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Most classical methods for the spectral analysis are based on the assumption that the time

series is stationary. However, many time series in practical problems shows nonstationary

behaviors. The data from some fields are huge and have variance and spectrum which changes

over time. Sometimes,we are interested in the cyclic behavior of the categorical-valued time

series such as EEG sleep state data or DNA sequence, the general method is to scale the

data, that is, assign numerical values to the categories and then use the periodogram to find

the cyclic behavior. But there exists numerous possible scaling. If we arbitrarily assign the

numerical values to the categories and proceed with a spectral analysis, then the results will

depend on the particular assignment. We would like to find the all possible scaling that

bring out all of the interesting features in the data. To overcome these problems, there have

been many approaches in the spectral analysis.

Our goal is to develop a statistical methodology for analyzing nonstationary categorical

time series in the frequency domain. In this dissertation, the spectral envelope methodol-

ogy is introduced for spectral analysis of categorical time series. This provides the general

framework for the spectral analysis of the categorical time series and summarizes informa-

tion from the spectrum matrix. To apply this method to nonstationary process, I used the

TBAS(Tree-Based Adaptive Segmentation) and local spectral envelope based on the piece-

wise stationary process. In this dissertation,the TBAS(Tree-Based Adpative Segmentation)

using distance function based on the Kullback-Leibler divergence was proposed to find the

best segmentation.
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1.0 INTRODUCTION

Most classical methods for the spectral analysis are based on the assumption that the

time series is stationary. The assumption of stationarity plays an important role in the

theory of the estimation and inferences. However, many time series in practical prob-

lems(e.g.biomedical signal processing, speech signal processing or DNA sequences) shows

nonstationary behaviors. The data from some fields are huge and have variance and spectrum

which changes over time. To overcome these problems, there have been many approaches in

the spectral analysis for nonstationary time series.

Priestley(1965)[10] first introduced the time-varying spectrum with Cramér representa-

tion for the analysis of nonstationary processes. Dahlhaus(1997)[4] generalized this ideas

and proposed a method for estimating the parameters of the nonstationary process(locally

stationary process) with an asymptotic framework. This asymptotic framework ensures a

reasonable asymptotic theory in the nonstationary framework. Dahlhaus(2000) [5] also de-

veloped this method to multivariate nonstationary time series.

Adak(1998)[1] introduced a new class of nonstationary time series (piecewise locally sta-

tionary) and adopted an adaptive segmentation method to the estimation of the time-varying

spectra. The segmentation algorithm is based on the optimal pruning as used in Classifica-

tion and Regression Tree(CART) of Breiman et al(1984)[2] and Best Basis Algorithm(BBA)

of Coifman and Wickerhause(1992)[3]. However, the estimation of the spectrum is based on

windowed Fourier transform, which is not orthogonal. As a consequence, the method has

some problems in establishing consistency. Moreover, the method is for univariate process

and doesn’t allow an extension to multivariate process.

Ombao et al(2001)[9] proposed a new method for analyzing bivariate nonstationary time

series in the frequency domain. In this article, they introduced SLEX(Smoothed Localized
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in time EXponential) model and used BBA(Best Basis Algorithm) as a segmentation tech-

nique. The periodogram based on this approach is localized in time and frequency, hence,

is proper for nonstationary time series and also computationally efficient because they used

the FFT(Fast Fourier Transform) and BBA(Best Basis Algorithm). Ombao et al(2004)[6]

also applied this method to the discriminant and classification analysis of nonstationary time

series.

When we are interested in the cyclic behavior of the categorical-valued time series such

as EEG sleep state data or DNA sequence, the general method is to scale the data, that is,

assign numerical values to the categories and then use the periodogram to find the cyclic

behavior. But there exists numerous possible scaling. If we arbitrarily assign the numerical

values to the categories and proceed with a spectral analysis, then the results will depend

on the particular assignment. Hence, we’d like to find the all possible scaling that bring out

all of the interesting features in the data.

Stoffer et al(1993a)[12] first introduced the concepts of spectral envelope in the spectral

analysis for categorical time series. In this article, they established the theory of the es-

timation of the spectral envelope for categorical time series and discussed its applications.

Stoffer et al(2002)[11] extended this idea to piecewise stationary process and developed the

local spectral envelope of nonstationary time series.

Our goal is to develop a statistical methodology for analyzing nonstationary categorical

time series in the frequency domain. Many models through the various approaches are intro-

duced to estimate time-varying spectrum of nonstationary processes. There have been many

attempts for the spectral analysis of nonstationary time series. In our study, we combined

the spectral envelope with Tree-Based Segmentation for analyzing nonstationary process. To

perform the spectral analysis for the categorical time series, we adopt the spectral envelope

methodology by Stoffer et al(1993a)[12]. This provides the general framework for the spec-

tral analysis of the categorical time series. To apply the classical method for the spectral

analysis of stationary process to the nonstationary process, we use the TBAS(Tree-Based

Adaptive Segmentation) in Adak(1998) and Ombao et al(2001)[8]. With this segmentation

technique, we will partition the entire process into approximately stationary intervals. To

find the best segmentation, we need to compute the distance measures for all possible sub-
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series. It requires us too much time and efforts. However, this algorithm is expected to

be computationally efficient because it uses the FFT(Fast Fourier Transform) and the data

with dyadic length. For the best segmentation, we propose a decision function used in the

decision criterion. This function is based on the Kullback-Leibler distance using spectral

envelope. Based on the best segmentation, we will develop the local spectral envelope under

the piecewise stationary process in Stoffer et al(2002)[11].

This thesis is organized in the following fashion. In section 2, we give a brief review

of the previous works for the models and the spectral analysis of nonstationary processes.

In section 3, some background materials are briefly described. Those are spectral envelope

for stationary time series(Stoffer et al,1993), Tree-Based Adaptive segmentation(Ombao et

al, 2001) and Kullback-Leibler divergence(Kullback and Leibler,1953). In chapter 4, the

simulations are performed and the result of the simulations is shown. To test this algorithm,

this method is applied to a real data. In the last chapter, we conclude with some discussion

and future work.
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2.0 LITERATURE REVIEW

The classical approach to the spectral analysis is based on the assumption that the time

series is stationary. In reality, it happens that the data from various fields do not satisfy this

assumption. To make an analysis of nonstationary time series within framework of classical

method, some restrictions are placed on the class of nonstationary processes. In this section,

we give a review of various approaches to the spectral analysis of the nonstationary processes

and models of nonstationary process.

Priestley(1965)[10] first introduced the time-varying spectrum with Cramér representa-

tion for the analysis of nonstationary processes.

Definition 2.1(Priestley(1965))[10]

A stochastic process {Xt} is oscillatory if it has a representation of the form

Xt =

∫
A(t, λ)ei2πλtdZ(λ) (2.1)

where Z(λ) is an orthogonal increment process.

The evolutionary power spectrum of the process is defined as

f(t, λ) = |A(t, λ)|2 (2.2)

To provide time-dependent spectra with the framework of stationary processes, the class of

oscillatory processes was introduced. This definition is very similar to the Cramér repre-

sentation of stationary process but the amplitude function, A(t, λ) depends on the time t.

The proposed nonstationary process is based on the assumption that the process is slowly

changing, which allows the estimation of the time-dependent spectrum with some form of

average spectrum in the neighborhood of any particular time-instant.

4



Dahlhaus(1997)[4] generalized this idea and proposed a class of nonstationary processes

with an asymptotic framework. This asymptotic framework makes it possible to establish a

reasonable asymptotic theory in the nonstationary time series. The Dahlhaus model has been

the basis of many studies in developing models for nonstationary time series. Dahlhaus(2000)

[5] also developed this model to multivariate nonstationary time series. The definition of the

Dahlhaus model and corresponding time-varying spectrum are following.

Definition 2.2(Dahlhaus(1997))[4]

A sequence of zero-mean random variable {Xt,T},(t = 1, . . . , T ), is called locally stationary,

if there exists a representation

Xt,T =

∫ 1/2

−1/2

A0
t,T (ω)ei2πωtdZ(ω) (2.3)

where Z(ω) is an orthogonal increment and there exist constants C (C ≥ 0) and D and a

function A : [0, 1]× [−1/2, 1/2] −→ C constant with A(u,−ω) such that for all T ,

max
t,ω

∣∣A0
t,T (ω)− A(t/T, ω)

∣∣ ≤ DT−1 (2.4)

The time-varying spectral density of Dahlhaus locally stationary process at time u ∈ [0, 1]

and frequency ω ∈ [−1/2, 1/2] is f(u, ω) = |A(u, ω)|2.

Increasing T does not provide more information about the future. It means that more data

of the local structure are observed.

Adak(1998)[1] also introduced a new class of nonstationary process, piecewise locally sta-

tionary process, which is approximately piecewise stationary.

Definition 2.3(Adak,1998)[1]

A sequence of zero-mean stochastic processes is said to be piecewise locally stationary if it is

locally stationary(By the definition 2.2) at all time point u ∈ [0, 1], except possibly at finitely

many jump points.
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Theorem 2.1(Adak,1998)[1]

Consider the class of sequences of the piecewise stationary process

M =



sequence
{
X̃t,N(t = 1, . . . , N)

}
N≥1

:

X̃t,N =
J−1∑
j=0

X̃
(j)
t I

(
uj ≤

t

N
≤ uj+1

)
with j

N
→ 0as N →∞

(2.5)

where 0 = u1 ≤ u2 ≤ . . . ≤ uJ = 1 form a partition of [0,1] that depends on N and X̃
(j)
t

are stationary processes with spectra f (j)(λ). Then, for any sequence of a piecewise locally

stationary process Xt,N(t = 1, . . . , N) there exists a sequence X̃t,N ∈M such that for all N,

1

N

N∑
t=1

E(Xt,N − X̃t,N)2 = O(N−2α) (2.6)

where 0 < α < 1.

The above theorem shows that the piecewise locally stationary process can be approximated

by the piecewise stationary process as the number of observations in block increases.
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3.0 BACKGROUND

In this chapter, I will give some brief reviews of the previous works which are basis of my

research study. First, I briefly mention the concept of the DNA sequence and give a review

of Spectral envelope, Tree-Based Adaptive Segmentation and Kullback-Leibler divergence.

3.1 DNA SEQUENCE

In this thesis, I will apply my proposed method to the EBV DNA sequence. Before we

discuss the methods for the spectral analysis of the DNA sequence, we need to understand

the concept of the DNA sequence. The DNA sequence is a sequence of the letters which

represents information of the DNA strand. The DNA strand is made up of a long string of

chemical building blocks called ”nucleotides”. Each nucleotide is made up of nitrogenous

base, a five carbon sugar, and a phosphate group. There are four different nitrogenous bases,

which are labeled A(Adenine), T (Thymine), G(Guanine) and C(Cytosine). Nucleotides are

arranged in two long strands that form a spiral called a double helix. The strands are

complementary; Adenine with Thymine and Cytosine with Guanine. So, it is sufficient to

represent a DNA molecule by the sequence of nitrogen bases on one single strand. The

sequence of these bases determines the necessary information for living things to survive

and reproduce. Determining the sequence is therefore useful in fundamental research into

why and how organisms live, as well as in applied subjects. Because of the key nature

of DNA to living things, knowledge of DNA sequence may come in useful in practically

any biological research. For example, in medicine it can be used to identify, diagnose and

potentially develop treatments for genetic diseases. My task is to extract the protein-coding
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sequence hidden and discover patterns in the sequences. In the long DNA sequence, the

coding sequences and noncoding sequences are scattered over the sequence. Coding sequence

contains the instruction involved in making protein while the noncoding sequence does not.

To analyze the DNA sequences, we need to extract the coding sequence in the DNA sequence

and then find the genetic information stored in the coding sequence.

8



3.2 THE SPECTRAL ENVELOPE

Stoffer et al(1993a)[12] first introduced an approach for the spectral analysis of categorical

time series. Spectral envelope is a useful tool to fulfill the spectral analysis for the categorical

time series. To do spectral analysis for categorical time series, we need to assign the numerical

values to categories. How to scale categorical time series is a crucial problem because the

different scaling brings out different result of the sequence. One particular scaling emphasizes

only one of harmonic component hidden in the sequence. Therefore, the first thing to do

for the spectral analysis of the categorical time series is to find the optimal scaling. Our

goal is not only to find an appropriate scaling but also to discover the periodicity in the

sequence. Spectral envelope approach gives a solution of these problems, that is, it selects a

proper scale and identifies the various periodic behaviors in a categorical time series. In this

section, I will introduce the concept and theory of spectral envelope and then illustrate how

to estimate the spectral envelope using DNA sequence.

3.2.1 The spectral envelope for stationary process

In this section, I will introduce the concepts of spectral envelope and application to cate-

gorical time series. The details are in Stoffer et al(1993a)[12].

LetXt, t = 0,±1,±2, . . . , be stationary time series with categorical values in {c1, c2, . . . , ck}.

If the real value αj is assigned to the category, cj, and denote h(Xt) be stationary time se-

ries with real values in α= (α1, α2, . . . , αk)
′ ∈ Rk, then h(Xt) = αj. That is, h(Xt) is the

real-valued stationary time series which assigns the numerical value to each category cj of

Xt, αj, j = 1, 2, . . . , k. Then, a k-dimensional stationary time series, Y t is defined by zj

and 0 as follows.

Y t =

 zj if Xt = cj for j = 1, . . . , k − 1,

0 if Xt = ck
(3.1)

where zj is a k × 1 vector with a one in the jth row and zeros elsewhere and 0 is a k × 1

vector of zeros. Therefore, the time series h(Xt) can be obtained from the time series Y t by

9



the relationship, h(Xt) = α′Y t.

Given x1, x2, . . . , xn on a categorical time series, Y t can be formed by the equation

(3.1). For any fixed t, Y t is a single observation from a multinomial sampling scheme. The

jth component of Y t indicates whether Xt is in state cj or not. Therefore, the variance-

covariance matrix of Y t, V = D − pp′ . Here, p = (p1, p2, . . . , pk)
′, where pj = P (Xt = cj),

for j = 1, 2, . . . , k and D is the k × k diagonal matrix D = diag{p1, p2, . . . , pk}, therefore,

the rank(V )= k − 1. For any k × (k − 1) full rank matrix A whose columns are linearly

independent of 1k, A
′V A is a (k − 1)× (k − 1) positive definite symmetric matrix.

To find optimal scalings α, we maximize the variance at each frequency, ω and choose

α such that

λ(ω) = max
α

{
fX(ω;α)

σ2(α)

}
(3.2)

for α 6∝ 1k, where fX(ω;α) is the spectral density of h(Xt) and σ2 (α) is var {h(Xt)}. For

α ∝ 1k, λ(ω) is not defined because the scaling assigns each category the same value and

fX(ω;α) = 0 and σ2(α) = 0. Here, λ(ω) has the desirable property of being invariant under

location and scale changes.

From the equation (3.1), h(Xt) and spectral density of h(Xt), fX(ω;α), can be represented

by Y t. That is, h(Xt) = α
′
Y t and fX(ω;α) = α

′
fY (ω)α = α

′
f reY (ω)α, where fY (ω) is a

k×k complex-valued Hermitian matrix1 and f reY (ω) denotes the real part of fY (ω). Since the

entries on the main diagonal of any Hermitian matrix are necessarily real and the imaginary

part of a Hermitian matrix is skew symmetric2, that is, α
′
fY (ω)α = α

′
f reY (ω)α.

1A Hermitian matrix is a square matrix with complex entries which is equal to its own conjugate transpose,
that is, the element in the ith row and jth column is equal to the complex conjugate of the element in the
jth row and ith column, for all ind ices i and j

2A square matrix A whose transpose is also its negative; that is, A′ = −A

10



Let V be the variance-covariance matrix of Y t then the equation (3.2) is represented as

follows.

λ(ω) = max
α

{
α
′
f reY (ω)α

α′Vα

}
(3.3)

From the above equation(3.3), we notice that the spectral envelope is the largest eigenvalue

from the spectral density for any particular scaled process at any given frequency. The value

of spectral envelope at any given frequency represents the largest proportion of the total

power(variance) which is featured by the frequency.

The theory on estimation of the spectral density for a multivariate time series is applied

to the estimation of fY (ω). If fY (ω) is estimated, then we can obtain the estimates λ̂(ω)

and α̂(ω). Stoffer et al(1993a)[12] established the asymptotic distribution of the spectral

envelope. The details related to estimations and inferences are in Stoffer et al(1993a)[12].

The main results are as follows:

Theorem 3.1(Stoffer et al(1993a)) If f̂Y (ω) is a consistent spectral estimator and if for

each j = 1, . . . , J , the largest root of f reY (ω) is distinct, then{
ηn[λ̂(ωj)− λ(ωj)]/λ(ωj), ηn[α̂(ωj)−α(ωj)]; j = 1, . . . , J

}
(3.4)

converges jointly in distribution to independent zero-mean, normal distribution as n→∞.

The value of ηn in the equation (3.4) depends on the type of the estimator. In our study, the

smoothed periodogram matrix, In(ωj) = f̂X =
m∑

l=−m

hlIn(ωj + l/n). If we use the smoothed

periodogram matrix with weight hl, then η−2
n =

m∑
l=−m

hl
2.

Lemma 3.1(Stoffer et al(1993a)) Using a first-order Taylor expansion, we have

logλ̂(ω) ≈ logλ(ω) +
λ̂(ω)− λ(ω)

λ(ω)
, (3.5)
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thus, ηn[logλ̂(ωj)− logλ(ωj)] is approximately standard normal .

These results will be used in establishing the asymptotic property of the distance measure

in our study.

3.2.2 Estimation on the spectral envelope

I briefly explained the theoretical backgrounds on the estimation of the spectral envelope

for categorical time series in the previous section. To illustrate how to estimate the spectral

envelope, I applied the spectral envelope to the DNA sequence.

• Let Xt for t = 1, . . . , n be the DNA sequence with the categorical value in (A,C,G,T).

Each alphabet represents the type of nucleotide which contains the genetic information.

The scaled sequence h(Xt) = α′Y t and the sequence Y t is formed by equation(3.1) as

follows.

Y t = (1, 0, 0)′, if Xt = A

Y t = (0, 1, 0)′, if Xt = C

Y t = (0, 0, 1)′, if Xt = G

Y t = (0, 0, 0)′, if Xt = T

• Calculate the periodogram matrix.

In(ωj) = d(ωj)d
T (ωj) (3.6)

where d(ωj) = n−1/2

n∑
t=1

Y te
−2πiωjt at ωj = j/n for j = 1, . . . , [n/2].

• Smooth the periodogram with the weight hl.

f̂ reY (ωj) =
m∑

l=−m

hlI
re
n (ωj + l/n) (3.7)

12



where Iren denotes the real part of In(ω) and the weights are chosen such that hl = h−l > 0

and
m∑

l=−m

hl = 1

• Calculate the sample variance-covariance matrix, S and determine the sample spectral

envelope λ̂(ω). The sample spectral envelope is the largest eigenvalue of the matrix in

the equation (3.8) {
2n−1S−1/2f̂ rey (ωj)S

−1/2
}

(3.8)

where Ȳ = n−1

n∑
t=1

Y t and S = n−1/2

n∑
t=1

(Y t − Ȳ )(Y t − Ȳ ).

• Find the optimal sample scaling. If the eigenvector corresponding to the largest eigen-

value is a, then the optimal sample scaling α̂ = S−1/2a

13



3.3 TREE BASED ADAPTIVE SEGMENTATION

To apply the classical methods for the stationary process to the nonstationary process,

we need to place some restrictions on the nonstationary process. In our study, we assume

that the time series is piecewise stationary. To estimate the local spectral envelope based

on the piecewise stationary process, the segmentation should be known. For the best seg-

mentation, I applied the Tree-Based Adaptive Segmentation algorithm to the segmentation

procedure. Each segment of those obtained from segmentation should be stationary. The

used segmentation techniques are delivered by Adak(1998) [1]. The main idea of the seg-

mentation algorithm is to divide the entire series into small blocks and merge two adjacent

blocks if they have similar spectral behavior; otherwise, they are left as a distinct block. The

algorithm is as follows3.

1. Set the maximum level K. The value of K represents the maximum depth of tree

and determines the length of the smallest blocks. If K=5, the length of the smallest

block is T/25, where T is the length of the entire series.

2. Set the blocks. For k = 0, . . . , K, divide the entire sequence into 2k blocks. Denote

B(k, l) to be the l-th block on level k, where l = 1, . . . , 2k. The block B(k, l) contains

T/2k observations,
{
XNk(l−1)+1, . . . , XNk(l)

}
, where Nk is the length of the blocks on the

level k.

3. Estimate the distance between two blocks. Let D(k, l) be the distance measure

between two adjacent blocks, B(k + 1, 2l) and B(k + 1, 2l − 1). Compute the estimates

of the distances D(k, l) for k = K − 1, . . . , 0 and l = 1, . . . , 2k.

4. Mark the blocks for final segmentation. For k = K − 1, . . . , 0 and l = 1, . . . , 2k, if

D(k, l) ≤ D(k + 1, 2l − 1) + D(k + 1, 2l) then mark the block B(k, l). Otherwise, leave

the block B(k, l) unmarked and set D(k, l) = D(k + 1, 2l − 1) +D(k + 1, 2l).

5. Final Segmentation Determine the final segmentation. The final segmentation will be

set of the highest marked blocks which is marked and its ancestor blocks are not marked.

3I follow the notation in Adak(1998)[1]
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Table 1: Tree Based Adaptive Segmentation

Level B(j, l)

j=0 B(0,0)

1 B(1,1) B(1,2)

2 B(2,1) B(2,2) B(2,3) B(2,4)

3 B(3,1) B(3,2) · · · · · · B(3,8)

4 B(4,1) B(4,2) · · · · · · B(4,16)

This algorithm compares a parent block against its children blocks, such as, D(k, l) versus

D(k+1, 2l−1)∪D(k+1, 2l). If the value of distance at the parent block is smaller than the

sum of the values for its children blocks, then the children blocks are chosen. If the value of

distance at the parent block is greater than or equal to the sum of the values for its children

blocks, then the parent block would be selected.

In searching for the best segmentation, we need to compute the distance measures for

all possible sub series. It requires us too much time and efforts. However, this algorithm

is computationally efficient and can handle massive datasets because it uses the FFT(Fast

Fourier Transform) and the data with dyadic length.
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3.4 KULLBACK-LEIBLER DIVERGENCE

The Kullback-Leibler divergence is usually used to measure the difference between two prob-

ability distributions in probability theory and information theory. The Kullback-Leibler

divergence is defined as following.

Definition 3.1(Kullback and Leibler,1951[7])

Let p(x) and q(x) denote the probability density functions of random variable X. Then

Kullback-Leibler divergence between p and q is defined by

I(p(x), q(x)) =
∑{

log
p(x)

q(x)

}
p(x) (3.9)

This divergence has some properties as follows.

(i) I(p(x), q(x)) ≥ 0 with equality if and only if p = q ;

(ii) I(p(x), q(x)) is not symmetric.

Given random sample, x1, x2, . . . , xn, then the Kullback-Leibler divergence is

I(p, q) =
n∑
i=1

p(xi)log
p(xi)

q(xi)
(3.10)

In my thesis, the Kullback-Leibler divergence is used as a discrepancy measure between

the spectral envelope estimates of two subseries for the best segmentation. The value of

the divergence determines the degree of dissimilarity between two adjacent blocks. If the

divergence between any two adjacent blocks is small, we combine two blocks because the small

value of divergence means that two adjacent blocks contain similar spectral information. If

not, that means that two adjacent blocks are distinct and left them as separate blocks.
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4.0 SPECTRAL ANALYSIS OF NONSTATIONARY TIME SERIES

Our goal is to explore the cyclic behavior in nonstationary categorical time series. To find

the optimal scalings and extract the spectral information in the categorical time series, we

propose to use the spectral envelope methodology. When we scale the categorical time series

Xt in terms of unit vectors z1, . . . ,zk defined in the section 3.2, the categorical time series,

Xt is represented by the multiple real-valued time series Y t. To perform the spectral analysis

of the multiple time series Y t, we need to use the spectrum matrix of Y t, fY (ω). But it

is difficult to deal with fY (ω) because it is a function into the set of complex Hermitian

matrix. The spectral envelope methodology summarizes the spectrum matrix into the useful

information understood easily and minimizes the loss of information. As aforementioned,

many time series in varied fields is very long and shows nonstationary behaviors. For the

spectral analysis of nonstationary process, we propose to use the model of piecewise station-

ary process and Tree-Based Adaptive Segmentation algorithm in Adak(1998)[1]. We will

develop the local spectral envelope based on the model of piecewise stationary process to

estimate the local spectral envelope. However, the local spectral envelope on the model of

piecewise stationary process is based on the assumption that the segmentation is known. If

the segmentation is unknown, we need to find the best segmentation. To find the best seg-

mentation, we adopt the the Tree-Based Adaptive Segmentation algorithm in Adak(1998)[1].

For developing a decision function, we need to establish a distance measure which can show

the discrepancy well. In this dissertation, I propose the Kullback-Leibler divergence using

the spectral envelope as a decision function.
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4.1 LOCAL SPECTRAL ENVELOPE OF NONSTATIONARY PROCESS

The spectral envelope described in the section 3.2 is based on the assumption that the

sequence is stationary. As aforementioned, the processes in the real problems do not satisfy

this assumption. Thus, we need a suitable model for the spectral analysis of nonstationary

process. In our study, we consider the model of the piecewise stationary process to estimate

the local spectral envelope. The theory of the estimation of the local spectral envelope fol-

lows from the results in the Stoffer et al(2002))[11].

Definition 4.1(Stoffer et al(2002))[11]

A k × 1 vector-valued piecewise stationary process, {Y s,T}T−1
s=0 , for T ≥ 1, is defined to be

Y s,T =
B∑
b=1

Y s,bI(s/T, Ub) (4.1)

where Y s,b are stationary process with k×k spectral density matrix fY,b(ω), Ub = [ub−1, ub) ⊂

[0, 1) is an interval, and I(s/T, Ub) is an indicator function which is 1 if s/T ∈ Ub.

For ease of notation, we rescaled the time in Y s,b using time shift from the beginning of

each segment.

{Y s,b : s/T ∈ Ub} 7−→ {Y t,b : t = 0, . . . ,Mb − 1} (4.2)

where the number of observations in segment b is Mb and
B∑
b=1

Mb = T .

If the k× 1 process, Y s,T is piecewise stationary, then the categorical time series, {Xs,T}

is piecewise stationary. If {Xs,T} is piecewise stationary, we can use the criterion in the

equation(3.3) to define the local spectral envelope. That is,

λb(ω) = max
α 6∝1k

{
α
′
f reY,b(ω)α

α′Vbα

}
(4.3)

for b = 1, . . . , B, where Vb is the variance-covariance matrix of Y t,b.
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Suppose that the categorical piecewise stationary processes, xt,T , for t = 0, . . . , T − 1 is

observed and the segmentation is known then we can follow the procedure in section 3.2 to

estimate the sample local spectral envelope. If the Y t,b is formed by the equation (3.3), then

we can also define the local periodogram Ib(ω).

Ib(ω) = db(ω)db
T (ω) (4.4)

where db(ω) = Mb
−1/2

Mb−1∑
t=0

Y t,bexp {−2πitω}.

The local sample spectral envelope λ̂b(ω) is defined to be the largest value of the matrix as

follows.

ĝb(ω) = V̂
−1/2
b f̂Y,b(ω)V̂

−1/2
b (4.5)

where f̂Y,b = (2m+ 1)−1

m∑
l=−m

Ib(ω + l/Mb).

When the categorical time series Xt,T is piecewise stationary and the segmentation is known,

we can find asymptotic distribution of the sample local spectral envelope using Theorem 3.1

and Lemma 3.1 in the section 3.2 under some assumptions. That is, νMb

[
logλ̂b(ω)− logλb(ω)

]
is approximately standard normal under some conditions. Therefore, E

[
logλ̂b((ω)

]
≈

logλb(ω) and var
[
logλ̂b(ω)

]
≈ ν−2

Mb
.
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4.2 PROPOSED DISTANCE MEASURE

In our study, the segmentation is very important step because the estimation of the local

spectral envelope is based on the assumption that the time series is piecewise stationary

process and the segmentation is known. The estimation of local spectral envelope depends

on the segmentation. In reality, the segmentation is unknown. Thus, we need to find the

best segmentation which approximate the real segmentation well. For the best segmentation,

the selection of the distance measure is very important. The choice of the distance measure

greatly affects the result of the segmentation. In this thesis, we propose the Kullback-Leibler

distance based on the spectral envelope as a distance measure for the best segmentation.

Kullback-Leibler divergence has been used to measure the difference between two probabil-

ity distributions in varied circumstances. In our study, we establish a decision function based

on the Kullback-Leibler distance using spectral envelope.

Let λ̂k+1,2l(ωj), λ̂k+1,2l−1(ωj) be the local sample spectral envelope at the frequency ωj

for each block B(k + 1, 2l) and B(k + 1, 2l − 1). The Kullback-Leibler divergence between

two blocks, B(k + 1, 2l) and B(k + 1, 2l − 1), is defined to be

D(k, l) =
1

Mk/2 + 1

Mk/2+1∑
j=0

λ̂k+1,2l(ωj)log
λ̂k+1,2l(ωj)

λ̂k+1,2l−1(ωj)
(4.6)

However, as we mentioned in the section 3.5, this measure is not symmetric. Thus, we use

the symmetrised divergence in our study. The symmetrised divergence is defined by the

following:

I(p,q) =
1

n

n∑
i=1

{
pilog

pi
qi

+ qilog
qi
pi

}
=

1

n

n∑
i=1

{
[(pi − qi)] log

pi
qi

}
(4.7)

Thus, the distance measure between two block ,B(k + 1, 2l) and B(k + 1, 2l − 1), is

D(k, l) =
1

Mk/2 + 1

Mk/2∑
j=0

[
λ̂k+1,2l(ωj)− λ̂k+1,2l−1(ωj)

]
log

λ̂k+1,2l(ωj)

λ̂k+1,2l−1(ωj)
(4.8)
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4.2.1 Asymptotic property of distance measure

In our study, the distance measure between two blocks B(k + 1, 2l) and B(k + 1, 2l − 1) is

defined by

D(k, l) =
1

Mk/2 + 1

Mk/2∑
j=0

{[
λ̂k+1,2l(wj)− λ̂k+1,2l−1(wj)

]
log

λ̂j+1,2l(wj)

λ̂j+1,2l−1(wj)

}
(4.9)

where λ̂k+1,2l(wj) is the local sample spectral envelope at the frequency wj for the block

B(k + 1, 2l) and λ̂k+1,2l−1(wj) is for the block B(k + 1, 2l − 1).

According to Stoffer et.al(2002)[11], logλ̂(wj) approximately follows normal distribution

with mean, logλ(wj), and variance, ν−2
Mb

. Thus, log
λ̂1(wj)

λ̂2(wj)
also approximately follows normal

distribution with mean, log
λ1(wj)

λ2(wj)
and variance, 2ν−2

Mb
, that is,[

log
λ̂1 (wj)

λ̂2(wj)

]
≈ N

(
log

λ1 (wj)

λ2 (wj)
, 2ν−2

Mb

)
(4.10)

In the process of the final segmentation, if D(k, l) < D(k + 1, 2l) + D(k + 1, 2l − 1), then

mark the block B(k, l). Otherwise, leave the block B(k, l) unmarked and set D(k, l) =

D(k + 1, 2l − 1) + D(k + 1, 2l). That is, if B(k + 1, 2l) and B(k + 1, 2l − 1) have similar

spectral information, then value of the distance measure D(k, l) is close to 0. Thus, if the sub

blocks have similar spectral information, then Pr(D(k, l) < D(k + 1, 2l) +D(k + 1, 2l − 1))

is close to 1.

To show that our distance measure works well in searching for the best segmentation, we

need to prove that

lim
Mk→∞

Pr (D(k, l) < D(k + 1, 2l) +D(k + 1, 2l − 1)) = 1 (4.11)

when the B(k + 1, 2l) and B(k + 1, 2l − 1) have same spectral information.
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As Mk → ∞, more data of local structure are observed. That means that more obser-

vations provide more information on the subblocks.

From the equation (4.10),

lim
Mk→∞

Pr

(∣∣∣∣∣log
λ̂k+1,2l(wj)

λ̂k+1,2l−1(wj)
− log

λk+1,2l(wj)

λk+1,2l−1(wj)

∣∣∣∣∣ ≥ ε

)
(4.12)

≤
V ar

(
log

λ̂k+1,2l(wj)

λ̂k+1,2l−1(wj)

)
ε2

=
V ar

(
logλ̂k+1,2l(wj)

)
+ V ar

(
logλ̂k+1,2l−1(wj)

)
ε2

(4.13)

where ν−2
Mk

=
∑m
−m hl

2, hl = 1
2m+1

.

As Mk →∞, V ar
(

logλ̂k+1,2l(wj)
)

+ V ar
(

logλ̂k+1,2l−1(wj)
)
→ 0.

Thus,

lim
Mk→∞

Pr

(∣∣∣∣∣log
λ̂k+1,2l(wj)

λ̂k+1,2l−1(wj)
− log

λk+1,2l(wj)

λk+1,2l−1(wj)

∣∣∣∣∣ ≥ ε

)
= 0 (4.14)

Therefore, log
λ̂k+1,2l(wj)

λ̂k+1,2l−1(wj)
converges in probability to log

λk+1,2l(wj)

λk+1,2l−1(wj)
.

If the spectral envelopes of two blocks, B(k + 1, 2l) and B(k + 1, 2l − 1) are same, then

λk+1,2l−1(wj) = λk+1,2l(wj) (4.15)

at every frequency wj, where j = 0, 1, . . . ,Mk+1/2.

Thus, [
log

λ̂k+1,2l(wj)

λ̂k+1,2l−1(wj)

]
−→
p log

λk+1,2l(wj)

λk+1,2l−1(wj)
= 0 (4.16)

By the Theorem 3.1,
(
λ̂k+1,2l(wj)− λ̂k+1,2l−1(wj)

)
follows normal distribution with mean,
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(λk+1,2l(wj)− λk+1,2l−1(wj)). Thus,
(
λ̂k+1,2l(wj)− λ̂k+1,2l−1(wj)

)
converges in distribution

to (λk+1,2l(wj)− λk+1,2l−1(wj)).

By the Slutsky’s theorem,{[
λ̂k+1,2l(wj)− λ̂k+1,2l−1(wj)

]
log

λ̂j+1,2l(wj)

λ̂j+1,2l−1(wj)

}
−→
d 0 (4.17)

Therefore,

lim
Mk→∞

D(k, l) = 0 (4.18)

D(k + 1, 2l)

=
1

Mk+1/2 + 1

Mk+1/2+1∑
j=0

[
(λ̂k+2,4l(wj)− λ̂k+2,4l−1(wj))log

λ̂k+2,4l(wj)

λ̂k+2,4l−1(wj)

]
(4.19)

D(k + 1, 2l − 1)

=
1

Mk+1/2 + 1

Mk+1/2+1∑
j=0

[
(λ̂k+2,4l−2(wj)− λ̂k+2,4l−3(wj))log

λ̂k+2,4l−2(wj)

λ̂k+2,4l−3(wj)

]
(4.20)

That is,

lim
Mk→∞

Pr(D(k, l) < D(k + 1, 2l) +D(k + 1, 2l − 1))

= Pr (0 < (4.19) + (4.20)) (4.21)

But, each term ,
([
λ̂k+2,4l−1(wj)− λ̂k+2,4l−3(wj)

]
log

λ̂k+2,4l−1(wj)

λ̂k+2,4l−3(wj)

)
, in (4.19) and (4.20) is non-

negative for every frequency, wj because difference of two spectral envelopes and log ratio of

two spectral envelopes have same signs and the product of these is nonnegative.

Thus,

lim
Mk→∞

Pr(D(k, l) < D(k + 1, 2l) +D(k + 1, 2l − 1)) = 1 (4.22)

Therefore, as the sample size in the segment increases, the splitting criterion used in our

segmentation become more precise in deciding the discrepancy between two subseries.
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4.2.2 The segmentation algorithm

The segmentation algorithm used here is based on the Tree-Based Adaptive Segmentation

for the spectral envelope as is used in Local Spectral Envelope in Stoffer et al(2002)[11].

The main idea is to partition the entire series into small blocks and recombine adjacent

blocks which have similar genetic information from the estimated local spectral envelope. In

this procedure, we use the Kullback-Leibler divergence using spectral envelope as a distance

measure between two subblocks.

The algorithm is following :

1. Set the maximum level K. The value of K represents the maximum depth of tree

and determines the size of the smallest blocks. For a sequence of length T, the size of

the smallest blocks is T/2k.

2. Set the blocks. For k = 0, . . . , K, divide the data sequence into 2k blocks. Denote

B(k, l) to be the l-th block on level k, where l = 1, . . . , 2k. The first block on level k is

denoted as B(k, 1) and the last as B(k, 2k). For block B(k, l), it consists of the element

of the sequence
{
X[(l−1)T/2k+1], . . . , X[lT/2k]

}
.

3. Estimate the spectral envelope λ̂k,l (ωj) at each frequency ωj = j/Mk(j =

0, . . . ,Mk/2) for block B(k, l), where Mk = T/2k, k = 0, . . . , K.

4. Compute the Kullback-Leibler divergence D(k, l)(or relative entropy). For

k = 0, . . . , K and l = 1, . . . , 2k,

D(k, l) =
1

Mk/2 + 1

Mk/2∑
j=0

{[
λ̂k+1,2l(wj)− λ̂k+1,2l−1(wj)

]
log

λ̂j+1,2l(wj)

λ̂j+1,2l−1(wj)

}

5. Mark the blocks for final segmentation. For k = K − 1, . . . , 0 and l = 1, . . . , 2k, if

D(k, l) ≤ D(k + 1, 2l − 1) + D(k + 1, 2l) then mark the block B(k, l). Otherwise, leave

the block B(k, l) unmarked and set D(k, l) = D(k + 1, 2l − 1) +D(k + 1, 2l).

6. Finalize the best segmentation. The final segmentation is the set of the highest

marked blocks and their ancestor blocks are unmarked.

7. Estimated the local spectral envelope. The local spectral envelope will be the

combination of the spectral envelopes for the final segmentation.
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From the estimated local spectral envelope, we can identify the coding sequence in the DNA

sequence and extract the periodic component for each block.
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5.0 SIMULATION RESULT AND DATA ANALYSIS

In this chapter, I apply the proposed method to the simulated data and the real data

set. When the data set is simulated, the piecewise stationary time series is constructed

by combining several stationary time series. To see if our algorithm works well in the real

data set, a subseries of EBV DNA sequence is used.

5.1 SIMULATION RESULT

To test our algorithm, we apply our method to the simulated data. The simulated data

contains the time domain of various signals and noise processes in a dyadic manner. The

signal was generated as following.

X1(t) = 2cos(2πt/10) + cos(2πt/3) + 0.3ε1(t) (5.1)

X2(t) = cos(2πt/3) + 0.01ε2(t) (5.2)

where ε1(t) and ε2(t) are Gaussian white noise with unit variance. The real values of two

series are categorized into one of four letters (A,C,G or T ). C1(t) and C2(t) represent

the categorical sequence obtained by categorizing X1(t) and X2(t) and N1(t), N2(t), and

N3(t) represent the simulated sequences with the categorical values from three different

white noises. The first series, X1(t), contains 1/3 frequency and 1/10 frequency, whereas

the second series, X2(t), contains only 1/3 frequency. In this simulation, let Xt represent a

simulated DNA sequence of length of T=4096 and the decomposition is following:
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Xt =



C1(t), 1 ≤ t ≤ 512

N1(t), 513 ≤ t ≤ 1024

N2(t), 1025 ≤ t ≤ 2048

N3(t), 2049 ≤ t ≤ 3072

C2(t), 3073 ≤ t ≤ 4096

(5.3)

To find the best segmentation of the data set simulated by the above direction, we set

the deepest level at K = 4 and calculated the sample spectral envelopes for all possible

segments at each level, j = 0,1,2,3, and those are given in the Figure 1. Using those values,

we performed the segmentation algorithm from the deepest level at K = 4. The distance

between two adjacent subblocks is given in the Table 2. Table 3 is based on the recomputed

distances and it shows the best segmentation. The recomputed distance is obtained by Step

5 in the algorithm and the best segmentation is finalized by Step 6 in the algorithm. The

best segmentation obtained from the simulated sequence, Xt, is given in Table 4. From

the best segmentation obtained from the segmentation algorithm, we notice that the best

segmentation matches precisely to the segmentation of the generated data in 5.3. The local

spectral envelope based on the best-segmented data is shown in the Figure 2. From the

Figure 2, we notice that the block B(3, 1) has a narrow band peak at ω = 1/10 and ω = 1/3

and the block B(2, 4) has a significant peak at ω = 1/3. We couldn’t find any significant

peak at any frequency from the spectral envelope for the blocks B(3, 2), B(2, 2) and B(2, 3).

These blocks can be classified as the noises. Moreover, the block B(3, 2), the block B(2, 2)

and the block B(2, 3) are classified as noises based on the estimated spectral envelope, the

block B(3, 1) is classified as coding with frequencies 1/10 and 1/3 and the block B(2, 4) is

classified as coding with frequency 1/3. These results also corresponds to the way the data

were generated.
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Table 2: Distance using Kullback-Leibler distance for simulated EBV data

0.46

0.47 0.88

1.01 0.07 0.11 0.07

0.05 0.1 0.1 0.1 0.13 0.18 0.1 0.09

0.13 0.09 0.18 0.23 0.29 0.32 0.17 0.18 0.22 0.21 0.28 0.25 0.28 0.23 0.18 0.3

Table 3: Recomputed Distance using Kullback-Leibler distance

0.46→0.40

0.47→0.22 0.88→0.18

1.01→0.15 0.07 0.11 0.07

0.05 0.1 0.1 0.1 0.13 0.18 0.1 0.09

0.13 0.09 0.18 0.23 0.29 0.32 0.17 0.18 0.22 0.21 0.28 0.25 0.28 0.23 0.18 0.3

Table 4: Best Segmentation

Level B(j, l)

j=0

1

2 B(2,2) B(2,3) B(2,4)

3 B(3,1) B(3,2)

4
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Figure 1: Estimated spectral envelopes of the Simulated data on each level
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Figure 2: Estimated spectral envelopes of the Simulated data based on the best segmentation
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5.2 ANALYSIS OF THE EBV DNA SEQUENCE

We applied our method to a subseries of the EBV DNA sequence which includes bp 46001

to 54192 with length of T=8192. From the EMBL(European Molecular Biology Laboratory)

data file, we can find a list of the interesting part of these sequences.

CDS 46333...47481

/Note ="BWRE1 reading fram 12"

CDS 48386...50032

/Note ="Coding exon for EBNA-2"

repeat_region 50578...52115

/Note ="’12 x "‘125bp"’ repeat"

From the above notation, we can notice that the sequence contains two coding sequences(46333-

47481 and 48386-500323) and one repeat region from bp50578 to 52115. From the experience

with the Fourier analysis of DNA sequences and researches, it is known that a CDS typically

contains the frequency at w = 1/3 and w = 1/10 and repeat regions may have many spectral

peaks. In those repeat regions, the spectral envelope is either flat or the spectral power is

concentrated around the zero frequency in Stoffer et. al(1993a)[12]. If the block contains

coding only, then generally, a spectral peak will be shown at w = 1/3. If the block contains

coding and noise, then spectral peaks will be at the frequency w = 1/3 and also be around

at the zero frequency. If the block contains both coding and noncoding, then spectral peaks

will be around the zero frequency, at frequency at w = 1/3 and sometimes other nonzero

frequencies. If the block contains the repeat region, spectral peaks will be several nonzero

frequencies other than 1/3.

In our algorithm, we set the lowest level at K = 4. The distance between two adjacent

subblocks is given in the Table 5. Table 6 shows the recomputed distances and the best

segmentation. The final segmentation by our algorithm is given in the Table.7 and the

estimated spectral envelopes for the best segmented series are shown in Figure 3. From
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Figure 3 and Figure 4, we notice that the estimated local spectral envelopes for the blocks

B(4, 1), B(3, 2), B(4, 9) and B(2, 4) don’t exhibit any significant peak at any frequency and

the power is concentrated near the zero frequency. From these results, we can consider these

four blocks containing noncoding regions. From the estimated local spectral envelope for

B(3, 3) and B(3, 4), these two blocks have some periodic behavior at frequency w = 1/3 and

the power is concentrated around the zero frequency. From these results, we can consider

that these blocks, B(3, 3) and B(3, 4), contain both coding and noncoding regions. From

the notation of EMBL data file, we can check that the two blocks B(3, 3) and B(3, 4)

contain bp 48049 to 50096, contain another coding sequences(actual location is bp 48386

to 50032) and noncoding sequence (bp 50033-50096, bp 48049-48385). The estimated local

spectral envelope for three block B(4, 10), B(4, 11) and B(4, 12) exhibit several nonzero

peaks other than 1/3. From these results, we can consider that these three blocks contains

repeat region. These three blocks contains bp 50609 to 52144. We can identify a large repeat

region from bp 50609 to 52144 included in actual location of repeat region from bp 50578

to 51255. According to lists of coding sequences from EMBL data file, we can check that

the segmentation obtained from our algorithm similarly identify the coding sequences in the

DNA sequence.
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Table 5: Distance using Kullback-Leibler distance for EBV data

18

18 23

16 8 27 17

44 0 0 0 0 0 21 0

0 0 0 0 0 17 21 0 0 0 0 0 0 44 0 0

Table 6: Recomputed Distance using Kullback-Leibler distance

18→17

18→0 23→17

16→0 8→0 27→0 17

44→0 0 0 0 42→0 12→0 21 0

0 0 0 0 0 17 21 0 0 0 0 0 0 44 0 0

Table 7: Best Segmentation

Level B(j, l)

j=0

1

2 (2,4)

3 (3,2) (3,3) (3,4)

4 (4,1) (4,2) (4,9) (4,10) (4,11)(4,12)
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Figure 3: Estimated spectral envelopes of DNA EBV sequence
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Figure 4: Estimated spectral envelopes of DNA EBV sequence
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6.0 CONCLUSION AND FUTURE WORK

In this thesis, we proposed a method for the spectral analysis of nonstationary categorical

time series using the spectral envelope. Spectral envelope is a useful tool to fulfill the

spectral analysis for the categorical time series because it summarizes information from the

spectrum matrix and presents the spectral information understood easily. Moreover, we

used the local spectral envelope based on the model of piecewise stationary process. This

method provides us the solution of the spectral analysis of nonstationary time series. We

used the TBAS(Tree-Based Adaptive Segmentation) segmentation method to estimate the

local spectral envelope based on the piecewise stationary process. When we deal with the

massive data set such as DNA sequence, this method performs well in practice because it

is computationally efficient and fast. In the segmentation procedure, we use the Kullback-

Leibler divergence based on the spectral envelope as a distance measure. The asymptotic

property of the distance measure in the section 3.1.2 verifies that the classification rule used

in our algorithm is adequate for the best segmentation. By using Kullback-Leibler divergence

in the segmentation procesure, I can find the best segmentation which can identify coding

and noncoding in the DNA sequence. The results of the simulation study and actual data

analysis support that this measure can work well in the segmentation and correctly divide

the DNA sequence into coding and noncoding sequence. Even though this algorithm can’t

identify the exact location of a CDS but this method can find the approximate location of

many CDS in a DNA sequence.

In this thesis, I apply this method to the piecewise stationary time series because the

assumption of piecewise stationary process is proper for the EBV DNA sequence. I would

like to extend our algorithm to the other class of nonstationary process and estimate the

local spectral envelope. For example, we can consider evolutionary stationary time series. To

36



develop the evolutionary spectral envelope, we can adapt the model of a locally stationary

process defined by Dahlhaus(1997). Also, we can find some fine tunings of methodology and

it will be developed in the future; such as other distance measure or classification rule.
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APPENDIX

R CODES

A.1 FUNCTION FOR CALCULATION OF SPECTRAL ENVELOPE

# R code to calculate the SPECTRAL ENVELOPE for a categorical time series
# *** Must source mvspec.R first ***
# The data set is a column of INTEGERS representing the categories

specenv<-function(u,s)
{
x=model.matrix(~u-1)[,1:3]
# makes indicator matrix
#x=x[1:1000,] # select subsequence if desired
Var=var(x) # var-cov matrix
#
source("C:/Users/Hyewook Jeong/Desktop/code/function/mvspec.R")
n=length(u)
s=n/(2^6)
xspec=mvspec(x, spans=c(s,s)) # must source mvspec.R
fxxr= Re(xspec$fxx) # fxxr is real(fxx)
#
ev=eigen(Var)
Q=matrix(0,3,3) # Q is Var^-1/2
for (i in 1:3){
Q=(1/sqrt(ev$values[i]))*ev$vectors[,i]%*%t(ev$vectors[,i]) + Q
}
#
num=xspec$n.used
nfreq=length(xspec$freq)
specenv=matrix(0,nfreq,1)
beta=matrix(0,nfreq,3)
for (k in 1:nfreq){
ev = eigen(2*Q%*%fxxr[,,k]%*%Q/num)
specenv[k]=ev$values[1]
b=Q%*%ev$vectors[,1]
beta[k,]=b/sqrt(sum(b^2))
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}
frequency=(0:(nfreq-1))/num
m=xspec$kernel$m
etainv=sqrt(sum(xspec$kernel[-m:m]^2))
thresh=(2/num)*exp(qnorm(0.999)*etainv)*matrix(1,nfreq,1)
l=log2(8192/num)
#thresh=(1/(2^(13-l)))*matrix(1,nfreq,1)lines(frequency,thresh, lty="dashed", col="blue")
output = cbind(frequency, specenv, beta,thresh)
list(freq=frequency, l=l,spec=specenv, beta=beta,thresh=thresh,etainv=etainv)
}

A.1.1 Subfunction-mvspec.R

mvspec <- function(x, spans = NULL, kernel = NULL, taper = 0, pad = 0,
fast = TRUE, demean = TRUE, detrend = FALSE, plot = FALSE,
na.action = na.fail,...)

{
series <- deparse(substitute(x))
x <- na.action(as.ts(x))
xfreq <- frequency(x)
x <- as.matrix(x)
N <- N0 <- nrow(x)
nser <- ncol(x)
if (!is.null(spans))

kernel <- {
if (is.tskernel(spans))

spans
else kernel("modified.daniell", spans%/%2)

}
if (!is.null(kernel) && !is.tskernel(kernel))

stop("must specify ’spans’ or a valid kernel")
if (detrend) {

t <- 1:N - (N + 1)/2
sumt2 <- N * (N^2 - 1)/12
for (i in 1:ncol(x)) x[, i] <- x[, i] - mean(x[, i]) -

sum(x[, i] * t) * t/sumt2
}
else if (demean) {

x <- sweep(x, 2, colMeans(x))
}
x <- spec.taper(x, taper)
u2 <- (1 - (5/8) * taper * 2)
u4 <- (1 - (93/128) * taper * 2)
if (pad > 0) {

x <- rbind(x, matrix(0, nrow = N * pad, ncol = ncol(x)))
N <- nrow(x)

}
NewN <- if (fast)

nextn(N)
else N
x <- rbind(x, matrix(0, nrow = (NewN - N), ncol = ncol(x)))
N <- nrow(x)
Nspec <- floor(N/2)
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freq <- seq(from = xfreq/N, by = xfreq/N, length = Nspec)
xfft <- mvfft(x)
pgram <- array(NA, dim = c(N, ncol(x), ncol(x)))
for (i in 1:ncol(x)) {

for (j in 1:ncol(x)) {
pgram[, i, j] <- xfft[, i] * Conj(xfft[, j])/(N0 *

xfreq)
pgram[1, i, j] <- 0.5 * (pgram[2, i, j] + pgram[N,

i, j])
}

}
if (!is.null(kernel)) {

for (i in 1:ncol(x)) for (j in 1:ncol(x)) pgram[, i,
j] <- kernapply(pgram[, i, j], kernel, circular = TRUE)

df <- df.kernel(kernel)
bandwidth <- bandwidth.kernel(kernel)

}
else {

df <- 2
bandwidth <- sqrt(1/12)

}
df <- df/(u4/u2^2)
df <- df * (N0/N)
bandwidth <- bandwidth * xfreq/N
pgram <- pgram[2:(Nspec + 1), , , drop = FALSE]
spec <- matrix(NA, nrow = Nspec, ncol = nser)
for (i in 1:nser) spec[, i] <- Re(pgram[1:Nspec, i, i])
if (nser == 1) {

coh <- phase <- NULL
}
else {

coh <- phase <- matrix(NA, nrow = Nspec, ncol = nser *
(nser - 1)/2)

for (i in 1:(nser - 1)) {
for (j in (i + 1):nser) {

coh[, i + (j - 1) * (j - 2)/2] <- Mod(pgram[,
i, j])^2/(spec[, i] * spec[, j])

phase[, i + (j - 1) * (j - 2)/2] <- Arg(pgram[,
i, j])

}
}

}
for (i in 1:nser) spec[, i] <- spec[, i]/u2
spec <- drop(spec)

#========================
fxx=array(NA, dim=c(nser,nser,Nspec))
for (i in 1:nser){

for (j in 1:nser){
for (k in 1:Nspec){

fxx[i,j,k]=pgram[k,i,j]
}

}
}

#========================
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spg.out <- list(freq = freq, spec = spec, coh = coh, phase = phase,
kernel = kernel, df = df, bandwidth = bandwidth, n.used = N,
fxx=fxx,
orig.n = N0, series = series, snames = colnames(x), method = ifelse(!is.null(kernel),

"Smoothed Periodogram", "Raw Periodogram"), taper = taper,
pad = pad, detrend = detrend, demean = demean)

class(spg.out) <- "spec"
if (plot) {

plot(spg.out, ...)
return(invisible(spg.out))

}
else return(spg.out)

}

41



A.2 R-CODE FOR CALCULATING DISTANCES BETWEEN SUBSEQUENCE AND
FINDING BEST SEGMENTATION

A.2.1 Best segmentation of EBV DNA sequence

u=factor(scan("C:/Users/Hyewook Jeong/Desktop/code/ebv2.dat"))
x<-u[46001:54192]
T=length(x)

source("C:/Users/Hyewook Jeong/Desktop/code/function/specenv_ebv.R")
D=matrix(c(rep(0,5*2^4)),nrow=5)

for (i in 1:5){
j=6-i
blksz=T/(2^j)
span=blksz/128
#par(mfrow=n2mfrow(2^j))
for (l in (seq(1,2^j,by=2))){

ind1=(blksz*(l-1)+1)
ind2=(blksz*l)
ind3=ind2+1
ind4=ind2+blksz
z1=x[ind1:ind2]
z2=x[ind3:ind4]
spec1=specenv(z1)$spec*(specenv(z1)$spec>specenv(z1)$thresh)
spec2=specenv(z2)$spec*(specenv(z2)$spec>specenv(z2)$thresh)

## Kullback_leibler divergence
rel_spec1=spec1/sum(spec1,na.rm=TRUE)
rel_spec2=spec2/sum(spec2,na.rm=TRUE)
I=(rel_spec1-rel_spec2)*log((rel_spec1+0.0000000001)/(rel_spec2+0.0000000001))
m=(l+1)/2
D[i,m]= sum(I,na.rm=TRUE)

}
}

A.2.2 Best segmentation of simulated data

t1<-1:512
x1<-2*cos(2*pi*t1/10)+cos(2*pi*t1/3)+0.3*rnorm(512,0,1)
t2<-3073:4096
x2<-cos(2*pi*t2/3)+.01*rnorm(1024,0,1)
s1<-as.numeric(x1<=quantile(x1,.25))+2*as.numeric(x1>quantile(x1,.25) & x1<=quantile(x1,.5))
+ +3*as.numeric(x1>quantile(x1,.5)& x1<=quantile(x1,.75))+4*as.numeric(x1>quantile(x1,.75))
s2<-as.numeric(x2<=quantile(x2,.25))+2*as.numeric(x2>quantile(x2,.25) & x2<=quantile(x2,.5))
+ +3*as.numeric(x2>quantile(x2,.5)& x2<=quantile(x2,.75))+4*as.numeric(x2>quantile(x2,.75))
y1<-3*rnorm(512,0,1)
y2<-rnorm(1024,0,1)
y3<-2*rnorm(1024,0,1)
n1<-randomNumbers(512, 1, 4,1)
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n2<-randomNumbers(1024, 1, 4,1)
n3<-randomNumbers(1024, 1, 4,1)
x<-append(append(append(append(s1,n1),n2),n3),s2)
t<-1:4096
T=length(t)
x<-as.factor(x)

source("C:/Users/Hyewook Jeong/Desktop/code/function/specenv.R")
D=matrix(c(rep(0,5*2^4)),nrow=5)

for (i in 1:5){
j=6-i
blksz=T/(2^j)
for (l in (seq(1,2^j,by=2))){

ind1=(blksz*(l-1)+1)
ind2=(blksz*l)
ind3=ind2+1
ind4=ind2+blksz
z1=x[ind1:ind2]
z2=x[ind3:ind4]
spec1=specenv(z1)$spec
spec2=specenv(z2)$spec

## Kullback_leibler divergence
rel_spec1=spec1/sum(spec1,na.rm=TRUE)
rel_spec2=spec2/sum(spec2,na.rm=TRUE)
I=(rel_spec1-rel_spec2)*log((rel_spec1+0.00000000001)/(rel_spec2+0.00000000001))
m=(l+1)/2
D[i,m]= sum(I,na.rm=TRUE)

}
}
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