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Abstract

Systemic lupus erythematosus (SLE) is a genetically complex disease with heterogeneous clinical manifestations. Recent
studies have greatly expanded the number of established SLE risk alleles, but the distribution of multiple risk alleles in cases
versus controls and their relationship to subphenotypes have not been studied. We studied 22 SLE susceptibility
polymorphisms with previous genome-wide evidence of association (p,561028) in 1919 SLE cases from 9 independent
Caucasian SLE case series and 4813 independent controls. The mean number of risk alleles in cases was 15.1 (SD 3.1) while
the mean in controls was 13.1 (SD 2.8), with trend p = 46102128. We defined a genetic risk score (GRS) for SLE as the number
of risk alleles with each weighted by the SLE risk odds ratio (OR). The OR for high-low GRS tertiles, adjusted for intra-
European ancestry, sex, and parent study, was 4.4 (95% CI 3.8–5.1). We studied associations of individual SNPs and the GRS
with clinical manifestations for the cases: age at diagnosis, the 11 American College of Rheumatology classification criteria,
and double-stranded DNA antibody (anti-dsDNA) production. Six subphenotypes were significantly associated with the GRS,
most notably anti-dsDNA (ORhigh-low = 2.36, p = 9e29), the immunologic criterion (ORhigh-low = 2.23, p = 3e27), and age at
diagnosis (ORhigh-low = 1.45, p = 0.0060). Finally, we developed a subphenotype-specific GRS (sub-GRS) for each phenotype
with more power to detect cumulative genetic associations. The sub-GRS was more strongly associated than any single SNP
effect for 5 subphenotypes (the above plus hematologic disorder and oral ulcers), while single loci are more significantly
associated with renal disease (HLA-DRB1, OR = 1.37, 95% CI 1.14–1.64) and arthritis (ITGAM, OR = 0.72, 95% CI 0.59–0.88). We
did not observe significant associations for other subphenotypes, for individual loci or the sub-GRS. Thus our analysis
categorizes SLE subphenotypes into three groups: those having cumulative, single, and no known genetic association with
respect to the currently established SLE risk loci.
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Introduction

Systemic lupus erythematosus (SLE) is a debilitating autoim-

mune disease affecting multiple organ systems and characterized

by the production of multiple autoantibodies. It is genetically

complex, with an estimated sibling risk ratio ls of 8–29 and

heritability greater than 66% [1]. It is also an extremely

heterogeneous disease, with patients meeting any 4 out of 11

American College of Rheumatology (ACR) criteria – which

include such disparate manifestations as renal disease, arthritis,

hematologic disorders, and skin manifestations – classified as

having SLE. As these disparate manifestations have great impact

on the disease course, understanding their specific genetic etiology

is of prime importance.

Until 2008, only a handful of genetic loci affecting SLE

susceptibility had been identified and reproduced (e.g. HLA-DRB1,

FccR2A, PTPN22, IRF5, STAT4) via candidate-gene studies [2].

The advent of genome-wide single nucleotide polymorphism

(SNP) genotyping technology and subsequent recent genome-wide

association studies (GWAS) have greatly expanded the number of

established SLE risk alleles [3–7] to over twenty; most are located

in immune-related pathways such as antigen presentation, B- and

T-cell receptor signaling, and interferon signaling [2]. Further-

more, few relationships between SLE clinical manifestations and

individual risk alleles have been reported, such as the STAT4 gene

variant rs7574865 with production of antibodies to double-

stranded DNA (anti-dsDNA) and age at diagnosis [8] and the

association between anti-dsDNA production and the HLA-DRB1

*1501 (DR2) allele [9].

However, the distribution of multiple risk alleles in affected and

unaffected individuals and the relationship of this distribution to

clinical manifestations of SLE have not been studied. Recent

studies have begun to characterize cumulative associations of

multiple risk alleles for other diseases using a variety of techniques

[10–12]. In this work, twenty-two genetic variants with

p,561028 in recent studies [6] were chosen for a composite

genetic risk score (GRS) for SLE. We investigated the risk alleles

and GRS with two goals: first to further characterize SLE

susceptibility, and then to investigate relationships with SLE

subphenotypes – namely the 11 American College of Rheuma-

tology (ACR) classification criteria [13,14], anti-dsDNA produc-

tion (a subset of the ACR immunologic criterion), and age at

diagnosis. Our access to a large SLE case collection with clinical

and genetic data provided an opportunity to analyze the risk alleles

and subphenotypes comprehensively, both as individual alleles and

with the genetic risk scores.

Results

Case and control cohorts
A total of 1919 SLE cases and 4813 healthy controls obtained

from two SLE GWAS (referred to as ‘‘parent studies’’) were

analyzed. Subjects by parent study and source are shown in Table

S1. Parent study 1 contained 1295 cases and 3334 controls

genotyped on the Illumina 550K panel as part of an SLE GWAS

[3] including 1722 controls from iControlDB (Illumina, www.

illumina.com). Parent study 2 contained 624 cases and an

additional 337 non-overlapping controls genotyped on the

Illumina 317K panel as part of a SLEGEN Consortium GWAS

[4], with missing 550K SNPs imputed (see Methods). As many

controls were removed from parent study 2 due to overlap with

parent study 1, we added an additional 1142 healthy controls from

the breast cancer study conducted by CGEMS (Cancer Genetics

Markers of Susceptibility, cgems.cancer.gov) [15] genotyped on

the Illumina 550K to the parent study 2 dataset.

Individual SLE risk alleles
Twenty-two established SLE risk SNPs with reported genome-

wide levels of significance (p,561028) in at least one study are

shown in Table 1, along with their adjusted OR for the cohorts

studied here. Associations ranged from OR = 1.94 (95% CI 1.75–

2.16, p = 9610234) for the HLA-DR3 tag SNP to OR = 0.92 (95%

CI 0.84–1.00, p = 0.055) for BANK1. We also examined all possible

262 interactions of the 22 risk alleles in both SLE cases versus

controls and in case-only analyses for each subphenotype. No

combination was significant using a false discovery rate (FDR) [16]

threshold of 5% to account for multiple testing of 222

combinations. For the case-control analysis, the most significant

interactions were rs1801274-rs6445975 (FCcR2A -PXK, unadjust-

ed p = 0.0022) and rs2187668-rs10488631 (HLA-DR3-IRF5,

adjusted p = 0.0043). In subphenotype associations, the most

significant interactions were rs2431099-rs2187668 (PTTG1-HLA-

DR3, unadjusted p = 0.0015) for photosensitivity and rs2327832-

rs2248932 (TNFAIP3-BLK, unadjusted p = 0.0029) for anti-dsDNA

production.

Genetic risk score
The twenty-two established risk variants were used for two

genetic risk measures: a simple count of the number of risk alleles,

and a composite genetic risk score (GRS), defined as the

summation of SLE risk alleles with each weighted by its SLE

odds ratio (OR). Figure 1A shows the distribution of the number of

risk alleles in cases versus controls; the mean in cases was 15.1 (SD

3.1) while the mean in controls was 13.1 (SD 2.8), with a trend

p = 46102128. Figure 1B shows the density of the continuous GRS

score, with mean of 18.8 (SD 4.0) in cases and 16.2 (SD 3.6) in

controls. The SLE OR, adjusted for intra-European ancestry, sex,

and parent study, for high-low GRS tertiles was 4.4 (95% CI 3.8–

5.1). Figure 2 shows adjusted ORs for intervals of the GRS

compared to a GRS range of 15–17.5. For example, the OR for

SLE having GRS.25 versus the reference group was 8.9 (95% CI

5.9–13.2), while the OR for SLE having GRS,10 was 0.29 (95%

CI 0.17–0.48).

Author Summary

Systemic lupus erythematosus is a chronic disabling
autoimmune disease, most commonly striking women in
their thirties or forties. It can cause a wide variety of clinical
manifestations, including kidney disease, arthritis, and skin
disorders. Prognosis varies greatly depending on these
clinical features, with kidney disease and related charac-
teristics leading to greater morbidity and mortality. It is
also complex genetically; while lupus runs in families,
genes increase one’s risk for lupus but do not fully
determine the outcome. The interactions of multiple genes
and/or interactions between genes and environmental
factors may cause lupus, but the causes and disease
pathways of this very heterogeneous disease are not well
understood. By examining relationships between the
presence of multiple lupus risk genes, lupus susceptibility,
and clinical manifestations, we hope to better understand
how lupus is triggered and by what biological pathways it
progresses. We show in this work that certain clinical
manifestations of lupus are highly associated with
cumulative genetic variations, i.e. multiple risk alleles,
while others are associated with a single variation or none
at all.

SLE Risk Alleles and Subphenotypes

PLoS Genetics | www.plosgenetics.org 2 February 2011 | Volume 7 | Issue 2 | e1001311



We used receiver operating characteristic (ROC) curves to

compare the GRS versus the number of risk alleles as predictors of

SLE. The GRS was a significantly better predictor: the area under

the curve (AUC) for the GRS was 68.9% (95% CI 67.5%–70.3%)

versus 67.9% (95% CI 66.4%–69.3%) for the number of risk

alleles, p = 3610214.

Associations with subphenotypes
As expected, many SLE subphenotypes were significantly

correlated, shown in Table S2. The strongest is between anti-

dsDNA production and the immunologic disorder classification

criterion (r = 0.62), as anti-dsDNA is one of many antibodies that

fulfill the immunologic criterion. Correlation between anti-dsDNA

production and renal disease (r = 0.26) and between malar rash

and photosensitivity (r = 0.18) is also observed. Many of the

classification criteria have an inverse association with age at

diagnosis, with renal disease showing the strongest inverse

correlation (r = 20.27).

Individually, several risk alleles were associated with SLE

subphenotypes. Table 2 shows those that were significant at an

FDR level of 5%. As reported previously [8], the STAT4 SNP

rs7574865 was associated with anti-dsDNA antibody production

and early age at diagnosis. We also observed associations between

the HLA-DR3 tagging allele and anti-dsDNA production

(OR = 1.37, 95% CI 1.14–1.65), as well as renal disorder

(OR = 1.37, 95% CI 1.14–1.64). In addition, we observed

significant associations for anti-dsDNA production with ITGAM

(OR = 1.32, 95% CI 1.09–1.59) and UBE2L3 (OR = 1.31, 95% CI

1.09–1.56), arthritis with ITGAM (OR = 0.72, 95% CI 0.59–0.88),

and immunologic disorder with KIAA1542 (OR = 0.79, 95% CI

0.68–0.92) and UHRF1BP1 (OR = 1.25, 1.08 = 1.44), with OR,1

indicating protective effects of the minor allele.

Next, we considered associations between subphenotypes and

cumulative risk alleles. Six subphenotypes were associated with the

number of risk alleles (not shown) and the GRS at p,0.05, as

shown in Table 3 for the GRS as a continuous score and as a

comparison between the highest and lowest tertiles. For all of these

subphenotypes, the GRS was slightly more strongly associated

than the number of risk alleles (not shown). The strongest

associations were between the continuous GRS and anti-dsDNA

production (p = 9610212), immunologic disorder (p = 461029), and

age at diagnosis (continuous, p = 961027). Corresponding ORs for

high-low GRS tertiles, respectively, were ORanti-dsDNA = 2.36 (95%

CI 1.76–3.16, p = 9e29), ORimmunologic = 2.23 (1.64–3.03,

p = 3e27), and ORage = 22.68 (24.42–0.94, p = 0.0026). For the

dichotomized age at diagnosis,34 years, ORage34 = 1.45 (1.11–

1.90, p = 0.0060). Figure 1C and 1E shows the distribution of the

number of risk alleles in anti-dsDNA positive versus negative

SLE subjects and high versus low tertiles of age at diagnosis,

respectively. Figure 1D and 1F shows the corresponding density

curves for the GRS. We tested these associations both with

observations dropped for missing disease duration and on the

full dataset using multiple imputation (see Methods) with very

similar results (Table S3).

However, since the SLE risk alleles include SNPs which may not

be associated with subphenotypes, or may have different effect

sizes than for SLE susceptibility, the number of risk alleles and the

GRS may be under-powered to detect cumulative associations

Table 1. Twenty-two SNPs used to compute the genetic risk score (GRS), with adjusted odds ratios for the current study.

GENE SNP OR* 95% CI P in current collection

HLA-DRB1 (DR3 allele tag SNP) rs2187668 1.94 1.75–2.16 9.4E–34

IRF5 rs10488631 1.77 1.58–1.97 6.8E–24

ITGAM rs9888739 1.54 1.38–1.71 2.3E–15

STAT4 rs7574865 1.50 1.38–1.64 1.6E–19

PTPN22 rs2476601 1.33 1.17–1.50 8.4E–06

UHRF1BP1 rs9462015 1.28 1.18–1.38 5.3E–09

IL10 rs3024505 1.26 1.14–1.39 8.6E–06

TNIP1 rs10036748 1.25 1.15–1.36 3.8E–07

TNFSF4 rs2205960 1.24 1.13–1.36 2.8E–06

KIAA1542 rs4963128 0.82 0.75–0.89 2.3E–06

FCcR2A rs1801274 0.82 0.75–0.88 5.6E–07

BLK rs2248932 1.22 1.13–1.33 1.6E–06

UBE2L3 rs5754217 1.22 1.11–1.34 5.0E–05

HLA-DRB1 (DR2 allele tag SNP) rs3129860 1.21 1.09–1.35 0.00041

IRAK1/MECP2 rs2269368 1.21 1.08–1.35 0.00090

PTTG1 rs2431099 0.83 0.77–0.90 3.2E–06

TNFAIP3 rs2327832 1.20 1.09–1.32 0.00012

PRDM1 rs6568431 1.19 1.10–1.29 1.3E–05

PXK rs6445975 1.16 1.07–1.27 0.00051

JAZF1 rs1635852 1.14 1.06–1.23 0.00070

ATG5 rs633724 1.13 1.05–1.23 0.0021

BANK1 rs10516487 0.92 0.84–1.00 0.055

All SNPs have previously-reported genome-wide levels of significance (p,561028) in at least one study [6].
*Adjusted for 4 principal components, parent study, and gender.
doi:10.1371/journal.pgen.1001311.t001

SLE Risk Alleles and Subphenotypes
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with subphenotypes. To more fully address the question of which

subphenotypes have evidence of association with cumulative SLE

risk alleles, we used a discovery-replication approach to develop a

subphenotype-specific genetic risk score, sub-GRS, for each

subphenotype (see Methods) containing a subset of the SLE risk

alleles, weighted by the subphenotype odds ratio in parent study 1.

The number of SNPs was chosen to optimize the association with

the subphenotype, in contrast to the GRS which contains all SLE

risk SNPs regardless of the subphenotype associations. Table 4

shows association results for those sub-GRS that have replication

p, 0.1 in parent study 2 and ORs in the same direction. ORs are

standardized for comparison since the differing number of SNPs

and different weights cause each sub-GRS to be on a different

scale. Note that all of these subphenotypes were also significantly

associated with the SLE GRS, indicating that we did not miss any

cumulative associations when testing the SLE GRS. Note that for

renal disease, the sub-GRS contained only a single SNP, showing

that the top SNP (tagging the HLA-DR3 allele) was more

significant than cumulative effects with additional risk alleles.

For arthritis, although ITGAM was associated with arthritis in the

Figure 1. Distributions of the number of risk alleles and genetic risk score (GRS) by disease status, anti-dsDNA status, and age at
diagnosis high-low tertiles. A) the number of risk alleles in cases and controls; B) the GRS in cases and controls; C) the number of risk alleles in
anti-dsDNA positive versus negative cases; D) the GRS in anti-dsDNA positive versus negative cases; E) the number of risk alleles in low versus high
age at diagnosis tertiles; and F) the GRS in low versus high age at diagnosis tertiles.
doi:10.1371/journal.pgen.1001311.g001

SLE Risk Alleles and Subphenotypes
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Figure 2. Odds ratio of GRS intervals, adjusted for four principal components, two parent studies, and gender. Sample sizes for each
interval are shown below the graph.
doi:10.1371/journal.pgen.1001311.g002

Table 2. Top associations between single risk alleles and subphenotypes.

PHENOTYPE* SNP GENE Unadjusted p{ FDR{ p OR{ (95% CI)

anti-dsDNA antibodies rs7574865 STAT4 4.40E–05 0.00097 1.40 (1.19–1.64)

anti–dsDNA antibodies rs2187668 HLA-DR3 0.00090 0.0099 1.37 (1.14–1.65)

renal disorder rs2187668 HLA-DR3 0.00060 0.013 1.37 (1.14–1.64)

anti-dsDNA antibodies rs5754217 UBE2L3 0.0033 0.020 1.31 (1.09–1.56)

anti-dsDNA antibodies rs9888739 ITGAM 0.0037 0.020 1.32 (1.09–1.59)

age at diagnosis,34 years rs7574865 STAT4 0.0013 0.029 1.27 (1.01–1.47)

immunologic disorder rs4963128 KIAA1542 0.0019 0.036 0.79 (0.68–0.92)

immunologic disorder rs9462015 UHRF1BP1 0.0033 0.036 1.25 (1.08–1.44)

arthritis rs9888739 ITGAM 0.0017 0.038 0.72 (0.59–0.88)

*anti-dsDNA positivity defined by presence of any positive test versus presence of all negative tests; renal disorder, immunologic disorder, and arthritis defined as in the
1987 ACR criteria [13,14].
{Logistic regression adjusted for PC1-PC4, parent study, disease duration, and gender.
{5% False Discovery Rate by Benjamin-Hochberg method [16].
doi:10.1371/journal.pgen.1001311.t002

SLE Risk Alleles and Subphenotypes

PLoS Genetics | www.plosgenetics.org 5 February 2011 | Volume 7 | Issue 2 | e1001311



joint data (FDR p = 0.038 in Table 2) and the discovery set

(unadjusted p = 0.00056), ITGAM and the sub-GRS had p.0.1 in

the replication set.

Finally, we considered the predictive capability of the sub-GRS

and GRS for associated subphenotypes. We compared ROC

curves for four predictive models for each of the six subphenotypes

as shown in Table 5. When adding the sub-GRS (model 4) to a

model containing only (commonly-available clinical data) disease

duration and sex (model 1), the area under the ROC curve was

significantly improved (p,0.05) for all of these subphenotypes

except renal disease. It was also significantly better than adding

only the top single-locus association (model 2). When comparing

model 4 to a model containing sex, disease duration, and the SLE

GRS, it was only significantly better (p = 0.020) for anti-dsDNA

production. Figure 3 shows the ROC curves for these four models

for anti-dsDNA production.

Discussion

In a large collection of SLE cases and controls, we investigated

the relationship between 22 risk alleles, considered individually

and as cumulative genetic risk scores, with SLE susceptibility and

specific SLE manifestations. It is important to understand the

etiology of SLE subphenotypes, since different subphenotypes of

SLE have differential morbidity and mortality, and appear likely

to have different underlying etiologies as well. We believe that a

more clear understanding of which, if any, genes affect each

subphenotype may help lead to a better understanding of SLE

disease mechanisms.

We defined a genetic risk score, the GRS, as a summation of

SLE risk alleles with each allele unit multiplied by the SLE OR for

that allele. This is similar to the weighted ‘‘wGRS’’ defined by

Karlson et al [11] for rheumatoid arthritis, except that we use the

OR directly rather than its logarithm to be on a scale more similar

to the number of risk alleles; the use of 22 risk alleles in both is

coincidental. While the number of risk alleles is more intuitive and

easier to visualize, the GRS has a wider range and variance and a

stronger correlation with SLE susceptibility and subphenotypes.

When applied to subphenotypes, the GRS may lose power due to

unassociated or improperly weighted SNPs. For this reason we

also modeled subphenotype-specific genetic risk scores (sub-GRS)

Table 3. Association of GRS with SLE subphenotypes.

Continuous GRS GRS High-Low Tertiles

N OR* (95% CI) p-value* N OR (95% CI) p-value

anti-dsDNA antibodies 1533 1.10 (1.07–1.13) 9.3E–12 1061 2.36 (1.76–3.16) 9.4E–09

immunologic disorder 1536 1.09 (1.06–1.13) 4.4E–09 1063 2.23 (1.64–3.03) 3.1E–07

oral ulcers 1533 0.95 (0.92–0.97) 5.0E–05 1061 0.62 (0.46–0.83) 0.0012

renal disorder 1541 1.06 (1.02–1.09) 0.00036 1067 1.47 (1.06–2.06) 0.023

hematologic disorder 1535 1.06 (1.03–1.09) 4.3E–05 1062 1.38 (1.03–1.84) 0.031

age at diagnosis,34 years 1753 1.06 (1.03–1.08) 8.1E–06 1219 1.45 (1.11–1.90) 0.0060

b{ (95% CI) b{ (95% CI)

age at diagnosis (continuous) 1753 20.39 (20.55–0.24) 8.6E–07 1219 22.68 (24.42–0.94) 2.6E–03

*Per unit GRS using logistic regression, adjusted for first 4 PCs, sex, and study source; adjusted for disease duration except age at diagnosis,34 years.
{Per unit GRS using linear regression, adjusted for first 4 PCs, sex, and study source.
doi:10.1371/journal.pgen.1001311.t003

Table 4. Logistic regression results for sub-GRS and SLE GRS, for subphenotypes with sub-GRS p,0.1 in replication set (study 2).

Sub-GRS SLE GRS

Discovery Replicate Joint

(study 1, n = 1250) (study 2, n = 609) (studies 1+2, n = 1898) (studies 1+2, n = 1898)

Sub-phenotype N SNPs p std{ OR (CI) p std{ OR (CI) p std{ OR (CI) P std{ OR (CI)

anti-dsDNA
antibodies

13 5.8E–14 1.62 (1.43–1.84) 6.5E-05 1.50 (1.23–1.83) 5.8E–17 1.56 (1.41–1.73) 5.1E–12 1.43 (1.29–1.58)

immunologic
disorder

9 3.5E–10 1.52 (1.33–1.73) 0.0013 1.33 (1.12–1.59) 2.0E–12 1.45 (1.31–1.60) 4.1E–08 1.33 (1.20–1.47)

age at diagnosis
,34 years

7 2.5E–06 1.32 (1.18–1.49) 0.0027 1.31 (1.10–1.57) 2.0E–08 1.32 (1.20–1.46) 1.0E–05 1.24 (1.13–1.37)

oral ulcers 9 5.5E–07 1.34 (1.20–1.51) 0.012 1.24 (1.05–1.47) 4.5E–08 1.30 (1.18–1.43) 6.2E–06 0.80 (0.73–0.88)

hematologic
disorder

18 1.1E–07 1.39 (1.23–1.57) 0.049 1.18 (1.00–1.39) 1.1E–07 1.30 (1.18–1.43) 7.6E–04 1.18 (1.07–1.30)

renal disorder 1 4.9E–03 1.20 (1.06–1.36) 0.052 1.18 (0.99–1.40) 4.0E–04 1.20 (1.08–1.32) 7.6E–04 1.20 (1.08–1.33)

All adjusted for 4 principal components. Adjusted for disease duration except early diagnosis; missing disease duration are dropped for discovery but imputed from
source, age at diagnosis, and sex for other analyses. Combined studies have study as additional covariate.
{std = standardized to normal distribution, CI = 95% confidence interval.
doi:10.1371/journal.pgen.1001311.t004
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with subsets of SNPs determined using a discovery-replication

approach. While the association of these scores in our overall

dataset was likely to be inflated since a substantial subset of the

data was used to determine the ranking and weighting of the

composite SNPs, the odds ratios in our replication set were similar

or slightly higher than for the SLE GRS.

It should be noted that many of the SLE risk alleles were

discovered using subjects in our study; thus our odds ratios may be

an overestimate of the actual odds ratios (‘‘winner’s curse’’)

resulting in over-weighting in the GRS for some SNPs. On the

other hand, it is likely that many of these SNPs are not the causal

variants but markers in LD. In that case, their effect sizes for SLE

susceptibility and/or subphenotype associations would be under-

estimated, causing the GRS and/or sub-GRS scores to be

underweighted and under-associated. Also, in some cases we were

not able to use directly-genotyped SNPs at exactly the risk locus

previously identified in the literature. Three SNPs were imputed in

the SLEGEN dataset (Illumina 317K versus 550K, see Table S1),

and for 6 SNPs we used a proxy. Use of proxy and/or imputed

SNPs may have given us lower power to detect associations if those

SNPs were not as accurate or highly associated; however we

believe accuracy was assured by high thresholds for imputation

inclusion (see Methods) and proxy SNP selection (r2$0.8). Also,

while multiple signals have been implicated in the TNFAIP3 region

[5,17], we were only able to include one locus with a suitable

match in our data. Another potential limitation of the GRS is lack

of modeling interactions between SNPs. We tested for all 262

interactions between the 22 SNPs in our data with no results being

significant after multiple-testing correction; however we may have

lacked the statistical power to detect such interactions given our

sample size.

Our analyses used HLA-DRB1 tagging SNPs for the DRB1*0301

(DR3) and DRB1*1501 (DR2) alleles rather than direct HLA-

DRB1 genotyping data. Our resulting ORs were lower than those

in the literature and therefore may underestimate the GRS. We

performed sensitivity analyses with a subset of our cases having 4-

digit HLA-DRB1 typing (n = 716) and a subset of controls having

mixed 2- and 4-digit typing (n = 1414). Removing ambiguous 2-

digit types, there was 98.9% agreement of the DR3 classification

(as 0/1/2 alleles) and 98.2% agreement for DR2. We were not

Figure 3. ROC curves for four anti–dsDNA models. Four models shown: 1) sex and disease duration alone, 2) adding top locus (STAT4) to first
model, 3) adding GRS to first model, and 4) adding sub-GRS to first model.
doi:10.1371/journal.pgen.1001311.g003

Table 5. Area under curve for four models.

Model
1 = clinical*

Model
2 = clinical+
top locus**

Model 3 =
clinical+
GRS

Model 4 =
clinical+
sub-GRS

p-value
model 4
versus 1

p-value
model 4
versus 2

p-value
model 4
versus 3

anti-dsDNA antibodies 0.581 0.600 0.636 0.655 2.1E–7 3.4E–5 0.020

age at diagnosis,34 years 0.512 0.547 0.560 0.580 0.0080 0.0093 0.12

renal disorder 0.646 0.656 0.657 0.656 0.11 1 0.90

oral ulcers 0.510 0.552 0.578 0.595 1.0E–6 0.0027 0.12

hematologic disorder 0.563 0.571 0.584 0.601 0.0097 0.030 0.12

immunologic disorder 0.580 0.590 0.621 0.633 0.00049 0.0019 0.26

*disease duration and sex for all except early diagnosis; sex only for early diagnosis.
**top locus adjusting for sex and duration: anti-dsdna, early diagnosis, oral ulcers = STAT4; renal = HLA-DR3; immunologic = KIAA1542; hematologic = UBE2L3.
doi:10.1371/journal.pgen.1001311.t005
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able to assess case-control ORs using this data due to the

differential typing; however we tested our DR3 associations with

anti-dsDNA production and renal subphenotypes, and observed

nearly identical ORs and significance compared to the tag SNPs

using the same subset of subjects (data not shown).

We have shown that a subset of SLE clinical manifestations –

immunological disorder including anti-dsDNA production, renal

disease, age at diagnosis, hematologic disorder, and oral ulcers –

are strongly associated with the number of risk alleles and the

GRS. For most of these, the GRS was much more highly

associated than any single locus, with the exception of renal disease

and the HLA-DRB1 *0301 (DR3) allele, which is stronger than the

GRS signal (and equivalent to the sub-GRS as it had only a single

allele). For arthritis, there was no association with the GRS, but

there is evidence for a protective effect of the ITGAM locus. For

other manifestations, such as malar rash and serositis, there were

no significant associations with either the GRS, sub-GRS, or with

single loci. This led to our categorization of SLE manifestations

into those that are: a) influenced by cumulative effects of multiple

known genes, b) influenced primarily by a single gene out of the

currently-established risk loci, and c) thus far not appearing to be

strongly influenced by genetics (Figure 4). Anti-nuclear antibody

production was not included in this characterization as it was

present in almost all SLE patients (95.9% of our subjects, Table

S4); it is also possible that some associations were not evident due

to lack of power for less-frequent manifestations, such as discoid

rash and neurologic disorder.

Strengths of this study include the large sample size and

availability of clinical data for the SLE cases. Although there are

potential issues of differing clinical evaluation at different sites and

comprehensive follow-up after DNA collection, we expect the

standardized ACR criteria to be highly consistent; furthermore we

expect that any misclassification would be random with respect to

genotype and therefore bias our results towards the null. One

related issue was the large number of cases lacking data for disease

duration. In general, we took a conservative approach and did not

include observations that did not have disease duration informa-

tion when disease duration was found to be associated with

subphenotypes; for a subset of analyses, we also utilized single

and/or multiple imputation on the entire dataset and observed

similar results.

A limitation of this and most other recent studies of SLE

genetics is that it contains only subjects of European ancestry, and

primarily northern European. The GRS was strongly associated

with the first principal component of whole-genome SNPs, which

reflects ancestry along the northwest-to-southeast European cline.

This is likely to be at least somewhat if not largely due to the fact

that these risk alleles have been discovered using mostly subjects of

northern European ancestry, and additional risk alleles for other

populations have yet to be discovered.

While the GRS was very highly associated with SLE suscepti-

bility, the predictive capability was somewhat modest (AUC for

ROC curve 68.9%). For subphenotypes associated with the GRS

and sub-GRS, these scores significantly improve prediction over

Figure 4. Categorization of SLE subphenotypes by strongest association with currently known susceptibility loci: genetic risk score,
single locus, or none.
doi:10.1371/journal.pgen.1001311.g004
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disease duration and gender, but the AUC for these subphenotypes

is even more modest (56.0%–65.7%). For renal disease, the GRS

did not improve prediction over clinical variables. It will be very

interesting to see how such measures will be improved as we obtain

additional information on SLE risk. In particular we anticipate that

new susceptibility loci will be found as non-northern-Europeans are

studied in greater detail. We also anticipate that the locations of

current risk loci will be determined more precisely with regional fine

mapping, re-sequencing, and functional studies.

Methods

Prior to merging, individual datasets were filtered for individuals

with,90% genotyping and SNPs with,90% genotyping, minor

allele frequency (MAF),1%, or HWE p-value,0.00001. SNPs in

the 550K but not the 317K platform were imputed in the parent

study 2 (SLEGEN) dataset using IMPUTE [18], retaining SNPs

with .90% confidence, .90% concordance in two test datasets

(500 cases and 500 controls from parent study 1 with known

genotypes removed), and .90% imputed genotype rate. In the

final merged dataset of genotyped and imputed SNPs, SNPs were

again filtered for .90% genotyping (using typed or imputed

values). From this dataset, SLE risk SNPs or their proxies were

obtained. Out of 22 loci selected for inclusion based on

p,561028 in a previous study [6], 16 were directly genotyped

in all of our subjects. Three SNPs were imputed in the SLEGEN

dataset, and a proxy SNP (r2.0.8) was found for 6 SNPs using the

HapMap (http://www.hapmap.org) CEU population (with one

overlap, a proxy SNP imputed in the SLEGEN dataset). Imputed

and proxy SNPs are shown in Table S5.

Principal components analysis using EIGENSTRAT [19] was

performed using the above merged dataset of directly genotyped

SNPs, with SNPs having at least 90% genotyping (thus on both the

317K and 550K platforms). SNPs in regions of known high LD

Figure 5. Association of subphenotypes with sub-GRS candidates in study 1, by number of included SNPs. P-values are for likelihood-
ratio test of models with sub-GRS plus covariates vs. covariates alone.
doi:10.1371/journal.pgen.1001311.g005
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(chr 5: 44–51.5 Mb, chr 6: 25–33.5 Mb, chr 8: 8–12 Mb, chr 11:

45–57 Mb, and chr 17: 40–43 Mb) were removed prior to

analysis. Individuals with values more than 6 standard deviations

away from the mean of any of the first 10 PCs (n = 21) were

considered genetic outliers and were removed. Four PCs were

used for ancestry adjustment, based on leveling off of the PCA

scree plot and due to significant differences between cases and

controls for the first 4 PCs.

The GRS was defined as the number of risk alleles at each locus

multiplied by the OR for SLE susceptibility in our dataset. For

example, two STAT4 risk alleles contribute 2*1.5 = 3 to the GRS.

For a protective SNP, the risk alleles are the major alleles. Since

not counting sporadic missing data would underestimate the

number of risk alleles, the GRS, and the sub-GRS, we used best-

guess imputed missing genotypes (using IMPUTE version 2) for

these calculations. The GRS was analyzed both continuously and

by comparing the highest and lowest tertiles to aid in

interpretation, with comparison of tertiles being a compromise

between more extreme tails of the distribution (having less power)

and dichotomizing (having less differentiation).

Subphenotypes and covariates studied are shown in Table S4.

In each study, subphenotype status was confirmed by chart review.

Autoantibody status was determined by chart review and/or

serologic testing; subjects were considered auto-antibody positive if

there was any positive test indicated in the reviewed medical

records or serologic tests. Negative status required that at least one

negative test be documented and no positive tests. Positive anti-

dsDNA status is a subset of the immunologic criteria; other

qualifiers are anti-Sm antibodies or the presence of anti-phospho-

lipid antibodies. Where appropriate, e.g. logistic regression and bar

graphs, the age at diagnosis was dichotomized into high-low halves

or split into tertiles. For regression, in addition to the ancestry

principal components described above, additional covariates were

sex, disease duration, and study (two parent studies or eight sources,

see Table S1). All subphenotypes were heterogeneous by study

source (data not shown).

We first looked at the adjusted association between each

outcome and the continuous GRS (Table S3). As we have a high

percentage of missing data for disease duration (18.5%, see Table

S4), adjustment was done two ways: a) using only the subset of

subjects having disease duration, and b) using multiple imputation

of the missing disease duration values. Multiple imputation was

performed using Stata ICE [20] with predictive matching.

Covariates age at diagnosis, study source, and sex were used in

the imputation. Differences in results using these methods were

very slight for subphenotypes associated with the GRS. We used

actual data without imputation in subsequent GRS analyses. For

the sub-GRS computations (below), we used single imputation

based on the same variables as above.

In subphenotype associations, the SLE GRS may have less

power than a risk score which utilizes the SNPs and effect sizes

appropriate for that subphenotype. Thus we also tested a

subphenotype-specific sub-GRS for each subphenotype, defined

via a discovery-replication approach. First, for each subphenotype

we used the associations in parent study 1 (the ‘‘discovery’’ study

for this analysis) to determine the rank and OR of each risk SNP

association with the subphenotype. Then a series of 22 candidate

sub-GRS(n) scores were computed incrementally adding in the

OR weights by rank, where n is the number of SNPs included.

(The first candidate sub-GRS(1) is equal to the top SNP weights,

the second candidate sub-GRS(2) adds in the second SNP weights,

and so on). The associations in the discovery set for the resulting

sub-GRS(n) candidates are shown in Figure 5; p-values are for the

likelihood ratio test of differences between models with the sub-

GRS(n) plus covariates versus a model with only covariates. This

method can accumulate random associations as well, as illustrated

for comparison purposes by sample ‘‘null’’ subphenotypes with

50–50 random associations (highest and lowest associations out of

ten samples are shown); hence the importance of a discovery-

replication approach. Finally the peak association sub-GRS(n)

candidate for the replication and discovery sets with the minimum

number of SNPs was used as the final sub-GRS for each

subphenotype; this assumes that post-peak SNPs in either set are

likely to be false positive associations.

Stata 9.2 [21] was used for regressions and ROC curve analyses.

Plink [22] was used for quality control filters, regressions and tests

for 262 interactions. HelixTree SVS Version 7.2.3 (www.

goldenhelix.com) was used for likelihood-ratio tests of logistic

regressions of the sub-GRS(n) series. The R programming

environment [23] Version 2.11.1 was used for GRS density curves.
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