
Tumor-Derived Microvesicles Induce, Expand and Up-
Regulate Biological Activities of Human Regulatory T
Cells (Treg)
Marta Szajnik2", Malgorzata Czystowska2, Miroslaw J. Szczepanski2", Magis Mandapathil2, Theresa L.

Whiteside1,2*

1 Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America, 2 University of Pittsburgh Cancer Institute,

Pittsburgh, Pennsylvania, United States of America

Abstract

Background: Tumor-derived microvesicles (TMV) or exosomes are present in body fluids of patients with cancer and might
be involved in tumor progression. The frequency and suppressor functions of peripheral blood CD4+CD25highFOXP3+ Treg
are higher in patients with cancer than normal controls. The hypothesis is tested that TMV contribute to induction/
expansion/and activation of human Treg.

Methodology/Principal Findings: TMV isolated from supernatants of tumor cells but not normal cells induced the
generation and enhanced expansion of human Treg. TMV also mediated conversion of CD4+CD25neg T cells into
CD4+CD25highFOXP3+ Treg. Upon co-incubation with TMV, Treg showed an increased FasL, IL-10, TGF-b1, CTLA-4, granzyme
B and perforin expression (p,0.05) and mediated stronger suppression of responder cell (RC) proliferation (p,0.01).
Purified Treg were resistant to TMV-mediated apoptosis relative to other T cells. TMV also increased phospho-SMAD2/3 and
phospho-STAT3 expression in Treg. Neutralizing Abs specific for TGF-b1 and/or IL-10 significantly inhibited TMV ability to
expand Treg.

Conclusions/Significance: This study suggests that TMV have immunoregulatory properties. They induce Treg, promote
Treg expansion, up-regulate Treg suppressor function and enhance Treg resistance to apoptosis. Interactions of TMV with
Treg represent a newly-defined mechanism that might be involved in regulating peripheral tolerance by tumors and in
supporting immune evasion of human cancers.
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Introduction

Tumors have the capacity to avoid immune recognition, to

induce immune cell dysfunction and to escape from immune

surveillance by mechanisms that are numerous and varied [1]. For

example, elevated proportions of CD4+CD25highFOXP3+ Treg in

PBMC of cancer patients have been reported, and accumulations

of Treg in the tumor microenvironment are associated with

reduced patient survival [1–4]. Recently, we have observed that

membranous vesicles (MV) or exosomes released from tumor cells

also referred to as TEX are biologically active, exerting potent

down-modulatory effects on human T cells [5].

Exosomes or MV (30–100 nm in diameter) originate from the

endosomal compartment of normal or pathological cell types when

multivesicular bodies fuse with the plasma membrane [5–7]. Most,

if not all, cells release MV. The molecular profile of MV found in

body fluids resembles that seen on the surface membrane of cells

from which MV originate. MV might contain mRNA or micro

RNA and, therefore, could deliver genetic information to recipient

cells [8,9]. MV are involved in various cellular activities, including

angiogenesis, thrombosis, coagulation, inflammation and immu-

nity [6,10]. MV derived from platelets exert pleiotropic stimula-

tory effects, activating hematopoetic and endothelial cells [11].

MV released from dendritic cells (DC) carry MHC class I and II

molecules and costimulatory proteins necessary for T-cell

activation [5,6,12]. In contrast, MV derived from tumors (TMV)

inhibit functions of immune cells, facilitating tumor progression

and metastasis [13,14]. Like TMV, those derived from placenta

suppress cytotoxic activity of T cells [15,16]. Tumor-promoting

activities of TMV are well documented: TMV derived from

ovarian carcinomas (OvCa) sustain angiogenesis [17]; glioblasto-

ma TMV stimulate glioma cell proliferation [6]; TMV released

from tumor-activated fibroblasts promote invasion of highly

metastatic prostate carcinoma cells [18]; TMV isolated from sera
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of patients with head and neck cancer induce apoptosis in

activated CD8+ T cells [19,20]; and TMV produced by prostate

cancer impair NK-cell activity through down-modulation of

NKG2D expression [21]. By down-regulating functions of

immune cells, TMV promote tumor progression [21,22].

We report that TMV can stimulate expansion of human

CD4+CD25highFOXP3+ Treg [5]. This subset of immune cells is

responsible for suppressing functions of conventional CD4+CD25neg

and CD8+ T cells [23–25]. Here, we examine the effects of TMV on

peripheral blood CD4+CD25highFOXP3+ T cells obtained from

healthy donors. It appears that TMV not only induce Treg, but

contribute to Treg expansion and increase their suppressive

functions via mechanisms involving IL-10 and TGF-b1. Our data

support the existence of intercellular cross-talk between the tumor

and immune cells that might regulate anti-tumor immune responses.

Results

CD4+CD25highFOXP3+ T cells in cancer patients
The frequency of CD4+CD25highFOXP3+ T cells was deter-

mined in PBMC obtained from HNSCC or mononuclear cells

from ascites of OvCa patients by flow cytometry. The percentages

of Treg were increased (p#0.0001) in cancer patients relative to

those in NC (Figure 1A).

MV in sera and ascites of cancer patients
The protein content of MV isolated from cancer patients’ sera

or ascites was greater (p#0.0001) than that of MV isolated from

sera of NC (Figure 1B).

Characteristics of TMV isolated from ascites or
supernatants of OvCa cell lines

MV isolated from ascites of OvCa patients were positive for IL-

10, TGF-b1 and FasL as detected by flow cytometry analyses of

TMV bound to latex beads (Figure 1C). In contrast, DC-derived

MV were negative for FasL and TGF-b (data not shown). The

protein profiles of TMV isolated from SN of OvCa cell lines and

from PCI-13/FasL SN used as a positive control [19,20,28] were

also compared in Western blots (Figure 1D). All TMV expressed

LAMP-1, confirming their endosomal origin. MV derived from

ascites, OvCa cell and DC supernatants also expressed acetylcho-

linesterase activity (data not shown). MAGE 3/6 was detectable in

all TMV as were MHC class I molecules. Expression of MHC

class II molecules was low in TMV derived from SKOV-3 and

AD-10, but high in OVCAR-3. A high FasL content was

characteristic for all TMV, consistent with the reported expression

of FasL on OvCa cells [29]. By contrast, TRAIL was not

detectable. TGF-b1 was present in TMV isolated from all tested

OvCa cell lines.

TMV induce and promote proliferation of Treg
TMV (1–60 mg) were co-incubated with purified CD3+CD4+ T

cells previously labeled with CFSE and activated with plate-bound

OKT3, soluble anti-CD28 Ab and IL-2. The percent of

CD4+CD25+FOXP3+ T cells increased upon co-incubation with

TMV in a dose dependent manner, and the optimal TMV

concentration for Treg induction was 5 mg/16106 cells

(Figure 1E). MV derived from DC did not induce expansion of

CD3+CD25+FOXP3+ Treg, as also previously reported [5]. Next,

purified CD3+CD4+ T cells were labeled with CFSE, stimulated as

described in Methods and cultured in the presence of TMV or

DC-derived MV. The frequency of CD4+CD25+FOXP3+ T cells

was measured on days 3, 5 and 8, it was increased at all time

points relative to the baseline, and it was significantly greater

(p,0.05) in co-cultures containing TMV (Figure 2A). Co-staining

of proliferating CD4+ T cells for CD25 indicated that in the

presence of TMV, over 60% of these cells were CD4+CD25+. In

contrast, CD4+ T cells cultured without TMV contained fewer

(p,0.05) CD4+CD25+ T cells (Figure 2B). Gating in these cultures

on the CD4+CD25high subset indicated that over 90% co-

expressed FOXP3 (Figure 2C). These data suggest that TMV

but not DC-derived MV promote the generation of

CD4+CD25+FOXP3+ T cells in culture.

To determine whether TMV helped in sustaining Treg

expansion in culture, freshly isolated or rapamycin-expanded

CD4+CD25+ T cells stimulated with OKT3, anti-CD28 Ab and

IL-2 (500 IU/mL) were cultured 6 TMV (Figure 3). The fold

expansion of Treg defined as CD4+CD25high T cells [30] was

evaluated on days 7, 10, 14 and 21. In 2 week co-cultures of freshly

isolated CD4+CD25+ T cells + TMV, Treg showed 12-fold mean

expansion and only 3-fold mean expansion in the absence of TMV

(Figure 3 left panel). As expected, rapamycin-expanded Treg

proliferated better with the mean fold expansion of 34 on day

14 and of 40 on day 21 in TMV-containing cultures compared to

25-fold expansion at best for the cultures without TMV (Figure 3

right panel). The data are consistent with the conclusion that TMV

promote expansion of Treg in culture.

TMV convert CD4+CD25neg T cells into CD4+CD25+ Treg
Freshly-isolated CD4+CD25neg T cells were cultured 6 TMV

for 5 d. The percentages of CD4+CD25+ T cells were higher

(p,0.05) in the presence than in the absence of TMV (Figure 4A

left panel). After 8 days of culture, the Treg frequency further

increased, suggesting that TMV promoted conversion of

CD4+CD25neg to CD4+CD25+ T cells (data not shown). The

frequency of FOXP3+ cells was also higher in the CD4+CD25+ T

cell subset cultured with TMV compared with the same cells

cultured in the absence of TMV (41% vs. 25%; p,0.05) or in the

presence of DC-derived MV (41% vs. 30%; p,0.05) (Figure 4A

right panel).

Phenotypic profile of CD4+CD25+ T cells cultured with
TMV

Flow cytometry was performed on day 7 of culture to compare

the phenotype of CD4+CD25+ T cells cultured 6 TMV or 6 DC-

derived MV. By gating on CD4+CD25high T cells, we determined

the percentage of Treg and their molecular profile. In cultures

containing TMV, Treg expressing GITR, CTLA-4, FasL, CCR7,

TGF-b1, Granzyme B, and perforin were increased (p,0.05 for

all). Fewer Treg expressing CD62L (p,0.05) compared to the cells

cultured without TMV or those cultured with DC-derived MV

were present (Figure 4B). The MFI for FasL, IL-10, TGF-b1,

Granzyme B and perforin was also increased in Treg generated in

co-cultures with TMV (Figure 4C). The phenotypic profile of

CD4+CD25+ T cells expanding in the presence of TMV

consistently showed enrichment in Treg expressing inhibitory

cytokines and cytotoxins in comparison to cultures with no MV or

with DC-derived MV.

TMV up-regulate Treg suppressor functions
The FLOCA was used to test whether TMV enhanced the

ability of Treg to mediate suppression. This assay measures not

only the inhibition of RC proliferation but also simultaneously

discriminates between CFSE-labeled/7AAD+ (dead) and unla-

beled/7AADneg (live) cells [24]. CD4+CD25+ T cells used as

suppressor cells (S) were pre-incubated with TMV for 24 h and

then co-cultured with autologous RC at the 1:1 and 1:5 ratios. The

TMV Effects on Treg
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percent of dead RC was increased + TMV-treated S (Figure 5A),

and concomitantly, proliferative responses of RC were inhibited

(p,0.05) compared to co-cultures with untreated S (Figure 5B).

We have reported that human Treg can mediate suppression using

either the perforin/GrB or the Fas/FasL pathway [24,27]. When

Treg were pre-treated with Concanamycin A, which inhibits

perforin activation, or with GrB inhibitor I, TMV no longer up-

regulated suppressor functions of these Treg, as illustrated in

Figures 5C and D. This suggests that TMV increase the ability of

Treg to mediate suppression/death of RC by up-regulating

activity of the perforin/GrB pathway in Treg. In contrast, anti-

FasL Ab treatment of Treg had no effect on their ability to kill RC

or inhibit RC proliferation 6 TMV in these assays (Figures 5C

and D).

CD4+CD25high Treg are resistant to TMV-induced death
The ability of FasL+ TMV to induce apoptosis of CD4+

CD25highFOXP3+ Treg, which express both Fas and FasL

[25,30], was tested by evaluating ANXV binding to fresh or

rapamycin-expanded CD4+CD25highFOXP3+ T cells. TMV

caused apoptosis of CD8+ cells or control cells (Jurkat) as

measured by trypan blue staining (Figure 6A) or ANXV binding

to T cells (Figure 6B). In contrast, CD4+ T cells showed

significantly lower sensitivity to TMV-induced apoptosis. Impor-

tantly, either fresh or rapamycin-expanded CD4+CD25high-

FOXP3+ T cells were completely resistant to TMV-induced

apoptosis even when TMV were used at higher doses (.30 mg).

Levels of cytokines in supernatants of Treg cultured 6

TMV
SN of activated CD4+CD25+ T cells cultured 6 TMV (5 mg) for

72 h were analyzed for levels of cytokines using Luminex. The co-

incubation with TMV induced an increased (p,0.05) secretion of

IL-1 RA, TNF-a and of inhibitory cytokines, TGF-b1 and IL-10,

from Treg. In contrast, levels of IL-1a and IL-1b were not

increased (data not shown).

Treg induction is mediated by TMV-associated TGF-b1
and IL-10

Flow cytometry analyses of TMV bound to latex beads showed

that TMV are positive for TGF-b1 and IL-10 (Figure 7A). When

CD4+CD25highFOXP3+ Treg were co-incubated with TMV,

expression of TGF-b1 and IL-10 was upregulated in these cells

relative to Treg incubated alone (Figure 7B; p,0.05). The

percentages of TGF-b1+ or IL-10+ Treg were also increased in

the co-cultures with TMV (p,0.05, data not shown). In addition,

intracytoplasmic expression of phosphorylated SMAD2/3 and

phosphorylated STAT3 in Treg was increased in the presence of

TMV relative to Treg incubated in the absence of TMV

(Figure 7C). The data suggest that TMV concomitantly increase

phosphorylation of the relevant transcription factors and TGF-b1

and IL-10 expression in Treg.

As reported above and illustrated in Figure 7D, in expanding

cultures of CD4+CD25+ T cells, the frequency of CD4+CD25high-

FOXP3+ Treg was increased in the presence of TMV but not of

DC-derived MV (p,0.05). The pre-incubation of TMV with

neutralizing anti-TGF-b (20 ng/mL) or anti-IL-10 (1 mg/mL) Abs

resulted in a significant reduction (p,0.5) in the percentages of

CD4+CD25highFOXP3+ T cells (Figure 7D). When these neutral-

izing Abs were used in combination, the proportion of Treg in the

co-cultures was comparable to controls without TMV (Figure 7D).

These results suggest that in vitro induction of Treg by TMV is

largely mediated by TGF-b1 and IL-10. When CD4+CD25+ Treg

were incubated +/2 recombinant IL-10 (20 IU/mL), the

concentration previously determined to be optimal for Treg

induction [31], the proportion of CD4+CD25highFOXP3+ T cells

increased in the culture (p,0.05), but the absolute number of T

cells did not, suggesting that IL-10 induced the conversion of

CD4+CD25+ T cells to CD4+CD25highFOXP3+ T cells.

Discussion

The ability to produce and release MV is a common feature of

activated cells, including tumor cells [32]. We and others have

reported that TMV have properties distinct from those of MV

derived from normal tissue cells [5,33]. Notably, TMV derived

from human tumors inhibit functions of immune cells [5,21,22].

TMV present in patients’ sera or malignant effusions have been

associated with immunosuppressive effects mediated by these body

fluids [14,26,34,35]. However, the tumor origin of MV obtained

form body fluids of patients with cancer was uncertain in previous

studies. Here, we used SN of cultured tumor cells as a source of

TMV in order to study their effects on Treg.

Proteins present in TMV define their cellular origin and

biologic functions [36]. Tumor-associated antigens, e.g., MAGE

3/6, can be used as markers of TMV purified from body fluids of

patients [5], while the activity of enzymes such as acetylcholin-

esterase serves as a measure of their biologic integrity [26]. TMV

carry MHC class I and II antigens, consistent with their ability to

stimulate immune cells [37], but they also bear membrane-

associated death ligands such as FasL or TRAIL [13]. Therefore,

TMV are able to induce apoptosis of activated CD8+ T cells both

in vitro and in the circulation of patients with cancer [38,39]. By the

same token, the enrichment of TMV in the MHC class II

molecules could play a role in inducing CD4+CD25highFOXP3+

Treg generation and/or expansion.

The increased Treg frequency and suppressor functions in the

tumor and the peripheral circulation of cancer patients [2,40] have

been linked to cancer progression and shorter survival in some

studies [4,41]. Our finding that TMV promote Treg induction

and proliferation and enhance their suppressor activity identifies a

potential mechanism responsible for TMV-driven Treg expansion

in cancer. Earlier studies indicated that TGF-b1 can promote

Treg differentiation and convert CD4+CD25neg into CD4+CD25+

Treg [42,43]. In our hands, the induction of CD4+CD25high-

FOXP3+ Treg cells from CD4+CD25+ precursors was enhanced

in the presence of TMV positive for TGF-b1 and IL-10. Further,

neutralization of TMV-associated TGF-b1 and/or IL-10 with

cytokine-specific Abs inhibited Treg induction, suggesting that

TMV can modulate Treg frequency and functions. TGF-b1 may

be more critical in this respect than IL-10, which only induced

conversion of CD4+CD25+ to CD4+CD25high Treg but not their

expansion.

Figure 1. CD4+CD25highFOXP3+ T cells and microvesicles (MV) in cancer patients and normal controls (NC). (A) Percentages of
CD4+CD25highFOXP3+ Treg in PBMC of cancer patients and NC. (B) the protein content/10 mL of serum or ascites in cancer patients and NC. The data
in A and B are mean values 6 SD. (C) Flow analyses of IL-10, TGF-b1 and FasL expression in MV purified from the ascites of OvCa patients and coated
on latex beads. (D) Western blots of TMV isolated from OvCa SN. Molecular weights of the detected proteins are indicated. (E) Percentages of
CD4+CD25+FOXP3+ cells in 8-day co-cultures of CD4+CD25neg T cells with TMV obtained from various sources and used at increasing concentrations.
The asterisks indicate a significant increase at p,0.05.
doi:10.1371/journal.pone.0011469.g001
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It has been reported that exosome-like particles (ELP) derived

from thymic cells promote naı̈ve T cell conversion into FOXP3+

natural (n)Treg under non-pathological conditions [44]. This

observation supports the thymic origin of FOXP3+ nTreg in the

mouse and their generation in the microenvironment enriched in

TGF-b [44]. A similar TGF-b-dependent mechanism is appar-

ently utilized by human TMV to induce conversion of

CD4+CD25neg T cells to CD4+CD25highFOXP3+ Treg. If Treg

Figure 2. TMV promote differentiation of human Treg in culture. (A) Purified CD3+CD4+ T cells were labeled with CFSE and cultured as
described in Materials and Methods 6 TMV or DC-derived MV (5 mg/mL). On days 3, 5 and 8, the frequency of CD4+CD25+FOXP3+ Treg among
proliferating T cells was determined by flow cytometry. The data (means 6 SD) represent three independent experiments (*p,0.01). (B) Proliferating
CD3+CD4+ T cells (squares) were tested for co-expression of CD25 in a representative co-culture 6 TMV. A higher proportion of proliferating CD4+ T
cells expressed CD25 in the co-culture with TMV than without TMV. (C) The proliferating CD4+CD25+ T cells in the co-cultures with TMV were
evaluated for the frequency of FOXP3+ T cells upon gating on the CD4+CD25high subset (see box). Over 90% of these cells also expressed intracellular
FOXP3. Data are representative for one out of 6 cultures tested.
doi:10.1371/journal.pone.0011469.g002
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expansion by TMV represents one of the mechanisms of tumor-

induced immune suppression, it might also explain accumulations

of inducible regulatory T cells (iTreg) in cancer patients [45].

Thus, similar molecular mechanisms involving the TGF-b
pathway appear to be engaged in non-pathogenic differentiation

of nTreg in vivo [44] and in tumor-induced iTreg generation.

TMV not only induce differentiation and increase expansion

but also up-regulate Treg-mediated suppression, potentially

contributing to tumor escape. In TMV-treated Treg, increased

expression levels of phospho-STAT3 and phospho-SMAD2/3 and

of IL-10 and TGF-b1 expression as well as production may be

responsible for attenuating anti-tumor immune responses in

cancer patients. This cytokine-mediated suppression mechanism

is known to be utilized by nTreg and iTreg [30,45]. Our studies

demonstrated that TMV also up-regulated Granzyme B, perforin

and death ligands expression in human Treg, thus endowing them

with the exceptional ability to mediate suppression by several

distinct mechanisms [24,27,30]. In aggregate, our data suggest

that TMV have immunoregulatory properties, and that TMV-

Treg interactions represent a newly-defined escape mechanism in

cancer. The TMV molecular profile, which mimics that of the

membrane in the tumor from which TMV originate [5,46], is a

determining factor in their ability to mediate suppression. By

specifying this profile, the tumor can subvert functions of immune

cells expressing receptors for the ligands carried by TMV [5,19].

Given the ubiquitous presence of TMV in body fluids of cancer

patients and the key role Treg play in anti-tumor responses, this

might represent one of the most effective mechanisms of tumor

escape from the host immune system.

Materials and Methods

Ethics Statement
All blood samples were obtained in compliance with the

University of Pittsburgh Institutional Review Board (IRB)

approved research study #980633 entitled, ‘‘Peripheral blood

collection from normal donors for use in immunologic assays and

research studies performed in the University of Pittsburgh Cancer

Institute Immunologic Monitoring and Cellular Products Labora-

tory.’’ All subjects have signed the informed consent form

approved under this University of Pittsburgh (IRB) approved

study (#980633).

Cells and cell lines
The human OvCa cell lines (OVCAR3, SKOV3 and AD10)

were provided by Dr S. Khlief, NIH, Bethesda, MA and were

cultured in RPMI 1640 medium supplemented with 10% FCS,

2 mM L-glutamine, 100 IU/mL penicillin and 100 mg/mL

streptomycin at 37uC/5% CO2. PCI-13, the human head and

neck squamous cell carcinoma (HNSCC) cell line was

retrovirally transfected with the human FasL gene as previously

described [19]. Jurkat cells obtained from ATCC (Manassas,

VA) were stably transfected with the gene encoding the CD8

receptor (courtesy of Dr. H, Rabinowich, University of

Pittsburgh) and were cultured as previously described [20]. All

cell lines were tested and found to be negative for Mycoplasma.

Tumor cell supernatants (SN) were collected and used for TMV

isolation [5]. Peripheral blood samples were obtained from

untreated HNSCC (n = 12) or OvCa patients (n = 10) and

Figure 3. TMV promote expansion of human Treg in culture. The fold expansion of fresh (left panel) or rapamycin-expanded (right panel)
CD4+CD25high T cells to which TMV or DC-derived MV were added on day 0. Cells were stimulated with OKT3, anti-CD28 Abs and IL-2 (500 IU/mL) and
cultured for 14–21 d. The data are means 6 SD of six independent co-cultures. Asterisks indicate significant differences (p,0.05) between the
cultures 6 TMV.
doi:10.1371/journal.pone.0011469.g003

TMV Effects on Treg
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healthy volunteers (NC; n = 16). PBMC were isolated by

centrifugation over Ficoll-Hypaque gradients, washed in RPMI

1640 medium, counted in a trypan blue dye and immediately

used for experiments.

Antibodies for flow cytometry
The monoclonal antibodies (mAbs) used were specific for: CD3,

CD4, CD25, CD62L, CD45RO, CD95, CD152(CTLA-4) (Beck-

man Coulter); GITR (clone FAB 689F), CCR7, CCR4 and TGF-

Figure 4. TMV Convert CD25neg T cells to Treg. (A) Flow cytometry histograms of cultured (d5) CD4+CD25neg T cells showing conversion of
CD25neg T cells into CD25+ T cells 6 TMV or DC-derived MV (left panel) and expression of FOXP3 in the converted CD4+CD25+ T cells (right panel) in
the same cultures. (B) A phenotypic profile of CD4+CD25high T cells present in 7 day cultures of CD4+CD25+ T cells 6 TMV or DC-derived MV. T cells
were stained with various mAbs and evaluated by multiparameter flow cytometry. The gate is set on CD4+CD25high T cells. The data are mean
percentages 6 SD of positive cells from three independent experiments. (C) MFI for FasL, IL-10, TGF-b1, granzyme B and perforin expression in
CD4+CD25high T cells cultured as described in (B) 6 TMV. The data are representative of three independent experiments.
doi:10.1371/journal.pone.0011469.g004

TMV Effects on Treg

PLoS ONE | www.plosone.org 7 July 2010 | Volume 5 | Issue 7 | e11469



Figure 5. TMV increase suppressor activity of Treg. The FLOCA was used to simultaneously measure suppression proliferation of CFSE-labeled
autologous CD4+CD25neg RC and their apoptosis upon co-incubation with CFSE-negative Treg. RC cells stimulated with OKT3, anti-CD28 mAb and IL-
2 (150 IU/mL) were co-cultured for 5 d with Treg pre-incubated or not with TMV. At harvest, cells were stained with 7-AAD and examined by flow

TMV Effects on Treg

PLoS ONE | www.plosone.org 8 July 2010 | Volume 5 | Issue 7 | e11469



b1 (R&D Systems. Inc.); FOXP3 (clone PCH101), perforin

(Biolegend); granzyme B (clone GB111) (PeliCluster Inc.);

phospho-SMAD2/3 (Cell Signaling); phospho-STAT3 (pY705)

(BD Biosciences); donkey anti-rabbit IgG (Santa Cruz Biotech-

nology); IL-10, FasL (NOK-1.42 kDa), and isotype controls IgG1,

IgG2a and IgG2b (BD Pharmingen).

Surface and intracellular staining
Cells were stained as previously described [25]. To establish

optimal staining dilutions, all mAbs were titrated using normal

resting or activated PBMC. For intracellular staining, cells were

permeabilized using PBS containing 0.5% (wt/v) BSA and 0.2%

(v/v) saponin (Sigma Aldrich), stained with the mAbs of desired

specificity or isotype control Abs for 30 min at RT, washed in

buffer and analyzed by flow cytometry.

Flow cytometry
A Beckman Coulter cytometer equipped with Expo32 software

was used. Acquisition and analysis gates were restricted to the

lymphocyte gate based on characteristic forward (FSC) and side-

cytometry. The suppressor assays were performed at the S:RC ratio of 1:1. Treg pre-incubated with TMV induced higher levels of apoptosis (A) and
greater inhibition of RC proliferation (B). The data are from one experiment of five performed. When Treg were pretreated with Concanamycin A or
GrB inhibitor I and then incubated with TMV, the frequency of 7-AAD+ RC was lower (C) as was RC proliferation inhibition (D). Treg pretreated with
FasL Ab and then incubated with TMV induced RC death (C) and inhibited RC proliferation (D).
doi:10.1371/journal.pone.0011469.g005

Figure 6. CD4+CD25high Treg are resistant to TMV-induced death. (A) Trypan blue positive cells after 6 h incubation 6 TMV or DC-derived
MV in primary T-cell subsets and CD8+ Jurkat cells (mag 6200) *p,0.001. (B) Percentages of ANXV binding to fresh CD4+CD25high T cells or CD8+

Jurkat cells incubated 6 TMV for 6 h. The data are representative dot plots from one of five independent experiments.
doi:10.1371/journal.pone.0011469.g006
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Figure 7. TMV-associated TGF-b1 and IL-10 promote Treg expansion. (A) Flow cytometry analysis of TGF-b1 and IL-10 expression on TMV

purified from OVCAR-3 SN and coated onto latex beads. (B) CD4+CD25highFOXP3+ T cells were cultured with OKT3, anti-CD28 and IL-2 (150 IU/mL) +/2

TMV for 72 h at 37uC in the presence of Golgistop and then stained for CD4, CD3, CD25 and intracellular TGF-b1 and IL-10. Expression of both cytokines

was up-regulated in the presence of TMV (p,0.05). (C) SMAD2/3 and STAT3 phosphorylation in Treg before and after exposure to TMV. Representative

results are from one of three independent experiments for A, B and C. (D) The percentage of CD4+CD25highFOXP3+ T cells increased among CD4+CD25+

T cells cultured in the presence of TMV but not DC-derived MV. Neutralizing anti-TGF-b1 and/or anti-IL-10 Abs inhibited the induction of Treg by TMV.

Non-blocking IgG isotype control Abs were used as controls. Asterisks indicate decreases (p,0.05) in Treg percentages in the presence of neutralizing

Abs. Results are means 6 SD of three independent experiments.
doi:10.1371/journal.pone.0011469.g007
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scatter (SSC) properties of the cells. FSC and SSC were set in a

linear scale. For analysis, 16105 lymphocytes were acquired.

Analysis gates were restricted to the CD3+CD4+, CD3+CD8+,

CD4+CD25high or CD4+CD25neg T cell subsets, as appropriate.

CD4+CD25high and CD4+CD25neg T cell isolation
CD4+CD25high T cells from PBMC of NC were single-cell

sorted using previously described gating strategy [23–25] with the

threshold for CD25high cells established at MFI of 120. A MoFlo

high-speed cell sorter (DakoCytomation) was used for cell

isolations. The CD4+CD25neg and CD4+CD25high cell fractions

were collected and tested for expression of FOXP3 by flow

cytometry and for viability by a trypan blue dye exclusion. The

CD4+CD25neg T cells were used as responder cells in suppressor

assays. CD4+CD25high cell purity was usually 86 to 92%, and 75–

83% of the sorted cells expressed FOXP3. The sorted cells were

immediately used for experiments.

Culture of CD3+CD4+ or CD4+CD25+ T cells
CD4+CD25+ T cell were separated in AutoMACS (Miltenyi

Biotec) by a two-step procedure and cultured with rapamycin, as

previously described [25]. Briefly, non-CD4+ cells were labeled

with a cocktail of biotin-conjugated Abs specific for CD8/CD14/

CD19/CD16/CD56/CD123, and the labeled cells were depleted

using anti-biotin Ab-coated beads. CD4+CD25+ T cells were

isolated by positive selection from the pre-enriched CD4+ T cell

fraction using beads coated with anti-CD25 Abs. Total

CD3+CD4+ T cell fractions or isolated CD4+CD25+ cells were

cultured in AIMV medium with plate-bound OKT3 (1 mg/mL;

American Type Culture Collection), soluble anti-CD28 Abs

(1 mg/mL) and IL-2 (150 IU/mL) at 37uC/5%CO2 in wells of

96-wells plates. On day 5, cells were transferred to wells of 48-well

plates and restimulated with anti-CD3/anti-CD28 mAbs-coated

beads and 1,000 IU/mL IL-2. Rapamycin (1 nM; Sigma-Aldrich)

was added to the cultures on day 7. After three weeks of culture,

cells were washed and beads were removed. Among cultured

CD25+ T cells, 80 to 91% expressed FOXP3.

Isolation of TMV
TMV were isolated from ascites of OvCa, blood of HNSCC

patients or SN of tumor cell lines as previously described [5,19].

Briefly, the concentrated SN were fractioned using size exclusion

chromatography and ultracentrifugation. Aliquots (10 mL) of

concentrated SN were applied to a Sepharose 2B (Amersham

Biosciences) column. Total protein of collected fractions was

monitored by absorbance at 280 nm. The exclusion peak fractions

(.50 million kDa) were centrifuged at 105,000 x g for 2 h at 4uC.

The pellet was resuspended in 300 mL of PBS. The protein

concentration was estimated by the Lowry’s protein assay (Bio-

Rad Laboratories) with BSA used as a standard.

Acetylcholinesterase activity in TMV
Using a previously described assay [26], 25 mL of TMV were

suspended in 100 mL of PBS and incubated with 1.25 mM

acetylocholine and 0.1 mM 5,5 dithiobis (2-nitrobenzoic acid) in a

final volume of 1 mL. After 15 min of incubation at 37uC, changes

in absorption were monitored at 412 nm.

Co-incubation of T cells and TMV
Isolated, fresh or cultured CD4+CD25high FOXP3+,

CD4+CD25neg or Jurkat T cells were incubated with varying

concentrations of TMV (5 to 60 mg/mL) for different time periods

at 37uC/5% CO2. The viability of harvested cells was determined

using a trypan blue dye exclusion. The cells were phenotyped and

assessed for functions as described below.

Apoptosis assays
Annexin V binding to Treg, Jurkat cells or primary T cells co-

incubated with TMV for 6 h was measured by flow cytometry.

Following surface staining with mAbs for CD3, CD8, CD4 or

CD25, the cells were resuspended in ANX-binding buffer and

incubated with FITC-conjugated ANXV for 15 min on ice. The

cells were analyzed by flow cytometry within 30 min of staining.

Flow cytometry-based cytotoxicity assay (FLOCA)
Induction of apoptosis and suppression of responder cells (RC)

proliferation mediated by CD4+CD25high T cells before and after

exposure to TMV was analyzed using the FLOCA [24]. CFSE-

labeled autologous RC were cultured with Treg at various Treg/

RC ratios in the presence of soluble OKT-3 (1 ug/mL), and anti-

CD28 (1 mg/mL) mAbs and IL-2 (150 IU/mL) for 5 d. The

harvested cells were stained with anti-CD25 and anti-CD4 Abs

and incubated in PBS containing 20 mg/mL of 7-amino-

actinomycin D (7-AAD; Calbiochem) for 20 min at 4uC in the

dark and immediately analyzed by flow cytometry.

All CFSE data were analyzed using the ModFit software

provided by Verity Software Hause. The percentage of suppres-

sion was calculated based on proliferation index (PI) of RC alone

compared with the PI of cultures containing RC and Treg. The

program determines the percent of cells within each peak and the

sum of all peaks in the control culture is taken as 100% of

proliferation and 0% of suppression.

Analysis of Treg-mediated suppression of RC
proliferation 6 TMV

The FLOCA was performed under various conditions to

determine the potential involvement of the granzyme/perforin

or Fas/FasL pathways in TMV-mediated suppression of CD4+

RC proliferation. Treg were pre-treated as indicated below before

co-culture with RC:

A. Concanamycin A (Sigma Aldrich) was used at the concen-

tration of 100 nM for 2 h at 37uC to block perforin activation

within the lytic granules.

B. GrB inhibitor I, Z-AAD-CMK (Calbiochem) was used at the

concentration of 250 mM/mL for 2 h at 37uC to neutralize

GrB activity.

C. Anti-human FasL-neutralizing Ab (NOK-1; BioLegend) or

isotype control Abs were used at 0.5 mL/100 mL for 2 h at

37uC to block FasL expression [24].

The optimal concentrations of the inhibitors were pre-

determined as previously described [27]. Control cells were

incubated with medium alone. The ability of the pre-treated Treg

to induce RC death or suppress their proliferation was measured

by FLOCA after 5 d of co-incubation +/2 TMV.

Western blots
TMV were analyzed by Western blots as previously described

[20] following lysis in ice-cold lysis buffer containing a protease

inhibitor cocktail (Pierce Chemical). TMV homogenates were

boiled for 5 min in 56 Laemmli buffer, and proteins were

separated by SDS-PAGE. Abs to LAMP-1 (Cell Signaling),

MAGE 3/6 (provided by Dr. Spagnoli, Basel, Switzerland),

TGF-b1 (Cell Signaling), MHC class I (clone: HC-10) and class II

(LGIII 612.14) (provided by Dr. Soldano Ferrone, Pittsburgh, PA),
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FasL Ab-3 (Oncogene) and TRAIL (Cell Signaling) were used.

Blots were evaluated with a SuperSignal detection system (Pierce

Chemical).

Flow cytometry analysis of TMV
TMV preparations (5–10 mg) were incubated with 5 mL of

aldehyde/sulfate latex beads (4 mm, Inerfacial Dynamics) for

20 min at 20uC. TMV-coated beads (20 mL) were incubated with

anti-TGF-b1-PE (R&D Systems, Inc.) or unconjugated anti-IL-10

(Abcam) Ab for 30 min at 4uC plus an incubation with FITC-

conjugated secondary Abs (Santa Cruz) and analyzed by flow

cytometry. Controls included isotype-matched Abs and fluores-

cence intensity was normalized for each Ab based on control

values.

Cytokine expression/production by TMV-treated Treg
Intracellular TGF-b1 and IL-10 expression by CD4+CD25high

T cells co-incubated or not with TMV was tested. Cells cultured

with OKT3, anti-CD28 Ab and IL-2 (150 IU/mL) were

incubated 6 TMV for 24 h at 37uC in the presence of Golgistop

(BD Pharmingen) and after staining for CD4, CD3, CD25, TGF-

b1 or IL-10 were tested by flow cytometry.

The levels of IL-1a, IL-1b, IL-1RA, TNF-a, IL-10 and TGF-b
were measured in SN of CD4+CD25+ T cells co-incubated 6

TMV in 48-well plates at 36105 cells/well in 500 mL of medium

for 72 h. SN were collected and tested by Luminex using reagents

purchased from the Biosource International. The assay sensitivity

varied from 5 to 15 pg/mL.

Statistical analysis
Data were summarized by descriptive statistics (mean 6 SD for

continued variables and frequency or percentage for categorical

variables). Statistical analyses were done using the paired and

unpaired two-tailed Student’s t tests. p,0.05 was considered to be

significant.
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