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Abstract

Background: Mammary stem cells are maintained within specific microenvironments and recruited throughout lifetime to
reconstitute de novo the mammary gland. Mammary stem cells have been isolated through the identification of specific cell
surface markers and in vivo transplantation into cleared mammary fat pads. Accumulating evidence showed that during the
reformation of mammary stem cell niches by dispersed epithelial cells in the context of the intact epithelium-free mammary
stroma, non-mammary epithelial cells may be sequestered and reprogrammed to perform mammary epithelial cell
functions and to adopt mammary epithelial characteristics during reconstruction of mammary epithelium in regenerating
mammary tissue in vivo.

Methodology/Principal Findings: To examine whether other types of progenitor cells are able to contribute to mammary
branching morphogenesis, we examined the potential of murine embryonic stem (mES) cells, undergoing hematopoietic
differentiation, to support mammary reconstitution in vivo. We observed that cells from day 14 embryoid bodies (EBs) under
hematopoietic differentiation condition, but not supernatants derived from these cells, when transplanted into denuded
mammary fat pads, were able to contribute to both the luminal and myoepithelial lineages in branching ductal structures
resembling the ductal-alveolar architecture of the mammary tree. No teratomas were observed when these cells were
transplanted in vivo.

Conclusions/Significance: Our data provide evidence for the dominance of the tissue-specific mammary stem cell niche
and its role in directing mES cells, undergoing hematopoietic differentiation, to reprogram into mammary epithelial cells
and to promote mammary epithelial morphogenesis. These studies should also provide insights into regeneration of
damaged mammary gland and the role of the mammary microenvironment in reprogramming cell fate.
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Introduction

Mammary gland development occurs mostly postnatally and is

dependent on a complex interplay of systemic hormones and

local growth factors [1,2,3]. The mammary gland is composed of

a network of branching ducts that terminate in sac-like lobules

embedded in stromal tissue. There are two primary epithelial cell

lineages, the myoepithelial and the luminal cells (comprised of

ductal and alveolar subtypes), which are presumed to arise from a

common progenitor cell. Generation of a functional mammary

gland from a single mammary stem cell has been reported by two

groups [4,5]. A discrete population of mouse mammary cells with

cell-surface markers Lin2CD29hiCD24+ was found to be

enriched for transplantable mammary stem cells [4]. It was also

reported that a single cell, CD452Ter1192CD312Sca1low

CD24medCD49fhigh, marked with a LacZ transgene, was able to

reconstitute a complete mammary gland in vivo. The transplanted

cells contributed to both the luminal and myoepithelial lineages

and generated functional lobulo-alveolar units during pregnancy

[4,5].

The cleared fat-pad transplantation system provides a useful in

vivo system for studying mammary epithelial morphogenesis [6].

This method is based on the fact that the mouse mammary gland

is not fully developed at 3 weeks of age, making it possible to excise

the rudimentary mouse mammary epithelium from the fat pad,

resulting in a cleared fat pad devoid of any epithelium. Subsequent
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engraftment of mammary epithelial cells (MECs) before puberty

yields an anatomically normal functional mammary gland.

The mammary microenvironment plays important function in

the regeneration of mammary gland. Mammary stem cells are

maintained within specific microenvironments (niches) in the

mammary gland and these mammary stem cell niches can be

reconstituted de novo by mammary epithelial cells as shown in

several studies [7,8,9,10,11,12,13]. Transplanted epithelial cells

from the glands can induce mammary regeneration by providing a

niche with local signaling cells and extracellular matrix that sustain

stem cells [14]. Additionally, parity-identified mammary epithelial

cells (PI-MEC), originating from differentiating cells during

pregnancy, were shown to possess pluripotency and self-renewal

upon transplantation and contributed progeny directly to the

formation of secretory acini upon subsequent pregnancies [11,13].

Interestingly, a recent study [15] showed that testicular cells can

interact with the mammary epithelial cells within the mammary

stroma, proliferate and contribute to epithelial cell progeny,

resulting in mammary outgrowth. These testicular cells, when

mixed with mammary epithelial cells and when transplanted into

denuded mammary fat pads, were able to adopt a mammary

epithelial cell phenotype, indicating that the mammary niche can

redirect spermatogenic cell fate into mammary epithelial cell fate

in vivo. Further, murine fetal and adult neural stem cells (NSCs)

when mixed with equal numbers of mammary epithelial cells

(MECs) and inoculated into epithelium-divested mammary fat

pads of prepubertal female mice, the NSCs contributed to

mammary epithelial specific progeny and mammary outgrowths

(16). Thus, non-mammary tissues could be altered from their

initial cell fate lineage to adopt mammary epithelial characteristics

upon interaction with mammary epithelial cells during recon-

struction of mammary epithelium in regenerating mammary tissue

in vivo (17). However, it is unknown whether other sources of stem

cells can generate epithelial progenitors that can reconstitute

mammary tissues without the contribution of MECs. Here, in this

study, we examined whether murine embryonic stem (mES) cells,

undergoing hematopoietic differentiation, can support the recon-

stitution of mammary outgrowth when transplanted into epithe-

lium-divested mammary fat pads.

Embryonic stem (ES) cells are pluripotent cells derived from the

inner cell mass [16,17]. These cells are capable of undergoing an

unlimited number of symmetrical divisions without differentiation.

In addition, these cells can give rise to differentiated cell types of all

three primary germ layers of the embryo [18]. To address whether

mES cells can contribute to mammary epithelial morphogenesis,

we established three-dimensional (3-D) cultures of mES, using

E14, E14-GFP and Rosa26.6 ES cell lines, for differentiation into

MECs. E14-GFP is a mouse ES cell line with green fluorescence

protein (GFP) and the Rosa26.6 cells contain a LacZ, which was

used for cell lineage tracing. In addition, we analyzed the potential

of mES cells undergoing hematopoietic stem cell differentiation for

their ability to induce mammary epithelial morphogenesis in vivo

in mice and established the conditions for such reprogramming of

cell fate in the mammary microenvironment.

Results

The Potential of Murine ES Cells to Differentiate Into
Mammary Epithelial Cells

To assess the multilineage differentiation potential of mES cells

to generate in vitro complex functional structures reminiscent of the

mammary tree, we employed the 3-D cultivation system which

provides the physiological signal necessary for mammary mor-

phogenesis in vitro and enables mammary cells to recapitulate the

spatial orientation and architecture of the mammary tree in vivo

[11,13]. The differentiation potential of mES cells was assessed by

determining the ability of mES cells to develop functional ductal-

alveolar-like structures using Matrigel matrix. Acini structures

were generated in vitro by mES cells, the E14-GFP and Rosa 26.6

ES cells, when cultured in epithelial media under 3D-culture

conditions (Figure 1A). Nuclear staining and confocal microscopy

showed elongated hollow tubular structures (Figure 1A, panels ii-

iii). Next, these cells were tested for expression of the mammary

gland cell-lineage specific markers CK5, CK14, WAP and b-

casein. These cells were positive for CK5 and CK14, but negative

for b-casein and for the specific mammary whey acidic protein

(WAP) (Figure 1B). When these 3D mammary epithelial cells were

examined for their potential to support mammary branching

morphogenesis in vivo, these cells failed to differentiate in vivo along

all three mammary gland cell lineages and were unable to

structurally and functionally recapitulate the architecture of the

mammary gland.

Hematopoietic differentiation of murine ES cells and their
transplantation into denuded mammary fat pads

Next, we examined the potential of embryoid bodies (EBs)

derived from GFP-E14 mES cells to reconstitute mammary

epithelial morphogenesis. First, we used EBs formed in medium

without specific growth factors to allow random differentiation of

ES cells. Transplantation of these EBs failed to induce mammary

epithelial branching morphogenesis. Next, we employed EBs

formed under hematopoietic differentiation conditions following

established protocols (StemCell Technologies, Vancouver, Ca-

nada) involving a two-step EB method. First, spherical cell EB

aggregates were generated that contain ectodermal, mesodermal

and endodermal derivatives (Primary Differentiation). EB aggre-

gates were then selected for hematopoietic precursors and

expanded with growth factors consisting of EPO, IL-3 and IL-6

(Secondary Hematopoietic Differentiation). Cells were processed

for the Wright-Giemsa staining; RT-PCR and Western blot

experiments at different times of EB culture differentiation as

indicated.

Expression of hematopoietic specific markers, such as Bata-H1,

Tie-2, Flk-1, Sca-1 and PECAM-1 were analyzed in EBs. As

expected (Figure 2), hematopoietic-differentiated EBs derived from

GFP-E14 mES cells at day 8 and day 14 expressed Bata- H1/

Sca1+/Flk1+/PECAM1+. These EB-derived from GFP-E14 mES

cells were then transplanted into denuded mammary fat pads.

Substantial engraftment of the fat pad by EBs at day 14 was

evident (Figures 3–4).

Histological sectioning of the mammary glands revealed normal

ductal structures composed of both luminal and myoepithelial

cells, as indicated by carmine staining and immunostaining with

specific luminal marker cytokeratin 18 (CK18) or the myoepithe-

lial marker cytokeratin 14 (CK14) (Figure 3B, 3C, 3D). We found

that while EBs at day 7 were unable to support mammary

outgrowths, the EBs at day 14 undergoing hematopoietic

differentiation, contributed to the reconstitution of ,26% of the

mammary fat pads. The contribution of mammary morphogenesis

by day 14 EBs derived from GFP-E14 mES cells, resulted in

functional reconstitution of the mammary tissue as revealed by

Carmine analysis, GFP expression, and expression of cytokeratin

14 and 18 at 8 weeks post transplantation (Figure 3B, 3C).

Reconstitution was observed in 10 denuded mice out of 38 mice

transplanted with GFP-E14 mES cells, while no reconstitution was

observed in denuded mice transplanted with either GFP-E14-EBs

at day 7 or at day 0 (Figure 4A, 4B). Importantly, we did not

observe any reconstitution of denuded mammary fat pads injected

Mammary Gland Reconstitution
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with PBS (total of 57), indicating that tfat pads were properly

cleared (Figure 4).

Examination of the mammary fat pads for GFP expression (for

EBs derived from E14-GFP) or with LacZ staining (for EBs

derived from Rosa26.6 ES cells) 8 weeks after injection clearly

demonstrated sites of engraftment and expansion of these EB cells

in ,25% of the total inoculated fat pads (Figure 5A). In addition,

in order to estimate the efficiency of reconstitution, we performed

a dose response by increasing the number of transplanted day-14

EB-derived cells from 105 to 106, 56106 and 107. Transplantation

of these EB-derived cells resulted in an enhanced number of

reconstituted mammary morphogenesis (Figure 5A, 5B). Of note,

we did not observe any cases of teratoma formation when cells

from day 7 or 14 EBs were transplanted into mammary fat pads (a

Figure 2. Time course of hematopoietic differentiation of mES-E14/GFP. Differentiated hematopoietic EBs at days 8 and 14 were analyzed
by RT-PCR analysis. This is a representative experiment out of 5.
doi:10.1371/journal.pone.0009707.g002

Figure 1. mES cells were able to clonally reproduce acini in vitro. (A) Confocal microscopy of mES E14-GFP cells (Panels A(i) and A(ii) and Rosa
26.6 ES cells Panel A(iii) showing acini structures. The mES cells were grown in epithelial media under 3D Matrigel matrix conditions. Cells were grown
for 10 days and stained with control IgG (Panel i) or with CK14 antibody (Panel ii), or with cytokeratin CK 18 (Panel iii). In addition, nuclear staining
(DAPI) was performed, and is shown at 60X magnification (scale bar, 20 mm). This is a representative experiment out of four experiments. (B) RT-PCR
analysis of 3-D mammary epithelial cell cultures derived from 3D-E14-ES cells (lane 1) 3D-Rosa 26.6 mES cells (lane2), control Rosa ES cells and E14-ES
cells, respectively (lanes 3 and 4). Specific primers for murine b-casein, WAP, CK 5, CK 14 and GAPDH were used in this analysis. This is a representative
experiment out of 3.
doi:10.1371/journal.pone.0009707.g001
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PLoS ONE | www.plosone.org 3 March 2010 | Volume 5 | Issue 3 | e9707



Mammary Gland Reconstitution

PLoS ONE | www.plosone.org 4 March 2010 | Volume 5 | Issue 3 | e9707



total of more than 120 transplantation of mammary fat pads were

performed), while mES cells without differentiation formed

teratoma in vivo (data not shown).

Supernatants derived from EBs failed to support
mammary reconstitution

To further assess the importance of the contribution of cells

from murine hematopoietic EBs to the reconstitution of mammary

branching morphogenesis, denuded mammary fat pads were

injected with supernatants derived from EBs at days 7 and 14.

While the reconstitution of mammary epithelial morphogenesis

was observed with day-14 EB cells (as revealed by carmine

staining, GFP expression and expression of cytokeratins 14 and 18

at 8 weeks post transplantation), supernatants generated with day-

7 and day-14 EBs injected into denuded mammary fat pads

(n = 20) failed to induce the reconstitution of mammary epithelial

morphogenesis (data not shown). These results indicate that the

presence of cells from hematopoietic differentiated murine EBs

contributing progenitor cells for mammary outgrowths are needed

in the denuded mammary fat pads in order to interact with the

stroma microenvironment within the mammary fat pads and to

contribute to the reconstitution de novo mammary outgrowths.

Demonstration of Y chromosome-specific sequences in
mammary glands

PCR analysis of the DNA isolated from the reconstituted

mammary outgrowths demonstrated the presence of sequences

specific to the Y chromosome, verifying the presence of the donor

murine ES cell DNA (Figure 5C). Positive cells were detected for

the Y chromosome, suggesting that hematopoietic EBs derived

Figure 4. Reconstitution of mammary epithelium by mES cells. (A) Whole-mount staining of transplanted mammary glands. The 4th

mammary fat pad of 3 weeks old female mice were denuded and transplanted with either E14 mES cells, or EBs at day 7 or EBs at day 14, (ES cells
were in-vitro differentiated in Methylcellulose into hematopoietic EBs at day 14 or at day 7), as indicated. Eight weeks after transplantation, whole-
mount staining of the mammary fat pads were performed with carmine staining (magnification 2X, scale bar: 10 mm). (B) Virgin recipients harvested
8 weeks after transplantation with hematopoietic EB-derived E14-GFP ES cells at days 0, 7 and 14, as indicated. As a control, the mammary fat pad was
denuded and injected with PBS at the same time and under the same conditions as the other samples. After 8 weeks of transplantation, the
mammary fat pads were analyzed with carmine staining, GFP staining, CK 14, CK 18 and by whole mount analysis of epithelial outgrowths arising
from transplantation. Controls were mammary fat pads from denuded mice without transplantation. *Statistical significance p,0.005.
doi:10.1371/journal.pone.0009707.g004

Figure 3. Hematopoietic EB-derived E14 (GFP) mES cells at day 14 can reconstitute mammary fat pads. (A) Sections of WT mammary fat
pads derived from 2 control mice stained with anti-GFP antibody. This served as negative control for GFP staining (20X magnification; scale bar,
100 mm). (B-C) Sections of GFP+ outgrowths derived from reconstituted mammary fat pads from mice stained with GFP, carmine, CK 14 and CK 18 as
indicated. 206magnification for GFP and Carmine staining. B: (scale bar, 100 mm), 40X magnification for CK18 and CK14 staining (scale bar, 50 mm) C:
20X magnification (scale bar, 100 mm). These are representative analyses of immunostaining of transplanted mammary fat pads, out of 56
transplanted mammary fat pads. (D) Reconstituted mouse mammary epithelial cells stained for either control antibodies or for both CK 18 (red) and
CK 14 (green). 49,6-diamidino-2-phenylindole (DAPI) (blue) was used to stain the nuclei. 1:300 diluted polyclonal antibody of CK 14 (Covance,
Catalogue number PRB-155p) and 1:300 diluted monoclonal antibody of CK 18 were used for immunostaining. Secondary antibodies were added and
sections were imaged using a confocal microscope (60X magnification; scale bar, 20 mm).
doi:10.1371/journal.pone.0009707.g003
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Figure 5. Effects of increasing numbers of hematopoietic EB-derived mES cells on mammary epithelial morphogenesis. (A)
Immunostaining and whole-mount analysis of epithelial outgrowths induced bytransplantation of day14 EBs. (B) The mammary fat pads were
analyzed with carmine staining, GFP staining, CK 14, CK 18 and by whole mount analysis of epithelial outgrowths arising from transplantation. (C)
FISH with mouse X and Y chromosome probes on reconstituted mammary gland. Mouse X and Y chromosome FISH analysis were used on paraffin-
embedded sections of reconstituted mammary glands with mEBs derived from E14-GFP mES cells at day 14. The X chromosome was labeled in red

Mammary Gland Reconstitution
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from mouse ES cells contribute epithelial cell progeny and

resulting in mammary outgrowths.

Discussion

While all previous reports had demonstrated the reconstitution

of mammary morphogenesis using mammary epithelial progenitor

cells, this study provides the first description, to our knowledge, of

the reconstitution of the mammary morphogenesis using cells that

were not derived from primary mammary tissues. Here we showed

that mammary morphogenesis can be induced and promoted by

transplantation of murine ES cells undergoing hematopoietic

differentiation. The transplanted EB-derived cells were able to

contribute to branching duct-like structures that recapitulate the

ductal-alveolar-like architecture of the mammary tree, providing

support to both the luminal and myoepithelial lineages. We did

not observe teratoma formation when these cells were transplanted

in vivo. These results strongly suggest the importance of the

mammary gland microenvironment for the generation of breast

epithelial cells, derived from murine ES cells undergoing

hematopoietic differentiation.

The interaction of epithelial cells with the stromal cells in the

mammary gland is critical for mammary gland development and

the differentiation into luminal and myoepithelial cell lineages.

The epithelial tissue-specific stem cells are dispersed throughout

the mammary gland and are maintained in the surrounding

microenvironment. A parity-induced mammary epithelial cell

population (PI-MEC) that possesses the properties of pluripotency

and self-renewal upon transplantation was shown to reconstitute

mammary outgrowth and morphogenesis [15]. Recently, epithelial

cells derived from testicular cells, when supplied with mammary

epithelial cells [15], were shown to alter their cell fate upon

interaction with the mammary gland microenvironment during

pregnancy, lactation and involution. These testicular cells were

able to interact with the mammary epithelial cells within the

stroma, proliferate and contribute epithelial cell progeny to the

resulting mammary outgrowth. Here, we extended these observa-

tions and showed that murine hematopoietic cells derived

from mES cells were also able to reconstitute of mammary

morphogenesis.

These studies support the notion that the mammary tissue

microenvironment has a critical role in reprogramming the

intrinsic nature of cells from an alternative adult tissue and can

redirect stem cell fate when transplanted into mammary fat pad.

Our experimental data showed that mES undergoing hematopoi-

etic differentiation can directly reprogram to epithelial progeny

and de novo regeneration of stem cell niches in the mammary

glands based on the following data:

1) In all control experiments where denuded fat pads had sham

injection of PBS and no exogenous cells, we never observed

any reconstitution of mammary gland.

2) No reconstitution was observed when murine cells from

embryoid bodies undergoing random differentiation were

transplanted. Reconstitution was observed only when murine

cells were used from EB bodies generated under conditions

that promote hematopoietic differentiation.

3) Reconstitution from transplanted murine cells was further

supported by the use of GFP-tagged ES cell line. GFP+ cells

were observed in branching mammary cells that stained also

for carmine and other specific marker for luminal (CK18) and

myoepithelial (CK14) cytokeratin.

Taken together, the study provides clear evidence for the ability

of differentiated murine ES cells enriched for hematopoietic

progenitor cells to regenerate mammary morphogenesis in vivo.

The study provides clear evidence for the critical role of the

mammary microenvironment in determining progenitor cell fate

and mammary cell function. The assay we described is useful for

studying ‘‘mammary morphogenesis’’ with potential application as

a possible model system for drug discovery.

Materials and Methods

E14 differentiation to epithelial cells in 3D culture
Growth Factor Reduced Matrigel was purchased from BD

Biosciences (354230). Fifty ml of growth factor reduced matrix gel

was added to each well chamber. The chambers were placed in a

cell culture incubator to allow the basement membrane to solidify

for at least 20 minutes. While the Matrigel was solidifying, ES cells

were trypsinized and single cells were seeded on Growth Factor

Reduced Matrigel. The cells were grown in mammary epithelial

cell media purchased from Clonetics (CC-4136), containing 2%

FBS and 2% Matrigel. Every two to three days, the media were

replaced with fresh media. The cells formed clusters by day 4–6 of

the 3-D cultures and subsequently started forming hollow lumen

[19]. Cells were then analyzed for specific mammary epithelial cell

markers by confocal microscopy and RT-PCR methods.

Derivation of embryoid bodies from ES cells
The Rosa26.6 ES cell line was obtained from Dr. Stuart Orkin

(Children’s Hospital, Harvard Medical School); The E14 and

GFP-E14 cell lines were obtained from Dr. Bing Lim (Beth Israel

Deaconess Medical Center, Boston). Culture and maintenance of

ES cells in an undifferentiated state were performed as described

previously [20]. Briefly, ES cells were maintained on a mouse

Primary Embryonic Fibroblast (PEF) feeder cell line in ES medium

containing Dulbecco’s modified Eagle’s medium (DMEM) with

high glucose, 10 ng/ml murine leukemia inhibitory factor (mLIF;

Chemicon International, Temecula, CA), 15% fetal calf serum

(FCS; Hyclone, Logan, UT), 1 mM sodium pyruvate, 2 mM

glutamine, 0.1 mM nonessential amino acids, 100 mM mono-

thioglycerol (MTG; Sigma), 50 U/ml penicillin, and 10 mg/ml

streptomycin. The ES cell lines were regularly analyzed by using

an ES cell characterization kit (Chemicon), for determination of

alkaline phosphatase activity and detection of surface markers and

transcription factors that are expressed by undifferentiated ES

cells, such as Oct-4, Rex-1, SSEA-1 and FoxD3 (Genesis).

In vitro hematopoietic differentiation of ES cells was performed

as described, essentially according to the protocol of StemCell

Technologies. The embryoid body (EB) method involves two steps:

first, spherical cell aggregates (termed embryoid bodies = EBs) are

generated that contain ectodermal, mesodermal and endodermal

derivatives ( = Primary Differentiation); second, these aggregates

are selected for hematopoietic precursors and expanded with

growth factors such as EPO, IL-3 and IL-6 ( = Secondary

Hematopoietic Differentiation). Briefly, EBs were generated in

1% methylcellulose cultures (16104 ES cells per 35 mm Petri dish).

and the Y chromosome (detecting mES cells derived EBs) was labeled in green (y). The nuclei were stained with DAPI. a. Positive mammary epithelial
cell for both x and y probes (6100 magnification); b. Positive mammary epithelial cells for both x and y probes are shown, as detected in the duct
sections of the reconstituted mammary fat pads with EBs at day 14 (660 magnification).
doi:10.1371/journal.pone.0009707.g005
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To promote primary differentiation into EBs, ES cells were

cultured in ES differentiation medium containing Iscove’s

modified Dulbecco’s medium (IMDM), 15% FBS, 2 mM L-

glutamine, 150 mM MTG, and 40 ng/ml mSCF. After 8 days of

differentiation, the EBs were collected and washed. 16104 of

single cells were seeded on 1% methylcellulose from the secondary

hematopoietic differentiation medium. 15% FBS, 2 mM L-

glutamate, 150 mM MTG, 20% BIT (10% BSA, 10 mg/ml insulin,

200 mg/ml transferrin), 150 ng/ml mSCF, 30 mg/ml IL-3, 30 mg/

ml IL-6 and 3 U/ml Epo were added to the culture to promote

hematopoietic differentiation. Cells were processed for Wright-

Giemsa staining, RT-PCR and Western blot analyses at different

times of EB culture differentiation, as indicated.

To determine the characteristics of various types of hemato-

poietic progenitors present during ES cell differentiation, EBs from

ES cell lines were collected from the cultures at days 8 and 14

(from the day of replating) to obtain the hematopoietic

progenitors. Following cytospin preparation of these cells, they

were stained with Wright-Giemsa and examined under a light

microscope. Undifferentiated ES cells have a large nucleus,

minimal cytoplasm, and one or more prominent dark nucleoli.

Hematopoietic progenitors found in EB-day 14 cultures were

identified by the morphology of erythroids, megakaryocytes,

monocytes/macrophages, granulocytes and mast cells, as analyzed

by brightfield microscopy.

Mammary Fat Pad Transplantation and Analysis
Murine cells were resuspended in PBS and into the inguinal

mammary glands of 3-week-old female BALB/c mice that had

been cleared of endogenous epithelium. All mice were housed in

AAALAC-accredited facilities in accordance with the NIH Guide

for the Care and Use of Laboratory Animals. The BIDMC and

Harvard Medical School Committees approved all experimental

procedures. Recipient glands were removed for evaluation after 8

weeks unless otherwise stated. Whole mounts of wild-type

mammary outgrowths were stained with hematoxylin. LacZ+

outgrowths were detected by X-Gal staining. GFP+ outgrowths

were detected by GFP staining. An outgrowth was defined as an

epithelial structure comprised of ducts arising from a central point,

with lobules and/or terminal end buds.

Immunostaining
Paraffin-embedded sections were deparaffinized and dehydrat-

ed, washed in PBS, and subjected to antigen retrieval using

treatment with 150 mM glycine, microwaved for 15 minutes,

before blocking. Primary antibody staining was performed

overnight at 4uC, while secondary antibody staining was

performed for 30 minutes and DAPI staining for 5 minutes at

room temperature. Antibodies for GFP, cytokeratin 14 (Covance)

and cytokeratin 18 (Progen Biotechnik) were used for immuno-

histochemistry. Fluorochrome-conjugated secondary antibodies

included anti-rabbit and anti-mouse Ig-Alexa594 and anti-rabbit

Ig-Alexa488 (Molecular Probes). Matrigel cultures were prepared

and immunostained as described [21]. Sections were imaged using

a confocal microscope (Zeiss LAM 510Meta). For human and

murine adult hematopoietic stem cell transplantation, the paraffin-

embedded sections were immunostained with human (cytokeratin

Pan) (ABR Catalog #MA1-26268) and murine (cytokeratin 18

and 14) (Zymed Laboratories).

Whole Mounts and Immunohistochemistry
For murine whole-mount analysis, fresh mammary tissue was

flattened and fixed in Carnoy’s solution (ethanol, glacial acetic

acid, and chloroform) and subsequently stained with carmine alum

(carmine, AlKSO4).

Differentiation Culture Conditions, Cell Fixation, Staining,
and Confocal Microscopy Analysis

Cells were washed with 16PBS, fixed for 10 minutes with 4%

paraformaldehyde-PBS, and then stained for CK18 and/or

CK14, as indicated. Confocal microscopy analysis was performed

using a Zeiss LAM 510Meta.

LacZ Staining in Whole Mammary Tissue
The bacterial beta-galactosidate gene lacZ is frequently used as

a reporter gene. The expression of transgenic constructs can be

monitored by histochemistry with the chromogenic substrate X-

gal. This allows precise cellular localization of gene activity. No

background staining was detectable in mammary tissue when lacZ

staining was performed. The mammary gland tissue was fixed for

2 hours in 2% paraformaldehyde, 0.25% glutaraldehyde, 0.01%

NP-40 in PBS. Slides were rinsed and incubated with PBS

containing 2 mM MgCl2, 0.01% Na-deoxycholate, and 0.02%

NP-40. The samples were incubated for 2 hours, followed by

addition of X-gal staining buffer containing 1 mg/ml X-gal. The

staining buffer contained: 30 mM K4Fe(CN)6, 30 mM

K3Fe(CN)6.3H2O, 2 mM MgCl2, 0.01% Na-desoxycholate,

0.02% NP-40, 16PBS. The samples were then incubated at

30uC for 24 hours and analyzed under the microscope.

FISH Analysis
One mg of mouse Cot-1 DNA (Invitrogen, USA) was labeled

with SpectrumGreen-dUTP (Vysis Inc, USA), using nick transla-

tion kit (Abbott Molecular Inc., USA). Labeled Cot 1 DNA was

ethanol precipitated and reconstituted by hybridization buffer

(50% formamide, 2XSSC, 50 mM phosphate buffer, 10% dextran

sulfate). Mouse X and Y probes used in this study were

chromosome paints (X Cy3 labeled and Y FITC labeled) from

Cambio, UK. For paraffin tissue section, the slides were initially

incubated at 56uC overnight, then deparaffinized in Xylene,

dehydrated in 100% ethanol and air dried, followed by incubation

in TE at 100uC for 45 minutes. The slides were then treated with

150 ml of ZYMED Digest-All (Invitrogen, USA) under a plastic

coverslip at 37uC for 20 minutes, followed by rinsing in PBS and

dehydration in ethanol series. Two hundred ng of each probe

(total volume 8 ml) were placed onto the area under a 22622 mm

coverslip and sealed with rubber cement. The slides with probe

were denatured at 95uC for 3 minutes and hybridization was

performed in a moist chamber at 37uC for 48 hours. Hybridized

slides were washed in 0.56SSC at 72uC for 5 minutes, in 0.025%

Tween/PBS at RT for 2 minutes and dehydrated in ethanol series.

Finally, the slides were mounted with 12 ml of DAPI II (Abbott

Molecular Inc., USA). FISH slides were analyzed using an

Olympus microscope. Images were taken by using a CCD camera

and CytoVision software (Applied Imaging, Inc).

Statistical analysis
Statistical differences for the number of mammary outgrowths

in denuded mammary fat pads were determined using Student’s

t-test.

Author Contributions

Conceived and designed the experiments: SJ BCL BL HKA. Performed

the experiments: SJ BCL YF HKA. Analyzed the data: SJ BCL SA BL

HKA. Contributed reagents/materials/analysis tools: SA BL HKA. Wrote

the paper: BL HKA.

Mammary Gland Reconstitution

PLoS ONE | www.plosone.org 8 March 2010 | Volume 5 | Issue 3 | e9707



References

1. Hennighausen L, Robinson GW (1998) Think globally, act locally: the making of

a mouse mammary gland. Genes Dev 12: 449–455.

2. Daniel CW, Smith GH (1999) The mammary gland: a model for development.

J Mammary Gland Biol Neoplasia 4: 3–8.

3. Smith GH (2005) Label-retaining epithelial cells in mouse mammary gland

divide asymmetrically and retain their template DNA strands. Development 132:

681–687.

4. Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, et al. (2006)

Generation of a functional mammary gland from a single stem cell. Nature 439:

84–88.

5. Stingl J, Eirew P, Ricketson I, Shackleton M, Vaillant F, et al. (2006) Purification

and unique properties of mammary epithelial stem cells. Nature 439: 993–997.

6. Deome KB, Faulkin LJ, Jr., Bern HA, Blair PB (1959) Development of

mammary tumors from hyperplastic alveolar nodules transplanted into gland-

free mammary fat pads of female C3H mice. Cancer Res 19: 515–520.

7. Daniel CW, De Ome KB, Young JT, Blair PB, Faulkin LJ, Jr. (1968) The in vivo

life span of normal and preneoplastic mouse mammary glands: a serial

transplantation study. Proc Natl Acad Sci U S A 61: 53–60.

8. Daniel CW, Young LJ (1971) Influence of cell division on an aging process. Life

span of mouse mammary epithelium during serial propagation in vivo. Exp Cell

Res 65: 27–32.

9. Young LJ, Medina D, DeOme KB, Daniel CW (1971) The influence of host and

tissue age on life span and growth rate of serially transplanted mouse mammary

gland. Exp Gerontol 6: 49–56.

10. Daniel CW, Deome KB (1965) Growth of Mouse Mammary Glands in Vivo

after Monolayer Culture. Science 149: 634–636.

11. Smith GH (1996) Experimental mammary epithelial morphogenesis in an in

vivo model: evidence for distinct cellular progenitors of the ductal and lobular
phenotype. Breast Cancer Res Treat 39: 21–31.

12. Smith GH, Gallahan D, Zwiebel JA, Freeman SM, Bassin RH, et al. (1991)
Long-term in vivo expression of genes introduced by retrovirus-mediated

transfer into mammary epithelial cells. J Virol 65: 6365–6370.
13. Kordon EC, Smith GH (1998) An entire functional mammary gland may

comprise the progeny from a single cell. Development 125: 1921–1930.

14. Li L, Xie T (2005) Stem cell niche: structure and function. Annu Rev Cell Dev
Biol 21: 605–631.

15. Boulanger CA, Mack DL, Booth BW, Smith GH (2007) Interaction with the
mammary microenvironment redirects spermatogenic cell fate in vivo. Proc Natl

Acad Sci U S A 104: 3871–3876.

16. Booth BW, Mack DL, Androutsellis-Theotokis A, McKay RD, Boulanger CA,
et al. (2008) The mammary microenvironment alters the differentiation

repertoire of neural stem cells. Proc Natl Acad Sci U S A 105: 14891–14896.
17. Boulanger CA, Smith GH (2009) Reprogramming cell fates in the mammary

microenvironment. Cell Cycle 8: 1127–1132.

18. Pouton CW, Haynes JM (2007) Embryonic stem cells as a source of models for
drug discovery. Nat Rev Drug Discov 6: 605–616.

19. Lensch MW, Daheron L, Schlaeger TM (2006) Pluripotent stem cells and their
niches. Stem Cell Rev 2: 185–201.

20. Welm BE, Tepera SB, Venezia T, Graubert TA, Rosen JM, et al. (2002) Sca-
1(pos) cells in the mouse mammary gland represent an enriched progenitor cell

population. Dev Biol 245: 42–56.

21. Jiang S, Fu Y, Williams J, Wood J, Pandarinathan L, et al. (2007) Expression and
function of cannabinoid receptors CB1 and CB2 and their cognate cannabinoid

ligands in murine embryonic stem cells. PLoS ONE 2: e641.

Mammary Gland Reconstitution

PLoS ONE | www.plosone.org 9 March 2010 | Volume 5 | Issue 3 | e9707


