
ww.sciencedirect.com

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3
Available online at w
journal homepage: www.elsevier .com/locate/cose
CRiBAC: Community-centric role interaction based
access control model
Youna Jung a,*, James B.D. Joshi b,1

aACIS Lab., Department of Electrical and Computer Engineering, University of Florida, P.O. Box 116200, 339E Larsen Hall, Gainesville, FL

32611-6200, USA
b LERSAIS, Department of Information Science, University of Pittsburgh, 410 IS building, 135 N. Bellefield Avenue, Pittsburgh, PA 15260, USA
a r t i c l e i n f o

Article history:

Received 2 August 2011

Received in revised form

3 January 2012

Accepted 1 February 2012

Keywords:

Secure interaction

Secure cooperation

Access control

RBAC

Community computing

Multi-agent system
* Corresponding author. Tel.: þ1 352 392 152
E-mail addresses: younajung@ufl.edu, yo

1 Tel.: þ1 412 624 9982; fax: þ1 412 624 278
0167-4048/$ e see front matter ª 2012 Elsev
doi:10.1016/j.cose.2012.02.002
a b s t r a c t

As one of the most efficient solutions to complex and large-scale problems, multi-agent

cooperation has been in the limelight for the past few decades. Recently, many research

projects have focused on context-aware cooperation to dynamically provide complex

services. As cooperation in the multi-agent systems (MASs) becomes more common,

guaranteeing the security of such cooperation takes on even greater importance. However,

existing security models do not reflect the agents’ unique features, including cooperation

and context-awareness. In this paper, we propose a Community-based Role interaction-

based Access Control model (CRiBAC) to allow secure cooperation in MASs. To do this,

we refine and extend our preliminary RiBAC model, which was proposed earlier to support

secure interactions among agents, by introducing a new concept of interaction permission,

and then extend it to CRiBAC to support community-based cooperation among agents. We

analyze potential problems related to interaction permissions and propose two approaches

to address them. We also propose an administration model to facilitate administration of

CRiBAC policies. Finally, we present the implementation of a prototype system based on

a sample scenario to assess the proposed work and show its feasibility.

ª 2012 Elsevier Ltd. All rights reserved.
1. Introduction Cooperative Work (CSCW). Several MASs that provide
The rapid growth of networking technologies has signifi-

cantly promoted the level of connectivity and interaction

among distributed computing elements. Particularly, multi-

agent systems (MASs) that feature rich interactions among

agents have become a very active area of research. The rich

interactions among agents promote seamless cooperation

that has potential to address large and complicated problems

which cannot be solved by an individual agent. Such benefits

have been the key reasons that many researchers have been

studying cooperation approaches for decades in many areas

such as swarm intelligence, MAS, and Computer Supported
5; fax: þ1 352 392 5040.
unajung@gmail.com (Y. J
8.
ier Ltd. All rights reserved
services through cooperation among agents have been

proposed in the literature, including, Gaia (Zambonelli et al.,

2003), Pervasive Information Community Organization (PICO)

(Kumar et al., 2003), and Community Computing (Jung and

Kim, 2010). Unlike cooperation in other areas, dynamic

cooperation in MASs has been regarded as a critical issue due

to the agent’s autonomous and dynamic characteristics.

Current MASs support the context-awareness necessary for

dynamic cooperation to some degree (Zambonelli et al., 2003;

Kumar et al., 2003; Jung and Kim, 2010); however, these

systems pose significant adoption challenges because of

security concerns.
ung), jjoshi@pitt.edu (J.B.D. Joshi).

.

mailto:younajung@ufl.edu
mailto:younajung@gmail.com
mailto:jjoshi@pitt.edu
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3498
In particular, access control is one of the critical security

issues facing MASs. Several access control models have been

proposed in the literature that may be adopted for MASs.

Among them, the Role-based Access Control (RBAC) approach

has generated significant interest because of its flexibility and

potential benefits (Sandhu et al., 1996). All existing access

control models e including RBAC e aim to protect objects/

information against unauthorized accesses; however, they do

not consider interactions among agents. In particular, inMASs,

we need to carefully examine interactions as well as objects.

During an interaction among agents, an agent might need to

perform operations on a partnering agent or ask the partner to

execute its task. However, serious security issues exist that are

related to allowing such interactions or accesses between

partnering agents without proper authorization verification

(Jung et al., 2011). One partner may attempt to execute critical

actions within another partner’s system, such as, changing the

partner’s status or using the partner’s functionality without

appropriate authorization. Therefore,weneed a suitable access

control model to ensure that authorized agents can execute

only authorized interactions. Beyond interaction among

agents, MASs need to guarantee secure dynamic cooperation

among agents in order to provide complex and diverse sets of

services. To do so, we need an access control model that

supports an agent’s dynamic behavior and the its need for

cooperation with other agents simultaneously.

Tofulfill suchrequirements,wepropose theRole-interaction

based Access Control Model (RiBAC) that considers an interac-

tion between roles as an entity that also needs to be protected.

RiBAC extends the types of protection objects in traditional

RBAC by incorporating authorized role-based interactions

amongagents. ByemployingRiBAC, thedevelopers ofMASs can

enable agents to block misuse of its services by others. Previ-

ously, we have proposed an early version of RiBAC in Jung et al.

(2009), which we refine and extend in this paper. Then, we

propose the community-based RiBAC (CRiBAC) model as an

extension of RiBAC by incorporating the concept of community

that refers to a cooperative group of agents. Thismodel aims to

guarantee the securityofdynamiccooperationamongagents as

well as the interactions among them. In particular, CRiBAC is

basedon the community computingparadigmproposed in Jung

andKim (2010),which isanagent-basedcomputingparadigmin

which services are provided through cooperation among

agents. By importing its community concept, CRiBAC can deal

with context-aware cooperation among agents. We also

propose an administration model for CRiBAC, called ACRiBAC,

to help administer CRiBAC policies in MAS-based applications.

ACRiBAC includes a grant model, a revocation model, and

administration functions for cooperation. We also present

a technique to analyze the conflicts that may result due to the

permitted interactions during cooperation. Finally, we present

the implementation of a prototype system to demonstrate our

work using an emergency scenario. In summary, the major

contributions of our work are as follows:

- we propose the RiBAC model to support the security of

agent interactions.

- we propose the CRiBAC model to deal with the context-

aware secure cooperation among agents as well as the

secure interactions within a community setting.
- we propose the ACRiBAC model to support the adminis-

tration of systems employing CRiBAC.

- we develop an analysis technique to verify the CRiBAC

policies.

- we implement the visual user interfaces to help specify and

analyze CRiBAC policies.

- we implement a prototype based on an emergency scenario

to demonstrate the practical feasibility of the proposed

CRiBAC model.

The rest of this paper is organized as follows. In Section 2,

we present a brief description of community computing and

our motivation for the current work. Then, in Section 3, we

propose the family of RiBAC models. We propose the CRiBAC

model in Section 4. Next, we analyze a number of conflicting

scenarios related to interaction permissions and then provide

two solutions in Section 5. In Section 6, we propose the

ACRiBAC model. In Section 7, we present the implementation

of a prototype system and assess the feasibility and the

usefulness of the proposed work. In Section 8, we discuss

related work; finally, we present the conclusions and future

work to be investigated in Section 9.
2. Preliminaries and motivation

In this section, we first introduce the community computing

paradigm and examine the access control issues in such

cooperative MASs. Then, we present our motivation for the

proposed models.

2.1. Community computing

Community Computing (CC) is an agent-based computing

paradigm where services are provided through dynamic

cooperation among individual agents (Jung and Kim, 2010).

Ordinarily, each agent performs its own task or set of tasks in

a community computing system (CCS), known as a society.

When a goal is identified, a community is formed by defining

the necessary roles and the cooperation processes among

roles; then, the community is dynamically created by

recruiting the best available agents for each role. To achieve

a goal, cooperation among community members begins as

soon as all of the members are selected and the community is

created. After the goal is achieved, the community is dissolved

and members are released. When an agent participates in

a community, it needs to perform tasks to play a community

role(s). Therefore, agents should check their abilities as well as

their willingness to participate before accepting a role as

a community member. Once a community is established, the

community’s structure (such as its roles and cooperation

processes), can be reused for another community having the

same community goal. In Fig. 1, a general overview of CC is

presented and its specification is shown in Table 1.

The basic concepts used in CC are as follows:

- Community e is a goal-oriented cooperative group of agents

which take on one or more community roles. It is dynami-

cally created and dissolved when the goals have been

attained. All communities should belong to a society.

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

Community
Community

: Agent
(User)

Society

: Agent taking a
society
role and a
community
role at the same time

: Agent taking a
society role
(1 circle/1 role)

: Agent taking a
community role
(1 circle/1 role)

Fig. 1 e Overview of community computing.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3 499
- Society e is the basic group of agents and communities. A

society has several communities, each of which has several

agents. All agents who belong to a society take on one or

more society roles as long as they are part of the society.

- Agente is a basicunit of societiesand communities, having its

own intelligence, tasks, and context information. While

agentsaredoingtheirownworkasasocietymember, theycan

also participate in one or more communities simultaneously.

2.2. Motivation

Ubiquitous services are currently being expanded to various

applications suchasu-healthcare, u-government, u-city, and so

on. For practical adoption of such emerging services, security

issues are key challenges. In order to provide secure services,

CCSs for ubiquitous applications should incorporate efficient

securitymechanisms. There aremany security issues related to

ubiquitous computing systems such as authentication, privacy,

and access control. In this paper, we concentrate on the access

control issues.
Table 1 e The simplified community computing model (CCM) f

Element (Abbr.) Definition

Context (CONT) The set of all context informa

Task (TSK) The set of all tasks performed

Agent (a) <CONTa, TSKa> An agent has its own contexts

which represent the status of

A is the set of all agents in a s

Society Role (SR) A set of all society roles in a s

belong to a society.

Community Role (CR) A set of all community roles in

one or more community roles

those agents when the commu

Role (R) SR W CR The set of all roles in a society

Role Member (Ar) Ar ˛ A A set of agents taking a role r.

Goal (G) The set of goals of communiti

Community (c) <gc, CRc, Ac> A community c has a goal (gc)

take on one or more commun

Ac ˛ A. C is the set of all such

Society (S) <C, A> A community computing syste

mission-oriented communitie
In CCSs in which agents frequently interact with each

other, it is important to control access to not only resources

but also to agents’ tasks or agents themselves. An agent can

interact with its partner to execute the partner’s tasks or to

carry out its own tasks on the partner; such interactions can

result in some critical security problems. It can be assumed

that a smart home environment is one in which intelligent

appliances are deployed and all family members have

personal agents located on their own personal devices. A door

lock agent can reset the password and perform such a task

only for an authorized agent, e.g., the owner agent which

represents the owner of the house. If an unauthorized entity

(such as a neighbor’s personal device) asks to reset the pass-

word via remote access, the door lock must reject the request

for safety/security reasons. Similarly, only the owner should

be able to open a safe. Otherwise, the safe should sound an

alarm to prevent unauthorized access. It can be a significant

security vulnerability to accept unauthorized accesses to

agents or agents’ tasks. Therefore, we need a proper access

control mechanism to ensure that agents are engaged in only

authorized activities. As a solution, we propose the Role

Interaction based Access Control Model (RiBAC). In RiBAC, an

interaction indicates an access to agents or agents’ resources,

such as information or a task; only acceptable interactions

among agents based on roles are permitted.

Beyond the interactions among agents, it is important to

consider the issue of cooperation among agents playing

different roles. Over the last few decades, researchers have

studied and developed cooperation systems because they can

lead to effective ways to solve complex and large-scale prob-

lems. RiBAC can be used to ensure secure interactions;

however, this is not enough for some cooperation systems. To

secure cooperation, it is necessary that a guarantee that their

cooperation does not lead to security threats exists. In order to

do this, we propose CRiBAC, the Community based RiBAC

model. CRiBAC employs the cooperation paradigm of the

community computing approach. By using the community

concept of community computing, we can control accesses in
or CRiBAC.

Description

tion which represents agents’ status in a society.

by agents in a society.

and tasks, a ¼ <CONTa, TSKa>. CONTa ˛ CONT is a set of contexts

an agent a, and TSKa ˛ TSK is a set of tasks that an agent a can do.

ociety.

ociety. Each agent takes one or more society roles when they

a society. Each agent participating in a community has to take

in the community, but community roles should be revoked from

nity is terminated.

.

es in a society.

, necessary community roles (CRc) and community agents (Ac) who

ity roles to achieve the goal gc. c ¼ <gc, CRc, Ac>, gc ˛ G, CRc ˛ CR, and

communities in a society.

m (CCS) which provides cooperative services by dynamic and

s. A society consists of a set of communities C and a set of agents A.

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3500
a cooperation system more intuitively and conveniently. For

example, to organize a community and to control cooperation

among its agents, CRiBAC can be used to specify the

community-related information such as the community’s

goal, roles, participants, and context within which it cooper-

ates. When seeking suitable agents to create a community,

such information might be quite useful to examine partici-

pating communities and confirm the community roles of

a candidate agent aswell as the candidate’s tasks and context.

Such information is also necessary for an agent to determine

whether or not it wants to authorize other agents to interact

with it. Furthermore, for efficient administration, it is much

better to specify a cooperation group and corresponding

relationships in the access control model. For these afore-

mentioned reasons, in this paper, we propose CRiBAC by

extending RiBAC.
3. RiBAC

RiBAC (Jung et al., 2009) is based on role-based agent interac-

tions to protect not only resources in MASs, but also the

agents’ tasks and the agents themselves. In order to do so, an

interaction between agents in RiBAC is regarded as an access

to a partner’s task or to the partner itself. In this section, we

propose the interaction permissions in RiBAC and the RiBAC

family. A general overview of RiBAC is shown in Fig. 2
3.1. Interaction permissions

RiBAC includes two types of role interactions: Role-Oriented

(RO) interactions and Task-Oriented (TO) interactions (See

Fig. 4). The RO interaction indicates that a subject role (Rs)

initiating an interaction performs its operation on a targeted

object role (Ro), while the TO interaction indicates that Rs

commands its Ro to perform Ro’s tasks. For example, a para-

medic can transfer a patient to an ambulance or a hospital.

Such interaction between a paramedic and a patient is a RO

interaction. In this interaction, the paramedic is a subject role

and the patient is an object role. In addition, a doctor who is in

charge of the patient can order the paramedic to provide a first-

aid instruction. This interaction between the paramedic role

and the doctor role is a TO interaction. The doctor is a subject

role and its object role is the paramedic. For a successful role

interaction, a subject role must have corresponding interac-

tion permissions and, in case of TO interaction, its object role
AGENTS ROLES

SESSIONS

AA

RH

C

Fig. 2 e RiBAC
should have all the permissions necessary for accomplishing

the requested tasks.

Permissions in RiBAC include object-oriented permissions

(OPRMS) and the two interaction permissions mentioned

above. Depending on the application needs, various objects

may exist in an environmentwhich can be accessed by agents.

A valid pair of an object and an operation on that object forms

an OPRMS. A valid pair of an operation of a subject role and its

target role forms a role-oriented permission (RPRMS). A

TPRMS consists of a role and its task which can be invoked by

other roles. Roles are authorized for permissions that are

assigned to them through the permission assignment (PA).
3.2. RiBAC family

RiBAC is comprised of a family of four models: Basic RiBAC

(RiBAC-B), Hierarchical RiBAC (RiBAC-H), Constrained RiBAC

(RiBAC-C), and Constrained Hierarchical RiBAC (RiBAC-CH).

RiBAC-B is the base model to control role interactions. RiBAC-

H extends RiBAC-B with a role hierarchy for the convenient

management of permissions. RiBAC-C supports RiBAC-B and

also allows constraints to support more fine-grained access

control requirements. RiBAC-CH supports both RiBAC-Hybrid

Hierarchy (HH) and RiBAC-C. In Table 2, we provide the formal

definitions for each model.

To specify the proposed models, in this paper, we propose

the XML-based specification language. Due to its extensibility

and interoperability, XML has been widely used as a policy

language for enterprise-wide access control in the distributed

environment in which highly heterogeneous entities collab-

orate (Bhatti et al., 2005). In an effort to use XML as a standard

specification of access control policy, XML-based Access

Control Language (XACML) has been proposed (XACML v.3.0,

2010). To support RBAC, XACML includes the RBAC profile

XACML v.3 Core Hierarchical RBAC Profile v.1.0 (2010) but

current profile does not support essential features of RBAC

such as separation of duty (SoD) constraints and role hier-

archy (Ferrini and Bertino, 2009). To overcome the shortcom-

ings of XACML, Bhatti et al. proposed X-GTRBAC, an XML-

based specification language based on the GTRBAC model

(Bhatti et al., 2005). X-GTRBAC captures not only the seman-

tics of XACML but also the semantics of RBAC’s constraints

and role hierarchy. In addition, it addresses the context-

awareness, in particular temporal context, for dynamic fine-

grained access control. In this paper, we propose a specifica-

tion language for each proposed model based on X-GTRBAC.
PA
OPA

TPA

PERMISSIONS

OPRMS

RPRMS

TPRMS

ONSTRAINTS

RPA

overview.

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

AGENTS SESSIONS

RH
COMMUNITY

PRMS

CR

SR

PA SPRMS

RPRMS

TPRMS

ROLES

SOCIETY

OPRMS

iPRMS

Fig. 3 e Overview of CRiBAC.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3 501
To present a specification language, we use the syntax of X-

Grammar (Bhatti et al., 2005), a BNF-like grammar, instead of

presenting XML schemas. Using BNF notion and XML’s tagging

notation allows better readability and presentation.

- RiBAC-B: This is the basic model which deals with accesses

to agents or to tasks belong to those agents based on agents’

roles. The formal definition is shown in the following Table

2 and the corresponding specification is shown in the

Appendix A-1.

- RiBAC-H: For better permission management and inheri-

tance, in RiBAC-H, permissions including object-oriented

and interaction permissions can be inherited through

a role hierarchy and override the authorization functions

in RiBAC-B. We define the role hierarchy (RH) as shown in

Table 2. In the specification of RiBAC-H, there is a change

in the role definition only, as presented in the Appendix

A-2(a).

- RiBAC-C: This model adds separation of duty (SoD) and

cardinality constraints to RiBAC-B as presented in Table 2.

SoD constraints have been examined in the RBAC literature;

they serve as a mechanism to minimize the likelihood of

fraud and major errors through simultaneous access by

agents to key organizational tasks or deliberate collusion by

agents. Community computing environments have similar
 Role-Oriented(RO) Inte

RS R

PA

T1
TS

AA

AA

Task of A1

ops Capable-of

reSource-Oriented(SO) Interaction

RS SPRMS

PA (ops, S2)
AA

SPRMS

own

PA

T1
TS

AA

AA

Task of A1

ops Capable-of

PA (ops, S2)
AA

SPRMS

own

S2

AA
ops

a b

Fig. 4 e Interaction permissions detai
vulnerabilities. As a remedy, we propose the static and

dynamic SoD constraints for RiBAC. In the static SoD (SSoD),

no agent can be assigned to more than a specific number of

roles ina role set. In contrast to SSoD, thedynamicSoD (DSoD)

enforces the SoD constraint on role activations instead of

agent-role assignments (AA). As a consequence, an agent

cannot activate certain roles together in one session. Also,

RiBAC-C supports cardinality constraints that limit the

number of agents that may be assigned to a role. The cardi-

nality constraints can be static or dynamic. Static cardinality

constraints are applicable to the AA relationship, while

dynamic cardinality constraints are imposed on active roles

in agents’ sessions. Moreover, cardinality constraints can be

considered as minimum and maximum limitations. We

define four different cardinality constraints: SSoD_Min_Car-

dinality, SSoD_Max_Cardinality, DSoD_Min_Cardinality, and

DSoD_Max_Cardinality.Note that caremustbe taken toensure

the consistency of the policy by avoiding definition of con-

flicting constraints.A staticminimumcardinality ofm should

be less than a static maximum cardinality of n (m < n) for

a role. The specification of RiBAC-C is presented in the

Appendix A-2(b).

- RiBAC-CH: RiBAC-CH is formed by a combination of hierar-

chical and constrained RiBAC models. However, the impli-

cations of such a combination should be precisely captured.
raction Task-Oriented(TO) Interaction

PRMS RS TPRMS

(ops, Ro)

KPRM

RPRMS PA (OPS, RO.T2)
AA

TPRMS

Capable-of

Task of A2

PA P1

T2 TSKPRM

AA
(OPS, RO.P1) ops

If T2 requires P1

(ops, Ro)

KPRM

RPRMS AA

Capable-of

Task of A

T2 TS

AA
ops

c

led with relationships in CRiBAC.

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

Table 2 e Formal definition of the family of RiBAC models: RiBAC-B, RiBAC-H, RiBAC-C, and RiBAC-CH.

Model Element Definition Description

RiBAC-B A The set of all agents in a system, an agent a has his/her own

tasks. a ¼ {TSKa}, TSKa ˛ TSK is a set of a’s tasks.

TSK ACT W OPS The set of all tasks which agents can do.

ACT The set of all actions of roles which do not require any targets

like walking and speaking.

OPS The set of all applicable operations of roles on OBJ. Some tasks

need one or more permission(s) and such a relationship

between an agent’s task and permission is represented by

TSKPRM.

TSKPRM 4TSK � P A many-to-many task to permission relationship. This

relationship represents a necessary permission(s) to perform

a task.

R The set of all roles available in a society. The following function

retrieves the authorized roles of an agent a according to the

policy: authorized_roles(a:A)/2R, the mapping of agent a to the

set of its authorized roles that it can activate.

OBJ OBJs W OBJ-ROLE

W OBJ-TSK

The set of all target objects of OPS and it can be a system object,

role, or role’s task.

P OPRMS W RPRMS

W TPRMS

A set of permissions in a society. The following function

retrieves the authorized permissions of a role r according to the

policy: authorized_prms(r:R) / 2OPRMS W RPRMS W TPRMS, the

mapping of role r to the set of its authorized permissions

including object-oriented permissions and interaction

permissions. Formally: authorized_prms(r) ¼ authorized_oprms(r)

W authorized_rprms(r) W authorized_tprms(r)

OPRMS 4OPS � OBJs The set of all object-oriented permissions. Retrieval function:

authorized_oprms(r:R)/ 2OPRMS, themapping of role r to the set of

its authorized oprms.

RPRMS 4OPS � OBJ-ROLE The set of all role-oriented permissions. Retrieval function:

authorized_rprms(r:R)/ 2RPRMS, themapping of role r to the set of

its authorized rprms.

TPRMS 4OPS � OBJ-TSK The set of all task-oriented permissions. Through

a corresponding TSKPRM relationship, it can be specified as

TPRMS 4 OPS � OBJ-ROLE.OBJ-PRMS where OBJ-PRMS 4 P,

(OBJ-ROLE, OBJ-PRMS) 4 PA, and (OBJ-TSK, OBJ-PRMS) 4

TSKPRM. Retrieval function: authorized_tprms(r:R) / 2TPRMS, the

mapping of role r to the set of its authorized tprms.

OBJs The set of a system’s objects/resources.

OBJ-ROLE 4R The set of roles that can be an object of an operation ops.

OBJ-TSK 4TSK The set of tasks which can be a target object of a tprms.

PA {OPA W RPA

W TPA} 4 R � P

A many-to-many role to permission assignment relationship.

OPA 4R � OPRMS A many-to-many role to object-oriented permission

assignment relationship.

RPA 4R � RPRMS A many-to-many role to role-oriented permission assignment

relationship.

TPA 4R � TPRMS A many-to-many role to task-oriented permission assignment

relationship.

S The set of all sessions created for agents in a society. The

following relationships capture the runtime state of access

control through sessions: SessionAgents(s:S)/A, themapping of

session s to its corresponding agent, and SessionRoles(s:S) / 2R,

the mapping of session s to the set of active roles in it.

RiBAC-H RH 4R � R A partial order relationship for R, denoted as�, where r� r’ only

if all permissions of r’ are inherited by r and agents assigned to r

can also activate r’.

RiBAC-C SSoD 42R � N Acollectionofpairs (rs,n) thatdefinesSSoDs,where for each (rs,n)

noagent shouldbeassigned tonormore roles fromthesetof roles

rs. Formally: (rs, n)˛ SSoD0e a˛ A, jauthorized_roles(a)X rsj � n.

DSoD 42R � N A collection of pairs (rs, n) that defines DSoDs, where for each

(rs, n) no agent can activate n or more roles from the set of roles

rs together in one session. Formally: (rs, n) ˛ DSoD 0 es ˛
SESSIONS, j{r ˛ SessionRoles (s)jr ˛ rs}j � n. SMinCardinality 4

R � N, a collection of pairs (r, n) that defines static minimum

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3502

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

Table 2 e (continued)

Model Element Definition Description

cardinality for roles, where for each (r, n) at least n agents

should be assigned to the role r.

SMax e Cardinality 4R � N A collection of pairs (r, n) that defines static maximum

cardinality for roles, where for each (r, n) at most n agents

should be assigned to the role r. Formally: (r, n) ˛
SMaxCardinality 0 j{a˛ Aj r ˛ authorized_roles (a)}j � n

DMin e Cardinality 4R � N A collection of pairs (r, n) that defines dynamic minimum

cardinality for roles, where for each (r, n) at least n agents

should have activated the role r at a particular time.

DMax e Cardinality 4R � N A collection of pairs (r, n) that defines dynamic maximum

cardinality for roles, where for each (r, n) at most n agents

should be allowed to activate the role r at a particular time.

Formally: (r, n)˛DMaxCardinality0j{s˛ Sj r˛ SessionRoles(s)}j � n.

RiBAC-CH DSoD 42R � N A collection of pairs (rs, n) that defines dynamic SoDs in

presence of hybrid hierarchy, where for each (rs, n) no agent can

activate or use permissions of n or more roles from the set rs

together in one session. Formally: (rs, n) ˛ DSoD 0 es ˛ S, j{rj
r’ �I r, r’ ˛ rs, r’ ˛ SessionRoles (s)}j � n.

DMin e Cardinality 4R � N A collection of pairs (r, n) that defines dynamic minimum

cardinality for roles in presence of hybrid hierarchy, where for

each (r, n) at least n agents should have activated the role r or its

I-senior at a particular time. Formally: (r, n) ˛ DMinCardinality 0

j{s ˛ Sj r’ �I r, r’ ˛ SessionRoles (s)}j � n.

DMax e Cardinality 4R � N A collection of pairs (r, n) that defines dynamic maximum

cardinality for roles in presence of hybrid hierarchy, where for

each (r, n) at most n agents should be allowed to activate the role

r at a particular time. Formally: (r, n) ˛ DMaxCardinality0 j{s ˛ S

jr’ �I r, r’ ˛ SessionRoles (s)}j � n.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3 503
For instance, assume that role r1 has a dynamic maximum

cardinality constraint of 3, and that role r2 is senior to r1
(r2 � r1). In such a configuration, if more than 3 agents acti-

vate r2 it can be interpreted as violation of the cardinality

constraint because agents assigned to r2 can also assume r1
through the role hierarchy. However, agents acting as role r2
may not necessarily act as role r1 all the time, which makes

the earlier interpretation too rigid. In order to provide more

flexibility and to truly capture the behavior of constraints in

the presence of role hierarchy, we adopt the notion of Hybrid

Hierarchy (HH) that is originally defined in the context of

Generalized Temporal RBAC (GTRBAC) (Joshi et al., 2005). In

comparison with the standard RBAC hierarchy, hybrid hier-

archy differentiates between permission usage and role

activation semantics in a hierarchy, by taking into account

three possible relationships: permission inheritance (I),

activation (A), and inheritance-activation (IA). If role r1 is I-

senior to role r2 (r1 �I r2), it inherits all the permissions r2 has.

If role r1 isA-senior to role r2 (r1 � Ar2), then an agent assigned

to r1 can activate r2 but the role r1 does not inherit r2’s

permissions. Finally, r1 is IA-senior to r2 if and only if r1 is both

I-senior and A-Senior to r2 (r1 � IAr2). By leveraging the acti-

vation and permission inheritance relationships, we achieve

more flexibility in policy specification. For instance, to

resolve the problem in the aforementioned example, we can

specify r2 as an A-senior to r1. Therefore, whenever an agent

activates r2, the cardinality constraint is respected, and an

agent can also activate the role r1 whenever needed but

according to the cardinality constraint. In Appendix A-2(c),

we show the specification of RiBAC-CH.
4. Community based RiBAC (CRiBAC)

As mentioned in Section 2.2, it is very important to address

cooperation among agents beyond interaction between them.

To address the requirements, we propose CRiBAC by extending

RiBAC with the concept of community. In this section, we

present its formal definition and two example scenarios.
4.1. Formal definition

CRiBAC aims to support cooperation among agents within

a community, as well as decentralized interactions between

agentswhodo or donot participate in a community. In CRiBAC,

cooperation is required to achieve a community’s goal and is

regarded as a set of interactions among community members

based on the roles that they assume. CRiBAC extends RiBAC to

provide support for handling secure cooperation among agents

using the various information and requirements related to

individual communities. To do so, CRiBAC adopts the cooper-

ation mechanism of CCM such that community creation by

recruiting suitable agents is based on their context and capa-

bilities. Fig. 3 provides an overview of the CRiBACmodel and its

formal definition is presented in Table 3.

In CRiBAC, a society consists of communities and agents.

All agents and their communities cooperating in a society

should be registered with their society. By registering in

a society, each agent is assigned to one or more society roles

(SR) depending on the agents’ contexts and tasks. All SRs are

defined by administrators at the time that the society is

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

Table 3 e Formal definition of the CRiBAC model.

Element Definition Description

RSC The set of resources that agents own.

CONT CONTs W CONTc W CONTa The set of all possible contexts which represent a society, communities, or agents.

TSK The set of all tasks which agents can have. Some tasks need one or more

permission(s) and such a relationship between an agent’s task and permission is

represented by TSKPRM.

a <RSCa, CONTa, TSKa> An agent a in A has own resources (RSCa 3 RSC), contexts (CONTa 3 CONT), and

tasks (TSKa 3 TSK). Formally: a ¼ <RSCa, CONTa, TSKa>. A is the set of all agents in

a society

SR The set of all society roles

CR The set of all community roles.

R SR W CR The set of all roles available in a society.

c <gc, CRc, Ac, CONTc> A community has its goals (gc˛G), a set of community roles (CRc3 CR), a set of agents

(Ac 3 A), and own contexts (CONTc 3 CONT). Formally: c ¼ <gc, CRc, Ac, CONTc>. C is

the set of all possible communities in a society.

OBJ OBJs W OBJ-RSC W OBJ-ROLE W OBJ-TSK The set of all target objects of OPS and it can be a social object, agents’ resources, role,

or role’s task.

OBJ-RSC OBJ-RSC 4 RSC The set of resources that can be an object of a role’s operation.

OBJ-ROLE OBJ-ROLE 4 R The set of roles that can be an object of a role’s operation.

OBJ-TSK OBJ-TSK 4 TSK The set of tasks that can be a target object of a task-oriented permission.

OPS The set of all applicable operations on OBJ, where OPS4 TSK.

S <C, A, OBJs, CONTs> A society s represents an entire cooperative system and it has a set of communities

(C), a set of agents (A), a set of society objects (OBJs), and a set of society contexts

(CONTs). OBJs ˛ OBJ is a set of objects which belong to a society and the society

controls accesses from agents to society objects by PA to OBJs. CONTs ˛ CONT is a set

of context information representing a society and it is available to any agents in

a society.

OPRMS OPS � OBJ The set of all object-oriented permissions.

SPRMS OPS � RSC The set of all resource-oriented permissions.

RPRMS OPS � OBJ-ROLE The set of all role-oriented permissions, where OBJ-ROLE 4 R.

TPRMS OPS � OBJ-TSK The set of all task-oriented permissions. Through the corresponding TSKPPRM

relationship, it can be redefined as TPRMS 4 OPS � OBJ-ROLE.OBJ-PRMS where (obj-

role, obj-prms) 4 PA and (obj-tsk, obj-prms) 4 TSKPRM.

TSKPRM TSK � P A many-to-many task to permission relationship. This relationship represents

a necessary permission(s) to perform a task.

P OPRMS W RPRMS W TPRMS A set of permissions in a society.

PA {OPA W SPA W RPA W TPA} 4 R � P A many-to-many role to permission assignment relationship, where OPA 4

R � OPRMS, SPA 4 R � SPRMS, RPA 4 R � RPRMS, and TPA 4 R � TPRMS.

AA SRA W CRA Amany-to-many agent to R assignment relationship, where SRA4A� SR and CRA4

A � CR

SS The set of all sessions created for agents in a society.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3504
established. A society has society objects (OBJs), similar to

objects in traditional RiBAC, and society contexts (CONTs) that

represent information relate to a society. An agent needs to

register with the society to gain access to a society’s contexts

or objects, or interact with other agents in the society.

However, any society role assigned to an agent is revoked

when the agent leaves the society.

In CRiBAC, an agent can participate in one or more

communities to help achieve the communities’ goals by taking

roles from CR, for as long as it belongs to the corresponding

society. A community c consists of the community roles (CRc),

agents playing community roles (Ac), and the community

context (CONTc). CONTc represents information related to

community c such as the community’s type, the creation time,

the number of members, and so on. In the XML-based specifi-

cation shown in the Appendix B, a community type defines its

goal and necessary roles (CR). The constraints on correspond-

ing CR assignments (CRA) are described in a community type

definition. According to those constraints, a community

invites suitable agents for each CR to accomplish its goal. The
community then selects themost appropriate agents based on

contexts and tasks of agents. After receivingan invitation from

a community, every agentmust decidewhether or not itwants

to participate. This decision ismadebasedon anagent’s ability

and its preference. The CRs are revoked from agents when the

community is terminated or an agent leaves the community.

When an administrator assigns roles to agents, he/she should

consider the relationships between the agent’s tasks and

permissions. In order to performsomeagent’s tasks, particular

permissions may be required. Accordingly, an administrator

should be careful to only assign the necessary permissions to

the agents’ tasks when he/she administers the role assign-

ments. Note that CRiBAC does not allow changes in the

assignment relationships of community roles after a com-

munity’s cooperation has been initiated.

An agent has its own resources, contexts, and tasks that it

can perform. An agent’s resources are a set of objects which

belong to the agent and it is controlled by that agent. An agent

also has its own contexts that capture specific information

such as status and identification, and its tasks to show what

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3 505
kinds of work it can do. As wementioned previously, an agent

can play one or more SRs and CRs. If a role is assigned to an

agent based on the agent’s tasks, then the assigned permis-

sions to the role should include the permissions necessary to

perform the agent’s tasks.

Permissions in CRiBAC are of two types: traditional OPRMS

and interaction permissions. The interaction permissions include

the resource-oriented permission (SPRMS), RPRMS, and

TPRMS, as shown in Fig. 4. A sprms is a permission that allows

access to agents’ resources; the remaining two interaction

permissions are the same as those in RiBAC. Agents can

interact with each other by having interaction permissions.

Actually, some permissions are parameterized based on roles,

not specific objects. In such a case, the parameterized

permissions should be interpreted with real agents who are

assigned to the corresponding role, after the role assignment.

Additionally, in this model, we assume that cooperating

agents share their information such as their tasks, contexts,

and permissions during interactions by using a centralized

server which belongs to a community. Similar to RiBAC

family, CRiBAC has four models: CRiBAC-B, CRiBAC-H,

CRiBAC-C, and CRiBAC-CH. In this paper, we present the

specification of CRiBAC-CH in the Appendix B.
4.2. Example scenarios

To emphasize the necessity for CRiBAC, we present two

example scenarios calling for urgent cooperation: The Univer-

sity of Pittsburgh Medical Center (UPMC) and Disaster Relief.

4.2.1. UPMC scenario
We assume that there is a large-scale CCS for UPMC and that

all the doctors and nurses who work for UPMC are categorized

into several groups according to their specialties as shown in

Fig. 5. We assume that all the employees have their own
Fig. 5 e The UPMC Ex
personal devices where an agent is hosted for supporting

information sharing and cooperation among them.

Let’s assume that there are five communities: BS, LS, A, N,

BW and many agents including patients, caretakers, phar-

macists, patrolmen, etc., in UPMC. At the time ti-1, some

agents can interact with others. For example, Kevin, an

examiner of bacteriological weapons (BWE), can culture

bacteria and then preserve or kill the cultured bacteria. If Bill

requests the cultivation or elimination of a type of bacteria,

then Kevin can perform the requested task. However, he has to

ignore requests to do this if the requests come from patients

or patrolmen. In order to do so, we should allow only autho-

rized agents to have access to an agent’s tasks such as bacteria

cultivation. Further, we need to ensure that only authorized

agents can perform tasks on other agents. For example, a4 is

a patient who had brain surgery and Bill and Jane are in charge

of his care. Jane is permitted to give an injection to a4 and Bill is

allowed to prescribe medicine for a4. However, other agents

must be prohibited from doing these tasks even if they are

medical doctors or nurses. Note that it is necessary to guar-

antee the secure interactions among agents but existing

models do not deal with interactions among roles. They focus

on protecting only resources from unauthorized agents, but

do not bar access to the agents’ tasks or agents themselves.

To ensure security during cooperation in CCSs, we need

to consider the community-related aspects as well. Consider

an example scenario described as follows. The Emergency

Brain and Lung Surgery community (EBLS) for Bob, who is

the chief lung surgeon, is created as soon as Bob is injured.

To organize the community, an administrator tries to

employ three chief medical doctors for the Emergency Brain

Surgeon (EBS) role, the Emergency Lung Surgeon (ELS) role,

and the Emergency Anesthetist (EA) role, respectively. At

this time, Bill and Bob are not available to play the emer-

gency surgeon roles, EBS and ELS, in that community. Bill is

the chief brain surgeon but he is participating in, say, the
ample of CRiBAC.

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

R1 (ops, R1.P1) R1 R 2(ops, R2.P2) (ops, R1.P1)

Fig. 6 e Examples of SRI problems.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3506
bacteriological weapons community as a Bacteriological

Weapon Examiner (BWE) at that time. Because of the threat

of infection, people who are involved in the Bacteriological

Weapon (BW) community should be prohibited from

working as a surgeon; therefore, Alice, who is available,

assumes the EBS role in the EBLS community instead of Bill.

For the ELS role, Tim is chosen since Bob, who was a chief

lung surgeon, is a patient. As can be seen in this example,

information related to the community e such as existing

assignments, relationships between agents and communi-

ties or community roles e is critical when trying to assign

agents to create a new community. When an agent receives

a request to participate in a community, that agent might

also need information such as the critical importance of the

proposed community, the suggested community role to be

assumed, and the identification of the other participants.

Knowing such information helps an agent to decide whether

he/she wants to accept the request or not. For instance, John

receives a participation request as a presenter from the

chief meeting community of a chief nurse and a chief

anesthetist (CMNA) after the creation of EBLS community.

However, he declines the request since he already belongs

to the EBLS community whose priority is higher than the

priority of the CMNA community.

The community information is also important when an

administrator controls access to resources or an agent decides

whether or not he/she will allow an interaction access from

others. For example, an administrator can allow only agents in

the EBLS community to access Bob’s medical information.

Accordingly, Bob can reject a request for an interaction from

Anna, an anesthetist, since she does not belong to the same

community. As can be seen, in many cases, the consideration

and explicit specification about interaction and cooperation

among agents are necessary for efficient access control in

cooperative MASs. The CRiBAC specification of UPMC example

is presented in the Appendix C-1.

4.2.2. Disaster relief scenario
This growth in online SNSs bringsmany changes in patterns of

communication and human behavior. Cooperation among
Fig. 7 e Examples of
large number of globally connected people through online

SNSs provides an unprecedented opportunity for significant

social transformations. SNSsprovide ahugepool ofmanpower

and quick delivery of information, thereby, allowing a solid

basis for immediate cooperation among users. For example,

many people are using Twitter to broadcast information about

their lost pets and ask for help finding them, such as Lost Dog

Found and Fidofinder. Another example where the use online

SNS has resulted in immediate cooperation among people

relates to Healthcare domain (Emory Healthcare, 2011):

a medical doctor who works for Emory Healthcare received

a tweet from a man, Matthew, about an emergency situation

involving his grandmother. A medical team communicated

with Matthew via Twitter to instruct him on life-saving emer-

gency first aid while emergency transportation was arranged.

The doctor said, “Without the quickness of social media, the

helicopter may have never been dispatched”. As can be seen

from the aforementioned examples, online SNSs have an

enormous potential for helping people by supporting dynamic

and immediate cooperation among users.

Although these examples show significant promise for

social cooperation in SNSs, there exist no cooperation

models for SNSs that ensures effective and secure cooper-

ation. To date, cooperation among users has been achieved

only in an ad hoc manner. Meaningful cooperation cannot

be guaranteed by such an approach. In addition, security

issues must be considered. Allowing access to individuals’

information and resources to the public during cooperation

may raise serious privacy and access control problems. By

using CRiBAC, we are able to resolve the aforementioned

problems on existing cooperation on online SNSs. CRiBAC

allows to specify cooperation among users and security

policies necessary for protecting users’ information and

resources during cooperation. For better understanding of

the usefulness of CRiBAC, we present an example of coop-

eration among users of an online SNS, in particular Face-

book, for disaster relief as follows.

Let’s assume that a man is injured. He posts on an online

SNS using his mobile phone to ask for help. Many people

who see the post spread it to let more people know his
SRSA problems.

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

Fig. 8 e Examples of SRMA problems.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3 507
urgent situation and/or go out to save him. Shortly after-

ward, other victims, including a seriously injured woman,

ask for help simultaneously in many different places. To

successfully achieve the goal of this cooperation, the most
Fig. 9 e Examples of extracted implicit TPRMS
suitable cooperative services are offered to every victim as

soon as possible. In order to do so, it is important to orga-

nize a cooperative group of volunteer users who are close to

a victim and are capable of giving necessary aid including
s and corresponding TPRMS replacement.

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

Fig. 10 e Administration of a CCS by SM and CM.

A SESSIONS

RH

C

P

R
C

A

CR

SR

PA

CRA

SRA R

S

A
R

G

by CM(Community Manager)
by SM(Society Manager)

PR

CRG

CRS

RSA

AC &SSoD

DSoD

Fig. 11 e The administration model for CRiBAC (ACRiBAC).

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3508
specific medical aid. If volunteers flock to a few victims who

have posted earlier, others’ chances of being rescued

become less likely. Even though a victim has many helpers,

the lack of vital aid may lead to an overall failure in coop-

eration. For efficient and secure disaster relief, we can

specify a cooperative SNS by employing CRiBAC as shown in

the Appendix C-2.
5. Analysis on interaction permissions

In the literature, potential problems related to permissions

such as concurrent execution of conflicting operations have

been studied and some of them have been solved by

constraints such as history-based constraints, SSoD or DSoD.

We can apply constraints existing in RBAC to CRiBAC since

CRiBAC includes all the properties of RBAC. However, the

additional interaction permissions that CRiBAC includes have

not been analyzed in the literature; thus, we will analyze the

problems related to interaction permissions and provide

solutions in this section.

Constrained CRiBAC supports the SoD constraints

including SSoD and DSoD. The SoD constraints are the same as

those in RiBAC-C. We refine the cardinality constraints of

RiBAC-C into the Agent Cardinality (AC) constraint as shown

in DEF 1. It aims to limit the number of agents that can be

assigned to a certain role, and it is applied to the Agent-Role

Assignment (AA), in the same way as the SoD constraint (For

more details, see Fig. 11).

DEF 1. Agent cardinality (AC) constraint for a role.
There are several potential problems that may result

from the interaction permissions or relationships among

them. These include Self-Referencing Interaction (SRI),

Single-Role and Single-Agent Interaction (SRSA), Single-Role

and Multi-Agent Interaction (SRMA), and Implicit TPRMS

Problem. The formal definitions of each problem are shown

in DEF 2.

- Self-Referencing Interaction (SRI) e This problem is that

a tprms recursively invokes itself. It happens when a tprms

and its object permission (obj-prms) are actually the same.

If the obj-prms of a tprms invokes to another tprm, a refer-

encing chain is formed. If the end of the chained refer-

encing refers to its beginning, the original tprms, is

a chained SRI. If an agent has an interaction permission

experiencing the SRI problem, it recursively carries out

referencing. In Fig. 6, we can see two examples of the SRI

problem. The first one is referred to as the SRI problem

where a tprms invokes itself as its object permission. The

latter is an example of the chained SRI problem. If an SRI

problem is discovered, then the corresponding PA rela-

tionship(s) has to be modified.

- Single-Role and Single-Agent Interaction (SRSA) e The SRSA

problem is that only one agent is assigned to both a subject

role and an object role. It occurs when an agent is assigned

to a subject role. Here, if the subject role refers to itself as its

object role or its TPRMS eventually invokes itself as its object

permission, then the SRSA problem occurs. The formal

definition of the SRSA problem is as follows. As shown in

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3 509
Fig. 7, this problem leads to the abnormal situation where

an agent interacts with itself; in truth, this is really not an

interaction. This situation is not different from that of an

agent who plays a subject role in executing its own tasks.

This problem might not directly relate to serious security

fraud or system error, but it is logically incorrect. To resolve

it, an administrator should check the role-permission

assignments (PA) and agent cardinality (AC) constraints. If

an SRSA is found, the administrator should modify the

corresponding policies.

- Single-Role and Multi-Agent Interaction Problem (SRMA)

Problem e The SRMA problem is similar to SRSA, but in

this problem, two or more agents are assigned to a subject

role and an object role, simultaneously. Consider Fig. 8(1),

which shows the SRMA problem on an rprms. R1 has P1 ˛
RPRMS, and P1’s object role is R1. It looks like a SRSR

problem, but R1 has three agents. Fig. 8(2) presents the

SRMA problem in a tprms. R1 is a subject role and becomes

its final object role which has the final object permission

of P1, P2. CRiBAC interprets this problem as a situation

where all of the agents who are assigned to a subject role

have a corresponding interaction permission to interact

with each other. In order to solve this problem, CRiBAC

distributes an interaction permission having a SRMA

problem to all of the agents who are assigned to the

subject role of the interaction permission. We call it the

Permission Distribution (PD). To better understand, we

present the example solutions by PD of SRMA in Fig. 8. For

the SRMA problem on RPRMS, an rprms P1 ˛ RPRMS is

distributed to each agent as shown in Fig. 8(1). It means

that all of the agents who are assigned to a subject role

and an object role have P1 to perform their operation ops

on another agent who takes R1. In case of the SRMA

problem on a tprms, all agents have P1 ˛ TPRMS to invoke

a task by other agents who play role R1 as presented in
Problem Object Condition

SRI TPRMS If tprm¼ (ops, obj-prms) ˛ TP

h tprm where obj-prms ˛ TP

SRSA RPRMS If (sub-role, rprms) ˛ PA & su

& agt_card(sub-role) ¼ 1 whe

role ˛ R & agt_card(sub_role)

TPRMS If (sub-role, tprms) ˛ PA & (s

final-obj-prms) ˛ PA & sub-r

role & agt_card(sub-role) ¼ 1

obj-role ˛ R & final-obj-prms

agt_card(sub_role) ˛ AC

SRMA RPRMS If (sub-role, rprms) ˛ PA & su

& 2 � agt_card(sub-role) &{(a

1� i� , n� 2} ˛ARA, where

˛ R & agt_card (sub-role) ˛ A

TPRMS If sub-role h final-obj-role &

˛ PA & (sub-role, tprms. final

& 2 � agt_card(sub-role) & {(

1 � i � n, n � 2} ˛ ARA, whe

role ˛ R & agt_card(sub-role)

Implicit TPRMS TPRMS If {(ri, pj)j1� i� n, 1� j�m,

j1 � j � nm, 3 � n} ˛ TPRMS

1 � j � nm-2, 3 � n} ˛ TPRM

obj-prms ; TPRMS
Fig. 8(2). By PD, each agent who is assigned to R1 can

interact with other.

- Implicit Tprms Problem e If a tprms invokes other roles’

tasks in a sequence, we can determine a new tprms. We

refer to such a tprms obtained from a chain of tprmss as

implicit tprms. If an implicit tprms is found, then it should

be replaced with an existing tprms. We call it the TPRMS

Replacement (TR). To guarantee the security of a system,

an administrator should extract all implicit tprmss. If an

agent participates in multiple communities, a chain of

tprmss might be spread over several communities. In this

case, an administrator should check all the implicit tprmss

across communities. Fig. 10 indicates two examples of

the implicit tprms. In Fig. 9(1), R1 has P1 ˛ TPRMS but P1
invokes another tprms P2. Also, P2 invokes P3 ˛ TPRMS

and P3 invoke P4. It means that P1, P2, and P3 eventually

invoke P4. We refer to this relationship among such

connected tprmss e which are invoked one after another

e as a tprms chain. In the example, four tprmss; P1, P2, P3,

P4, form a tprms chain and P1 and P2 are replaced by an

implicit tprms ¼ (ops, R4.P4). A tprms chain can be made

across communities as shown in Fig. 9(2). The

a community has four members; A1(RI), A2(RII), A5(RIII),

A6(RV), and the b community includes A2(RA), A3(RB),

A4(RC), A5(RD). As a member of a, A1 has P1 through the PA

between I and P1. Similarly, A5 has P5 and A6 has P6. In b,

A2 has P2 and A4 has P4. As you can see in this example,

although tprmss are assigned to different roles which are

involved in different communities, they can form a tprms

chain. We should extract all implicit tprmss across the

communities, and then replace existing tprmss with

implicit tprmss.

DEF 2. Problems on interaction permissions and corre-

sponding solutions.
Solution

RMS & obj-prms

RMS

An administrator should modify the

corresponding PA relationship(s).

b-roleh obj-role

re sub-role, obj-

˛ AC

An administrator should modify the

corresponding role-permission

assignments (PA) and/or agent cardinality

(AC) constraints.ub-role, tprms.

ole h final-obj-

where sub-role,

˛ P &

b-roleh obj-role

i, sub-role)j
sub-role, obj-role

C

Permission Distribution (PD):

{assign(ai,(ops, aiþ1))j 1 � i � n-1} &

assign(an, (ops, a1))

(sub-role, tprms)

-obj-prms) ˛ PA

ai, sub-role)j
re sub-role, obj-

˛ AC

Permission Distribution (PD):

{assign(ai,(ops, aiþ1.tprms))j1 � i � n-1} &

assign (an, (ops,a1.tprms))

3� n} ˛ PA & {pj

, {(pj.obj-prms)j
S, and pj. final-

TPRMS Replacement (TR): {revoke(ri, pj)j
1 � i � n, 3 � n, 1 � j � nm-1} & {assign(ri,

pip)j 1 � i � n-1, 3 � n}, where pip ¼ (ops,

final-obj-prms) ˛ TPRMS is an implicit TPRMS

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3510
6. Administration of CRiBAC

In order to apply CRiBAC to large-scale cooperative systems,

an administrationmodel is necessary. Existing administration

models for RBAC are relatively well-defined, but they are not

able to manage the interaction permission and cooperation of

CRiBAC since RiBAC does not deal with them. In this paper, we

therefore propose an administration model for CRiBAC, called

ACRiBAC.

Before we specify the administration model in detail, we

first give an overview of the administration model of CCS

since cooperation in CRiBAC is based on it. The administration

model of community computing is somewhat decentralized,

having two different types of administrators: Society Manager

(SM) and Community Manager (CM). SM is the more impor-

tant and only one SM manages a CCS. SM supervises system-

wide matters such as maintaining agent information and

interactions among agents, constructing new communities,

creating community managers, and so on. For each commu-

nity, one CM takes responsibility for community matters such

as recruitment of community members, cooperation

management, community termination, and so on. An

example of a CCS maintained by one SM and several CMs is

shown in Fig. 10.

6.1. Administration model of CRiBAC (ACRiBAC)

To align with the administration model of community

computing, ACRiBAC employs both SM and CM. A SM takes

responsibility for controlling agent registration in a society

(ARG), Community Registration in a society (CRG), Society Role-

to-Society Assignment/Revocation (RSA), Agent-to-Society

Role Assignment/Revocation (SRA), Community Role-to-

Community Assignment/Revocation (RCA), Agent-to-

Community Role Selection (CRS), Role-to-Permission Assign-

ment (PA), CM creation/deletion, and RHmaintenance. On the

other hand, a CM has responsibility for the creation and

termination of a community, Agent to Community Role

Assignment (CRA), and Permission Realization (PR). The
Table 4 e The administration model for CRiBAC (ACRiBAC).

Relation Definition

SM PA OPA W SPA W RPA

W TPA 4 R � P

AA SRA W CRA

ARG 4A � S

ARA SRA W CRA 4 A � R

SRA 4A � SR

ACA 4A � C

RSA 4SR � S

RCA 4CR � C

CM CRA 4A � CR

CRG C � S

PR 4parameterized P � P
overview of ACRiBAC is shown in Fig. 11 and its formal defi-

nition is presented in Table 4.

The detailed description of relationships between different

modeling elements in ACRiBAC is as follows.

- CRG (Community to a Society Registration): All communities

existing in a society should register their information such

as their goals, cooperation processes, necessary roles, and

assigned agents with the SM of the society at the onset. As

you can see in the Appendix B, the community’s goal,

cooperation process, and necessary roles are specified for

each community type in the Community_Types part of Soci-

ety_Contexts (see Appendix B(i)), for an instance, see the

specification of the EBLS community type (see Appendix C-

1(i). In addition, all member agents that are actually

assigned to a community are specified in the CR_Assignment

part of a community’s specification, for example, see EBLS

community (see Appendix C-1).

- ARG (Agent Registration to a society): All agents that join

a society should register their information such as their

own resources, contexts, and tasks with the SM. Informa-

tion about all the agents is specified in the Agents part of

CRiBAC description (see Appendix B(c), for an example, you

can see the agent specifications for Bob, Bill, and Kevin in the

Appendix C-1(b). To protect the privacy of agents, only the

SM can access all the information about all agents such as

an agent’s identification, contexts, tasks, society role(s),

community role(s), and so on. However, an agent can access

a society’s objects if the corresponding SPRMS are granted.

Since every agent in a society must have one or more

society roles, SRA always follows ARG for each agent.

- RSA (SR to Society Assignment): The SM can assign society

roles to a society to achieve the long-term and global goal of

the society. All society roles are specified in the Society_Roles

part of Society_Contexts as shown in the Appendix B(h). For

examples, some society roles of UPMC are specified in the

Appendix C-1(d).

- SRA (Agent to SR Assignment): Every agent should be

assigned to one or more society role(s) based on their tasks
Description

A many-to-many role to permission assignment relationship,

where OPA 4 R � OPRMS, SPA 4 R � SPRMS, RPA 4 R � RPRMS,

and TPA 4 R � TPRMS.

A many-to-many agent to R assignment relationship.

A many-to-one agent to society registration.

A many-to-many agent to role assignment relationship.

A many-to-many agent to SR assignment relationship.

A many-to-many agent who a candidate member to community

assignment relationship.

A many-to-one society role to society assignment relationship.

A many-to-many community role to community assignment

relationship.

A many-to-many agent to CR assignment relationship.

A many-to-one community to society registration.

A one-to-many parameterized permission to

real permission realization.

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3 511
and contexts when they register with a society. All of SRAs

are specified in the SR-Assignment part of the Society_-

Contexts (see Appendix B(h). For example, a SRA for the

society role D is shown in the Appendix C-1(h). By SRA and

corresponding PA, each agent has the necessary permis-

sion(s) to play his/her society role(s).

- RCA (CR to Community Assignment): The SM should assign

necessary roles for each community type. The RCAs for

a community typeare specified in theCommunity_Rolespartof

a Community_Type description (see the Appendix B(i)). For

examples, you can see the corresponding RCAs for the BS and

theBWcommunity types in theAppendixC-1(c2).RCA should

be executed before the SM enforces CRS for the community.

- CRS (Agent to CR Selection): CRS is performed as a basis for

the agent to CR assignment (ACA). That is,ACA is performed

by RCA and CRS. Before the assignment of agents to

community roles (CRA), the SM selects candidate agents for

every community role based on the agents’ information,

which is stored in SM, such as their contexts, tasks, society

role(s), or community role(s) at the time. For privacy

protection of agents, only the SM can access information

about all agents and select proper candidates.

- CRA (Agent to CR Assignment): A CM assigns the most

suitable agent(s) among candidate agents selected by CRS to

each community role, according to the criteria for each

assignment, which is specified in the Community_Type

description. A CRA for each CR is specified in the CR_As-

signment part of a Community description (see Appendix

B(c)). For example, a CRA for the EBS community role is

specified as shown in the Appendix C-1(c1).

- PA (Role to Permission Assignment): It is same as PA in NIST

RBAC, and is enforced by SM. All PAs are specified in the

Permission_Assignments description (see Appendix B(f)). For

example, we present the part of PAs for a UPMC example in

Appendix C-1(f).

- PR (Permission Realization): After a CM performs CRA, it

interprets all the role-based parameterized permissions

assigned to all the community roles and then realizes those

permissions with real agents assigned to each community

role.

A SM deals with ARG, RSA, SRA, RCA, CRS, and PA. A CM

handles CRA and CRG for each community. To preserve the

least privilege rule, unnecessary agents or roles should be

removed or revoked.
Table 5 e Algorithms for society administration.
6.2. Administration of cooperation

In this section, we show how agents’ cooperation is supported

by the ACRiBAC model. To maintain society-level matters, an

SM executes several functions such as agent registration,

community registration, establishing a community manager,

RSA, SRA, RCA, CRS, and PA. In this section, we present the

algorithms for society administration; AReg, UnAReg,

CMCreate, and CMTerminate.

When a SM receives a request for registration within

a society from an outside agent, it executes the AReg algo-

rithm. In AReg, the SM assigns an agent to a suitable society

role(s) depending on the agent’s tasks and contexts and then

saves information about the agent. If the agent leaves the

society, the SM executes unAReg to revoke all permissions

associated with agent’s society role(s). The CMCreate algo-

rithm is executed to generate a community manager agent

when a SM receives a request to create a community from an

agent who recognizes a need for a community. To complete

a community manager agent (CM), the SM performs RCA

according to the community’s goal, and then selects candi-

dates for each community role. After a community is dis-

solved, the SM deletes its CM. We describe those algorithms in

Table 5.

To create a community, the CM created by the SM performs

the CommCreate algorithm. In this algorithm, the CM assigns

the most suitable agent(s) to each community role and then

induces the agent’s permissions with the assigned role

members. Once a community achieves its goal or reaches

a failure state, its CM terminates it by using algorithm Comm-

Terminate. These two algorithms are presented in Table 6.
7. Implementation of CRiBAC prototype
System

In this section, we describe our prototype system which was

developed in order to test a variety of policies based on the

proposed CRiBAC model. This system tests not only access

control policies but also the process of policy enforcement in

a CCS, and then simulates cooperation among agents to

ensure enforcement of the specified policies. It is developed

on the JDK 1.6 platformand also uses the JADE platform for the

simulation of the CCS.

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

Table 6 e Algorithms for community administration.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3512
7.1. Functionalities

1) Developing CCSs e To test its policies, we first need an

operating CCS. To build CCSs on the developed prototype

system, an administrator creates all the elements such as

a society, communities, and members (agents), and

describes cooperation amongmembers in a community. At

this time, we simulate the behavior of agents instead of

actually implementing the behavioral actions of agents as

our ultimate goal is to test CRiBAC policies rather than to

test a CCS. After developing a CCS, a tester can see how the

systemoperates through the user interface of our prototype

system. Since the developed CCS is connected to the CRi-

BAC engine, all agents in CCS can acquire proper permis-

sions to access resources or other agents through this

engine for interacting and cooperating with agents.

2) CRiBAC Administration e By using the developed proto-

type, developers can easily design CRiBAC policies and test

them by simulating a corresponding CCS. More specific

functions for access control and object management are

described as follows.

- Role Management e CRiBAC can manage a role set by

creating, modifying, and deleting roles. For each role, all

related information are defined including access control

policies as well as the role’s capabilities, contexts, objects,

and cooperation.

- Permission Management e It can manage a set of permissions

by creating, modifying, and deleting permissions. The

permission set includes three types of permissions which

are defined in CRiBAC: object-oriented (OPRMS), role-

oriented (RPRMS), and task-oriented (TPRMS) permissions.

- Agent Management e It can manage a group of agents by

creating, updating, and deleting agents. Agents in CRiBAC

are identical to members in a CCS; therefore, every change

in members in a CCS is reflected to agents in CRiBAC

simultaneously.

- Session Management e It manages all sessions which are

assigned to agents who play a certain role in a society.

- Object Management e In CRiBAC, the set of objects includes

society objects and agent’s objects; both can be a target of

an access. Accordingly, it should be managed by two types

of objects separately.

3) Policy Definition and Enforcement e A tester can define

CRiBACpoliciesbyutilizingauser interfaceandfileoperation

of the prototype system, including assignment relationships

such as the agent-role assignment (AA) and the role-

permission assignment (PA). According to these policies,

each access will be permitted or denied in a CCS.

4) Policy Analysis e The prototype system provides an anal-

ysis of the specified policies before they are applied to an

actual system. Through this analysis, we can identify
conflicts between policies or problems which can cause

a serious security fault such as the self-referencing and

chained referencing problem. By testing policies before

deploying them, a developer can reduce the cost of devel-

opment and maintenance.

5) Policy Enforcement and System Monitoring e The proto-

type system can enforce CRiBAC policies while a commu-

nity computing system is operating. During the operation,

a developer can monitor all events in a CCS through the

agent interface such as community creation, member

registration, and policy enforcement.

7.2. System architecture

For better understanding of our prototype system, we present

its architecture inFig. 12. Theprototypesystemconsists of three

parts: user interface; CCS Framework including community

computing system, CRiBAC engine, and knowledge-base; and

JADE Agent platform. The detailed explanation about each

element is as follows.

7.2.1. CCS framework
The CCS Framework consists of a CCS, CRiBAC Engine, and

Knowledge-Base.Anadministrator canmanageCRiBACpolicies

andKnowledge-Base aswell asCCS through theuser interface. It

can also simulate a CCS on the Jade Agent Platform at runtime.

- CCS e It manages communities and agents in a CCS and

maintains information related to Community Computing.

The Role Repository stores information about all roles

participating in the cooperation process as well as access

control policies. We note that CCS and CRiBAC engines

share this role repository. It means that the definition of

roles is used for cooperation as well as access control.

- CRiBAC Engine e It aims to control all types of accesses

according to the defined policies, object-oriented accesses as

well as interaction accesses. A system administrator defines

CRiBAC policies through the Policy Authority Point (PAP)

Module, and those policies are stored in the Policy Repository.

If an agent needs to get permission, it should send a request

for the access to the Policy Enforcement Point (PEP). The PEP

Module then delivers the agent’s request to the Policy Deci-

sion Point (PDP) with information about the agent and its

request. The PDPModule decides whether or not to grant the

required permission. Tomake a decision, the PDP fetches the

corresponding policies from Policy Repository and evaluates

them by using the relevant context information retrieved

from the Context Server. After reasoning about policies, PDP

conveys the result to the PEP, and the PEP performs autho-

rization by granting the requested permissions. The detailed

CRiBAC Engine is shown in Fig. 13.

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

Community Computing System Framework

User Interface

CCS

Jade Agent Platform

CRiBAC Engine

Policy
RepositoryRole Repository

Society

Knowledge-Base (Context-Server)

Communities

administration

Agent-role assignment

context context

(1) (2)

Fig. 12 e Architecture of CRiBAC prototype system.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3 513
- Knowledge-Base (Context Server) e It is in charge of main-

taining and inferring context used for describing cooperation

and defining and enforcing policies. In this module, context

information is represented by a key-value model as follows:

<context-name, context-value>. A variety of context informa-

tion is required, so that CCS and the CRiBAC engine may

perform many operations such as community creation, role

assignment, permission assignment, and policy enforce-

ment. The Context Server provides the necessary context

information by gathering context information from the

environment andagents and reasoningabout those contexts.

7.2.2. Jade agent platform
To develop agents in a CCS, we have used the JADE agent

platform. The JADE platform is one of the most popular agent

platforms and is widely used for developing, simulating, and

testing multi-agent systems. It follows FIPA standard and also

supports diverse and unique features of the agents. In our

previous work, we have developed a complete CCS based on

the JADE platform. In this work, we simulate an agent’s

behaviors because the developed prototype system is more

focused on testing access control policies than testing an

agent’s cooperation. That is, agents simply inform their

actions or the action’s results, but do not perform actual
Agent

PEP P
Rep

PDP

Access Request

reference

Jade Platform

Authorization

evaluate cond

Fig. 13 e CRiBA
actions. In this prototype, a society is developed as a Jade

agent container; each community and agent is implemented

as a Jade agent. In addition, the administration of CCS through

the user interface (such as community creation or agent

registration) is simultaneously reflected in corresponding

agent containers and agents in JADE platform.

7.2.3. User interface (UI)
The proposed prototype system has a variety of UI compo-

nents to design and test CCSs and corresponding CRiBAC

policies. The UI is roughly divided into four sections as shown

in Fig. 14: Society tree, Permission Management Component,

Assignment Management Component, and Display console.

- Society tree e presents a CCS as including a society,

communities and agents. The society tree can be used for

administrating entities in a CCS by adding, modifying, and

removing elements of the society; such as communities and

agents. At this time, communities and agents in the society

tree are synchronized with the JADE agent GUI so that an

administrator accomplishes tasks through the JADE GUI

and resulting changes are reflected in the society tree.

- Permission Management Component e manages all permis-

sions in a CCS Framework. Each of permissions is defined by

a unique ID, permission type, subject role, and object role.

Through the UI, an administrator can define all types of

permissions that the CRiBAC model introduces.

- Assignment Management Component e an administrator can

handle Agent-Role Assignments (AA) and Role-Permission

assignments (PA). By performing AA, he can recruit suit-

able agents for each community role. In order to do so, the

AA component automatically searches through all proper

agents in a CCS to create easier and faster assignments.

Moreover, the PA component rapidly finds candidate roles

and a list of permissions; it helps an administrator to define

conditions to get certain permission.

- Display console e shows all changes in a CCS. Therefore, an

administrator cancheck the result ofadministrative behavior

andalsomonitor thesystem. Inorder toavoidmistakesby the

administrator, significant changes are presented in red or

blue colored text. Through this console, all of the adminis-

trative behaviors, decisions on access requests, and cooper-

ative processes among agents are shown. By monitoring the

console, administrators can evaluate present policies and

also make a plan for further securing the systems.
olicy
ository PAP

Administrator

Define Policies

Context

Server

User Interface

ition

C engine.

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

Fig. 14 e Screenshot of the developed CRiBAC prototype system.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3514
7.3. Demonstration

To verify the feasibility of CRiBAC and ACRiBAC, we imple-

ment a compact CRiBAC system based on the UPMC scenario

presented in Section 4.2.1. For better understanding, we

present a summary of our UPMC scenario-based demonstra-

tion in Table 7 and specifically describe operations of the

whole system as follows.

At t0, all agents that want to be involved register in the

UPMC Society through the UPMC Society Manager (SM). In the

CRiBAC prototype system, a system administrator can register

an agent in a society by using the Register Member button in the

system’s UI (see Section 7.2.3 and Fig. 14(1)). The button trig-

gers an execution of AReg() shown in Table 5. Then, an

administrator is required to input an agent’s information such

as the agent’s name, contexts, and tasks so that the Jade agent

platform receives the information and creates a Jade agent

incorporating all of the delivered information (see Section

7.2.2 and Fig. 12(1)). Jade informs the SM of a new agent’s ID

(see Fig. 12(2)). Such agents’ information is specified by using

the proposed XML-based specification language (For exam-

ples, Bob, Bill, and Kevin specification in the Appendix C-1(b)),

and stored in the Context Sever. All registered agents are dis-

played in the Society Tree of UI (see Fig. 14(2)).

At t1, five communities, BS, LS, N, A, and BW, are generated

and registered by using the Create Community button for each

community (see Fig. 14(3)). As the button triggers an execution

of CMCreate(), a CM is created as a Jade agent with information

about thecorrespondingcommunity type, forexample, theEBLS

community type in the Appendix C-1(i). After being created,
a CM communicates with all agents to recruit themost suitable

agents for a community according to the CRA_Constraint and

criteria specified in the Community_Type specification. At this

time, SM imparts an agent’s information to CM to assist with

identifyingsuitableagents toachieve thecommunity’s goal (See

CRS in Section 6.1). If CM gathers all necessary agents by

executing CommCreate() shown in Table 6, theCM informs SM of

information about the community. The delivered community

information isalso specifiedasanXMLsheet, for example,EBLS,

BS, and BW specification in the Appendix C-1(c). In a real-world

CCS, the community creation process is automatically per-

formed by CM; in our prototype system, an administrator

manually assigns community roles to agents through the

Assignment Management Component of UI (See Fig. 14(4)).

After creation, each community carries out its own coop-

eration at ti-1. Each agent involved in the community has a set

of permissions according to the CRiBAC policies and cooper-

ates with each other. Therefore, the corresponding permis-

sion assignment (PA) to each community role (CR) should be

done before a community creation. An administrator can

define permissions through the Permission Management (See

Fig. 14(5)), and all permissions are specified by the proposed

specification language, for examples, p1 and p5 in the

Appendix C-1(e). Then, an administrator assigns permissions

to roles through the Assignment Management Component in UI

and such assignments are specified in the Permission_Assign-

ments. For examples, pa1 presented in the Appendix C-1(f)

assigns p1, a RPRMS which performs write_prescription to

a patient (P), to the doctor (D). According to pa1, Bill can give

a prescription to a patient A4 but Carol cannot because she is

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

Table 7 e Example UPMC (University of Pittsburgh Medical Center) community scenario.

Time Situation
description

Interaction among agents Administration

t0 Agent

registration with

UPMC society

SM: For all agents,

AReg();

t1 Community

Creation and

Registration with

UPMC society

Brain Surgeon (BS),

Lung Surgeon (LS),

Anesthetist (A),

Nurse (N),

Bacteriological Weapon (BW)

1) SM: For each community, CMCreate();

2) BS_CM: CommCreate(BS);

LS_CM: CommCreate(LS);

A_CM: CommCreate(A);

N_CM: CommCreate(N);

BW_CM: CommCreate(BW);

ti�1 In UPMC society,

five communities

exist and some

agents are

interacting or

cooperating with

each other.

Bill /aKevin’s task (bacteria cultivation) Granted

A4 / Kevin’s task (bacteria elimination) Denied

Bill’s task (prescription) / A4 Granted

Carol’s task (prescription) / A4 Denied

Community Community Roles Community Members Administration

BS Chief Brain Surgeon (CBS) Bill ongoing cooperation

Brain Surgeon (BS) Bill, Alice, A1

LS Chief Lung Surgeon (CLS) Bob ongoing cooperation

Lung Surgeon (LS) Bob, Tim, A3

A Chief Anesthetist (CA) John ongoing cooperation

Anesthetist (A) John, Anna, A2

N Chief Nurse (CN) Jane ongoing cooperation

Nurse (N) Carol

BW Bacteriological Weapon

Examiner (BWE)

Bill, Kevin ongoing cooperation

ti Bob is shot in the

head and chest,

so he needs to

have an

emergency

surgery.

Same as those at ti-1 SM: CMCreate(EBLS);

tiþ1 An “emergency

surgery

community” for

Bob’s brain and

lung injuries is

dynamically

created

Emergency Brain and

Lung Surgery (EBLS)

Emergency Brain

Surgeon (EBS)

Alice EBLS_CM:

CommCreate(EBLS);

Emergency Lung

Surgeon (ELS)

Tim

Emergency

Anesthetist (EA)

John

Emergency Nurse (EN) Carol

Emergency Patient (EP) Bob

LS CLS Noneb LS_CM: Deactivate(CLS);

LS Tim, A3

Other Four Communities Same as those at ti-1 Ongoing cooperation

tiþ2 A meeting

community is

organized

between the

nurse group and

the anesthetist

group but fails to

take place

Chief Meeting Community

between Nurses and

Anesthetists (CMNA)

Presenter Nonec 1) SM: CMCreate(CMNA);

2) CMNA_CM:

CommCreate(CMNA);

¼> FAIL

Audience Jane

EBLS Ongoing cooperation

Other four communities Same as ti�1

a / Means an interaction access by another agent.

b Bob is not able to perform his roles due to his injury.

c John was expected, but he is not available.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3 515
not a doctor. Similar to this case, according to pa3, Kevinwill do

cultivate_bacteria operation if Bill asks to do but he will reject

the request from A4 because A4 is not a CBWE.

At ti, an EBLS community is required to handle the emer-

gency situation that Bob, who is a chief in the Lung surgeon

community (LS), sustains serious injuries. To do this, SM

creates a CM for an EBLS community, called EBLS_CM, by

operating CMCreate(EBLS). The EBLS_CM organizes its
community through the assignment of community roles to

agents at tiþ1. At this moment, LS_CM perceives the change in

Bob’s contexts and capabilities, for example, the change in the

health_condition context from good to injured. Accordingly,

LS_CM deactivates the CRA of Bill to LS because Bill is no longer

satisfiedwith the assignment condition of LS. In our prototype

system, an administrator manually deactivates a role through

the Role Assignment Component (See Fig. 14(4)).

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3516
At tiþ2, CMNA_CM tries to create a CMNA community as

scheduled but fails since John who takes the presenter role in

the community is unavailable. At that time, John is working for

an EBLS community and the community is a higher priority.

Therefore, John denies the request for participation from

CMNA_CM. Other communities keep cooperating with each

other. All events such as the administrator’s modification,

community creation, and community’s failure are described

in the Console of UI (See Fig. 14(6)). An administrator can

monitor all processes occurring in the system including

cooperation among agents and results of policy enforcement.
8. Related work

All With the increasing interest in agent cooperation, several

cooperative systems have been developed; for example, group-

wares (Greenberg, 1991) of CSCW such as videoconferencing

softwareormulti-agent-basedcooperationsystemssuchasGaia

(Zambonelli et al., 2003) and SuperSpace (Roman and Campbell,

2000). For practical use of these systems, it is necessary to apply

an appropriate securitymodel. In Tolone et al. (2005), the author

specifies access control requirements for collaboration and

compares existing access control models such as TMAC (Team-

based Access Control Model) (Thomas, 1997), TBAC (Task-based

Access Control Model) (Thomas and Sandhu, 1997), RBAC (Role-

based Access Control Model) (Sandhu et al., 1996), and the

context-aware access control model (Covington et al., 2001).

As pointed out in Tolone et al. (2005), TBAC has some

drawbacks to being used in cooperation systems. The major

drawback is thedifficulty individingcooperation into taskswith

usage counts. Second, TBAC specifies diverse but restricted

context information related to tasks, activities, or workflows.

However, cooperation systems need to capture much richer

contexts. TMAC and Context-based TMAC (Georgiadis et al.,

2001) include access control schemes for groups/teams of

users who can take on different roles. However, they do not

adequately handle dynamic and rich cooperation, because they

do not have a flexible access control or administration models.

In addition, they capture only limited context information.

RBAC is an attractivemodel for cooperation systems because it

encourages intuitive design, convenient administration, and

can support more fine-grained and diverse access control

requirements. However, current RBAC models lack flexibility

with regard to dynamic changes associated with cooperation.

GTRBAC and GEO-RBAC (Damian et al., 2007) are extended

RBAC models that address temporal and spatial contexts.

DRBAC (Zhang and Parashar, 2004) allows real-time adjustment

of user assignment as well as permission assignment by

dynamic activation of roles or permissions based on environ-

ment contexts called ENVS. Covington et al. (2001) introduces

context-aware role validation and activation using Environment

Roles as well as user-role assignment in the GTRBAC model.

Another context-aware access control model is CA-RBAC

(Kulkarni and Tripathi, 2008) which was developed to support

the needs of pervasive computing systems based on dynami-

cally changing contexts during runtime. However, thosemodels

deal only with environmental contexts such as time, location,

and temperature rather than an individual’s private context

such as height, age, gender, preference, medical history, and so
on. However, in cooperative systems, individual users’ contexts

can be important. For example, an individual’s task, status, or

current roles in other groups can be critical when a cooperative

group selects members to achieve its goal. If existing context-

aware models try to capture individuals’ contexts, they should

be described as public environment contexts and the number of

environmental contextsmay grow explosively. In addition to an

individual’s context, consideration of group cooperation is

required to control accesses incooperative systems.GB-RBAC(Li

et al., 2009) supports access for inter-group collaboration. It

assumes that many groups already exist in a system, and

concentrates on the administration of cooperative groups,

knownasVirtualGroups (VG).AVG isdynamically createdat the

outset by gathering roles and permissions from collaborating

groups, and the group is terminated as soon as it accomplishes

its goal. EachgroupadministratormanagesaVG. SinceGB-RBAC

is concerned with inter-group cooperation, it does not have

a way to create cooperative groups or to manage them when

there is no group. The more critical problem is that it does not

support context-awareness. When it creates a VG, administra-

tors from every collaborative group are elected as group

administrators of a VG. It means that a VG has more than one

administrator who makes decisions about User-Role assign-

ments and access control during cooperation. However, there is

nomention of how they decidewhen conflicting decisions arise.

Inaddition,DSet, a setofdefault rolesofaVG, is simplyaunionof

those participating groups. It enables all members in a VG to

have all permissions assigned to the collaborating groups’ DSet.

However, it could cause a serious security threat. Let’s suppose

a VG between a police group and a group of doctors are to take

care of a patient involved in a traffic accident. Doctors partici-

pating in the VG have permissions assigned to DSet of the police

group. For example, if thepermission to readpersonal profiles of

all citizens is assigned to a default role of the police group,

doctors in the VG might be able to read someone’s profile,

a potential unsecured access to that information.

Asyou can seeabove, context-awareness andunderstanding

of cooperation are simultaneously required for dynamic and

efficient control in cooperative systems. In order to do that, we

need an appropriate model reflecting both requirements at the

same time. CRiBAC is one of such access control models that

satisfy those requirements. It utilizes a range of contexts from

public ones such as ambient contexts or community-related

contexts to private contexts belonging to individuals. By using

various contexts, CRiBAC can guarantee dynamic and fine-

grained access control at runtime. Furthermore, it enables us

to control interaction and cooperation among users in cooper-

ative systems by reflecting the concept of community and role-

based cooperation of Community Computing.

g-SIS (Group-Centric Secure Information Sharing)

(Krishnan et al., 2009) also considers group-centric coopera-

tion. It assumes that users and information come together for

some common purposemuch like that of a cooperative group.

To determine authorization for shared information, it

proposes some semantics of group operation, such as join/

leave for users and add/remove for objects and the varieties of

those operations. g-SIS allows detailed access control to

shared information but it does not focus on context-aware

authorization or interaction control. Therefore, it can be

a complement to CRiBAC. CRiBAC can provide context-

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

Table 8 e Comparison of access control models for cooperation control.

Ambient context User’s context Context-awareness User’s object Group aspect Role interaction control

Environment roles O X Medium X X X

DRBAC O X Medium X X X

CA-RBAC O D (possible) High X X X

GB-RBAC X X X X O X

g-SIS X D (join/leave) Low X O X

RiBAC O X High O X O

CRiBAC O O Very High O O O

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3 517
awareness and interaction control based on community,

while g-SIS can offer ways to manage the membership of

users and user’s objects in detail.

Currently, there is no existing access control model which

supports context-aware dynamic interaction or cooperation

among users. We propose RiBAC and CRiBAC in this paper

toward fulfilling this gap. In Table 8, we present a comparison

between existing models and our RiBAC and CRiBAC in terms

of context-awareness and cooperation.
9. Conclusion and future work

Multi-agent technology has been considered as one of the

most promising research areas for the past few decades. An

agent’s cooperative and dynamic problem-solving behavior

has been the key to providing intelligent services in a variety

of application areas such as online business, e-government, e-

healthcare, etc. In particular, an agents’ ability to interact and

cooperate with other agents has enabled many MASs to solve

complex and large-scale problems (Zambonelli et al., 2003;

Kumar et al., 2003; Jung and Kim, 2010). The rapid growth of

technologies related to networking and smart devices has

accelerated rich social interactions among agents. For more

practical uses of MASs, the security for agents’ interactions

and cooperation is essential to allow only authorized social

interactions inMASs. As aforementioned in Section 8, existing

access control model do not however consider dynamic

interaction or cooperation. To guarantee secure interaction

and cooperation in MASs, in this paper, we propose two of

role-interaction based access control models, the RiBAC

model and the CRiBAC model, and provide an administration

model and policy analysis methods. Here, we briefly

summarize the major contributions of this paper as follows.

- RiBACmodel e To ensure the security of agent interactions,

we refineda family of RiBACmodels proposed in 2009. In this

model, an interaction among agents is also an entity to be

protected as well as objects. In order to do so, we proposed

a new type of permission, the interaction permission which

includes the role-oriented interaction permission (RPRMS)

and the task-oriented interaction permissions (TPRMS). For

better readability and extensibility, in this paper, we refined

the RiBACmodels and proposed an XML-based specification

language based on the notation of X-GTRBAC.

- CRiBACmodelewe proposed the CRiBACmodel to deal with

the context-aware secure cooperation among agents as well

as the secure interactions within a community setting. To do

so, CRiBAC employs the community concept of Community
Computing (CC) as a cooperationmechanismofMASs. In this

model, the interaction permissions are classified into three

types: RPRMS, TPRMS, and reSource-oriented interaction

permission (SPRMS) for accessing an agent’s resource. CRi-

BAC contributes to securely organize a group of agents and

control accesses to participating agents during cooperation.

- ACRiBAC model e For the convenience of administration,

we proposed ACRiBAC to support the administration of

systems employing CRiBAC. In this model, we described the

grant and revocation model of CRiBAC and several algo-

rithms for administrating cooperation.

- CRiBAC policy analysis technique e we proposed the anal-

ysis techniques to verify the CRiBAC policies and also

propose the corresponding solutions.

- Visual user interfaces e we implemented visual user

interfaces for the convenient design and analysis of RiBAC

and CRiBAC policies.

- CRiBAC prototype system e To test the feasibility and

applicability of the proposed CRiBAC model, we imple-

mented a prototype of CRiBAC system based on an emer-

gency scenario in a hospital.

Although RiBAC and CRiBAC resolve the problem of

unauthorized access to agents’ resources, tasks, and agents

themselves during interaction and cooperation inMASs, a few

things still remain to be investigated:

- Trust or reputation-based access control on interactions and

cooperation among agents. The proposed models deal with

unauthorized interaction and cooperation based on roles

assigned to agents. However, trust or reputation can be good

criteria to allow interaction and cooperation among agents.

- Development of context ontology for CRiBAC. For practical

context-awareness of the CRiBACmodel, we plan to develop

some domain-specific context ontology.

- Development of diverse application systems for practical

verification of RiBAC and CRiBAC. To explore the feasibility

of the proposedmodels, it is necessary to demonstratemore

application systems working areas across of diverse group

of subject areas.
Acknowledgements

Work of James Joshi has been supported by the US National

Science Foundation grant IIS-0545912. We would like to thank

the anonymous reviewers for their helpful comments.

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3518
Appendix A. The Specification of the Family of RiB
AC models

A-1. The Specification of the Basic RiBAC model (RiBAC-B)
A-2. Specification of the Hierarchical RiBAC Model (RiBAC-H) and Constrained RiBAC Model (RiBAC-C)

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3 519
Appendix B. The Specification of the Constrained H
ierarchical CRiBAC Model (CRiBAC-CH)

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3520
Appendix C. The Specification of Example Scenario
s: UPMC and Disaster Relief

C-1. A Part of UPMC Example Specification

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3 521

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3522
C-2. A part of the Disaster Relief Example Specification

http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 4 9 7e5 2 3 523
r e f e r e n c e s

Bhatti R, Ghafoor A, Bertino E, Joshi J. X-GTRBAC: an XML-based
policy specification framework and architecture for
enterprise-wide access control. ACM Transactions on
Information and System Security (TISSEC) 2005;8(2):187e227.
doi:10.1145/1065545.1065547.

Covington MJ, Long W, Srinivasan S, Dey AK, Ahamad M,
Abowd GD. Securing context-aware applications using
environment roles. In: 6th ACM symposium on access control
models and technologies(SACMAT ’01); 2001. p. 10e20.
doi:10.1145/373256.373258.

Damian ML, Bertino E, Catania B, Perlasca P. GEO-RBAC:
a spatially aware RBAC. ACM Transactions on Information
and System Security (TISSEC) 2007;10(1):1e42.

Emory Healthcare. Can Twitter help save lives? A health care
social media case study-part I, http://advancingyourhealth.
org/highlights/2011/04/27/can-twitter-help-save-lives-a-
health-care-social-media-case-study-part-i/; May 2011.

Ferrini R, Bertino E. Supporting RBAC with XACMLþOWL. In: 14th
ACM symposium on access control models and technologies
(SACMAT ’09); 2009. p. 145e54. doi:10.1145/1542207.1542231.

Georgiadis CK, Mavridis I, Pangalos G, Thomas RK. Flexible team-
based access control using contexts. In: 6th ACM symposium
on access control models and technologies (SACMAT ’01);
2001. p. 21e7.

Greenberg S. Computer-supported cooperative work and
groupware. London: Academic Press Ltd; 1991.

Joshi JBD, Bertino E, Latif U, Ghafoor A. A generalized temporal
role-based access control model. IEEE Transactions on
Knowledge and Data Engineering 2005;17(1):4e23.

Jung Y, Kim M. Situation-aware community computing model for
developing dynamic ubiquitous computing systems. Journal
of Universal Computer Science 2010;16(15):2139e74.

Jung Y, Masoumzadeh A, Joshi JBD, KimM. RiBAC: role interaction
based access control model for community computing.
Lecture notes of the institute for computer sciences. Social
Informatics and Telecommunications Engineering 2009;10:
304e21.

Jung Y, Kim M, Masoumzadeh A, Joshi JBD. A survey of security
issue in multi-agent systems. Review 2011;published online.
Artificial Intelligence; June 2011. doi:10.1007/s10462-011-9228-8.

Krishnan R, Sandhu RS, Niu J, Winsborough W. Towards
a framework for group-centric secure collaboration. In: 5th
international conference on collaborative computing:
networking, applications and worksharing; 2009. p. 1e10.

Kulkarni D, Tripathi A. Context-aware role-based access
control in pervasive computing systems. In: 13th ACM
symposium on access control models and technologies; 2008.
p. 113e22.

Kumar M, Shirazi BA, Das SK, Singhal M, Sung BY, Levine D.
Pervasive information communities organization PICO:
a Middleware framework for pervasive computing. IEEE
Pervasive Computing 2003;2(3):72e9.

Li Q, Zhang X, Xu M, Wu J. Towards secure dynamic
collaborations with group-based RBAC model. Computers &
Security 2009;28(5):260e75.

Roman M, Campbell RH. GAIA: enabling active spaces. In: 9th
ACM SIGOPS European workshop; 2000. p. 229e34. Kolding,
Denmark.

Sandhu RS, Coyne EJ, Feinstein HF, Youman CE. Role-based
access control models. Computer 1996;29(2):38e47.

Thomas RK. Team-based access control (TMAC): a primitive for
applying role-based access controls in collaborative
environments. In: 2nd ACM workshop on role-based access
control (RBAC ’97); 1997. p. 13e9.

Thomas RK, Sandhu RS. Task-based authorization controls
(TBAC): a family of models for active and enterprise-oriented
authorization management. In: IFIP TC11 WG11.3 11th
international conference on database security XI: status and
prospects; 1997. p. 166e81. London, UK.

Tolone W, Ahn G, Pai T, Hong S. Access control in collaborative
systems. ACM Computing Surveys 2005;37(1):29e41.

XACML (eXtensible Access Control Markup Language) v.3.0 Core
and Hierarchical RBAC Profile v.1.0, OASIS, 10 August 2010,
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-
cs-01-en.html.

XACML v.3.0, OASIS, 10 August 2010, http://docs.oasis-open.org/
xacml/3.0/xacml-3.0-core-spec-cs-01-en.html.

Zambonelli F, Jennings NR, Wooldridge M. Developing multiagent
systems: the Gaia methodology. ACM Transactions on
Software Engineering and Methodology 2003;12(3):317e70.

Zhang G, Parashar M. Context-aware dynamic access control for
pervasive applications. In: Conference on the communication
networks and distributed systems modeling and simulation;
2004. San Diego, CA, USA.

Youna Jung received the PhD degree from Ajou University in 2007.
She worked in the Laboratory of Education and Research on
Security Assured Information Systems (LERSAIS) at the University
of Pittsburgh as a postdoctoral researcher. She is currently
a research scientist in the Advanced Computing and Information
Systems (ACIS) Laboratory in University of Florida. Her research
interests include situation-aware computing, cooperative
computing, community computing, security of multi-agent
systems, and security of social computing system.

James B.D Joshi is an associate professor and the director of the
Laboratory for Education and Research on Security Assured
Information Systems (LERSAIS) in the School of Information
Sciences at the University of Pittsburgh. He received his MS in
Computer Science and PhD in Computer Engineering from Purdue
University in 1998 and 2003, respectively. His research interests
include role-based access control, trust management, and secure
interoperability. He is a member of IEEE and ACM.

http://advancingyourhealth.org/highlights/2011/04/27/can-twitter-help-save-lives-a-health-care-social-media-case-study-part-i/
http://advancingyourhealth.org/highlights/2011/04/27/can-twitter-help-save-lives-a-health-care-social-media-case-study-part-i/
http://advancingyourhealth.org/highlights/2011/04/27/can-twitter-help-save-lives-a-health-care-social-media-case-study-part-i/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cs-01-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-rbac-v1-spec-cs-01-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.html
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-core-spec-cs-01-en.html
http://dx.doi.org/10.1016/j.cose.2012.02.002
http://dx.doi.org/10.1016/j.cose.2012.02.002

	CRiBAC: Community-centric role interaction based access control model
	1. Introduction
	2. Preliminaries and motivation
	2.1. Community computing
	2.2. Motivation

	3. RiBAC
	3.1. Interaction permissions
	3.2. RiBAC family

	4. Community based RiBAC (CRiBAC)
	4.1. Formal definition
	4.2. Example scenarios
	4.2.1. UPMC scenario
	4.2.2. Disaster relief scenario

	5. Analysis on interaction permissions
	6. Administration of CRiBAC
	6.1. Administration model of CRiBAC (ACRiBAC)
	6.2. Administration of cooperation

	7. Implementation of CRiBAC prototype System
	7.1. Functionalities
	7.2. System architecture
	7.2.1. CCS framework
	7.2.2. Jade agent platform
	7.2.3. User interface (UI)

	7.3. Demonstration

	8. Related work
	9. Conclusion and future work
	Acknowledgements
	Appendix A. The Specification of the Family of RiBAC models
	A-1. The Specification of the Basic RiBAC model (RiBAC-B)
	A-2. Specification of the Hierarchical RiBAC Model (RiBAC-H) and Constrained RiBAC Model (RiBAC-C)

	Appendix B. The Specification of the Constrained Hierarchical CRiBAC Model (CRiBAC-CH)
	Appendix C. The Specification of Example Scenarios: UPMC and Disaster Relief
	C-1. A Part of UPMC Example Specification
	C-2. A part of the Disaster Relief Example Specification

	References

