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Abstract

Synchronization of 30–80 Hz oscillatory activity of the principle neurons in the olfactory bulb (mitral cells) is believed to
be important for odor discrimination. Previous theoretical studies of these fast rhythms in other brain areas have
proposed that principle neuron synchrony can be mediated by short-latency, rapidly decaying inhibition. This phasic
inhibition provides a narrow time window for the principle neurons to fire, thus promoting synchrony. However, in the
olfactory bulb, the inhibitory granule cells produce long lasting, small amplitude, asynchronous and aperiodic inhibitory
input and thus the narrow time window that is required to synchronize spiking does not exist. Instead, it has been
suggested that correlated output of the granule cells could serve to synchronize uncoupled mitral cells through a
mechanism called ‘‘stochastic synchronization’’, wherein the synchronization arises through correlation of inputs to two
neural oscillators. Almost all work on synchrony due to correlations presumes that the correlation is imposed and fixed.
Building on theory and experiments that we and others have developed, we show that increased synchrony in the mitral
cells could produce an increase in granule cell activity for those granule cells that share a synchronous group of mitral
cells. Common granule cell input increases the input correlation to the mitral cells and hence their synchrony by providing
a positive feedback loop in correlation. Thus we demonstrate the emergence and temporal evolution of input correlation
in recurrent networks with feedback. We explore several theoretical models of this idea, ranging from spiking models to
an analytically tractable model.
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Introduction

Synchronization of neural activity has been suggested to

facilitate coding [1–3] and propagation of activity [4–6].

Synchronous stimulus-induced oscillatory activity has long been

known to occur in the olfactory system of mammals [7–11].

Synchronous, rhythmic activity has been proposed to play a role in

odor discrimination tasks [12]. In insects, disruption of synchro-

nous oscillations can impair discrimination of chemically similar

odorants [13]. In mice, enhancement of synchronous oscillations

in the olfactory bulb using genetic modifications improves

performance in fine discrimination tasks [14]. In the mammalian

olfactory system, mitral cell synchrony contributes to the

generation of the gamma oscillations in the local field potential;

for example, in the cat olfactory system, increases in the synchrony

between mitral cells are accompanied by a concomitant increase in

the power of the gamma band in the local field potential [15].

Mitral cells have been shown to undergo synchronization during

odor-evoked responses [16] or during olfactory nerve stimulation

[17]. Although, previous experimental and modeling studies have

highlighted the role of granule cells [18] and lateral inhibition [19]

in the production of gamma oscillations in the olfactory bulb, the

exact mechanism by which such mitral cell synchronization occurs

in the mitral-granule cell network connected by reciprocal

recurrent and lateral connections remains largely unknown.

A possible mechanism of synchronization of mitral cells in the

olfactory bulb is suggested by recent experimental evidence. In

paired recordings from mitral cells, activation of a mitral cell elicits

fast unitary inhibitory post-synaptic potentials (IPSC’s) in a second

mitral cell [17,20,21]. These IPSC’s are due to the synaptic

activation of the shared granule cells via the mitral-granule cell

dendrodendritic synapses. Although the individual IPSC’s are fast,

they arrive randomly (asynchronously), i.e. the output of the

granule cells is not time locked to the stimulus. The temporally

prolonged barrage of these unitary IPSC’s produced in response to

the spiking in the first mitral cell results in a slow rising and long

lasting hyperpolarization in the second mitral cell [20–23]. There

is a variable delay between the evoked IPSC’s in the second mitral

cell and the spike times in the first mitral cell [20]. Thus, the

evoked IPSC’s occur asynchronously [20–22], aperiodically [21]

and the kinetics of hyperpolarization in an ensemble average of the

evoked IPSC’s show a slow rise time (&100{150 ms) and a slow

decay constant (&350{600 ms) [20–22]. In addition, the peak

amplitudes of the ensemble average are small, (&0:4 mV) [20].

The prolonged, asynchronous barrages of IPSC’s have been

shown to be a result of long latency, asynchronous and long lasting

mitral cell recruitment of granule cells [23]. Furthermore, recent

experimental studies into the origin of synchrony between mitral

cells suggests that recovery from shared IPSC inputs from

common granule cells is the primary driving mechanism for
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mitral cell synchrony [17,21]. These physiologically measured

properties of mitral-granule cell interactions suggest a novel

mechanism of synchronization of mitral cells in the olfactory bulb.

Previous studies have proposed that noise can synchronize

oscillators [24]. For neurons to undergo such noise-induced

synchronization they should be periodically firing and should have

some shared fast fluctuations in their inputs. Recent studies on the

mechanism of generation of synchronized oscillatory activity by

long lasting asynchronous, aperiodic inhibition in the olfactory

bulb have revealed exactly such a novel role for noise [21]. It was

shown that two mitral cells firing in the gamma frequency range

can undergo synchronization upon receiving common inhibitory

input from granule cells. The degree of synchronization was shown

to depend on the degree of correlation in the noisy input shared by

the two neurons. Although spiking was synchronized, the shared

noise itself was aperiodic. In all of the experimental and theoretical

studies of stochastic synchronization to date, the degree of

correlation is imposed and held fixed. In our study the degree of

input correlation emerges intrinsically from within the network

and is amplified over time due to the dynamics of the network. In

addition, our study utilizes theoretically derived probability

distribution of phase difference for uncoupled oscillators receiving

shared noise to investigate the conditions necessary for the

existence of bistability in the magnitude of input correlation.

Here we consider the case in which correlated fluctuations from

granule cells arise naturally from granule cells that connect to

many mitral cells. The input correlation to any pair of mitral cells

could increase if the shared pool of presynaptic granule cells

increased their stochastic firing rate thus providing a greater

amount of common noise. In the olfactory bulb, synapses between

mitral and granule cells are dendrodendritic, and almost always

reciprocal [25]. Thus, if a granule cell synapses on a pair of mitral

cells, those mitral cells also synapse on that granule cell. We

hypothesize that, since a pair of mitral cells with correlated input is

more likely to fire synchronously, this pair is also more likely to

provide correlated input to their common granule cell. In turn the

common granule cell could then increases its release of transmitter

increasing the correlation to the mitral cells. The result of this is

that the feedback provides an amplification of correlation. The

goal of this paper is to use computational and analytic techniques

to show that such feedback will increase correlation and as a

consequence, synchrony between oscillating mitral cells.

We describe three models for feedback induced correlation and

stochastic sychronization. We first study one pair of mitral cells

and one common granule cell. The mitral cells are modeled as

simple phase oscillators which are perturbed through their phase-

resetting curves (PRCs). The granule cell is modeled as a noisy

leaky integrate and fire (LIF) neuron receiving synaptic input from

the mitral cell oscillators. The second model replaces each phase

oscillator with the conductance-based Morris-Lecar oscillator.

Finally, to allow for analytic approaches, we reduce the first two

models to a discrete time map which we study using an averaging

technique.

Results

‘‘Spiking’’ Models
During odor inputs or stimulation, mitral cells fire in a narrow

frequency range, so that we can regard them as limit cycle

oscillators [26]. Any oscillator can be represented by a single phase

variable [27], so we first consider a such pair of mitral cells as

phase oscillators:

dhi

dt
~vi

where vi is the natural frequency of the oscillator. These

oscillators receive input from a shared granule cell which is

modeled here as a noisy leaky integrate-and fire (LIF) neuron:

t
dV

dt
~{Vzg(s1zs2)zsj(t):

j(t) is a white-noise process and si(t) are the synaptic inputs from

the two mitral cells:

dsi

dt
~{si=ts:

Each time hi crosses 2p, the synaptic input, si is incremented by 1.

To model the long-lasting synaptic bombardment by the granule

cell, we introduce a variable, r which satisfies

dr

dt
~{e(r{r0):

Each time the granule cell fires (V crosses its threshold, here set to

1), r is incremented by m(rmax{r) and V is reset to 0. r represents

the rate of the shared Poisson process. This shared Poisson process

represents the feedback via dendrodendritic synapses from the

population of granule cells to the mitral cells, the rate of which is

dependent on the spiking activity of the granule cells. In addition,

there are two independent Poisson processes (independent sources

of noise) with fixed rates, r1,r2. Each of these three Poisson

processes generates events which we regard as the brief random

inhibitory post synaptic potentials seen in patch clamped mitral

cells [17]. We suppose that the effect of these inputs on the mitral

cell oscillator is to shift the timing of the next mitral cell spike by an

Author Summary

Neurons in many parts of the brain fire spikes rhythmically
and synchronously in many behaviorally and functionally
relevant contexts. There are many mechanisms for
producing oscillatory synchronization between popula-
tions of biological oscillators. One way to produce
synchrony is that the population of oscillators receives
common correlated input. In this paper, we study a
population of oscillating neurons (mitral cells) that are not
directly coupled to each other but receive broadband
correlated input from a second population of neurons
(granule cells). The granule cell population, in turn,
receives inputs from the mitral cells; hence, the mitral
and granule cells are reciprocally connected. Correlated
input to the oscillating mitral cells produces tighter
synchrony in the activity of the mitral cell population.
We hypothesize that this increased mitral cell synchrony
will evoke greater activity in specific groups of granule
cells and that these specific granule cells, in turn, become
the source of the correlated input to the mitral cells. That
is, the synchronous input from the mitral cells increases
the fraction of correlated feedback. Thus, we close the
correlation loop. We show through analysis and simula-
tions that this feedback mechanism can lead to the
spontaneous appearance of highly synchronous activity
within the mitral cells. We show that there is good
experimental support for this mechanism in the circuitry of
the olfactory bulb. We speculate that such mechanisms
could also arise in other parts of the brain.

Asynchronous Amplification of Synchrony
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amount that depends on its current phase. The function that

determines this shift is called the phase resetting curve, denoted, D(h)
which has been computed for many types of neural oscillators,

including mitral cells [28]. If oscillator j receives an input, then

its subsequent phase (and thus timing) is given by,

hnew~holdzaD(h), where a is the magnitude of the kick. If the

input is generated by the shared processwith rate r, both h1,2 are

incremented while if the event is generated by the process

with rate ri, only oscillator i is incremented. In our simulaftions,

we choose vi~2p=25, t~1, ts~4, rmax~0:5, m~:05, s~0:2,
r0,1,2~0:01, e~:02, D(h)~{ sin h and a~0:5. We vary the

coupling, g to the granule cells from the mitral cells between 0

and 2. We will refer to the above network construction (2 mitral

cells and 1 granule cell) as the 2z1 network. We also made a

network consisting of three oscillators (mitral cells) and three

granule cells (LIF). Oscillators 1,2 drove LIF 1, 1,3 drove LIF 2,

and 2,3 drove LIF 3. Oscillator 1 received Poisson input from

LIF 1,2; 2 from 1,3; and 3 from 2,3. All other parameters are

the same. This network will be referred to as the 3z3 network

as depicted in Figure 1.

There are several ways to quantify synchrony in oscillator

networks. For phase models in which the phase is explicit, it is

convenient to look at the histogram of the phase-differences,

h2{h1; the more peaked is this histogram, the closer to perfect

synchrony (h1~h2) are the two oscillators. Figure 2 depicts

simulations of the 2z1 network. Figure 2A shows a histogram of

the phase-differences, h2{h1 as a function of the coupling from

the mitral cells to the granule cells. When the LIF granule cell is

uncoupled from the mitral cells, g~0, the histogram is nearly flat

as the rate of shared input is the same as the unshared input and

both are quite low. There is a small peak due to the small degree of

correlation. As the coupling to the granule cell increases, the peak

of the histogram becomes much sharper since the firing of the

granule cell is now dependent on the spiking of the mitral cells. As

a consequence of this sharpening, the rate of the shared input, r

increases as shown in the histograms of Figure 2B for identical

values of g. It is important to understand that the firing rate of the

shared granule cell population, r indicates the input correlation in

the mitral cells that share these granule cells, which in turn

represents the magnitude of synchronization of these mitral cell

activities. Hence we use r as a stand-in for synchronization in the

mitral cells. The probability distribution of r can also depict the

stability of the input correlation (and hence synchronization) in the

system. If the distribution is bimodal it indicates the existence of

bistability in the input correlation in the mitral cells (and their

synchronization). Thus in Figure 2B, g~1 is interesting since it

appears to be slightly bimodal,i.e. the distribution of r has two

peaks for g~1. Figure 2C shows a segment of the temporal

dynamics of r for g~2 and g~1. Figure 2D shows a simulation of

the 3 mitral and 3 granule cell network. The peaks are not as sharp

as in Figure 2A for similar input strengths. This is because

oscillator 1 gets two strong inputs from granule cell 1 and granule

cell 2 and thus shares correlations with the two other mitral cells

putting a limit on the maximum correlation from a single cell. We

also simulated a larger network (with 10 mitral cells and 45
granule cells) to confirm that the central peak in the probability

distribution of the phase differences does not decay with increase

in network size (results not shown).

In Figure 2, we modeled the ‘‘mitral’’ cells as a pair of simple

phase models. There is similar behavior when we replace the

Figure 1. Schematic depicting the network architecture. The generalized (3z3) network with 3 mitral cells and 3 granule cells is shown here.
The simplified (2z1) network lacks mitral cells (MC3).
doi:10.1371/journal.pcbi.1000679.g001
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phase oscillators with conductance-based models such as the

Morris-Lecar model but with very pronounced bistability. Figure 3

shows a sample simulation with the same set up as in Figure 2, but

the phase models are replaced by the Morris-Lecar oscillator.

Since phase is difficult to obtain, we instead look at the correlation

between the voltages over a moving time window (see methods).

There appears to be two ‘‘attractors’’; one where the oscillators are

completely uncorrelated and r is low and the other when they are

tightly correlated and r is high. This is suggestive of the possibility

of bistability. Figure 2C (g~1) shows a similar bistability between

the synchronized and desynchronized state. We suspect that

intrinsic noise in the system effects the switch from one to the other

and the positive feedback maintains the states for a long period of

time.

We can begin to understand the mechanism of amplification of

synchronization by considering the dynamics of r. We suppose

that e,m are small so that we can average r and see that its value

depends on the firing rate, F of the LIF:

dr

dt
~{e(r{r0)zmF(rmax{r) ð1Þ

Figure 4 shows how the LIF firing rate, F , depends on the phase

difference between the two oscillators, w. Here we count the number

of spikes in a time window of 10 seconds to determine F . The shape

of this function depends on g, the time constant of the synapse, ts (as

well as other parameters such as t and s). In general, this is a

decreasing function of w. As the strength of the synapse, g increases

or as the decay of the synapse, ts increases, the spike count is larger

and depends less on the phase-difference between the oscillators. For

small g and short-lasting synapses, the LIF is a coincidence detector

and depends very strongly on the timing difference of the inputs.

Thus, for g~1,ts~2, if the phase difference between the two

oscillators is more than about 0.75 radians (corresponding to about

3 msec for oscillators running at 40 Hz) then there will be almost no

firing of the LIF. Similarly, for g~2,ts~1, (green), the timing

difference should be less than 6 msec. For larger g and longer

synapses, the LIF always fires and the ratio of the minimum to the

maximum rates is only modestly small.

We can now see the basic principles underlying the

amplification of stochastic synchronization. Initially, r is low

and the shared granule cell fires at a very low frequency. The

phase difference between the two oscillators drifts, and thus, on

occasion the two mitral cells fire nearly synchronously. This

increases r transiently and thus increases the correlation of the

inputs to the oscillators. This in turn increases the rate at which

the shared granule cell fires, further increasing r resulting in a

positive feedback loop and finally mitral cell synchronization. In

the next section we derive a more abstract model which we are

able to analyze.

Figure 2. Self-organized synchronization in a stochastic feedback network of two mitral cells and one granule cell(2zzzzzz1 network). (A)
Probability density of the phase-difference w~h2{h1 for different strengths of input to the granule cell. The peak at zero phase difference increases
with strength of the synapse. (B) Distribution of the values of r, the shared Poisson rate of the granule cell for different strengths of the synapse. (C)
Plots of r(t) for g~1 and g~2. (D) Phase difference histograms for the 3z3 network. The central peak exists without decay for even larger network
sizes (data not shown) suggesting that stochastic synchronization is robust against larger network sizes.
doi:10.1371/journal.pcbi.1000679.g002
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Reduced Model
We start with exactly the same model as above for the mitral

cells: a pair of phase oscillators. However, instead of explicitly

modeling the LIF and its synaptic excitation we consider only

the r equation (1) which will be incremented according to the

degree of synchronization of the two mitral cells. That is, we

replace F by an explicit functional of the phase-difference

between the two oscillators. As above r sets the rate of a Poisson

process that produces events which excite both mitral cell

oscillators. Similarly, there are two independent processes with

fixed rates r1,2 which provide background unshared noise to the

two mitral cell oscillators. Let Tn be the time interval between

events for these three Poisson processes. We choose Tn from an

exponential distribution with rate rzr1zr2 and then choose

which of the three events has occurred according to the relative

sizes of r,r1,r2 (as per the Gillespie algorithm [29]). We can then

reduce the behavior of the randomly perturbed oscillators to a

map and thus use the theory developed in [30] to determine the

density of the phase-differences. Specifically, let H
(n)
j denote the

phase of oscillator j after the nth kick from a population of

granule cells (common and independent projections). Then

Hnz1
1 ~Hn

1zTnvzc1D(Hn
1) ð2Þ

Hnz1
2 ~Hn

2zTnvzc2D(Hn
2): ð3Þ

cj~a if oscillator j is kicked and is zero otherwise. Thus, if the

event was generated by the common process with rate r,

c1~c2~a, while if it was generated by the independent process,

say, r1 then c1~a and c2~0. These equations simply say that

the phase of each oscillator at the nz1th granule cell spike is

equal to the phase at nth granule cell spike advanced by the

phase traversed by the oscillator given its angular frequency v

in the nth inter-spike interval Tn. If the oscillator receives the nth

granule cell spike (c~1), an additional phase advance/delay

dictated by the phase resetting curve, D(Hn) is added to obtain

the actual phase of the oscillator at the nz1th granule cell spike,

Hnz1
j . The probability of both oscillators receiving granule cell

input simultaneously (c1~1,c2~1) is p~r=(rzr1zr2). The

probability of either one of the oscillators receiving granule

cell input (c1~0, c2~1) and (c1~1, c2~0) is thus
(1{p)

2
. To

simulate this process, we generate two random variables, one to

determine the interval between inputs, Tn drawn from an

exponential distribution and the other drawn from a uniform

Figure 3. Self-induced stochastic synchrony between a pair of Morris-Lecar model neurons and a leaky integrate-and-fire model
neuron. (A) Rate of release of the LIF, ‘‘granule cell’’ showing switches between synchrony and asynchrony. (B–E) Sample voltages at four different
time points corresponding to time in A, showing synchrony when r(t) is high and asynchrony when r(t) is low. High(low) granule cell activity
during synchronized(unsynchronized) mitral cell activity can be observed. (F) Correlation coefficient calculated for the voltage data between the
two mitral cells.
doi:10.1371/journal.pcbi.1000679.g003
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distribution to determine which of the three pairs, (c1,c2)

[f(1,1),(1,0),(0,1)g occurs.

In a previous study [30], p was assumed to be constant. Here,

since p is proportional to the rate of the common granule cell which

is, in turn, proportional to the degree of synchronization of the mitral

cells, we allow p to evolve on a slow scale similar to equation (1):

pnz1~pnze½(Pmin{pn)zC(Wn)(Pmax{pn)� ð4Þ

The functional C could depend on the instantaneous phase-

difference between the mitral cell oscillators Wn~Hn
1{Hn

2 or some

time averaged version of it. We discuss several choices in the next

section. However, we assume that C gets larger when the two

oscillators are more synchronous (Wn near zero) and small when they

are not synchronous. Thus, when C is large (C&1), pn will slowly

evolve toward Pmax while when C is small (C%1), it will decay

toward Pmin. In terms of the original models with the LIF,

Pmin,max~rmin,max=(rmin,maxzr1zr2).

Choice of C(W)
There are at least two plausible ways to choose C a direct and

indirect way. In the direct way, we assume that C is a function of

Wn, while in the indirect version, C is a function of some time

averaged version of the phase-difference, such as an order

parameter. We will discuss the direct choice first.

Single stable fixed point. Figure 4 shows how the firing rate

of the ‘‘granule cell’’ depends on the phase-difference W. The

probability of shared input is proportional to this rate, so a natural

choice for C is proportional to the firing rate F (W) depicted in the

figure, for example, C(W)~K½F (W)=Fmax�M . If M is large, this

creates a highly peaked function of the phase difference with a

maximum at zero. We use the following approximation of such a

function:

C(W)~Ke{M(1{ cos (W)))

With this choice for C, equations (2, 3, 4) constitute a simplified

discrete dynamical system to represent the models from Figures 2 and

3. Figure 5A shows the evolution of pn over time with

e~0:0005,K~6,Pmin~0:1,Pmax~1,M~15,D(x)~{0:25 sin (x).

After a long transient, the stochastic variable, pn tends to a fairly sharp

density function centered around p~0:7 (see Figure 5B). At the same

time, the phase-difference, Wn evolves on a fast scale to a highly

peaked distribution centered at W~0 as shown in Figure 5D. Here,

we let the oscillators evolve according to equations (2, 3) for T
iterations. We see that in the early stages, the density of phase

difference is flat but becomes peaked as the simulation evolves in time.

We can vary the magnitude of the function C, a and examine the

steady-state value of pn. This is shown in Figure 5C. In order to

analyze this equation, we exploit the assumption that e is small. Since

e is small, we can apply averaging and approximate the dynamics of

pn by the dynamics of the averaged equation, qn satisfying:

qnz1~qnze½(Pmin{qn)zSC(Wn)T(Pmax{qn)�, ð5Þ

where SC(Wn)T is the average value of C(Wn). In order to calculate

SC(Wn)T, we require P(Wn,qn), which is the probability density of

phase difference Wn given qn. Since qn evolves slowly, we can treat it

as constant allow the oscillators to evolve until they reach a stationary

density. In [30], we obtain an analytic formula for the steady state

density, P(W,p), the density of phase-differences, W given a

probability, p of common input. From this, we obtain:

SC(Wn)T~

ð2p

0

P(W,qn)C(W)dW:c(qn): ð6Þ

Hence, we can analyze this case by finding the stable fixed points

for the averaged dynamics:

qnz1~qnze½(Pmin{qn)zc(qn)(Pmax{qn)�:

Figure 4. Dependence of the total spike count of the granule cell on the phase-difference of the two oscillators for different input
strengths (g) and integration times of the synapse (ts). Higher dependence of the firing rate on the phase difference is observed for weaker
and shorter synapses. The firing rate is less dependent on the phase difference for stronger and longer synapses.
doi:10.1371/journal.pcbi.1000679.g004
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The fixed points satisfy:

c(q)~
q{Pmin

Pmax{q

c(q) is typically a bounded non-negative increasing function of q.

The right-hand side less than or equal to zero at q~0 and has a

vertical asymptote at q~Pmaxv1, so that there is always at least

one stable fixed point between 0 and 1. For our simple choice of C

there is exactly one stable fixed point for qn. In Fig 5A, the model

was allowed to evolve from random, uniformly distributed initial

phase difference between the two oscillators and various uniformly

distributed initial values for qn. It is seen that irrespective of the

initial conditions, the system evolves towards a single stable fixed

point for qn. The theoretically predicted value of the stable fixed

point agrees well with the median of the distribution of the steady

state qn values from many trials, as seen in Figure 5B. The green

curve shows the function,

f (q)~Pmin{qzc(q)(Pmax{q): ð7Þ

The position of the stable fixed point for qn depends on the

magnitude of a. At small values of a, the steady state lies close to

Pmin. For larger values of a, the steady state qn increases

monotonically towards Pmax. The predicted steady state values

match well with Monte-Carlo simulations as can be seen in

Figure 5C. In Figure 5D, it can be seen that the evolution of

synchrony evolves over time over a time scale of 100 ms, as can be

observed from the distribution of phase difference at different

points during the simulation.

Before moving to the next section, we can ask whether or not

there is more than one stable fixed point to the averaged dynamics.

We conjecture that there will not be. The reason for this is that in

[30], we show that the probability density, P(W,q) has the form:

P(W,q)~
N

1{
2q

1zq

h(W)

h(0)

where h(W) depends on the shape of the PRC, D(h). Integrating P

against C(W) yields a function of q which for small q depends

linearly on q and saturates to C(0) as q?1 (since P approaches a

delta function). Thus, c(q) is roughly like

c(q)&
AzBq

CzDq

Figure 5. Evolution of p in the presence of a single stable fixed point. (A) The temporal evolution of p from various initial states. All initial
states are attracted by the single stable fixed point. (B) Histogram of the final values of p in different trials from (A). The green curve depicts the
numerically calculated values of equation 7 (C) The dependence of the median probability on the amplitude of a. (D) The curves depict distribution of
phase differences drawn at various time points from simulations such as in (A). A slow development of synchrony on the order of hundreds of
milliseconds is observed.
doi:10.1371/journal.pcbi.1000679.g005
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with A,B,C,D positive no matter how we choose C(W). For this

approximation, it is easy to show that f (q) has at most one positive

root. Thus, we expect no bistability between a synchronous and an

asynchronous state. In order to get bistability, there should be an

inflection point c(q), for example by having c(q) depend

sublinearly on q for q small, e.g., c(q)~Aq2 for small q. We will

study a choice of C that produces bistability in the next section.

Bistability. When C is an instantaneous function of W, then there

appears to be no bistability between asynchrony and synchrony. To

produce a model which exhibits the kind of bistability shown in the

full model (e.g. Figure 3A,B), we will assume that C is a function of

some temporal average of the phase difference. That is, instead of

averaging over a nonlinear function of the phase, we apply a

nonlinear function after performing some averaging. Before discussing

how such a rule could be biologically implemented, we consider a

simple choice for this rule. A common measure of synchrony [27,30]

is the circular variance (or ‘‘order parameter’’):

Z :~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S cosWnT2zS sinWnT2

q

We can write this order parameter as a function of the of the

density, P(W,p):

Z(p)~

ð2p

0

cosWP(W,p) dW

since P is an even function of W and in our previous work [30], we

showed that Z(p)&bp for p small; that is, it is linear. The results in

the previous section show we need nonlinear dependence on p, so

we take

C~Z2

which will give us p2 dependence for p small.

This choice of C produces a fundamental change in the system’s

dynamics. The system with, e~0:01,a~10,pmin~0,pmax~1,
D(x)~ sin (x), now displays two distinct stable states as seen in

Fig 6(a), where the system with random uniformly distributed initial

phase difference and qn evolves either to a zero or a non-zero

steady state qn. The steady state distribution of qn values reveals the

two stable fixed points as seen in Fig 6b, both of which are

predicted accurately by theory. The position of the non-zero stable

state depends on the choice of a. Fig 6(c) shows the agreement

between the theoretically predicted value, the mean of the

Figure 6. Evolution of p in the bistable regime. (A) The temporal evolution of p from various initial states. The initial states move randomly to
either one of the stable fixed points. (B) Histogram of the final values of p in different trials from (A). The green curve depicts the numerically calculated
values of equation 7 for the indirect choice of C. (C) The dependence of the steady state probability on the amplitude of a. The taller peak of the
bimodal distribution is depicted by the green curve. (D) Probability distribution of the phase difference between mitral cells for the two fixed points.
doi:10.1371/journal.pcbi.1000679.g006
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distribution of all final states higher than the unstable fixed point

and the position of the peak in the distribution of the non-zero

steady states. Finally, the two stable states differ in their

synchronization. The zero stable state is characterized by oscillators

with low synchrony whereas the non-zero stable state has oscillators

with significantly higher synchrony as can be seen in Fig 6(d).

Discussion

We have described a new mechanism for the amplification of

oscillatory synchrony through feedback. Unlike previous models

that depend on phasic oscillatory inhibition [31], our feedback is

long-lasting (nearly tonic) and highly stochastic. Specifically, we

study stochastic synchronization in a generalized network of mitral

cells by inhibitory granule cell inputs which themselves receive

dendrodendritic mitral cell feedback. The mitral cells are not

directly (monosynaptically) coupled but are coupled disynaptically

via the shared granule cells. Thus, the granule cells provide both

the recurrent and lateral connectivity, as has been described in the

mammalian olfactory bulb. We use spiking models with LIF

neurons to demonstrate the feasibility of stochastic synchroniza-

tion in the olfactory bulb with feedback from granule cells. We

then use abstract models to analyze the mechanism of the self-

organization as a result of the feedback-induced stochastic

synchronization. Our models are based on experimentally

observed kinetics of the mitral-granule cell interaction’s. The key

assumptions of our model, borne out in experimental studies are

that the granule cell output consists of asynchronous, aperiodic,

prolonged barrages of IPSC’s with small average amplitudes and

long ensemble decay constants. Such mitral-granule cell interac-

tions have been observed experimentally using extracellular

stimulation in the glomerular layers as well as intracellular

stimulation of mitral cells [17,20–23].

Fast synchronized inhibition has been shown to play a central

role in producing synchronization in a sparse, randomly

connected network of excitatory and inhibitory cells where the

PING (pyramidal interneuronal network gamma) mechanism is

observed [31]. However, in the olfactory bulb, mitral cells

receive inhibitory postsynaptic potential (IPSC’s) from granule

cells in the form of asynchronous barrages with small average

amplitudes [20]. In addition, the decay time constant of the

probability envelope of these IPSC’s is too long [17,20,21], for a

PING-like mechanism to produce synchrony [32]. PING is

based on fast inhibitory feedback which produces a ‘‘window of

opportunity’’ for the excitatory cells to fire and thus requires

strong inhibition. The synchrony induced by stochastic syn-

chrony is not locked to the inhibitory events, but instead relies

on the correlations in the ‘‘noisy’’ granule cell inputs shared by

mitral cells. Here, we study the role of feedback in this system.

Specifically, we propose that more synchronous mitral cell

activity could produce activity of shared granule cells which

would result in higher correlations in the input to the mitral

cells. In other words, we propose a positive feedback loop in

which the stochastic synchronization of mitral cells is enhanced

by the correlated inhibitory output from granule cells, which in

turn is enhanced by the correlated mitral cell spiking. As the

synchrony is dependent on correlation of input from shared

granule cells rather than fast transient inhibition, it is a distinct

and separate mechanism from PING.

Olfactory bulb circuitry is unique in the central nervous system.

The principle output cells, mitral cells, make synapses with the

inhibitory granule cells through their dendrites rather than their

axons. Activity of the granule cells produces long lasting recurrent

and lateral inhibition which has two components: a long lasting

slow component and a fast random component. The slow

component acts to keep the spike frequency of the mitral cells in

a limited range i.e. the firing rate of the mitral cells does not vary

much with odor concentration [26], thus the slow asynchronous

inhibition acts to balance the excitatory drive to the mitral cells.

The fast component serves as ‘‘correlated noise’’ to synchronize

mitral cell oscillations. Granule cells do not need to spike to

produce inhibition , thus, with weak stimulation, effects of

inhibition remain local and provide little correlation between

mitral cells. However, if several mitral cells fire together, then this

may be enough to cause the shared granule cell to fire spikes

resulting in the widespread calcium release into granule cell

dendrites and thus, all the mitral cells that are connected to that

particular granule cell will receive fast correlated random

inhibitory input [17] which results in lateral inhibition.

In the spiking model, we use a slow variable r(t) to describe a

shared Poisson process whose rate is modulated by the spiking of

the single common granule cell in the 2z1 model. This process is

used to mimic a population of common granule cells whose firing

rates are modulated by synchronized firing of the mitral cells. This

simplification is used in order to obtain a probability envelope of

an ensemble average of shared granule cell inputs where individual

granule cells are assumed to be Poisson processes. We show in the

spiking model that stochastic synchronization can indeed be

induced by the feedback loop between the mitral and granule cells.

We show that in the abstract model using general oscillators that

a feedback loop between mitral and granule cell input can indeed

synchronize mitral cell activity which is otherwise uncorrelated.

The abstract model also provides important insight into the nature

of dependence of the evolution of p on the phase difference, W
between the oscillators. Dependence of W on a centrally peaked C,

produces a system with only one stable steady state. On the other

hand, if C is an order parameter, then bistability between

synchrony and asynchrony is possible in some parameter regimes.

The spiking network also displays similar dependence on granule

cell activity. Both the abstract and spiking models show a gradual

temporal evolution of synchrony which is similar to observed

evolution of synchrony in the olfactory bulb(see figure 2A in [17]).

The Morris-Lecar model suggests the existence of bistability, even

though the granule cell rate is dependent on the instantaneous (as

opposed to time averaged) timing difference between the two

mitral cells. This could be a consequence of the fact that the

synapses to the mitral cell oscillators have temporal dynamics

rather than being instantaneous. Interestingly experimental

observations of desynchronized to synchronized shifts of mitral

cell activity and vice versa [17](see figure 2C) seem to suggest the

possibility of bistability in the input correlation (and synchrony of

mitral cells) in the olfactory bulb. We conjecture that in the

olfactory system, the mitral-granule network is monostable. But, if

bistability should indeed exist, it would most probably be mediated

by a slow process that accumulates coincident activity of mitral

cells over time. Bistability might be common place in other cortical

networks where such memory forming slow cellular processes

might have evolved. In such networks, a transient increase in

correlated inputs can push the system from one state to another,

hence allowing for a transient correlation-induced dynamic

switching behavior. Evoked IPSC’s in a lateral mitral cell are

known to occur with a variable latency [20]. Granule cell activity is

also known to develop with a variable long-latency [23]. In

addition, synchrony between mitral cells is known to develop with

a variable delay (50–150ms) [17]. These latencies are thought to

be a function of the stereotypical fashion in which mitral cells

recruit granule cell activity and in turn experience a shaping of

their own activities. Our models did not include detailed cell type
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specific morphologies but could reproduce the time dependent

evolution of synchrony between mitral cells (see Figure 5D).

Both the simple and generalized network models have a

notable dependence of their synchronization on the rate of

decay of p. Finally, it can be seen that the phase difference of

two mitral cells is highly dependent on the firing rate of the

granule cell. These results taken together suggest that

stochastic synchronization does play a major part in deter-

mining the activity of a network of mitral and granule cells in a

closed loop with feedback connectivity. Although this investi-

gation focuses on specific details of the olfactory circuit, the

proposed mechanism is generally applicable to cortical circuits

that include a subpopulation of neurons that provide long

lasting, small amplitude, asynchronous outputs. We conjecture

that the general mechanism proposed here could be at play

in other parts of the brain where such asynchronous release

with long decay times have been previously reported, for

example, the hippocampal cholecystokinin-expressing inter-

neuron-granule cell circuit [33]. In this study, we did not

investigate the importance of synaptic depression and facilita-

tion, or spike frequency adaptation in determining the absolute

amount of synchrony or in mediating the switch from the

asynchronous to synchronous states. Such a control of the

amount of synchrony and/or switches between the two

extreme states may also be mediated by top-down modulation

of granule cell firing, hence allowing for a cortical control of

mitral cell synchronization.

Methods

Morris Lecar Model
We used the general Morris-Lecar model with the following

equations.

C
dVi

dt
~I{gcam?,i(Vi{VCa){gkwi(V1{VK )

{gl(Vi{Vl){gsynsi(V1{Er))

tw,i
dwi

dt
~w(w?,i{wi)

m?,i(V )~
1

2
(1z tanh ((V{Va)=Vb))

w?(V )~
1

2
(1z tanh ((V{Vc)=Vd ))

tw,i(V )~
1

cosh ((V{Vc)=(2Vd ))

ts
dsi

dt
~{si

with parameters, gCa~4:4,gk~8,gl~2,gsyn~:1,Er~{70,Vk~

{84, Vl~{60, VCa~120, Va~{1:2, Vb~18, Vc~2, Vd~30,

w~:04,ts~5,C~20.

To compute the correlations shown in Figure 3, we compute

xij(t)
1

T

ðt

t{T

(Vi(s){V )(Vj(s){V ) ds

and plot x12(t)=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x11(t)x22(t)

p
.
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