNSCC by 

exploring germline variation in enzymes that metabolize toxicants associated with HNSCC 

pathogenesis,33-35 drugs used to treat HNSCC,40 and toxic substances found in the environment 

that are detrimental to health.42 This research provides the only data available on NAT2 

phenotype and survival in HNSCC. Specifically, this research demonstrated substantially 

improved overall survival in cases with the NAT2 fast acetylator phenotype compared with the 

NAT2 slow acetylator phenotype that persisted after multiple adjustment. Furthermore, this 

research showed the greatest benefit of the NAT2 fast acetylation on survival among cases treated 

with surgery only, even after adjustment for tumor stage. These results may reflect interaction 

between NAT2 and post-diagnosis lifestyle in HNSCC cases unencumbered by caustic treatments 

such as chemotherapy and radiation. Future studies of NAT2 and survival in HNSCC should 

incorporate measures of tobacco/alcohol use and dietary patterns post-diagnosis. Given that 20-

40% of HNSCC patients continue to smoke after their cancer diagnosis,36-39 knowledge of 

metabolic phenotype and lifestyle choices during treatment may inform interventions aimed at 

improving outcomes for HNSCC patients. This research also showed that reduced activity 

GSTP1 was associated with improved disease-specific survival relative to normal activity GSTP1 

in men only. Because GSTP1 is involved in conjugation of DNA-reactive estrogen metabolites to 
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glutathione,191 and women have higher levels of estrogen exposure than men, a reduction in 

GSTP1 activity may produce a greater burden of toxins in women--both treatment-related and 

estrogen-related--that could overwhelm survival. Future studies of GSTP1 and HNSCC survival 

should assess markers of endogenous and exogenous estrogen exposure (e.g., parity, age at 

menarche, use of hormone replacement therapy, etc.) in a larger sample of women. Such research 

may have implications in considering HNSCC therapy in the context of concomitant medication 

use. 

The etiology of HNSCC is based in lifestyle factors56,83 and infectious disease.7 As a 

result, public health action--e.g., behavioral intervention, legislation, taxation, or vaccination--

has the potential to ameliorate some burden of the disease. At the same time, new therapies are 

needed for patients suffering from HNSCC,23 and these therapies should address HNSCC 

subtypes, especially HPV-positive and HPV-negative HNSCC, and should consider the 

likelihood of individual patients to respond to therapies. This research applies epidemiology to 

address each of these concerns and contributes significantly to public health by: 1) providing 

insight into biological differences between subgroups of HNSCC that implicate disease subtypes 

amenable to specific therapeutic approaches; 2) providing scientific evidence supporting changes 

in public policy to protect children's' health through limiting environmental tobacco smoke 

exposure, and thereby reducing the incidence of HNSCC in the population; and 3) identifying 

heritable characteristics that might modify survival after HNSCC diagnosis and therefore enable 

selection of therapy most appropriate for individual patients. 
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APPENDIX A 

DERIVATION OF SAMPLE FOR ARTICLE 1 

The following describes the process used to identify our analytic sample of N=71 cases for 

whom tumor blocks were retrieved and submitted for study using IHC. As shown in Figure 18, 

N=1,170 head and neck cancer cases were enrolled between 2000-2010.‡ Starting in 2007 head 

and neck tumors treated at our institution were commonly assayed for HPV using ISH and this 

procedure became standard practice in 2009. Because we were interested in comparing 

characteristics of HPV-positive and HPV-negative tumors, we began by restricting our sampling 

frame to the N=616 cases diagnosed during 2007 and later. Among the N=616 cases diagnosed 

during 2007 and later, N=400 were listed in the organ-specific database (OSD).§ At this point, 

identification of eligible cases for our analysis branched into two separate efforts. The first effort 

focused on identifying eligible cases among the N=400 in OSD. The second effort focused on 

identifying eligible cases among the remaining N=216 cases not found in OSD.** 

                                                 

‡ This is based on a snapshot of the study database from May 24, 2011 
§ The organ specific database (OSD) includes detailed pathological and clinical information on head and neck cancer 
cases who sought treatment or advice from our institution. The greatest level of detail is available on cases whose 
diagnosis and treatment was initiated with us, and it is these cases for whom archival tumor specimens are most 
likely to be available for research. 
** Although the OSD now attempts to capture information on all cases who visit our institution, requirements for 
entry of a case into the OSD have evolved over time. Therefore, some cases who were diagnosed in the distant past 
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Beginning with the N=400 cases in OSD (Figure 18), N=331 self-reported no prior 

history of cancer. Detailed information on the cancer diagnosis was available for N=317 of these 

cases, but only N=316 were found to have SCC of the head and neck. These cases represented 

N=305 single primary cancers and N=11 cases with multiple primary cancers. Among the cases 

with multiple primaries, N=4 had tumors in the same anatomical site and could confidently be 

classified as oral or oropharyngeal cases. However, HPV status was unavailable for all of these 

cases and they were therefore excluded. From the remaining N=305 cases with a single primary 

tumor, N=205 represented oral and oropharyngeal cancer. However, only N=64 of these had 

known tumor HPV status (37 HPV-positive [2 oral, 35 oropharyngeal] and 27 HPV-negative [15 

oral, 12 oropharyngeal]) and were included in our request for tumor blocks. 

The N=216 cases not in OSD (Figure 19) represented primarily recently diagnosed cases 

(58.0%, 19.9%, 13.4%, and 8.8% diagnosed in 2010, 2009, 2008, and 2007 respectively). Tumor 

site was retrieved from study records for these cases by study staff. We determined HPV status 

for these cases through a manual review of pathology reports in the electronic medical record 

system. A total of N=177 self-reported no prior history of cancer and N=113 of these represented 

oral and oropharyngeal cancer. Among these, N=39 represented cases with a single primary 

tumor, or the index tumor from cases with multiple primaries, for which tumor HPV status was 

recorded in the pathology report. Therefore, through manual review we were able to identify 

N=39 extra cases (13 HPV-positive [1 oral, 17 oropharyngeal]) and 26 HPV- [21 oral, 5 

oropharyngeal]) for whom we would request tumor blocks. 

As shown in Figure 20, we requested tumor blocks for N=103 cases (50 HPV-positive [3 

oral, 47 oropharyngeal] and 53 HPV-negative [36 oral, 17 oropharyngeal]). This request was 
                                                                                                                                                             

may not appear in the database. In addition, there is a natural lag in data entry due to quality control procedures and 
therefore recently diagnosed cases may not be found in the database when a query is issued. 
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based on N=322 cases, all of whom would have been eligible for our study if HPV status were 

available: N=209 identified in OSD (205 with single primaries and 4 with multiple primaries; 

Figure 18), plus N=113 identified through our manual review of cases not in OSD (Figure 19). 

Therefore, we excluded (322-103=219)/322=68.0% of otherwise eligible cases due to missing 

HPV status. Based on past experience of other investigators, we expected to retrieve 70% of the 

tumor blocks requested, or N=72. Ultimately, tumor blocks were retrieved for N=50 cases from 

the Iron Mountain storage facility, and blocks were retrieved for N=21 cases from other projects. 

Therefore, we obtained tumor blocks for N=71 cases, nearly exactly the number we expected to 

identify. After obtaining tumor blocks, we were notified by another investigator (Brenda 

Diergaarde, PhD) that the tumor HPV status for one oropharyngeal case had been reviewed by 

the pathology department at her request and the original classification of HPV-negative had been 

changed to HPV-positive. Therefore, we also treated this case as HPV-positive. 

Our final analytic sample, shown in Figure 20, included N=71 cases of OOSCC, 

representing N=30 HPV-positive (3 oral, 27 oropharyngeal) and N=41 HPV-negative (27 oral, 

14 oropharyngeal) cases. 

A.1 REPRESENTATIVENESS OF RECOVERED TUMOR BLOCKS 

To determine the degree to which our analytic sample reflected the universe of cases eligible for 

our study, we compared selected characteristics of cases in our sample (N=71) with those who 

were eligible but not enrolled (N=251 [32 cases for whom tumor blocks were not recovered plus 

219 cases excluded for missing HPV status]) (Table 23).  Our analytic sample included cases 

with more recent diagnoses than excluded cases (P < 0.001), consisted of more oropharyngeal 
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tumors (57.7%) than excluded cases (37.5%) (P < 0.01), and more often represented node-

positive disease than excluded cases, whether assessed clinically (71.8% vs. 45.7%; P < 0.001) 

or pathologically (38.6% vs. 30.3%; P=0.02). No differences were observed with respect to 

clinical and pathological T- or M-stage, age, sex, race, ever-smoking, childhood passive smoke 

exposure, alcohol drinking, or BMI one year prior to diagnosis (P > 0.05 for all). 

A.2 FACTORS ASSOCIATED WITH TUMOR BLOCK RECOVERY 

Table 24 shows comparisons between cases with recovered and unrecovered tumor blocks. Due 

to small sample sizes involved in these comparisons, we considered either a  >10% difference in 

frequency or P-value < 0.05 indicative of a potentially important difference between recovered 

and unrecovered tumor blocks. Recovered tumor blocks (71.8%) were more likely to represent 

cases diagnosed during 2009 and 2010 than unrecovered blocks (53.2%) (P=0.15). Recovered 

tumor blocks were less likely to represent oropharyngeal tumors (57.7%) than unrecovered 

tumor blocks (71.9%) (P=0.19). Tumor block recovery was also significantly associated with 

HPV status (P=0.03), with only 42.3% of recovered tumors HPV-positive whereas 65.6% of 

unrecovered tumors were HPV-positive. Recovered tumors were less likely to have 

indeterminate pathological T-stage (X) (31.4%) compared with unrecovered tumors (45.2%) than 

recovered tumors (P=0.45). Inability to assess pathological N-stage was also less common 

among recovered (35.7%) than unrecovered tumors (48.4%) (P=0.41). In addition, recovered 

tumors more often represented persons who were not classified as obese within one year of 

diagnosis (66.2%) than unrecovered tumors (53.1%) (P=0.27) and the frequency of childhood 

passive smoke exposure was higher among recovered tumors (80.3%) than unrecovered tumors 
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(62.5%) (P=0.08). We did not observe any differences between recovered and unrecovered 

tumor blocks with respect to clinical or pathological assessment of distant metastases (M-stage), 

age, sex, race, cigarette smoking, and alcohol drinking (difference in frequency <10% and P > 

0.05 for all). 
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A.3 TABLES 

Table 23. Characteristics of Included and Excluded Cases 

 
Included 
(N=71) 

Excluded* 
(N=251)  

 n (%)† n (%)† P-Value‡ 

Age    0.42 

<50 20 ( 28.2) 58 ( 23.1)  

50-59 29 ( 40.8) 89 ( 35.5)  

60-69 17 ( 23.9) 73 ( 29.1)  

>=70 5 (  7.0) 31 ( 12.4)  

Sex    0.25 

Male 53 ( 74.6) 167 ( 66.5)  

Female 18 ( 25.4) 84 ( 33.5)  

Race    0.11 

Non-White/Unknown 4 (  5.6) 5 (  2.0)  

White 67 ( 94.4) 246 ( 98.0)  

Year of Diagnosis    < .001 

2007 5 (  7.0) 67 ( 26.7)  

2008 15 ( 21.1) 85 ( 33.9)  

2009 29 ( 40.8) 54 ( 21.5)  

2010 22 ( 31.0) 45 ( 17.9)  

Tumor Site    < .01 

Oral Cavity 30 ( 42.3) 157 ( 62.5)  

Oropharynx 41 ( 57.7) 94 ( 37.5)  

T clinical    > 0.99 

1/2 44 ( 62.0) 138 ( 61.9)  

3/4 25 ( 35.2) 77 ( 34.5)  

X 2 (  2.8) 7 (  3.1)  

in situ# 0 (  0.0) 1 (  0.4)  

N clinical    < .001 

Negative 20 ( 28.2) 119 ( 53.4)  

Positive 51 ( 71.8) 102 ( 45.7)  

X 0 (  0.0) 2 (  0.9)  
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Table 23 continued 

 
Included 
(N=71) 

Excluded* 
(N=251)  

 n (%)† n (%)† P-Value‡ 

M clinical    0.77 

0 69 ( 97.2) 198 ( 98.0)  

1 1 (  1.4) 1 (  0.5)  

X 1 (  1.4) 3 (  1.5)  

T path    0.58 

1/2 34 ( 48.6) 118 ( 53.4)  

3/4 14 ( 20.0) 50 ( 22.6)  

X 22 ( 31.4) 52 ( 23.5)  

in situ 0 (  0.0) 1 (  0.5)  

N path    0.02 

Negative 18 ( 25.7) 98 ( 44.3)  

Positive 27 ( 38.6) 67 ( 30.3)  

X 25 ( 35.7) 56 ( 25.3)  

M path    0.92 

0 35 ( 50.0) 101 ( 50.8)  

1 0 (  0.0) 1 (  0.5)  

X 35 ( 50.0) 97 ( 48.7)  

Ever Smoked    > 0.99 

No 18 ( 25.4) 66 ( 26.3)  

Yes 53 ( 74.6) 185 ( 73.7)  

Childhood Passive Smoke    0.22 

No 14 ( 19.7) 69 ( 27.5)  

Yes 57 ( 80.3) 182 ( 72.5)  

Ever Drank Alcohol    0.52 

No 13 ( 18.3) 57 ( 22.9)  

Yes 58 ( 81.7) 192 ( 77.1)  

BMI 1 year pre-diagnosis    0.89 

<30 kg/m2 47 ( 66.2) 168 ( 67.2)  

>=30 kg/m2 24 ( 33.8) 82 ( 32.8)  
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Table 23 continued 

*Excluded cases are those who were otherwise eligible but for 
whom tumor blocks were not requested due to missing human 
papilloma virus (HPV) status (N=219), and those for whom tumor 
blocks were requested but not returned (N=32). 
†Number may not sum to total due to missing values for some 
variables. 
‡Fisher's exact test 
#SID 62803-9 was diagnosed with clinical stage T2 and 
pathological T-stage in situ. SID 63061-6 was diagnosed as clinical 
T-stage in situ and pathological T1. Tumor blocks were not 
requested for either case due to missing HPV status. 
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Table 24. Factors Associated With Tumor Block Recovery Among N=103 Requested Tumor Blocks 

 
Recovered 

(N=71) 
Unrecovered 

(N=32)  

 n (%) n (%) P-Value* 

Age    0.93 

<50 20 ( 28.2) 7 ( 21.9)  

50-59 29 ( 40.8) 14 ( 43.8)  

60-69 17 ( 23.9) 9 ( 28.1)  

>=70 5 (  7.0) 2 (  6.3)  

Sex    0.81 

Male 53 ( 74.6) 25 ( 78.1)  

Female 18 ( 25.4) 7 ( 21.9)  

Race    0.31 

Non-White/Unknown 4 (  5.6) 0 (  0.0)  

White 67 ( 94.4) 32 (100.0)  

Year of Diagnosis    0.15 

2007 5 (  7.0) 2 (  6.3)  

2008 15 ( 21.1) 13 ( 40.6)  

2009 29 ( 40.8) 7 ( 21.9)  

2010 22 ( 31.0) 10 ( 31.3)  

Tumor Site    0.19 

Oral Cavity 30 ( 42.3) 9 ( 28.1)  

Oropharynx 41 ( 57.7) 23 ( 71.9)  

HPV Status    0.03 

Negative 41 ( 57.7) 11 ( 34.4)  

Positive 30 ( 42.3) 21 ( 65.6)  

T clinical    0.73 

1/2 44 ( 62.0) 19 ( 61.3)  

3/4 25 ( 35.2) 10 ( 32.3)  

X 2 (  2.8) 2 (  6.5)  

N clinical    0.35 

Negative 20 ( 28.2) 12 ( 38.7)  

Positive 51 ( 71.8) 19 ( 61.3)  

M clinical    > 0.99 

0 69 ( 97.2) 30 (100.0)  

1 1 (  1.4) 0 (  0.0)  

X 1 (  1.4) 0 (  0.0)  
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Table 24 continued 

 
Recovered 

(N=71) 
Unrecovered 

(N=32)  

 n (%) n (%) P-Value* 

T path    0.45 

1/2 34 ( 48.6) 13 ( 41.9)  

3/4 14 ( 20.0) 4 ( 12.9)  

X 22 ( 31.4) 14 ( 45.2)  

N path    0.41 

Negative 18 ( 25.7) 8 ( 25.8)  

Positive 27 ( 38.6) 8 ( 25.8)  

X 25 ( 35.7) 15 ( 48.4)  

M path    0.66 

0 35 ( 50.0) 13 ( 43.3)  

X 35 ( 50.0) 17 ( 56.7)  

Ever Smoked    0.35 

No 18 ( 25.4) 11 ( 34.4)  

Yes 53 ( 74.6) 21 ( 65.6)  

Childhood Passive Smoke    0.08 

No 14 ( 19.7) 12 ( 37.5)  

Yes 57 ( 80.3) 20 ( 62.5)  

Ever Drank Alcohol    0.43 

No 13 ( 18.3) 8 ( 25.8)  

Yes 58 ( 81.7) 23 ( 74.2)  

BMI 1 year pre-diagnosis    0.27 

<30 kg/m2 47 ( 66.2) 17 ( 53.1)  

>=30 kg/m2 24 ( 33.8) 15 ( 46.9)  

*Fisher's exact test 
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A.4 FIGURES 

 

Figure 18. Derivation of Study Sample for Specific Aim 1: First Step, Based on Database Snapshot from 24-MAY-2011 
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Figure 19. Derivation of Study Sample for Specific Aim 1: Second Step, Manual Search for More Cases 

 

 

Figure 20. Derivation of Study Sample for Specific Aim 1: Third Step, Assembly of Final Sample 
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APPENDIX B 

MISSING DATA FOR IMMUNOHISTOCHEMISTRY IN ARTICLE 1 

Five of the N=71 cases for whom tumor blocks were recovered had insufficient amounts of 

tumor available for staining of one or more markers (Supplementary Table 3). Four cases did not 

have enough tumor for staining of any of the markers and one case could not be stained for 

NOTCH1. Four of the five cases (80%) missing one or more markers were HPV-positive, 

whereas 26/66 (39.4%) cases in whom all markers were assessed were HPV-positive. Four of the 

five cases missing data (80%) were diagnosed in 2009, and the most common surgical procedure 

among cases missing data was resection/excision (also 4/5, or 80%). Missing one or more 

markers did not appear to be associated with the day of week or month of the surgical procedure, 

or tumor site. 
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Table 25. Tabulation of Missing Immunohistochemistry Data (N=5 cases) 

Case EGFR VEGF NOTCH1 
HPV 
Status Tumor Site Procedure Type 

Procedure 
Day of Week 

Procedure 
Month 

Procedure 
Year 

1    Positive Oropharynx Biopsy Friday October 2009 

2    Positive Oral cavity Resection/excision Wednesday January 2010 

3    Positive Oropharynx Resection/excision Wednesday September 2009 

4 X X  Positive Oropharynx Resection/excision Saturday May 2009 

5    Negative Oral cavity Resection/excision Wednesday December 2009 
EGFR=epidermal growth factor receptor; VEGF=vascular endothelial growth factor; NOTCH1=notch receptor 1.  
*Cells marked with an X indicate non-missing data. Blank cells indicate missing data. 
†Fisher's exact test. 
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APPENDIX C 

PROTEIN EXPRESSION AND TUMOR HPV STATUS IN RELATION TO SPECIMEN 

HANDLING IN ARTICLE 1 

Specimens used in our study were collected as part of routine clinical practice and were not 

processed according to a protocol. Therefore, we were concerned that variation in specimen  

handling, e.g., elapsed time to fixation or time in fixative, might have biased our results.192 To 

address this concern, we examined the association between surrogate markers of variation in 

specimen handling and results of our IHC experiments, as well as tumor HPV status. Overall, our 

results are strongly suggestive of consistent specimen handling. Specifically, we observed no 

evidence of systematic differences in protein expression according to the month and day of week 

that the surgical procedures were conducted (Table 26), and tumor HPV status was unrelated to 

these factors as well (Table 27). While we did observe an association between HPV status and 

year of diagnosis in our sample (Table 27), we believe this reflects evolving practices at our 

institution. In particular, HPV testing became common in 2007-2008 and specimens were likely 

selected for testing that were felt to have a strong possibility of being HPV-positive based on 

histological assessment. Subsequently, in 2009-2010, a policy was instituted requiring all tumors 

to be tested for HPV pending availability of tissue. 
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Table 26. Surrogate Markers of Variation in Specimen Handling and Expression of Markers 

Detected Using Immunohistochemistry Among N=67 Cases 

 EGFR VEGF NOTCH1 

 N, median (min-max) N, median (min-max) N, median (min-max) 

Year of Diagnosis     

2007 5, 20.0 (0-180) 5, 80.0 (10-90) 5, 60.0 (0-120) 

2008 15, 15.0 (0-300) 15, 90.0 (0-200) 15, 45.0 (0-195) 

2009 26, 30.0 (0-300) 26, 65.0 (0-140) 25, 40.0 (0-240) 

2010 21, 20.0 (0-180) 21, 60.0 (0-160) 21, 40.0 (0-160) 

P-value 0.63 0.80 0.94 

Procedure Type     

Biopsy 21, 20.0 (0-300) 21, 80.0 (10-200) 21, 15.0 (0-240) 

Resection/excision 46, 25.0 (0-200) 46, 60.0 (0-150) 45, 50.0 (0-195) 

P-value 0.58 0.07 0.09 

Procedure Year     

2007 3, 20.0 (0-40) 3, 80.0 (10-90) 3, 80.0 (60-120) 

2008 17, 15.0 (0-300) 17, 80.0 (0-200) 17, 40.0 (0-195) 

2009 23, 30.0 (0-300) 23, 70.0 (5-140) 22, 40.0 (0-240) 

2010 23, 20.0 (0-180) 23, 40.0 (0-160) 23, 40.0 (0-160) 

2011 1, 20.0 (20-20) 1, 60.0 (60-60) 1, 5.0 (5-5) 

P-value 0.67 0.76 0.43 

Procedure Month     

January 5, 20.0 (0-300) 5, 60.0 (40-200) 5, 20.0 (0-100) 

February 6, 12.5 (0-70) 6, 80.0 (0-180) 6, 10.0 (0-240) 

March 6, 30.0 (0-120) 6, 45.0 (10-100) 6, 50.0 (0-160) 

April 5, 15.0 (0-40) 5, 90.0 (8-100) 5, 100 (40-150) 

May 3, 70.0 (10-200) 3, 90.0 (60-100) 2, 103 (45-160) 

June 2, 7.5 (5-10) 2, 10.0 (0-20) 2, 60.0 (0-120) 

July 6, 45.0 (5-100) 6, 80.0 (0-160) 6, 50.0 (0-180) 

August 8, 30.0 (0-180) 8, 55.0 (10-100) 8, 60.0 (10-120) 

September 6, 6.3 (0-300) 6, 82.5 (10-150) 6, 17.5 (5-195) 

October 12, 27.5 (5-80) 12, 37.5 (10-120) 12, 20.0 (0-60) 

December 8, 45.0 (0-100) 8, 95.0 (5-140) 8, 55.0 (10-160) 

P-value 0.65 0.76 0.19 
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Table 26 continued 

 EGFR VEGF NOTCH1 

 N, median (min-max) N, median (min-max) N, median (min-max) 

Procedure Day of Week     

Monday 2, 210 (120-300) 2, 80.0 (60-100) 2, 50.0 (20-80) 

Tuesday 13, 60.0 (0-180) 13, 70.0 (0-100) 13, 40.0 (0-150) 

Wednesday 11, 10.0 (0-300) 11, 40.0 (10-200) 11, 40.0 (0-160) 

Thursday 29, 20.0 (0-100) 29, 70.0 (0-180) 29, 30.0 (0-160) 

Friday 10, 15.0 (0-180) 10, 55.0 (0-160) 10, 115 (0-240) 

Saturday 2, 140 (80-200) 2, 100 (100-100) 1, 20.0 (20-20) 

P-value 0.04 0.81 0.10 

EGFR=epidermal growth factor receptor; VEGF=vascular endothelial growth factor; 
NOTCH1=notch receptor 1; HPV=human papillomavirus. Numbers (N, median [min-max]) 
refer to the protein staining score. P-values are from the Wilcoxon rank sum test (for 
dichotomous variables) or the Kruskal-Wallis test (for multi-level nominal variables). 
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Table 27. Surrogate Markers of Variation in Specimen Handling and Tumor HPV Status Among 

N=67 Cases 

 
All 

(N=67) 

HPV 
Negative 
(N=40) 

HPV 
Positive 
(N=27)  

 n (%) n (%) n (%) P-Value* 

Year of Diagnosis     < .01 

2007 5 (  7.5) 3 (  7.5) 2 (  7.4)  

2008 15 ( 22.4) 6 ( 15.0) 9 ( 33.3)  

2009 26 ( 38.8) 12 ( 30.0) 14 ( 51.9)  

2010 21 ( 31.3) 19 ( 47.5) 2 (  7.4)  

Procedure Type     0.43 

Biopsy 21 ( 31.3) 11 ( 27.5) 10 ( 37.0)  

Resection/excision 46 ( 68.7) 29 ( 72.5) 17 ( 63.0)  

Procedure Year     < .01 

2007 3 (  4.5) 2 (  5.0) 1 (  3.7)  

2008 17 ( 25.4) 7 ( 17.5) 10 ( 37.0)  

2009 23 ( 34.3) 10 ( 25.0) 13 ( 48.1)  

2010 23 ( 34.3) 20 ( 50.0) 3 ( 11.1)  

2011 1 (  1.5) 1 (  2.5) 0 (  0.0)  

Procedure Month     0.47 

January 5 (  7.5) 4 ( 10.0) 1 (  3.7)  

February 6 (  9.0) 3 (  7.5) 3 ( 11.1)  

March 6 (  9.0) 4 ( 10.0) 2 (  7.4)  

April 5 (  7.5) 2 (  5.0) 3 ( 11.1)  

May 3 (  4.5) 0 (  0.0) 3 ( 11.1)  

June 2 (  3.0) 2 (  5.0) 0 (  0.0)  

July 6 (  9.0) 4 ( 10.0) 2 (  7.4)  

August 8 ( 11.9) 6 ( 15.0) 2 (  7.4)  

September 6 (  9.0) 2 (  5.0) 4 ( 14.8)  

October 12 ( 17.9) 8 ( 20.0) 4 ( 14.8)  

December 8 ( 11.9) 5 ( 12.5) 3 ( 11.1)  

Procedure Day of Week     0.84 

Monday 2 (  3.0) 2 (  5.0) 0 (  0.0)  

Tuesday 13 ( 19.4) 7 ( 17.5) 6 ( 22.2)  

Wednesday 11 ( 16.4) 8 ( 20.0) 3 ( 11.1)  

Thursday 29 ( 43.3) 16 ( 40.0) 13 ( 48.1)  

Friday 10 ( 14.9) 6 ( 15.0) 4 ( 14.8)  

Saturday 2 (  3.0) 1 (  2.5) 1 (  3.7)  

*Fisher's exact test 
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APPENDIX D 

DETAILS OF N=862 CASES OF HEAD AND NECK CANCER INCLUDED IN 

ARTICLE 2 

Table 28. Head and Neck Cancer Cases (N=862) 

 N % 

Oral Cavity 383 44.4 

Larynx 232 26.9 

Oropharynx 199 23.1 

Hypopharynx 35 4.1 

Nasopharynx 13 1.5 
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Table 29. Factors Associated With Oropharyngeal Cancer Among 862 Cases of Head and Neck 

Cancer 

 

Oropharyngeal 
Cases 
(N=199) 

Other 
Cases 
(N=663)   

 n(%)* n(%)* OR (95% CI)† P-Value‡ 

Age     <.0001 

<50 49 ( 24.6) 104 ( 15.7) 1.00  

50-59 84 ( 42.2) 193 ( 29.1) 0.92 (0.60-1.41)  

60-69 54 ( 27.1) 225 ( 33.9) 0.51 (0.32-0.80)  

>=70 12 (  6.0) 141 ( 21.3) 0.18 (0.09-0.36)  

Birth Cohort     <.0001 

<=1920 2 (  1.0) 31 (  4.7) 0.19 (0.05-0.83)  

1930 13 (  6.5) 159 ( 24.0) 0.25 (0.13-0.46)  

1940 71 ( 35.7) 214 ( 32.3) 1.00  

1950 75 ( 37.7) 176 ( 26.5) 1.28 (0.88-1.88)  

1960 33 ( 16.6) 63 (  9.5) 1.58 (0.96-2.60)  

>=1970 5 (  2.5) 20 (  3.0) 0.75 (0.27-2.08)  

Sex     0.004 

Male 161 ( 80.9) 469 ( 70.7) 1.00  

Female 38 ( 19.1) 194 ( 29.3) 0.57 (0.39-0.84)  

Race     0.33 

White 192 ( 96.5) 629 ( 94.9) 1.00  

Non-White/Unknown 7 (  3.5) 34 (  5.1) 0.67 (0.29-1.55)  

Childhood Passive Smoke     0.53 

No 49 ( 24.6) 178 ( 26.8) 1.00  

Yes 150 ( 75.4) 485 ( 73.2) 1.12 (0.78-1.62)  

Ever Smoked     0.05 

No 53 ( 26.6) 133 ( 20.1) 1.00  

Yes 146 ( 73.4) 530 ( 79.9) 0.69 (0.48-1.00)  

Ever Drank Alcohol     0.16 

No 30 ( 15.2) 129 ( 19.5) 1.00  

Yes 168 ( 84.8) 533 ( 80.5) 1.36 (0.88-2.09)  

BMI 1 year pre-diagnosis     0.59 

<18.5 3 (  1.5) 17 (  2.6) 0.66 (0.19-2.33)  

18.5-24.9 57 ( 28.8) 213 ( 32.3) 1.00  

25.0-29.9 72 ( 36.4) 220 ( 33.3) 1.22 (0.82-1.82)  

>=30 66 ( 33.3) 210 ( 31.8) 1.17 (0.79-1.76)  
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Table 29 continued 

 

Oropharyngeal 
Cases 
(N=199) 

Other 
Cases 
(N=663)   

 n(%)* n(%)* OR (95% CI)† P-Value‡ 

Highest Level of Education     0.01 

Grade school 4 (  2.0) 35 (  5.3) 0.42 (0.14-1.19)  

High school 115 ( 58.1) 418 ( 63.1) 1.00  

Vocational 8 (  4.0) 40 (  6.0) 0.73 (0.33-1.60)  

College 71 ( 35.9) 169 ( 25.5) 1.53 (1.08-2.16)  

Ever Smoked Cigars     0.81 

No 178 ( 89.4) 597 ( 90.0) 1.00  

Yes 21 ( 10.6) 66 ( 10.0) 1.07 (0.64-1.79)  

Ever Used Smokeless Tobacco     0.06 

No 163 ( 81.9) 579 ( 87.3) 1.00  

Yes 36 ( 18.1) 84 ( 12.7) 1.52 (0.99-2.33)  

Ever Smoked Pipe     0.03 

No 192 ( 96.5) 613 ( 92.5) 1.00  

Yes 7 (  3.5) 50 (  7.5) 0.45 (0.20-1.00)  

Personal History of Cancer     0.03 

No 173 ( 86.9) 534 ( 80.5) 1.00  

Yes 26 ( 13.1) 129 ( 19.5) 0.62 (0.39-0.98)  

Blood Relative Had Cancer     0.001 

No 95 ( 47.7) 227 ( 34.6) 1.00  

Yes 104 ( 52.3) 429 ( 65.4) 0.58 (0.42-0.80)  
*Numbers may not sum to total due to missing values for some variables  
†Odds ratios and 95% confidence intervals were calculated using univariable logistic regression 
models.  
‡P-values represent likelihood ratio Chi-square tests comparing the factor of interest with the null 
model. All  variables were treated as indicators. 
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APPENDIX E 

TUMOR HPV STATUS AMONG N=858 CASES INCLUDED IN MULTIVARIABLE 

LOGISTIC REGRESSION MODELS IN ARTICLE 2 

Among the 858 cases included in our multivariable logistic regression analysis of CPSE and 

HNSCC, HPV status was determined by in situ hybridization in 262 cases (30.5%) (Table 30).  

Evaluation of tumor HPV status was more common among recently diagnosed cases (Table 30), 

in accordance with evolving practices at our institution. As shown in Table 31, the 262 evaluated 

cases consisted of 82 HPV-positive (69 oropharyngeal, 13 other sites) and 180 HPV-negative (22 

oropharyngeal, 158 other sites) tumors. Cases that were evaluated for HPV tended to be younger 

(median=57.4 years) than unevaluated cases (median=61.0 years) (P <.0001) and were more 

often male (79.0%) than unevaluated cases (70.6%) (P=0.01). No difference was observed 

comparing evaluated and unevaluated cases with respect to active smoking (P=0.79), alcohol 

drinking (P=0.34), or CPSE (P=0.93). 
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Table 30. HPV Evaluation By Year of Diagnosis in the Case Series (N=858) 

Year of Diagnosis Evaluated, n/N (%) 

2003 0/1 (0.0) 

2004 0/50 (0.0) 

2005 6/103 (5.8) 

2006 26/120 (21.7) 

2007 35/144 (24.3) 

2008 60/167 (35.9) 

2009 62/148 (41.9) 

2010 73/125 (58.4) 

All Years 262/858 (30.5) 

N=858 represents the number of cases used for 
multivariable modeling, which are a subset of the 
entire (N=862) case series 

 

 

Table 31. HPV Status by Tumor Site Among N=858 Cases Included in Multivariable Logistic 

Regression Models 

 

HPV Status 

Missing/Not 
Evaluated 
(N=596) 

Negative 
(N=180) 

Positive 
(N=82) 

Oropharyngeal case 
(N=197) 

n 106 22 69 

Row % 53.8 11.2 35.0 

Column % 17.8 12.2 84.1 

Other case 
(N=661) 

n 490 158 13 

Row % 74.1 23.9 2.0 

Column % 82.2 87.8 15.9 
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