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Abstract

Background: PINCH1, an adaptor protein containing five LIM domains, plays an important role in regulating the integrin-
mediated cell adhesion, migration and epithelial-mesenchymal transition. PINCH1 is induced in the fibrotic kidney after
injury, and it primarily localizes at the sites of focal adhesion. Whether it can translocate to the nucleus and directly
participate in gene regulation is completely unknown.

Methodology/Principal Findings: Using cultured glomerular podocytes as a model system, we show that PINCH1
expression was induced by TGF-b1, a fibrogenic cytokine that promotes podocyte dysfunction. Interestingly, increased
PINCH1 not only localized at the sites of focal adhesions, but also underwent nuclear translocation after TGF-b1 stimulation.
This nuclear translocation of PINCH1 was apparently dependent on the putative nuclear export/localization signals (NES/
NLS) at its C-terminus, as deletion or site-directed mutations abolished its nuclear shuttling. Co-immunoprecipitation and
pull-down experiments revealed that PINCH1 interacted with Wilms tumor 1 protein (WT1), a nuclear transcription factor
that is essential for regulating podocyte-specific gene expression in adult kidney. Interaction of PINCH1 and WT1 was
mediated by the LIM1 domain of PINCH1 and C-terminal zinc-finger domain of WT1, which led to the suppression of the
WT1-mediated podocalyxin expression in podocytes. PINCH1 also repressed podocalyxin gene transcription in a promoter-
luciferase reporter assay.

Conclusion/Significance: These results indicate that PINCH1 can shuttle into the nucleus from cytoplasm in podocytes,
wherein it interacts with WT1 and suppresses podocyte-specific gene expression. Our studies reveal a previously
unrecognized, novel function of PINCH1, in which it acts as a transcriptional regulator through controlling specific gene
expression.
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Introduction

Podocytes are highly differentiated glomerular visceral epithelial

cells that play an essential role in the establishment of the

glomerular filtration barrier, a structural apparatus that selectively

restricts the filtration of different macromolecules in the blood

stream on the basis of their sizes, shape and charge [1,2]. The

characteristic features of podocytes are their sophisticated foot

processes, which are connected with the counterpart of the

neighboring cells through specialized adhesion complexes known

as slit diaphragms. Not surprisingly, podocyte dysfunction, as

defined by foot process effacement/retraction and cell dedifferen-

tiation, is one of the primary causes of proteinuria in a wide variety

of human and experimental glomerular diseases, such as diabetic

nephropathy, adriamycin nephropathy, and focal and segmental

glomerulosclerosis (FSGS) [3–7].

The delicate morphology and function of podocytes are

ultimately controlled by their unique transcriptional program in

the nuclei. In that regard, WT1, the product of Wilms tumor gene

1, is a key nuclear transcription factor that plays a fundamental

role in controlling the expression of major podocyte-specific genes

such as podocalyxin in adult kidney [8–13]. WT1 is expressed

early in embryonic kidney development and plays a crucial role in

directing mammalian nephron formation, as homozygous muta-

tions in WT1 result in embryonic lethality due to a failure in the

development of kidneys [14,15]. In adult kidney, WT1 expression

is exclusively restricted to glomerular podocytes [16]. Based on

these findings, WT1 is often utilized as a molecular marker for

evaluating podocyte number and density under different circum-

stances [17]. However, how WT1 activity is regulated in podocytes

is largely unknown.

PINCH1 (particularly interesting new cysteine-histidine rich

protein 1) is an adaptor protein that plays an important role in

regulating cell spreading, motility, epithelial-mesenchymal transi-

tion and matrix production [18–21]. Structurally, PINCH1

contains a tandem array of five LIN11, Isl1 and MEC-3 (LIM)
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domains that are involved in mediating protein-protein interac-

tions, and a short C-terminal tail that harbors a putative leucine-

rich nuclear export signal (NES) and overlapping basic nuclear

localization signal (NLS) [21,22]. As an adaptor protein, PINCH1

has been shown to interact with integrin-linked kinase (ILK) and

promote the integrin signaling [23–26]. It also binds to Nck [27],

another adaptor protein that links to nephrin [28,29]. PINCH1

protein is predominantly localized at the focal adhesion sites of the

periphery of spreading cells [20], a pattern overlapping with other

focal adhesion proteins, such as ILK and paxillin. Earlier studies

show that the affinity for binding of PINCH1 to ILK is reduced in

cultured podocytes after injury induced by TGF-b1 [30].

However, it remains completely mysterious whether PINCH1

changes its sub-cellular localization after injury; and if so, what are

the functional consequences in podocytes.

In this study, we demonstrate that PINCH1 is induced and

undergoes nuclear translocation in podocytes after TGF-b1

treatment. Furthermore, we have shown that PINCH1 interacts

with WT1, which leads to suppression of the WT1-mediated

podocalyxin gene expression. Our data identify nuclear transcrip-

tion factor WT1 as a novel binding partner for PINCH1, and

provide novel insights into the mechanism of podocyte dysfunction

under pathological conditions.

Results

Induction of PINCH1 expression by TGF-b1 in glomerular
podocytes

We first examined the expression of PINCH1 in human

podocytes after incubation with TGF-b1, a potent fibrogenic

cytokine that is shown to induce podocyte dysfunction in a wide

variety of proteinuric chronic kidney diseases [3,31]. As shown in

Figure 1A, PINCH1 mRNA was significantly induced in cultured

human podocytes following TGF-b1 stimulation, as demonstrated

by a quantitative real-time RT-PCR assay. This induction of

PINCH1 mRNA started at 6 h, reached the peak at 24 h and

sustained at least to 48 h after TGF-b1 treatment. Consistent with

the mRNA expression, PINCH1 protein expression was also

induced by TGF-b1 in podocytes, as illustrated by Western blot

analyses of the whole cell lysates (Figure 1, B and C). TGF-b1

induced PINCH1 protein in a time-dependent manner, which

started at 24 h and sustained at least to 72 h after treatment, time

points that significantly lagged behind the mRNA induction. The

induction of PINCH1 expression also occurred in a dose-

dependent fashion; and TGF-b1 induced its protein level at the

concentration as low as 0.5 ng/ml, which reached the peak at

2 ng/ml.

Nuclear translocation of PINCH1 in podocytes after TGF-
b1 stimulation

As an adaptor protein that binds to ILK, PINCH1 is primarily

localized at the cell focal adhesion sites [20]. However, we found

that PINCH1 was increasingly accumulated in the nuclei of

podocytes after TGF-b1 stimulation. Subcellular fractionation

experiments revealed that nuclear PINCH1 was dramatically

increased in a dose-dependent fashion, while its levels in the

cytoplasmic preparation slightly declined after TGF-b1 treatment

(Figure 2A). Quantitative determination of the ratio of nuclear/

cytoplasmic PINCH1 in podocytes after TGF-b1 treatment is

presented in Figure 2B. These results indicate that TGF-b1 not

only induces PINCH1 expression, but also triggers it to undergo

nuclear translocation in podocytes.

To rule out the possibility that an increased nuclear accumu-

lation of PINCH1 is a consequence of its over-expression, we next

tested whether TGF-b1 directly promotes the nuclear transloca-

tion of endogenous PINCH1. To this end, we examined the

nuclear accumulation of PINCH1 after a short incubation with

TGF-b1, as it did not significantly induce PINCH1 protein

expression until 24 h of incubation (Figure 1B). As shown in

Figure 3A, incubation with TGF-b1 for 1 to 3 h was sufficient to

induce the nuclear translocation of endogenous PINCH1,

indicating that TGF-b1-induced nuclear translocation of PINCH1

is regulated by a mechanism independent of its abundance.

To further confirm the nuclear translocation of PINCH1, we

constructed an expression vector of GFP-PINCH1 fusion protein

driven under CMV promoter. After transfection of this GFP-

PINCH1 expression vector for 24 h, podocytes were treated with

TGF-b1 for 24 h. We examined GFP-tagged PINCH1 subcellular

distribution in podocytes using microscopy. As shown in Figure 3B,

under basal conditions, GFP-PINCH1 was mainly localized in the

peri-nuclear region of the cytoplasm, as well as at the focal

adhesion sites in the periphery of spreading podocytes (Figure 3B,

left panel, arrows), but little in the nuclei (Figure 3B, left panel,

arrowhead). However, GFP-tagged PINCH1 diminished in the

peri-nuclear region and was clearly accumulated in the nuclei of

podocytes after TGF-b1 treatment (Figure 3B, right panel,

arrowhead), although it remained present at the focal adhesion

sites (Figure 3B, right panel, arrow). Quantitative calculation

showed more than 60% of podocytes that exhibited GFP-PINCH1

in the nuclei after TGF-b1 stimulation, a significant increase over

Figure 1. TGF-b1 induces PINCH1 mRNA and protein expression in human podocytes. A, Quantitative real-time RT-PCR reveals that TGF-b1
induced PINCH1 mRNA expression in a time-dependent manner. PINCH1 mRNA levels were assessed by quantitative real-time RT-PCR in human
podocytes after TGF-b1 treatment (2 ng/ml) for various periods of time as indicated. Relative PINCH1 mRNA levels (fold induction over the controls)
were reported after normalization with b-actin, and presented as mean 6 SEM of three experiments. *P,0.05 versus controls. B and C, Western blot
analyses demonstrate that TGF-b1 induced PINCH1 protein expression in a time- and dosage-dependent manner. Human podocytes were treated
with a fixed amount of TGF-b1 (2 ng/ml) for various periods of time as indicated (B) or with various concentrations of TGF-b1 for 48 h (C). Total cell
lysates were immunoblotted with specific antibodies against PINCH1 and actin, respectively.
doi:10.1371/journal.pone.0017048.g001

PINCH1 Is a Transcriptional Regulator

PLoS ONE | www.plosone.org 2 February 2011 | Volume 6 | Issue 2 | e17048



the controls (Figure 3C). To analyze this in a more quantitative

way, we assessed nuclear and cytoplasmic GFP-PINCH1 abun-

dance by Western blotting. As shown in Figure 3D, nuclear GFP-

PINCH1 was increased, while its level in the cytoplasm declined,

thereby leading to a significant shift in the ratio of nuclear/

cytoplasmic GFP-PINCH1 after TGF-b1 treatment. Since GFP-

tagged PINCH1 is controlled under CMV promoter, which is not

regulated by TGF-b1, these results indicate that TGF-b1 is able to

induce nuclear translocation of PINCH1 apparently by an active

process independent of its protein abundance.

Nuclear translocation of PINCH1 requires its putative
NES/NLS motif

Bioinformatics analysis revealed that PINCH1 harbors a leucine-

rich, putative nuclear export signal (NES) and an overlapping

nuclear localization signal (NLS), consisting of charged, mostly basic

amino acids such as lysine and arginine in its C-terminus, as

previously reported [22]. Alignment of PINCH1 sequences derived

from different species indicated that this region was highly

conserved during evolution (Figure 4A). To test whether this

putative NES/NLS is responsible for mediating cytoplasmic/

Figure 2. TGF-b1 induces nuclear translocation of PINCH1 in human podocytes. A, Western blot analyses show marked induction of
PINCH1 protein in the nuclei of podocytes after TGF-b1 treatment. Podocytes were incubated with TGF-b1 at various concentrations as indicated for
72 h. Nuclear and cytoplasmic preparations were made and immunoblotted with specific antibodies against PINCH1, TBP and GAPDH, respectively. B,
Graphic presentation shows the relative ratio of the nuclear/cytoplasmic PINCH1 protein in podocytes after TGF-b1 treatment. The value of the
nuclear/cytoplasmic ratio of PINCH1 in the control group was set as 1.0. Data are presented as mean 6 SEM of four experiments. *P,0.05, **P,0.01
versus controls.
doi:10.1371/journal.pone.0017048.g002

Figure 3. PINCH1 nuclear translocation induced by TGF-b1 is regulated by a mechanism independent of its abundance. A, Western
blot analyses show nuclear accumulation of endogenous PINCH1 protein in podocytes after a short period of TGF-b1 treatment. Podocytes were
incubated with TGF-b1 (2 ng/ml) for short periods of time as indicated. Nuclear and cytoplasmic proteins were separated and immunoblotted with
specific antibodies against PINCH1, TBP and GAPDH, respectively. B, Representative micrographs show the sub-cellular localization of GFP-PINCH1
fusion protein in control or TGF-b1-treated podocytes. Podocytes were transfected with GFP-PINCH1 expression plasmid driven under CMV promoter
for 24 h, and then incubated with TGF-b1 for additional 24 h at various concentrations as indicated. Arrows indicate the localization of PINCH1 in the
focal adhesion, while arrowheads denote the nuclear localization of PINCH1. C, Graphic presentation shows the percentage of the podocytes with
positive nuclear GFP protein after TGF-b1 treatment. Data are presented as mean 6 SEM of three experiments. *P,0.05 versus controls. D, Western
blot analyses show an induction of GFP-PINCH1 protein in the nuclei of podocytes by TGF-b1. Nuclear and cytoplasmic proteins were separated and
immunoblotted with specific antibodies against PINCH1, TBP and GAPDH, respectively.
doi:10.1371/journal.pone.0017048.g003
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nuclear shuttling of PINCH1, we generated the truncated, Flag-

tagged PINCH1 expression vector (pFlag-PINCH1-DNES/NLS) in

which the putative NES/NLS was deleted. In addition, we also

constructed a Flag-tagged, wild-type PINCH1 (pFlag-PINCH1-wt),

as well as two mutant PINCH1 expression vectors (pFlag-PINCH1-

M1 and pFlag-PINCH1-M3) by site-directed mutagenesis, as

illustrated in Figure 4B. These mutant PINCH1 vectors contained

either one or three leucine to alanine (L/A) point mutations in the

NES/NLS motif, respectively (Figure 4B). As shown in Figure 4C,

deletion of putative NES/NLS almost completely blocked nuclear

translocation of PINCH1, compared with the wild type PINCH1

controls. Furthermore, mutations at three leucine positions (M3) in

the NES/NLS motif also rendered PINCH1 unable to undergo

nuclear shuttling (Figure 4C). However, a single mutation at one

leucine position (M1) only marginally, if any, reduced the nuclear

accumulation of PINCH1 (Figure 4C). We further examined

whether the putative NES/NLS is required for TGF-b1-induced

nuclear translocation of PINCH1 by transfecting either wild-type or

mutant PINCH1. As demonstrated in Figure 4D, TGF-b1 could

induce wild-type, but not mutant (M3), PINCH1 nuclear

translocation in podocytes. Therefore, it appears that the putative

NES/NLS motif is required for mediating nuclear shuttling of

PINCH1 under both basal and TGF-b1-stimulated conditions.

PINCH1 interacts with nuclear transcription factor WT1
The finding that PINCH1 can shuttle into the nucleus

prompted us to investigate its potential function in podocytes. In

view of the structural characteristics of PINCH1, which contains

five LIM domains that mediate protein-protein interactions, we

reasoned that PINCH1 might interact with other nuclear proteins

that are important for podocyte biology. Along this line, we found

that PINCH1 could interact with WT1, a transcription factor that

is exclusively expressed in podocytes in adult kidney. As shown in

Figure 5A, when Flag-tagged PINCH1 and GFP-tagged WT1

were co-expressed in podocytes, PINCH1 could be detected in the

immunocomplexes precipitated by anti-GFP antibody. In recip-

rocal experiments, after transfection of podocytes with Flag-tagged

PINCH1 expression vector, endogenous WT1 was found in the

immunocomplexes precipitated with anti-Flag antibody

(Figure 5B). These interactions between PINCH1 and WT1

appeared specific, as replacing specific antibodies with control IgG

did not result in any binding (Figure 5, A and B). Furthermore,

physical interaction between endogenous PINCH1 and WT1 was

detectable in podocytes after TGF-b1 stimulation (Figure 5C),

suggesting that PINCH1/WT1 complex formation actually occurs

in pathophysiologically relevant conditions.

To further confirm the specificity of PINCH1/WT1 interaction,

we employed a GST-fusion protein pull down experiment to

examine the interaction between PINCH1 and WT1. To this end,

we generated a GST-WT1 fusion protein using a bacterial

expression system. As shown in Figure 5D, GST-WT1 fusion

protein as well as GST control protein was purified. When these

purified proteins were immobilized on glutathione-agarose beads

and incubated with podocyte lysates, PINCH1 was pulled down

Figure 4. Subcellular localization of PINCH1 is dictated by a putative motif in its C-terminus. A, Amino acid sequence comparison reveals
a conserved, overlapped, putative NES/NLS motif in the C-terminus of PINCH1 among different species including human, mouse, rat, and Drosophila.
Alignments of the deduced amino acid sequences were performed by using PRALINE program. Color bar is a strength histogram that denotes the
least to most conserved amino acids (least: dark blue, light blue, green, orange, red: most). B, Schematic diagram shows the structural domains of
PINCH1 and construction of various PINCH1 mutants. Purple ovals indicate the five LIM domains. The position of a putative NES/NLS motif is shown
by a bar, and the sequences of wild-type and mutant NES/NLS are given. C, Deletion or mutation of the putative NES/NLS blocks nuclear translocation
of PINCH1 in podocytes. Human podocytes were transfected for 48 h with Flag-tagged wild-type PINCH1 (pFlag-PINCH1-wt), truncated PINCH1
without NES/NLS (p-Flag-PINCH1-DNES/NLS), PINCH1 with single amino acid mutation in the NES/NLS motif (pFlag-PINCH1-M1) and PINCH1 with
three amino acids mutation in the NES motif (pFlag-PINCH1-M3), respectively. Nuclear and cytoplasmic proteins were separated and immunoblotted
with antibodies against Flag. D, TGF-b1 treatment fails to induce nuclear translocation of PINCH1 with mutant NES/NLS. Podocytes were transfected
with wild-type PINCH1 (pFlag-PINCH1-wt) or mutant PINCH1 (pFlag-PINCH1-M3) for 48 h, respectively, and then treated TGF-b1 (2 ng/ml) for 3 h.
Nuclear and cytoplasmic proteins were separated and immunoblotted with antibodies against Flag.
doi:10.1371/journal.pone.0017048.g004
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and detected in the assay (Figure 5E), indicating a specific

interaction between PINCH1 and WT1.

We also tested whether deletion or mutation of the putative

NES/NLS motif prevents PINCH1/WT1 interaction in podo-

cytes. As shown in Figure 5F, when podocytes were transfected

with GFP-tagged WT1 and Flag-tagged wild-type PINCH1,

PINCH1/WT1 interaction was readily detectable by co-immu-

noprecipitation. However, no or little PINCH1/WT1 interaction

was observed when PINCH1 mutants with either deletion of the

NES/NLS (PINCH1-DNES/NLS) or three amino acid mutations

within this motif (PINCH1-M3) were co-transfected with GFP-

tagged WT1. These data suggest that nuclear translocation of

PINCH1 is a prerequisite for its interaction with WT1 in

podocytes.

Delineation of the structural domains mediating PINCH1/
WT1 interaction

To define the structural domains responsible for mediating

PINCH1/WT1 interaction, we generated a series of Flag-tagged,

truncated PINCH1 expression vectors containing different LIM

domains (Figure 6A). After these constructs were co-transfected

with GFP-tagged WT1 expression vector into podocytes, physical

interaction between different domains of PINCH1 and WT1 were

assessed by co-immunoprecipitation. As shown in Figure 6B, all

truncated PINCH1 proteins that contained LIM1 domain were

detected in the immunocomplexes precipitated by anti-GFP

antibody, whereas those PINCH1 proteins without LIM1 were

not found in the immunoprecipitates under the same conditions.

These results indicate that the LIM1 domain of PINCH1 mediates

its interaction with WT1 (Figure 6B).

We also sought to determine the structural domain of WT1 that

is involved in its interaction with PINCH1. To this end, we

generated two GFP-tagged expression vectors that contained

either N-terminal, proline/glutamine-rich regulatory domain (1-

315 aa) (WT1-NT) or C-terminal, DNA-binding domain (280-429

aa) (WT1-CT) containing four zinc fingers of the Kruppel-type

(Figure 6C), respectively. When these expression vectors were co-

transfected with Flag-tagged PINCH1 construct in podocytes,

potential interaction between truncated WT1 and PINCH1 was

examined by co-immunoprecipitation. As shown in Figure 6, D

and E, PINCH1 was only detected in the immunocomplexes in

podocytes over-expressing GFP-tagged C-terminus of WT1 (WT1-

CT), but not in the cells transfected with expression vector

encoding N-terminus of WT1 (WT1-NT). Therefore, it appears

clear that the C-terminal zinc-finger domains of WT1 mediate its

interaction with PINCH1.

PINCH1 represses WT1-mediated podocalyxin expression
To examine the potential consequence of PINCH1/WT1

interaction, we investigated the effects of PINCH1 on WT1-

Figure 5. PINCH1 physically interacts with nuclear transcription factor WT1 in human podocytes. A, Co-immunoprecipitation
demonstrates a complex formation between PINCH1 and WT1. Human podocytes were transfected with Flag-PINCH1 and GFP-WT1 for 48 h. Cell
lysates were immunoprecipitated with specific antibody against GFP, followed by immunoblotting with antibody against Flag. IgG, control rabbit IgG.
B, Co-immunoprecipitation shows a complex formation between PINCH1 and WT1. Human podocytes were transfected with Flag-PINCH1 for 48 h.
Cell lysates were immunoprecipitated with specific antibody against Flag, followed by immunoblotting with antibody against endogenous WT1. IgG,
control mouse IgG. C, Endogenous WT1 and PINCH1 interaction after TGF-b1 treatment in podocytes. Human podocytes were treated with TGF-b1
(2 ng/ml) for 24 h. Cell lysates were immunoprecipitated with anti-WT1 antibody, followed by immunoblotting with anti-PINCH1. D, Coomassie blue
staining shows the purified GST tagged proteins expressed in bacterial BL21. Lane 1, purified GST. Lane 2, purified GST-WT1 fusion protein. E, Pull-
down assay revealed a complex formation between PINCH1 and WT1. Purified GST-WT1 protein as well as control GST protein was incubated with
podocyte lysate overnight, followed by immunoblotting with antibody against PINCH1. F, Deletion or mutation of the putative NES/NLS motif
prevents PINCH1/WT1 interaction in podocytes. Human podocytes were transfected for 48 h with GFP-tagged WT1 (pGFP-WT1) and Flag-tagged
wild-type PINCH1 (pFlag-PINCH1-wt), truncated PINCH1 without NES/NLS (p-Flag-PINCH1-DNES/NLS), PINCH1 with single amino acid mutation in the
NES/NLS motif (pFlag-PINCH1-M1) and PINCH1 with three amino acids mutation in the NES motif (pFlag-PINCH1-M3), respectively. Cell lysates were
immunoprecipitated with anti-GFP antibody, followed by immunoblotting with anti-Flag antibody. An aliquot of cell lysates were immunoblotted
with anti-Flag antibody as input.
doi:10.1371/journal.pone.0017048.g005
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mediated gene expression. Podocalyxin, a transmembrane protein

that plays a crucial role in the maintenance of podocyte morphology

and foot processes [32], is well characterized as a WT1 target gene.

Indeed, we found that ectopic expression of WT1 in podocytes

significantly induced podocalyxin mRNA and protein expression

(Figure 7, A through C). However, co-transfection of PINCH1

largely abolished WT1-mediated podocalyxin induction. Of note,

PINCH1 had the tendency, although not significantly, to inhibit

basal podocalyxin mRNA expression in the absence of exogenous

WT1 (Figure 7, A and B), suggesting that podocalyxin is also

controlled by endogenous WT1 in podocytes. Likewise, knockdown

of PINCH1 increased podocalyxin mRNA expression in podocytes

(Figure 7, D and E). Therefore, it becomes clear that PINCH1

interacts with WT1, which leads to suppression of the WT1-

mediated gene expression in podocytes.

We further investigated the effects of PINCH1 on podocalyxin

gene transcription using a promoter-luciferase reporter assay. A

podocalyxin promoter luciferase reporter vector containing a

putative WT1 response element at the nucleotide positions 21213

to 21227 was constructed, as previously reported [10]. We found

that co-transfection with WT1 expression vector significantly

stimulated the podocylyxin promoter luciferase activity in

podocytes, compared to empty vector pcDNA3 (Figure 7F).

However, when PINCH1 was co-expressed, the WT1-mediated

podocalyxin promoter-luciferase activity was suppressed, com-

pared with transfection with WT1 alone (Figure 7F). Therefore,

consistent with the suppression of podocalyxin protein and

mRNA, PINCH1 also abolishes the WT1-mediated the transcrip-

tion of podocalyxin gene.

Discussion

PINCH1 is an adaptor/scaffolding protein that normally

localizes at focal adhesion sites. In this study, we provide evidence

demonstrating that PINCH1 also functions as a transcriptional

regulator by interacting with nuclear WT1, a podocyte-specific

transcription factor that plays a pivotal role in the establishment

and maintenance of the unique differentiated features of podocytes

in adult kidney. We show that PINCH1 is up-regulated in

podocytes after stimulation with TGF-b1 and translocates into the

nucleus, wherein it binds to WT1 and suppresses the WT1-

mediated gene transcription. Our results uncover a novel function

of PINCH1, in which it acts as a transcriptional regulator through

controlling specific gene expression in podocytes.

Given the ability of PINCH1 to undergo nuclear translocation, it

is conceivable that there are possible three subcellular (nuclear,

Figure 6. Delineation of the structural domains that mediate PINCH1/WT1 interaction. A, Schematic diagram shows the construction of
various Flag-tagged PINCH1 expression vectors containing different LIM domains. B, Co-immunoprecipitation indicates that the LIM1 domain of
PINCH1 mediates the interaction with WT1. Human podocytes were co-transfected with various Flag-tagged PINCH1 LIM domains and GFP-WT1 for
48 h. Cell lysates were immunoprecipitated with specific antibody against GFP, followed by immunoblotting with antibody against Flag. Asterisk (*)
indicate positive interactions. C, Diagram shows the construction of GFP tagged WT1 fragments. WT1 used is the isoform without KTS and 17 aa
encoded by exon 5 (WT1, -KTS, -17 aa). WT1-NT, N-terminal fragment of WT1 (1–315 aa); WT1-CT, C-terminal fragment of WT1 (280–429 aa). D, Co-
immunoprecipitation shows that PINCH1 interacted with WT1-CT, but not WT1-CT. Human podocytes were transfected with Flag-PINCH1 and either
GFP-tagged WT1-NT or GFP-tagged WT1-CT for 48 h. Cell lysates were immunoprecipitated with specific antibody against GFP, followed by
immunoblotting with anti- Flag. E, Expression of GFP-tagged WT1 fragments in podocytes after transfection were confirmed by Western blot analysis.
doi:10.1371/journal.pone.0017048.g006
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cytoplasmic and focal adhesion-associated) pools of PINCH1 in

podocytes. Each specific pool of PINCH1 may have different

functions. While the focal adhesion-associated PINCH1 may play a

critical role in modulating cell adhesion, cell shape and survival

[33], we show here that nuclear PINCH1 is instrumental in

regulating gene transcription via its interaction with WT1. Cellular

stress/injury after TGF-b1 treatment accelerates the rate of its

nuclear shuttling, resulting in an increased accumulation of

PINCH1 in the nuclei, but it does not appear to significantly affect

the focal adhesion-associated PINCH1 (Figure 3B). Nuclear

accumulation of PINCH1 is unlikely a passive consequence of an

increased overall level of its protein, since TGF-b1 also promotes

nuclear translocation of PINCH1 after a short incubation (1–3 h)

(Figure 3A) when significant PINCH1 induction was not evident

(Figure 1B). Not surprisingly, the putative NES/NLS motif in its C-

terminus of PINCH1 is functionally important and obligatory for

mediating its nuclear translocation, as deletion or site-directed

mutations of this motif effectively prevents its nuclear shuttling

(Figure 4) and its interaction with WT1 (Figure 5) in podocytes.

Such a PINCH1 shuttling between cytoplasm and nucleus is also

reported in Schwann cells after chronic constriction injury in adult

rats [22]. Consistently, several other LIM-containing proteins are

found to be able to undergo nuclear shuttling [34–36]. In this

context, it is reasonable to conclude that PINCH1 is able to

translocate into the nucleus in response to injury, thereby initiating

new protein-protein interactions and participating in the control of

gene transcription in diverse circumstances.

One of the novel findings in the present study is the

identification of WT1 transcription factor as the binding partner

for PINCH1 in the nuclei. Through defining the molecular details

of PINCH1/WT1 interaction, we show that the LIM1 domain of

PINCH1 mediates its interaction with WT1, whereas the C-

terminal zinc-finger domains of WT1 are responsible for its

binding to PINCH1 (Figure 6). Because WT1, a key transcription

factor that is exclusively expressed in glomerular podocytes in

adult kidney, plays a critical role in establishing the unique features

of podocytes by inducing specific gene expression, such a

PINCH1/WT1 interaction likely has a detrimental consequence.

Indeed, endogenous PINCH1/WT1 interaction actually occurs in

podocytes after TGF-b1 stimulation (Figure 5C). Similarly,

interaction between WT1 and the WT1-interacting protein

(WTIP), another LIM-containing protein, is previously shown to

lead to the suppression of WT1-mediated gene expression and

podocyte dysfunction [34,35,37].

PINCH1 nuclear shuttling and subsequent interaction with WT1

could presumably influence the WT1-mediated gene expression in

podocytes. In that regard, it is interesting to reveal that PINCH1

regulates the expression of podocalyxin, a well-characterized

podocyte-specific protein that is transcriptionally controlled by

WT1. Earlier in vivo and in vitro studies demonstrate that WT1 level

and activity directly dictate podocalyxin expression in glomerular

podocytes [10,13,32]. Indeed, ectopic expression of WT1 in

cultured podocytes induces podocalyxin mRNA and protein

expression (Figure 7). Given that PINCH1 binds to the zinc-finger

Figure 7. PINCH1 blocks WT1-mediated podocalyxin expression in human podocytes. A, RT-PCR analyses demonstrate that PINCH1
blocked WT1-stimulated podocalyxin mRNA expression in podocytes. Cells were transfected with expression vectors for PINCH1, WT1 or both,
respectively. RT-PCR amplification of housekeeping GAPDH was performed in an identical manner to serve as controls. B, Graphic presentation shows
the relative PINCH1 mRNA abundance in different groups after normalization with GAPDH. Data are presented as mean 6 SEM of three independent
experiments. *P,0.05. C, Western blot analyses show that PINCH1 blocked WT1-mediated podocalyxin protein expression. Human podocytes were
transfected with different plasmids as indicated for 48 h. Total cell lysates were immunoblotted with specific antibodies against podocalyxin and
actin, respectively. D and E, Knockdown of PINCH1 in podocytes promotes podocalyxin expression. Human podocytes were transfected with either
control or PINCH1-specific siRNA. The expression of PINCH1 (D) and podocalyxin (E) was assessed by quantitative RT-PCR. **P,0.01 (n = 3). F, PINCH1
represses WT1-activated podocalyxin gene promoter activity. Human podocytes were co-transfected with different plasmids as indicated with
luciferase- podocalyxin gene promoter reporter construct (pGL3-podocalyxin) for 48 h. Equal amounts of DNA were present in each transfection.
Data are presented as mean 6 SEM of three independent experiments. *P,0.05.
doi:10.1371/journal.pone.0017048.g007
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domains of WT1, it is not unexpected that over-expression of

PINCH1 abolishes WT1-mediated podocalyxin expression, while

knockdown of PINCH1 induced podocalyxin expression (Figure 7).

Podocalyxin is a CD34-related, transmembrane, sialoglycoprotein

that contains a highly charged cytoplasmic tail [32]. It is connected

to the cortical actin cytoskeleton via ezrin and Na+/H+-exchanger

regulatory factor 2 (NHERF2) and plays an essential role in

maintaining the foot process structure and filtration function.

Disruption of podocalyxin/NHERF2/ezrin/actin interactions

leads to pathologic conditions associated with changes in podocyte

foot processes [38]. Consistently, podocalyxin-deficient mice fail to

form foot processes and slit diaphragms and die within 24 h after

birth with anuric renal failure [39]. Therefore, suppression of WT1-

medated gene expression by PINCH1 could be a potential pathway

leading to podocyte dysfunction.

In summary, we have shown that PINCH1 undergoes nuclear

shuttling in podocytes after TGF-b1 stimulation. Nuclear

PINCH1 via its LIM1 domain interacts with a new partner

WT1. By interacting with the zinc finger domains of WT1,

PINCH1 effectively blocks WT1-mediated gene transcription.

These studies provide a proof of principal that PINCH1 can

function as a transcriptional regulator by regulating specific gene

expression.

Materials and Methods

Cell culture and treatment
The conditionally immortalized human podocyte cell line was

kindly provided by Dr. M. Saleem (University of Bristol, Bristol,

UK), as described previously [16,40]. To propagate podocytes,

cells were cultured at 33uC in RPMI-1640 medium supplemented

with 10% fetal bovine serum and a mixture of insulin, transferrin

and sodium selenite (ITS) (I3146; Sigma, St. Louis, MO). To

induce differentiation, podocytes were grown under nonpermissive

conditions at 37uC to inactivate the SV40 large T antigen.

Podocytes were treated with recombinant TGF-b1 at the

concentration of 2 ng/ml, unless otherwise indicated. For some

studies, podocytes were transiently transfected with various

PINCH1 expression vectors by using Lipofectamine 2000 reagent

(Invitrogen, Carlsbad, CA), as described previously [41].

Construction of various expression vectors
Various expression vectors with different epitope-tags were

constructed using routine molecular cloning techniques. Flag- and

GFP-tagged PINCH1 expression vectors (pFlag-PINCH1 and

pGFP-PINCH1), as well as GFP-tagged WT1 (pGFP-WT1) were

constructed in the pcDNA3-based expression vector under the

control of CMV promoter. The expression vector for WT1 (-KTS)

without KTS was kindly provided by Dr. D. Haber (Massachusetts

General Hospital, Charlestown, MA). The expression vector for

truncated PINCH1 without NES/NLS (pFlag-PINCH1-DNES/

NLS) was constructed by PCR using the wild-type PINCH1

expression plasmid (pFlag-PINCH1-wt) as a template. The

expression vectors for mutant PINCH1 with either a single amino

acid mutation (pFlag-PINCH1-M1) or three amino acid mutations

in the NES/NLS motif (pFlag-PINCH1-M3) were made by using

QuikChange II XL site-directed mutagenesis kit (Stratagene, La

Jolla, CA). The correct sequences of different expression vectors

were confirmed by sequencing at the DNA Sequencing Core

Facility of the University of Pittsburgh.

RT-PCR and real-time PCR
Total RNA was extracted using the TRIzol RNA isolation

system (Invitrogen, Carlsbad, CA). The first strand of cDNA was

synthesized using 2 mg of RNA in 20 ml of reaction buffer by

reverse transcription using AMV-RT (Promega, Madison, WI)

and random primers at 42uC for 30 min. PCR was carried out

using a standard PCR protocol with 1 ml aliquot of cDNA,

HotStarTaq polymerase (Qiagen, Valencia, CA) and specific

primer pairs. The sequences of the primer pairs were as follows:

PINCH1, 59 CCG CTG AGA AGA TCG TGA AC 39 (sense) and

59 GGG CAA AGA GCA TCT GAA AG 39 (anti-sense);

podocalyxin, 59 GAG CAG TCA AAG CCA CCT TC 39 (sense)

and 59 TGG TCC CCT AGC TTC ATG TC 39 (anti-sense);

WT1, 59 GCG GAG CCC AAT ACA GAA TA 39 (sense) and 59

TTA TTG CAG CCT GGG TAA GC 39 (anti-sense); GAPDH,

59 TGA AGG TCG GAG TCA ACG GAT TTG GT 39 (sense)

and 59 CAT GTG GGC CAT GAG GTC CAC CAC 39 (anti-

sense); b-actin, 59 AGG CAT CCT CAC CCT GAA GTA 39

(sense) and 59 CAC ACG CAG CTC ATT GTA GA 39 (anti-

sense). For quantitative determination of mRNA levels, a real-time

RT-PCR was performed on ABI PRISM 7000 Sequence

Detection System (Applied Biosystems, Foster City, CA), as

described previously [42]. The PCR reaction mixture in a 25 ml

volume contained 12.5 ml of 2x SYBR Green PCR Master Mix

(Applied Biosystems), 10 ml of diluted RT product (1:10), and

0.5 mM sense and antisense primer sets. PCR reaction was run by

using standard conditions [42]. After sequential incubations at

50uC for 2 min and 95uC for 10 min, respectively, the

amplification protocol consisted of 40 cycles of denaturing at

95uC for 15 sec, and annealing and extension at 60uC for 60 sec.

The mRNA levels of various genes were calculated after

normalizing with b-actin (Figure 1A), or glyceraldehyde 3-

phosphate dehydrogenase (GAPDH) (Figure 7), respectively.

Western blot analysis
Cultured human podocytes were lysed in SDS sample buffer.

Protein expression was analyzed by Western blot analysis as

described previously [3]. The primary antibodies used were as

follows: anti-PINCH1 (#612711; BD Transduction, San Jose,

CA), anti-Flag M2 (# F1804; Sigma), anti-GFP (ab290; Abcam,

Cambridge, MA), anti-WT1 (sc-192; Santa Cruz Biotechnology,

Santa Cruz, CA), anti-podocalyxin (#39-3800; Invitrogen), anti-

TBP (TATA binding protein) (ab181–100; Abcam), anti-actin (sc-

1616; Santa Cruz Biotechnology) and anti-GAPDH (#4300;

Ambion, Austin, TX).

Immunoprecipitation
Immunoprecipitation experiments were performed using similar

methods as described previously [7]. Briefly, human podocyte

lysates were centrifuged at 12,0006 g for 10 min at 4uC. The

supernatants were collected for immunoprecipitation. After

preclearing with normal host IgG, the lysates were immunopre-

cipitated overnight at 4uC with 4 mg antibodies of anti-GFP, anti-

Flag, anti-WT1, or the same type of normal rabbit or mouse IgG

as controls, followed by precipitation with 60 ml protein A/G Plus-

Agarose (Santa Cruz Biotechnology) for 3 h at 4uC. The

precipitated complexes were washed three times with lysis buffer

and boiled for 5 min in SDS sample buffer, followed by

immunoblotting with various antibodies as indicated.

Nuclear and cytoplasmic fractionation
For preparation of nuclear protein, human podocytes were

washed twice with cold phosphate-buffered saline (PBS) and

scraped off the plate with a rubber policeman. After centrifuga-

tion, cell pellets were resuspended in Buffer A (10 mM HEPES

pH 7.9, 1.5 mM MgCl2, 10 nM KCl, 0.5% NP-40 and 1%

protease inhibitor cocktail (Sigma)) and lysed with homogenizer.
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Cell nuclei were collected by centrifugation at 5,000 rpm for

15 min, and the supernatants were saved as cytoplasmic protein

preparation. After washing with Buffer B (10 mM HEPES pH 7.9,

1.5 mM MgCl2, 10 nM KCl and 1% protease inhibitor cocktail),

nuclei were lysed in SDS sample buffer.

Purification of GST fusion protein and pull down assay
Bacterial BL21 competent cells were transformed with GST and

GST-WT1 fusion protein expression vectors, respectively. Bacte-

rial cells were cultured in LB medium containing ampicilin until

the OD600 reaches 0.6–0.8, followed by adding 100 mM IPTG to

induce recombinant protein expression. After shaking at room

temperature for 3 h, cell pellets were collected by spinning at

5,000 g for 10 min at 4uC. Bacterial cell lysis was prepared with

Rapid GST Inclusion Body Solubilization and Renaturation Kit

(Cell Biolabs, Inc., San Diego, CA). Glutathione-agarose beads

were used to incubate with bacterial cell lysis overnight at 4uC.

Beads were washed three times with PBS containing 1% Triton X-

100, and then incubated with podocyte lysates overnight at 4uC.

The precipitated complex were washed three times with lysis

buffer and boiled for 5 min in SDS sample buffer, followed by

immunoblotting with various antibodies as indicated.

Luciferase reporter assay
The reporter construct pGL3-podocalyxin, which contains the

human podocalyxin promoter and the encoding sequence for

firefly luciferase, was constructed as described elsewhere [10].

After co-transfection with pGL3-podocalyxin and PINCH1 or/

and WT1 expression vectors using Lipofectamine 2000 reagent

(Invitrogen), podocytes were incubated for 48 h. The supernatants

of cell lysates were collected for the luciferase assay. Luciferase

activity was determined using the Dual Luciferase Assay System

kit as described by the manufacturer’s protocols (Promega).

Relative luciferase activity of each group was reported as fold

induction over the controls.

Statistical analysis
All data examined were expressed as mean 6 SEM. Statistical

analysis was performed using SigmaStat software (Jandel Scientific

Software, San Rafael, CA, USA). Comparison between groups

was made using one-way analysis of variance (ANOVA), followed

by Student-Newman-Keuls test. A P value of less than 0.05 was

considered significant.
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