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Fatiguing exercise may result in impaired functional joint stability and increased risk of 

unintentional injury. While there are several musculoskeletal and physiological 

characteristics related to fatigue onset, their relationship with proprioceptive changes 

following fatigue has not been examined. The purpose of this study was to establish the 

relationship between musculoskeletal and physiological characteristics and changes in 

proprioception, measured by threshold to detect passive motion (TTDPM), following 

fatiguing exercise. Twenty, physically active females participated (age: 28.65 ± 5.6 years, 

height: 165.6 ± 4.3 cm, weight: 61.8 ± 8.0 kg, BMI: 22.5± 2.3 kg/m2, BF: 23.3 ± 5.4%). 

During Visit 1, subjects completed an exercise history and 24-hour dietary questionnaire, and 

body composition, TTDPM familiarization, isokinetic knee strength, and maximal oxygen 

uptake/lactate threshold assessments. During Visit 2, subjects completed TTDPM and 

isometric knee strength testing prior to and following a fatiguing exercise protocol. Wilcoxon 

signed rank tests determined TTDPM and isometric knee strength changes from pre- to post- 

fatigue. Spearman’s rho correlation coefficients determined the relationship between strength 

and physiological variables with pre- to post-fatigue changes in TTDPM and with pre-fatigue 

and post-fatigue TTDPM in extension and flexion (α=0.05). No significant differences were 

demonstrated from pre-fatigue to post-fatigue TTDPM despite a significant decrease in 

THE RELATIONSHIP BETWEEN MUSCULOSKELETAL STRENGTH, 
PHYSIOLOGICAL CHARACTERISTICS, AND KNEE KINESTHESIA 

FOLLOWING FATIGUING EXERCISE 
 

Katelyn Fleishman Allison, M.S. 

University of Pittsburgh, 2012

 



 v 

isometric knee flexion strength (P<0.01) and flexion/extension ratio (P<0.05) following 

fatigue. No significant correlations were observed between strength or physiological 

variables and changes in TTDPM from pre- to post-fatigue in extension or flexion. 

Flexion/extension ratio was significantly correlated with pre-fatigue TTDPM in extension 

(r=-0.231, P<0.05). Peak oxygen uptake was significantly correlated with pre-fatigue (r=-

0.500, P<0.01) and post-fatigue (r=-0.520, P<0.05) TTDPM in extension. No significant 

relationships were demonstrated between musculoskeletal and physiological characteristics 

and changes in TTDPM following fatigue. The results suggest that highly trained individuals 

may have better proprioception, and that the high fitness level of subjects in this investigation 

may have contributed to absence of TTDPM deficits following fatigue despite reaching a 

high level of perceptual and physiological fatigue. Future studies should consider various 

subject populations, other musculoskeletal strength characteristics, and different modalities 

of proprioception to determine the most important contributions to proprioceptive changes 

following fatigue. 
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1.0  INTRODUCTION 

The effects of fatigue on proprioception have been widely studied because decreased 

sensorimotor function may diminish functional joint stability, and this has been purported to 

increase risk of unintentional musculoskeletal injuries in athletes and trained individuals.110, 112, 

161-166, 251  As these individuals participate in repeated, intense physical activity during practice 

and competition, they experience a gradual decline in peripheral (muscle) and central nervous 

system (CNS) function that can only be alleviated after a period of rest, otherwise known as 

fatigue.7, 57 Understanding the causes, mechanisms, and prevention strategies of fatigue are 

important in order to decrease risk of injury in athletes and trained individuals.5, 6 Many studies 

have identified decrements in several sub-modalities of proprioception following fatiguing 

exercise, including both local and general fatigue protocols. 136, 153, 154, 171, 179, 256, 266  These 

studies have found that peripheral and/or central fatigue may cause a decrement in 

proprioceptive mechanisms and disturb neuromuscular control, which may place fatigued 

individuals at a higher risk of unintentional musculoskeletal injury. Several musculoskeletal and 

physiological characteristics may be related to the onset of fatigue as well as the preservation of 

sensorimotor function following fatigue.  However, while it has been demonstrated that fatigue 

plays a role in decreasing proprioception measured by threshold to detect passive motion, there is 

limited research on the relationship between musculoskeletal strength of the quadriceps and 

hamstrings, maximal oxygen uptake, and lactate threshold with the onset of fatigue and 
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proprioceptive deficits following fatiguing exercise.  If a relationship exists between these 

modifiable characteristics and changes in proprioception following fatigue, injury prevention 

programs may be developed in order to optimize these characteristics, diminish proprioceptive 

deficits following fatigue, and ultimately decrease risk of unintentional musculoskeletal injury. 

1.1 FATIGUE: IMPLICATION AND MECHANISMS 

1.1.1 Fatigue and Injury 

The number of athletes and trained individuals participating in sporting activities has grown 

exponentially in recent years.  With the upsurge in athletic participation, incidence of 

unintentional musculoskeletal injuries has also increased.123  National Collegiate Athletic 

Association (NCAA) surveillance data has revealed that a majority of unintentional 

musculoskeletal injuries occur in the lower extremity.123  This research has also revealed that 

females are at a much greater risk of incurring injury, specifically at the knee, than males. 15, 29, 

100, 104 On the whole, understanding the risk factors of these injuries will allow for the creation of 

injury prevention programs which will help mitigate the occurrence of unintentional 

musculoskeletal injury.  This will in turn reduce the negative implications of sustaining injury, 

including time lost from practice, training, and competition, decreased team or unit morale, and 

the financial burden of treatment and rehabilitation. 

The epidemiology of sports injuries has been widely studied and authors have 

investigated a number of potential factors relating to injury. 6, 65, 89, 90, 181, 252  A consistent theme 

throughout many of these investigations is that fatigue plays an important role in the onset of 
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unintentional musculoskeletal injury during practices and games.5, 89, 90  These studies have found 

that injuries frequently occur during preseason practices,123 and this may be the case because 

athletes who often begin the season with poor conditioning are more susceptible to fatigue, and 

may be unaccustomed to the movement patterns of the sport.  Further, these studies have 

revealed that many injuries occur during games, and more specifically, during the latter portion 

of games after fatigue has set in.89, 90  The increased risk of injury after fatigue may be due to 

slower reaction time, which could be a result of diminished sensorimotor function.  Since fatigue 

appears to be a frequently mentioned risk factor in many injury epidemiology studies, 

understanding the various peripheral and central mechanisms of fatigue may help better explain 

why fatigue during practice, training, and competition may increase risk of unintentional 

musculoskeletal injury. 

1.1.2 Mechanisms of Fatigue 

As the study of fatigue has evolved, so has its definition.  It is difficult to assign a single 

definition to fatigue because of its widespread classification, causes, and mechanisms.  A simple 

definition of fatigue is the inability to maintain a power output or force during repeated muscle 

contraction that may be attributed to either metabolic or non-metabolic peripheral factors.75  

Contributions to fatigue can be classified as either central or peripheral, with the processes inside 

the spinal cord and above labeled as central, and the processes in the peripheral nerve, 

neuromuscular junction, and muscle labeled as peripheral.7 

Peripheral fatigue can be studied by focusing on the changes that occur inside the muscle 

fiber during fatiguing exercise.  Muscle fiber type plays an important role in muscle fatigue, as 

oxidative fibers are far more fatigue resistant than fast-twitch fibers.7  Other factors, such as 
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temperature, metabolic changes, and pH level within the muscle may also contribute to the onset 

of fatigue.7 Since fatigue is defined as reversible decline of performance during activity,7 it 

differs from muscle injury in that most recovery occurs within the first hour,7 and there is a slow 

component which may take several days to reverse.70  In contrast, muscle injury usually occurs 

in muscles that have been eccentrically stretched during contraction and normal function only 

returns very slowly.7 

Davis and colleagues57 classify central nervous system (CNS) fatigue as a subset of 

fatigue (failure to maintain the required or expected force or power output) associated with 

specific alterations in CNS function that cannot reasonably be explained by dysfunction within 

the muscle itself, suggesting that “psychological” factors are important to consider with fatigue. 

Central fatigue is hypothesized to be elicited by alterations in neurotransmitters, cerebral oxygen 

delivery, hyperthermia, and perceived exertion/homeostatic regulation.57, 191, 192 

During practice and game situations, athletes and trained individuals likely experience a 

combination of peripheral and central fatigue.58  Fatigue-related changes in the muscle may 

include reduced force production, decreased velocity of shortening, and slowed relaxation.8  

Impaired CNS function due to fatigue may result in delayed reaction times and impaired motor 

performance.192 The implication of the negative changes elicited with the onset of fatigue is of 

great concern because reduced function at both the peripheral (muscle) and the CNS level may 

result in decreased sensorimotor function and increased risk for unintentional musculoskeletal 

injury. 



 5 

1.2 PROPRIOCEPTION 

1.2.1 Definition of Proprioception 

Proprioception is a subcomponent of the sensorimotor system and is defined as the afferent 

information arising from the periphery of the body (both static and dynamic components) 

providing the central nervous system information about joint stability, postural control, and 

motor control.161, 217  Conscious proprioception is subdivided into four submodalities, including 

posture (joint position sense), passive movement (joint kinesthesia), active movement 

(kinesthesia), and resistance to movement (resistance or heaviness).161, 217  Proprioceptive 

information arises from peripheral afferents in the body to the CNS and plays a crucial role in 

mediating neuromuscular control and overall functional joint stability. 

1.2.2 Proprioceptive Contributions to Functional Joint Stability 

The sensorimotor system includes the sensory, motor, and central integration and processing 

involved in maintaining joint stability during bodily movements.  Joint stability is defined as the 

state of remaining or promptly returning to proper alignment through the equalization of forces 

and moments.161 A relationship between static (clinical/mechanical) components and dynamic 

(functional) stabilizers is necessary to achieve joint stability.  Functional joint stability requires 

maintenance of functional activity and cooperation between static and dynamic stabilizers,161, 217  

including feedforward (anticipatory) and feedback (response) mechanisms.  The interaction 

between dynamic and static stabilizers arises from proprioceptive information from the static and 

dynamic joint mechanoreceptors.   The sensorimotor system must function at a high level during 
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intense physical activity to maintain and/or restore homeostasis of the joints to prevent 

unanticipated perturbations or forces that may lead to unintentional musculoskeletal injury. 

1.2.3 Fatigue and the Sensorimotor System 

The implication of injury risk due to fatigue-related proprioceptive deficits has driven 

researchers to examine the underlying physiological mechanisms of fatigue-induced disruption 

of neuromuscular control.  The mechanisms that prompt the onset of fatigue in humans are 

purported to implicate sensorimotor system function, but the exact relationship remains unclear. 

Proprioceptive information arising from peripheral areas of the body is vital for efficient 

neuromuscular control, postural stability, and overall functional joint stability, so any disruption 

of peripheral afferents through muscular fatigue may ultimately lead to increased risk of injury.  

This notion is further evidenced by a study of microneurographic recordings in humans that 

found a decrease in muscle spindle afferent activity during the onset of fatigue.170 Likewise, the 

onset of central fatigue may have negative implications for proprioceptive information that is 

conveyed to higher levels of motor control, including the cerebral cortex, spinal level, brain 

stem, cerebellum, and basal ganglia.172, 217 

Researchers have attempted to draw a connection between fatigue-induced decreases in 

proprioception, neuromuscular control, and increased risk of injury.  Studies have shown that 

lower extremity kinematics are altered following fatigue,30, 45 suggesting fatigue has a negative 

impact on neuromuscular control. Muscular fatigue after eccentric contractions of the knee has 

also been cited as a source of diminished neuromuscular control and has been identified as a 

potential injury risk factor.65, 194  Many researchers have studied the effects of fatigue on 

proprioception, and most have concluded that fatigue results in diminished proprioception.136, 153, 
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179 Some studies have found that locally applied eccentric fatigue protocols elicit deficits in 

several sub-modalities of proprioception, including TTDPM.136, 153, 202, 256 Other research has 

found that a general load caused a significant decrease in joint position sense acuity while a local 

fatigue protocol did not.179 On the whole, while the results of studies examining fatigue and 

proprioception have been equivocal depending on fatigue protocol and sub-modality of 

proprioception evaluation, it can be concluded that both peripheral and central fatigue have the 

capability of negatively impacting proprioception and, thereby, may potentially increase risk of 

unintentional musculoskeletal injury. 

1.3 CHARACTERISTICS RELATED TO THE ONSET OF FATIGUE, DIMINISHED 

PROPRIOCEPTION, AND INJURY RISK 

A multitude of intrinsic and extrinsic risk factors have been identified as potential risk factors for 

unintentional musculoskeletal injury, including musculoskeletal strength, and aerobic 

fitness/anaerobic threshold.181  However, these characteristics may also be important to consider 

as modifiable risk factors that may play a role in the onset of fatigue development and the ability 

to maintain sensorimotor function after fatigue.  Poor muscle conditioning has been cited as a 

potential risk factor for early onset of fatigue and related injury risk.6, 143 Therefore, muscle 

strength of the quadriceps and hamstrings may be related to changes in knee proprioception 

following fatiguing exercise because better muscle conditioning may delay the onset of 

peripheral fatigue.  Likewise, poor aerobic and anaerobic conditioning may play a role in early 

onset fatigue, as evidenced in early season and late game injury incidence attributed to fatigue.123  

Thus, maximal oxygen uptake and lactate threshold may also be related to changes in 
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proprioception following fatiguing exercise. Individuals with greater aerobic and anaerobic 

fitness have enhanced ability to resist the onset of both peripheral and central fatigue due to 

enhanced metabolic adaptations at both levels.  On the whole, musculoskeletal strength and 

aerobic fitness/anaerobic threshold are modifiable risk factors, and improving these risk factors 

may, in turn, enhance an athlete’s or trained individual’s ability to become more fatigue resistant, 

retain sensorimotor function during practice, training, and competition, and decrease risk for 

unintentional musculoskeletal injury. 

1.4 DEFINITION OF THE PROBLEM 

Previous research has revealed fatigue as a common risk factor for injury in athletes.  Other 

studies have linked fatigue to proprioceptive deficits, which contribute to disruption of the 

sensorimotor system.  Yet, while numerous studies have examined musculoskeletal strength and 

aerobic fitness/anaerobic threshold to establish their relationship to performance and injury, no 

studies to the author’s knowledge have assessed these characteristics and their relationship with 

the decrements in proprioception after fatiguing exercise.  An individual who possesses sub-

optimal muscular strength, aerobic fitness, or lactate buffering capacity may be at an increased 

risk of proprioceptive disruption following fatigue, whereas, individuals who possess adequate or 

optimal physiological and musculoskeletal characteristics may be more resistant to fatigue and, 

therefore, able to offset the proprioceptive deficits noticed after fatigue. 
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1.5 PURPOSE 

The purpose of this dissertation is to establish the relationship between physiological and 

musculoskeletal characteristics related to the onset of fatigue in athletes and decrements in 

proprioception following fatiguing exercise.  Isokinetic muscle strength of the quadriceps and 

hamstrings, aerobic capacity measured during a treadmill test of maximal oxygen uptake, and 

lactate threshold will be correlated with absolute angle difference during TTDPM of the knee 

from pre-fatigue to post-fatigue conditions.  A general fatigue protocol will be administered to 

simulate a game situation and elicit both central and peripheral fatigue mechanisms. 

1.6 SPECIFIC AIMS AND HYPOTHESES 

Specific Aim 1: To establish the relationship between muscular strength of   

 the quadriceps and hamstrings and changes in knee kinesthesia following   

 fatiguing exercise. 

Hypothesis 1:  Isokinetic muscular strength (N*m %BW) will have a significant 

correlation with angle error difference from pre- to post-fatigue TTDPM, with direction 

indicating that higher muscular strength is correlated with a more favorable change in 

TTDPM following fatigue. 

Specific Aim 2: To establish the relationship between flexion/extension ratio and 

changes in knee kinesthesia following fatiguing exercise. 
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Hypothesis 2:  Flexion/extension ratio will have a significant correlation with 

angle error difference from pre- to post-fatigue TTDPM, with direction indicating that 

higher flexion/extension strength ratio is correlated with a more favorable change in 

TTDPM following fatigue. 

Specific Aim 3: To establish the relationship between aerobic capacity and changes 

 in knee kinesthesia following fatiguing exercise. 

Hypothesis 3:  Maximal oxygen uptake (ml/kg/min) will have a significant 

correlation with angle error difference from pre- to post-fatigue TTDPM, with direction 

indicating that higher VO2 Max is correlated with a more favorable change in TTDPM 

following fatigue. 

Specific Aim 4: To establish the relationship between lactate threshold and changes 

 in knee kinesthesia following fatiguing exercise. 

Hypothesis 4:  Lactate threshold (% of VO2 Max) will have a significant 

correlation with angle error difference from pre- to post-fatigue TTDPM, with direction 

indicating that higher lactate threshold is correlated with a more favorable change in 

TTDPM following fatigue. 

1.7 STUDY SIGNIFICANCE 

The outcomes of this study will be important for lower extremity injury prevention in athletes.  

Particularly, they will contribute knowledge to the existing research on how fatigue affects the 

sensorimotor system, and, specifically, which characteristics can help offset these deleterious 

effects.  Current literature has already identified risk factors contributing to unintentional 
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musculoskeletal injury to the knee in females, including intrinsic factors such as anatomical, 

neuromuscular, and biomechanical characteristics, hormonal effects, and extrinsic factors such as 

playing environment and shoe-surface interaction.114  Several of these risk factors are affected by 

fatigue during exercise, including pre-activation of protective muscle groups, muscle co-

contraction during activity, and proprioception. If certain modifiable musculoskeletal and 

physiological characteristics related to the onset of fatigue, including muscular strength, aerobic 

capacity, and lactate (anaerobic) threshold are related to changes in proprioception following 

fatigue, injury prevention programs may be developed that incorporate quadriceps and hamstring 

strengthening exercises, and endurance/anaerobic threshold training.  Therefore, if these 

characteristics are optimized, the components of the sensorimotor system that provide 

proprioceptive information during the latter stages of training, practice, and games may be better 

preserved, and unintentional musculoskeletal injuries may be prevented. 



 12 

2.0  REVIEW OF LITERATURE 

The review of the literature will first discuss the epidemiology and implication of lower 

extremity injury in athletic populations, including injury incidence in athletes and military 

personnel. Next will be a discussion on fatigue as a risk factor for unintentional musculoskeletal 

injuries, followed by a dissemination of the mechanisms of muscular and central fatigue and the 

implication of fatigue on the sensorimotor system. The musculoskeletal and physiological 

characteristics purported in this study to be related to the onset of fatigue and the preservation of 

proprioception following fatigue will be highlighted in detail.  Finally, the methodology of this 

study will be considered. 

2.1 LOWER EXTREMITY INJURY EPIDEMIOLOGY 

The number of young adults participating in interscholastic and intercollegiate athletics has 

drastically increased in the recent decades.15, 91 Rising injury rates in both the athletic and 

military populations are cause for concern because of time lost as well as fiscal implications.   A 

review of lower extremity risk factors in athletics181 reported that the annual cost of sports 

injuries world-wide is approximately $1 billion,71 and that annual injury occurrence among 

competitive and recreational athletes is 3-5 million.145 A study of injury epidemiology among all 

military branches showed that roughly 1,000,000 service members suffered nonfatal, non-battle 
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injuries, and injuries accounted for about 17% of all hospitalizations.134  Authors also found that 

for every traumatic death in 2006, there were 11 hospitalizations and 715 injuries treated in 

outpatient settings,134 and when taking into account both acute and chronic/overuse injuries, 

there were over 1500 outpatient visits for injury for every death.134  This statistic led authors to 

conclude that nonfatal injuries are largely the biggest health problem of the military.134  

Therefore, research surrounding injury etiology, risk factors, and prevention is paramount in 

order to suppress the detrimental effect of unintentional musculoskeletal injuries. 

Epidemiological studies of athletic and military related injuries have found that the 

majority of unintentional musculoskeletal injuries occur in the lower extremity.  NCAA injury 

surveillance data over 16 years across 15 sports revealed that more than 50% of all injuries were 

to the lower extremity, and that knee and ankle injuries were the most commonly injured sites.123  

When reported as a percent of all injuries reported, ankle ligament sprains accounted for 14.9%, 

and anterior cruciate ligament injuries accounted for 2.6% of injuries.123  While the rate of ACL 

knee injury was relatively low, 88% of these injuries accounted for 10-plus days of time lost,123 

which has tremendous financial and psychological effects on the athlete, team, and institution.  

Further, ACL injury rate has increased on average 1.3% per year,123 which warrants further 

attention to research on the etiology and prevention strategies for such injuries. 

In a study of risk factors for training-related injuries in basic combat training, results 

showed that the five most common injury sites for men (% of total injuries) were the knee (21%), 

ankle (16%), foot (14%), low back (11%), and shin (8%), and for women were ankle (20%), foot 

(20%), knee (19%), shin (10%) and low back (7%).144  Overall, for men, 83% of all injuries 

involved the lower body and back, and 75% of male injuries and 78% of female injuries were 

classified as overuse injuries.144  In a study examining injuries in weight-bearing collegiate 
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athletics in females at a Division III college,143 40% of the sample studied had suffered one or 

more injuries, of which 80% were lower extremity injuries.  Overall, 29% of injuries consisted of 

muscle strains, while 27% consisted of knee and ankle sprains.143 

Gender may play a role in increased risk of injury, as epidemiological evidence has 

revealed an increased rate of injury in female athletes.  With the rise of Title IX, there has been a 

marked increase in female athletic participation.  According to the NCAA Participation Study: 

1989-90 to 1992-93, there was a 9% increase in female participation in all NCAA athletic 

programs from 1989 to 1992, and the number of NCAA institutions sponsoring varsity women’s 

soccer programs has increased by 48% during the same time period.123  Concurrent with the rise 

in female sports participation has been an increase in lower extremity injuries in females.  

Considerable attention has been given to gender differences in injury occurrence.  Evidence has 

shown a 2.3-9.7 time higher risk of anterior cruciate ligament (ACL) rupture in women than 

men.15, 29, 100, 104   Thus, much research has been devoted to the examination of lower extremity 

risk factors of female athletes and exploring potential biomechanical and hormonal differences 

that create a higher risk in females compared to males.2, 111, 112, 115, 182, 230, 231 Further research is 

needed to examine other musculoskeletal and physiological characteristics related to onset of 

fatigue, diminished sensorimotor function, and injury risk in females. 
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2.2 LOWER EXTREMITY INJURY RISK FACTORS 

2.2.1 Extrinsic and Intrinsic Risk Factors for Lower Extremity Injury 

Many risk factors have been identified as key contributions to lower extremity injury.   These 

have been classified as extrinsic and intrinsic, with extrinsic factors defined as factors outside the 

body, and intrinsic as those inside the body.181  Risk factors may also be classified as modifiable 

versus non modifiable, and those considered modifiable are often characteristics targeted for 

enhancement through injury prevention programs and interventions.  Murphy et al181 has 

revealed level of competition, skill level, shoe type, use of prophylactics or tape, and playing 

surface as extrinsic risk factors, and age, sex, previous injury/inadequate rehabilitation, aerobic 

fitness, body size, limb dominance, flexibility, limb girth, muscle strength, imbalance/reaction 

time, postural stability, anatomical alignment, and foot morphology as intrinsic risk factors.    

Although there have been numerous identified risk factors for injury, for the purpose of this 

literature review, fatigue will be highlighted as an implication for injury risk in athletes. 

2.2.2 Fatigue as a Risk Factor for Lower Extremity Injury 

Several studies identifying risk factors for unintentional musculoskeletal injury have found that 

fatigue may contribute to injury during training and competition.  Many of these studies have 

found that injuries occur in early stages of the season and at the end of matches.  NCAA injury 

surveillance data revealed that the rate of injuries sustained during games was 3.5 times higher 

than the rate of practice injuries,123 and these injuries may have in part been due to late game 

fatigue.  The NCAA data also showed that for injuries sustained during practices, preseason 
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practices accounted for the highest injury rate (6.6 per 1000 athlete exposures), and were 3 times 

higher than in-season practices and 5.5 times higher than postseason practice rates.123   Early 

season fatigue has been identified as a potential factor in the increased rate of injury reported 

during preseason practices and games in NCAA women’s basketball athletes,6 and authors noted 

that coaches must recognize that fatigue may compromise performance and raise the risk of 

injury in tired players because performance is compromised in tired players and fatigue may 

raise the risk of injury.254 Early season injury was noted in another study of injury incidence of 

sports,247 and authors suggested that decreased activity level prior to the season likely 

contributed to this finding, which may indicate that early onset fatigue due to lack of 

conditioning may have resulted in injury incidence. 

A study of injuries in amateur rugby players found that injuries were often sustained in 

the latter stages of the season and during half of matches, and therefore, fatigue may contribute 

to injuries.89, 90 Perhaps the explanation for fatigue during latter stages of the season is because 

players participating in physically demanding activity for a sustained time reach a level of 

fatigue later in the season, which predisposes them to a higher risk of injury.  Authors of this 

study mentioned that head and neck injuries were more likely to occur in fatigued players 

(National Health and Medical Research Council, 1994), and that decreased level of skill and 

physical fitness may have contributed to the high incidence of head and neck injury.77, 233  In an 

epidemiological study of injuries in ice hockey players, authors stated that fatigue may influence 

the speed of players’ reactions, and that a slow reaction time may predispose a player to sports 

injuries.180, 252  A study of gymnastic injuries found a positive correlation between frequency of 

practice and injury rate, and defined a high risk gymnast as someone practicing more than 20 
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hours per week.206  The increased risk of injury in this study may have been due to fatigue 

caused by the high frequency of participation in high intensity activity. 

In summary, fatigue during early season and late in games is a known risk factor for 

unintentional musculoskeletal injury.  Understanding the potential mechanisms contributing to 

central and peripheral fatigue during exercise is fundamental in order to formulate injury 

prevention strategies to prolong the onset of fatigue during practice and games.  Several of these 

mechanisms relate to characteristics of muscle fibers themselves, as well as both central and 

peripheral metabolic characteristics. 

2.3 MECHANISMS OF MUSCULAR FATIGUE 

2.3.1 Muscle Contraction under Normal Conditions 

Understanding muscle function under normal conditions is important in order to comprehend the 

many proposed mechanisms that may disrupt normal muscle contraction.  Skeletal muscle is 

innervated by the somatic nervous system and contains long, cylindrical muscle fibers.126  The 

functional unit of a skeletal muscle fiber is a sarcomere,174 which contains the myofibrillar 

proteins myosin (thick filament) and actin (thin filament).  Muscle contraction is based upon the 

interaction of the myosin and actin filaments; more specifically, the heavy chains contain the 

myosin heads that interact with the actin to allow muscle contraction.208  The head region of the 

myosin contains adenosine triphosphate (ATP) binding site, and this region also serves as the 

enzyme adenosinetriphosphatase (ATPase) for hydrolyzing ATP into adenosine diphosphate 

(ADP) and inorganic phosphate (P1).174 
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The sliding filament model is the most widely accepted model of muscle contraction, 126, 

209  and describes the series of events that lead to a muscle contraction.127  At rest, tropomyosin 

inhibits the actin-myosin binding and calcium is stored in the sarcoplasmic reticulum.126  During 

contraction, neural stimulation causes the sarcoplasmic reticulum to release calcium, which binds 

to troponin and removes the inhibitory effect of tropomyosin and actin-myosin bind.126  

Specifically, an electrical impulse passes down a motor neuron, and releases acetylcholine 

(ACH) when it reaches the end bulb, or end of the neuron.  This occurs at the neuromuscular 

junction, or where the motor neuron and muscle fiber meet.  The ACH is released into a synapse, 

which is the small gap between the motor neuron and muscle fiber, and binds to a receptor site 

on a motor end plate.126  This initiates an action potential (AP) if sufficient ACH binds to the 

receptors which then spread along the sarcolemma.  The AP travel down the transverse tubules 

(t-tubules), which are extensions of the sarcolemma that allow the AP to move from the outside 

of the fiber to the inside of the fiber, where contraction occurs.126  Once the AP reaches the 

sarcoplasmic reticulum (SR), calcium is released into the sarcoplasm.  The shape of tropomyosin 

after calcium binds to it changes so that it uncovers the binding sites on the actin molecule, 

allowing the myosin cross-bridge (myosin head) to be free to bind with the binding site on the 

actin molecule by swiveling and pulling the actin and Z-lines.126  The availability of adenosine 

triphosphate (ATP) and adenosine diphosphate (ADP) and inorganic phosphate (Pi) are 

important for muscle contraction because the breakdown of ATP supplies large amounts of 

energy.126    Fresh ATP binds to the myosin cross-bridges, leading to cross bridge recycling.  

Finally, neural stimulation ends and relaxation occurs, because calcium no longer binds to the 

troponin molecule and it returns to its inhibitory shape.126 
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There are a multitude of mechanisms that have the potential to influence normal muscle 

function and create peripheral fatigue in humans during intense activity.  These mechanisms 

include muscle fiber composition, muscle temperature, alterations in muscle excitability, and 

metabolic changes within the muscle, including increased inorganic phosphate, lactic acid 

accumulation, and decreased muscle glycogen.7  Understanding these mechanisms is crucial in 

preventing fatigue-related changes in proprioception, because impaired muscle function may 

disrupt the proprioceptive information arising from peripheral afferents, which may result in 

impaired sensorimotor function.  Many of the mechanisms contributing to muscle fatigue can be 

mitigated by enhancing musculoskeletal and physiological characteristics through strength 

training, aerobic conditioning, and increasing lactate threshold.  Injury prevention programs may 

consider these characteristics as modifiable risk factors that protect against early onset fatigue 

and injuries that are attributed to fatigue-related sensorimotor deficits. 

2.3.2 Muscle Fiber Composition 

An individual’s muscle fiber composition may play a role in their susceptibility to fatigue during 

intense physical activity.  Skeletal muscle fiber types have varying fatigue resistance, as well as 

speed of contraction, intracellular Ca2+ handling, glycolytic versus oxidative capacity.8  There 

have been several proposed nomenclature classifications in the literature throughout the years.  

Dubowitz and Brooke64 classified red, slow twitch fibers as Type I, and white, fast twitch fibers 

as Type IIa and Type IIb.  Smerdu et al240 classified red, slow twitch fibers as Beta/slow, and 

white, fast twitch fibers as Type IIa and Type IIx.  Peter et al205 classified red, slow twitch fibers 

as slow oxidative (SO), and white fast twitch fibers as fast, oxidative, glycolytic (FOG) and fast 

glycolytic (FG).  According to Allen and colleagues,7 in mammals, fiber type is classified by the 
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expression of myosin heavy chain (MHC) isoforms, including Type I, Type IIa, and Type IIx in 

humans.  Type I fibers are slow twitch, oxidative fibers with large amounts of myoglobin, 

mitochondria, and blood capillaries, and are highly resistant to fatigue.  Type IIa fibers are fast 

oxidative fibers that also have large amounts of myoglobin, mitochondria, and blood capillaries, 

but unlike Type I, have a high capacity for splitting and generating ATP.  Likewise, Type IIa 

fibers are not as resistant to fatigue as Type I.  Type IIx are fast glycolytic fibers that have low 

myoglobin content, mitochondria, and few blood capillaries, and large amount of glycogen.  

These fibers split ATP quickly, and therefore, fatigue easily.  Skeletal muscle fiber composition 

is largely genetic, but can also be modified with training.  Simoneau and colleagues235 reported 

that about 45% of muscle fiber composition is related to inherited factors and about 40% can be 

attributed to environmental factors, while about 15% of the variance may be due to sampling 

error and technique variance. 

Ivy et al128 examined muscle respiratory capacity and fiber type as determinants of lactate 

threshold.  Muscle biopsies were obtained from the vastus lateralis muscle prior to undergoing 

physiological analysis, where maximal oxygen uptake and lactate threshold was determined 

during an incremental cycling test.128  Muscle respiratory capacity was found to be significantly 

related to VO2max (r=0.83), and was also found to be significantly related to the relative lactate 

threshold (r=0.83), percent of slow twitch fibers (r=0.73), and percent relative area of slow 

twitch fibers (r=0.70).128  The percent of slow twitch fibers as well as percent relative area of 

slow twitch fibers was found to be significantly related to both relative (r=0.70, r=0.62) and 

absolute (r=0.74, r=0.73) lactate threshold.128 
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Characteristics Related to Muscle Fiber Type and Fatigue 

Muscle fiber composition is important when considering susceptibility to early onset of 

fatigue, as Type I (oxidative) fibers are the most resistant to fatigue.  Since characteristics of 

muscle fiber types are largely modifiable,228 training programs may be developed that increase 

slow-twitch fiber capacity, and, may increase oxidative function during exercise to exhaustion.  

Training to improve oxidative capacity may result in increased endurance, and this physiological 

characteristic can be quantified by an individual’s maximal oxygen uptake level.36 Although 

researchers have found that individual’s VO2max is more dependent on the cardiovascular 

system’s ability to deliver oxygen to the muscles more than it is to muscle respiratory capacity,72 

increased mitochondrial content of muscle may contribute to the improvement of VO2max after 

training, as evidenced by an increase in arteriovenous O2 difference.72, 121, 122 Overall, improving 

aerobic capacity via muscle fiber adaptations may help mitigate early onset fatigue and decrease 

risk of unintentional musculoskeletal injury. 

2.3.3 Muscle Temperature 

Temperature may affect several of the mechanisms that contribute to fatigue, such as the effects 

of intracellular pH and Pi on contractile proteins, reactive oxygen species production.7  Factors 

that may affect muscle temperature include activity, blood flow, core temperature, closeness to 

body surface, and environmental temperature,7 and performance may decline due to muscle 

temperature, core temperature, and increased competition for blood flow to the muscle.63 

Gonzalez-Alonso and colleagues93 investigated the influence of body temperature on the 

development of fatigue during prolonged exercise in the heat.  The study was based on the 

premise that heat stress reduces stroke volume and increases heart rate, and, subsequently, 
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reduces cardiac output during moderately intense exercise.225  Although the subjects in the study 

started exercising with different initial temperatures, subjects fatigued at the same level of 

hyperthermia (esophogeal temperature=40.1-40.2°C, muscle temperature=40.7-40.9°C, skin 

temperature=37.0-37.2°C) and cardiovascular strain (heart rate=196-198 beats/min, cardiac 

output 19.9-20.8 l/min).  Researchers concluded that highly trained athletes may become 

fatigued due to high internal body temperature during prolonged exercise in hot environments 

and rate of heat storage may have an inverse relationship with time to exhaustion.93 

Characteristics Related to Muscle Temperature and Fatigue 

Several physiological processes may be related to temperature regulation during 

exhaustive exercise.  With endurance training, cardiovascular adaptations occur within the body, 

including increased capillarization of the muscles for more efficient blood redistribution as well 

as overall enhanced cardiac and pulmonary function.36  Therefore, endurance training may 

enhance an individual’s ability to regulate body temperature and intracellular pH during exercise.  

Since an individual’s VO2max is a measure of aerobic capacity, it may also lend insight to an 

individual’s ability to mediate temperature related onset of fatigue. 

2.3.4 Metabolic Changes 

Inorganic Phosphate 

Muscle activation during most types of muscle activity are activated with repeated short bursts of 

APs.7  Allen and colleagues7 propose three phases in which this occurs.  First, there is a fast 

decline of titanic force along with an increase in titanic [Ca2+], then a phase of constant titanic 

force, followed by a decline of titanic force and [Ca2+].7  The length of phase 2 may be affected 

by the oxidative capacity of the muscle fibers, as evidenced by studies showing a shortened 
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phase 2 with mitochondrial inhibition with cyanide in mice 152, 262 or with decreased oxygen 

pressure.245  Slow-twitch fibers and motor units are typically more resistant to fatigue caused by 

repeated short tetani. 7, 42, 43, 94, 147 

Increased levels of inorganic phosphate have been purported to be a cause of impaired 

muscle function.7  During the reaction of PCr + ADP + H+  Cr + ATP, the ATP concentration 

remains somewhat constant while CrP breaks down into Cr and Pi, and Pi may cause a decrease 

of myofibrillar force production and Ca2+ sensitivity and SR Ca2+ release.7  Research examining 

Pi and cross-bridge force production is limited to experimental models with genetically modified 

mice.246  From this research, Allen and colleagues concluded that increased myoplasmic Pi can 

inhibit force production by action on cross-bridge function, and that this is a probable 

mechanism for the decrease in titanic force occurring early during fatigue in fast twitch fibers.7  

They also surmised that an increase in Pi due to fatigue may reduce myofibrillar Ca2+ sensitivity, 

which may impact force production in later stages of fatigue where titanic [Ca2+] decreases.246  

During early fatigue, an operating CK system and Pi accumulation are required for the early 

increase in titanic [Ca2+] during but further research is needed to determine the exact 

mechanism(s) involved.7  Likewise, in late fatigue, while increased Pi can cause a decrease in 

titanic [Ca2+], further research is needed to determine the exact process.7 

Lactic Acid and H+ 

Muscle fatigue has been attributed to lactic acid accumulation in exercising muscles for some 

time.7, 81  During exercise, the intracellular lactate level in humans has been found to reach 30 

mM or greater and intracellular pH decreases by ~0.5 pH units.7, 227  Similarly, decreased muscle 

force has been related with an increase in intracellular H+.7  However, literature surrounding 

these theories is controversial.  In studies looking at skinned muscle fibers, lactate concentrations 
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of up to 50 mM did not have significant effects on force production or Ca2+ sensitivity.12, 46, 67, 210  

In animal studies involving muscle twitch and titanic force at acid pH levels (~6.5), there was 

little to no reduction in titanic force.3, 7, 213, 263  Further, while low pH reduces the direct 

activation of the Ca2+ release channel to stimulation by Ca2+ and caffeine, 155, 168, 265 the voltage-

sensor activation of Ca2+150, 151 release is not noticeably inhibited at pH 6.2 or the activation of 

the sensors themselves.7, 17  Reduced pH lowers the Ca2+ sensitivity of the contractile 

apparatus,62, 78 likely because of the H+ competing with Ca2+ binding to troponin C,7 which is 

thought to have detrimental effects on muscle performance.  Overall, low pH does not result in 

the large inhibition of the activation of the contractile apparatus and Ca2+.  Instead, while the 

affinity of troponin C for Ca2+ may be reduced under acidic conditions, the total amount of Ca2+ 

binding to the TnC may not be affected.7  In all, the effect of pH on the Ca2+ within the 

sarcoplasmic reticulum may actually favor force development.7  While the previously discussed 

studies did not show evidence for deficits in muscle performance during lactate accumulation, a 

decrease in blood pH during exercise may negatively affect blood oxygen saturation and oxygen 

unloading, cardiac, and local vascular function, central nervous system drive, among other 

processes.7 

Muscle Glycogen 

Glycogen, the stored glucose in skeletal muscle, is a source of energy during exercise and 

is correlated to time to fatigue during moderately intense exercise.31, 109  Fatigue is often 

attributed to muscle glycogen depletion, as carbohydrate is an important substrate for contracting 

muscle during intense exercise.52  Muscle glycogen stores are also important because 

manipulating the level of pre-exercise glycogen stores often dictates the body’s dependency on 

other fuel sources during exercise.99 A study by Coyle and colleagues54 examined whether a 
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carbohydrate feeding prior to prolonged exercise would delay the onset of fatigue. In this 

crossover study, cyclists ingested a placebo or glucose polymer solution during exercise at ~70% 

of their maximal oxygen consumption. During the placebo condition, subjects fatigued on 

average one hour earlier than during the glucose feeding condition, and when fed carbohydrate, 

their plasma glucose concentration remained higher (4.2-5.2 mM vs 2.5 ± 0.5 mM).54  However, 

the mechanism for the relationship between muscle glycogen and fatigue onset is unclear.  One 

theory is that depletion of glycogen causes a reduction in the ATP regeneration rate and muscle 

force is reduced because of lack of motor drive.99  Nonetheless, other studies looking at ATP 

concentration at fatigue show little change in ATP concentration even when glycogen stores are 

low, suggesting that other factors may cause fatigue in low glycogen states.99   In a study of a 

single muscle fiber fatigued by repeated tetani, fiber bundles fatigued more quickly during a 

subsequent fatigue run in a glycogen depleted state.47  The decreases in titanic force during 

fatigue were associated with reduced Ca2+ transients.47  Allen and colleagues concluded that 

depleted glycogen during prolonged exercise may contribute to fatigue by diminishing 

sarcoplasmic reticulum Ca2+ release, but the mechanism between these factors is not clear.7, 8 

Characteristics Related to Metabolic Changes and Fatigue 

An individual’s strength, aerobic, and anaerobic conditioning may influence metabolic 

characteristics and function during exhaustive exercise.  Since increased levels of inorganic 

phosphate are purported to cause early onset muscle fatigue, enhancing muscle conditioning via 

strength training may help to mitigate suboptimal Cr/ATP cycling during activities of high 

intensity. Noakes188 proposed that sustained, intense training may directly alter muscle 

contractility, which would likely enhance contractile properties of trained skeletal muscle.106 

Researchers have proposed that percent of peak VO2 is inversely related to the amount of blood 
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lactate accumulation in the working muscle.50, 53, 79, 149, 236, 237  Although the research surrounding 

increased lactate accumulation and fatigue is equivocal, improving anaerobic/lactate threshold 

may help to buffer and clear lactic acid build-up in the muscle during intense exercise, thereby 

increasing blood pH during exercise and mitigating the proposed negative effects of lactic acid 

accumulation.  Finally, an adaptation that occurs with aerobic conditioning is the sparing of 

glycogen during exercise in favor of fat oxidation.  Thus, if the body is trained to utilize fat as 

the preferred substrate, muscle glycogen stores may stay intact longer during exhaustive 

exercise, and the onset of fatigue may be delayed. A study by Hawley and colleagues106 found 

that cyclists were able to sustain higher work rates during a time-trial ride. Authors stated that 

this may have been due to decreased reliance on carbohydrate as a fuel source, which was 

evidenced by the fact that carbohydrate oxidation was significantly decreased and fat oxidation 

was increased during sub-maximal rides following a training program.106 On the whole, 

improving musculoskeletal and physiological characteristics may help to mitigate several 

mechanisms of fatigue, and, subsequently, may decrease risk of unintentional musculoskeletal 

injury. 

2.4 MECHANISMS OF CENTRAL FATIGUE 

2.4.1 Central Nervous System Function following Fatigue 

According to Davis and colleagues,57 central nervous system (CNS) fatigue is a subset of fatigue, 

or failure to maintain the required or expected force or power output, associated with specific 

alterations in CNS function that cannot reasonably be explained by dysfunction within the 
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muscle itself.  The two theories behind a reduction in CNS drive to motor neurons are either a 

reduction in the corticospinal (descending) impulses reaching the motoneurons and/or an 

inhibition of motoneuron excitability by neurally mediated afferent feedback from the muscle.57  

Bigland-Ritchie et al33 proposed that inhibition of motor neuron firing rates may be a result of a 

reflex involving feedback from mechanoreceptors or even group III or IV free nerve endings 

known to be sensitive to muscle metabolites that accumulate during fatigue.57  A study 

performed in human subjects utilized transcranial magnetic stimulation to assess central nervous 

system excitability from the motor cortex to the alpha-motoneuron.41  They found that the 

magnitude of the motor responses in the muscle elicited by transcranial magnetic stimulation 

decreased after fatiguing exercise, and postulated that the decreased central drive may have been 

attributed to the accumulation and depletion of neurotransmitters in the CNS pathway located 

upstream from the corticospinal neurons.41 

There has been significant interest on the possible role of neurotransmitters in exercise 

fatigue.  Newsholme et al185 proposed that serotonin (5-hydroxytryptamine, 5-HT) may be a 

mediator of CNS fatigue.  The mechanisms surrounding the control of brain serotonin synthesis 

and turnover implicate 5-HT as a potential mediator of CNS fatigue during prolonged exercise,57 

and increases in 5-HT have been found to impact arousal, lethargy, sleepiness, and mood that 

may contribute to altered perceptions of effort and muscular fatigue.41 The Central Fatigue 

Hypothesis implies that a diminished sport and exercise performance may be a result of impaired 

CNS function caused by increased concentrations of brain 5-HT.185 

The onset of central fatigue may negatively affect higher levels of motor control.  

Proprioceptive information arises from peripheral afferents and is transmitted to the CNS.  The 

information is conveyed to three levels of motor control, including the cerebral cortex, spinal 
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level, and brain stem, as well as two associative levels, including the cerebellum and basal 

ganglia.  In the event that central fatigue impairs CNS function and proprioceptive information at 

the higher level, it may affect the way the somatosensory cortex processes proprioceptive 

information to provide information about conscious awareness of joint position sense, joint 

motion, sense of tension, and sense of velocity.  The cerebellum operates at a subconscious level 

and plays a role in motor control and postural maintenance, so the onset of central fatigue due of 

inadequate cerebral oxygen delivery or insufficient homeostatic regulation may disrupt optimal 

cerebellum contributions to motor control and functional joint stability. 

There are several musculoskeletal and physiological characteristics that may impact 

mechanisms of central fatigue, including perceived exertion, homeostatic regulation and cerebral 

oxygen delivery.57, 58 If these characteristics are optimized, the onset of central fatigue may be 

delayed or offset during strenuous physical activity, and retain optimal sensorimotor function.  

This will, ultimately, lead to an overall decrease in risk of unintentional, musculoskeletal injury 

during training and competition. 

2.4.2 Perceived Exertion and Homeostatic Regulation 

In Davis and colleagues’59 definition of central fatigue, they specify fatigue as a failure to meet 

required or “expected” force output. They formulated this definition in the argument that 

psychological factors such as motivation and perception are likely important factors in fatigue.57  

These “psychological/physiological” processes should be included as possible fatigue 

mechanisms because impaired motor performance is usually associated with increased perceived 

effort and failure to produce the necessary force.76 
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Literature has brought light to the homeostatic regulation model to explain why fatigue 

occurs despite a lack of peripheral failure.187  Noakes and colleagues187 hypothesized that the 

primary determinant of homoeostatic regulation is the CNS, by continuously altering the number 

of motor units that are recruited during exercise and regulating the total metabolic demand.  

Research has found that skeletal muscle ATP concentrations do not reduce to less than 50% of 

resting value during exercise, including maximal exercise even in people with reduced capacity 

to generate ATP oxidatively or glycolytically or in muscles that are ischemic after application of 

a tourniquet and forced to contract until exhaustion by external stimulation.186  Thus, the 

hypothesis that peripheral “limitations” or “catastrophe” models require that all available motor 

units are recruited at exhaustion is challenged by the fact that a majority of available motor units 

are inactive at the point of exhaustion.186, 187  The central governor model244 suggests that the 

brain does not recruit additional motor units during prolonged exercise because recruiting 

additional motor units may cause the body to be unable to maintain homeostasis, which is 

thought to lead to stopping exercise early in order to prevent against worse conditions, such as 

organ damage, organ failure, or death.187 

Characteristics Related to Perceived Exertion, Autonomic Regulation, and Fatigue 

Enhancing musculoskeletal and physiological characteristics may aid in decreasing an 

individual’s perceived exertion during fatiguing exercise.  Since there is a psychological 

component involved with homeostatic regulation, training programs may help to decrease an 

athlete’s perceived exertion during the same intensity of exercise.  If their training results in 

increased muscle strength, increased aerobic capacity, and increased lactate threshold, they will 

become more metabolically efficient at the same submaximal intensities, and therefore, 

potentially be able to mitigate early onset fatigue. 
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2.4.3 Cerebral Oxygen Delivery 

As evidenced above, homeostatic disturbances may greatly impact the onset of fatigue during 

strenuous exercise.  Nybo and Rasmussen192 explored the effect of physiological factors that may 

impact these homesostatic disturbances.  They hypothesized that fatigue may be elicited by 

inadequate oxygen delivery to the brain, and thus, low cerebral capillary and mitochondrial 

oxygen tension (PO2).192  Further, the reduction in oxygen delivery may affect the ability to 

maintain motor activation due to the influence of reduced oxygen on the function of neurons and 

astrocytes.192 During exercise, cerebral blood flow is blunted due to hyperventilation-induced 

reductions of the arterial carbon dioxide tension.192  This blunted effect may fail to compensate 

for lower arterial oxygen content, and the anecdotal evidence of athletes fainting following 

maximal exercise may support this idea.192 It is difficult to distinguish whether performance 

declines as an effect of the low PO2 in active brain regions or from feedback from the muscles 

and from increased cardiorespiratory stress.192  However, afferent feedback does not appear to be 

of importance during severe hypoxia because when the inspired oxygen fraction is lowered to 

~10%,  epidural anesthesia (blocking or reducing feedback from group 3 and 4 muscle afferents) 

has no effect on performance or perceived exertion during maximal exercise.141  In another study 

that looked at varying levels of cerebral oxygen delivery and motor performance evaluated by 

maximal handgrip strength, the handgrip strength decreased simultaneously with an increase in 

lactate spillover from the brain when oxygen delivery was reduced by more than 15% below 

control levels.214  This happened as a separate effect of either hyperventilation-induced reduction 

in cerebral blood flow (CBF) or inhalation of air with a low PO2, perhaps indicating that cerebral 

oxygen levels became inadequate to support optimal aerobic metabolism.214  Since the 

mechanism behind brief, intense muscle contraction is anaerobic metabolism (net ATP and 
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creatine phosphate degradation), the impaired motor performance noticed by Rasmussen et al214 

was likely due to central fatigue caused by inadequate oxygen to the brain.192  During exercise 

performed at a moderate intensity, that does not exceed the ventilatory threshold, CBF will 

increase to various regions of the brain linearly with the exercise intensity.135, 255  Regional CBF 

will decline as exercise intensity increases despite neuronal activity and metabolic needs increase 

in motor areas.192  The uncoupling of metabolism and flow will result in a reduction in the 

mitochondrial PO2 in the activated motor areas.92, 214 

Characteristics Related to Cerebral Oxygen Delivery and Fatigue 

Aerobic and anaerobic conditioning may counteract the motor performance impairment 

and early onset fatigue experienced due to inadequate oxygen delivery to the brain.  

Cardiovascular adaptations with aerobic conditioning include more efficient blood redistribution, 

increased capillarization, and enhanced blood viscosity, which favor increased cerebral oxygen 

delivery.36  Anaerobic conditioning aimed to improve lactate threshold may help to mitigate the 

detrimental effects of lactate spillover in situations of oxygen deficit in the brain. Fundamentally, 

individuals with higher aerobic/anaerobic conditioning will likely have better cerebral oxygen 

delivery in fatiguing conditions, and improving these characteristics through training may help 

mitigate fatigue and help to prevent unintentional musculoskeletal injury during practice, 

training, and competition. 
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2.5 FATIGUE AND THE SENSORIMOTOR SYSTEM 

2.5.1 The Sensorimotor System 

The sensorimotor system consists of the sensory, motor and central integration and processing 

components involved in maintaining joint homeostasis during bodily movements, otherwise 

known as functional joint stability.217  Joint stability is defined as the state of remaining or 

promptly returning to proper alignment through the equalization of forces and moments.161  The 

ability to maintain joint stability and overall postural control is dependent on the somatosensory 

system, and combines sensory input from somatosensory, visual, and vestibular information 

within the central nervous system.218  Maintenance of postural control is obtained through 

strategies elicited from the central nervous system and carried out through efferent (motor) 

commands to the joints throughout the kinetic chain,218 including muscle synergies, movement 

patterns, joint torques, and contact forces.125  Research has found that distinct contractile patterns 

and strategies occur,183 and studies have proposed that a limited number of muscles are used 

during corrective mechanisms.66, 203, 219  Functional joint stability is maintained through the static 

and dynamic components of a joint working in concert to prevent or restore disruption in joint 

homeostasis.  The anticipatory mechanisms utilized prior to a disruption are feedforward 

mechanisms, whereas, the corrective responses are known as feedback controls.217 

The characteristics of the static and dynamic components of a joint play an important role 

in functional joint stability.  The static components include ligaments, joint capsule, cartilage, 

friction, and bony geometry; in other words, the non-contractile elements of the joint 

articulation.217  The dynamic restraints of the joint are mediated by feedforward and feedback 

information, and this may be influenced by characteristics of the muscles surrounding the joint, 



 33 

including muscle strength, endurance, and range of motion.217   Proprioceptive information arises 

from joint mechanoreceptors in the muscles, tendons, fascia, ligaments, joint capsule, and 

skin.217  Specific receptors can be found in the static and dynamic restraints of the body.  Ruffini 

endings, pacinian corpuscles, and Golgi tendon-like organs are found in the static restraints, 

while Golgi tendon organs (GTO) and muscle spindles are found in the dynamic components.  

Ruffini receptors are thought to act as both static and dynamic receptors because they are low-

threshold and slow-adapting, while the low-threshold, rapidly adapting Pacinian corpuscles are 

thought of as dynamic receptors.  The GTO are found within the muscle tissue along the 

musculotendinous junction and the muscle spindles and provide the CNS with feedback about 

active muscle tension.130  Intrafusal muscle spindles are afferent nerve endings that are wrapped 

around modified muscle fibers, and are sensitive to changes in muscle length and rate of change 

in muscle length.96, 176  Gamma motor neurons (γ-MN) innervate the intrafusal muscle fiber 

peripherally, and activation of these peripheral contractile elements stretches the central regions 

containing the sensory receptors from both ends, which increases firing rates of the sensory 

endings and increases the sensitivity of the muscle spindle to length changes.96  Essentially, input 

from peripheral sensory receptors, including skin, articular, and chemoreceptors all act to 

influence the activity of the γ-MN system13, 131, 202 and, in turn, afferent information provided by 

the muscle spindle.217 

The onset of both peripheral and central fatigue may negatively impact various 

components of the sensorimotor system, including impaired integration of proprioception at the 

muscle and CNS level.  Diminished proprioception due to the onset of fatigue may decrease 

functional joint stability and increase risk for unintentional musculoskeletal injury.  For this 

reason, a considerable amount of attention has focused on the effects of fatigue on 
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proprioception and neuromuscular control, which is mediated by proprioceptive input to the 

CNS. 

2.5.2 Proprioception and Injury 

The implication of decreased proprioception following fatigue is important in fully 

understanding proprioception as a risk factor for unintentional musculoskeletal injury.  

Proprioceptive feedback helps to mediate neuromuscular control;100 thus, impaired sensorimotor 

function may disrupt functional joint stability, and therefore, create an environment more 

susceptible for injury occurrence. In situations where an individual experiences central or 

peripheral fatigue, proprioception may be compromised, and the risk for injury may increase. 

The body of literature surrounding proprioception and injury is dominated with research 

on proprioception deficits following injury rather than looking at it prospectively as a risk factor.  

Many of these studies have found that proprioception is diminished in ACL-deficient knees,25, 40, 

44, 80, 84, 88, 162, 169, 196, 215, 221, 258 while others have found no differences in proprioception between 

injured and uninjured limbs.87, 95, 199, 215  Since rehabilitation following ACL reconstruction often 

involves physical training that improves the integrity of static and dynamic restraints about a 

joint, many studies have found proprioceptive improvements in injured limbs following surgery 

and subsequent rehabilitation.26, 83, 84, 129, 215 

Studies examining proprioception as a prospective risk factor are few and varied.  A 

literature review conducted by De Noronha and colleagues60 looking at voluntary strength, 

proprioception, postural sway, and range of motion as possible risk factors for ankle sprain injury 

found that dorsiflexion range of motion was a strong predictor of ankle sprain, and that postural 

sway and possible proprioception are also predictors of injury. A study by Payne et al200 
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investigated if ankle muscular strength, flexibility, and proprioception were predictors of ankle 

injury in college basketball players. In this study, flexibility of active ankle dorsiflexion, ability 

to match reference joint angles in dorsiflexion-plantar flexion and eversion-inversion planes, and 

concentric and eccentric torque for dorsiflexion-plantar flexion and eversion-inversion at 30 

degrees and 180 degrees per second were measured.  Proprioception was a predictor of left ankle 

injury in all subjects, while ankle strength and flexibility measures were not, and there were no 

significant differences in ankle injury rate between males and females. 

While research is warranted to further establish the prospective relationship between 

proprioception deficits and injury, there is a wide body of literature examining the effect of 

various fatigue protocols on different modes of proprioception.  These studies each provide 

insight to the complex relationship between fatigue, sensorimotor impairment, and unintentional 

musculoskeletal injury risk. 

2.5.3 Fatigue and Proprioception 

Many studies have investigated the effect of fatigue on proprioception, and the majority of this 

research has utilized joint position sense (JPS) as the preferred sub-modality of proprioception.  

These studies have been conducted with various fatigue protocols and with both passive and 

active modes of JPS, and results are equivocal dependent on methodology. 

Marks and colleagues171 looked at the effects of fatiguing isokinetic quadriceps exercise on the 

ability of sedentary women to passively reproduce an actively generated knee angle and found a 

significant increase in target overshooting between the initial and final constant error 

measurements between the experimental and control sessions.171  The authors concluded that 
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exercise-induced contractile fatigue may influence the encoding of positional information in 

healthy knees.171 

Miura et al179 examined the effect of a local and general fatigue protocol on joint position 

sense.  They hypothesized that the difference between a local load, produced by isokinetic 

exercise, and general fatigue, which was designed to more practically simulate sports activity 

and produce both local and general fatigue, would affect the changes in knee proprioception after 

exercise.179  They also aimed to determine which component in the neuromuscular control 

pathway may change after fatigue.  Absolute angle error was determined between a passively 

positioned knee angle and actively reproduced knee angle during 8 consecutive trials. Local load 

consisted of 60 maximum concentric contractions of knee extensors and flexors, and the general 

load consisted of 5 minutes of running at 10 km/h on treadmill with a 10% uphill grade.  No 

significant change in AAE resulted after local load (3.8° ± 1.1°) while a significant increase of 

AAE was found after general load (5.1° ± 2.1°).179  Authors concluded that neuromuscular 

training, including central motor programming, is essential in the prevention of fatigue-induced 

proprioceptive decline.179 

Ju and colleagues136 aimed to study the effect of repetitive active movement versus 

repetitive passive movements on JPS.  The JPS protocol passively produced an angle in which 

the subject had to actively reproduce and relative error and absolute error were determined.  The 

repetitive active movement included 60 repetitions of isokinetic concentric and eccentric 

contraction of the quadriceps at 120°/second, while the repetitive passive movements included 

continuous passive motion of the knee joint at 120°/second for 60 repetitions.  Joint position 

sense (absolute angle error) was significantly worse following repetitive active movement, while 
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an improvement was following repetitive passive movement, indicating that passive movement 

may help to improve JPS. 

Lattanzio et al153 examined the effects of muscular fatigue on JPS in a standing, closed-

kinetic position.  An electrogoniometer and strain gauges were used to actively flex the subject’s 

knee to a starting angle of 35°.  The subject was then asked to either extend or flex the knees to a 

predetermined test angle and then back to the start angle of 35°.  Absolute angle error was the 

absolute difference between the actual and perceived test angle.  The first of three fatigue 

protocols administered was a ramp test on a cycle ergometer.  Maximal oxygen uptake was also 

determined and utilized to determine workloads for the other two fatigue protocols, the 

continuous test and the interval test.  The continuous test required subjects to cycle at 80% of 

their VO2max to maximal exhaustion, and the intermittent protocol required the subject to cycle at 

alternating 30s workloads equal to 120% VO2max and 40% VO2max until exhaustion.  In male 

subjects, there was a statistically significant increase in AAE after the ramp test (1.0 ± 0.66°, 

p<0.01), the continuous test (0.70 ± 0.66°, p<0.03), and the intermittent test (1.24 ± 0.79°, 

p<0.01).153  In female subjects, there was a statistically significant increase in AAE after the 

continuous test (0.73 ± 0.73°, p<0.03), and the intermittent test (1.1 ± 0.89°, p<0.01).153  Authors 

concluded that while there was a statistically significant decrease in proprioception following 

fatiguing exercise, more work is needed to determine the clinical significance.153 

Rozzi et al226 studied the effect of muscular fatigue on knee joint laxity and 

neuromuscular characteristics of male and female athletes. Fatigue in this study was induced by 

performing maximal concentric contraction repetitions. While EMG data showed significantly 

increased onset of hamstring firing after fatigue, there were no significant changes to anterior 

tibial translation, lower extremity balance, or TTDPM in the flexion direction. However, 
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TTDPM in the extension direction significantly increased following fatigue (F1,49 = 6.50, P = 

0.014).226 Authors noted that there may be other mechanisms to explain the significant decrease 

in knee kinesthesia in the extension direction because these changes occurred despite no 

significant changes in knee laxity following fatiguing exercise. 

A recent study evaluated the effects of exercise-induced quadriceps muscle damage on 

knee proprioception, including JPS, force sense, and TTDPM, in young, healthy men.256  Muscle 

soreness (visual analog scale (VAS)), proprioception, and plasma creatine kinase (CK) were 

measured prior to and one, 24, 48, 72, and 96 hours following the fatigue protocol.  The fatigue 

protocol in this study consisted of sets of thirty eccentric quadriceps contractions at a target of 

60% of maximal concentric peak torque, and termination occurred when the subject could not 

complete two sets, and results demonstrated that eccentric muscle damage was achieved as 

evidenced by biomarkers of muscle damage and significantly increased muscle soreness.256  Joint 

position sense was significantly decreased after fatigue up to 48 hours.256 Force sense decreased 

significantly one hour after exercise and stayed decreased until 48 hours.256  Threshold to detect 

passive motion showed significant changes at 30 degrees of flexion and 70 degrees of flexion at 

one hour and up to 24 hours post fatigue, but the changes were significantly different between 

the two angles at 24 hours post.256  Authors reported that the muscle damage elicited form 

eccentric exercise disrupted joint proprioception, and that there may be impairment of the 

intrafusal fibers of muscle spindles and in the tendon organs.256 

Research surrounding fatigue and proprioception has equivocal results depending on 

mode of fatigue induction and mode of proprioception tested.  Several conclusions may be 

gathered by this data.  First, when applying a local fatigue protocol, eccentric isokinetic 

contractions are more successful in inducing proprioceptive changes than concentric 
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contractions.136, 256  Also, based on the varying results of the studies detailed above, the speed 

and number of contractions may influence proprioceptive changes.  Others have suggested that 

local fatigue is not enough to induce proprioceptive changes, and rather central mechanisms of 

fatigue play a greater role in diminished sensorimotor function.179 

2.5.4 Fatigue and Neuromuscular Control 

A number of research studies have investigated the effect of fatigue on different aspects of 

neuromuscular control.  Several studies have examined the effect of fatigue on kinematic and 

kinetic characteristics of athletes during functional sport movements, such as stop-jumps and 

drop-landings.  Chappell and colleagues45 investigated the effect of lower extremity fatigue on 

knee kinetics and kinematics during stop-jump tasks in the forward, vertical, and backward 

direction.  The fatigue protocol consisted of unlimited repetitions of vertical jumps and 30-m 

sprints until volitional exhaustion, and 5 vertical jumps were performed after each post-fatigue 

stop-jump in order to maintain a high level of fatigue.45  Results revealed significantly increased 

peak proximal tibial anterior shear forces, increased valgus moments, and decreased knee flexion 

angles in both male and female subjects, but peak knee extension moment was not significantly 

affected by fatigue induction.45  A study by Nyland et al194 sought to determine if kinematic and 

kinetic changes occurred at the knee, ankle, and subtalar joints during the plant-and-cut phase of 

a crossover cut following quadriceps and/or hamstring fatigue.  Eccentric hamstring fatigue 

caused decreased peak impact knee flexion moments, increased internal tibial rotation at peak 

knee flexion, and decreased peak ankle dorsiflexion, while eccentric quadriceps fatigue cause 

increased peak ankle dorsiflexion moments, decreased peak posterior braking forces, decreased 

peak knee extension moments, delayed peak knee flexion, delayed peak propulsive forces, and 
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delayed subtalar peak inversion moments.194  A study by McClean and colleagues175 aimed to 

evaluate the effects of fatigue on lower-limb kinematics and kinetics during the landing phase of 

a drop-jump task, and to further examine gender specificity in these effects by studying ten male 

and ten female NCAA athletes.  Subjects completed ten drop jumps prior to and following a 

fatigue protocol that was designed to simulate game play, and consisted of continuous drills, 

including step-up and down movements and plyometric bounding movements.175  The fatigue 

protocol increased initial and peak knee abduction and internal rotation motion and peak knee 

internal rotation, adduction, and abduction moments, and these increased moments were more 

pronounced in females.175  Benjaminse et al30 studied kinematic characteristics of the hip and 

knee during single-leg stop-jumps prior to and following fatiguing exercise consisting of an 

incremental treadmill exercise test.  During the post-fatigue stop-jumps, male and female 

subjects had significantly less knee valgus and decreased knee flexion at initial contact, but no 

differences were identified at the hip from pre- to post-fatigue, and no gender effects were 

revealed.30 

Research has also examined muscle activation following lower extremity fatigue.  

Another investigation by Nyland et al193 examined the effects of fatigue after eccentric 

quadriceps femoris work on muscle activation prior to crossover cut landing heel strike.  In this 

study, twenty recreationally active women participated in crossover cut training prior to 

undergoing testing of fatigue effects after three different conditions and one control condition.  

Compared to control, eccentric quadriceps fatigue resulted in delayed vastus medialis, rectus 

femoris, and vastus lateralis activation onsets.193  However, these results were not significant 

when compared with hamstring fatigue, and neither hamstring nor quadriceps femoris fatigue 

produced differences in medial hamstring or biceps femoris activation onsets compared to 
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control.193  Earlier gastrocnemius activation occurred following eccentric fatigue of the 

quadriceps femoris compared to the control, but not hamstring fatigue.193 

Based on these findings, it is apparent that fatigue impairs neuromuscular control, and the 

contribution of proprioception to neuromuscular control is likely effected by fatigue-induced 

disruption to the muscle and/or CNS. Since several modifiable musculoskeletal and 

physiological characteristics that may contribute to the onset of fatigue have been previously 

identified, these characteristics may be optimized through injury prevention programs in order to 

mitigate the detrimental effects of fatigue on the sensorimotor system and decrease risk of 

unintentional musculoskeletal injury. 

2.6 CHARACTERISTICS RELATED TO FATIGUE ONSET, PROPRIOCEPTION 

FOLLOWING FATIGUE, AND INJURY RISK 

2.6.1 Muscular Strength 

Muscle strength has been identified as a potential modifiable characteristic related to the onset of 

fatigue.  Enhancing muscle strength may mitigate inadequate metabolic and physiological 

functions within the muscle that predispose an individual to early onset peripheral fatigue.  

Likewise, for the above mentioned reasons, muscle strength has been cited as a risk factor for 

injury in many epidemiological studies, and some of these studies have linked sub-optimal 

muscle strength to early onset fatigue. 

In research examining muscle strength as a risk factor for injury, inadequate muscle 

strength has been identified as a risk factor for lower extremity injury in a majority of studies.  In 



 42 

a study of NCAA male soccer injuries, Agel et al5 noted that poor muscle conditioning and 

repetitive explosive movements during preseason practice following a period of lower activity 

levels may cause many noncontact thigh and hip muscle injuries.  Authors recommended that 

during the summer months prior to season, graduated muscle conditioning programs focusing on 

general muscle endurance but also explosive motions of the hip and thigh should be implemented 

to minimize noncontact muscle injuries.5  This statement implies that the premature onset of 

fatigue in deconditioned athletes may contribute to increased injury risk, and that increasing 

muscular endurance and strength may help to prevent unintentional musculoskeletal injury.  In 

the study identifying risk factors for injury during basic combat training, fewer push-ups were 

associated with higher injury risk in both men and women, and a lower number of sit-ups was 

associated with higher injury risk in men.144  This suggests that poor upper body and core muscle 

endurance is a risk factor for unintentional musculoskeletal injury during a period of intense 

physical training, and that enhancing these characteristics may lead to better attrition and 

outcomes for Soldiers during basic training or athletes participating in intense physical training 

programs.  However, while these studies found a significant relationship between general muscle 

endurance and injury risk, a study measuring isokinetic muscle strength of the quadriceps and 

hamstring at 60 and 180 degrees per second found no difference in strength between injured and 

uninjured groups.197  Researchers proposed that isokinetic strength may not have been a risk 

factor for injury since it has little to no correlation to muscle function,11, 164 and that perhaps 

eccentric strength may have been more advantageous to test because eccentric strength decreases 

landing forces through plyometric training.116  Additionally, eccentric muscle fatigue in athletes 

has been related to fatigue related injuries, and fatigue from eccentric quadriceps femoris 

exercise but not hamstring exercise has been shown to decrease onset of muscle firing during 
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crossover cutting training.195  Increased anterior tibial translation has been demonstrated 

following fatiguing exercise as well as a delay in intermediate- and voluntary-level EMG 

activity. Since research is limited surrounding isokinetic strength measurements as a predictor of 

injury, further research is warranted in this area. 

In addition to inadequate muscular strength, research has shown that knee flexor/extensor 

agonist/antagonist ratios and side-to-side muscle imbalances may also pose risk of lower 

extremity musculoskeletal injury.  In a prospective study looking at risk factors for injuries 

during a soccer season in females, a higher concentric H/Q ratio (90 degrees/sec) was non-

significantly related to a higher risk of overuse injuries (OR=1.13, P=0.004).241  These findings 

agreed with a study by Knapik et al143 that investigated isokinetic strength and flexibility 

imbalances in female collegiate athletes.  This study found that athletes with a knee flexor/knee 

extensor ratio of less than 75% had a greater incidence of lower extremity injuries.143  However, 

this study was performed at an isokinetic speed at 180 and 30 degrees/sec, and only 

measurements at 180 degrees/sec were found to be significant,143 which suggests that strength 

differences at higher velocities might better translate to strength imbalances during functional 

activity at similar speeds.  This study also found that athletes with a right leg stronger than the 

left leg by 15% or more were 2.6 times more likely to get injured than athletes with imbalances 

less than 15%, and authors implied that this was due to a strong force generated by the right leg 

that may have resulted in damage to the left leg because the weaker hamstring muscle group was 

unable to absorb or properly transfer the force.143 

On the whole, it is apparent that sub-optimal muscular strength as well as bilateral and 

agonist/antagonist imbalance may pose an increased risk for unintentional musculoskeletal 

injury.  Research is needed to establish the relationship between muscular strength and changes 
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in proprioception following fatigue, including concentric strength characteristics of the 

quadriceps and hamstrings.  This research is especially important since inadequate muscle 

conditioning and muscle strength may predispose an athlete to early onset fatigue, and therefore 

potentially lead to decreased sensorimotor function during training, practice, and competition. 

2.6.2 Aerobic Fitness/Anaerobic Threshold 

Aerobic and anaerobic fitness, quantified by maximal oxygen uptake and lactate threshold, have 

also been identified as modifiable injury risk factors that are related to the onset of both 

peripheral and central fatigue.  Many epidemiological studies have cited aerobic fitness or 

endurance capacity as a risk factor for unintentional musculoskeletal injury, but research is 

lacking related to lactate/anaerobic threshold and injury risk. 

Inadequate aerobic fitness has been identified as a characteristic linked to unintentional 

musculoskeletal injury occurrence in prospective injury prevention research.  In an attempt to 

define the relationship between aerobic fitness and injury, Murphy et al181 discussed the 

conclusions drawn from several studies about the relationship between fitness level and injury 

occurrence.  Murphy concluded that fatigue resulting from diminished aerobic fitness may lead 

to a reduction in the protective effect of musculature on skeletal structures, but the studies related 

to the matter had used different methods to quantify aerobic fitness so comparing their findings 

is difficult.181  However, in five out of the seven studies examined, there was an association 

between measures of aerobic fitness and injury.28, 48, 124, 133, 144  In the study looking at risk factors 

for injuries during basic combat training, slower 3.2-km run times were associated with higher 

injury risk in both men and women, and lower peak oxygen uptake was associated with higher 

risk of injury.144  Further, lower exercise or sports frequency in the previous month was 
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associated with injury in men,144 implying that individuals starting physical training programs at 

a lower level of fitness are at greater risk for unintentional musculoskeletal injury.  Comparable 

results have been found in similar research of physical fitness and injury outcome during 

physical readiness training,108, 132, 133 including a study that found that slower 2-mile run time was 

associated with a higher incidence of musculoskeletal injuries, and that soldiers in the slowest 

quartile were 1.6 times more likely than subjects in the fastest quartile.142  In contrast, a study 

examining aerobic capacity measured during a continuous multistage fitness test found no 

difference between the injured and uninjured group.197 

The majority of research looking at aerobic fitness as a risk factor for unintentional 

musculoskeletal injury has used run times as the fitness variable, as run times have been 

positively correlated with maximal oxygen uptake.51  Research is limited regarding lactate 

threshold as a prospective injury risk.  There is evidence that ability to buffer and clear lactic 

acid may help mitigate the onset of fatigue. 50, 53, 79, 149, 236, 237   Studies are needed to analyze both 

aerobic fitness and lactate threshold as they relate to the onset of fatigue and as contributions to 

injury risk. 

2.7 METHODOLOGICAL CONSIDERATIONS 

In this section, the rationales behind the testing methodologies chosen will be described.  The 

specific protocols will be further detailed in chapter 3. 
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2.7.1 Isokinetic Strength Assessment 

Isokinetic strength is a common measure of quantifying muscle performance of the sensorimotor 

system.204, 218  With this measurement, the angular speed of the moving limb is held constant 

throughout a range of motion, which happens independently of magnitude and velocity of muscle 

contraction.74, 118, 120, 204  Isokinetic strength is important to assess because of the implication of 

the agonist/antagonist torque ratio and co-contraction on the maintenance of joint stability.18, 38, 

119, 198, 242, 243 

In this study, isokinetic concentric strength of the quadriceps femoris and hamstrings was 

evaluated using a Biodex isokinetic dynamometer.  Test-retest reliability of reciprocal 

concentric-concentric quadriceps/hamstrings contractions at 60 degrees/second have been 

demonstrated in our lab with ICCs of 0.809-0.9112 and SEM of 0.07-0.15 %BW.2 

2.7.2 Aerobic Capacity/Lactate Threshold Assessment 

Aerobic capacity can be evaluated in the field as well as the laboratory.  Examples of field 

measurements include multistage fitness tests157 and timed runs, where total distance achieved 

correlates with maximal oxygen uptake.51  Laboratory measurements involve metabolic 

assessment, and valid tests have been established utilizing numerous protocols,137 techniques, 

and equipment utilized across various modes of exercise.  Maximal oxygen uptake is reliable and 

predictive for evaluating differences in aerobic fitness across populations,232 and provides a more 

objective and controlled measurement than field testing of aerobic capacity.  For this study, an 

incremental treadmill protocol will be utilized based on a variation of the protocol designed by 

Astrand.55, 137, 229  The graded exercise protocol utilized in this investigation was chosen because 
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it closely imitates the type of running an athlete or trained individual would perform during a 

training run, and similar graded treadmill exercise protocols have been utilized in studies on 

athletes and trained individuals.1, 144, 178, 229 Research has demonstrated that cross-country skiers, 

rowers, and cyclists achieved significantly higher VO2max values during testing protocols that 

are more sport specific in comparison to general incline protocols,249 and that, in general, trained 

individuals perform better with a test modality resembling their typical training.85, 137, 201, 242 The 

ParvoMedics TrueOne 2400 (TrueOne2400, Utah) will be utilized to collect VO2max data. At 

various work rates during cycling, the TrueOne2400 has been shown to have similar between-

day reliability when compared with the gold standard Douglas Bag method (CV 4.7-5.7% versus 

5.3-6.0%, respectively).56 The TrueOne2400 has also shown accuracy when compared to the 

Douglas Bag, as Crouter et al56 did not find significant differences between the devices for VE, 

VO2, or VCO2 at any work rate (P > 0.05). 

Because research surrounding lactate and induction of fatigue is equivocal, lactate levels 

during incremental treadmill exercise and lactate threshold are valuable variables to consider in 

relation to proprioceptive changes after fatigue.  Lactate assessment during incremental exercise 

tests are widely used in the literature and are considered a valid and reliable estimate of 

endurance performance.9, 34, 35, 79, 82, 107, 148, 158, 236 In this study, lactate threshold will be measured 

by taking a blood sample during the last minute of each stage of the incremental treadmill 

protocol for analysis with a Lactate Pro®  Analyzer.  This method has been previously utilized in 

our laboratory.55, 229 The Lactate Pro® Analyzer has been shown to have good accuracy, with 

limits of agreement with the reference method, EBIO plus®, of -1.3 to +1.5 mMol.  It also had 

good reliability at different lactate concentrations (coefficient of variation between 2.8 and 

5.0%), and had good reliability for intra-, inter-analyzers and between test strips (ICC r=0.999).16 
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2.7.3 Threshold to Detect Passive Motion 

Threshold to Detect Passive Motion (TTDPM) is a common measurement of kinesthesia.  It has 

been found to be more beneficial than JPS to detect differences between groups, particularly 

between patients with knee injury and/or disease.86, 215  Previous research has examined 

kinesthesia utilizing TTDPM in healthy subjects and athletes, and has established the validity 

and test-retest reliability of the measurement using several techniques.4, 37 

While TTDPM is not a direct measure of functional joint stability, it is an objective 

measure of passive joint proprioception that eliminates accessory sensory cues arising from 

visual, auditory, vestibular, and cutaneous receptors. In selecting this test, we will be able to 

more directly elucidate the relationship between the selected musculoskeletal and physiological 

characteristics with knee proprioception following fatigue. Once these relationships are 

established, further research can evaluate the relationship between these characteristics and 

measures of functional joint stability, such as single-leg balance. A study by Lee and 

colleagues156 sought to correlate quadriceps and hamstring muscle strength, knee laxity, passive-

repositioning proprioception (PRP), and TTDPM with dynamic standing balance of the injured 

limb in patients with chronic anterior cruciate ligament deficiency. Of all variables, only 

TTDPM had a significant positive correlation (p<0.05) with dynamic single-limb stance 

balance,156 suggesting that training to improve TTDPM in injured individuals may help restore 

functional joint stability. 

Lephart and colleagues159 assessed passive joint motion in the flexion direction in female 

gymnastic athletes compared with healthy controls starting in 45 degrees of knee flexion.  The 

TTDPM test used in this study emulate principles previously established by Barrack et al20-24 and 

Skinner,238, 239 which included use of a sitting position with a starting angle of 45 degrees knee 
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flexion, and accounting for external sensory cues by utilizing a blindfold, white noise, and a 

pneumatic sleeve.  The leg was passively flexed during five repetitions at 0.5 degrees/second, 

and he/she stopped the machine using a hand-held switch when motion was detected.  Methods 

comparable to those utilized in the Lephart study will also be implemented in this study, and a 

similar TTDPM protocol has shown test-retest reliability of r=0.92.162, 251 

2.7.4 Fatigue Protocol 

Fatigue may be induced by exercise of varying intensities and durations.  Typically, these 

characteristics and the metabolic pathways utilized during the activity will implicate the level of 

recovery from fatigue.  When a muscle is continuously stimulated at a high frequency close to 

maximal force, the force production often rapidly declines, but recovery is also very rapid and 

occurs in about one to two seconds.8, 32  The rapid decline in force is attributed to a loss of 

muscle circulation, which often occurs at ~50% of maximal effort exertion.19 Central fatigue is 

likely induced from repeated or sustained maximal contractions, rather than a single brief 

voluntary contraction (MVC).192 

Given that equivocal results were found following various local and general fatigue 

protocols in the section detailing fatigue and proprioception, the fatigue protocol chosen for this 

study included components that elicit both peripheral (local) and general (central) fatigue and 

simulate fatiguing motions likely experienced during a game situation.  Therefore, a protocol 

utilized by Wilkins and colleagues264 was selected, which includes seven different stages of 

various fitness components (i.e. sprinting, stepping, pushups, sit-ups).  In order to confirm that 

fatigue has been produced, rating of perceived exertion scales were utilized,39 heart rate was 

monitored, and lactate measurements were taken.189 
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3.0  METHODOLOGY 

3.1 EXPERIMENTAL DESIGN 

This study utilized a cross-sectional, correlational design.  A correlational design was chosen to 

determine the strength and direction of the relationship between the variables outlined in the 

specific aims. However, this study design will not provide evidence for causality between the 

predictor and outcome variables, so results were interpreted with caution. 

3.2 SUBJECT RECRUITMENT 

The study was approved by the Institutional Review Board at the University of Pittsburgh prior 

to implementation of all research procedures.  Subjects were recruited from the communities 

surrounding the University of Pittsburgh.  Study flyers were posted and distributed, and 

interested participants called the NMRL for additional details. 
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3.3 SUBJECT CHARACTERISTICS 

3.3.1 Inclusion Criteria 

Subjects were included for this study if female, aged 18-40, physically active under the definition 

that they work out at least five days per week for at least 50 minutes per session, and that they 

had been working out at this frequency for at least six months. 

Females were chosen for inclusion in this study because research has shown that there are 

proprioceptive differences between genders,153, 202 females are at greater risk of knee injury than 

males, 15, 29, 100, 104 females may have reduced O2 carrying capacity compared to males,167 and 

that females may be more fatigue resistant than males.117, 173, 177, 261 Because of the potentially 

large baseline differences in anthropometric, musculoskeletal, and physiological characteristics 

between sexes, female only inclusion allowed for a more homogenous sample for data collection 

and analysis. 

3.3.2 Exclusion Criteria 

Subjects were excluded if they were male and did not meet the above exercise requirements.  

They were also excluded if they exhibited lower extremity injury symptoms within the previous 

months, had lower extremity injury within the past year, or had lower extremity surgery within 

the past 5 years.  Since subjects engaged in intense exercise as part of the testing protocol, they 

were excluded if they had a medical condition that contraindicated participation, such as a 

cardiovascular, pulmonary, vestibular, neurological, or vascular condition. Questions found in 

the Physical Activity Readiness Questionnaire (PAR-Q, 



 52 

http://www.csep.ca/CMFiles/publications/parq/par-q.pdf) were included in the phone screen and 

were used to exclude a subject with potential contraindication to participation in maximal 

exercise. These questions were designed to exclude individuals with potential cardiac issues and 

exclude those who were on certain medications, such as beta-blockers. 

3.4 POWER ANALYSIS 

To the author’s knowledge, there were no previous studies examining the correlational 

relationship of the independent and dependent variables outlined in this study  Using a 

PASS11(NCSS, LLC., Kaysville, Utah) sample size calculator, a sample size of 20 subjects 

would achieve 81.2% power to detect a difference of -0.40 between the null hypothesis 

correlation of 0.40 and the alternative hypothesis correlation of 0.80 using a two-sided 

hypothesis test with a significance level of 0.05.98, 103, 267 To account for 30% attrition, a total of 

N=26 subjects were needed for enrollment into the study, 

3.5 INSTRUMENTATION 

3.5.1 BODPOD Body Composition System 

The BODPOD Body Composition System (Cosmed, Chicago IL) was utilized in order to 

measure % body fat as part of demographic data collection. The BODPOD has been shown to be 

reliable in a large, heterogenous sample,190 and has been shown to be valid compared to 

http://www.csep.ca/CMFiles/publications/parq/par-q.pdf
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hydrostatic weighing and dual x-ray absorptiometry in a population of female collegiate track 

athletes.260 Our laboratory has also demonstrated reliability and validity of the instrument 

(ICC=0.98, SEM=0.47% BF). 

 

3.5.2 Biodex System 3 Multi-Joint Testing and Rehabilitation System 

The Biodex System 3 Multi-Joint Testing and Rehabilitation System (Biodex Medical Inc, 

Shirley, New York) is an isokinetic dynamometer with capabilities to measure strength at the 

shoulder, elbow, wrist, hip, knee, and ankle in passive, eccentric, isokinetic, and isometric 

modes.  The Biodex System 3 was used to measure TTDPM of the knee as well as to measure 

isokinetic and isometric strength of the quadriceps and hamstring. 

3.5.3 PresSsion Gradient Sequential Compression Unit 

A PresSsion gradient sequential compression unit and compression sleeve (Chattanooga group, 

Hixson, TN) were utilized during TTDPM in order to mitigate feedback from tactile sense.  The 

pneumatic sleeve was inflated around the lower leg to a constant pressure (40 mm Hg) during the 

test so that equal sensation was felt over the entire limb. 

3.5.4 ParvoMedics Metabolic Unit 

The ParvoMedics TrueOne 2400 (TrueOne4200, Utah) was utilized to measure metabolic 

variables.  The TrueOne 2400, which is a non-breath-by-breath system that uses a mixing 
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chamber, has been previously established as an accurate device for measuring gas exchange,27 

and provides accurate and reliable results when compared to the gold standard Douglas bag.56 

3.5.5 OMNI Rating of Perceived Exertion (RPE) Scale 

The OMNI RPE scale was utilized during the maximal oxygen uptake test and fatigue protocol 

in order to quantify perceived exertion.  While the OMNI scale was originally designed for 

children and adolescents, a version has been created for adults.223 The OMNI scale for adults 

displays the numbers 0-10 on a chart with pictorial descriptors which correspond with effort 

experienced during a stage of exercise, with 0 meaning  “extremely easy” and 10 being 

”extremely hard.”39, 223  The OMNI scale has been shown to have high reliability in female 

adolescents performing graded treadmill exercise (r=0.91-0.95) and was shown to have better 

reproducibility than the Borg scale (r=0.64-0.78).207, 223 The OMNI scale has been validated 

against criterion measures such as heart rate (HR) and VO2, and has been validated in adults (M, 

F) and children (C) performing cycle ergometer exercise223, 224 (HR: F, r=0.94; M, r=0.92; 

C=0.93; VO2: F, r=0.93; M, r=0.94; C, r=0.94), and female adolescents performing graded 

treadmill exercise207, 223 (HR: r=0.82, VO2: r=0.88) (all P<0.05). Similar RPE scales have been 

correlated with other physiological measurements relating to effort and exertion, including blood 

lactate concentration. 

3.5.6 Lactate Pro® Lactate Measurement System 

The Lactate Pro® Analyzer was utilized to measure blood lactate concentration during the 

incremental treadmill test for maximal oxygen uptake as well as during the administration of the 
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fatigue protocol.  The Lactate Pro®  Analyzer has been shown to be easy-to-use, accurate, 

reliable, and shows high levels of agreement with the ABL 700 Series Acid-Base analyser, the 

Accusport Lactate Meter, and the YSI 2300 Stat lactate analyser.212 

3.6 TESTING PROCEDURES 

3.6.1 Informed Consent, Exercise History Questionnaire, Dietary Recall 

Subjects were given the informed consent document prior to engaging in any research activities.  

The principal investigator explained the contents of the consent and allowed the potential 

participant to ask any questions regarding the study.  Once subject gave informed consent, 

inclusion/exclusion criteria were reconfirmed prior to study enrollment. 

All research procedures took place at the Neuromuscular Research Laboratory (NMRL) within 

the Department of Sports Medicine and Nutrition at the University of Pittsburgh.  Subjects 

reported for two testing sessions.  The first session consisted of administration of an exercise 

history and dietary recall questionnaire, a TTDPM familiarization session, where subjects 

underwent a full practice session of TTDPM in both the extension and flexion directions.  Then, 

subjects performed a test of muscular strength utilizing the Biodex System 3 and a test of VO2max 

and lactate threshold.  During the second session, subjects performed a test of TTDPM, 

participated in a fatigue protocol, and then performed a follow-up test of TTDPM. 

Prior to reporting for each test session, subjects were instructed not to participate in 

strenuous exercise within 24-hours of the session to mitigate residual fatigue as a confounding 

variable. They were also instructed not to consume a meal within 2 hours of each test session. 
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3.6.2 Exercise History Questionnaire and ASA 24-hour Dietary Recall 

After verbally stating that they understood the study and signed the informed consent, subjects 

were administered an Exercise History Questionnaire.  The questionnaire was modified and 

designed in order to quantify participation in different areas of fitness as well as to assess 

perceived fitness level in those areas.  A copy of the questionnaire is found in Appendix A. 

Subjects were also given a 24-hour dietary recall questionnaire. This questionnaire is an 

automated, self-administered 24-hour dietary recall called ASA24 developed by the National 

Cancer Institute. The ASA 24 has multi-level food probes to accurately assess food types and 

amounts, and uses a triple-pass system to cue users to include items often overlooked, such as 

beverages and condiments. The questionnaire also includes pictures to help the user choose the 

correct portion size of food consumed. The information was analyzed through the program 

software using the USDA’s most current Food and Nutrient Database for Dietary Studies 

database. 

3.6.3 Body Composition Measurement 

The BODPOD Body Composition System was utilized in order to measure body composition 

(fat mass and fat-free mass). The system utilizes air displacement plethysmography in order to 

measure body volume and calculate body density. Prior to testing, the system underwent a 

standardized calibration with a 50.683 L calibration cylinder in addition to a separate two-point 

calibration prior to each test. The subject wore a spandex outfit or swimsuit as well as a cloth 

swim cap prior to entering the BODPOD. They also removed any metal jewelry. Body volume 
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was measured until two tests met criteria for consistent tests. Lung volume was predicted and 

percent body fat was calculated using an appropriate densitometry equation. 

3.6.4 Threshold to Detect Passive Motion 

Threshold to detect passive motion was measured during both test sessions.  A TTDPM 

familiarization session was performed at the beginning session 1.  Then, during session 2, 

TTDPM was measured before and after the fatigue protocol. 

Prior to TTDPM testing, the Biodex System 3 was calibrated according to factory 

recommendations.  The limb tested was the dominant leg, defined as the leg used to kick a ball as 

hard as possible.  Subject set-up included setting the chair of the device to the subject by lining 

the lateral condyle of the femur with the center of the dynamometer and raising the chair height 

and fore/aft until proper alignment was achieved.  A cotton tube sock was placed on the lower 

leg before being placed inside the pneumatic sleeve, which was inflated to 40 mmHg so that the 

subject felt equal sensation along and around the lower limb.  Range of motion was set by 

extending the knee and jig arm of the dynamometer to set the “away” limit, and flexing the knee 

and jig arm to set the “toward” limit.  The subject was placed at a starting position of 

approximately 20 degrees of knee flexion, and knee position was confirmed with a goniometer 

measuring along the line of the lateral malleolus and lateral condyle.  Software set-up included 

setting the “go-to” button to record the degree of starting position, and the value was typed into 

the “get-position” box.  Isometric mode was selected and starting position was synchronized 

before passive mode selection and zeroing the speed values.  The researcher manually selected 

the randomized direction of motion (clockwise or counterclockwise) and set the speed of 

movement to 0.25 degrees per second.  The subject was instructed to hit the remote button when 
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they were able to detect both motion and direction of motion in either knee extension or flexion.  

Prior to the start of the test, subjects were outfitted to eliminate visual and auditory sensory cues 

by being blindfolded and wearing ear plugs as well as headphones with white noise.  The 

researcher recorded the degrees from the start position until the subject hits the remote button, as 

well as the direction of the movement. A total of 10 repetitions were performed, with 5 in the 

flexion direction and 5 in the extension direction. Direction of movement was recorded, and a 

trial was counted even if direction was incorrectly identified. 

 

 

 

Figure 1. Threshold to Detect Passive Motion Set-up 
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3.6.5 Muscular Strength 

Isokinetic muscular strength of the quadriceps and hamstring was assessed on Day 1 following 

TTDPM familiarization (con/con, 60 degrees/second).  The Biodex System 3 was set up and 

calibrated according to factory recommendations. Then, subject set-up was initiated, consisting 

of setting the subject’s knee joint center with the axis of the dynamometer.  Chair height and 

fore/aft was adjusted so that there was a two-finger width space between the edge of the chair 

and the popliteal fossa behind the knee joint.  The calf pad of the jig arm was adjusted so that the 

bottom edge of the pad was two-finger-widths above the calcaneus.  The subject was secured to 

the chair using padded straps across the shoulders, lap, thigh of testing leg, and lower leg to the 

calf pad.  Subjects were instructed to place their hands on the handlebars but not to use them as 

leverage.  Prior to strength assessment, range-of-motion/safety stop limits were set by extending 

the knee and jig arm to full extension for the “away” limit, and then brought to just under 90 

degrees of flexion for the “toward” limit.  Limb weight was taken into account for the force of 

gravity at full extension, and then neutral knee angle was set.  Subjects first performed three 

practice repetitions of knee flexion and extension at 50% maximal effort, then three practice 

repetitions at 100% maximal effort followed by one minute of rest.  During the actual test, 

subjects performed five maximal effort repetitions of knee flexion and extension.  Verbal cues 

were given during the test to “kick away as hard and as fast as you can” and “pull back as hard 

and as fast as you can.”  The results report generated over the five maximal effort repetitions 

reported peak torque produced during knee flexion and extension normalized to body weight. 
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3.6.6 Maximal Oxygen Uptake 

Maximal oxygen uptake was assessed on Day 1 following strength testing during a graded 

exercise treadmill test utilizing the ParvoMedics TrueOne2400 metabolic unit.  Prior to subject 

testing, the metabolic unit was warmed up and calibrated according to factory recommendations.  

Subject set-up included acquisition of height and weight using a calibrated wall stadiometer and 

electronic scale, and being outfitted with a Polar heart rate monitor strap worn just below the 

chest level.  Then, after being equipped with the face mask, subjects were instructed to perform a 

five minute warm-up on the Woodway treadmill at a pace corresponding with 60% of their 

maximal effort, then begin the graded exercise test, which is an adapted Astrand protocol.137  

Subject pre-selected a speed that they predicted they would be able to maintain for a moderately 

long distance run.  The selected speed remained constant through the entire test, and incline was 

increased by 2% every three minutes of testing.  Subjects continued the protocol until volitional 

exhaustion.  To encourage completion of a maximal effort test, RPE will be collected with an 

OMNI RPEscale39 at the end of each three-minute stage.  189   The OMNI scale was used to 

measure perceived exertion of overall body (RPE-O), limbs (RPE-L and RPE-A), and chest 

(RPE-C). The subject was given a standardized set of instructions for perceived exertion, with 

the adult definition being “What is the subjective intensity of effort, strain, discomfort, or fatigue 

that I feel during exercise”?223 An example of an OMNI scale and verbal instructions are found 

in Appendix A. Prior to using the scale, anchor points were established with the subject using a 

memory procedure. The subject was asked to think of a time when she had exerted herself at a 

level corresponding with the pictures on the OMNI scale at the bottom and top (low and high 

anchor points).223 These anchor points were used to estimate levels of exertion during exercise, 
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and, for instance, if the subject felt they were working at 50% of their maximal exertion, their 

RPE would fall at 5 or 6 on the OMNI scale.223  A maximal effort was verified by at least two of 

the following criteria:  maximum heart rate during the test achieving within 10 bpm of age-

predicted heart rate maximum; a plateau of oxygen uptake values with increasing intensity; RER 

greater than or equal to 1.1; blood lactate concentration of greater than or equal to 8 mmol/L. 

3.6.7 Lactate Threshold 

Lactate threshold was measured during the graded exercise test described above.  During the last 

minute of each three-minute stage, the subject received a small finger stick with a lancet needle.  

Prior to receiving the finger stick, the tester sanitized and protected her own hands with non-latex 

gloves, then sanitized the surface of the subject’s skin with an alcohol swab, and blotted the area 

with a sterile gauze pad.  After the finger stick, the initial drop of blood was wiped from the 

finger, so that the second drop of blood was able to be collected on the lactate strip for analysis 

in the Lactate Pro® analyzer.  The Lactate Pro® analyzer gave a digital reading of blood lactate 

level one minute after the test strip received the drop of blood.   

3.6.8 Fatigue Protocol 

Day 2 consisted of pre- and post-fatigue TTDPM assessment. The fatigue protocol utilized a 

circuit design and was performed in the Neuromuscular Research Laboratory.  The seven stations 

in the fatigue protocol consisted of: 

Station 1: 5-min run at 95% VO2 pace 

Station 2: 3-min run at 110% VO2 pace 
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Station 3: 2-min of push-ups (modified) 

Station 4: 2-min of sit-ups (YMCA partial curl-up) 

Station 5: 3-min of 12-in step-ups 

Station 6: 3-min run at 110% VO2 pace 

Station 7: 2-min run at 115% VO2 pace 

While the original circuit proposed by Wilkins et al264 utilized a gymnasium floor to 

perform the running exercises, each running exercise was replicated on the Woodway treadmill 

within the laboratory using speeds corresponding to 95% (jogging) 110% (sprinting), and 115% 

(maximal run, Station 7) of the speed utilized during maximal oxygen uptake. The push-ups were 

performed in the modified position on the subject’s knees. The sit-ups were modified to use the 

YMCA partial curl-up protocol, where the subject began with knees bent at a 30 degree angle 

and feet placed flat on the ground. Subjects curled up with arms extended until their fingertips 

reached their knees before returning to the start position. Subjects were encouraged to complete 

as many modified push-ups, curl-ups, and step-ups as possible during stations 3, 4, and 5 and 

were encouraged to continue movement throughout the duration of each station.  OMNI RPE 

(RPE-A, RPE-L, RPE-C, RPE-O), heart rate, and lactate levels were measured at the conclusion 

of each station during a 1-minute break. 

If at the end of Station 7 the subject was not volitionally fatigued, the station continued 

by increasing the incline by 1% each minute until volitional exhaustion. Following Station 7, 

maximal effort was verified with perceptual (OMNI RPE criteria), and at least one of two 

physiological (lactate level equal to or above 8.0 mmol/L, or heart rate within 10 bpm of 

previously determined heart rate max) criteria. 



 63 

3.7 DATA REDUCTION 

Threshold to detect passive motion results were calculated by averaging the first three correctly 

identified angle error measures in the flexion and extension direction for each test. For the pre- to 

post-fatigue TTDPM assessments, the average angle error for each direction (flexion and 

extension) were calculated between pre- and post-fatigue. Isokinetic strength of the quadriceps 

and hamstrings normalized to body weight (%BW, kg) was determined from a print-out obtained 

from the Biodex System 3 Dynamometer following strength assessment. Flexion/extension ratios 

were calculated by dividing the average normalized peak flexion torque by the average 

normalized peak extension torque. Post-test analysis determined VO2 max by applying a 15-

second filter to the breath-by-breath data and exporting the file to Microsoft Excel.  Then, 

oxygen uptake values were plotted to determine the minute of data with the four highest 

consecutive points.  These points were then averaged to determine VO2 max normalized to body 

weight (ml/kg/min). Post-test analysis determined the stage at which lactate threshold occurred 

by plotting each lactate value in a line graph.  Lactate threshold was determined using two 

methods: the lactate level occurring prior to a greater than 1 mmol/L increase with increasing 

intensity and by best visual determination of best fit inflection point on the line graph plotted.  

Then, the minute-average oxygen uptake at the end of the corresponding stage was calculated 

and divided into VO2 max in order to quantify lactate threshold (% of VO2max). 
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3.8 DATA ANALYSIS 

Data was first assessed for normality.  Descriptive data was reported as mean ± standard 

deviation (SD) if normality was assumed and as median and interquartile range if assumptions 

were violated.  If assumptions of normality were met, Pearson correlation coefficients were 

calculated for each relationship described in the Specific Aims.  If assumptions of normality 

were violated, Spearman’s Rho correlation coefficients were calculated instead.  Baseline 

musculoskeletal and physiological characteristics were also correlated with pre-fatigue TTDPM. 

Additional analyses were conducted in order to assess significant changes from pre- to post-

fatigue TTDPM in each direction, as well as significant changes in isometric quadriceps strength, 

hamstring strength, and quadriceps/hamstring ratio from pre- to post-fatigue (T-test if normality 

assumed, Mann Whitney-U or Wilcoxon Signed Rank test if normality violated). 
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4.0  RESULTS 

The purpose of this study was to investigate the relationship between baseline measures of 

isokinetic knee strength and physiological characteristics with threshold to detect passive motion 

(TTDPM) of the knee following a fatiguing exercise protocol. 

4.1 SUBJECTS 

4.1.1 Demographic Data 

A total of 25 female subjects expressed interest in study participation, and 22 met all eligibility 

criteria outlined in the initial phone screen. Twenty female subjects enrolled in the study and 

completed data collection and two did not enroll due to scheduling conflicts. Power analysis for 

the significant correlations described above revealed that 20 subjects would be needed to 

complete data collection, and a total of 20 females meeting all eligibility criteria participated in 

all study activities. 

Subject demographics are presented in Table 1. The age range of study participants was 

20-36 years old.  Of the twenty participants, 17 fell within the BMI category for normal weight, 

and three subjects fell within the overweight category.97 Of the 20 participants, six fell in the 

“Well Above Average” classification for Body Fat% according to age and gender as outlined by 
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the American College of Sports Medicine,68 four were “Above Average,” four were “Average,” 

four were “Below Average,” and two were “Well Below Average.” For reference, with the body 

fat classification, “Above Average” indicates the subject had a lower body fat, while “Below 

Average” indicates a subject had higher body fat. All subjects were right leg dominant, defined 

as the leg used to kick a ball as hard as possible, so all strength and proprioception data were 

collected on the right leg. 

 

 

Table 1. Demographic Data 

Mean SD Median LQ UQ
Age 28.7 ± 5.6 28.5 23.5 28.5
Height (cm) 165.6 ± 4.3 165.5 161.7 166.7
Weight (kg) 61.8 ± 8.0 60.4 56.5 63.6
BMI (kg/m2) 22.5 ± 2.3 22.1 20.9 23.3
Body Fat (%) 23.3 ± 5.4 22.4 21.7 27.7
LQ = Lower Quartile
UQ = Upper Quartile  

 

4.1.2 Exercise History and Dietary Recall 

Exercise history was collected in order to quantify the type of training subjects participated in. 

Dietary recall was collected in order to obtain a sample of total intake and macronutrient 

distribution. Individual results of the exercise history questionnaire and ASA24 Dietary Recall 

are presented in Appendix A. Data presented below represent mean ± standard deviation. 

Exercise History Questionnaire 
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Results of the exercise history questionnaire revealed that the subjects participate in a 

wide range of activities. Seventeen of the 20 subject participated in high school athletics and 4 

participated in collegiate athletics. On a 1-5 scale, with 1 being lowest and 5 being highest, 

subjects rated their overall athletic ability as 3.8±0.6, competitiveness as 3.6±1.1, cardiovascular 

fitness as 3.8±0.8, muscular strength as 3.7±0.7, and flexibility as 3.1±0.8. 

Nineteen out of 20 subjects reported participating in endurance activities 5.3±1.0 days per 

week for 46.7±12.1 minutes per session at an exertion level of 3.7±0.6 on a 1-5 scale. Sixteen out 

of 20 subjects reported participating in strength training 4.1±1.5 days per week for 36.7±15.0 

minutes per session at an exertion level of 3.7±0.8 on a 1-5 scale. 

Dietary Recall 

Subjects consumed 1913.1±738.3 kcal for total daily intake, with approximately 

17.0±5.4% of daily intake from protein, 30.5±9.4% from fat, and 50.6±14.0 from carbohydrate. 

Subjects consumed 79.1±38.1 g (1.3±0.6g/kg) of protein, 62.9±27.3 g (1.0±0.4 g/kg) of fat, and 

246.7±123.882 g (4.1±2.0 g/kg) carbohydrate. 

4.2 MUSCULOSKELETAL STENGTH AND PHYSIOLOGICAL 

CHARACTERISTICS 

4.2.1 Isokinetic Strength Data 

Baseline isokinetic strength assessment results are presented in Table 2. Peak isokinetic knee 

extension and knee flexion strength are reported as the average peak torque produced across five 
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trials of reciprocal concentric contractions at 60°/second in absolute terms and normalized to 

body weight (kg). 

 

 

Table 2. Isokinetic Strength Data 

Mean SD Median LQ UQ
Quad Strength (Nm) 134.7 ± 22.8 140.8 110.6 146.1
Quad Strength (%BW) 219.3 ± 31.6 223.8 178.5 238.1
Ham Strength (Nm) 67.4 ± 13.7 65.2 54.5 69.1
Ham Strength (%BW) 109.8 ± 19.7 112.4 92.4 115.5
Flex/Ext Ratio 0.50 ± 0.06 0.52 0.46 0.52
LQ = Lower Quartile
UQ = Upper Quartile
Quad Strength = Average peak torque produced over 5 trials
Ham Strength = Average peak torque produced over 5 trials  

4.2.2 Aerobic Capacity and Lactate Threshold Data 

Results of aerobic capacity and lactate threshold assessment are presented in Table 3. Peak 

oxygen uptake (VO2 Peak) was reported instead of maximal oxygen uptake because not all 

subjects met the physiological criteria for a maximum test. Peak oxygen uptake was defined as 

the highest, 15-second interval of VO2 data collected during the test. According to normative 

maximal anaerobic power data by age and gender,97 16 subjects fell within the 90th percentile, 

two within the 80th percentile, one within the 70th percentile, and one within the 60th percentile. 

Lactate threshold values, calculated by both the point before a 1mmol increase and by the point 

of noticeable inflection point, were reported as a percent of VO2 Peak. 
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Table 3. Physiological Characteristics 

 

Mean SD Median LQ UQ
VO2 Peak (ml/kg/min) 47.1 ± 4.6 48.2 43.4 49.7
HR Peak (bpm) 187.8 ± 11.1 185.0 179.0 200.5
Lactate Peak (mmol) 8.8 ± 2.0 8.8 7.4 10.0
RPE-L at end stage 8.0 ± 1.8 8.5 7.5 9.0
RPE-A at end stage 6.2 ± 2.2 6.5 5.0 8.0
RPE-C at end stage 8.5 ± 1.2 9.0 8.0 9.0
RPE-O at end stage 8.7 ± 0.8 9.0 8.5 9.0
Lactate at LT, 1 mmol (mmol) 3.2 ± 0.9 3.0 2.5 3.5
VO2 at LT, 1 mmol (ml/kg/min) 38.0 ± 5.6 38.3 33.9 41.5
LT, 1 mmol (%VO2peak) 80.4 ± 7.1 81.2 77.5 83.5
HR at LT, 1 mmol (bpm) 173.0 ± 14.4 173.3 163.8 186.9
Lactate at LT, inflecion (mmol) 4.1 ± 0.8 4.1 3.7 4.5
VO2 at LT, inflection (ml/kg/min) 40.3 ± 5.3 39.8 36.3 44.4
LT, inflection (%VO2peak) 85.4 ± 4.8 85.5 84.1 87.9
HR at LT, inflecion (bpm) 176.9 ± 11.8 175.6 170.7 188.8
Test Speed (mph) 6.5 ± 0.6 6.5 6.3 6.7
End Time (m.s) 12.6 ± 2.3 13.0 12.3 14.8
LQ = Lower Quartile
UQ = Upper Quartile
VO2 Peak = Peak Oxygen Uptake (15-second interval)
HR Peak = Peak Heart Rate (15-second interval)
RPE-L = OMNI Rating of Perceived Exertion, Legs
RPE-A = OMNI Rating of Perceived Exertion, Arms
RPE-C = OMNI Rating of Perceived Exertion, Chest
RPE-O = OMNI Rating of Perceived Exertion, Overall Body
VO2 at LT = Oxygen Uptake at Lactate Threshold 
LT, 1 mmol = Lactate Threshold determined before 1 mmol increase in blood lactate
HR at LT = Heart Rate at Lactate Threshold
LT, inflection = Lactate Threshold determined at point of visible threshold



 70 

4.3 PRE- TO POST-FATIGUE TTDPM AND ISOMETRIC STRENGTH 

4.3.1 Fatigue Protocol Results 

Results of the fatigue protocol are displayed in Table 4. Fatigue was quantified by perceptual and 

physiological assessments following each station. As a group, subjects reached near-maximal 

perceived exertion in their legs, chest, and overall, reached above maximal criteria for blood 

lactate (>8.0 mmol), and reached within 10 bpm of age-predicted heart rate max. 

 

Table 4. Fatigue Protocol Results 

Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
Time (min) 5.0 ± 0.0 3.0 ± 0.0 2.0 ± 0.0 2.0 ± 0.0 3.0 ± 0.0 3.0 ± 0.0 4.9 ± 1.8
Speed (mph) 6.2 ± 0.6 7.2 ± 0.7 -- -- -- -- -- -- 7.2 ± 0.7 7.5 ± 0.7
Performance (#) -- -- -- -- 59.6 ± 15.5 71.0 ± 11.2 108.8 ± 18.8 -- -- -- --
Lactate (mmol) 2.9 ± 1.6 3.7 ± 1.3 5.6 ± 1.4 6.2 ± 1.3 6.8 ± 1.9 7.1 ± 2.3 8.3 ± 2.4
Heart Rate (bpm) 151.8 ± 12.1 168.9 ± 11.8 133.7 ± 17.5 120.7 ± 25.0 169.4 ± 15.8 174.8 ± 12.3 181.8 ± 11.3
RPE-L 2.9 ± 1.2 4.2 ± 1.3 3.2 ± 1.5 3.1 ± 1.8 6.8 ± 1.4 6.7 ± 1.4 8.4 ± 1.5
RPE-A 2.0 ± 1.0 3.0 ± 1.3 7.4 ± 1.0 4.8 ± 1.9 4.4 ± 2.2 5.1 ± 2.0 7.1 ± 2.2
RPE-C 3.1 ± 1.0 4.5 ± 1.1 5.4 ± 2.1 5.3 ± 1.4 6.7 ± 1.4 7.1 ± 1.2 9.4 ± 0.5
RPE-O 2.9 ± 1.2 4.5 ± 0.9 6.2 ± 1.3 5.7 ± 1.3 6.8 ± 1.5 7.0 ± 1.2 9.1 ± 0.8

Station 7
Run Run Push-ups Sit-ups Step-ups Run Run

Station 1 Station 2 Station 3 Station 4 Station 5 Station 6

RPE-A = OMNI Rating of Perceived Exertion, Arms
RPE-C = OMNI Rating of Perceived Exertion, Chest
RPE-O = OMNI Rating of Perceived Exertion, Overall Body

Station 1 = 95% VO2max pace
Station 2 = 110% VO2max pace
Station 6 = 110% VO2max pace
Station 7 = 115% VO2max pace, 1% incline each additional minute beyond 2 minutes

RPE-L = OMNI Rating of Perceived Exertion, Legs
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4.3.2 Threshold to Detect Passive Motion 

Threshold to detect passive motion (TTDPM) was measured during Visit 2 prior to and 

immediately following the fatiguing exercise protocol. Ten trials were collected, with five trials 

each randomized into extension and flexion. The first three trials in extension and flexion with 

correctly identified direction averaged for analysis. Results from pre- and post-fatigue TTDPM 

are presented in Table 5. Pre- to post-fatigue TTDPM differences in extension and flexion 

violated the assumptions of normality when assessed with a Shapiro-Wilk test, so nonparametric 

analyses were utilized to determine significant differences between pre- to post-fatigue TTDPM 

scores. No significant differences were demonstrated between pre- and post-fatigue average 

angle error difference during TTDPM into either extension of flexion. Mean and median results 

are presented as the error from starting position, with all extension results being positive, and all 

flexion results being negative. 

 

Table 5. Pre- to Post-Fatigue TTDPM Changes 

Pre-Post
Mean SD Median LQ UQ Mean SD Median LQ UQ p-value

TTDPM Ext (°) 1.54 ± 0.96 1.33 0.76 2.02 1.54 ± 0.77 1.53 0.90 1.90 0.65

TTDPM Flex (°) -1.52 ± 1.09 -1.05 -1.82 -0.94 -1.51 ± 1.51 -2.27 -2.02 -0.83 0.48

TTDPM Ext (°) =  Average of first three correct trials in extension

TTDPM Flex (°) =  Average of first three correct trials in flexion

Pre-Fatigue Post-Fatigue

Wilcoxon Signed Rank Test utilized to determine significant differences from pre- to post-fatigue
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4.3.3 Pre- to Post-Fatigue Isometric Strength Characteristics 

Isometric strength of the quadriceps and hamstrings was measured in order to demonstrate 

fatigue of the knee musculature following the fatigue protocol. Isometric strength was measured 

at 45° knee flexion as was measured in a reciprocal extension/flexion format, where subjects 

maximally extended and maximally flexed their knee for 5 seconds over 3 trials, with a 5-second 

break between each direction and each trial. Data are reported as the average peak torque 

produced across the three trials in each direction normalized to body weight (kg). Pre- to post-

fatigue isometric extension strength, flexion strength, and flexion/extension strength ratio 

differences violated the assumptions of normality when assessed with a Shapiro-Wilk test, so 

nonparametric analyses were utilized to detect significant differences between strength measures 

from pre-fatigue to post-fatigue. Isometric quadriceps strength was not significantly different 

after the fatigue protocol, while isometric hamstring strength and flexion/extension ratio 

significantly decreased following the fatigue protocol. Results are displayed in Table 6. 

 

 

Table 6. Pre- to Post-Fatigue Isometric Strength 

 

Pre-Post
Mean SD Median LQ UQ Mean SD Median LQ UQ p-value

Quad Strength (%BW) 217.3 ± 47.7 213.5 178.4 249.6 214.1 ± 42.4 200.3 180.3 256.1 0.681
Ham Strength (%BW) 116.9 ± 25.3 115.2 106.2 128.0 105.5 ± 24.4 109.2 88.4 128.5 0.004**
Flex/Ext Ratio 0.55 ± 0.11 0.54 0.49 0.60 0.50 ± 0.10 0.50 0.41 0.58 0.012*

**Significantly different at the P<0.01 level *Significantly different at the P<0.05 level

Wilcoxon Signed Rank Test utilized to determine significant differences from pre- to post-fatigue
Quad Strength = Average peak isometric strength over 3, 5-second trials
Ham Strength = Average peak isometric strength over 3, 5-second trials

Pre-Fatigue Post-Fatigue
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4.4 RELATIONSHIP BETWEEN MUSCULOSKELETAL STRENGTH, 

PHYSIOLOGICAL CHARACTERISTICS, AND TTDPM 

All variables in the correlation analyses were tested for normality utilizing a Shapiro-Wilk test. 

The following variables violated assumptions of normality: lactate threshold calculated at the 

point before 1mmol lactate increase, pre-fatigue TTDPM in extension, pre-fatigue TTDPM in 

flexion, post-fatigue TTDPM in flexion, pre- to post-fatigue TTDPM difference in extension and 

flexion, and percent change from pre- to post-fatigue TTDPM in extension and flexion. 

Therefore, Spearman’s Rho correlation coefficients were calculated for all correlations analyses. 

Although post-fatigue TTDPM in the extension direction was normally distributed, results of 

Pearson correlation coefficient agree with the Spearman’s Rho correlation in both significance 

and direction, so Spearman’s Rho correlations are reported for all variables to maintain 

consistency. 

4.4.1 Isokinetic Strength and TTDPM Correlation Analysis 

A Spearman’s Rho test was utilized to calculate correlation coefficients between isokinetic 

strength measured during Visit 1 and pre- to post-fatigue TTDPM differences (ΔTTDPM) 

assessed during Visit 2. Results of this correlation analysis are presented in Table 7. No 

significant correlations were observed between isokinetic knee extension strength, flexion 

strength, or flexion/extension ratio with ΔTTDPM from pre- to post-fatigue in extension or 

flexion. 
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Table 7. Isokinetic Strength (%BW) and ΔTTDPM (°) Correlation Analysis 

 

r p-value r p-value
Quad Strength (%BW) 0.019 0.937 -0.162 0.496
Ham Strength (%BW) 0.065 0.784 -0.005 0.982
Flex/Ext Ratio 0.236 0.316 0.202 0.394

Ham Strength = Average peak torque produced over 5 trials
Quad Strength = Average peak torque produced over 5 trials

Extension Flexion
Pre- to Post- Fatigue TTDPM

 

 

Correlation coefficients were also calculated to determine the relationship between 

isokinetic strength variables and pre-fatigue and post-fatigue TTDPM values in extension and 

flexion. No significant correlations were observed between isokinetic knee extension strength, 

flexion strength, or flexion/extension ratio with pre-fatigue or post-fatigue TTDPM values in 

extension or flexion, with the exception of a significant, negative correlation between knee 

flexion/extension ratio and pre-fatigue TTDPM in extension. Results of these analyses are 

presented in Tables 8 and 9. 
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Table 8. Isokinetic Strength (%BW) and Pre-Fatigue TTDPM (°) Correlation Analysis 

 

r p-value r p-value
Quad Strength (%BW) -0.194 0.412 0.069 0.774
Ham Strength (%BW) -0.199 0.401 0.017 0.942
Flex/Ext Ratio -0.231 0.024* 0.024 0.920

*Significant correlation at the P<0.05 level

Quad Strength = Average peak torque produced over 5 trials
Ham Strength = Average peak torque produced over 5 trials

Pre-Fatigue TTDPM
Extension Flexion

 

 

Table 9. Isokinetic Strength (%BW) and Post-Fatigue TTDPM (°) Correlation Analysis 

 

r p-value r p-value
Quad Strength (%BW) -0.138 0.561 -0.003 0.990
Ham Strength (%BW) -0.138 0.561 -0.082 0.731
Flex/Ext Ratio -0.152 0.523 0.016 0.947
Quad Strength = Average peak torque produced over 5 trials
Ham Strength = Average peak torque produced over 5 trials

Extension Flexion
Post-Fatigue TTDPM

 

4.4.2 Physiological Characteristics and TTDPM Correlation Analysis 

A Spearman’s Rho test was utilized to calculate correlation coefficients between VO2 Peak 

(ml/kg/min), lactate threshold calculated using the 1mmol increase (% VO2 Peak) criteria, and 

lactate threshold calculated using the noticeable inflection (% VO2 Peak) criteria measured 
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during Visit 1 and TTDPM (°) measured prior to and following the fatigue protocol during Visit 

2. Results of the physiological characteristics and pre- to post-fatigue ΔTTDPM correlation 

analysis are found in Table 8. No significant correlations were observed between VO2 Peak and 

change in TTDPM from pre- to post-fatigue in in extension or flexion. 

Lactate threshold calculated at the point prior to a 1 mmol increase in lactate 

concentration was not significantly correlated with absolute pre- to post-fatigue TTDPM 

difference in extension or flexion. No significant correlations were found between lactate 

threshold calculated by noticeable inflection point and change in TTDPM post-fatigue. 

 

Table 10. Physiological Characteristics and ΔTTDPM (°) Correlation Analysis 

 

r p-value r p-value
VO2 Peak (ml/kg/min) 0.281 0.230 0.256 0.276
LT, 1mmol (%VO2peak) 0.344 0.137 -0.357 0.123
LT, inf (%VO2peak) 0.152 0.523 -0.153 0.520

*Significant correlation at the P<0.05 level

LT, 1mmol = Lactate Threshold determined before 1 mmol increase in blood lactate
LT, inf = Lactate Threshold determined at point of visible threshold

Pre- to Post- Fatigue TTDPM
Extension Flexion

VO2 Peak = Peak Oxygen Uptake (15-second interval)

 

 

Physiological characteristics were also correlated with pre-fatigue and post-fatigue 

TTDPM values in extension and flexion. A significant correlation was observed between VO2 

Peak and both pre-fatigue and post-fatigue TTDPM in the extension direction, indicating that 

subjects with higher aerobic capacity had better TTDPM in the extension direction prior to and 

following the fatigue protocol. No significant correlations were found between VO2 Peak and 
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pre-fatigue or post-fatigue TTDPM in the flexion direction.  No significant correlations were 

found between lactate threshold calculated at 1mmol increase or calculated by noticeable 

inflection point for pre-fatigue TTDPM, post-fatigue TTDPM. Results of these analyses are 

presented in Tables 11 and 12. 

 

Table 11. Physiological Characteristics and Pre-Fatigue TTDPM (°) Correlation Analysis 

 

r p-value r p-value
VO2 Peak (ml/kg/min) -0.500 0.005** 0.172 0.467
LT, 1mmol (%VO2peak) -0.087 0.717 0.077 0.748
LT, inf (%VO2peak) -0.084 0.726 0.102 0.667

Extension Flexion

VO2 Peak = Peak Oxygen Uptake (15-second interval)
LT, 1mmol = Lactate Threshold determined before 1 mmol increase in blood lactate
LT, inf = Lactate Threshold determined at point of visible threshold
**Significant correlation at the P<0.01 level

Pre-Fatigue TTDPM
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Table 12. Physiological Characteristics and Post-Fatigue TTDPM (°) Correlation Analysis 

 

r p-value r p-value
VO2 Peak (ml/kg/min) -0.520 0.019* 0.279 0.233
LT, 1mmol (%VO2peak) 0.118 0.620 -0.205 0.385
LT, inf (%VO2peak) -0.028 0.907 -0.084 0.726

Post-Fatigue TTDPM

*Significant correlation at the P<0.05 level

Extension Flexion

VO2 Peak = Peak Oxygen Uptake (15-second interval)
LT, 1mmol = Lactate Threshold determined before 1 mmol increase in blood lactate
LT, inf = Lactate Threshold determined at point of visible threshold
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5.0  DISCUSSION 

The purpose of this study was to investigate the relationship between musculoskeletal strength 

and physiological characteristics with changes in TTDPM following fatiguing exercise. 

Physically active females participated in isokinetic knee strength testing, aerobic capacity, and 

lactate threshold assessments during Visit 1 and underwent TTDPM assessment prior to and 

immediately following a fatiguing exercise protocol during Visit 2. A correlation analysis was 

performed to examine the relationships between isokinetic strength, aerobic capacity, and lactate 

threshold with changes in TTDPM following the fatigue protocol. 

It was hypothesized that isokinetic knee extension strength, isokinetic knee flexion 

strength, maximal oxygen uptake, and lactate threshold would have a significant, negative 

correlation with changes in TTDPM in extension and flexion following fatiguing exercise, 

meaning subjects with higher levels of strength, aerobic capacity, and lactate threshold would see 

less deficits in TTDPM following fatiguing exercise. Our hypotheses were rejected, as there 

were no statistically significant correlations between any strength or physiological variables and 

changes in TTDPM from pre- to post-fatigue. Subject characteristics, independent and dependent 

variables, research hypotheses, other analyses, limitations, and future directions are discussed in 

the sections below. 
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5.1 QUESTIONNAIRES 

5.1.1 Exercise History Questionnaire 

An Exercise History Questionnaire was administered in order to identify the type and quantity of 

training subjects participated in. Most subjects reported regular participation in strength and 

endurance exercise. Some subjects were primarily endurance athletes, while others were 

primarily anaerobic/strength athletes. Overall, based on the Exercise History Questionnaire, the 

sample was a good representation of a highly physically active group of females, which was the 

intent of subject recruitment. 

5.1.2 ASA24 Dietary Recall 

A 24-hour dietary recall was administered in order to obtain an example of the typical diet of the 

subjects and to determine macronutrient and total energy intake of the subjects. A deficit in total 

energy intake and suboptimal macronutrient intake and distribution has been shown to adversely 

affect performance52 and may contribute to early onset fatigue. Results showed that total caloric 

intake and macronutrient distribution was varied among subjects, and many subjects under-

consumed total energy and carbohydrates during the 24 hours prior to data collection. Previous 

work has recommended a total daily intake of 45-50 kcal per body weight for female athletes 

participating in 90 minutes of training per day.69 Although some subjects in this investigation 

reported working out less than 90 minutes per session, the average kcal per body weight 

consumed was 31.1 kcal/kg (range 16.5 – 58.5 g/kg), which is much lower than the 

recommendation.  In the American College of Sports Medicine’s position stand on the female 
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athlete triad,184 adverse effects of under-consuming energy typically occurs when consumption is 

less than 30 kcal per kg of fat free mass (FFM). In our investigation, average kcal per kg FFM 

was 41.0 kcal/kgFFM (range 21.3 – 83.0 kcal/kgFFM), so while most subjects met the minimum 

recommendation, there were a few consuming a risky low level of kcals per FFM.  This did not 

appear to affect fatigue protocol performance, as reported energy intake had no significant linear 

relationship with time to fatigue when assessed with Spearman’s Rho correlation calculation (r=-

0.289, P=0.217). 

Previous research on optimal nutrition of athletes suggests that carbohydrate intake of 

athletes should be approximately 8 to 10 g/kg bodyweight or 60 to 70% of total energy intake.52 

Results of this study revealed that subjects consumed an average of ~4.1 g/kg carbohydrate 

(range of 0.8 – 7.8 g/kg) which accounted for ~50.6% total intake (range of 18.2% - 73.3%), 

indicating that subjects did not meet the suggested consumption for athletes, and that many 

subjects had a drastically low carbohydrate intake. However, carbohydrate intake did not appear 

to affect fatigue protocol performance, as reported carbohydrate per kg intake had no significant 

linear relationship with time to fatigue when assessed with Spearman’s Rho correlation 

calculation (r=-0.252, P=0.284). Further, researchers recommend that healthy adults146 and 

athletes with large energy needs69 should consume approximately 30% of their daily intake from 

fat, and the average percent of total daily intake of fat in this investigation was 30.5% (range 

17.2% - 41.9%), and variance of fat intake level would not likely have a significant impact 

performance on the fatigue protocol. 
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5.2 MUSCULOSKELETAL STRENGTH AND PHYSIOLOGICAL 

CHARACTERISTICS 

5.2.1 Isokinetic Strength 

Knee extension strength, flexion strength, and flexion/extension ratio were evaluated with an 

isokinetic dynamometer in order to evaluate the relationship between knee strength 

characteristics and the effect of fatigue of TTDPM. Isokinetic knee flexion and extension 

strength were collected on the dominant limb at 60°/s, demonstrating peak knee extension 

strength of 219.3 ± 31.6 %BW and peak knee flexion strength of 109.8 ± 19.7 % BW. The 

strength data of the current subjects was higher when compared to strength data collected on 

101st Airborne (Air Assault) female Soldiers utilizing the same protocol (right peak knee 

extension: 191.30 ± 37.16 %BW, left peak knee extension: 178.18 ± 38.19 %BW; right peak 

knee flexion: 92.98 ± 21.05 BW%, left peak knee flexion: 88.82 ± 20.80 %BW), but comparable 

data to triathletes tested using the same methodology, who likely have a more similar training 

history to our subjects (right peak knee extension: 216.53 ± 21.68 %BW, left peak knee 

extension: 213.38 ± 34.71 %BW; right peak knee flexion: 115.47 ± 15.44 BW%, left peak knee 

extension: 113.96 ± 14.88 %BW).229 Results of the current study were also similar to female data 

from a study examining gender differences in strength in Division I athletes utilizing the five 

isokinetic concentric knee flexion and extension repetitions at 60°/s on the dominant limb (peak 

knee extension: 222.93 ± 30.86 %BW, peak knee flexion: 113.74± 23.66 %BW) .160 Since the 

strength data collected in this study are reasonably similar to previous research in physically 

active and highly trained females and these methods have been demonstrated to be reliable, we 
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can conclude that the results of strength testing on the current group of subjects are 

representative of their strength within the context of the current testing protocol. 

5.2.2 Aerobic Capacity and Lactate Threshold 

In order to investigate the relationship between aerobic capacity and changes in TTDPM 

following fatiguing exercise, oxygen uptake was assessed during a graded treadmill running test 

while inspired and expired gases were measured via a mask connected to metabolic equipment. 

Because few subjects in this investigation reached true, physiological VO2 max based on the 

outlined maximal criteria (meeting two of the following three criteria: final lactate at or above 

8.0 mmol, RER at or above 1.08, heart rate within 10 bpm of age predicted maximum), VO2 

Peak was reported instead, defined as the highest VO2 value achieved during a 15-second 

interval of data collection. Mean VO2 Peak of our subjects was 47.1 ± 4.6 ml/kg/min. Our data 

revealed higher results compared to VO2 data collected utilizing the same methodology on 

female 101st Airborne (Air Assault) Soldiers (VO2 max: 40.29 ± 5.37 ml/kg/min) and lower data 

when compared to elite female triathletes (61.15 ± 5.44 ml/kg/min).229 Mean VO2 Peak achieved 

in this investigation is comparable to results from a study examining VO2 max in Division I 

female Lacrosse players utilizing a Bruce protocol (VO2 max: 45.7 ± 4.9 ml/kg/min)73 and results 

from a study examining pre- and post-season VO2 Peak in Division I women’s soccer (42 and 50 

ml/kg/min pre- to post-season, respectively).49 Since our data are reasonably comparable to other 

data examining aerobic capacity in athletes and highly trained individuals and our methods have 

been demonstrated to be reliable, we can conclude that the VO2 Peak results of the current group 

of subjects are representative of their aerobic capacity within the context of the current testing 

protocol. 
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Lactate threshold was assessed by collecting small drops of blood via finger stick during 

the final 30 seconds of each 3-minute stage of the graded treadmill exercise test. These values 

were plotted against the VO2 values obtained during the final minute of each stage. Lactate 

threshold is a highly debated concept, and many methods have been established to determine 

lactate threshold.250 Since the calculation is often variable amongst individuals, we decided to 

calculate lactate threshold by using two different methods: 1) the final stage prior to a greater 

than 1.0 mmol increase in blood lactate and 2) the stage at which a visible inflection point was 

noticed on the plotted lactate curve. Results revealed a lactate threshold of 80.4 ± 7.1 %VO2 

Peak and 85.4 ± 4.8 %VO2 Peak when calculated by the two methods, respectively, which is 

comparable to previous findings calculated by the noticeable inflection point in female 101st 

Airborne (Air Assault) Soldiers (82.16 ± 13.97 % VO2 max) and elite female triathletes (88.38 ± 

6.57 % VO2 max).229 Since our data are reasonably comparable to other data examining lactate 

threshold in athletes and highly trained individuals and our methods have been demonstrated to 

be reliable, we can conclude that the results of lactate threshold testing on the current group of 

subjects are representative of their lactate threshold within the context of the current testing 

protocol. 

5.3 PRE- TO POST-FATIGUE TTDPM 

Threshold to detect passive motion was assessed prior to and immediately following a fatiguing 

exercise protocol. For this assessment, 10 trials were performed with 5 randomized into 

extension and 5 into the flexion direction. Threshold to detect passive motion and direction was 

utilized because the ability to detect direction as well as motion is a more specific measurement 
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of knee proprioception.20, 23, 162, 218  If direction was incorrectly identified by the subject, the trial 

was thrown out and the direction repeated. The first three correctly identified trials in each 

direction were averaged for analysis, which is consistent with methods utilized in previous 

research.159, 226 No significant differences were demonstrated in changes in TTDPM from pre- to 

post-fatigue in either extension or flexion. 

The fatigue protocol utilized in this study was chosen because it simulated fatigue 

mechanisms that would have been experienced in a game or practice situation. The design of the 

protocol included stations involving aerobic activity, upper body and core strength and 

endurance, and isolated fatigue of the major muscles of the lower extremity. We quantified 

fatigue production by assessing levels of perceived exertion in the legs, arms, chest, and overall 

body following each station, as well as quantifying performance, heart rate, and lactate levels 

following each station. Subjects experienced near maximum levels of perceived exertion (7-10 

on OMNI RPE) and reached maximal physiological criteria (>8.0 mmol blood lactate 

concentration and within 10 bpm of age-predicted heart rate max) during the protocol. In order to 

quantify muscular fatigue following the fatigue protocol, isometric strength of the quadriceps 

and hamstrings was measured in reciprocal format during three maximal trials of extension and 

flexion following pre-fatigue and post-fatigue TTDPM assessment. Results demonstrated a 

significant decrease in isometric flexion strength and flexion/extension ratio, indicating that the 

hamstring musculature strength decreased as a result of the fatigue protocol. 

Results of our study are consistent with results from a study by Skinner et al238 which 

also found no significant differences in knee kinesthesia following fatigue. Skinner et al238 also 

utilized a homogenous, highly trained group for testing, and used a fatigue protocol consisting of 

a series of running intervals, beginning with a 2-mile warm-up and continuing with alternating 1-
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mile and ¼ mile intervals with a 90-s rest. Then, subjects ran on a treadmill at 7 mph at 15% 

incline. The protocol utilized by Skinner et al238 had similar aspects of our fatigue protocol, but 

did not specifically fatigue the upper body or core. In order to determine level of fatigue, Skinner 

et al238 tested isokinetic strength prior to and following the fatigue protocol, and if subjects did 

not exceed 10% decrement in work output, they were given additional treadmill exercise. Their 

TTDPM measurement was conducted at 0.5°/s angular velocity, which is faster than our speed of 

0.25°/s, but still aimed to target the slow-adapting mechanoreceptors (Ruffini endings or Golgi-

type organs)165 found within the ligamentous and capsular tissues of the knee.217 Results 

demonstrated a decreased ability to reproduce a joint angle, but no significant differences were 

demonstrated in TTDPM following fatigue. Additionally, post-fatigue TTDPM angle error was 

less than before fatigue, suggesting improved TTDPM following fatigue. In agreement with 

results from our study, Skinner et al238 suggested that the absence of decreased TTDPM and non-

significant improvement in TTDPM may have occurred because capsular receptors may become 

more strongly stimulated due to decreased muscular receptor function following fatigue.238, 248 

Authors also suggested that there is an increased response rate of capsular receptors when the 

capsule is maximally stressed, which may actually lower the threshold for detection of passive 

motion.101, 102, 238 

 Our results are partially consistent with results from a study by Rozzi and colleagues226 

which demonstrated no significant changes in proprioception in the flexion direction but 

significant changes in the extension direction following fatigue. The investigation by Rozzi et 

al226 utilized isolated concentric contractions of the quadriceps and hamstring, which may have 

resulted in decreased proprioception in the extension direction due to the cyclic compressive 

forces to the knee joint during the isokinetic fatigue protocol. Like Skinner et al,238 Rozzi et al226 
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moved the knee at a constant angular velocity of 0.5°/s during TTDPM. Since changes to 

capsuloligamentous structures of the knee following fatigue would likely induce impaired 

TTDPM, Rozzi et al226 also measured joint laxity changes following fatigue. However, the 

decrease in TTDPM in extension occurred despite no changes in joint laxity following fatigue. 

Authors concluded that a mechanism other than joint laxity was responsible for the decrements 

in TTDPM,226 and that isokinetic fatigue did not induce fatigue that would closely simulate joint 

forces experienced during sport activities.140 Unlike Rozzi et al,226 we did not quantify changes 

in joint laxity from pre- to post-fatigue, so we are, unfortunately, unable to discuss to what extent 

joint laxity affected our results. Rozzi et al226 also demonstrated significantly increased onset of 

contraction time for the medial hamstring muscle and lateral gastrocnemius muscle following 

fatigue.226 Although we did not assess muscle activation as part of this study, our results showed 

significant decreases in isometric knee flexion strength and flexion/extension ratio which 

parallels the decreased activation of the hamstring musculature following fatigue demonstrated 

by Rozzi et al.226 The decreased hamstring strength and flexion/extension ratio following fatigue 

in our investigation also suggests a similar implication for decreased ability of the hamstring 

musculature to control anterior tibial translation in a fatigued state, which was also implied by 

Rozzi et al.226 

In recent work by Torres and colleagues256 investigating TTDPM prior to and following 

exercise at 30 and 70 degrees of knee flexion, no significant differences were found at a 30 

degree starting angle one hour after exercise, while TTDPM was altered at the 70 degree starting 

position one hour post exercise and up to 24 hours post exercise. The investigation by Torres256 

utilized reciprocal eccentric contractions of the knee musculature to induce fatigue. Repeated 

eccentric contractions likely induced a degree of muscle damage and delayed onset muscle 
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soreness,14 which may explain why deficits in TTDPM at the 70 degree starting position were 

noticed up to 24 hours post-exercise. Additionally, the deficits were only noticed when the 

starting position was closer to mid-range than end-range of knee flexion, suggesting that TTDPM 

deficits may be more pronounced when starting at mid-range, where sensitivity of detecting 

passive motion may be decreased in comparison to end range. Likewise, the starting angle used 

in our study was 20 degrees of knee flexion, which is near end-range. Previous work 

demonstrated that TTDPM was more sensitive at a 15 degree starting angle than 45 degrees in 

the extension direction,40, 163 and this may be explained by the fact that a 15 degree starting angle 

is closer to end range of motion where greater tensile stress is placed on the static restraints of 

the knee. Thus, our results may have shown significant changes in TTDPM had we utilized a 

starting position closer to mid-range of knee flexion rather than near end-range because the 

sensitivity of TTDPM may have been too high closer to end-range. 

 

5.3.1 Isokinetic Strength and TTDPM 

Isokinetic knee extension strength, knee flexion strength, and flexion/extension ratio were 

measured to assess the relationship between baseline knee strength and changes in knee 

proprioception following fatiguing exercise. No significant correlations were found between 

knee extension strength, knee flexion strength, or flexion/extension ratio and changes in TTDPM 

in extension or flexion following the fatiguing exercise protocol. Additionally, no significant 

correlations were revealed between strength measures and pre-fatigue TTDPM or post-fatigue 

TTDPM. 
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While previous research has investigated both muscular strength and proprioception with 

regard to injury prevention and rehabilitation,105, 220, 257, 259 no study to the author’s knowledge 

has correlated baseline strength measurements to proprioception changes following fatigue. One 

explanation for the absence of correlation between isokinetic strength variables and changes in 

TTDPM following fatigue may be because there were no significant changes in TTDPM 

following fatigue, which may have been due to the overall high strength values demonstrated by 

our subjects. Previous work has suggested that subjects with better muscle development may also 

have a better awareness of joint position and motion.20, 159 Therefore, it is possible that subjects 

in this investigation had an overall enhanced ability to detect passive motion both before and 

after fatigue, which may explain why there were no changes in TTDPM following fatigue. This 

idea is further evidenced by the fact that knee flexion/extension strength ratio had a significant, 

low,61 negative correlation with pre-fatigue TTDPM in extension, indicating that subjects with a 

better flexion/extension ratio also had better pre-fatigue TTDPM.  

Another possibility is that another measurement of muscle strength or endurance may 

have a stronger relationship with changes in proprioception following fatigue. In our 

investigation, changes in isometric hamstring strength from pre- to post-fatigue were 

significantly correlated with changes in pre- to post-fatigue TTDPM in extension (r=-0.403, 

p=0.039) and flexion (r=-0.616, p=0.002), and changes in isometric flexion/extension strength 

ratio were significantly correlated with changes in pre- to post-fatigue TTDPM in flexion (r=-

0.439, p=0.026). As evidenced by these findings, perhaps baseline strength measures are not as 

important as the ability to retain strength and maintain an optimal flexion/extension strength ratio 

in a fatigued state. 
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Another explanation for the lack of significant correlation may be that the mode of 

proprioception utilized was a passive measurement, which attempted to target the 

mechanoreceptors not located in the musculotendinous tissues of the knee joint.217 Perhaps 

isokinetic strength performance would more strongly correlate with changes in an active mode of 

proprioception measurement following fatigue because strength and muscle force production 

would have a greater influence on the mechanoreceptors located within the musculotendinous 

tissues as well as on the muscle length/rate of length change information within the muscle 

spindle.217 Further, as mentioned previously, it is possible that fatigue induced a decrease in 

muscular receptor function, which may have resulted in capsular receptors becoming more 

strongly stimulated238, 248 and that when the capsule is maximally stressed, there may be an 

increased response rate of capsular receptors.101, 102, 238 Therefore, fatigue of the knee 

musculature may have actually enhanced the sensitivity of the mechanoreceptors within the 

capsule-ligamentous structures of the knee. 

5.3.2 Aerobic Capacity, Lactate Threshold, and TTDPM 

Aerobic capacity and lactate threshold were measured to examine their relationship with 

proprioceptive changes following fatiguing exercise. We hypothesized that VO2 Peak and lactate 

threshold would have a significant correlation with pre- to post-fatigue TTDPM difference in 

both the extension and flexion directions. It was hypothesized that VO2 Peak would have a 

relationship with changes in TTDPM following fatigue because it is a measure of cardiovascular 

fitness, and previous research has demonstrated that general fatigue negatively affects motor 

control by the central nervous system and results in decreased proprioception.179 Since lactate 

accumulation may be related to the onset of peripheral fatigue, it was hypothesized that lactate 
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threshold would also be significantly related to changes in proprioception following fatigue. Our 

hypotheses were not supported as no significant correlations were found between VO2 Peak or 

lactate threshold and changes in TTDPM following fatigue. Statistically, this was likely due to 

the fact that no changes in TTDPM were observed across the group following the fatigue 

protocol. Although we established maximal effort via perceptual and physiological measures, it 

is possible that the fatigue protocol may have not induced enough dysfunction to the central 

pathways contributing to motor control that would cause deficits in the proprioception modality 

measured in the current study. It is also possible that lactate accumulation may have had more of 

an impact on receptors within the musculotendinous tissues, and not as much influence on 

receptors within the joint capsule.  

The overall high fitness level of our subjects may in part explain why we did not find any 

significant differences between pre- and post-fatigue TTDPM, and subsequently, no significant 

correlations between VO2 Peak or lactate threshold and changes in TTDPM in either direction. 

The range of VO2 Peak values from this investigation was 37.5 ml/kg/min – 53.4 ml/kg/min, and 

all but four subjects fell above the 90th percentile for maximal aerobic power stratified by age 

and gender.97 If untrained or recreationally active subjects had participated in the study, they may 

have demonstrated decreased ability to detect passive motion compared to the highly trained 

subjects, and may have had more pronounced deficits in TTDPM following fatigue. Further, VO2 

Peak had a significant, moderate,61 negative correlation with pre-fatigue and post-fatigue 

TTDPM in the extension direction. The direction of this relationship indicated that the higher the 

subject’s aerobic capacity, the better their TTDPM score, with a lower score (i.e. angle error) 

meaning better performance. This finding agrees with previous work demonstrating that highly 

trained individuals possess better ability to detect passive motion than less fit individuals,159 and 
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results from this study provide evidence that trained individuals have increased ability to detect 

passive motion following fatigue, further explaining why no TTDPM changes occurred from 

pre- to post-fatigue.  The fact that VO2 Peak was only significantly correlated with TTDPM in 

the extension direction may potentially be explained by previous research that has suggested that 

individuals may possess greater proprioceptive sensitivity during TTDPM when moving in the 

extension direction.40 

5.4 LIMITATIONS 

This investigation has several limitations worth mentioning. Instructions were given to 

participants in order to eliminate potential confounding variables that would affect fatigue 

protocol performance. Prior to reporting for each test session, subjects were instructed to not eat 

a large meal for at least two hours. Despite efforts to enforce and monitor adherence to these 

instructions, lack of strict adherence to the instructions unbeknownst to the investigators may 

have confounded the results of the study. A higher carbohydrate consumption prior to 

performing the fatigue protocol may have impacted fatigue protocol performance because dietary 

carbohydrate concentration has been shown to have a positive relationship with muscle glycogen 

concentration222, 234 and endurance exercise performance.31, 139 Additionally, subjects were 

instructed to refrain from any strenuous exercise prior to each test session so that residual fatigue 

or soreness would not confound the study results. Strenuous exercise performed prior to data 

collection may have resulted in a decrement in exercise performance because muscles groups 

recently exercised to exhaustion may have higher levels of blood lactate and/or blood H+ 

concentration.138 However, our study aimed to fatigue subjects to the same degree of perceptual 
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and physiological fatigue, so it can be assumed that potential effects of these confounding 

variables were negated and did not substantially affect conclusions drawn about the core 

hypotheses of the investigation. 

We also aimed to examine the typical diet of the subjects to quantify total energy intake 

and macronutrient intake in order to evaluate the implication of under-consuming total energy 

and carbohydrates on fatigue protocol performance via self-reported 24-hour dietary recall. A 

potential limitation of any questionnaire or self-report is misreporting or under-reporting of data. 

Research has shown that women often under-report on self-reported nutrition surveys, so this 

may have been the case in the current study.216 Therefore, the conclusions gathered from this 

data may be confounded by the validity of the self-reported answers. This data, however, does 

not affect the conclusions made about the core hypotheses of the investigation.   

Although we controlled the study for gender differences in musculoskeletal strength, 

physiological characteristics, and neuromuscular characteristics by only including females in the 

study, we did not control for phase of menstrual cycle during testing, oral contraceptive use, or 

other steroidal contraceptive use. Previous research has revealed differences in neuromuscular 

characteristics during various phases of the menstrual cycle and during different levels of sex 

hormone fluctuation, including significant differences in proprioception211 and strength.10, 113, 160 

However, research conducted previously in our laboratory demonstrated no significant 

differences between phases of the menstrual cycle for fine motor coordination, postural stability, 

hamstring-quadriceps strength ratio at 60°/s or 180°/s, knee flexion excursion, knee valgus 

excursion, peak proximal tibial anterior shear force, flexion moment at peak proximal tibial 

anterior shear force, or valgus moment at peak proximal tibial anterior shear force.2 While the 

phase of menstrual cycle and use of contraceptives may have potentially impacted both fatigue 
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protocol performance and proprioception assessment, we did not collect the necessary data to 

support or refute these changes because controlling testing for phase of menstrual cycle and use 

of contraceptive would have been cumbersome and previous research surrounding the topic is 

equivocal. Additionally, when generalizing results from our study to real-life training or game 

situations, one cannot control for phase of menstrual cycle or contraceptive use to negate their 

potential impact on performance and sensorimotor control, so it may not be practical to do so in 

laboratory protocols. Overall, despite the potential effect of hormonal variance on fatigue 

protocol performance, subjects were still fatigued to a similar perceptual and physiological level, 

so the core hypotheses of this investigation were likely not substantially impacted.  

Several limitations may have impacted aerobic capacity assessment and the fact that 

subjects did not achieve a true, physiological maximum test. First, subjects self-selected a test 

pace based off of a pace they perceived they would be able to maintain during a moderately long 

distance run. While the subjects participating in this study were highly physically active, some 

were primarily anaerobic athletes, and thus were not as confident at estimating an endurance run 

pace. Additionally, some subjects may have over- or under-estimated their test pace, and they 

may have chosen a slower or faster speed if they were to repeat the test. In a few of these cases, 

subjects may have warmed up at too aggressive of a pace prior to beginning the graded exercise 

test. In an ideal situation, it may have been beneficial for our subjects to perform a 

familiarization session for maximal oxygen uptake testing to become acquainted to running with 

the mask on. Many subjects reported that they terminated the test because they could not breathe 

in quickly enough or that they were uncomfortably sweaty while wearing the mask. Additionally, 

many subjects reported that they think they could have gone another stage or partial stage further 

than when they actually self-terminated the test. However, adding a familiarization session for 
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aerobic capacity assessment would have potentially added another study visit to the protocol and 

may have compromised study compliance/attrition. Despite the fact that we reported VO2 Peak 

instead of VO2 max as a result of these potential limitations, the results of our core research 

question were likely not impacted, as the VO2 Peak of our subjects was adequately representative 

of their true aerobic capacity given the comparison of results with other studies assessing aerobic 

capacity in athletes and highly trained individuals. 

A limitation of the lactate threshold protocol is that a more direct blood lactate 

measurement, such as intravenous sampling, would have been optimal. Further, a more valid 

measurement of true lactate threshold assessment involves determining the maximal lactate at 

steady state, which involves multiple testing sessions at a range of intensities.250, 253 This 

methodology would not have been feasible given the time constrains of the current study, so we 

utilized a well-established method of lactate threshold assessment by using specific criteria to 

determine lactate threshold250 that would adequately answer the core research questions of this 

investigation. 

While we aimed to fatigue the subjects to a similar degree of perceptual and 

physiological fatigue, a potential limitation of the fatigue protocol is that individuals with higher 

fitness levels may have also ran at faster speeds, performed more push-ups, sit-ups, and step-ups, 

and potentially ran longer during the final station than subjects with a lower fitness, and results 

of the fatigue protocol would be more relative to the individual’s own fitness level rather than 

standardized across all subjects. Although VO2 Peak was significantly correlated to Station 1 run 

speed (r=0.713, p=0.000), VO2 Peak, lactate threshold calculated at the 1mmol increase (LT 

1mmol) and lactate threshold calculated at the noticeable inflection point (LT inf) did not 

demonstrate a significant linear relationship (calculated with Spearman’s Rho correlation 
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coefficients) with pushups performed (VO2 Peak: r=0.298, P=0.202; LT 1mmol: r=0.38, 

P=0.312; LT inf: r=0.003, P=0.990); sit-ups performed (VO2 Peak: r=0.264, p=0.261; LT 

1mmol: r=0.366, P=0.112; LT inf: r=0.334, P=0.150); step-ups performed (VO2 Peak: r=0.255, 

P=0.277; LT 1mmol: r=-0.27, P=0.909; LT inf: r=-0.046, P=0.847); or time to fatigue during 

Station 7 (VO2 peak: r=0.205, P=0.386; LT 1mmol: r=0.242, P=0.304; LT inf: r=0.260, 

P=0.268). This suggests that subjects with various levels of aerobic capacity and lactate 

threshold performed similarly during the fatigue protocol, and that all subjects were likely 

fatigued to a similar degree. Further, these findings indicate the core results of the study were not 

impacted by the potential limitation of the fatigue protocol. 

Another potential limitation of the study is the quantification of fatigue following the 

fatigue protocol. We measured isometric strength following the pre- and post-fatigue TTDPM 

assessments in order to quantify fatigue to the musculature surrounding the knee. We did not 

continue to measure the other physiological variables collected during the fatigue protocol, such 

as heart rate, blood lactate, and ratings of perceived exertion. It may have been useful to quantify 

these other measures of fatigue recovery that may have implicated post-fatigue TTDPM 

performance because some subjects may have recovered perceived exertion, heart rate, and blood 

lactate at different rates than others. These measurements may not have been practical, as 

measuring a multitude of variables during TTDPM testing may have been cumbersome and may 

have potentially interrupted TTDPM assessment results. However, decreased isometric 

hamstring strength and flexion/extension strength ratio following the post-fatigue TTDPM 

measurement adequately demonstrated that subjects possessed a level of fatigue during the post-

fatigue TTDPM assessment. 
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5.5 STUDY SIGNIFICANCE 

Although our core hypotheses were rejected as a result of this study, the results contribute useful 

information to the current fatigue and proprioception knowledge base. To the author’s 

knowledge, no study has investigated the relationship between musculoskeletal and 

physiological characteristics with changes in proprioception following fatigue. This study may 

provide a foundation for future research in the area of fatigue and proprioception, and this 

research may be generalizable to athletes and other trained individuals, including military 

personnel. Changes may be made in future research protocols to enhance and refine the research 

questions and methodologies based upon findings from this study, including different subject 

populations, modes of fatigue induction, various musculoskeletal and physiological assessments, 

and alternate modes of proprioception assessment. Specific changes in future research are 

described below. 

5.6 FUTURE DIRECTIONS 

Future research examining fatigue and proprioception can explore many variations of the current 

study. First, different groups of subjects can be utilized in future studies. The age range of the 

subjects in the current study aimed to be generalizable to a young, healthy, active population. 

Since age may potentially act as a confounding variable, as previous work has found that 

neuromuscular characteristics, namely proprioception, decline with age,239 future studies can 

examine different age groups with regard to characteristics related to change in proprioception 

following fatigue. Additionally, since it has been evidenced that highly trained individuals may 
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have better proprioception compared to those with lower aerobic capacity or level of training 

level,159 a broad range of athletes, recreationally active individuals, and sedentary individuals can 

be tested in the future. Further, gender comparisons may be made, since there are gender 

differences in musculoskeletal strength, physiological characteristics, and proprioception. The 

hypotheses from this study may also be tested across different age groups or different post-injury 

or post-surgery groups. In future studies, sample size can be increased in order to establish 

predictors of changes in proprioception following fatigue. 

The fatigue protocol can also be altered in future studies. The protocol used in this study 

was designed to fatigue each subject to the same level of perceptual and physiological fatigue by 

utilizing running speeds relative to their fitness ability and encouraging subjects to perform 

repetitions of pushups, sit-ups, and step-ups relative to their maximal ability within a time 

constraint. It may be interesting to investigate changes in proprioception prior to and following a 

fatigue protocol that exercises each subject at the same intensity during a fixed amount of time in 

a group of subjects of differing fitness levels. It may also be valuable to assess the relationship 

between musculoskeletal and physiological characteristics with changes in proprioception 

following a local versus a general fatigue protocol since previous research has demonstrated 

difference in proprioception following a local versus general fatigue protocol.179 

Future studies may test other musculoskeletal characteristics that may potentially relate to 

proprioception and changes in proprioception following fatigue. Our strength protocol aimed to 

objectively quantify strength of the musculature surrounding the knee in order to assess the 

relationship with changes in TTDPM following fatigue, and isokinetic strength testing has the 

ability to isolate muscle groups and objectively quantify peak torque produced.204 A potential 

limitation of isokinetic strength testing that it is non-weight-bearing and is an open-chain 
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assessment,204 which is not directly translatable to functional strength assessments performed in 

an actual game or field setting. While isokinetic extension strength, flexion strength, and 

flexion/extension ratio had no significant relationship with pre- or post-fatigue TTDPM, previous 

research has implied that individuals with better muscle development may also have a better 

awareness of joint position and motion.20, 159 Further, as evidenced by our study, decreases in 

isometric hamstring strength and flexion/extension ratio following fatigue were significantly 

correlated with changes in TTDPM following fatigue. Based on the evidence above, other 

strength variables to consider in the future studies examining the relationship between 

musculoskeletal characteristics and changes in TTDPM following fatigue include time to peak 

torque, muscular endurance, and torque production decrement following fatigue. 

Additionally, the current study can be replicated and performed using various 

proprioception assessment methods. The current study may be redesigned to investigate changes 

in TTDPM at a starting angle closer to mid-range of knee flexion since measuring close to end-

range may have been too sensitive in detecting passive motion. Also, the current investigation 

hypothesized that a combination of muscular and cardiovascular fatigue would result in 

significant changes in passive proprioception from pre- to post-fatigue, but no changes were 

demonstrated.  Since previous research has suggested that the mechanoreceptors found within 

the capsuloligamentous structures of the knee may actually become enhanced as a result of 

muscular fatigue,238, 248 future research can look at the effect of fatigue on active joint position 

sense measures such as active joint repositioning, path of motion replication, and force sense. 



 100 

5.7 CONCLUSIONS 

The purpose of this study was to investigate the relationship between musculoskeletal strength 

and physiological characteristics with changes in proprioception following fatiguing exercise. 

Our hypotheses were not supported, as results did not demonstrate a significant relationship 

between the chosen modifiable musculoskeletal and physiological characteristics and changes in 

proprioception following fatigue. However, there was a significant correlation between VO2 

peak and TTDPM in extension both pre- and post-fatigue, indicating a linear relationship 

between individuals with higher aerobic capacity and proprioception. Overall, this study 

provides a foundation for other work to be conducted in the area of fatigue and proprioception. 

Future research can explore other musculoskeletal and physiological characteristics in different 

populations to determine the best predictors of changes in proprioception experienced after 

fatiguing exercise. 
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APPENDIX A 

 

 

 

QUESTIONNAIRES AND OMNI RPE SCALE 
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A.1 Exercise History Questionnaire and Results 

A.1.1 Exercise History Questionnaire 

Subject ID________ Date: _________________ 

Please fill out this form as completely as possible. 

 

1. Please rate your exercise level on a scale of 1 to 5 (5 indicating very strenuous) for each 
age range through your present age 
 
15-20 __________ 21-30 __________ 31-40 __________ 41-50 __________ 
 

2. Were you a high school and/or College athlete? 
 

� Yes  If yes, please specify ____________________________________ 
 

� No 
 

3. Rate yourself on a scale of 1 to 5 (1 indicating lowest value and 5 the highest). 
Circle the number that best applies. 

 
Characterize your present athletic ability? 

1            2  3  4  5 

When you exercise, how important is competition? 

1            2  3  4  5 

Characterize your present cardiovascular capacity. 

1            2  3  4  5 

Characterize your present muscular capacity. 

1            2  3  4  5 

Characterize your present flexibility capacity. 

1  2  3  4  5 
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4. Are you currently involved in regular endurance (cardiovascular) exercise? 
 

 Yes   No 

If yes, specify the type of exercise(s) ______________________________ 

______________ minutes/day __________ days/week 

Rate your perception of the exertion of your exercise program (circle the number): 

(1) Light   (2) Fairly Light   (3) Somewhat hard   (4) Hard   (5) Very Hard 

 

5. How long have you been endurance exercising regularly? 
 
________ months    ________ years 

 

6. Are you currently involved in regular strength training (weight lifting, calisthenics) 
exercise? 

 
 Yes   No 

If yes, specify the type of exercise(s) ____________________________________ 

______________ minutes/day __________ days/week 

Rate your perception of the exertion of your exercise program (circle the number): 

(1) Light   (2) Fairly Light   (3) Somewhat hard   (4) Hard   (5) Very Hard 

 

7. How long have you been strength training regularly? 
 
________ months    ________ years 
 
 

8. What other exercise, sports or recreational activities have you participated in? 
 
In the past 6 months? _____________________________________________ 
 
In the past 5 years? _______________________________________________ 
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9. Have you ever participated in a balance training program (i.e. training for lower body 

balance on one leg during static exercise/functional exercise/yoga or meditation)? 
 

� Yes If yes, please specify_____________________________________ 
 

� No 
 

10. If you were to run on a treadmill for one hour, what pace do you think you would be able 
to maintain? (please select one) 
 
_ 10:00/mile  _ 9:30/mile 
 
_ 9:00/mile  _ 8:30/mile 
 
_ 8:00/mile  _ 7:30/mile 
 
_ 7:00/mile  _ 6:30/mile 
 
_ 6:00/mile  _ Other: ________ 
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A.1.2 Exercise History Questionnaire Results 

Table 13. Activity Level at Various Age Groups 

 

Subject 15-20 yrs 21-30 yrs 31-40 yrs
FP1 5 4 -
FP2 4 5 -
FP3 4 - -
FP4 3 3 -
FP5 5 4 -
FP6 5 5 -
FP7 5 5 -
FP8 5 4 -
FP9 4 3 5
FP10 - - -
FP11 3 3 -
FP12 4 2 4
FP13 3 5 -
FP14 4 3 4
FP15 1 5 4
FP16 4 4 -
FP17 5 4 -
FP18 2 3 5
FP19 5 5 -
FP20 3 5 -

Exercise Level

Exercise level based on 1-5 scale, with 1 
being the lowest and 5 being the highest 
level of exercise  

*FP10 did not answer question correctly, so no data has been reported 
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Table 14. High School and College Athletic Participation 

 

Subject High School Sports College Sports

FP1 Y cross country/track N -

FP2 Y basketball/ softball N -

FP3 Y swimming, softball, tennis N -

FP4 Y softball, volleyball N -

FP5 Y cross country, track, soccer N -

FP6 Y track, basketball, cross 
country Y travel basketball

FP7 Y basketball, dance N -

FP8 Y basketball, track, cross 
country N -

FP9 Y track, cross country N -

FP10 Y track, softball, basketball N -

FP11 N - N -

FP12 Y volleyball, track N -

FP13 Y dance N -

FP14 Y track and field, dance, 
cheerleading N -

FP15 N - N -

FP16 Y swimming, running Y DII rowing, Ultimate Frisbee® 
(club)

FP17 Y track Y track

FP18 N - N -

FP19 Y track Y track

FP20 Y softball, soccer N -
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Table 15. Perceived Fitness Rating 

 

Subject Athletic 
Ability

Competitive-     
ness

Cardiovascular 
Fitness

Muscular 
Strength Flexibility

FP1 4 3 5 3 4
FP2 5 5 5 4 4
FP3 3 2 3 4 3
FP4 3 2 3 3 1
FP5 4 2 4 3 3
FP6 4 3 3 5 3
FP7 4 3 4 4 3
FP8 3 2 3 3 2
FP9 4 5 4 3 3
FP10 4 4 4 4 4
FP11 3 4 4 3 4
FP12 3 4 4 3 2
FP13 4 4 4 4 4
FP14 3 5 3 4 3
FP15 4 3 3 4 2
FP16 4 3 4 4 4
FP17 4 3 4 3 3
FP18 4 5 5 5 3
FP19 4 4 2 3 4
FP20 4 5 4 4 3

Perceived Fitness Rating (1-5 Scale)

Exercise level based on 1-5 scale, with 1 being the lowest and 5 being the 
highest perceived fitness rating  
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Table 16. Endurance Exercise Participation 

Subject Y/N Type Min/Day Days/Week Exertion (1-5) Months/Years

FP1 Y running, 
kickboxing 60 4 4 14 years

FP2 Y Cross Fit®, 
running 30 5 4 2 years

FP3 Y running 40 5 4 6 months/5 years

FP4 N - - - - -
FP5 Y running, swimming 30-60 5 3 5 years

FP6 Y Cross Fit® 10-20 5-6 4 varies depending on 
activity

FP7 Y running, cross 
training 40 6 3 10 years

FP8 Y running 50-75 6 4 9 years

FP9 Y
Cross Fit®, 

running, biking, 
rowing

60-90 5-6 4 20 years

FP10 Y running, Cross 
Fit®, lifting 60+ 5 4 2 years

FP11 Y running 30-60 3 4 1.5 years

FP12 Y
running,Cross 
Fit®, rowing, 

biking
60-90 6 4 8 years

FP13 Y Cross Fit®, 
running 30-60 6 5 3 years

FP14 Y
running, rowing, 
spinning, Cross 

Fit®, yoga
60+ 5 4 20 years

FP15 Y eliptical, arch, 
stairmaster 45+ 7 3 12 years

FP16 Y running 30-120 3-5 3 12 years

FP17 Y running 50 5 or 6 4 about 10 years

FP18 Y
sprinting, 

plyometrics, 
running, spinning

20-30 5 4 10 years

FP19 Y running/ sprinting 60 6 3 8 years

FP20 Y running, biking 45-90 4-5 4 4 years

Endurance Exercise Participation
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Table 17. Strength Training Participation 

 

Subject Y/N Type Min/Day Days/Week Exertion (1-5) Months/Years

FP1 Y boot camp/body 
sculpt 60 2 4 3 months

FP2 Y squating, olympic 
lifts 20 3 4 1 year

FP3 Y body pump, weight 
lifting 30 5 4 3 years

FP4 N - - - - -

FP5 Y weight trainig 30 2 3 5 years

FP6 Y Cross Fit® 30 5-6 4 1 year

FP7 Y weight lifting 20 6 3 10 years

FP8 Y
push-ups, squats, 

lunges, or machine 
lifts

15-20 2 2 9 years

FP9 Y olympic and power 
lifting 30 5 5 2 years

FP10 Y Cross Fit®, all lifting 30 5 4 2 years

FP11 Y weights, plyos, 
calisthenics 30-60 3-4 4 4 months

FP12 Y weight lifting 30 2-3 3 7 years

FP13 Y
Cross Fit® (olympic 
weight lifting/ power 

lifting)
30-60 6 4 3 years

FP14 Y weight lifting, yoga, 
rowing, crossfit 60 5 4 12 years

FP15 Y
total body weight 
machines/ free 

weights
30+ 3 3 12 years

FP16 N - - - - -

FP17 N - - - - -

FP18 Y
weights, interval 

training, body weight 
exercises

40 5 4 3 years

FP19 N body weight 
exercises - - 3 4 years

FP20 Y Cross Fit® 60 2-3 5 3 years

Strength Training Participation
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Table 18. Miscellaneous Sport and Balance Training 

 

Subject 6 Months 5 Years Y/N Type
FP1 spinning, step class - Y yoga

FP2 - softball, basketball Y yoga

FP3 weight lifting, cardio 
(treadmill, bike, eliptical)

swimming, skiing, softball, 
tennis, weight lifting, 

cardio (treadmill, bike, 
eliptical)

Y balance on yoga ball or leg 

FP4 kayaking, biking, running, 
yoga, rock climbing

walking/ running, machines 
at the gym Y yoga

FP5 3 half marathons 6 half marathons, 2 full 
marathons Y yoga

FP6 Cross Fit®, basketball 
(rec league)

crossfit, basketball (rec 
league), half marathon 

training
Y yoga

FP7 dance dance Y -

FP8 basketball, tennis basketball, swimming, road 
races (half, full marathon) Y yoga

FP9 - rock climbing, kayaking Y yoga

FP10 Cross Fit®, 5K races, 
kayaking

Cross Fit®, 5K races, 
kayaking Y yoga

FP11 running races running races N -
FP12 softball, volleyball softball, volleyball Y yoga

FP13 marathon, Cross Fit® 
competition

marathon, 3K, crossfit 
competition Y dance

FP14 - Dragon Boating® Y yoga

FP15 5K, rowing, spinning Dragon Boating®, spinning 
(Race to any Place®), 5K's Y P90X2® tapes

FP16 running, marathon training, 
Ultimate Frisbee®

running, Ultimate 
Frisbee®, rowing N -

FP17 softball, spin class softball Y -
FP18 yoga - Y yoga, Bosu® exercises

FP19 - - Y ankle strengthening 
exercises

FP20
obstacle racing, 

dodgeball, Ultimate 
Frisbee®

- N -

Miscellaneous Sport Participation Balance Training Participation
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A.2 ASA24 Dietary Recall 

 

Table 19. ASA24 Dietary Recall Results 

 

Subject Protein Fat Carb Protein Fat Carb Protein Fat Carb

FP1 1248.1 20.0 24.6 56.8 62.4 34.1 177.1 1.2 0.7 3.4
FP2 1403.5 15.4 39.4 49.7 54.0 61.4 174.3 0.9 1.0 2.9
FP3 2171.3 11.6 27.9 66.3 62.7 67.3 359.8 1.2 1.3 6.8
FP4 2967.7 13.9 34.5 54.2 103.0 113.7 402.4 1.7 1.9 6.6
FP5 1470.3 17.9 28.5 56.8 65.7 46.6 208.8 1.0 0.7 3.3
FP6 1495.5 19.0 47.2 35.4 70.9 78.4 132.5 0.8 0.9 1.5
FP7 1545.9 13.6 16.7 73.3 52.6 28.6 283.1 1.0 0.5 5.2
FP8 2694.9 15.0 37.1 49.9 100.9 111.0 336.1 1.7 1.9 5.8
FP9 1972.3 20.7 21.8 27.6 102.0 47.7 136.1 1.6 0.7 2.1
FP10 975.9 20.8 48.8 18.2 50.6 52.9 44.5 0.9 0.9 0.8
FP11 1866.8 11.1 27.3 63.3 51.8 56.7 295.6 0.8 0.9 4.7
FP12 1912.9 6.8 17.2 50.7 32.6 36.5 242.5 0.6 0.6 4.2
FP13 1025.0 25.5 38.0 41.4 65.3 43.3 106.1 1.0 0.7 1.6
FP14 1773.0 16.8 41.9 42.9 74.5 82.6 190.2 1.1 1.2 2.8
FP15 4381.0 18.0 24.3 53.6 197.4 118.1 587.3 2.6 1.6 7.8
FP16 2341.0 10.3 29.5 56.2 60.2 76.7 329.1 1.0 1.3 5.5
FP17 1199.6 13.5 26.4 62.9 40.6 35.2 188.5 0.7 0.6 3.2
FP18 2241.7 22.9 29.5 41.8 128.5 73.5 234.1 2.4 1.4 4.3
FP19 1937.5 18.0 16.7 70.6 87.4 36.0 341.7 1.6 0.7 6.3
FP20 1637.8 29.2 31.8 40.1 119.6 57.9 164.0 1.8 0.9 2.5

% of Total Energy Total Consumption (g) Total Consumption (g/kg)Total 
Energy 
(kcal)
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A.3 OMNI Rating of Perceived Exertion 

 

A.3.1 OMNI Rating of Perceived Exertion Scale (Adult Running) 

 

 

 

Figure 2. OMNI Rating of Perceived Exertion Scale (Adult Running) 
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A.3.2 Verbal Instructions for OMNI RPE Scale during Maximal Oxygen Uptake 

 

“You are about to undergo a treadmill exercise test. Please look at the person at the 

bottom of the scale who is performing low-intensity running. If you feel like this person when 

you are running, the exertion will be extremely easy. When I ask you how you feel, you should 

respond with the number 0 (zero). Now, look at the person at the top of the scale who is barely 

able to continue running. If you feel like this person looks while you are running, the exertion 

will be extremely hard. When I ask you how you feel, you should respond with the number 10 

(ten). If you feel your effort is somewhere between extremely easy (0) and extremely hard (10), 

the respond with a number between 0 and 10. I will ask that you give a number that describes 

how your active muscles feel, including your legs and your arms. I am also going to ask for a 

number that represents how your breathing feels, then how your overall body feels. There are no 

right or wrong numbers. The numbers you choose may change as you continue to run. Use both 

the pictures and the words to help you select the numbers. Use any of the numbers to describe 

how you feel when running.” 
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A.3.3 Verbal Instructions for OMNI RPE Scale during Fatigue Protocol 

 

“You are about to undergo a maximal fatigue protocol. During this protocol, you will be 

performing a series of exercises, including treadmill running, push-ups, sit-ups, and step-ups. 

Please look at the person at the bottom of the scale who is performing low-intensity running. If 

you feel like this person at the end of a station, the exertion will be extremely easy. When I ask 

you how you feel, you should respond with the number 0 (zero). Now, look at the person at the 

top of the scale who is barely able to continue running. If you feel like this person at the end of a 

station, the exertion will be extremely hard. When I ask you how you feel, you should respond 

with the number 10 (ten). If you feel your effort is somewhere between extremely easy (0) and 

extremely hard (10), the respond with a number between 0 and 10. I will ask that you give a 

number that describes how your active muscles feel, including your legs and your arms. I am 

also going to ask for a number that represents how your breathing feels, and then how your 

overall body feels. There are no right or wrong numbers. The numbers you choose may change 

as you continue through the stations. Use both the pictures and the words to help you select the 

numbers. Use any of the numbers to describe how you feel at the end of each station.” 
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INDIVIDUAL RESULTS AND SCATTERPLOTS 
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A.2 INDIVIDUAL RESULTS 

A.2.1 Demographics 

Table 20. Individual Demographic Data 

Subject Visit 1 Date Visit 2 Date Age Height (cm) Weight (kg) BMI (kg/m2) BF%
FP1 6/6/2012 6/8/2012 26 162.0 52.2 19.9 22.4
FP2 6/8/2012 6/11/2012 29 161.4 60.9 23.4 21.3
FP3 6/11/2012 6/13/2012 20 161.0 52.9 20.4 29.9
FP4 6/12/2012 6/15/2012 22 167.0 61.3 22.0 29.6
FP5 6/13/2012 6/27/2012 28 166.0 64.0 23.2 24.6
FP6 6/13/2012 6/15/2012 25 172.5 85.7 28.8 25.7
FP7 6/14/2012 6/27/2012 27 162.0 54.6 20.8 15.1
FP8 6/14/2012 6/22/2012 23 166.4 58.4 21.1 22.0
FP9 6/15/2012 6/29/2012 35 171.0 65.2 22.3 18.9
FP10 6/15/2012 6/21/2012 34 164.4 59.0 21.8 22.4
FP11 6/18/2012 6/20/2012 24 158.5 63.3 25.2 32.2
FP12 6/20/2012 6/23/2012 38 163.0 58.2 21.9 26.3
FP13 6/22/2012 6/27/2012 29 168.0 65.1 23.1 18.3
FP14 6/22/2012 6/30/2012 37 163.0 67.1 25.2 23.4
FP15 6/23/2012 6/30/2012 36 175.3 74.9 24.4 29.5
FP16 6/25/2012 6/27/2012 25 168.0 60.0 21.2 21.2
FP17 6/25/2012 6/27/2012 29 161.0 58.8 22.7 32.3
FP18 6/26/2012 6/29/2012 35 168.0 54.0 19.1 17.6
FP19 6/26/2012 6/28/2012 21 168.0 54.0 19.1 15.9
FP20 6/26/2012 6/28/2012 30 165.0 65.7 24.1 17.3
BMI = Body Mass Index
BF = Body Fat  
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A.2.2 Isokinetic Strength 

Table 21. Individual Isokinetic Strength Data 

 

Subject Quad Strength 
(Nm)

Ham Strength 
(Nm)

Quad Strength 
(%BW)

Ham Strength 
(%BW)

Flex/Ext 
Ratio

FP1 112.7 60.6 215.9 116.0 0.54
FP2 152.2 68.9 250.2 113.3 0.45
FP3 104.7 51.5 198.7 97.7 0.49
FP4 111.7 45.2 182.2 73.7 0.40
FP5 109.4 57.4 170.9 89.7 0.52
FP6 149.9 81.6 174.7 95.1 0.54
FP7 95.2 44.3 174.8 81.4 0.47
FP8 136.6 69.2 235.1 119.1 0.51
FP9 162.3 75.4 249.9 116.2 0.46
FP10 142.2 67.9 241.0 115.0 0.48
FP11 135.8 61.6 215.1 98.1 0.46
FP12 139.4 73.3 239.9 126.2 0.53
FP13 155.6 81.5 239.6 125.6 0.52
FP14 160.3 85.3 240.2 127.8 0.53
FP15 157.6 62.2 210.3 83.0 0.39
FP16 161.8 90.9 269.9 151.7 0.56
FP17 107.8 62.4 184.1 106.6 0.58
FP18 104.0 58.8 194.1 109.8 0.57
FP19 143.1 59.7 267.1 111.4 0.42
FP20 151.5 90.6 231.7 138.5 0.60
Quad Strength = Average peak torque produced over 5 trials
Ham Strength = Average peak torque produced over 5 trials  
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A.2.3 Physiological Characteristics 

Table 22. Individual Physiological Data 

 

Subject VO2Peak 
(ml/kg/min)

HR Max 
(bpm)

RER 
Max

Lactate 
Max (mmol)

Test Time 
(m.s)

WarmUp 
Speed 
(mph)

Test 
Speed 
(mph)

FP1 44.8 179 0.99 9.7 14.5 5.5 6.3
FP2 49.3 179 0.96 8.2 8.5 6.0 7.5
FP3 47.3 211 1.05 10.3 15.0 5.0 6.5
FP4 37.6 198 1.03 9.4 14.0 3.5 4.7
FP5 44.3 203 1.10 9.7 13.0 5.2 6.0
FP6 40.4 195 1.00 11.3 11.5 6.5 6.5
FP7 50.2 188 0.98 4.8 14.5 6.2 6.7
FP8 50.1 205 0.97 6.9 15.6 6.2 6.7
FP9 49.2 170 0.91 7.4 12.5 6.2 6.7
FP10 53.4 179 0.94 7.4 15.3 6.2 6.7
FP11 42.6 184 1.00 10.9 12.0 5.5 6.3
FP12 46.1 180 0.98 7.8 9.0 5.0 6.7
FP13 42.4 186 0.96 8.7 13.5 5.0 6.3
FP14 44.3 179 0.99 7.4 13.0 5.0 6.3
FP15 41.7 190 0.98 11.6 12.0 4.7 6.0
FP16 50.6 198 0.99 10.4 15.1 5.0 6.3
FP17 52.8 195 1.02 11.8 9.0 6.0 8.0
FP18 52.0 178 0.96 5.4 12.0 6.0 7.0
FP19 50.1 182 0.98 7.8 13.0 5.0 6.3
FP20 51.9 176 0.99 8.8 9.0 6.0 7.0
VO2 Peak = Peak Oxygen Uptake (15-second interval)
HR Max = highest heart rate achieved during test
RER Max = highest respiratory exchange ratio achieved during test  
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Table 23. Individual Lactate Threshold Data 

 

Subject Lactate @ 
LT (mmol)

VO2 @ LT 
(ml/kg/min)

LT 
(%VO2peak)

HR @ LT 
(bpm)

Lactate @ 
LT (mmol)

VO2 @ LT 
(ml/kg/min)

LT 
(%VO2peak)

HR @ LT 
(bpm)

FP1 3.0 35.1 78.3 162.5 4.3 38.5 86.1 170.6
FP2 2.6 42.1 85.4 164.4 2.6 42.1 85.4 164.4
FP3 3.7 36.2 76.6 196.5 3.7 36.2 76.6 196.5
FP4 2.9 29.8 79.4 179.5 4.1 32.1 85.3 185.0
FP5 3.2 38.3 86.5 192.5 3.2 38.3 86.5 192.5
FP6 5.7 30.2 74.7 181.3 5.7 30.2 74.7 181.3
FP7 2.1 40.9 81.5 173.3 3.6 46.6 92.8 180.3
FP8 2.2 44.7 89.2 194.0 4.6 47.8 95.4 197.5
FP9 2.4 33.4 67.9 149.0 3.9 40.8 83.0 161.0
FP10 2.7 43.5 81.4 163.3 4.0 47.7 89.3 170.8
FP11 3.7 34.5 81.0 169.5 5.7 36.4 85.5 177.8
FP12 3.1 36.9 80.1 173.4 5.0 39.5 85.6 174.3
FP13 3.6 35.4 83.5 177.0 3.6 35.4 83.5 177.0
FP14 3.0 38.3 86.5 164.8 3.0 38.3 86.5 164.8
FP15 2.7 24.8 59.5 147.1 4.6 34.5 82.7 157.4
FP16 4.1 40.2 79.5 181.8 4.1 40.2 79.5 181.8
FP17 4.4 46.5 88.0 194.3 4.4 46.5 88.0 194.3
FP18 3.0 40.7 78.2 162.0 4.1 44.4 85.4 169.8
FP19 3.9 43.8 87.5 173.5 3.9 43.8 87.5 173.5
FP20 2.2 43.7 84.2 160.4 3.9 46.2 88.9 168.0
LT = Lactate Threshold
VO2 at LT = Oxygen Uptake at Lactate Threshold 
HR at LT = Heart Rate at Lactate Threshold

LT Determined at Noticeable InflectionLT Determined at 1mmol increase
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Table 24. Individual RPE Data 

 

Subject RPE Legs RPE Arms RPE Chest RPE Overall
FP1 10.0 8.0 9.0 9.0
FP2 7.0 6.0 7.0 7.0
FP3 10.0 9.0 9.0 10.0
FP4 9.0 8.0 8.0 9.0
FP5 8.0 2.0 10.0 9.0
FP6 9.0 5.0 9.0 9.0
FP7 7.0 6.0 9.0 8.0
FP8 8.0 8.0 9.0 9.0
FP9 4.0 5.0 5.0 8.0
FP10 9.0 7.0 9.0 9.0
FP11 9.0 3.0 8.0 9.0
FP12 9.0 9.0 9.0 9.0
FP13 9.0 8.5 10.0 9.5
FP14 8.0 7.0 9.0 10.0
FP15 6.0 3.0 6.0 8.0
FP16 9.0 7.0 9.0 9.0
FP17 8.0 9.0 9.0 8.0
FP18 10.0 5.0 8.0 8.0
FP19 6.0 4.0 9.0 9.0
FP20 4.0 4.0 8.0 7.0
RPE=Rating of Perceived Exertion with OMNI 0-10 scale at 
final stage of incremental treadmill test
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A.2.4 Fatigue Protocol 

Table 25. Fatigue Protocol – Station 1 Individual Data 

 

Subject Speed 
(mph)

Lactate 
(mmol)

Heart Rate 
(bpm)

RPE 
Legs

RPE 
Arms

RPE 
Chest

RPE 
Overall

FP1 5.9 2.2 145 5.0 3.0 4.0 4.0
FP2 6.8 8.6 147 4.0 3.0 3.0 3.0
FP3 6.2 3.0 157 1.0 0.0 1.0 0.0
FP4 4.5 2.4 148 5.0 4.0 5.0 5.0
FP5 5.7 2.4 165 3.0 2.0 4.0 4.0
FP6 6.2 0.9 163 2.0 1.0 3.0 2.0
FP7 6.4 1.8 158 2.0 2.0 3.0 2.0
FP8 6.4 1.1 165 2.0 2.0 2.0 2.0
FP9 6.4 2.1 130 1.0 0.0 2.0 2.0
FP10 6.4 2.1 134 3.0 1.0 3.0 3.0
FP11 6.0 4.1 163 3.0 2.0 3.0 3.0
FP12 6.4 3.1 157 4.0 2.0 3.0 3.0
FP13 6.0 2.6 157 3.0 2.0 4.0 3.0
FP14 6.0 2.7 151 2.0 3.0 3.0 3.0
FP15 5.7 4.1 156 3.0 2.0 3.0 3.0
FP16 6.0 3.7 142 3.0 2.0 3.0 3.0
FP17 7.6 4.0 170 3.0 2.0 2.0 2.0
FP18 6.7 2.1 125 4.0 2.0 4.0 4.0
FP19 6.0 1.9 151 3.0 3.0 5.0 5.0
FP20 6.7 3.1 151 1.0 1.0 2.0 1.0
RPE = Rating of perceived exertion using the OMNI 0-10 scale
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Table 26. Fatigue Protocol - Station 2 Individual Data 

 

Subject Speed 
(mph)

Lactate 
(mmol)

Heart 
Rate 
(bpm)

RPE 
Legs

RPE 
Arms

RPE 
Chest

RPE 
Overall

FP1 6.9 3.2 160 6.0 4.0 5.0 5.0
FP2 7.9 5.2 164 7.0 4.0 6.0 6.0
FP3 7.2 4.1 190 2.0 1.0 2.0 3.5
FP4 5.2 2.4 176 4.0 5.0 5.0 5.0
FP5 6.6 3.3 176 5.0 3.0 4.0 5.0
FP6 7.2 4.9 174 3.0 1.0 3.0 3.0
FP7 7.4 4.6 168 3.0 3.0 4.0 3.5
FP8 7.4 1.3 182 4.0 4.0 4.0 4.0
FP9 7.4 3.0 144 3.0 1.0 4.0 4.0
FP10 7.4 2.4 151 4.0 2.0 3.0 4.0
FP11 6.9 5.8 176 5.0 2.0 5.0 4.0
FP12 7.4 3.8 171 4.0 4.0 5.0 4.0
FP13 6.9 2.9 171 5.0 4.0 5.0 5.0
FP14 6.9 3.6 159 3.0 3.0 4.0 4.0
FP15 6.6 4.7 163 4.0 3.0 4.0 4.0
FP16 6.9 4.6 178 6.0 2.0 5.0 5.0
FP17 8.8 6.4 189 5.0 5.0 5.0 5.0
FP18 7.7 2.6 157 5.0 3.0 6.0 6.0
FP19 6.9 2.3 164 4.0 4.0 7.0 6.0
FP20 7.7 2.2 164 2.0 2.0 4.0 3.0
RPE = Rating of perceived exertion using the OMNI 0-10 scale  
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Table 27. Fatigue Protocol - Station 3 Individual Data 

 

Subject Pushups 
(#)

Lactate 
(mmol)

Heart 
Rate 
(bpm)

RPE 
Legs

RPE 
Arms

RPE 
Chest

RPE 
Overall

FP1 41 5.1 120 5.0 8.0 8.0 7.0
FP2 56 2.9 135 4.0 8.0 6.0 7.0
FP3 74 7.0 165 2.0 6.0 2.0 4.0
FP4 34 4.3 130 5.0 8.0 4.0 8.0
FP5 45 5.1 114 4.0 6.0 5.0 5.0
FP6 51 7.0 142 1.0 9.0 7.0 7.0
FP7 51 4.4 121 3.0 8.0 8.0 7.0
FP8 49 4.0 169 3.0 8.0 6.0 7.0
FP9 63 5.6 133 0.0 6.0 0.0 5.0
FP10 61 3.9 89 4.0 6.0 4.0 4.0
FP11 65 7.1 133 3.0 8.0 6.0 5.0
FP12 65 5.8 128 4.0 7.0 4.0 5.0
FP13 60 7.9 125 1.0 8.0 7.0 8.0
FP14 90 5.7 140 3.0 8.0 9.0 8.0
FP15 50 6.4 149 4.0 5.0 4.0 5.0
FP16 48 7.2 148 4.0 7.0 6.0 6.0
FP17 58 7.7 131 4.0 8.0 4.0 5.0
FP18 64 4.2 135 4.0 8.0 5.0 7.0
FP19 99 5.3 125 5.0 8.0 5.0 7.0
FP20 68 5.7 142 1.0 8.0 7.0 7.0
RPE = Rating of perceived exertion using the OMNI 0-10 scale  
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Table 28. Fatigue Protocol - Station 4 Individual Data 

 

Subject Situps 
(#)

Lactate 
(mmol)

Heart 
Rate 
(bpm)

RPE 
Legs

RPE 
Arms

RPE 
Chest

RPE 
Overall

FP1 44 4.9 111 7.0 7.0 7.0 7.0
FP2 69 6.9 124 5.0 6.0 7.0 7.0
FP3 69 7.2 148 3.0 5.0 5.0 5.0
FP4 66 7.1 120 4.0 8.0 7.0 8.0
FP5 66 5.4 95 3.0 7.0 5.0 5.0
FP6 74 7.8 128 1.0 3.0 7.0 5.0
FP7 95 3.3 104 2.0 3.0 5.0 5.0
FP8 80 4.8 135 3.0 6.0 5.0 6.0
FP9 64 113 0.0 1.0 3.0 5.0
FP10 69 4.3 84 4.0 3.0 4.0 5.0
FP11 82 6.8 118 4.0 4.0 4.0 6.0
FP12 66 6.0 118 3.0 5.0 4.0 4.0
FP13 76 7.2 119 0.0 5.0 4.0 5.0
FP14 70 5.9 117 4.0 6.0 8.0 8.0
FP15 59 7.1 210 4.0 4.0 4.0 5.0
FP16 60 7.6 124 5.0 7.0 7.0 7.0
FP17 81 7.0 104 4.0 5.0 4.0 4.0
FP18 86 4.9 113 2.0 4.0 5.0 6.0
FP19 79 7.1 118 2.0 5.0 6.0 7.0
FP20 64 5.9 111 1.0 1.0 5.0 4.0
RPE = Rating of perceived exertion using the OMNI 0-10 scale  
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Table 29. Fatigue Protocol - Station 5 Individual Data 

 

Subject Step-
Ups (#)

Lactate 
(mmol)

Heart 
Rate 
(bpm)

RPE 
Legs

RPE 
Arms

RPE 
Chest

RPE 
Overall

FP1 100 6.6 164 8.0 6.0 7.0 7.0
FP2 72 5.6 154 7.0 3.0 6.0 6.0
FP3 147 9.6 202 6.0 6.0 6.0 7.0
FP4 80 6.3 182 8.0 7.0 8.0 8.0
FP5 88 4.8 170 6.0 4.0 6.0 5.0
FP6 97 7.4 174 8.0 2.0 7.0 7.0
FP7 129 8.0 173 8.0 4.0 9.0 8.0
FP8 121 4.8 196 7.5 7.0 7.0 7.5
FP9 108 5.4 149 3.0 1.0 6.0 6.0
FP10 94 3.1 129 5.0 2.0 3.0 4.0
FP11 90 7.7 166 6.0 3.0 6.0 6.0
FP12 104 6.3 169 7.0 7.0 7.0 7.0
FP13 137 10.2 179 9.0 8.0 9.0 10.0
FP14 121 8.1 168 9.0 4.0 8.0 9.0
FP15 112 8.2 175 6.0 4.0 5.0 6.0
FP16 115 9.8 182 7.0 6.0 8.0 8.0
FP17 120 8.7 163 6.0 5.0 5.0 5.0
FP18 121 5.1 168 8.0 4.0 7.0 7.0
FP19 110 5.9 161 6.0 5.0 7.0 7.0
FP20 109 4.8 163 6.0 0.0 7.0 5.0
RPE = Rating of perceived exertion using the OMNI 0-10 scale  
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Table 30. Fatigue Protocol - Station 6 Individual Data 

 

Subject Speed 
(mph)

Lactate 
(mmol)

Heart 
Rate 
(bpm)

RPE 
Legs

RPE 
Arms

RPE 
Chest

RPE 
Overall

FP1 6.9 5.9 165 8.0 6.0 7.0 8.0
FP2 7.9 8.4 170 8.0 7.0 8.0 8.0
FP3 7.2 9.7 200 8.0 7.0 8.0 8.5
FP4 5.2 6.2 187 8.0 8.0 9.0 9.0
FP5 6.6 5.2 182 7.0 5.0 6.0 6.0
FP6 7.2 9.2 177 8.0 2.0 8.0 7.0
FP7 7.4 172 5.0 5.0 7.0 6.0
FP8 7.4 4.4 193 6.0 6.0 6.0 6.0
FP9 7.4 5.4 153 4.0 1.0 5.0 5.0
FP10 7.4 2.9 151 5.0 2.0 4.0 5.0
FP11 6.9 9.4 177 7.0 4.0 7.0 7.0
FP12 7.4 7.1 173 8.0 7.0 7.0 7.0
FP13 6.9 11.0 173 8.0 8.0 9.0 9.0
FP14 7.2 7.3 167 4.0 4.0 7.0 7.0
FP15 6.6 10.0 176 6.0 4.0 6.0 6.0
FP16 6.9 8.4 181 8.0 7.0 8.0 8.0
FP17 8.8 9.2 192 6.0 6.0 7.0 6.0
FP18 7.7 4.9 168 6.0 4.0 7.0 7.0
FP19 6.9 4.8 166 7.0 5.0 8.0 8.0
FP20 7.7 5.7 172 6.0 4.0 7.0 6.0
RPE = Rating of perceived exertion using the OMNI 0-10 scale  
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Table 31. Fatigue Protocol - Station 7 Individual Data 

 

Subject Speed 
(mph)

Lactate 
(mmol)

Heart 
Rate 
(bpm)

RPE 
Legs

RPE 
Arms

RPE 
Chest

RPE 
Overall

Station 
Time 
(min)

FP1 7.2 11.3 179 9.0 9.0 9.0 9.0 7.0
FP2 8.3 7.4 176 10.0 8.0 10.0 10.0 3.0
FP3 7.5 9.0 200 10.0 9.0 9.5 10.0 5.0
FP4 5.4 5.4 187 6.0 7.0 9.0 8.0 3.0
FP5 6.9 9.7 194 9.0 8.0 9.0 10.0 6.0
FP6 7.5 10.2 184 9.0 3.0 10.0 9.0 4.0
FP7 7.7 3.0 182 7.0 7.0 9.5 9.0 5.0
FP8 7.7 6.1 204 9.0 9.0 9.0 9.0 7.0
FP9 7.7 10.3 170 6.0 3.0 9.0 9.0 7.0
FP10 7.7 7.8 173 9.0 7.0 9.0 9.5 8.0
FP11 7.2 10.3 183 9.0 4.0 9.0 9.0 4.0
FP12 7.7 8.9 177 9.0 10.0 10.0 10.0 4.0
FP13 7.2 11.7 186 10.0 10.0 10.0 10.0 7.0
FP14 7.2 8.0 177 6.0 7.0 9.0 8.0 5.0
FP15 6.9 9.7 155 7.0 4.0 9.0 8.0 2.0
FP16 7.2 7.1 180 10.0 9.0 10.0 10.0 4.0
FP17 9.2 11.4 198 8.0 8.0 9.0 8.0 3.0
FP18 8.1 5.3 174 10.0 6.0 9.0 9.0 4.0
FP19 7.2 7.2 182 9.0 9.0 10.0 10.0 7.0
FP20 8.1 5.4 174 6.0 5.0 9.0 8.0 3.0
RPE = Rating of perceived exertion using the OMNI 0-10 scale  
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A.2.5 Threshold to Detect Passive Motion 

Table 32. Threshold to Detect Passive Motion Individual Data 

 

Subject Extension Flexion Extension Flexion Extension Flexion Extension Flexion
FP1 2.23 -1.03 2.23 -1.50 0.00 -0.47 0.0 45.2
FP2 1.63 -1.83 2.27 -2.57 0.63 -0.73 38.8 40.0
FP3 0.83 -1.13 0.83 -0.67 0.00 0.47 0.0 -41.2
FP4 3.93 -3.67 2.43 -4.43 -1.50 -0.77 -38.1 20.9
FP5 1.50 -0.93 1.60 -1.33 0.10 -0.40 6.7 42.9
FP6 1.33 -1.03 1.47 -0.87 0.13 0.17 10.0 -16.1
FP7 1.70 -1.67 1.90 -1.47 0.20 0.20 11.8 -12.0
FP8 0.43 -0.43 0.60 -0.83 0.17 -0.40 38.5 92.3
FP9 0.60 -1.00 0.70 -0.77 0.10 0.23 16.7 -23.3
FP10 0.73 -0.70 0.57 -0.73 -0.17 -0.03 -22.7 4.8
FP11 1.30 -1.00 1.80 -1.27 0.50 -0.27 38.5 26.7
FP12 1.23 -1.07 1.00 -1.07 -0.23 0.00 -18.9 0.0
FP13 2.07 -2.70 1.90 -2.47 -0.17 0.23 -8.1 -8.6
FP14 3.63 -1.77 3.77 -2.53 0.13 -0.77 3.7 43.4
FP15 2.40 -0.97 1.67 -0.83 -0.73 0.13 -30.6 -13.8
FP16 0.73 -0.50 1.17 -0.93 0.43 -0.43 59.1 86.7
FP17 0.43 -0.50 1.10 -0.70 0.67 -0.20 153.8 40.0
FP18 0.90 -3.13 0.87 -1.77 -0.03 1.37 -3.7 -43.6
FP19 1.33 -1.13 1.20 -1.27 -0.13 -0.13 -10.0 11.8
FP20 1.87 -4.27 1.77 -2.10 -0.10 2.17 -5.4 -50.8
TTDPM = Threshold to Detect Passive Motion, average of first three trials with correctly identified direction

Pre-Fatigue TTDPM (°) Post-Fatigue TTDPM (°) %Change TTDPM (°)Post-Pre TTDPM (°)
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Table 33. Individual Isometric Strength Data 

 

Subject Quad 
(%BW)

Ham 
(%BW)

Flex/Ext 
Ratio

Quad 
(%BW)

Ham 
(%BW)

Flex/Ext 
Ratio

Quad 
(%BW)

Ham 
(%BW)

Flex/Ext 
Ratio

Quad 
(%BW)

Ham 
(%BW)

Flex/Ext 
Ratio

FP1 178.5 113.6 0.64 171.4 95.4 0.56 -7.1 -18.2 -0.08 -4.0 -16.0 -12.5
FP2 241.2 142.1 0.59 272.3 132.4 0.49 31.1 -9.7 -0.10 12.9 -6.8 -17.5
FP3 226.7 114.5 0.51 190.9 109.2 0.57 -35.8 -5.3 0.07 -15.8 -4.6 13.3
FP4 149.6 73.6 0.49 141.0 60.1 0.43 -8.6 -13.5 -0.07 -5.7 -18.3 -13.4
FP5 193.4 105.4 0.54 199.5 82.5 0.41 6.1 -22.9 -0.13 3.2 -21.7 -24.1
FP6 152.5 115.3 0.76 176.8 95.3 0.54 24.3 -20.0 -0.22 15.9 -17.3 -28.7
FP7 167.9 64.2 0.38 160.1 56.9 0.36 -7.8 -7.3 -0.03 -4.6 -11.4 -7.1
FP8 232.2 115.0 0.50 261.0 86.1 0.33 28.8 -28.9 -0.17 12.4 -25.1 -33.4
FP9 178.3 105.7 0.59 198.8 123.8 0.62 20.5 18.1 0.03 11.5 17.1 5.0
FP10 198.1 107.6 0.54 198.6 97.9 0.49 0.5 -9.7 -0.05 0.3 -9.0 -9.2
FP11 200.3 116.0 0.58 193.4 101.4 0.52 -6.9 -14.6 -0.05 -3.4 -12.6 -9.5
FP12 279.0 117.2 0.42 272.5 111.0 0.41 -6.5 -6.2 -0.01 -2.3 -5.3 -3.0
FP13 248.5 126.6 0.51 254.6 115.5 0.45 6.1 -11.1 -0.06 2.5 -8.8 -11.0
FP14 264.5 139.7 0.53 256.6 130.0 0.51 -7.9 -9.7 -0.02 -3.0 -6.9 -4.1
FP15 229.2 85.6 0.37 214.3 80.3 0.37 -14.9 -5.3 0.00 -6.5 -6.2 0.3
FP16 315.4 176.0 0.56 223.1 132.5 0.59 -92.3 -43.5 0.04 -29.3 -24.7 6.4
FP17 161.7 128.4 0.79 163.7 109.6 0.67 2.0 -18.8 -0.12 1.2 -14.6 -15.7
FP18 189.5 113.9 0.60 201.1 131.8 0.66 11.6 17.9 0.05 6.1 15.7 9.0
FP19 289.2 125.2 0.43 279.1 109.2 0.39 -10.1 -16.0 -0.04 -3.5 -12.8 -9.6
FP20 250.0 152.3 0.61 252.8 148.4 0.59 2.8 -3.9 -0.02 1.1 -2.6 -3.6
Quad/Ham Strength = Isometric strength, average peak torque of three reciprocal trials of knee extension and flexion

Post-Pre Strength %Change StrengthPre-Fatigue Strength Post-Fatigue Strength
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A.3.1 Scatterplots of Pre- to Post-Fatigue TTDPM Differences and Musculoskeletal 

Strength Variables 

 

 

 

Figure 3. Pre- to Post-Fatigue TTDPM (Extension) and Isokinetic Knee Extension Strength 
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Figure 4. Pre- to Post-Fatigue TTDPM (Flexion) and Isokinetic Knee Extension Strength  
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Figure 5. Pre- to Post-Fatigue TTDPM (Extension) and Isokinetic Knee Flexion Strength  
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Figure 6. Pre- to Post-Fatigue TTDPM (Flexion) and Isokinetic Knee Flexion Strength 
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Figure 7. Pre- to Post-Fatigue TTDPM (Extension) and Flexion/Extension Ratio 
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Figure 8. Pre- to Post-Fatigue TTDPM (Flexion) and Flexion/Extension Ratio 
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A.3.2 Scatterplots of Physiological Variables and Pre- to Post-Fatigue TTDPM 

Differences 

 

 

Figure 9. Pre- to Post-Fatigue TTDPM (Extension) and VO2 Peak  
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Figure 10. Pre- to Post-Fatigue TTDPM (Flexion) and VO2 Peak 
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Figure 11. Pre- to Post-Fatigue TTDPM (Extension) and Lactate Threshold at 1mmol 

increase 
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Figure 12. Pre- to Post-Fatigue TTDPM (Flexion) and Lactate Threshold at 1mmol 

increase  
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Figure 13. Pre- to Post-Fatigue TTDPM (Extension) and Lactate Threshold at 

Inflection 
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Figure 14. Pre- to Post-Fatigue TTDPM (Flexion) and Lactate Threshold at 

Inflection 
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