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Abstract  

 

Although Nature has taught us that sequence control can be used to control macromolecular 

properties, there is little systematic polymer research connecting sequence with properties.  

Poly(lactic-co-glycolic acid) (PLGA) copolymers are universally recognized as biodegradable 

polymers that can be used for in vivo bioengineering applications.  Sequence control of PLGAs 

may allow the tuning of properties for specific drug delivery or cell scaffolding applications.  A 

series of sequenced PLGAs were prepared and their hydrolysis rates, thermal properties and 

ability to sequester and deliver rhodamine B (RhB) were investigated.   By monitoring both 

polymer molecular weight and lactic acid release, it was determined that sequenced copolymers 

hydrolyze more gradually than random copolymers.  Data from thermal studies and from the size 

exclusion chromatography of these samples establish also that they maintain their initial 

morphology throughout and do not become heterogeneous as do the random controls. 

Differences in hydrolysis profile were also found for specific sequences.  RhB encapsulation and 

release was also found to depend on sequence—the alternating copolymer had a lower loading 

capacity but a more gradual release rate than the random copolymer with the same lactic/glycolic 

unit composition. 
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1.0  BIODEGRADABLE POLY(LACTIC-CO-GLYCOLIC ACID)S: SYNTHESIS, 

CHARACTERIZATION AND APPLICATIONS 

1.1 BACKGROUND 

Polyesters are exploited widely in bone tissue engineering and controlled drug release because, 

for certain monomer combinations, they have been found to be non-toxic, permeable and 

biodegradable.
1,2

 Among the biodegradable polyesters, poly(lactic acid) (PLA) and poly(lactic-

co-glycolic acid) (PLGA) (Figure 1, L = lactic monomer, G = glycolic monomer), are perhaps 

the most well-known of the aliphatic polyesters.  These polymers, which produce bioassimilable 

lactic and glycolic acids after hydrolysis,
3
 have attracted significant attention for clinical 

applications such as the replacement of connective tissue and bone
4
 and the controlled delivery 

of drug drugs in vivo.
5
 

 

Figure 1. Lactic acid, glycolic acid, poly(lactic acid) (PLA) and poly(lactic-co-glycolic)acid (PLGA) 
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PLA and PLGA were introduced several decades ago.
5
 Both high molecular weight and low 

molecular weight polymers have been studied
6-9

 and these polymers, especially PLGA, have 

been widely explored for a variety of biomedical applications.
5
 In tissue engineering, for 

example, by in vitro culturing bovine chondrocytes on PLGA scaffolds for 12 weeks, Ma et al.,
10

 

built up artificial cartilage and reported that the thickness of scaffolds increases by 42%. They 

also found that the compressive modulus and the permeability were comparable to normal 

bovine cartilage. In another system, Holy et al., seeded pre-cultured rat bone marrow cells on 

PLGA (75/25 L:G) shaped as a three dimensional scaffold similar to trabecular bone.
11

 After 

culturing for 6 weeks, the cells proliferated in the porous matrix of the polymer scaffold and the 

formed trabecular bone stabilized osteotomy defect sites in rabbits.  

PLGA has also been used in drug delivery systems. Ogura et al., for example, loaded retinal 

pigment epithelium and the fluorescent dye, rhodanmine 6GX, in microparticles of PLGA (75/25 

or 50/50 L:G) for in vivo drug delivery in the subretinal space of rabbits.
12

 The controllable 

release rate was found to depend on molecular weight and the copolymer composition. The 

microparticles degraded in the cytoplasm and the implanted retinal sites were not damaged. For 

topical drug delivery, Jalón et al., studied the distribution of PLGA microparticles in porcine 

skin and found that the particles were able to reach the epidermis through the stratum corneum in 

high numbers.
13

 This behavior is consistent with the use of PLGA as a sustainable release carrier 

for transdermic drug delivery. 
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1.2 SYNTHETIC APPROACHES TO PLA AND PLGA 

 

Figure 2. Ring opening polymerization of cyclic dimers to produce PLA, PGA and/or PLGA 

Several synthetic approaches to PLA and PLGA have been reported.
9,14-16

 The ring-opening 

polymerization (ROP) of six-membered cyclic esters which are formed by lactic acid or glycolic 

acid is the most commonly used (Figure 2).
6,8

 Two steps are needed in a typical ROP reaction for 

making PLA. First, the lactide, which is the cyclic di-ester of lactic acid, is prepared.
17

 The 

synthetic preparation from lactic acid involves the application of heat and vacuum to remove 

water and form the lactide.
18

 The lactide is then thermally opened at 200 °C - 300 °C using a 

metal or metal oxide catalyst. As there are two stereoisomers for lactic acid, L-lactic acid and D-

lactic acid, L,L-lactide, D,D-lactide can be prepared from each stereoisomer and D,L-lactide can be 

isolated from the product of D,L-lactic acid as starting materials. With these stereoisomers of 

lactide, PLA with corresponding stereochemistry can be prepared.
6,8,19,20

 Dubois et al., using L,L-

lactide and D,L-lactide as monomers of ROP and aluminum isopropoxide as initiator, studied the 

mechanism of polymerization in the solution of toluene at 70 °C or in bulk at 180 °C according 

to the “coordination-insertion” mechanism shown in Figure 3.
8
 Lactide inserts into the Al-O 

bond and the acyl oxygen bond selectively cleaves, which leaves a new open site on the initiator. 

With the cyclic insertion of lactides, the chain grows and finally forms PLA polymer with an 

alcohol and ester end groups. Although the living character of the polymerization allows the 

molecular weight to be controlled by adjusting the ratio of lactide and initiator, the highest 

molecular weight obtained under these conditions is 90,000 (Mn). Besides aluminum alkoxide, 
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other metal alkoxide initiators have also been studied in ROP of lactides. Kricheldorf et al., 

applied potassium, titanium, magnesium, zirconium, zinc and tin alkoxide as initiators and 

studied the mechanisms of different metals in the polymerization.
21

 Stannous (II) chloride and 

stannous (II) 2-ethylhexanoate (tin octoate) initiators are the most widely used catalysts for the 

polymerization of lactide used in medical applications
17,19,22

 because they both have been 

permitted as food additives and the tin octoate is efficient for polymerization and preventing 

racemization of lactide.
18

 Organocatalysts such as amines, phosphines, and N-heterocyclic 

carbenes were also found highly active for ROP of lactide.
23-25

 Both amine and N-heterocyclic 

carbenes catalysists are more active than phosphines catalysts so that less transesterificaion 

reactions can be observed from the products.
15

 Similar methods are used to prepare polyglycolide 

(PGA).  

 

Figure 3. Mechanism for the ring-opening polymerization of lactide using an aluminum catalyst. Adapted with 

permission from ref. 8. Copyright (1991) American Chemical Society. 
8
  

PLGA copolymers, which are more widely used than PLA in drug delivery due to their 

tunable rates of release and degradation, can also be prepared by the ROP method.
26,27

 PLGA 

copolymers were most commonly synthesized by mixing a pre-determined ratio of lactide and 

glycolide monomers in bulk or in solvent under vacuum and at high temperature with stannous 
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octoate as the catalyst.
28

 As the glycolide has higher reactivity than lactide under these reaction 

conditions,
29

 the final composition usually has a broader lactic/glycolic ratio than would be 

expected. The block sequence is random.
30

 Alternating PLGA with molecular weight up to 66 

kDa has been prepared by condensation polymerization of o-(2-bromopropionyl) glycolic acid.
31

 

By the ring closing reaction of o-(2-bromopropionyl) glycolic acid, Dong et al,
14

 synthesized 

D,L-3-methylglycolide monomer. This monomer was then polymerized using ROP to give  the 

racemic alternating PLGA copolymer  with molecular weights as high as 54 kDa (Mn).
32

 

Ring-opening polymerization offers a way to obtain high molecular weight PLA and PLGA 

for biomedical applications. However, as the lactic acid and glycolic acid both have one 

carboxylic acid end group and one hydroxyl end group, they can also be polymerized through 

direct condensation polymerization. The disadvantage of direct condensation polymerization is 

that the water present in the starting materials and produced from the condensation stabilizes 

both reactive end groups such that the rate constant is reduced. Several approaches have been 

studied to conquer this problem. By using azeotropic distillation in the presence of diphenylether 

and molecular sieves (3 Å) to remove the water in the reaction flask, Ajioka et al., successfully 

synthesized PLA homo-polymer and PLGA copolymer.
33

 Tin was used as the catalyst and the 

water content during the reaction was controlled below 3 ppm to give PLGA with molecular 

weights as high as 160 kDa (Mw). The disadvantage of this reaction is that the oligo-lactic acid 

depolymerizes at high temperature, such that scrambling can occur, limiting the access to 

controlled composition. 

The majority of ROP PLAs and PLGAs are prepared using toxic organometallic compounds 

as catalysts. Although there is an increasing use of organic catalysts to avoid this problem, others 

have explored the use of enzymatic catalysts to promote direct condensation polymerization of 
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lactic and glycolic acids as an alternative. Several enzymes such as Pseudomonas cepacia lipase, 

Pancreatic porcine lipase and Candida antarctica lipase (Novozyme 435) have been used in the 

polymerization.
34,35

 As the enzymatic catalysts need to work at a specific temperature to exhibit 

the highest catalyzing ability, in a typical synthesis procedure, lactic acid and glycolic acid 

monomers were mixed with pre-determined molar ratio and maintained at the selected 

temperature (usually 60 °C – 80 °C) under vacuum to remove water as byproduct (a solvent with 

high boiling point was needed). The polymer products, PLA or PLGA, can be dissolved in 

organic solvents such as methylene chloride and THF, but the enzymes and their carriers cannot, 

which facilitates filtration for purification. The enzymes filtered from the product can be 

recycled so that it is an eco-friendly, economical and effective method for the condensation 

polymerization. 

Condensation of lactic and glycolic oligomers can also be promoted through the use of ester 

coupling reagents. The advantage of this approach is that it avoids the need for higher 

temperature conditions which can promote both depolymerization and transesterification. For 

example, coupling reagents such as 1,1’-carbonyldiimidazol (CDI) and N-N’-dicyclohexyl-

carboiimide (DCC) were introduced to facilitate the esterification of lactic acid and glycolic acid 

by Akutsu.
9
 Byproducts such as N,N’-dicyclohexylurea were easily removed because of their 

insolubility in most organic solvents, and the molecular weight of polymer product (PLA) 

reached 15,800 (Mn) after 24 h reaction at RT. The reaction also exploited 4-dimethylamino 

pyridine (DMAP) as a Lewis base catalyst. Unfortunately, the nucleophilic amine on the pyridine 

can also attack the acyl, resulting in suppression of the polymerization.
36

 This is the main 

drawback of DCC/DMAP coupling condensation polymerization. By using p-toluenesulfonic 



 7 

acid to neutralize the amine on DMAP, Stupp et al., avoided the suppression effect, and 

succeeded in making polyesters with high degree of polymerization under room temperature.
37

 

1.3 COMPOSITION OF PLA AND PLGA (MICROSTRUCTURE ANALYSIS) 

 

Figure 4. Stereochemistry in poly(lactic acid) 

PLA and PLGA polymers, because of the existence of the carbon chiral center on the lactic 

moiety, exhibit stereochemistry in their microstructures. The stereochemical variations reported 

include atactic, isotactic, syndiotactic and hemi-isotactic (Figure 4). As stereochemistry plays an 
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important role in the determination of physical and mechanical properties of polymers, the 

control of microstructure has been extensively investigated.
38-46

 For the synthesis of PLA, the 

generally used ring opening polymerization usually generates isotactic and atactic PLAs.
46

 

Spassky et al., using (R)-(SalBinap)-AlOCH3 as catalyst, studied the ring opening 

polymerization of rac-lactide, and found that the polymer prepared was predominated isotactic.
43

 

Ovitt et al., using (R)-(SalBinap)AlO
i
Pr to catalyze ROP of meso-lactide, obtained optical pure 

syndiotactic D,L-PLA.
42

  

In describing the microstructure of polymers with multiple possible stereosequences, a 

convention of labeling the diastereomeric relationships along the chain used. In atactic PLA, for 

example, the units with L- or D-lactic units near each other will generate both isotactic and 

syndiotactic units, where i is used to designate adjacent units with the same stereochemistry and 

s is the label for adjacent units with opposite stereochemistry. The notation ii indicates that all 

three units in a triad have the same absolute stereochemistry. Pure poly(L-lactic acid) or poly(D-

lactic acid) have all i relationships along their chains. The notations si or is indicate that a 

syndiotactic unit connects to an isotactic unit or an isotactic unit connects to a syndiotactic unit 

in a triad.
19,47

 If we consider a tetrad, which is a sequence of 4 stereoactive units, there will be 

eight possibilities including iii, iis, isi, iss, ssi, sis, sii and sss. Signifiant work has been reported 

on the use of 
1
H and 

13
C NMR spectroscopy to identify the microstructure of PLAs.

19,47
  

For PLGA, both the stereochemistry and the sequence of lactic acids and glycolic acids will 

affect the microstructure. From the previous discussion we can see that most ROP of a mixture 

of lactide and glycolide will give random PLGAs as will the direct condensation polymerization 

of lactic acid and glycolic acids.
15,28

 Only the ROP of D,L-3-methylglycolide gives some control 

of sequence but the sequence control is not perfect and the difficulty in preparing the stereopure 



 9 

3-methylglycolide means that the resulting polymer is atactic.
14

 PLGA prepared by condensation 

polymerization of o-(2-bromopropionyl) glycolic acid has excellent alternating structures of 

monomer units.
31

 However, the first description of the synthesis of PLGAs with a variety of 

sequences was published recently by our group.
44,48

  

The characterization of microstructure of PLGA polymers is more complex than for PLA. 

Most published studies have focused only on the content and the sequence of lactic and glycolic 

units. Kasperczyk has studied the microstructure of random poly(L-lactic-co-glycolic acid) 

copolymers using 
1
H and 

13
C NMR spectroscopy.

40
 The 

1
H NMR spectrum of the glycolic 

methylene protons, whose chemical shift can be affected by the both by the lactic and glycolic 

units nearby, was found to correlate to a certain extent with the monomer sequence in the 

copolymer. Hausberger et al., studied the connection between lactic and glycolic units in the 

poly(D,L-lactic-co-glycolic acid) copolymer.
49

 Using 
13

C NMR spectroscopy, they reported that 

the chemical shift of carbonyl group on glycolic unit depends on the identity of the neighboring 

monomers. The glycolic-lactic connection increased the chemical shift more than the glycolic-

glycolic connection (~0.08 ppm) and the integration of these two signals can be used to estimate 

the ratio of lactic/glycolic acids in the copolymer.  

When considering the stereochemistry of lactic units in PLGA, the question becomes even 

more complex. For alternating PLGA, if the PLA notation is employed, the ii in PLGA means 

two units with the same stereochemistry separated by a glycolic unit. Gao et al., who has 

analyzed the microstructure of PLGA by 
1
H and 

13
C NMR spectroscopy, roughly defined the 

tetrads signals in the spectra, and also showed the way to confirm the ratio of lactic/glycolic acid 

units in PLGA random copolymer.
39

 In this system, however, the signals of some tetrads are still 

ambiguous. In our group, Ryan Stayshich synthesized poly (D,L-lactic-alt-glycolic acid) and 
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studied the microstructure of the polymer by the 
1
H and 

13
C NMR spectroscopy.

44
 Signals for six 

of eight possible tetrads of methylene groups of glycolic units were clearly shown in the NMR 

spectrum. Signals for the remaining tetrads can be inferred. This result offers a more complete 

assignment for the methylene resonances in alternating PLGA. 

The reason why the microstructure of PLA and PLGA has attracted such interest is that 

sequence determines, in part, the properties of polymers. The temperature of glass transition (Tg) 

and the melting point (Tm) are, for example, key thermophysical properties of polymers that 

depend not only on weight, thermal history and purity of polymers
50,51

 but also on the monomer 

sequence and tacticity of the material. For isotactic PLA, the Tg is about 55 °C and Tm is 170-180 

°C.
52

 Since crystallinity depends on the packing of the isotactic units, the highest Tm requires 

optical purity of 72%-75%, which means the chain has at least 30 isotactic lactic units.
53

 At 

lower optical purities, e.g. 47%, the Tm can decrease to 99 °C because the degree of crystallinity 

decreases.
54

 A pure syndiotactic PLA which was prepared by Ovitt exhibits a Tm at 152 °C.
55

 A 

possible explanation for the lower Tm compared with isotactic PLA is the presence of defects in 

the polymer during the polymer synthesis.
52

 The stereocomplex of PLLA and PDLA, formed by 

co-crystallization, usually exhibits a higher Tm than isotactic PLA. When Spassky used a 

stereoselective catalyst to synthesize PLLA from D,L-lactide, a polymer with Tm=187 °C was 

obtained.
43

 The Tm of this polymer is higher than that of isotactic PLA because the polymer 

chain is composed of both PLLA and PDLA sequences and these two sequences form a 

stereocomplex that crystallizes. This kind of PLLA and PDLA stereocomplexation, after 

optimizing the mixing ratio, can result in a Tm of 230 °C,
56,57

 which is 50 °C higher than isotactic 

PLA, and it has been further studied because of this observation.
42,45,58
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Stereocomplexation of PLGA has also attracted significant study.
59

 Random PLGA is 

noncrystallizable, and no Tm is observed by DSC. However, if the PLLA (PDLA) homopolymer 

is added to the PDLGA (PLLGA) copolymer to form the polymer blends, the material will 

crystallize. In blends of the two copolymers PLLGA and PDLGA, if the percentage of glycolic 

units decreases in each polymer, the Tm of blend will also increase.
56,57

 Poly(glycolic acid) 

(PGA) itself will also form a homocrystals. Although crystal formation is more facile for PGA,
60

 

the value of long period and lamellar thickness of PGA crystalline is lower than those of PDLA 

and PLLA homocrystals,
60

 and the glycolic units in the PLGA not disturb the 

homocrystallization between PLGA and PLA. This combination of factors results in a lower Tm 

with the increase of glycolic units in the blend, and offers a way to control the thermal properties 

of polymers. 

Being studied as widely used biodegradable materials, the degradation rate has also related 

to the composition of polymers. The Tg of PLA is about 57 °C
61

 and that of PLGA is above 37 

°C,
5
 which means under the physiological temperature, both polymers have rigid chain structure 

and sufficient mechanical strength to be drug carriers above a certain molecular weight.
50

 During 

the hydrolysis process, ester bonds in the linear aliphatic chain are cleaved. Due to steric 

hindrance, however, the bonds between lactic units exhibit a slow cleavage rate than lactic-

glycolic bonds which are in turn slower than glycolic-glycolic bonds.
61,62

 Although D,L-PLA 

copolymer, which has more irregularities than the L-PLA, is employed more often because the 

irregularities result in a more amorphous in the polymer matrix and enable more homogeneous 

dispersion of loaded drugs,
63

 the homopolymer actually degrades much slower than the rac-

polymer because the crystalline regions exhibit a much lower water uptake rate than amorphous 

regions.
52

 Since hydrolytic rates of different ester bonds are different, the control of ratio of 
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lactic to glycolic units in the PLGA copolymer offers an effective way to adjust the hydrolytic 

rate of the material.
64

 PLGA with low content of glycolic units (≤ 10%) is nearly as slow to 

degrade as PLA. A glycolic content of 30% to 50% allows for tuning of the degradation rate. 

Increase in glycolic content beyond 50% is not typically useful as the hydrolytic rate of the 

glycolic blocks is simply too fast. Crystalline PGA with a 60,000 MW will degrade to near 3000 

MW in two weeks.
65

 As a result, PLGA with 50% glycolic units or less are usually chosen for 

biodegradation.
66,67

 If the PLGA copolymers are processed to have a semi-crystalline structure, 

the hydrolytic rate will be slower than amorphous PLGA in the first week, because the semi-

crystalline region will slow down the water uptake.
65

 The rates will become the same after two 

weeks during which the glycolic semi-crystalline region has finished degradation and introduced 

water into the polymer matrix. 

1.4 SIDE CHAIN MODIFICATION 

Side chain modification can bring tunable properties for PLGA copolymers, such as an increase 

in hydrophilicity, the ability to attach new side chains, and the facile tuning of physical 

properties.
16,68,69

 For example, bovine serum albumin (BSA) encapsulation efficiency can be 

improved by the presence of a pendent of hydroxymethyl group on PLGA.
70

 BSA release 

profiles of thus prepared microparticles further regulated by tuning copolymer composition. 

Adhesion of stem cells to the polymer scaffold can also be improved by the introduction of 

functional side chains that increase hydrophilicity.
71

 Side-chain functionality can also be used to 

improve the binding and delivery of DNA.
72
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Many studies have focused on the incorporation of reactive groups on PLGA copolymers 

by side chain modification,
73,74

 using ROP of functionalized cyclic diester.
16

 However, 

modification completed through the ROP of these lactide and glycolide derivatives will give a 

random distribution of the functional groups which is not ideal for all applications. The use of a 

sequenced copolymer, in contrast, would make it possible to distribute the pendant groups 

uniformly. 
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2.0  SYNTHESIS OF REPEATING SEQUENCED PLGA COPOLYMERS 

2.1 OVERVIEW 

In this chapter, are described the preparation and characterization of a variety of 

sequenced polymers of PLGA.  Also discussed are modifications of synthetic strategies and the 

characterization of sequence fidelity by MALDI-TOF.  Portions of this chapter have been 

published previously.
75,76 

2.2 INTRODUCTION 

We use Segmer Assembly Polymerization (SAP), an approach that entails the step-growth 

polymerization of exact sequenced segmers, to prepare sequenced PLGAs. The term “segmers” 

rather than oligomers or macromonomers is used to emphasize the fact that they are 

monodisperse units that bear end-groups which allow for polymerization. Using a SAP strategy, 

it is possible to encode sequences of modest length—we routinely prepare segmers of 2-8 

monomers—to produce Repeating Sequence Copolymers (RSCs). The PLGA RSCs discussed 

herein were produced by the convergent coupling of orthogonally protected lactic and glycolic 

acids, followed by a DIC-mediated condensation polymerization. 
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Although PLGA copolymers and the homopolymers of lactic acid (PLAs) are more 

commonly prepared by the ring-opening polymerization (ROP) of lactides and glycolides the 

sequence complexity is limited relative to the SAP approach. The ROP strategy is a subset of 

chain-polymerizations that can, under certain conditions, be “programmed” using catalyst design 

and monomer reactivities to give sequenced microstructures. Indeed, the elegant work by key 

researchers who have used this approach in preparing polyolefins with controlled tactiticies,
77 

serves as an important inspirations for our interest in probing the role of sequence to a greater 

depth. Fundamentally, however, the “programmed” approach is limited with few exceptions to 

the alternation of two monomers.
15

 In PLA, for example, where there are two lactic 

stereoisomers, there have been many reports of ROP-prepared polymers with controlled 

tacticity.
78

 However, sequenced PLGAs, with the exception of the simple alternating 

copolymer,
14,31

 cannot be prepared using ROP because no catalytic system exists that can create 

complex patterns of three monomers.  

Two other approaches, templated synthesis and monomer-by-monomer construction, can 

produce sequenced copolymers,
79,80

 but neither offers the versatility of SAP which can be 

applied to a wide variety of monomers and can be scaled up. Nature, of course, uses the template 

strategy to synthesize biopolymers. Chemists have both exploited Nature’s mechanisms to 

selectively prepare sequenced materials that are both naturally occurring and new. To date, 

however, there are only a few examples of synthetic templates prepared de novo for non-

biological monomers. Monomer-by-monomer synthesis, as is used by commercial peptide 

synthesizers, can also be used to prepare complex exact sequences but the applicability of this 

approach to materials is limited because the method does not scale up well and there are practical 

limitations on chain molecular weights. 
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Stayshich from our group developed and reported the SAP-based synthesis of a variety of 

dimeric and trimeric segmers and the polymers derived from those segmers.
48,76,81

 Although 

there is some redundancy between what has already appeared in the literature and the results 

described below, a complete synthetic section is included because some of the syntheses reported 

herein were conducted by the author of this dissertation in parallel to the report of Stayshich and 

because it is difficult to describe the preparation of the novel tetramer- and hexamers-based 

materials which are unique to this dissertation without discussing the creation of the dimeric and 

trimeric building blocks. 

2.3 EXPERIMENTAL 

2.3.1 Materials and instrumentation 

Methyl glycolate, methyl lactate, glycolic acid, lactic acid, benzene, dimethylformamide, benzyl 

alcohol, benzyl bromide, and 1,8-diazabicycloundec-7-ene (DBU) were purchased from Acros 

and used as received. Dimethylaminopyridine, dicyclohexylcarbodiimine and tert-butyldiphenyl-

chlorosilane were purchases from Oakwood Product Inc. and used as received. Diisopropyl-

carbodiimide, tetra-n-butylammonium fluoride (TBAF) was purchased from Aldrich. Lithium 

hydroxyl was purchased from Fisher. 4-(Dimethylamino)pyridinium 4-toluenesulfonate (DPTS) 

was synthesized according to the literature method.
37

 Acetic acid (EMD) was purified by 

recrystallization. Ethyl acetate (Mallinckrodt), methylene chloride (EMD), and triethylamine 

(Acros) were distilled under nitrogen from calcium hydride. THF (Fisher, HPLC grade) was 
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passed through activated alumina using the SPS 400 (Innovative Technology). All other reagents 

were used as received without further purification. 

1
H (300, 400 and 600 MHz) and 

13
C (75, 100 and 150 MHz) NMR spectra in CDCl3 were 

recorded with Bruker NMR spectrometers and calibrated to the residual solvent peaks (δ 7.24 

and δ 77.0, respectively). Mass spectrometry for reagent characterization was conducted using 

Micromass Q-Tof ESI, Fisions VG autospec and Shimadzu LCMS-2020 instruments. Molecular 

weights and polydispersities of polymers were determined using a Waters SEC (THF) with Jordi 

500 Å, 10
3
 Å and 10

4
 Å columns, a refractive index detector (Waters 2414), and polystyrene 

standards. Molecular weights and polydispersities in DMF were acquired on a Waters SEC with 

Polymer Standard Service 105 Å, 103 Å and 102 Å columns and refractive index detector 

(Waters 2410) using polystyrene standards as calibration. Matrix-assisted laser 

desorption/ionization time-of-flight mass spectroscopy (MALDI-ToF-MS) analysis was 

performed on a Voyager-DE Pro with a 337 nm nitrogen laser and 20 kv accelerating voltage. 

For MALDI-ToF-MS sample preparation, the polymer was dissolved in THF (1 mg/ml) and 

mixed with trans-2-[3-(4-tert-Butylphenyl)-2-methyl-2-propenylidene] malononitrile (DCTB, in 

THF, 40 mg/ml) as the matrix and potassium trifluoroacetic acid (KTFA, in THF, 1 mg/ml) as 

the cationization agent. The spectra were recorded in the reflection mode. The MALDI-ToF-MS 

data analysis was performed using Data Explorer version 4.0. 

2.3.2 Synthesis 

Me-G-Si. (JLi-2-1)tert-butyldiphenylchlorosilane (TBDPSiCl, 50.0 g, 182 

mmol) was added to a solution of methyl 2-hydroxyacetate (Me-G, 15.0 g, 
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166 mmol), N, N-dimethylpyridin-4-amine (DMAP, 10.3 g, 84 mmol) and Et3N (37.3 g, 366 

mmol) in CH2Cl2 (600 mL) in an ice bath. The mixture was stirred at RT for 20 h. The crude 

material was filtered to remove Et3NCl. The filtrate was washed with HCl (1M), brine and dried 

with MgSO4. The mixture was filtered and concentrated to give a pale yellow oil (54.5 g, 100% 

yield). 
1
H NMR (300 MHz, CDCl3) δ 7.71-7.38 (m, 10H), 4.27 (s, 2H), 3.70 (s, 3H), 1.12 (s, 

9H). 
1
H NMR is consistent with that reported previously.

48
 MS (EI) m/z 328 (M+). 

 Me-L-Si. (JLi-5B-1) Tert-butyldiphenylchlorosilane (50.0 g, 182 

mmol) was added to a solution of methyl 2-hydroxypropanoate (Me-L, 

17.3 g, 166 mmol), N, N-dimethylpyridin-4-amine (10.3 g, 84 mmol) and 

triethylamine (Et3N, 37.3 g, 366 mmol) in CH2Cl2 (600 mL) in an ice bath. 

The mixture was stirred at RT for 20 h. The crude material was filtered to remove Et3NCl. The 

filtrate was washed with HCl (1M), brine and dried with MgSO4. The mixture was filtered and 

concentrated to give a clear oil (54.5 g, 100% yield). 
1
H NMR (300 MHz, CDCl3) δ 7.71-7.37 

(m, 10H), 4.31-4.29 (q, 1H, J = 6.6 Hz), 3.57 (S, 3H), 1.39-1.37 (d, 3H, J = 6.6 Hz), 1.10 (s, 9H). 

1
H NMR is consistent with that reported previously.

48
 MS (EI) m/z 342 (M+). 

G-Si. (JLi-3B-1) LiOH·H2O (7.4 g, 177 mmol dissolved in 300 mL 

H2O) was added dropwise to a solution of Me-G-Si (29 g, 88 mmol) in 

THF (400 mL) at 0 °C over 25 min. The mixture was stirred for 20 min and 

THF was removed under vacuum. The reaction mixture was diluted with 

300 mL H2O and extracted with ether. The aqueous phase was acidified (pH < 3), extracted with 

ether, and the organic phase was dried with MgSO4. The mixture was filtered and concentrated 

to give a clear oil (23.2 g, 83.6% yield). 
1
H NMR (300 MHz, CDCl3) δ 7.70-7.40 (m, 10H), 4.28 
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(s, 2H), 1.13 (s, 9H). MS (EI) 
1
H NMR is consistent with that reported previously.

48
 m/z 314 

(M+). 

L-Si. (JLi-10-1) LiOH·H2O (4.2 g, 100 mmol dissolved in 250 mL 

H2O) was added dropwise to a solution of Me-L-Si (17.1 g, 50 mmol) in 

THF (450 mL) at 0 °C over 25 min. The mixture was stirred for 5 h and 

THF was removed under vacuum. The reaction mixture was diluted with 

135 mL H2O and extracted with ether. The aqueous solution was acidified (pH < 3), extracted 

with ether and the organic phase was dried with MgSO4. The mixture was filtered and 

concentrated to give a white solid (12.5 g, 76% yield). 
1
H NMR (300 MHz, CDCl3) δ 7.86-7.40 

(m, 10H), 4.38-4.31 (q, 1H, J = 6.9 Hz), 1.32-1.30 (d, 3H, J = 6.9 Hz), 1.13 (s, 9H). 
1
H NMR is 

consistent with that reported previously.
48

 MS (EI) m/z 328 (M+). 

Bn-G. (JLi-16-1) Benzyl bromide (135 g, 789 mmol) was added 

dropwise to a solution of glycolic acid (50 g, 657 mmol) and DBU (100 g, 

657 mmol) in benzene (1200 mL). The mixture was refluxed for 5 h and 

washed with HCl (1 M), water and brine. The crude material was dried with MgSO4, filtered and 

concentrated. A clear oil was isolated by flash chromatography (SiO2, 20% EtOAc in hexanes 

(75.3 g, 69% yield). 
1
H NMR (300 MHz, CDCl3) δ 7.39 (s, 5H), 5.24 (s, 2H), 4.22-4.20 (d, 2H, J 

= 5.4 Hz), 2.54-2.51 (q, 1H, J = 5.4 Hz). 
1
H NMR is consistent with that reported previously.

48
 

MS (EI) m/z 166 (M+). 

Bn-L. (JLii-5-2) DBU (436.1 g, 2.86 mol) was added dropwise to 

a solution of lactic acid (258 g, 2.86 mol) in methanol (350 mL) in an ice 

bath. The mixture was stirred for 30 min and distilled to light yellow (33 

°C, 0.1 mmHg). After DMF (500 mL) was added, benzyl bromide (498 g, 2.86 mol) was added 
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dropwise. The solution was stirred at RT for 20 h and DMF was removed under vacuum (30 °C, 

0.1 mmHg). The residue was dissolved in EtOAc and washed with water, HCl (1 M), NaHCO3, 

water and brine. The organic phase was dried with MgSO4 and concentrated. A clear oil was 

isolated by distillation (80 °C, 10 mmHg, 344 g, 67% yield). 
1
H NMR (300 MHz, CDCl3) δ 7.38 

(s, 5H), 5.22 (s, 2H), 4.36-4.32 (q, 1H, J = 5.7 Hz), 2.99-2.98 (d, 1H, J = 5.4 Hz), 1.46-1.44 (d, 

3H, J = 6.9 Hz). 
1
H NMR is consistent with that reported previously.

48
 MS (EI) m/z 180 (M+). 

MS (EI) m/z 180 (M+). Bn-Lrac was prepared by the same procedure. 

Bn-LL. (JLii-8-2) Lactide (4.3 g, 10 mmol) was added to 

a solution of N, N-dimethylpyridin-4-amine (3.7 g, 30 mmol) in 

benzyl alcohol (BnOH, 30 mL) at 40 °C. The mixture was stirred 

for 20 min and cooled down to RT. The crude material was filtered through silica gel to remove 

the DMAP. The residue was distilled (~60 °C, 30 mmHg) to remove the BnOH. A clear oil was 

isolated by flash chromatography (SiO2, 10% EtOAc in hexanes, 4.9 g, 65% yield). 
1
H NMR 

(300 MHz, CDCl3) δ 7.41-7.30 (m, 5H), 5.26-5.21 (q, 1H, J = 7.2 Hz), 5.23-5.19 (d, 1H, J = 

12.0), 5.17-5.13 (d, 1H, J = 12.0), 4.39-4.31 (q, 1H, J = 6.9 Hz), 3.04-3.02 (d, 1H, J = 6.0), 

1.55-1.53 (d, 3H, J = 7.2 Hz), 1.45-1.43 (d, 3H, J = 6.9 Hz). 
1
H NMR is consistent with that 

reported previously.
82-84

 MS (EI) m/z 252 (M+). MS (EI) m/z 252 (M+). 

Bn-LG-Si. (JLiii-7-1) DCC (9.66 g, 46.6 mmol) 

was added to a solution of G-Si (14.64 g, 46.6 mmol), Bn-L 

(8.4 g, 46.6 mmol) and DMAP (2.84 g, 23.3 mmol) in 

CH2Cl2 (450 mL). The mixture was stirred for 4 h and 

filtered to remove the DCU. The filtrate was concentrated and a clear oil was isolated by flash 

chromatography (SiO2, 2.5% EtOAc in hexanes, 15.1 g, 68% yield). 
1
H NMR (300 MHz, 
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CDCl3) δ 7.69-7.32 (m, 15H), 5.23-5.16 (m, 3H), 4.41-4.35 (d, 1H, J = 13.5 Hz), 4.34-4.28 (d, 

1H, J = 13.5 Hz), 1.48-1.46 (d, 3H, J = 7.2 Hz), 1.11 (s, 9H). 
1
H NMR is consistent with that 

reported previously.
48,81

 MS (EI) m/z 476 (M+). 

Bn-LracG-Si. (JLiii-4-2) DCC (10.1 g, 49 mmol) 

was added to a solution of Bn-Lrac (8.8 g, 49 mmol), G-Si 

(15.3 g, 49 mmol), and DMAP (3 g, 24.5 mmol) in CH2Cl2 

(500 mL). The mixture was stirred for 4 h and filtered to 

remove the DCU. The filtrate was concentrated and a clear oil was isolated by flash 

chromatography (SiO2, 2.5% EtOAc in hexanes, 9.5 g, 80% yield). 
1
H NMR (300 MHz, CDCl3) 

δ 7.70-7.33 (m, 15H), 5.21-5.14 (m, 3H), 4.40-4.34 (d, 1H, J = 16.5 Hz), 4.33-4.27 (d, 1H, J = 

16.8 Hz), 1.47-1.45 (d, 3H, J = 7.2 Hz), 1.10 (s, 9H). 
1
H NMR is consistent with that reported 

previously.
81

 MS (EI) m/z 476 (M+). 

Bn-GL-Si. (JLiii-54-1) DCC (5.16 g, 25 mmol) 

was added to a solution of L-Si (8.2 g, 25 mmol), Bn-G 

(4.1 g, 25 mmol) and DMAP (1.5 g, 12.5 mmol) in CH2Cl2 

(250 mL). The mixture was stirred for 4 h and filtered to 

remove the DCU. The filtrate was concentrated and a clear oil was isolated by flash 

chromatography (SiO2, 2.5% EtOAc in hexanes, 9.5 g, 80% yield). 
1
H NMR (300 MHz, CDCl3) 

δ 7.70-7.33 (m, 15H), 5.18 (s, 2H), 4.65-4.59 (d, 1H, J = 15.9 Hz), 4.49-4.44 (d, 1H, J = 15.9 

Hz), 4.43-4.36 (q, 1H, J = 6.9 Hz), 1.42-1.40 (d, 3H, J = 6.9 Hz), 1.11 (s, 9H). 
1
H NMR is 

consistent with that reported previously.
48

 MS (EI) m/z 476 (M+). 
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Bn-LL-Si. (JLiii-78-1) DCC (6.15 g, 29.8 mmol) 

was added to a solution of L-Si (9.79 g, 29.8 mmol), Bn-L 

(5.37 g, 29.8 mmol) and DMAP (1.82 g, 15 mmol) in 

CH2Cl2 (300 mL). The solution was stirred for 4 h and 

filtered to remove the DCU. The filtrate was concentrated and a clear oil was isolated by flash 

chromatography (SiO2, 2.5% EtOAc in hexanes, 9.3 g, 63.7% yield). 
1
H NMR (300 MHz, 

CDCl3) δ 7.75-7.30 (m, 15H), 5.20-5.16 (d, 1H, J = 12.3 Hz), 5.13-5.09 (d, 1H, J = 12.3 Hz), 

5.04-4.97 (q, 1H, J = 6.9 Hz), 4.37-4.30 (q, 1H, J = 6.9 Hz), 1.40-1.37 (d, 3H, J = 6.9 Hz), 1.35-

1.33 (d, 3H, J = 7.2 Hz), 1.10 (s, 9H). 
1
H NMR is consistent with that reported previously.

48
 MS 

(EI) m/z 490 (M+). 

Bn-GG-Si. (JLiii-73-2) DCC (7.53 g, 36.5 mmol) 

was added to a solution of G-Si (11.47 g, 36.5 mmol), Bn-G 

(6.06 g, 36.5 mmol) and DMAP (2.24 g, 18.3 mmol) in 

CH2Cl2 (350 mL). the solution was stirred for 4 h and 

filtered to remove the DCU. The filtrate was concentrated and a clear oil was isolated by flash 

chromatography (SiO2, 4% EtOAc in hexanes, 8.5 g, 50.4% yield). 
1
H NMR (300 MHz, CDCl3) 

δ 7.71-7.34 (m, 15H), 5.21 (s, 2H), 4.69 (s, 2H), 4.39 (s, 2H), 1.12 (s, 9H). 
1
H NMR is consistent 

with that reported previously.
48

 MS (EI) m/z 462 (M+). 

LG-Si. (JLiii-74-1) Bn-LG-Si (14.3 g, 30 mmol) was 

dissolved in EtOAc (300 mL). Pd/C (0.35 g, 10%) was added to the 

solution under nitrogen. The flask was purged and stirred overnight 

under H2 (1 atm). The mixture was purged with nitrogen, filtered 

through celite and concentrated. A clear oil was isolated by flash chromatography (SiO2, 15-25% 
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EtOAc in hexanes, 8.0 g, 69% yield).
 1

H NMR (300 MHz, CDCl3) δ 7.71-7.37 (m, 10H), 5.19-

5.12 (q, 1H, J = 7.2 Hz), 4.42-4.36 (d, 1H, J = 16.8 Hz), 4.35-4.30 (d, 1H, J = 16.8 Hz), 1.52-

1.50 (d, 3H, J = 7.2 Hz), 1.11 (s, 9H). 
1
H NMR is consistent with that reported previously.

48
 

HRMS (m+Na) calc mass 409.1447, found 409.1419. HRMS calc mass 409.1447, found 

409.1437. 

LL-Si. Bn-LL-Si (9.3 g, 19 mmol) was dissolved in EtOAc 

(200 mL). Pd/C (0.23 g, 10%) was added to the solution under 

nitrogen. The flask was purged and stirred overnight under 

hydrogen (1 atm). The mixture was purged with nitrogen, filtered 

through celite and concentrated. A clear oil was isolated by flash chromatography (SiO2, 15-25% 

EtOAc in hexanes, 4.7 g, 62% yield).
 1

H NMR (300 MHz, CDCl3) δ 7.72-7.34 (m, 10H), 5.00-

4.93 (q, 1H, J = 7.2 Hz), 4.39-4.33 (q, 1H, J = 6.9 Hz),1.44-1.42 (d, 3H, J = 6.9 Hz), 1.40-1.38 

(d, 3H, J = 7.2 Hz), 1.11 (s, 9H). 
1
H NMR is consistent with that reported previously.

48
 MS (EI) 

m/z 400 (M+). 

GG-Si. (JLii-18-1) Bn-GG-Si (12.9 g, 27.9 mmol) was 

dissolved in EtOAc (300mL). Pd/C (310 mg, 10%) was added to 

the solution under nitrogen. The flask was purged and stirred 

overnight under hydrogen (1 atm). The mixture was purged with 

nitrogen, filtered through celite and concentrated. A white solid was isolated by flash 

chromatography (SiO2, 15-25% EtOAc in hexanes, 7.2 g, 69.2 % yield). 
1
H NMR (300 MHz, 

CDCl3) δ 11.01 (s, 1H), 7.74-7.38 (m, 10H), 4.69 (s, 2H), 4.41 (s, 2H), 1.13 (s, 9H). 
1
H NMR is 

consistent with that reported previously.
48

 MS (EI) m/z 372 (M+). 
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Bn-LG. (JLiii-78-2) TBAF (33 mL, 33 mmol) was added 

to a solution of Bn-LG-Si (10.5 g, 22 mmol) and HOAc (3.96 g, 

66 mmol) in THF (220 mL) under nitrogen. The mixture was stirred for 4 h at RT and then 

washed with brine. The brine was extracted with Et2O. Organic fractions were combined and 

dried with MgSO4. The mixture was filtered and concentrated. A clear oil was isolated by flash 

chromatography (SiO2, 15%-30% EtOAc in hexanes, 3.95 g, 75% yield). 
1
H NMR (300 MHz, 

CDCl3) δ 7.42-7.31 (m, 5H), 5.29-5.22 (q, 1H, J = 7.2 Hz), 5.19 (s, 2H), 4.33-4.27 (d, 1H, J = 

17.4 Hz), 4.26-4.20 (d, 1H, J = 17.4 Hz), 1.55-1.53 (d, 3H, J = 6.9 Hz). 
1
H NMR is consistent 

with that reported previously.
48

 HRMS (m+Na) calc mass 261.0739, found 261.0738. 

Bn-LracG (JLiii-6-2) TBAF (29 mL, 29 mmol) was added 

to a solution of Bn-LracG-Si (9.3 g, 20 mmol) and HOAc (4.7 g, 

78 mmol) in THF (200 mL) under nitrogen. The mixture was 

stirred for 1 h at RT and then washed with brine. The brine was extracted with Et2O. Organic 

fractions were combined and dried with MgSO4. The mixture was filtered and concentrated. A 

clear oil was isolated by flash chromatography (SiO2, 15%-30% EtOAc in hexanes, 3.95 g, 75% 

yield). 
1
H NMR (300 MHz, CDCl3) δ 7.42-7.31 (m, 5H), 5.27-5.22 (q, 1H, J = 7.2 Hz), 5.19 (s, 

2H), 4.30-4.18 (m, 2H), 1.53-1.51 (d, 3H, J = 7.2 Hz). 
1
H NMR is consistent with that reported 

previously.
48

 HRMS (m+Na) calc mass 261.0744, found 261.0738. 

Bn-GL. (JLiii-80-1) TBAF (31 mL, 31 mmol) was added 

to a solution of Bn-Gl-Si (9.8 g, 20.6 mmol) and HOAc (3.7 g, 62 

mmol) in THF (300 mL) under nitrogen. The mixture was stirred 

for 4 h at RT and then washed with brine. The brine was extracted with Et2O. Organic fractions 

were combined and dried with MgSO4. The mixture was filtered and concentrated. A clear oil 
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was isolated by flash chromatography (SiO2, 15%-30% EtOAc in hexanes, 3.3 g, 67% yield).
 1

H 

NMR (300 MHz, CDCl3) δ 7.41-7.34 (m, 5H), 5.21 (s, 2H), 4.83-4.78 (d, 1H, J = 15.9 Hz), 

4.73-4.68 (d, 1H, J = 15.9 Hz), 4.45-4.38 (q, 1H, J = 6.9 Hz), 1.49-1.47 (d, 3H, J = 6.9 Hz). 
1
H 

NMR is consistent with that reported previously.
48

 HRMS (m+Na) calc mass 261.0739, found 

261.0726. 

GL-Si. (JLiii-51-2) Bn-GL-Si (10.5 g, 22 mmol) was 

dissolved in EtOAc (220 mL). Pd/C (0.25 g, 10%) was added to the 

solution under nitrogen. The flask was purged and stirred overnight 

under H2 (1 atm). The mixture was purged with nitrogen, filtered 

through celite and concentrated. A clear oil was isolated by flash chromatography (SiO2, 15-25% 

EtOAc in hexanes, 5.5 g, 65% yield). 
1
H NMR (300 MHz, CDCl3) δ 8.09 – 7.53 (m, 4H), 7.53 – 

7.29 (m, 6H), 4.58 (d, J = 16.4 Hz, 1H), 4.47 (d, J = 16.4 Hz, 1H), 4.38 (q, J = 6.8 Hz, 1H), 1.40 

(d, J = 6.8 Hz, 3H), 1.08 (s, 9H). 
1
H NMR is consistent with that reported previously.

48
 HRMS 

(m+Na) calc mass 409.1447, found 409.1437. 

Bn-GG. (JLiii-75-1) TBAF (18 mL, 18 mmol, 1 M in 

THF), was added to a solution of Bn-GLG-Si (7.8 g, 14.6 mmol) 

and HOAc (3.4 g, 56.4 mmol) in THF (150 mL) under nitrogen. 

The mixture was stirred for 30 min and washed with brine. The brine was extracted with Et2O. 

Organic fractions were combined and dried with MgSO4. The mixture was filtered and 

concentrated to give a clear oil. White solid was obtained by recrystallization in hexanes (1.75 g, 

77% yield). 
1
H NMR (400 MHz, CDCl3) δ 7.40 – 7.25 (m, 5H), 5.18 (s, 2H), 4.73 (s, 2H), 4.28 

(d, J = 5.9 Hz, 2H), 2.74 (t, J = 5.9 Hz, 1H). 
1
H NMR is consistent with that reported 

previously.
48

 HRMS (m+Na) calc mass 247.0582, found 247.0573. 



 26 

Bn-LLG-Si. (JLiii-8-1) DCC (3.0g, 14.2 

mmol) was added to a solution of Bn-L (2.5 g, 14.2 

mmol), LG-Si (5.5 g, 14.2 mmol) and DMAP (0.87 

g, 7.1 mmol) in CH2Cl2 (150 mL). The mixture was 

stirred for 2 h under RT and then filtered to remove DCU. The filtrate was concentrated and a 

clear oil was isolated by flash chromatography (SiO2, 5% EtOAc in hexanes, 6.4 g, 77% yield). 

1
H NMR (300 MHz, CDCl3) δ 7.77 – 7.49 (m, 4H), 7.49 – 7.21 (m, 11H), 5.25 – 5.05 (m, 4H), 

4.34 (d, J = 16.8 Hz, 1H), 4.26 (d, J = 16.8 Hz, 1H), 1.50 (d, J = 7.1 Hz, 3H), 1.43 (d, J = 7.1 Hz, 

3H), 1.06 (s, 9H). 
1
H NMR is consistent with that reported previously.

48
 HRMS (m+Na) calc 

mass 571.2128, found 571.2126. 

Bn-LracLG-Si. (JLiii-8-2) DCC (3.1g, 14.7 

mmol) was added to a solution of Bn-Lrac (2.6 g, 14.7 

mmol), LG-Si (5.7 g, 14.7 mmol) and DMAP (0.9 g, 

7.4 mmol) in CH2Cl2 (150 mL). The mixture was 

stirred for 2 h under RT and then filtered to remove DCU. The filtrate was concentrated and a 

clear oil was isolated by flash chromatography (SiO2, 5% EtOAc in hexanes, 6.7 g, 83% yield). 

1
H NMR (300 MHz, CDCl3) δ 7.75 – 7.59 (m, 4H), 7.50 – 7.25 (m, 11H), 5.25 – 5.04 (m, 4H), 

4.33 (d, J = 16.8 Hz, 1H), 4.27 (d, J = 16.6 Hz, 1H), 1.45 (d, J = 7.2 Hz, 3H), 1.43 (d, J = 7.2 Hz, 

3H), 1.07 (s, 9H). 
1
H NMR is consistent with that reported previously.

48
 HRMS (m+Na) calc 

mass 571.2128, found 571.2091. 

Bn-LracLracG-Si. (JLiii-23-2) DCC (2.4g, 

11.6 mmol) was added to a solution of Bn-Lrac (2.1 

g, 11.6 mmol), LracG-Si (4.5 g, 11.6 mmol) and 
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DMAP (0.7 g, 5.8 mmol) in CH2Cl2 (110 mL). The mixture was stirred for 2 h under RT and 

then filtered to remove DCU. The filtrate was concentrated and a clear oil was isolated by flash 

chromatography (SiO2, 5% EtOAc in hexanes, 4.9 g, 77% yield).
 1

H NMR (300 MHz, CDCl3) δ 

7.73 – 7.60 (m, 5H), 7.48 – 7.27 (m, 10H), 5.23 – 5.06 (m, 3H), 4.33 (d, J = 16.7 Hz, 1H), 4.26 

(d, J = 16.4 Hz, 1H), 1.43 (m, 6H), 1.07 (s, 9H). 
1
H NMR is consistent with that reported 

previously.
48

 HRMS (m+Na) calc mass 571.2128, found 571.2148. 

Bn-GLG-Si. (JLiii-18-1) DCC (4.7 g, 22.6 

mmol) was added to a solution of Bn-GL (5.4 g, 

22.6 mmol), G-Si (7.1 g, 22.6 mmol) and DMAP 

(1.4 g, 11.3 mmol) in CH2Cl2 (250 mL). The 

mixture was stirred for 2 h under RT and then filtered to remove DCU. The filtrate was 

concentrated and a clear oil was isolated by flash chromatography (SiO2, 5% EtOAc in hexanes, 

8.4 g, 69% yield).
1
H NMR (300 MHz, CDCl3) δ 7.71-7.34 (m, 15H), 5.27-5.19 (m, 3H), 4.84-

4.77 (d, J = 15.9 Hz, 1H), 4.59 (d, J = 15.9 Hz, 1H), 4.36 (d, J = 15.9 Hz, 1H), 4.28 (d, J = 15.9 

Hz, 1H), 1.48-1.45 (d, J = 7.2 Hz, 3H), 1.10 (s, 9H). 
1
H NMR is consistent with that reported 

previously.
48

 HRMS (m+Na) calc mass 557.1972, found 557.1922.  

Bn-LLG. (JLiii-11-2) TBAF (18. mL, 18. mmol, 1 

M in THF), was added to a solution of Bn- LLG-Si (6.4 g, 

11.7 mmol) and HOAc (2.1 g, 35.0 mmol) in THF (125 

mL) under nitrogen. The mixture was stirred for 2 h and washed with brine. The brine was 

extracted with Et2O. Organic fractions were combined and dried with MgSO4. The mixture was 

filtered and concentrated. A clear oil was isolated by flash chromatography (SiO2, 15%-35% 

EtOAc in hexanes, 2.8 g, 78% yield). 
1
H NMR (300 MHz, CDCl3) δ 7.43 – 6.99 (m, 5H), 5.28 – 
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4.96 (m, 4H), 4.27 (dd, J = 16.8, 4.7 Hz, 1H), 4.20 (dd, J = 17.3, 5.6 Hz, 1H), 2.37 (t, J = 5.6 Hz, 

1H), 1.52 (d, J = 7.1 Hz, 3H), 1.51 (d, J = 7.1 Hz, 3H).
 1

H NMR is consistent with that reported 

previously.
48

 HRMS (m+Na) calc mass 333.0950, found 333.0975. 

Bn-LracLracG. (JLiii-32-2) TBAF (11 mL, 11 

mmol, 1 M in THF), was added to a solution of Bn- 

LracLracG-Si (4.8 g, 8.6 mmol) and HOAc (2.6 g, 43 mmol) in THF (80 mL) under nitrogen. The 

mixture was stirred for 2 h and washed with brine. The brine was extracted with Et2O. Organic 

fractions were combined and dried with MgSO4. The mixture was filtered and concentrated. A 

clear oil was isolated by flash chromatography (SiO2, 15%-35% EtOAc in hexanes, 2.0 g, 74% 

yield).
 1

H NMR (400 MHz, CDCl3) δ 7.41 – 7.26 (m, 5H), 5.37 – 4.97 (m, 4H), 4.31 – 4.13 (m, 

2H), 2.42 – 2.32 (m, 1H), 1.54 – 1.45 (m, 6H). 
1
H NMR is consistent with that reported 

previously.
48

 HRMS (m+Na) calc mass 333.0950, found 333.0953. 

Bn-LracLG. (JLiii-12-1) TBAF (18.3 mL, 18.3 

mmol, 1 M in THF), was added to a solution of Bn- 

LracLG-Si (6.7 g, 12.2 mmol) and HOAc (2.2 g, 36.7 mmol) in THF (125 mL) under nitrogen. 

The mixture was stirred for 2 h and washed with brine. The brine was extracted with Et2O. 

Organic fractions were combined and dried with MgSO4. The mixture was filtered and 

concentrated. A clear oil was isolated by flash chromatography (SiO2, 15%-35% EtOAc in 

hexanes, 3.4 g, 90% yield). 
1
H NMR (300 MHz, CDCl3) δ 7.43 – 7.26 (m, 5H), 5.36 – 5.05 (m, 

4H), 4.23 (dd, J = 8.8, 3.4 Hz, 2H), 2.38 – 2.25 (m, 1H), 1.52 (d, J = 6.9 Hz, 3H), 1.49 (d, J = 6.9 

Hz, 3H). 
1
H NMR is consistent with that reported previously.

48
 HRMS (m+Na) calc mass 

333.0950, found 333.0967. 
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Bn-GLG. (JLiii-18-2) TBAF (18 mL, 18 mmol, 1 

M in THF), was added to a solution of Bn-GLG-Si (7.8 g, 

14.6 mmol) and HOAc (3.4 g, 56.4 mmol) in THF (150 mL) under nitrogen. The mixture was 

stirred for 30 min and washed with brine. The brine was extracted with Et2O. Organic fractions 

were combined and dried with MgSO4. The mixture was filtered and concentrated. A clear oil 

was isolated by flash chromatography (SiO2, 15%-35% EtOAc in hexanes, 3.5 g, 81% yield). 
1
H 

NMR (300 MHz, CDCl3) δ 7.42 – 7.24 (m, 5H), 5.26 (q, J = 7.1 Hz, 1H), 5.16 (s, 2H), 4.78 (d, J 

= 15.9 Hz, 1H), 4.61 (d, J = 15.9 Hz, 1H), 4.30 – 4.23 (d, J = 16.3 Hz, 1H), 4.20 (d, J = 16.3 Hz, 

1H), 2.62 (s, 1H), 1.54 (d, J = 7.2 Hz, 3H). 
1
H NMR is consistent with that reported previously.

48
 

HRMS (m+Na) calc mass 319.0794, found 319.0804. 

LLG-Si. (JLiii-65-1) Bn-LLG-Si (10.2 g, 18.6 

mmol) was dissolved in EtOAc (220 mL). Pd/C (0.51 g, 

10%) was added to the solution under nitrogen. The flask 

was purged and stirred overnight under H2 (1 atm). The 

mixture was purged with nitrogen, filtered through celite and concentrated. A clear oil was 

isolated by flash chromatography (SiO2, 15-25% EtOAc in hexanes, 5.0 g, 59% yield). 
1
H NMR 

(400 MHz, CDCl3) δ 7.78 – 7.57 (m, 4H), 7.48 – 7.32 (m, 6H), 5.22 – 5.14 (q, J = 7.1 Hz, 1H), 

5.15 – 5.09 (q, J = 7.1 Hz, 1H), 4.34 (d, J = 16.8 Hz, 1H), 4.28 (d, J = 16.8 Hz, 1H), 1.53 (d, J = 

7.1 Hz, 3H), 1.48 (d, J = 7.1 Hz, 3H), 1.06 (s, 9H). 
1
H NMR is consistent with that reported 

previously.
48

 HRMS (m+Na) calc mass 481.1658, found 481.1632.  

Bn-LracGLG-Si. (JLii-9B-1) DCC (3.42 g, 

16.6 mmol) was added to a solution of Bn-LracG 

(3.95 g, 16.6mmol), LG-Si (6.4 g, 16.6 mmol) and 
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DMAP (1.0 g, 8.3 mmol) in CH2Cl2 (150 mL). The mixture was stirred for 3.5 h under RT and 

then filtered to remove DCU. The filtrate was concentrated and a clear oil was isolated by flash 

chromatography (SiO2, 5% EtOAc in hexanes, 8 g, 80% yield).
 1

H NMR (300 MHz, CDCl3) δ 

7.70-7.32 (m, 15H), 5.22-5.14 (m, 4H), 4.86-4.78 (d, 1H), 4.68-4.60 (d, 1H), 4.38-4.35 (d, 1H, J 

= 16.8 Hz), 4.32-4.29 (d, 1H, J = 16.8 Hz), 1.52-1.51 (d, 3H, J = 7.2 Hz), 1.51-1.50 (d, 3H, J = 

7.2 Hz), 1.51-1.50 (d, 3H, J = 7.2 Hz). 
13

C NMR (150 MHz, CDCl3) δ 170.51, 170.50, 169.79, 

169.78, 169.72, 169.69, 166.56, 166.51, 135.54, 135.51, 135.07, 132.64, 129.87, 128.58, 128.44, 

128.14, 128.12, 127.77, 127.75, 69.42, 68.45, 68.39, 67.18, 61.91, 60.69, 60.68, 26.58, 19.21, 

16.81, 16.78, 16.76, 16.74.MS (EI) m/z 606 (M+). 

Bn-LLLG-Si. (JLii-11B-1)  DCC (2.98 g, 

14.5 mmol) was added to a solution of Bn-LL (3.66 

g, 14.5 mmol), LG-Si (5.6 g, 14.5 mmol) and 

DMAP (0.89 g, 7.3 mmol) in CH2Cl2 (150 mL). The 

mixture was stirred for 3.5 h under RT and then filtered to remove DCU. The filtrate was 

concentrated and a clear oil was isolated by flash chromatography (SiO2, 5% EtOAc in hexanes, 

6.7 g, 75% yield). 
1
H NMR (300 MHz, CDCl3) δ 7.70-7.31 (m, 15H), 5.20-5.12 (m, 5H), 4.38-

4.35 (d, 1H, J = 16.8 Hz), 4.32-4.29 (d, 1H, J = 16.8 Hz), 1.53-1.52 (d, 3H, J = 7.2 Hz). 1.52-

1.51 (d, 3H, J = 7.2 Hz), 1.52- 1.51 (d, 3H, J = 7.2 Hz), 1.08 (s, 9H). 13
C NMR (150 MHz, 

CDCl3) δ 170.56, 169.87, 169.85, 169.61, 135.52, 135.49, 135.04, 132.67, 132.63, 129.85, 

128.56, 128.45, 128.19, 127.77, 127.75, 69.18, 68.85, 68.38, 67.13, 61.90, 26.57, 19.21, 16.70, 

16.68, 16.52. MS (EI) m/z 620 (M+). 

Bn-GLLL-Si. (JLi-35B-1) DCC (2.4 g, 11.7 

mmol) was added to a solution of Bn-GL (2.8 g, 
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11.7 mmol), LL-Si (4.7 g, 11.7 mmol) and DMAP (0.7 g, 5.8 mmol) in CH2Cl2 (100 mL). The 

mixture was stirred for 3.5 h under RT and then filtered to remove DCU. The filtrate was 

concentrated and a clear oil was isolated by flash chromatography (SiO2, 5% EtOAc in hexanes, 

4.9 g, 67% yield). 
1
H NMR (600 MHz, CDCl3) δ 7.69-7.36 (m, 15H), 5.25-5.18 (q, 1H, J = 7.2 

Hz), 5.19 (s, 2H), 5.01-4.94 (q, 1H, J = 6.9 Hz), 4.83-4.77 (d, 1H, J = 15.9 Hz), 4.62-4.57 (d, 

1H, J = 15.9 Hz), 4.38-4.32 (q, 1H, J = 6.6 Hz),1.56-1.54 (d, 3H, J = 6.9 Hz), 1.44-1.42 (d, 3H, 

J = 6.9 Hz), 1.41-1.39 (d, 3H, J = 7.2 Hz), 1.11 (s, 9H). 
13

C NMR (75 MHz, CDCl3) δ 173.09, 

169.86, 169.67, 166.90, 135.95, 135.74, 134.86, 133.44, 133.08, 129.77, 128.64, 128.45, 127.64, 

127.56, 68.77, 68.49, 68.22, 67.25, 61.03, 26.78, 21.11, 19.20, 16.68, 16.52. MS (EI) m/z 620 

(M+). 

Bn-LGGG-Si. (JLii-18B-1) DCC (4.0 g, 

19.3 mmol) was added to a solution of Bn-LG (4.6 

g, 19.3 mmol), GG-Si (7.2 g, 19.3 mmol) and 

DMAP (1.2 g, 9.6 mmol) in CH2Cl2 (200 mL). The 

mixture was stirred for 1 h under RT and then filtered to remove DCU. The filtrate was 

concentrated and a clear oil was isolated by flash chromatography (SiO2, 5% EtOAc in hexanes, 

8.3 g, 72% yield).
1
H NMR (600 MHz, CDCl3) δ 7.71-7.34 (m, 15H), 5.27-5.19 (m, 3H), 4.84-

4.70 (m, 4H), 4.38 (s, 2H), 1.55-1.52 (d, 3H, J = 6.9 Hz), 1.10 (s, 9H). 
13

C NMR (150 MHz, 

CDCl3) δ 170.45, 169.70, 166.78, 166.42, 135.49, 135.04, 132.54, 129.88, 128.57, 128.43, 

128.11, 127.77, 69.48, 67.17, 61.77, 60.75, 60.30, 60.20, 26.55, 19.18, 16.71. MS (EI) m/z 592 

(M+).  
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Bn-GLLG-Si. (JLiii-66-1) DCC (2.5 

g, 10.7 mmol) was added to a solution of 

Bn-G (1.8 g, 10.7 mmol), LLG-Si (4.9 g, 

10.8 mmol) and DMAP (0.65 g, 5.4 mmol) 

in CH2Cl2 (100 mL). The mixture was stirred for 2 h under RT and then filtered to remove DCU. 

The filtrate was concentrated and a clear oil was isolated by flash chromatography (SiO2, 5% 

EtOAc in hexanes, 5.1 g, 79% yield).
 1

H NMR (400 MHz, CDCl3) δ 7.71-7.34 (m, 15H), 5.27-

5.20 (m, 2H), 5.16 (s, 2H), 4.77 (d, J = 15.9 Hz, 1H), 4.60 (d, J = 15.9 Hz, 1H), 4.27 (d, J = 15.9 

Hz, 1H), 4.25 (d, J = 15.9 Hz, 1H), 1.55 (d, J = 7.1 Hz, 3H), 1.53 (d, J = 7.1 Hz, 3H), 1.10 (s, 

9H). 
13

C NMR (100 MHz, CDCl3) δ 170.73, 170.13, 169.69, 167.11, 135.79, 135.33, 132.90, 

130.15, 128.85, 128.74, 128.46, 128.05, 69.53, 69.34, 67.43, 62.09, 60.61, 26.86, 19.48, 16.98, 

16.85. HRMS (m+Na) calc mass 629.2183, found 629.2201.  

Bn-LracGLG. (JLii-24B-1) TBAF (20 mL, 

20 mmol, 1 M in THF) was added to a solution of 

Bn-LracGLG-Si (8 g, 13.2 mmol) and HOAc (2.38 

g, 40 mmol) in THF (130 mL) under nitrogen. The mixture was stirred for 2 h and washed with 

brine. The brine was extracted with Et2O. Organic fractions were combined and dried with 

MgSO4. The mixture was filtered and concentrated. A clear oil was isolated by flash 

chromatography (SiO2, 15%-35% EtOAc in hexanes, 4 g, 82% yield).
 1

H NMR (300 MHz, 

CDCl3) δ 7.38-7.33 (m, 5H), 5.32-5.16 (m, 4H), 4.89-4.82 (d, 1H), 4.72-4.65 (d, 1H), 4.31-4.28 

(d, 1H, J = 17.4 Hz), 4.26-4.23 (d, 1H, J = 17.4 Hz), 1.61-1.59 (m, 3H), 1.54-1.52 (m, 3H). 
13

C 

NMR (150 MHz, CDCl3) δ 172.36, 172.35, 169.65, 169.61, 169.52, 169.45, 166.39, 166.35, 
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134.95, 128.41, 128.27, 127.96, 127.95, 70.03, 69.33, 68.74, 68.71, 67.02, 60.67, 60.36, 60.25, 

60.20, 16.60, 16.58, 16.55, 16.54. MS (EI) m/z 368 (M+). 

Bn-LLLG. (JLii-11B-2) TBAF (32 mL, 

32 mmol, 1 M in THF) was added to a solution of 

Bn-LLLG-Si ( 13.3 g, 21.5 mmol) and HOAc 

(3.9 g, 64 mmol) in THF (210 mL) under nitrogen. The mixture was stirred for 2 h and washed 

with brine. The brine was extracted with Et2O. Organic fractions were combined and dried with 

MgSO4. The mixture was filtered and concentrated. A clear oil was isolated by flash 

chromatography (SiO2, 15%-35% EtOAc in hexanes, 6.2 g, 76% yield). 
1
H NMR (300 MHz, 

CDCl3) δ 7.39-7.32 (m, 5H), 5.26-5.23 (q, 1H, J = 7.2 Hz), 5.22-5.5.18 (q, 1H, J = 7.2 Hz), 

5.21-5..17 (q, 1H, J = 7.2 Hz), 5.21-5.19 (d, 1H, J = 12.6 Hz), 5.15-5.13 (d, 1H, J = 12.6 Hz), 

4.32-4.28 (q, 1H), 4.26-4.23 (q, 1H), 1.61-1.60 (d, 3H, J = 7.2 Hz), 1.56-1.54 (d, 3H, J = 7.2 

Hz), 1.54-1.53 (d, 3H, J = 7.2 Hz). 
13

H NMR (75 MHz, CDCl3) δ 173.14, 172.85, 172.03, 

168.47, 134.76, 128.69, 128.53, 128.43, 128.19, 69.27, 69.15, 68.84, 67.34, 61.13, 16.98, 16.59, 

16.21. MS (EI) m/z 382 (M+). 

Bn-GLLL. (JLi-36-1) TBAF (9 mL, 9 

mmol, 1 M in THF), was added to a solution of 

Bn-GLLL-Si (4.9 g, 7.9 mmol) and HOAc (1.22 

g, 20 mmol) in THF (100 mL) under nitrogen. The mixture was stirred for 2 h and washed with 

brine. The brine was extracted with Et2O. Organic fractions were combined and dried with 

MgSO4. The mixture was filtered and concentrated. A clear oil was isolated by flash 

chromatography (SiO2, 15%-35% EtOAc in hexanes, 1.8 g, 60% yield). 
1
H NMR (300 MHz, 

CDCl3) δ 7.37-7.36 (m, 5H), 5.28-5.16 (m, 4H), 4.85-4.79 (d, 1H, J = 15.9 Hz), 4.64-4.59 (d, 
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1H, J = 15.9 Hz), 4.40-4.33 (q, 1H, J = 6.9 Hz), 1.61-1.57 (m, 6H), 1.51-1.49 (d, 3H, J = 6.9 

Hz). 
13

H NMR (75 MHz, CDCl3) δ 172.55, 169.89, 169.52, 169.44, 169.30, 135.01, 128.60, 

128.52, 128.24, 69.27, 69.15, 69.10, 67.20, 60.46, 16.80, 16.73, 16.59. MS (EI) m/z 382 (M+). 

Bn-LGGG. TBAF (18 mL, 18 mmol, 1 

M in THF), was added to a solution of Bn-

LGGG-Si (9.8 g, 16.5 mmol) and HOAc (5.0 g, 83 mmol) in THF (150 mL) under nitrogen. The 

mixture was stirred for 40 min and washed with brine. The brine was extracted with Et2O. 

Organic fractions were combined and dried with MgSO4. The mixture was filtered and 

concentrated. A clear oil was isolated by flash chromatography (SiO2, 15%-35% EtOAc in 

hexanes, 4.1 g, 70% yield). 
1
H NMR (300 MHz, CDCl3) δ 7.42-7.32 (m, 5H), 5.28-5.21 (q, 1H, J 

= 7.2 Hz), 5.19 (s, 2H), 4.85 (s, 2H), 4.86-4.81 (d, 1H, J = 15.9 Hz), 4.79-4.74 (d, 1H, J = 16.2 

Hz), 4.32 (s, 2H),1.55-1.53 (d, 3H, J = 6.9 Hz). 
13

H NMR (75 MHz, CDCl3) δ 172.62, 169.85, 

169.59, 168.95, 134.79, 128.87, 128.65, 128.43, 128.17, 69.27, 67.34, 61.94, 61.31, 60.58, 16.59. 

MS (EI) m/z 354 (M+). 

Bn-GLLG. (JLiii-66-2) TBAF (12.3 mL, 

12.3 mmol, 1 M in THF), was added to a solution 

of Bn-GLLG-Si (5.1 g, 8.0 mmol) and HOAc (3.9 g, 65.0 mmol) in THF (80 mL) under 

nitrogen. The mixture was stirred for 30 min and washed with brine. The brine was extracted 

with Et2O. Organic fractions were combined and dried with MgSO4. The mixture was filtered 

and concentrated. A clear oil was isolated by flash chromatography (SiO2, 15%-35% EtOAc in 

hexanes, 2.2 g, 71% yield).
 1

H NMR (400 MHz, CDCl3) δ 7.39 – 7.29 (m, 5H), 5.24 (q, J = 7.1 

Hz, 1H), 5.20 (q, J = 7.1 Hz, 1H), 5.17 (s, 2H), 4.78 (d, J = 15.9 Hz, 1H), 4.60 (d, J = 15.9 Hz, 

1H), 4.28 (d, J = 17.3 Hz, 1H), 4.21 (d, J = 17.5 Hz, 1H), 2.31 (s, 1H), 1.57 (d, J = 7.1 Hz, 3H), 
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1.55 (d, J = 7.1 Hz, 3H). 
13

C NMR (100 MHz, CDCl3) δ 172.69, 169.58, 169.53, 166.89, 134.78, 

128.64, 69.12, 69.02, 67.31, 61.09, 60.46, 16.69. HRMS (m+Na) calc mass 391.1005, found 

391.0982. 

LLLG-Si. (JLiii-75-2) Bn-LLLG-Si (6.9 g, 

11.1 mmol) was dissolved in EtOAc (110 mL). Pd/C 

(0.35 g, 10%) was added to the solution under 

nitrogen. The flask was purged and stirred overnight 

under H2 (1 atm). The mixture was purged with nitrogen, filtered through celite and 

concentrated. A clear oil was isolated by flash chromatography (SiO2, 15-35% EtOAc in 

hexanes, 3.9 g, 66% yield). 
1
H NMR (400 MHz, CDCl3) δ 7.71 – 7.61 (m, 4H), 7.45 – 7.30 (m, 

6H), 5.20 – 5.07 (m, 3H), 4.34 (d, J = 16.8 Hz, 1H), 4.27 (d, J = 16.8 Hz, 1H), 1.55 (d, J = 7.4 

Hz, 4H), 1.54 (d, J = 7.5 Hz, 3H), 1.49 (d, J = 7.1 Hz, 3H), 1.06 (s, 9H). 
13

C NMR (100 MHz, 

CDCl3) δ 175.75, 170.72, 170.65, 169.82, 135.56, 135.52, 132.67, 129.91, 127.81, 127.78, 68.58, 

68.41, 68.32, 61.92, 26.59, 19.24, 16.70, 16.66, 16.64. MS (EI) m/z 530 (M+) 

Bn-GGLLLG-Si. 

(JLiii-76-1) DCC (1.6 g, 7.4 

mmol) was added to a 

solution of Bn-GG (1.7 g, 

7.4 mmol), LLG-Si (3.9 g, 7.4 mmol) and DMAP (0.45 g, 3.7 mmol) in CH2Cl2 (80 mL). The 

mixture was stirred for 2 h under RT and then filtered to remove DCU. The filtrate was 

concentrated and a clear oil was isolated by flash chromatography (SiO2, 5% EtOAc in hexanes, 

4.3 g, 80% yield). 
1
H NMR (400 MHz, CDCl3) δ 7.67 (m, 4H), 7.48 – 7.29 (m, 11H), 4.86 (d, J 

= 16.1 Hz, 1H), 5.19 (m, 5H), 4.73 (d, J = 15.9 Hz, 1H), 4.70 (d, J = 15.9 Hz, 1H), 4.68 (d, J = 
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15.9 Hz, 1H), 4.66 (d, J = 15.9 Hz, 1H), 4.35 (d, J = 16.8 Hz, 1H), 4.28 (d, J = 16.8 Hz, 1H), 

1.61 – 1.57 (d, J = 7.1 Hz, 3H), 1.59 – 1.55 (d, J = 7.1 Hz, 3H), 1.50 (d, J = 7.1 Hz, 3H), 1.07 (s, 

9H). 
13

C NMR (100 MHz, CDCl3) δ 170.62, 169.91, 169.66, 169.49, 166.79, 166.53, 135.56, 

135.53, 134.81, 132.70, 132.67, 132.62, 129.88, 128.67, 128.65, 128.44, 127.80, 127.78, 68.89, 

68.87, 68.41, 67.34, 61.92, 61.15, 60.67, 26.60, 19.24, 16.72, 16.69, 16.59. MS (EI) m/z 736 

(M+). 

Bn-GGLLLG. (JLiii-76-2) 

TBAF (9 mL, 9 mmol, 1 M in 

THF), was added to a solution of 

Bn-GGLLLG-Si (4.3 g, 5.8 mmol) and HOAc (2.1 g, 34.8 mmol) in THF (60 mL) under 

nitrogen. The mixture was stirred for 30 min and washed with brine. The brine was extracted 

with Et2O. Organic fractions were combined and dried with MgSO4. The mixture was filtered 

and concentrated. A clear oil was isolated by flash chromatography (SiO2, 15%-35% EtOAc in 

hexanes, 2.3 g, 80% yield). 
1
H NMR (400 MHz, CDCl3) δ 7.43 – 7.26 (m, 5H), 5.33 – 5.13 (m, 

5H), 4.86 (d, J = 16.1 Hz, 1H), 4.73 (d, J = 15.9 Hz, 1H), 4.71 (d, J = 15.9 Hz, 1H), 4.70 (d, J = 

15.9 Hz, 1H), 4.35 – 4.15 (m, 2H), 2.31 (t, J = 5.7 Hz, 1H), 1.58 (m, 9H). 
13

C NMR (100 MHz, 

CDCl3) δ 172.72, 169.64, 169.51, 169.46, 166.82, 166.54, 134.80, 128.68, 128.67, 128.49, 

128.45, 69.17, 69.10, 68.97, 67.37, 61.17, 60.70, 60.48, 16.74, 16.70, 16.63. MS (EI) m/z 498 

(M+). 

LG. (JLiii-16-1) Pd/C (235 mg, 10%) was added to a solution of 

Bn-LG (5.1 g, 21.4 mmol) in EtOAc (200 mL) under nitrogen. The flask 

was purged and stirred overnight under H2 (1 atm). The mixture was purged with nitrogen and 

filtered through celite. A clear oil was isolated after concentration (3.17 g, 100% yield). 
1
H NMR 



 37 

(300 MHz, CDCl3) δ 5.27-5.20 (q, 1H, J = 6.9 Hz), 4.35-4.30 (d, 1H, J = 17.4 Hz), 4.28-4.22 (d, 

1H, J = 17.4 Hz), 1.58-1.56 (d, 3H, J = 6.9 Hz). 
1
H NMR is consistent with that reported 

previously.
48

 MS (EI) m/z 148 (M+). 

LracG (JLiii-31-2) Pd/C (180 mg, 10%) was added to a solution of 

Bn-LracG (3.9 g, 16.4 mmol) in EtOAc (200 mL) under nitrogen. The 

flask was purged and stirred overnight under H2 (1 atm). The mixture was purged with nitrogen 

and filtered through celite. A clear oil was isolated after concentration (2.0 g, 83% yield). 1H 

NMR (300 MHz, CDCl3) δ 5.21 (q, J = 7.2 Hz, 1H), 4.30 (d, J = 17.4 Hz, 1H), 4.23 (d, J = 17.4 

Hz, 1H), 1.55 (d, J = 7.2 Hz, 3H). 
1
H NMR is consistent with that reported previously.

48
 MS (EI) 

m/z 148 (M+). 

LLG. (JLiii-13-1) Pd/C (100 mg, 10%) was added to a 

solution of Bn-LracLG (2.8 g, 9.0 mmol) in EtOAc (100 mL) under 

nitrogen. The flask was purged and stirred overnight under H2 (1 atm). The mixture was purged 

with nitrogen and filtered through celite. A clear oil was isolated after concentration (1.8 g, 92% 

yield). 
1
H NMR (300 MHz, CDCl3) δ 5.20 (m, 2H), 4.30 (d, J = 17.4 Hz, 1H), 4.22 (d, J = 17.4 

Hz, 1H), 1.57 (d, J = 7.1 Hz, 3H), 1.55 (d, J = 7.1 Hz, 3H). 
1
H NMR is consistent with that 

reported previously.
48

 HRMS (m+Na) calc mass 243.0481, found 243.0477.  

LracLG. (JLiii-13-2) Pd/C (120 mg, 10%) was added to a 

solution of Bn-LracLG (3.4 g, 11.0 mmol) in EtOAc (110 mL) 

under nitrogen. The flask was purged and stirred overnight under H2 (1 atm). The mixture was 

purged with nitrogen and filtered through celite. A clear oil was isolated after concentration (2.2 

g, 92% yield).
 1

H NMR (300 MHz, CDCl3) δ 5.32 – 5.07 (m, 2H), 4.30 (d, J = 17.6 Hz, 1H), 
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4.22 (d, J = 17.5 Hz, 1H), 1.55 (m, 6H).
 1

H NMR is consistent with that reported previously.
48

 

HRMS (m+Na) calc mass 243.0481, found 243.0495. 

LracLracG. (JLiii-33-1) Pd/C (80 mg, 10%) was added to a 

solution of Bn-GLG (2.0 g, 6.5 mmol) in EtOAc (60 mL) under 

nitrogen. The flask was purged and stirred overnight under H2 (1 atm). The mixture was purged 

with nitrogen and filtered through celite. A clear oil was isolated after concentration (1.42 g, 

95% yield).
 1

H NMR (400 MHz, CDCl3) δ 5.43-4.91 (m, 2H), 4.40-3.88 (m, 2H), 1.57-1.50 (m, 

6H). 
1
H NMR is consistent with that reported previously.

48
 HRMS (m+Na) calc mass 243.0481, 

found 243.0488. 

GLG. (JLiii-19-1) Pd/C (130 mg, 10%) was added to a 

solution of Bn-GLG (3.5 g, 11.8 mmol) in EtOAc (120 mL) under 

nitrogen. The flask was purged and stirred overnight under H2 (1 atm). The mixture was purged 

with nitrogen and filtered through celite. A clear oil was isolated after concentration (2.0 g, 

82.3% yield). 
1
H NMR (300 MHz, CDCl3) δ 5.27 (q, J = 7.1 Hz, 1H), 4.76 (d, J = 16.3 Hz, 1H), 

4.64 (d, J = 16.3 Hz, 1H), 4.30 (d, J = 16.3 Hz, 1H), 4.24 (d, J = 16.3 Hz, 1H), 1.56 (d, J = 7.1 

Hz, 3H). 
1
H NMR is consistent with that reported previously.

48
 HRMS (m+Na) calc mass 

229.0324, found 229.0345.  

LracGLG. (JLii-24B-2) Pd/C (135 mg, 10%) was 

added to a solution of Bn-LracGLG (4 g, 11 mmol) in 

EtOAc (100 mL) under nitrogen. The flask was purged and stirred overnight under H2 (1 atm). 

The mixture was purged with nitrogen and filtered through celite. A clear oil was isolated after 

concentration (3.17 g, 100% yield). 
1
H NMR (300 MHz, CDCl3) δ 5.34-5.17 (m, 2H), 4.90-4.66 

(m, 2H), 4.35-4.29 (d, 1H), 4.28-4.22 (d, 1H), 1.62-1.55 (m, 6H). 
13

C NMR (150 MHz) δ 174.57, 
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174.52, 172.89, 172.86, 171.73, 169.9, 169.85, 166.76, 166.72, 69.30, 69.29, 61.10, 60.74, 60.63, 

21.23, 17.00, 16.99, 16.88, 14.36. MS (EI) m/z 278 (M+). 

LLLG. (JLii-12-1) Pd/C (178 mg, 10%) was added 

to a solution of Bn-LLLG (6.2 g, 16.2 mmol) in EtOAc 

(150 mL) under nitrogen. The flask was purged and stirred 

overnight under H2 (1 atm). The mixture was purged with nitrogen and filtered through celite. A 

clear oil was isolated after concentration (4.74 g, 100% yield). 
1
H NMR (300 MHz, CDCl3) δ 

5.26-5.23 (q, 1H, J = 7.2 Hz), 5.23-5.19 (q, 1H, J = 7.2 Hz), 5.19-5.15 (q, 1H, J = 7.2 Hz), 4.32-

4.29 (d, 1H, J = 16.8 Hz), 4.26-4.24 (d, 1H, J = 17.4 Hz), 1.61-1.59 (d, 3H, J = 6.6 Hz), 1.60-

1.59 (d, 3H, J = 6.6 Hz), 1.57-1.56 (d, 3H, J = 6.6 Hz). 
13

C NMR (150 MHz, CDCl3) δ 174.65, 

172.96, 171.66, 169.99, 169.77, 69.38, 69.10, 60.72, 60.67, 16.94, 16.86, 16.81. MS (EI) m/z 

292 (M+). 

LGGG. (JLii-23B-2) Pd/C (64 mg, 10%) was 

added to a solution of Bn-LGGG (2.0 g, 5.6 mmol) in 

EtOAc (50 mL) under nitrogen. The flask was purged and 

stirred overnight under H2 (1 atm). The mixture was purged with nitrogen and filtered through 

celite. A clear oil was isolated after concentration (1.49 g, 100% yield). 
1
H NMR (300 MHz, 

CDCl3) δ 5.26-5.18 (q, 1H, J = 7.2 Hz), 4.86-4.75 (m, 4H), 4.33 (s, 2H), 1.59-1.56 (d, 3H, J = 7.2 Hz). 
13

C 

NMR (150 MHz, CDCl3) δ 174.31, 172.84, 166.98, 166.67, 69.34, 61.18, 60.96, 60.62, 16.88. 

MS (EI) m/z 264 (M+). 

GLLG. (JLiii-67-2) Pd/C (110 mg, 10%) was 

added to a solution of Bn-GLLG (2.2 g, 6.0 mmol) in 

EtOAc (60 mL) under nitrogen. The flask was purged and stirred overnight under H2 (1 atm). 
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The mixture was purged with nitrogen and filtered through celite. A clear oil was isolated after 

concentration (1.25 g, 75% yield). 
1
H NMR (400 MHz, CDCl3) δ 5.30 – 5.18 (m, 2H), 4.77 (d, J 

= 16.4 Hz, 1H), 4.63 (d, J = 16.4 Hz, 1H), 4.29 (d, J = 17.4 Hz, 1H), 4.22 (d, J = 17.4 Hz, 1H), 

1.58 (d, J = 7.1 Hz, 6H). 
13

C NMR (100 MHz, CDCl3) δ 172.75, 171.24, 169.75, 169.53, 69.16, 

69.09, 60.78, 60.35, 16.63. HRMS (m+Na) calc mass 301.0536, found 301.0549. 

GGLLLG. (JLiii-77-1) Pd/C (115 

mg, 10%) was added to a solution of Bn-

GGLLLG (2.3 g, 4.6 mmol) in EtOAc (50 mL) under nitrogen. The flask was purged and stirred 

overnight under H2 (1 atm). The mixture was purged with nitrogen and filtered through celite. A 

clear oil was isolated after concentration (1.8 g, 95% yield). 1H NMR (400 MHz, CDCl3) δ 5.26 

– 5.15 (m, 3H), 4.85 (d, J = 16.1 Hz, 1H), 4.72 (s, 2H), 4.69 (d, J = 16.1 Hz, 1H), 4.28 (d, J = 

17.4 Hz, 1H), 4.22 (d, J = 17.4 Hz, 1H), 1.58 (d, J = 7.1 Hz, 3H), 1.58 (d, J = 7.1 Hz, 3H), 1.57 

(d, J = 7.1 Hz, 3H). 
13

C NMR (100 MHz, CDCl3) δ 172.75, 169.75, 169.53, 166.54, 69.20, 

69.13, 69.02, 60.76, 60.72, 60.44, 16.72, 16.67, 16.62. MS (EI) m/z 408 (M+). 

Poly LG. (JLiii-17-1) DIC (0.7 g, 5.48 mmol) was added dropwise to a solution of LG 

(0.5 g, 2.74 mmol) and DPTS (0.16 g, 0.55 mmol) in CH2Cl2 (0.9 mL) in an ice bath. The 

solution was then stirred for 3 h under RT. The mixture was precipitated into methanol (75 mL) 

and stirred for 45 min. The precipitate was filtered and dried under nitrogen (0.35 g, 70% yield). 

1
H NMR (600 MHz, CDCl3) δ 5.30-5.22 (q, 1H, J = 7.2 Hz), 4.91-4.86 (d, 1H, J = 15.9 Hz), 

4.68-4.63 (d, 1H, J = 15.9 Hz), 1.61-1.58 (d, 3H, J = 7.2 Hz). 13
C NMR (150 MHz, CDCl3) δ 

169.38, 166.44, 69.15, 60.82, 16.74. SEC (THF) Mn – 37.2 kDa; PDI: 1.40.  

Poly LracG. (JLiii-32-1) DIC (2.6 g, 20.1 mmol) was added dropwise to a solution of 

LracG (2.0 g, 13.4 mmol) and DPTS (0.79 g, 2.7 mmol) in CH2Cl2 (4.4 mL) in an ice bath. The 
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solution was then stirred for 3 h under RT. The mixture was precipitated into methanol (300 mL) 

and stirred for 45 min. The precipitate was filtered and dried under nitrogen (1.4 g, 80% yield). 

1
H NMR (600 MHz, CDCl3) δ 5.23 (m, 1H), 4.83 (m, 1H), 4.67 (m, 1H), 1.56 (m, 3H). 

13
C NMR 

(150 MHz, CDCl3) δ 169.38, 169.31, 169.28, 169.22, 166.44, 166.40, 166.36, 69.19, 69.18, 

69.16, 69.15, 60.82, 16.78, 16.76, 16.75, 16.74. SEC (THF) Mn – 30.0 kDa, PDI: 1.28. 

Poly LLG. (JLiii-14-1) DIC (1.6 g, 12.4 mmol) was added dropwise to a solution of LLG 

(1.8 g, 8.3 mmol) and DPTS (0.49 g, 1.6 mmol) in CH2Cl2 (2.7 mL) in an ice bath. The solution 

was then stirred for 3 h under RT. The mixture was precipitated into methanol (300 mL) and 

stirred for 45 min. The precipitate was filtered and dried under nitrogen (1.4 g, 84% yield). 
1
H 

NMR (400 MHz, CDCl3) δ 5.19 (m, 2H), 4.85 (d, J = 16.0 Hz, 1H), 4.60 (d, J = 16.1 Hz, 1H), 

1.57 (d, J = 7.2 Hz, 3H), 1.56 (d, J = 7.2 Hz, 3H). 
13

C NMR (150 MHz, CDCl3) δ 169.48, 

169.35, 166.48, 69.20, 69.00, 60.78, 16.69, 16.64. SEC (THF) Mn – 45.7 kDa, PDI: 1.50. 

Poly LracLG. (JLiii-14-2) DIC (1.9 g, 14.9 mmol) was added dropwise to a solution of 

LracLG (2.20 g, 10.0 mmol) and DPTS (0.59 g, 2.0 mmol) in CH2Cl2 (3.3 mL) in an ice bath. The 

solution was then stirred for 3 h under RT. The mixture was precipitated into methanol (300 mL) 

and stirred for 45 min. The precipitate was filtered and dried under nitrogen (1.9 g, 94% yield). 

1
H NMR (600 MHz, CDCl3) δ 5.20 (m, 2H), 4.81 (m, 1H), 4.63 (m, 1H), 1.54 (m, 6H).

 13
C NMR 

(150 MHz, CDCl3) δ 169.48, 169.45, 169.34, 169.29, 169.19, 169.17, 169.10, 166.46, 166.33, 

69.36, 69.31, 69.18, 68.98, 60.78, 60.76, 16.71, 16.69, 16.67, 16.64. SEC (THF) Mn – 31.0 kDa, 

PDI: 1.46.  

Poly LracLracG, (JLiii-33-2) DIC (0.8 g, 6.2 mmol) was added dropwise to a solution of 

LracLracG (0.95 g, 0.9 mmol) and DPTS (0.26 g, 1.6 mmol) in CH2Cl2 (1.4 mL) in an ice bath. 

The solution was then stirred for 3 h under RT. The mixture was precipitated into methanol (100 
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mL) and stirred for 45 min. The precipitate was filtered and dried under nitrogen (0.7 g, 80% 

yield). 
1
H NMR (600 MHz, CDCl3) δ 5.21 (m, 2H), 4.81 (m, 1H), 4.64 (m, 1H), 1.55 (m, 6H). 

13
C NMR (150 MHz, CDCl3) δ 169.51, 169.45, 169.36, 169.30, 169.27, 169.20, 169.15, 169.12, 

166.52, 166.47, 166.35, 166.31, 69.34, 69.28, 69.16, 69.12, 69.05, 68.99, 68.97, 60.76, 16.72, 

16.69, 16.63. SEC (THF) Mn – 30.0 kDa, PDI: 1.29. 

Poly GLG. (JLiii-19-2) DIC (0.95 g, 7.5 mmol) was added dropwise to a solution of 

GLG (1.03 g, 5.0 mmol) and DPTS (0.29 g, 1.0 mmol) in CH2Cl2 (1.6 mL) in an ice bath. The 

solution was then stirred for 3 h under RT. The mixture was precipitated into methanol (150 mL) 

and stirred for 45 min. The precipitate was filtered and dried under nitrogen (0.9 g, 96% yield). 

1
H NMR (400 MHz, CDCl3) δ 5.25 (q, J = 7.1 Hz, 1H), 4.86 (d, J = 16.1 Hz, 1H), 4.80 (d, J = 

16.1 Hz, 1H), 4.72 (d, J = 16.1 Hz, 1H), 4.68 (d, J = 16.1 Hz, 1H), 1.57 (d, J = 7.1 Hz, 3H). 
13

C 

NMR (150 MHz, CDCl3) δ 169.27, 166.46, 166.35, 69.2), 60.87, 60.71, 16.72. SEC (THF) Mn – 

24.3 kDa, PDI: 1.45. 

Poly LracGLG. (JLii-14-1) DIC (0.7 g, 5.48 mmol) was added dropwise to a solution of 

LracGLG (0.5 g, 2.74 mmol) and DPTS (0.16 g, 0.55 mmol) in CH2Cl2 (0.9 mL) in an ice bath. 

The solution was then stirred for 3 h under RT. The mixture was precipitated into methanol (75 

mL) and stirred for 45 min. The precipitate was filtered and dried under nitrogen (0.35 g, 70% 

yield). 
1
H NMR (600 MHz, CDCl3) δ 5.29-5.24 (m, 2H), 4.91-4.82 (m, 1H), 4.73-4.64 (m, 1H), 

1.61-1.59 (m, 6H). 
13

C NMR (150 MHz, CDCl3) δ 169.61, 169.46, 166.67, 166.63, 166.59, 

69.43, 69.38, 61.05, 17.01, 16.97. SEC (THF) Mn – 12.4 kDa; PDI: 1.43. 

Poly LLLG. (JLii-13B-1) DIC (0.5 g, 4 mmol) was added dropwise to a solution of 

LLLG (0.77 g, 2.6 mmol) and DPTS (0.12 g, 0.4 mmol) in CH2Cl2 (0.5 mL) in an ice bath. The 

solution was then stirred for 3 h under RT. The mixture was precipitated into methanol (75 mL) 
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and stirred for 45 min. The precipitate was filtered and dried under nitrogen (0.38 g, 50% yield). 

1
H NMR (600 MHz, CDCl3) δ 5.24-5.20 (q, 1H, J = 7.2 Hz), 5.22-5.18 (q, 1H, J = 7.2 Hz), 

5.20-5.17 (q, 1H, J = 7.2 Hz), 4.90-4.88 (d, 1H, J = 16.2 Hz), 4.63-4.61 (d, 1H, J = 15.6 Hz), 

1.60-1.59 (d, 3H, J = 7.2 Hz), 1.60-1.59 (d, 3H, J = 7.2 Hz), 1.59-1.58 (d, 3H, J = 7.2 Hz). 
13

C 

NMR (150 MHz, CDCl3) δ 169.75 (2x), 169.70, 166.74, 69.42, 69.32, 69.17, 61.01, 16.93, 

16.89, 16.82. SEC (THF) Mn – 10.4 kDa; PDI: 1.80. 

Poly GLLL. (JLii-4B-1) DIC (0.37 g, 3 mmol) was added dropwise to a solution of 

GLLL (0.57 g, 1.95 mmol) and DPTS (0.11 g, 0.39 mmol) in CH2Cl2 (0.5 mL) in an ice bath. 

The solution was then stirred for 3 h under RT. The mixture was precipitated into methanol (75 

mL) and stirred for 45 min. The precipitate was filtered and dried under nitrogen (0.34 g, 60% 

yield). 
1
H NMR (600 MHz, CDCl3) δ 5.2-5.14 (m, 3H), 4.87-4.85 (d, 1H, J = 15.6 Hz), 4.62-

4.58 (d, 1H, J = 15.6 Hz), 1.57-1.56 (m, 9H). 13
C NMR (150 MHz, CDCl3) δ 169.49, 169.43, 

166.48, 69.16, 69.06, 68.91, 60.75, 16.67, 16.62, 16.56. SEC (THF) Mn – 8.7 kDa; PDI: 1.55. 

Poly LGGG. (JLii-24-2) DIC (1.1 g, 8.6 mmol) was added dropwise to a solution of 

LGGG (1.5 g, 5.7 mmol) and DPTS (0.33 g, 1.1 mmol) in CH2Cl2 (1.9 mL) in an ice bath. The 

solution was then stirred for 3 h under RT. The mixture was precipitated into methanol (150 mL) 

and stirred for 45 min. The precipitate was filtered and dried under nitrogen (1.1 g, 73% yield). 

1
H NMR (600 MHz, CDCl3) δ 5.29-5.26 (q, 1H, J = 7.2 Hz), 4.90-4.72 (m, 6H), 1.60-1.59 (d, 

3H, J = 7.2 Hz), 
13

C NMR (150 MHz, CDCl3) δ 169.48, 166.66, 166.61, 166.56, 69.47, 61.13, 

60.99, 60.95, 16.92. SEC (THF) Mn – 7.8 kDa; PDI: 1.26. 

Poly GLLG. (JLiii-68-1) DIC (0.85 g, 6.7 mmol) was added dropwise to a solution of 

GLLG (1.25 g, 4.5 mmol) and DPTS (0.27 g, 0.9 mmol) in CH2Cl2 (1.4 mL) in an ice bath. The 

solution was then stirred for 3 h under RT. The mixture was precipitated into methanol (150 mL) 
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and stirred for 45 min. The precipitate was filtered and dried under nitrogen (1.1 g, 95% yield). 

1
H NMR (600 MHz, CDCl3) δ 5.20 (m, 1H), 4.76 (m, 2H), 1.57 (m, 3H). 

13
C NMR (150 MHz, 

CDCl3) δ 169.43, 169.33, 166.45, 166.43, 69.28, 69.00, 60.84, 60.65, 16.67, 16.62. SEC (THF) 

Mn – 35.0 kDa, PDI: 1.18. 

Poly GGLLLG. (JLiii-77-2) DIC (0.8 g, 6.6 mmol) was added dropwise to a solution of 

GGLLLG (1.8 g, 4.4 mmol) and DPTS (0.26 g, 0.88 mmol) in CH2Cl2 (1.3 mL) in an ice bath. 

The solution was then stirred for 3 h under RT. The mixture was precipitated into methanol (150 

mL) and stirred for 45 min. The precipitate was filtered and dried under nitrogen (1.55 g, 89% 

yield). 1H NMR (600 MHz, CDCl3) δ 5.25 – 5.09 (m, 1H), 4.93 – 4.62 (m, 2H), 1.57 (d, J = 7.1 

Hz, 3H). 13
C NMR (150 MHz, CDCl3) δ 169.50, 169.45, 169.41, 166.42, 166.40, 166.36, 69.29, 

69.09, 68.94, 60.90, 60.72, 60.64, 16.68, 16.65, 16.58. SEC (THF) Mn – 45.9 kDa, PDI: 1.15. 

R-SAP 50 (JLii-40B-1) was prepared as previously described.
48

 Equivalent weights of 

each of the four segmers LL, LG, GL and GG (0.34 g each, 2.26 mmol) were combined with 

(DPTS, 0.53 g, 1.8 mmol) and dissolved in CH2Cl2. After cooling the solution to 0 
o
C, 1,3 

diisopropylcarbodiimide (DIC, 1.71 g, 13.6 mmol) was added dropwise and the solution was 

stirred at RT for 2 h. The product was precipitated from methanol (150 ml, 2x), filtered and dried 

under vacuum to give a white solid (1.1 g, 90% yield). 
1
H NMR (600 MHz, CDCl3) and 

13
C 

NMR (150 MHz, CDCl3) see Figure 5 and Figure 6; SEC (THF) Mn – 27.4 kDa; PDI - 1.33. 
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Figure 5. 

1
H NMR (600 MHz, CDCl3) spectrum of R-SAP 50 

 
Figure 6. 

13
C NMR (150 MHz, CDCl3) spectrum of R-SAP 50 
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Bn-S(Bn)L-Si. (JLiii-35-1) DCC (2.9 g, 14 mmol) 

was added to a solution of Bn-S(Bn) (4.0 g, 14 mmol), L-

Si (4.6 g, 14 mmol) and DMAP (0.85 g, 7 mmol) in 

CH2Cl2 (150 ml). The mixture was stirred for 4 h and 

filtered to remove the DCU. The filtrate was concentrated 

and a clear oil was isolated by flash chromatography (SiO2, 2.5% EtOAc in hexanes, 6.5 g, 78% 

yield). 
1
H NMR (400 MHz, CDCl3) δ 7.74-7.20 (m, 20H), 5.20 (d, 1H, J = 12.4 Hz), 5.15 (d, 

1H, J = 12.0 Hz), 5.16 (dd, 1H, J1 = 4.8 Hz, J2 = 2.8 Hz), 4.51 (d, 1H, J = 12.0 Hz), 4.41 (d, 

1H, J = 12.8 Hz), 4.43 (q, 1H, J = 6.8 Hz), 3.83 (dd, 1H, J1 = 10.8 Hz, J2 = 4.8 Hz), 3.57 (dd, 

1H, J1 = 11.2 Hz, J2 = 3.2 Hz), 1.42 (d, 3H, J = 6.8 Hz). 1.10 (s, 9H); 
13

C NMR (100 MHz, 

CDCl3) δ 173.31, 167.78, 137.65, 136.17, 135.98, 135.38, 135.32, 135.01, 133.63, 133.28, 

130.01, 129.97, 129.87, 128.75, 128.59, 128.56, 128.47, 127.94, 127.87, 127.82, 127.79, 73.56, 

72.26, 68.81, 68.74, 67.44, 27.00, 21.43, 19.43. HRMS (M+Na
+
) calc. 619.2492, found 

619.2464. 

Bn-S(Bn)L. (JLiii-35-2) TBAF (5 ml, 5 mmol, 1M in 

THF) was added to a solution of Bn-S(Bn)L-Si (2.3 g, 3.9 mmol) 

and acetic acid (0.4 ml, 7 mmol) in THF (40 ml). The mixture was 

stirred for 3 h and washed with NaHCO3 (40 ml saturated, 2x) and 

brine (1x). The aqueous solution was extracted with Et2O (2x). The organic fractions were 

combined and dried with MgSO4. The mixture was filtered and concentrated. A clear oil was 

isolated by column chromatography (SiO2, 15% EtOAc in hexanes, 1.0 g, 72% yield). 
1
H NMR 

(400 MHz, CDCl3) δ 7.35-7.29 (m, 10H), 5.40 (dd, 1H, J1 = 5.2 Hz, J2 = 2.8 Hz), 5.24 (d, 1H, J 

= 12.4 Hz), 5.18 (d, 1H, J = 12.0 Hz), 4.61 (d, 1H, J = 12.0 Hz), 4.53(d, 1H, J = 12.0 Hz), 4.41 
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(q, 1H, J = 7.2 Hz), 3.96 (dd, 1H, J1 = 11.2 Hz, J2 = 5.2 Hz), 3.84 (dd, 1H, J1 = 10.8 Hz, J2 = 

2.8 Hz) 2.85 (s, 1H), 1.49 (d, 3H, J = 7.2 Hz); 
13

C NMR (100 MHz, CDCl3) δ 175.27, 167.42, 

137.45, 135.08, 128.77, 128.71, 128.62, 128.47, 128.42, 128.07, 127.83, 73.61, 72.95, 68.66, 

67.65, 66.91, 20.65; HRMS (M+Na
+
) calc. 381.1314, found 381.1300. 

S(Bn)L. (JLiii-36-1) Pd/C (31 mg, 10%) was added to a solution 

of Bn-S(Bn)L (1.0 g, 2.8 mmol) and Et3N (0.2 ml, 1.4 mmol) in EtOAc 

(30 ml) under nitrogen. The flask was purged and stirred overnight 

under H2 (1 atm). The mixture was purged by nitrogen and filtered with 

celite. The filtrate was washed with brine (acidified by HCl, 2x) and dried with MgSO4. The 

mixture was filtered and concentrated. A clear oil was isolated after concentration (0.57 g, 75% 

yield). 
1
H NMR (400 MHz, CDCl3) δ 7.38-7.28 (m, 5H), 5.38 (dd, 1H, J1 = 5.2 Hz, J2 = 2.8 

Hz), 4.64 (d, 1H, J = 12.4 Hz), 4.59 (d, 1H, J = 12.4 Hz), 4.43 (q, 1H, J = 7.2 Hz), 3.96 (dd, 1H, 

J1 = 11.2 Hz, J2 = 5.6 Hz), 3.86 (dd, 1H, J1 = 11.2 Hz, J2 = 2.8 Hz), 1.53 (d, 1H, J = 7.2 Hz); 

13
C NMR (100 MHz, CDCl3) δ 175.22, 172.19, 137.23, 128.75, 128.27, 128.00, 73.80, 72.42, 

68.39, 67.01, 20.66; HRMS (M+Na
+
) calc. 291.0845, found 291.0825. 

Poly S(Bn)L. (JLiii-37-2) DIC (0.5 ml, 3.2 mmol) was added 

dropwise to a solution of S(Bn)L (0.56 g, 2.1 mmol) and DPTS (0.13 

g, 0.4 mmol) in CH2Cl2 (0.7 ml) in an ice bath. The mixture was then 

stirred for 3 h under RT. The product was precipitated in methanol 

(75 ml) and stirred for 45 min. The precipitate was filtered and dried under vacuum to give a 

white powder (0.3 g, 57% yield). ). 
1
H NMR (400 MHz, CDCl3) δ 7.33-7.28 (m, 5H), 5.34 (dd, 

1H, J1 = 5.2 Hz, J2 = 3.2 Hz), 5.27 (q, 1H, J = 7.2 Hz), 4.59 (d, 1H, J = 12.4 Hz), 4.55 (d, 1H, J 

= 12.0 Hz), 3.96-3.89 (m, 2H), 1.60 (d, 3H, J = 7.2 Hz); 
13

C NMR (100 MHz, CDCl3) δ 169.54, 
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166.89, 137.68, 128.61, 128.00, 127.92, 73.65, 72.78, 69.55, 68.63, 17.05; SEC (THF) Mn – 10.0 

kDa; PDI – 1.74. 

Poly S(OH)L. (JLiii-39-2) Pd/C (5 mg, 10%) was added to a 

solution of Poly S(Bn)L (10 mg) in DMF (0.5 ml) under nitrogen. The 

flask was purged and stirred overnight under H2 (1 atm). The mixture was purged by nitrogen 

and the solids were removed using a syringe filter (0.45 m). The filtrate was concentrated by 

vacuum overnight to give white powder (7 mg, 100% yield, 65% deprotected). 
1
H NMR (700 

MHz, DMSO) d 5.31-5.27 (m, 1H), 5.25 (q, 1H, J = 7.0 Hz), 5.15 (dd, 1H, J1 = 5.6 Hz, J2 = 2.1 

Hz), 3.87 -3.84 (m, 1H), 3.78-3.74 (m, 1H), 1.50-1.47 (m, 3H) ; 
13

C NMR (100 MHz, DMSO) d 

169.3, 166.8, 166.5, 74.3, 68.8, 60.4, 16.6; SEC (DMF): Mn – 17.7 kDa, PDI – 1.1. 

S(Bn)L-Si. (JLiii-36-2) Pd/C (74 mg, 10%) was added 

to a solution of Bn-S(Bn)L-Si (4.0 g, 6.7 mmol) and Et3N (0.5 

ml, 3.4 mmol) in EtOAc (75 ml) under nitrogen. The flask was 

purged and stirred overnight under H2 (1 atm). The mixture was 

purged with nitrogen and filtered through celite. The filtrate 

was washed with brine (acidified by HCl, 2x) and dried with MgSO4. The mixture was filtered 

and concentrated. A clear oil was isolated by column chromatography (SiO2, 15% EtOAc in 

hexanes, 1.9 g, 56% yield). 
1
H NMR (400 MHz, CDCl3) δ 7.70-7.67 (m, 5H), 7.44-7.25 (m, 

10H), 5.14 (dd, 1H, J1 = 4.8 Hz, J2 = 2.8 Hz), 4.54 (d, 1H, J = 12.0 Hz), 4.48 (d, 1H, J = 12.4 

Hz), 4.40 (q, 1H, J = 7.2 Hz), 3.82 (dd, 1H, J1 = 10.8 Hz, J2 = 5.2 Hz), 3.60 (dd, 1H, J1 = 10.8 

Hz, J2 = 2.8 Hz), 1.44 (d, 3H, J = 7.2 Hz), 1.10 (s, 9H); 
13

C NMR (100 MHz, CDCl3) δ 173.25, 

172.80, 137.43, 136.17, 135.98, 133.59, 133.20, 130.03, 130.01, 128.63, 128.07, 127.92, 127.88, 
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127.80, 73.67, 71.77, 68.76, 68.51, 26.99, 21.43, 19.42; HRMS (M+Na
+
) calc. 529.2022, found 

529.2031. 

Bn-LS(Bn)L-Si. (JLiii-37-1) DCC (0.9 g, 

3.7 mmol) was added to a solution of Bn-L (0.7 g, 

3.7 mmol), S(Bn)L-Si (1.9 g, 3.7 mmol) and 

DMAP (0.3 g, 0.9 mmol) in CH2Cl2 (40 ml). The 

mixture was stirred for 4 h and filtered to remove 

the DCU. The filtrate was concentrated and a clear oil was isolated by flash chromatography 

(SiO2, 5% EtOAc in hexanes, 1.9 g, 74% yield). 
1
H NMR (400 MHz, CDCl3) δ 7.71-7.27 (m, 

20H), 5.23 (q, 1H, J = 7.2 Hz), 5.20 (dd, 1H, J1 = 6.0 Hz, J2 = 3.2 Hz), 5.17 (d, 1H, J = 12.4 

Hz), 5.13 (d, 1H, J = 12.0 Hz), 4.48 (d, 1H, J = 12.0 Hz), 4.45 (d, 1H, J = 12.0 Hz), 4.41 (q, 1H, 

J = 6.8 Hz), 3.77 (dd, 1H, J1 = 11.2 Hz, J2 = 6.0 Hz), 3.73 (dd, 1H, J1 = 11.2 Hz, J2 = 3.2 Hz), 

1.52 (d, 3H, J = 7.2 Hz), 1.45 (d, 3H, J = 6.8 Hz), 1.11 (s, 9H); 
13

C NMR (100 MHz, CDCl3) δ 

173.35, 170.02, 167.33, 137.79, 136.13, 136.05, 135.96, 135.34, 133.67, 133.21, 129.99, 129.98, 

128.88, 128.81, 128.77, 128.67, 128.62, 128.52, 128.45, 128.01, 127.89, 127.86, 127.81, 73.52, 

72.19, 69.66, 68.77, 68.70, 67.34, 26.99, 21.50, 19.42, 17.06; HRMS (M+Na
+
) calc. 691.2703, 

found 691.2722. 

 

Bn-LS(Bn)L. (JLiii-38-1) TBAF (4 ml, 4 mmol, 

1M in THF) was added to a solution of Bn-LS(Bn)L-Si 

(1.8 g, 2.7 mmol) and acetic acid (0.3 ml, 4.8 mmol) in 

THF (30 ml). The mixture was stirred for 2 h and washed 

with NaHCO3 (2x) and brine (1x). The aqueous solution was extracted with Et2O (2x). The 
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organic fractions were combined and dried with MgSO4. The mixture was filtered and 

concentrated. A clear oil was isolated by column chromatography (SiO2, 15% EtOAc in hexanes, 

0.8 g, 68% yield). 
1
H NMR (400 MHz, CDCl3) δ 7.38-7.30 (m, 10H), 5.40 (dd, 1H, J1 = 6.8 Hz, 

J2 = 3.2 Hz), 5.24 (q, 1H, J = 7.2 Hz), 5.18 (d, 1H, J = 12.0 Hz), 5.14 (d, 1H, J = 12.0 Hz), 4.57 

(d, 1H, J = 11.6 Hz), 4.54 (d, 1H, J = 12.4 Hz), 4.41 (p, 1H, J = 7.2 Hz), 3.93 (dd, 1H, J1 = 11.2 

Hz, J2 = 2.8 Hz), 3.87 (dd, 1H, J1 = 11.2 Hz, J2 = 6.4 Hz), 2.70 (d, 1H, J = 6.0 Hz), 1.54 (d, 

3H, J = 7.2 Hz), 1.52 (d, 3H, J = 6.8 Hz); 
13

C NMR (100 MHz, CDCl3) δ 175.34, 169.90, 

167.02, 137.59, 135.25, 128.85, 128.76, 128.65, 128.50, 128.46, 128.18, 128.09, 127.87, 73.66, 

72.88, 69.88, 68.71, 67.48, 66.93, 20.72, 17.05; HRMS (M+Na
+
) calc. 435.1525, found 

453.1493. 

LS(Bn)L. (JLiii-38-2) Pd/C (20 mg, 10%) was added to a 

solution of Bn-LS(Bn)L (0.65 g, 1.5 mmol) and Et3N (0.1 ml, 0.95 

mmol) in EtOAc (20 ml) under nitrogen. The flask was purged and 

stirred overnight under H2 (1 atm). The mixture was purged by 

nitrogen and filtered with celite. The filtrate was washed with brine (acidified by HCl, 2x) and 

dried with MgSO4. The mixture was filtered and concentrated. A clear oil was isolated after 

concentration (0.25 g, 50% yield). 
1
H NMR (400 MHz, CDCl3) δ 7.36-7.29 (m, 5H), 5.40 (dd, 

1H, J1 = 5.6 Hz, J2 = 2.8 Hz), 5.25 (q, 1H, J = 7.2 Hz), 4.63 (d, 1H, J = 12.4 Hz), 4.59 (d, 1H, J 

= 12.0 Hz), 4.42 (q, 1H, J = 6.8 Hz), 3.98 (dd, 1H, J1 = 11.2 Hz, J2 = 6.0 Hz), 3.92 (dd, 1H, J1 

= 11.2 Hz, J2 = 3.2 Hz), 1.57 (d, 3H, J = 6.8 Hz), 1.53 (d, 3H, J = 6.8 Hz); 
13

C NMR (100 

MHz, CDCl3) δ 175.35, 167.08, 137.30, 128.72, 128.24, 128.01, 73.84, 72.78, 68.64, 67.00, 

20.68, 17.02; HRMS (M+Na
+
) calc. 363.1056, found 363.1039. 
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Poly LS(Bn)L. (JLiii-39-1) DIC (0.16 ml, 0.6 mmol) was 

added dropwise to a solution of LS(Bn)L (0.23 g, 0.7 mmol) and 

DPTS (0.04 g, 0.00014 mmol) in CH2Cl2 (0.22 ml) in an ice bath. 

The mixture was then stirred for 3 h under RT. The product was 

precipitated in methanol (15 ml) and stirred for 45 min. The precipitate was filtered and dried 

under vacuum to give a white powder (0.14 g, 64% yield). 
1
H NMR (400 MHz, CDCl3) δ 7.33-

7.28 (m, 5H), 5.34 (dd, 1H, J1 = 5.6 Hz, J2 = 2.8 Hz), 5.23 (q, 1H, J = 7.2 Hz), 5.20 (q, 1H, J = 

7.2 Hz), 4.60 (d, 1H, J = 12.4 Hz), 4.56 (d, 1H, J = 12.4 Hz), 3.95 (dd, 1H, J1 = 11.2 Hz, J2 = 

2.8 Hz), 3.91 (dd, 1H, J1 = 11.2 Hz, J2 = 6.0 Hz), 1.59 (d, 3H, J = 7.6 Hz), 1.57 (d, 3H, J = 7.2 

Hz);
 13

C NMR (100 MHz, CDCl3) δ 169.81, 169.44, 167.01, 137.66, 128.62, 128.01, 127.93, 

73.68, 72.80, 69.60, 69.16, 68.66, 16.94; SEC (THF): Mn – 21.3 kDa, PDI - 1.73. 

Poly LS(OH)L (JLiii-44-1) Pd/C (5 mg, 10%) was added 

to a solution of Poly LS(Bn)L (10 mg) in DMF (0.5 ml) under 

nitrogen. The flask was purged and stirred overnight under H2 (1 atm). The mixture was purged 

by nitrogen and filtered with syringe fiter (0.45 m). The filtrate was concentrated by vacuum 

overnight to give white powder (8 mg, 100% yield, 85% deprotected). 
1
H NMR (700 MHz, 

DMSO), d 5.42(t, 1H, J = 5.6 Hz), 5.25-5.20 (m, 2H), 5.15 (dd, 1H, J1 = 6.3 Hz, J2 = 2.8 Hz), 

3.84 (m, 1H), 3.76 (m, 1H), 1.49 (d, 3H, J = 7.0 Hz), 1.46 (d, 3H, J = 7.0 Hz); 13C NMR (100 

MHz, DMSO), d 169.4, 169.0, 166.9, 74.2, 68.8, 68.6, 60.4, 16.5, 16.4; SEC (DMF): Mn – 47.5 

kDa, PDI – 1.2. 
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2.4 NAMING CONVENTION 

The abbreviation of monomers and protection groups used here are listed in Table 1. Segmers are 

named by listing the monomers from carboxylic acid side (C-side) to the hydroxyl side (O-side) 

in sequence order. Polymers are named by adding Poly as a prefix. For instance, GLG is the 

segmer with glycolic acid, L-lactic acid and glycolic acid from C-side to O-side. The polymer 

prepared from the GLG segmer is named Poly GLG. Using this convention, the polymer 

prepared from segmer LGG would be named Poly LGG despite the fact that Poly GLG and 

Poly LGG differ only in which monomers are located at the chain ends. 

Table 1. Naming conventions for segmers and polymers 

Symbol Definition 

L L-Lactic acid unit (S configuration) 

Lrac D,L-Lactic acid unit (racemic configuration) 

G Glycolic acid unit 

Bn Terminal benzyl protecting group 

TBDPSi Terminal silyl protecting group (tert-butyldiphenylsilyl group) 

Si Terminal silyl protecting group (tert-butyldiphenylsilyl group) 

R Random sequenced 

ROP Polymer prepared by ring opening polymerization 

SAP Polymer prepared by segmer assembly polymerization 

S(Bn) S-3-Benzyloxy-2-hydroxypropionic acid unit 

S(OH) S-2,3-Dihydroxypropionic acid unit 
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2.5 RESULTS AND DISCUSSION 

2.5.1 PLGA Synthesis 

 

Figure 7. Preparation of building block molecules with TBDPSi protecting groups 

Five key building blocks were prepared by the protection of lactic and glycolic acids. The 

alcohol functional group of both glycolic and lactic acids was protected with tert-

butyldiphenylsilyl (TBDPSi). Reaction of commercially available methyl glycolate with 

TBDPSiCl in the presence of DMAP and Et3N gave the silyl protected methyl ester (Me-G-Si) in 

100% yield. Saponification of the ester with LiOH gave silyl-protected glycolic acid (G-Si) in 

84% yield. The choice of TBDPSi over other similar silane protection groups such as tert-

butyldimethylsilane (TBDMSi) was based on the need to stabilize the protecting group against 

the basic conditions required for the saponification step. The silyl protected lactic acid (L-Si) 

was produced analogously but needed a longer saponification (Figure 7). Both products were 

verified by comparison of the 
1
H NMR spectra with literature reports.

81
  

 

Figure 8. Preparation of building block molecules with  benzyl protecting groups 
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The acid functional group of both glycolic, L-lactic and rac-lactic acids was protected with 

the chemically orthogonal benzyl group in anticipation of future protection group manipulations. 

Reaction of glycolic acid with benzyl bromide in the presence of DBU in benzene gave benzyl 

protected glycolic acid (Bn-G) in 69% yield after chromatography. The protection of the lactic 

acid required slightly different conditions because the purchased acid was a 90% solution in 

water. The water was first removed by distillation after addition of DBU. Reaction with benzyl 

bromide then took place in DMF solvent to give, after vacuum distillation, the product (Bn-L) as 

clear oil in 67% yield (Figure 8). Both compounds were verified by comparison of the 
1
H NMR 

spectra with the literature report.
81

 

 

Figure 9. Segmer assembly polymerization synthesis of PLGA copolymers 

The first RSC of PLGA, Poly LG, was prepared by using Bn-L and G-Si as the building 

blocks (Figure 9). Coupling of the two units in the presence of DCC and DMAP in CH2Cl2 gave 

orthogonally protected Bn-LG-Si in 68% yield after purification by column chromatography. 

The two protecting groups were then removed. Reaction of Bn-LG-Si with TBAF in the presence 

of acetic acid in THF cleaved the TBDPSi selectively and gave Bn-LG as product in 75% yield. 
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The benzyl ester was subsequently deprotected by hydrogenation in the presence of Pd/C as 

catalyst. The solvent was removed in vacuo overnight then the segmer LG was diluted with dry 

CH2Cl2 and polymerized in the presence of DIC as condensation reagent and DPTS as catalyst. 

The polymer was purified by precipitation in methanol to remove the catalyst and the side 

product. The product was characterized by 
1
H and 

13
C NMR spectroscopy for structure 

confirmation and SEC for molecular weight determination. By using the Bn-Lrac to substitute 

Bn-L, the alternating copolymer Poly LracG with racemic stereochemical centers was prepared. 

Selective deprotection of the di-protected units yielded building blocks for longer segmers. 

The three benzyl protected building blocks, Bn-LG, Bn-GL and Bn-GG, were thus prepared by 

removal of the TBDPSi group in TBAF/AcOH/THF solution from the deprotected precursor. 

Bn-LG and Bn-GL were purified by column chromatography while Bn-GG was purified by 

precipitating the oil-like mixture in hexanes because Bn-GG is highly crystalline. Bn-LL was 

prepared by a one-step ring opening of L,L-lactide with benzyl alcohol and DMAP catalyst. The 

Bn-LL was then purified by vacuum distillation. Silyl protected building blocks were prepared 

by removing the benzyl group by hydrogenolysis of the di-protected dimers with Pd/C. LG-Si, 

GL-Si, LL-Si, GL-Si and LracG-Si were thus prepared. The general yields of the preparations 

were 70-90%. All building blocks were characterized by NMR spectroscopy and mass 

spectrometry to confirm the chemical structure. 

Trimeric, tetrameric and hexameric segmers were prepared by coupling-deprotecting steps 

using those longer building blocks. To prepare trimeric segmer LLG, for example, Bn-LLG-Si 

was first prepared by coupling Bn-L and LG-Si using the DCC/DMAP method to give a 77% 

yield of Bn-LLG-Si. The TBDPSi group was cleaved in TBAF/AcOH/THF solution and the 

benzyl group was subsequently deprotected by hydrogenolysis over Pd/C. The overall yield over 
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the two steps was 72%. The same procedure was used to prepare other trimeric segmers 

including LracLracG, LracLG and GLG.  

The tetramer oligomer LracGLG was prepared in 80% yield by the coupling of Bn-LracG 

and LG-Si. The orthogonally protected oligomer was then treated with TBAF to cleave TBDPSi 

and subsequently hydrogenated in the presence of Pd/C to give the finally oligomer LracGLG 

with both carboxylic acid group and alcohol group deprotected in 82% yield. The de-protected 

oligomer was then polymerized as described previously and isolated by precipitation in methanol 

to give pure poly LracGLG (Figure 9). Using this procedure, other oligomers including LLLG, 

GLLL, GLLG and LGGG were prepared. LGGG, which has three glycolic units in the segmer, 

required particularly gentle conditions because the ester bonds of glycolic units are easy to 

cleave. Both the coupling of building blocks Bn-LG and GG-Si and the cleavage of TBDPSi 

group were carried out for shorter reaction times than for other oligomers. Even with the addition 

of more acetic acid as buffer and shorter reaction times, Bn-LG was still isolated from reaction 

mixture which is consistent with decomposition as proof of cleavage.  

The hexameric segmer, GGLLLG, was also prepared using the coupling-deprotecting 

approach. Bn-GGLLLG-Si was first prepared by the coupling of Bn-GG and LLLG-Si. The 

TBDPSi group was carefully deprotected by TBAF with large quantity of AcOH (8x) and shorter 

reaction time to avoid decomposition of the product. The benzyl group was then removed by 

hydrogenolysis with Pd/C as the catalyst. The longer segmer proved more sensitive to the 

deprotection conditions and required an extra purification step to remove decomposition 

products.  
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The polymers of above all oligomers were prepared and were characterized by 
1
H and 

13
C 

NMR spectroscopy for structure confirmation and SEC for molecular weight determination. A 

list of PLGAs prepared is shown in Table 2. 

Table 2. Characterization data for sequenced PLGAs 

 Mn
a
 (kDa) Mw (kDa) PDI 

Poly LG 37.2 52.1 1.4 

Poly LracG 30.0 38.4 1.3 

Poly LLG 45.7 68.6 1.5 

Poly LracLG 31.0 45.3 1.5 

Poly LracLracG 30.0 38.7 1.3 

Poly GLG 24.3 35.2 1.4 

Poly LracGLG 12.4 17.7 1.4 

Poly LLLG 10.4 18.7 1.8 

Poly GLLL 8.7 13.5 1.6 

Poly LGGG 7.8 9.8 1.3 

Poly GLLG 35.0 41.3 1.2 

Poly GGLLLG 45.9 52.8 1.1 

a
determined by SEC (THF) relative to polystyrene standards. 
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Figure 10. Synthetic approach to random PLGA copolymers using both segmer assembly polymerization (SAP) and 

ring-opening polymerization (ROP).  

The SAP method can be used not only to prepare the RSCs of PLGA, but also to prepare 

random PLGA by mixing selected segmers. A random 1:1 L:G PLGA sample was thus produced 

using the condensation reaction of the dimeric precursors LG, GG, LL, and GL in equal 

proportions. It should be noted that this second polymer, which is termed R-SAP, was 

synthesized from stereopure L-lactic precursors and prepared with the same reaction conditions 

as described above. 
1
H NMR spectroscopy of the polymers confirmed that all samples consist of 

a 1:1 ratio of L to G.  
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Figure 11. Comparison of glycolyl carbonyl resonances for R-ROP (top) and R-SAP (bottom). X represents either L 

or G units. 

A comparison of the glycolyl carbonyl region of a random PLGA with 1:1 ratio of L:G 

(R-ROP 50, prepared by Durect Corp. using ROP) and R-SAP 50 random copolymers 

highlights differences in their microstructures. Although both polymers exhibit several 

overlapping resonances near δ 166.4,
85

 the relative ratios of the individual peaks differ 

significantly. For example, the resonance at δ 166.33 in R-ROP 50 is more intense than that at δ 

166.42. The spectrum of R-SAP 50 shows both peaks are similar in intensity (Figure 11). 

Previous studies
14,49

 have suggested that the 166.33 resonance is associated with the glycolyl 

carbonyls of units located in the center of pure G blocks while that at 166.42 is characteristic of 

a glycolyl carbonyls with nearby L units. The relative ratios of these peaks are consistent the 

microstructural trends that are expected from the two distinct synthetic approaches. The R-ROP 
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50 polymer, prepared by ring-opening of a 50:50 mixture of glycolide and lactide, are known to 

possess blocks of pure G.
29

 In contrast the R-SAP 50 copolymer, produced by the condensation 

of four dimers, should give statistically fewer runs of pure G unless the reaction rate of GG with 

other GG units is significantly higher than that with other units. Based on our extensive 

experience in handling these dimers, differences in reaction rates between dimers are not large.  

2.5.2 Side chain modification 

Side chain modification of PLGA/PLA is very important for the application of PLGAs in 

the biomaterials field. Installation of reactive side groups allow for the post-polymerization 

attachment of biomedically relevant substituents. Post-polymerization modification of 

biodegradable and bioassimilable polymers has proved useful in both tissue engineering and drug 

delivery applications.
86-91

 The introduction of such side chains in ROP-prepared PLA or PLGA 

polymers is generally accomplished through the addition of derivatized lactide monomers to the 

polymerization mixture. This method gives a random distribution of the functional groups along 

the copolymer chain.  

 

Figure 12. Synthesis approach of side chain modified RSC of PLGA 
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By using a SAP approach, however, it is possible to create RSCs wherein the functional 

groups are evenly distributed throughout the polymer chain. The general approach to these RSCs 

convergent, and is similar to the preparation of PLGA RSCs described above. The project was a 

collaborative effort between Dr. Ryan Stayshich, Ryan Weiss and the author of this dissertation 

and the results were published.
76

 There are six polymers prepared in total for this project and two 

of them are prepared by the author of this dissertation, e.g. Figure 12. The hydroxyl modified 

unit is abbreviated S, because it is derived from the amino acid, serine.  The S(Bn) monomer, 

which was prepared following the procedure by Kelly and Weck groups,
92-94

 was coupled with 

L-Si to give the di-protected dimer in a 78% yield. Deprotection of benzyl group on the 

carboxylic acid side by catalytic hydrogenolysis produced the S(Bn)L-Si in a 56% yield. The 

trimer Bn-LS(Bn)L-Si was prepared by coupling of Bn-L and S(Bn)L-Si in a 74% yield. The 

protecting groups were removed from the dimer and trimer to give segmers S(Bn)L and LS(Bn)L 

in yields of 54% and 34%, respectively.  

Table 3. Characterization data PLGAs bearing protected and deprotected hydroxyl side chains 

 Mn (kDa) Mw (kDa) PDI 

Poly S(Bn)L 10.0
a
 17.4 1.7 

Poly LS(OH)L  17.7
b
 19.5 1.1 

Poly LS(Bn)L 21.3
a
 36.8 1.7 

Poly LS(OH)L 47.5
b
 57.0 1.2 

a
Determined by SEC (THF) relative to polystyrene standards; 

b
Determined 

by SEC (DMF) relative to polystyrene standards. 

 

The RSCs of these two segmers were prepared using our standard DIC/DTPS method. 

The polymers exhibited moderate molecular weights: Poly S(Bn)L which had a Mn of 10.0 kDa 

by SEC in THF and 36.8 kDa by SEC in DMF and Poly LS(Bn)L which had a Mn of 21.3 kDa 
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by SEC in THF and 50.8 kDa by SEC in DMF. Post-polymerization removal of the benzyl 

protecting group from the side chain was performed in DMF because DMF was a good solvent 

for the polymer both before and after hydrogenolysis which is important because it minimizes 

the activation enthalpy between the benzyl-protected polymers and the more polar transition 

state.
76

 De-protection of benzyl groups gave Poly S(OH)L and Poly LS(OH)L in 65% and 85% 

yields, respectively. The Mns of the two polymers were 17.7 kDa and 47.5 kDa by SEC (DMF) 

(see Table 3).  

2.5.3 Optimization of polymerization conditions 

2.5.3.1 Effect of coupling reagent choice on polymer molecular weight 

During the course of this project significant effort was dedicated to improving the 

polymerization to give high molecular weight polymers.  Condensation polymerizations are 

challenging because they do not achieve polymer level molecular weights until they have 

reached very high degrees of conversion (> 99%) and because there are no easy ways to select a 

desired molecular weight.  It is, therefore, necessary to optimize all aspects of the 

polymerization.  Although we implemented many strategies such as maximizing concentration, 

one of the most important modifications that we made during the course of our development, was 

changing coupling conditions. Initially, we employed the widely used esterification agent N,N'-

dicyclohexylcarbodiimide (DCC) and the catalyst 4-dimethylamine-pyrridine (DMAP).
81

  With 

time, however, both Dr. Ryan Stayshich and the author of this dissertation established that these 

conditions caused segmer and polymer degradation. We hypothesize that the basicity of the 

DMAP is a significant factor, as the nitrogen may be attacking the esters and promoting cleavage 

and/or transesterification. We also found that the addition of DCC solid into the polymerization 
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container is technically challenging as the DCC a solid and is quite sensitive to atmospheric 

moisture. Molecular weights of polymers produced by this method were often low and the 

reactions were not reproducible.  

To optimize the reaction DCC was also substituted with a liquid coupling reagent—N,N′-

diisopropylcarbodiimide (DIC).
37

 The addition of DIC can be completed by using syringe by 

which a slow and steady addition can be achieved. To reduce the basicity of the DMAP, we used 

the strategy developed by Moore which involves the addition of toluene sulfuric acid to 

neutralize the DMAP. The neutralized product is 4-(dimethylamino)pyridinium 4-

toluenesulfonate (DPTS).
37

 The DPTS is milder with regard to the ester bonds but is still an 

effective catalyst. With these changes in polymerization conditions, we were able to routinely 

achieve molecular weights greater than 30 kDa.  

2.5.3.2 Effect of incomplete deprotection 

Despite our efforts to optimize the polymerization, the Mns of our PLGA RSCs in some 

cases are still low, around 10 kDa. Although strict control of concentration did help improve the 

yield in some cases, some reactions still failed to give polymer in our target molecular weight 

range of > 20 kDa. 

To understand the source of the difficulty, MALDI-ToF-MS was employed to analyze the 

chain structure of the “good” RSC and “bad” RSCs. Two Poly LGGs were chosen for study. As 

the molecular weights from SEC (THF) are 24.2 kDa and 11.1 kDa the two Poly LGGs are 

named as Poly LGG24 and Poly LGG11, respectively.  

Equation 1 
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The m/z peaks from the spectra were assigned in Equation 1 by using the equation. 

     
  is the number and the mass of the repeating LGG unit,     and    are the number and 

the mass of glycolic unit and lactic unit other than the repeating units. If there is any error on the 

polymer chain, one or two extra L or G groups can be found, so that y and z can be 0, 1 or 2 only. 

   and     are the molar masses of possible end groups on each side of the polymer. As 

potassium is the cation that is added to the MALDI-ToF samples, the   in most cases is 

considered as K
+
 and the molar mass is 39.  

The MALDI-ToF spectra of the two Poly LGGs are shown in Figure 13.  It is important 

to note that the distribution of molecular weights present in the spectrum is not representative of 

the molecular weight envelop for the sample as the ionization/volatilization process favors 

shorter chains. For our analysis, we therefore focus on an m/z range (1100 Da to 3000 Da) which 

shows peaks of significant intensity for both samples. The peaks with the highest intensities in 

the spectrum are separated by 188 mass units, which is equal to the molar mass of the repeating 

unit—LGG. After analysis, these high intensity peaks are assigned as Poly LGG with cyclic 

structure plus one K
+
 (Unless explicitly mentioned K

+
 can be assumed as the counterion for all 

species discussed). In this condition,    and     are zero because there is no end groups for cyclic 

copolymer. The highest intensity peaks in the spectra are thus assigned as (LGG)6 to (LGG)15. 

The presence of moderately large cyclic oligomers is well known for polyesters of the type we 

prepare.
95

 Such cyclic species can be produced from either end group reactions of growing 

oligomers or “back-biting” transesterification.
96

 

To reveal the difference between the two Poly LGGs, an expansion of the region 

between m/z 1725 and 1945 is shown in Figure 13(right). This region comprises all species with 

molecular weights in the range of (LGG)9 and (LGG)10. In Poly LGG24, we can see that there 
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are three peaks between the peaks of (LGG)9 and (LGG)10. Those three peaks, after assignment, 

are confirmed as (LGG)10 – G (= cyclic decamer missing one G unit), (LGG)10 – L and (LGG)10 – 

LG from m/z high to low, respectively. The structure of these polymers is still cyclic. The 

presence of the “error” peaks for incomplete sequences establishes that there is some 

transesterification during the reaction.  In the case of the cyclics, a single error could easily be 

introduced during the ring-closing if it arose from a “back-biting” event from a longer chain. 

Transesterification could, of course, also occur between linear chains. Although the 

transesterification errors are visible, the repeating LGG sequence predominates, however.    

 

Figure 13. MALDI-ToF-MS spectra of Poly LGG24 and Poly LGG11 

In the spectrum of the lower molecular weight, Poly LGG11, there are peaks for species 

that are not present in the spectrum for Poly LGG24.  The peaks with m/z is 1763, 1821 and 

1893 are non-cyclic oligomers with carboxylic acid and hydroxyl end groups while those with 
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m/z is 1779, 1839, 1897 and 1911 correspond to non-cyclic oligomers with benzyl and hydroxyl 

end groups. The exact assignments are summarized in Table 4. 

Table 4. Assignment of MALDI-ToF-MS spectra (m/z range: 1725-1950). 

Poly LGG24 Poly LGG11 

Peak (m/z) Structure
b 

Peak (m/z) Structure
b 

1731 Cy9 + K
+ 

1731 Cy9 + K
+
 

-
a
 -

a
 1763 Ch(HO-H)11 – G + K

+
 

-
 a
 -

a
 1779 Ch(Bn-H)10 – GG – GG + Na

+ 

1789 Cy10 – LG + K
+
 1789 Cy10 – LG + K

+
 

-
 a
 -

a
 1821 Ch(HO-H)11 – GG + K

+
 

-
 a
 -

a
 1839 Ch(Bn-H)9 + K

+ 

1847 Cy10 – L + K
+
 1847 Cy10 – L + K

+
 

1861 Cy10 – G + K
+
 1861 Cy10 – G + K

+
 

-
 a
 -

a
 1893 Ch(HO-H)11 – GG – GG + K

+ 

-
 a
 -

a
 1897 Ch(Bn-H)10 – LG + K

+ 

-
 a
 -

a
 1911 Ch(Bn-H)10 – GG + K

+ 

1919 Cy10 + K
+
 1919 Cy10 + K

+
 

 
a
no peak detected. 

b
structure abbreviations are listed here, Cy is cyclic structure; Ch is chain 

structure; HO-H represents acid and alcohol terminated chain; Bn-H reprensents benzyl and 

alcohol terminated chain.  

 

The MALDI-ToF spectra suggest that incomplete deprotection is responsible for the 

difference in molecular weights. For Poly LGG11, not only do we see peaks corresponding to 

benzyl-terminated oligomers but also peaks for other non-cyclic oligomers which is consistent 
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with the lower molecular weight distribution expected for a condensation polymerization carried 

out with a stoichiometric imbalance in reactive end-groups. In contrast, Poly LGG24 exhibits 

peaks only for cyclic oligomers.  This pattern is expected for the higher molecular weight 

sample, since the cyclic oligomers cannot grow once formed while the shorter linear oligomers 

will have been incorporated into longer chains.  

The MALDI-ToF data provide direct evidence that we do not always achieve complete 

deprotection of our segmers under the hydrogenolysis conditions employed and suggest that the 

poor deprotection correlates with lower molecular weights. Although such incomplete 

deprotection appears to be relatively rare, in some cases such as Poly GLLG and Poly 

GGLLLG, the incomplete deprotection resulted in very low polymer molecular weights (~ 8-10 

kDa).  

To solve the problem of incomplete deprotection, the amount of Pd/C was increased from 

10 to 15% equivalent w/w. For example, Bn-GLLG, which had under the original conditions 

showed incomplete deprotection and commensurate low molecular weight upon polymerization, 

changing the quantity of Pd catalyst gave a segmer whose post-polymerization Mn was 35 kDa. 

In some cases, however, these conditions still did not provide complete deprotection of the 

benzyl group.  For Poly GGLLLG, however, we were able to remove the benzyl-protected 

segmer by column chromatography to eventually give a segmer that yield a polymer with an Mn 

of 46 kDa.  It should be noted that column chromatography of the completely deprotected 

segmer is not generally a desirable approach as there is always some segmer degradation on the 

acidic silica. 
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2.6 CONCLUSIONS 

A series of PLGA RSCs, including polymers bearing functional side-chains, were 

prepared by using Segmer Assembly Polymerization method. The molecular weight ranges from 

8 kDa to 46 kDa. Two coupling methodologies DCC/DMAP and DIC/DPTS were used in the 

polymerization and the DIC/DPTS was shown to give higher molecular weight polymers. 

Incomplete deprotection of the benzyl protecting groups was also identified by MALDI-ToF as a 

factor in lowering polymer molecular weights.   
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3.0  THE DEPENDENCE OF MATERIAL PROPERTIES ON MONOMER 

SEQUENCE IN PLGA COPOLYMERS 

3.1 OVERVIEW 

In this chapter the hydrolysis, thermal and in vitro drug delivery properties of a series of 

repeating sequence poly(lactic-co-glycolic acids) are investigated and the behavior of particular 

sequences are compared both to each other and to random copolymer controls.  A portion of this 

work has been previously reported.
75 

3.2 INTRODUCTION 

PLGA copolymers, being biocompatible and biodegradable, have attracted significant attention 

for as potential mediators for in vivo drug delivery.
2,3,12,13,63,66,97-102

 The degradation mechanism 

for PLGAs is simple hydrolysis; ester bonds are cleaved and the copolymer matrix collapses 

resulting in the release of encapsulated species.
66,103,104

 The products of the copolymer 

degradation are lactic and glycolic acids which can be metabolized to H2O and CO2 via the 

Krebs cycle.
105

 The facile bioassimilation of these products makes PLGA safe for in vivo 

applications.
99

 PLGA can be used in a variety of morphologies: scaffolds,
106

 film,
107

 fibers,
108

 

foams,
109

 and microparticles.
49,64

 Among these different morphologies, microparticles, with a 



 70 

high loading ability and an excellent penetration into tissues, are considered one of the most 

promising carriers and are widely used in topical, oral and parenteral drug delivery systems.
5,110-

113
  

 

Figure 14. Mechanism for bulk and surface degradation of a PLGA particle. Lighter color indicates water diffusion 

through particle. 

Hydrolytic degradation is a combination of the water uptake and the cleavage of 

hydrolyzable bonds. The relative rates of these two processes give rise to the two major 

mechanisms of material degradation, bulk and surface (Figure 14). In bulk degradation water 

uptake is much faster than bond cleavage and samples are usually wetted throughout before 

bonds start to cleave. In contrast, sample with a surface degradation show a synchronous uptake 

of water and cleavage of bonds.
114

 For random PLGA, the rate of water uptake is faster than the 

rate of bond cleavage, so that bulk degradation predominates.
114,115

 The degradation mechanism 

of microparticles during hydrolysis therefore can be considered to be homogeneous,
66

 which 

means the hydrolytic rate of core and surface of particles are nearly equal.
116
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The degradation products, lactic and glycolic acids, can also contribute to the hydrolysis 

process. If the acid by-products are able to diffuse away from the intact polymer, they have no 

effect. However, because hydrolysis products cannot rapidly diffuse from inside the 

microparticles (or other delivery vehicles), the local pH value can decrease dramatically.
117

 As 

ester cleavage is catalyzed by acid, the result is product-stimulated autocatalysis of the 

degradation.
118

 The accumulated acids inside microparticles may also unfavorably affect drug 

stability.  

Autocatalysis is of particular importance in degradation of PLGA. Although it is hard to 

control autocatalysis during hydrolysis of PLGA, several factors still have effect on degradation 

behavior, and can be used to control degradation of PLGA devices. These factors include 

molecular weight,
119

 polymer composition,
64

 end groups of polymer chain,
120

 device size, 

morphology and porosity,
118,121,122

 degradation temperature,
123

 and pH value of degradation 

medium.
124

 Of these factors that can effect on the degradation behavior, adjusting intrinsic 

properties of PLGAs and post-processing of devices have been the focus of most efforts because 

these factors are not related to the degradation environment. Other factors, such as degradation 

temperature and pH value of degradation medium, are usually more difficult to control in vivo.  

Significant research has focused on the determination of the characteristics that control the 

degradation behavior of PLGA used in devices. Park et al,
119

 reported that the Tg of PLGA with 

a low initial molecular weight will drop faster than that of a polymer with a high initial 

molecular weight. The ratio of lactic to glycolic units has also been found to be important in 

degradation. The degradation rate of glycolic-glycolic links in polymer is 1.3 times higher than 

that of lactic-lactic links.
125

 In addition to the steric effects that control the rate of hydrolysis, 

degradation of polymers with high lactic contents will also be slow because hydrophobic lactic 
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blocks are more likely to crystalize than glycolic unit under the hydrolysis conditions.
64

 Size and 

morphology of PLGA devices also act important roles in degradation behavior. As autocatalysis 

happens during degradation, acidic hydrolysis products in smaller sized devices can diffuse out 

much faster at the early stage of degradation. Fewer acids accumulate inside, therefore reduce the 

autocatalysis.
118,121,122

  

 

Figure 15. Comparison of controlled and traditional drug delivery system, adapted from ref. 112 with permission.
112

 

Degradation control of PLGA used as drug delivery carriers can help construct a controlled 

drug delivery system.
112,126

 Traditional drug delivery by tablets or injection usually results in 

high plasma concentration of drug in therapeutic window for each dose. The effective 

concentration is maintained by intake of new dose when it drops in the non-effective window 

(Figure 15). Frequently taking new doses usually leads to a toxic concentration of drug in plasma 

or termination of therapy because of the non-effective concentration of drug. An ideally 

controlled drug delivery system should include a fast release of drug to therapeutic concentration 
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and a sustained release to keep the concentration of drug in plasma follows for a long time period 

(Figure 15).  

PLGA microparticles have been used as carriers in controlled drug delivery systems.
5,110-

112,115,126,127
 In vitro and in vivo release behaviors of hydrophilic drugs, lipophilic drugs, protein 

and DNA have been widely studied. The general drug release mechanism is considered to be 1) 

erosion of polymer matrix, 2) diffusion of drug molecules from matrix to medium and 3) 

dissolution of drug in medium. Factors that control release rates including drug properties, the 

degradation rate of polymer and the porosity of matrix. 

PLGA microparticles are usually prepared by several methods: emulsion solvent 

evaporation,
100

 phase separation 
128

 and spray-drying.
103

 The former is more frequently used for 

the study of drug release rates, because the drugs with either lipophilic or hydrophilic properties 

or with high molecular weight such as DNA can be encapsulated during the formation of the 

particles.
5,129

 Polyvinyl alcohol solution (PVA) has been employed as commonly used emulsifier 

because the particles made by PVA emulsifier are uniform and the surface is smooth.
64

 The 

particles size can be modified by changing the speed of homogenizer from nanosize to up to 300 

μm to achieve different rate for the drug delivery.
100

 

In vitro hydrolytic degradation studies are usually carried out in pH = 7.4 buffer under 37 °C 

to emulate the conditions in the body. Hydrolysis rates are monitored by the decrease of 

molecular weight by size exclusion chromatography (SEC), increase of lactic acid in the solution 

by high performance liquid chromatography (HPLC) or an enzymatic method, and change of 

microparticles morphology by scanning electron microscopy (SEM).
64

 Thermal property changes 

which reflect changes in polymer morphology during degradation are determined by differential 

scanning calorimeter (DSC). 
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As PLGAs with controlled sequence are found to have sequence-specific effects on the 

NMR spectroscopy, solution phase conformation and thermal properties,
48

 they are potential to 

have sequence-specifically bulk properties. In this chapter, the effect of monomer sequence on 

hydrolytic degradation behavior of repeating sequenced PLGAs will be discussed in detail. The 

effect on the encapsulation and release of a guest molecule—rhodamine-B, will also be explored. 

3.3 EXPERIMENTAL 

3.3.1 Size exclusion chromatography (SEC) 

Molecular weight data were determined by SEC using a Waters 515 HPLC pump with phenogel 

10
4
 and 500 Å columns and a Waters 2414 refractive index detector. THF was used as the mobile 

phase of the SEC with a flow rate of 0.5 ml/min. The sample was dissolved in THF, filtered and 

then injected into a 20 µL loop. The number and weight average molecular weight were 

determined from the SEC curve by calibration with polystyrene standards. 

3.3.2 Differential scanning calorimetry (DSC) 

The thermal properties of the microparticles were determined by DSC measurements. 

Microparticle samples (~ 5 mg) were placed in aluminum pans and analyzed with a Perkin-Elmer 

DSC 6 instrument by scanning from 10
 o
C to 200 

o
C with a heating rate of 10

 o
C / min. Reported 

transitions were obtained from the first heating cycle.  
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3.3.3 Fluorescence spectroscopy (FL) 

The concentration of rhodamine-B released from microparticles to phosphate buffer was 

determined by FL using SpectraMax M2 Microplate Readers. Supernatant (250 µL) was added 

to a 96-well plate and the emission (λmax = 577 nm) was recorded by excitation λex = 556 nm. 

3.3.4 UV-Vis absorbance spectroscopy 

Absorbance of RhB dissolved in acetonitrile was determined by Perkin Elmer UV-Vis 

spectrometer. The scanning wavelength was from 700 nm to 300 nm and the scan rate was 60 

nm/min. The maximum absorbance was recorded at max = 556 nm. 

3.3.5 Particle size determination 

Microparticles sizes were determined by light scattering using a ZetaPALS instrument 

(Brookhaven Instrument Corporation). An ultrasonicator was used to give well-dispersed 

suspension of microparticles (5mg) in water (15 ml). 

3.3.6 Preparation of microparticles 

Microparticles of all PLGAs were prepared by a standard emulsion method.
5
 A solution of 

PLGA polymer (0.2 g) in CH2Cl2 (4 ml) was emulsified in a poly(vinyl alcohol) (PVA) solution 

(60 ml, 2 % w/v) using a homogenizer (10,000 rpm) for 1 min. The emulsion was then poured 

into another PVA solution (80 ml, 1% w/v) and stirred for 3 h at room temperature to evaporate 
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the methylene chloride. The microparticles were centrifuged and washed with deionized water 3 

times and freeze-dried overnight to remove the residual solvent. The microparticles were stored 

in a desiccator.  

3.3.7 In vitro hydrolysis study 

Microparticles for each polymer (20 mg) were dispersed in phosphate buffer solution (1 ml, pH = 

7.4) in multiple microcentrifuge tubes (2 redundant samples for each time period). All tubes were 

incubated at 37 
o
C. The buffer was exchanged every two days by centrifugation followed by the 

decanting of the supernatant. At designated intervals, all microparticles from an individual 

microcentrifuge tube were collected, washed and freeze-dried.  All data reported are the averages 

of the measurement for the two redundant samples. 

3.3.8 Lactic acid release study 

The lactic acid released from PLGA microparticles to the media during in vitro hydrolytic 

degradation was determined by the enzymatic analysis. Generally, during changing the buffer, 

the supernatant was collected and kept at -20 ºC. The supernatants was then thawed and 

neutralized to convert L-lactic acid to L-lactate. The L-Lactate was then determined using Lactate 

biosensor instrument (Yellow Spring Inc. OH). Concentration of lactic acid was calculated based 

on the known ratio of L-lactic acid units to glycolic units in the polymer.   In the case of racemic 

copolymers, the measured L-lactic acid concentration was doubled to reflect total lactic acid 

released. 
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3.3.9 Encapsulation of rhodamine-B in PLGA microparticles 

The encapsulation of rhodamine-B (RhB) into PLGA microparticles was achieved using the 

double emulsion method.
5,111

 To avoid photo bleaching of RhB, all the containers were covered 

with aluminum foil during preparation. RhB aqueous solution (200 µL) was added to the solution 

of polymer in CH2Cl2 (4 ml, 5% w/v) and mixed for 10 sec using ultrasonicator (25% power). 

The mixture was emulsified in a poly(vinyl alcohol) (PVA) solution (60 ml, 2 % w/v) using a 

homogenizer (10,000 rpm) for 1 min. The emulsion was then poured into another PVA solution 

(80 ml, 1% w/v) and stirred for 3 h at room temperature to evaporate the methylene chloride. The 

microparticles were centrifuged and washed with deionized water 3x and freeze-dried overnight 

to remove the residual solvent. The microparticles were stored in a desiccator before being used. 

3.3.10 Determination of loading yield of RhB in PLGA microparticles 

Microparticles (10mg) with RhB were dispersed in acetonitrile (1 mL) in a glass vial covered 

with aluminum foil. The dispersion was stirred using a vortex mixer and then ultrasonicated for 

30 min. The microparticles completely dissolved during this process and the RhB was dispersed. 

The concentration of RhB in each sample was determined by comparison with a calibration 

curve based on the absorption maximum (max = 556 nm).  

3.3.11 Determination of RhB released from PLGA microparticles 

Microparticles (10 mg) with encapsulated RhB were dispersed in phosphate buffer solution 

(PBS, pH 7.4, 0.01M, 1 mL) in microcentrifuge tubes (4 redundant samples for each 
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measurement). The centrifuge tube was covered with aluminum foil and dispersed by vortex for 

5 min. The samples were placed in a rotating mixer (8 rpm) in a 37 °C incubator. Individual 

tubes were collected and centrifuged daily during the first 10 days. The supernatants were 

collected for spectroscopic analysis. The microcentrifuge tubes were refilled with fresh PBS (1 

mL) and returned to the incubator to continue the release experiment. After 10 days, the interval 

between sample collections was extended to every 2 days. After 20 days samples were collected 

every 3 days.  All data reported are averages of for the four redundant samples. 

For calibration, a series of standard solutions of RhB in PBS were stored under the same 

conditions as the release studies. The RhB concentrations in the supernatants solutions collected 

as described were measured by comparison with these standards. The flurorescence emission at 

λmax = 577 nm, excited by λex = 556 nm, was used as the basis for the measurement. 

3.4 RESULTS AND DISCUSSION 

3.4.1 Naming convention 

The L-lactic unit, rac-lactic unit and glycolic unit are abbreviated as L, Lrac and G, respectively. 

Repeating sequenced PLGA copolymers prepared by SAP are named by listing the order of 

segmer sequences from the C-side to the O-side preceded by Poly. Therefore, Poly LracLG is the 

polymer prepared from segmer with sequence of rac-lactic acid, L-lactic acid and glycolic acid 

by using SAP polymerization method. The random PLGAs are named with initial R followed by 

the preparation method (SAP or ROP) and the lactic unit ratio. Thus, the R-SAP 50 is the 
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random PLGA prepared by SAP with 50% of L unit. R-ROP 50 and R-ROP 75 which were 

used as the controls, are two commercial PLGAs named based on the lactic unit ratio. 

3.4.2 Polymers  

A series of PLGA RSCs and one random copolymer, R-SAP, were prepared as described 

previously using the SAP methodology (See Chapter 1).
48,75,81

 Characterization data for these 

polymers and two commercially purchased random copolymers prepared using a ROP method, 

R-ROP 50 and R-ROP 75, are summarized in Table 5. Molecular weights were determined by 

size exclusion chromatography (SEC) in THF and are reported relative to polystyrene standards. 

Particle sizes were determined by dynamic light scatting.  

Table 5. PLGAs used for the hydrolysis and lactic acid release studies 

 Mn
a
 (kDa) Mw

a
 (kDa) PDI

a 
Particle size

b
 (µm) L : G 

R-ROP 50 32 43 1.3 2.1 1:1 

R-SAP 50 31 40 1.3 4.0 1:1 

R-ROP 75 55 66 1.2 2.8 3:1 

Poly LG(26k) 26 35 1.3 1.8 1:1 

Poly LG(16k) 16 25 1.6 2.3 1:1 

Poly LracG 49 103 2.1 3.5 1:1 

Poly LLG 33 54 1.6 2.2 2:1 

Poly LracLG 35 46 1.3 5.0 2:1 

Poly GLG 16 22 1.3 2.4 1:2 

a
Molecular weights and polydispersity indices determined by SEC in THF vs. polystyrene 

standards 
b
Particle sizes determined by dynamic light scattering 
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3.4.3 Hydrolysis Profiles  

To correlate the dependence of hydrolytic degradation behavior on the sequence of PLGA 

copolymers, a series of sequenced PLGAs and three random PLGAs were selected for an in vitro 

hydrolytic degradation study. As it is common to use PLGA microparticles as hosts for drug 

delivery and many hydrolysis studies have been conducted on the random PLGA copolymers 

formulated thusly,
110

 we chose in these initial studies to monitor the hydrolysis behavior of the 

PLGA RSCs using this widely practiced protocol. The copolymers were formulated into 

microparticles with sizes ranging from 2 to 5 μm using a standard emulsion method.
5
 This 

narrow particle size range was purposely targeted to minimize the impact of size-dependent 

autocatalysis on PLGA degradation.
64,118

 Microparticles of each polymer were divided into 

multiple parallel reaction vessels and suspended in a phosphate buffer (pH 7.4, 37 C). The 

supernatant liquid in each was exchanged every two days and retained for analysis of lactic acid 

content (vide supra). The contents of individual reaction vessels were harvested periodically, 

over the course of 8 weeks, and analyzed by SEC. Selected samples were also characterized by 

DSC.  

The molecular weight profiles for all polymers in this study, normalized relative to the 

original Mn for each sample are plotted in Figure 16. for the majority of the samples, there was 

an initial molecular weight loss that is dramatic relative to the mid-cycle degradation behavior. 

This initial loss appeared to correlate primarily with the “wetting” of the freeze-dried particles 

during their first few days in the buffer solution. In this initial phase the shedding of surface 

coatings that are not well adhered and/or rapid cleavage of surface bonds that are particularly 

accessible is expected.
121

 Consistent with this analysis is the fact that initial rapid loss of weight 

was seen for both the sequenced and random copolymers. The degree of weight loss in this initial 
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phase appeared to depend in a complex fashion on sequence, polymer molecular weight, and 

particle size. For polymers that have either very rapid or very slow hydrolysis rates, this effect 

was masked or minimized, respectively.  

 

 

Figure 16. Molecular weight loss as a function of hydrolytic degradation time for the repeating sequenced and 

random sequenced PLGAs (a) plots of all polymers; (b) Comparison of all polymers with a 50:50 LG ratio; (c) 

Comparison of polymers with varying L:G ratios; (d) Comparison of LLG polymers with varying stereochemistry. 

The rate of hydrolysis, after the initial weight loss, did not seem to depend significantly 

on the initial molecular weight. In Figure 16 the hydrolysis profiles of all samples with a 1:1 L:G 

are plotted. For Poly LG(26k), it can be seen that after an initial weight loss of 35%, the rate of 
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weight loss decreases and remains nearly constant to the end of the experiment. Poly LG(16k) 

exhibits a very similar profile: an initial weight loss of 20% followed by more gradual decrease 

as a function of time. While there is a difference in the relative weight losses at the beginning the 

rate after the initial loss appears to be relatively independent of the starting molecular weight.  

The most important trend that can be observed in the hydrolysis studies is that the 

sequenced copolymers degrade more slowly and at a more constant rate relative to the random 

copolymers with the same L:G composition. The 1:1 L:G random copolymers, R-ROP 50 and 

R-SAP 50, both have exponential weight loss profiles, as shown previously.
130

 Interestingly, the 

R-ROP 50 (Mn half-life = 10 days) copolymer degraded more quickly than the R-SAP 50 

copolymer (Mn half-life = 14 days). This difference can be attributed to both the lack of 

controlled stereochemistry of the racemic R-ROP 50 copolymer and to differences in 

microstructure since the R-ROP 50 copolymer, which was prepared by ring-opening of a 

mixture of lactide and glycolide monomers, is more blocky in architecture than the R-SAP 50 

copolymer.
40,75

 Rapid initial degradation periods were not observed for either of these random 

copolymers because they were masked by the relatively high rate of hydrolysis.  

 

Figure 17. SEC traces for random copolymer (left) and alternating sequence PLGA copolymers (right) with 1:1 

ratios of lactic and glycolic acids. 
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The distinctive differences in degradation between the sequenced and random 

copolymers can also be observed in the shapes of the SEC traces from which the MW data were 

extracted. As seen in Figure 17, for example, the molecular weight profile of the random 

copolymer broadened and became distinctly polymodal over the course of the degradation, while 

the profile of the sequenced Poly LG exhibited only a small amount of broadening. All 

sequenced copolymers exhibited a similar homogeneity in their evolving SEC traces. 

We also examined the relationship of degradation rate to the ratio of L:G in the polymers. 

It is well-established for random copolymers, that the degradation rate depends on the L:G ratio; 

high lactic unit content leads to slower hydrolysis rates.
131

 Examining the subset of hydrolysis 

profiles plotted in in Figure 16c, it can be seen that for the random controls, R-ROP 50 and R-

ROP 75 this trend holds. Their Mn half-lives are 10 and 56 days, respectively. The sequenced 

copolymers also conform to this trend: Poly GLG > Poly LG(16k) > Poly LLG. The 

comparison of the Poly GLG to Poly LG(16k) is used because the Poly GLG sample studied 

had a similarly modest molecular weight.  

Finally, the importance of stereosequence can be seen in the hydrolysis behavior of the 

sequenced copolymers. Hydrolysis was significantly faster for the racemic analogs of the 1:1 and 

2:1 L:G polymers, Poly LracG and Poly LracLG, relative to their stereopure analogs (Figure 16b 

and d).  

3.4.4 Lactic acid release 

The degradation rate of the PLGA microparticles was also studied by monitoring the 

release of lactic acid over time and the sequence dependence of the degradation can be clearly 

seen in these data. Monitoring of the monomer release yielded a degradation profile that is 
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complementary to that obtained by the analysis of the molecular weights as discussed in the 

previous section. The release of L-lactic acid into the buffer solution was assayed using an 

 

Figure 18. Lactic acid release rate as a function of hydrolytic degradation time. Inset is the magnified plots of 

PLGAs with lower lactic acid release rate. 
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enzymatic method..
132,133

 It should be emphasized that the assay reports only monomer and is 

unresponsive to oligomeric species. 

Cumulative release of lactic acid release as a function of time for both the sequenced and 

random copolymers is plotted in Figure 18. Consistent with the observed rapid degradation of 

molecular weight discussed above, R-ROP 50 exhibited the most rapid release of lactic acid. All 

other samples were significantly slower, including the other 1:1 L:G random copolymer, R-SAP 

50, and all except the R-ROP 50 exhibited a profile characterized by an initial quick release of a 

small amount of the lactic monomer followed by an extended period during which little free 

lactic acid release was detected. The initial release is likely related to either the wetting of the 

particle and subsequent dissolution of lightly trapped monomer or the rapid hydrolysis of very 

short oligomers on or near the surface of the particle. The low release period that followed is not 

a dormant period, as we know from the molecular weight data, but rather corresponds to a time 

when the polymers were partly hydrolyzed to oligomers that do not register in the enzymatic 

assay. Only in the later stages of hydrolysis did these oligomers degrade enough to release 

monomeric lactic acid. 

Significant sequence-dependent trends were observed in these data and most 

corresponded well with those observed in the molecular weight studies. In particular, for the 1:1 

LG polymers the release rate followed the following trend: R-ROP 50 ≫ R-SAP 50 > Poly LG 

(Figure 18, see inset for expansion of the profiles for the more slowly degrading polymers). The 

random copolymer, R-ROP 50, was much faster than the less blocky R-SAP 50 and both were 

faster than the stereopure alternating Poly LG. There was also a pronounced dependence of 

lactic acid release rate on L:G ratio, with a trend, Poly GLG ≫ Poly LG > Poly LLG, that runs 

contrary to what would be expected based on the total L content (given that this is an assay for 
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L). The differences in total lactic acid release are significant over the time period studied: 40 

mmole from Poly GLG vs. 0.1 mmol for Poly LLG. Finally, the rate of release of lactic acid 

was faster for the racemic sequenced copolymers Poly LracG > Poly LG and Poly LracLG > 

Poly LLG.  

3.4.5 Thermal properties 

 

Figure 19. DSC thermograms of PLGAs in the hydrolysis study. 

The unique degradation behaviors of the sequenced PLGAs relative to random PLGAs were 

further characterized through the study of their thermal behavior. DSC thermograms for selected 

PLGAs are presented as a function of degradation time in Figure 6. The first heating cycle is 

reported to reflect the in situ thermal properties of the microparticles after hydrolysis. The DSCs 

of the polymers that have a 1:1 L:G ratio, showed a single phase transition, Tg  50 C, at the 

beginning of the experiment. The most dramatic difference can be seen in the comparison of the 

thermograms for Poly LG(26k) and R-ROP 50. The random sample degraded so quickly that 

reliable DSC data could not be acquired after week 4, while those of Poly LG(26k continued to 

exhibit clear transitions. There was also a distinctive difference in the transitions exhibited. The 
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DSC trace for Poly LG(26k) appeared nearly the same in week 8 as it did prior to hydrolysis. 

The Tg shifted slightly to lower temperature and broadened consistent with the drop in molecular 

weight and there was a new broad peak at ca. 80 C that is likely due to the melting of small 

amounts of crystalline oligomers.
75

 In contrast, a clear Tg for R-ROP 50, was no longer visible 

by the end of week 1 and the DSC traces are dominated by multiple melting transitions ranging 

from 80 to 160 C that have been shown in prior studies to be due to crystallized oligomers with 

a high lactic acid content.
64 

Poly LracG, although faster to degrade, followed the same pattern as Poly LG, exhibiting 

a clean but slightly shifted Tg until the samples could no longer by analyzed due to low 

molecular weight. The other random copolymer, R-SAP 50 exhibited a behavior intermediate 

between the Poly LG and R-ROP 50 polymers as would be expected from its less blocky nature. 

The Tg of the bulk remained distinct but a broad melting transition which is lower in temperature 

that that of R-ROP 50 dominated after week 5. Poly GLG, which has a slightly lower Tg of ca. 

52 C, exhibited the same uniformity of degradation as that seen for the sequenced LG polymers.  

The DSCs for the higher L:G content polymers showed that the RSC Poly LLG was 

semi-crystalline with a Tg of 60 C and Tm of 118 C. Poly LracLG and R-ROP in contrast, 

exhibited only Tg transitions of 53 and 58 C, respectively. None of these polymers changed 

significantly over the time period of the experiment, however, since their degradation is quite 

slow.  
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3.4.6 Rhodamine-B release 

As one of the primary applications of PLGA is drug delivery,
134

 we have examined the effect of 

sequence on the release rate for microparticles loaded with Rhodamine-B (RhB), a low 

molecular weight hydrophilic dye used as a model in in vitro drug-delivery studies because of its 

water solubility and characteristic absorbance at 556 nm.
135

 RhB was incorporated into 

microparticles via a double emulsion method.
5
 RhB loading was estimated by dissolving a 

weighed portion of each sample in a known volume of acetonitrile and comparing the UV-Vis 

absorption with a calibration curve created from solutions of RhB of known concentration. This 

method gave more precise and reproducible results than a low pH digestion of the particles in 

water
127

 as the we observed that the absorption intensity of acidic RhB solutions decreased 

rapidly with time. The polymers selected for this study were Poly LG, Poly LracG, and R-ROP 

50 (Table 6, top section). These polymers had comparable but higher molecular weights than 

those used in the hydrolysis studies but were consistent relative to each other. 

To study the relative loading capacities of the sequenced copolymer and plan for 

subsequent in vitro release studies, the Poly LG particles were prepared with different initial 

RhB concentrations.  Specifically, the concentration of the RhB solution was adjusted from 0.2 

to 1.0 mg/ml. The release of RhB from the resulting particles was analyzed over a period of 15 

days and the data are plotted in Figure 20. These data were derived from a set of samples 

prepared and handled under identical conditions to ensure that any effect from photobleaching 

was systematic and did not affect the following comparisons.  The random copolymer reached its 

maximum cumulative release of approximately 90% after only 9 days while all of the sequenced 

samples released their payload at a lower rate. Of particular interest, however, was the dramatic 

difference in loading efficiency for the two types of polymers. When identical amounts of RhB 
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were used in the particle formulation/loading procedure (0.2 mg), the random copolymer 

particles encapsulate 40% of RhB whereas the alternating copolymer Poly LG-RhB1 exhibited a 

loading efficiency of 19%. Much larger concentrations of RhB were necessary to attain loadings 

of the dye into Poly LG that were comparable to those achieved in the random copolymer.  

Table 6. PLGA polymer and loading properties 

Polymer Mn
a
 (kDa) PDI

a
 RhB (mg) Load (mg x 10

-4
 / mg) Loading rate

b
 (%) 

LG-RhB1 37.2 1.4 0.2 1.9
 

19 

LG-RhB2 37.2 1.2 0.6 2.2 7.5 

LG-RhB3 37.2 1.4 1.0 3.4 5.9 

R-ROP 50-RhB1 32.0 1.3 0.2 4.0 40 

LG-RhB4 37.2 1.4 1.0 2.7
 

5.4 

LracG-RhB 38.2 1.4 1.0 2.8 5.6 

R-ROP 50-RhB2 32.0 1.3 0.1 2.9
 

58 

R-ROP 50-RhB3 32.0 1.3 1.0 5.9 12 

a
Molecular weights and polydispersity indices determined by SEC in THF vs. polystyrene 

standards. 
b
Based on 200 mg polymer sample size, calculated according to Equation 2. 

Equation 2 

             
              
                 

        

Based on the data collected from the loading efficiency experiments microparticles of 

both sequenced and random copolymers with the same RhB loading were produced. A new study 

of the release rates was conducted and the results are plotted in Figure 21. Poly LG, Poly LracG, 

and the random copolymer, R-ROP 50-RhB2, all have similar loadings while R-ROP 50-RhB3 

was prepared with a much higher RhB load.  
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Figure 20. Release of Rhodamine-B from PLGA microparticles immersed in a pH 7.4 buffer at 37 ºC: 15 day study 

focusing on particle loading. 
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Figure 21. Release of Rhodamine-B from PLGA microparticles immersed in a pH 7.4 buffer at 37 ºC: 30 day study 

focusing on the effect of sequence. 
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The key result from this study is that RhB release was significantly more gradual for both 

of the sequenced copolymers when compared to the random copolymers.  This trend held despite 

significant differences in the Poly LracG and Poly LG degradation rates between days 0 and 20 

(vide supra). Additionally, random copolymers gave nearly the same release profile despite the 

differences in loading, in contrast to the behavior of Poly LG in Figure 20. Along with the 

differences in loading efficiency (Table 6), these results suggest that RhB release from 

sequenced copolymer particles depends not only on hydrolysis rate, but also on other factors. 

3.4.7 Mechanism discussion 

 

Figure 22. Proposed difference in hydrolysis pattern for random and sequenced PLGA copolymers with the same 

L:G ratio 

The introduction of sequence control to the PLGA system changes the hydrolysis pattern 

significantly relative to random analogues. Both molecular weight loss and lactic acid release 

Random Copolymer (1:1 L:G)

Sequenced Copolymer (1:1 L:G)

Very fast initially Very slow at the end

Steady rate throughout

All L units

Same ratio L:G
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measurements establish that the sequenced copolymers degrade at a steady rate which contrasts 

with the rapid, exponential profile exhibited by the random copolymers with similar L:G ratios. 

The differences are likely attributable to the homogeneity of the sequenced copolymers. It has 

been observed by others who have studied the degradation of random PLGA copolymers that 

hydrolysis of the more sterically accessible glycolic units is rapid relative to lactic-rich blocks.
125

 

In Figure 22 a conceptual comparison is made between the simple alternating copolymer Poly 

LG and R-ROP 50. The sequenced copolymer breaks down evenly as hydrolysis proceeds, 

while the random copolymer can be selectively attacked in such a way that slowly degrading 

lactic oligomers are left to crystallize. The uniformity of the cleavage sites in polymer chains is a 

key reason for the gradual and controllable degradation of Poly LG. The RSC presents only two 

types of hydrolysis sites (Figure 23). Nucleophilic attack by water at the glycolic acid carbonyl 

breaks the C-O bond to the adjacent lactic acid (B1) while attack at the lactic acid carbonyl 

should cleave the adjacent glycolic acid (B2). In contrast, the random copolymers have a wide 

variety of sites that would be expected to exhibit a more diverse range of reactivity rates with 

water. At the simplest level one would suspect that G-G connections will cleave more quickly 

than G-L/L-G which should cleave more quickly than the hydrophobic L-L connections. Data on 

the hydrolysis of random PLGAs is consistent with this hierarchy of rates. Both the SEC and 

DSC data for the 1:1 copolymer are consistent with this model.  
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Figure 23. Illustration of the distinct hydrolytic degradation sites in random and alternating PLGA copolymers 

The specific characteristics of the degradation profiles for the sequenced copolymers are 

also of interest. In contrast to the exponential degradation observed for the random copolymers, 

the sequenced copolymer profiles have a somewhat sigmoidal shape. Based on our experimental 

observations, we believe that the profile can be attributed, in part, to the following phases of 

particle degradation. The initial steep rate of hydrolysis can be attributed the “wetting effect” 

discussed earlier. The middle region, by this hypothesis represents the sequence dependent 

degradation rate while the final steeper curve is due to particle collapse effects including the 

solubility of the increasingly short oligomers and the increase in surface area caused by the 

physical disintegration of the particle. As no simple fitting algorithm captures this complexity, 

and as there are likely other factors that contribute to the degradation, a more quantitative 

assignment of rates cannot be made at this time. Additional experiments and modeling studies, 

which have yet to be undertaken for ordered copolymer systems  of this type and which can 

account for a population of polymer chains,
136

 will be required before these degradation profiles 

can be fully explained and the rates quantified. 



 94 

The RhB release studies presented suggest that the hydrolysis rate profiles and release 

rates correlate to some degree. The sequenced copolymers degrade at a slower rate than do 

random copolymers and also release the encapsulated dye molecule more gradually. This is a 

promising discovery as many drug delivery applications specifically target a slow release over 

time. It is clear, however, from the loading capacity studies and early period release data that the 

slower release rate depends on more than degradation rate. The repeated LG sequence may, for 

example, strengthen electrostatic or hydrophobic interactions between the guest and polymer, 

which would also slow the rate of release. 

It is also of interest to compare the hydrolysis and release behavior of our SAP-produced 

copolymer with that previously reported by Dong et al. for a ROP-produced alternating 

copolymer.  There are both similarities and differences in the two systems.
137

 Although Dong et 

al. did not directly compare their polymer with a random control when studying hydrolysis rate, 

the plot of molecular weight vs. time for their microparticles shows a nearly linear decrease 

analogous to our observations. Dong et al. also studied release profiles from their alternating 

copolymer, although their guest was bovine serum albumin (BSA) which is a large protein, as 

compared to the small molecule release agent used in the current work. For this part of the study 

a random copolymer control was used. Similar to our RhB studies, they observed a higher burst 

release from the random copolymer than from the ROP-alternating copolymer in the first few 

days. It is difficult to compare the systems beyond this point, however, as the model protein BSA 

was released very slowly relative to RhB, reaching only 20% completion from the random 

copolymer within 40 days and less than 10% from the ROP-alternating copolymer. Another 

difference which is likely related to the particular characteristics of BSA vs. RhB, was the fact 
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that they reported a similar (and much higher, > 30%) loading efficiency for both the random and 

the ROP-alternating copolymer. 

The potential implications of the observed degradation and release behavior of the 

sequenced PLGAs are clearly relevant to the biomedical applications that employ these materials 

as 1) simply ordering L:G units in a repeating sequence leads to more sustained release of 

encapsulated guests as compared with a random copolymer with the same overall composition; 

2) a slower loss of molecular weight should lead to longer retention of mechanical properties 

which is important in stem cell scaffolding applications; and 3) a more homogeneous 

degradation profile may lead to more uniform erosion or clearance of the polymer matrix 

preventing the accumulation of extremely slow-degrading material, such as lactic acid oligomer 

crystals, that cause local inflammation long after the function of the PLGA construct is 

completed.
138

 Future studies will probe these questions in greater detail. 

3.4.8 RhB encapsulation and release in Poly L2G2 and Poly L3G3 

In this section the encapsulation and release behavior or RhB of two other sequenced PLGAs are 

described.   These results have not been included in the previous discussion due to the strangely 

atypical behavior of one or both of these samples.  The behavior was sufficiently anomalous that 

we feel that the studies of these polymers must be repeated with appropriate controls. 

The PLGAs are Poly GLLG (Poly L2G2) and Poly GLLLGG (Poly L3G3). The polymer 

properties are listed in  

Table 7 along with those of LG-RhB4 for comparison. 
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Table 7. PLGA polymer and loading properties 

Polymer Mn
a
 (kDa) PDI

a 
RhB (mg) Load

b
 (mg x 10

-4
 /mg) Loading rate (%) 

L2G2-RhB 35.0 1.2 1.0 2.4 4.8 

L3G3-RhB 45.9 1.2 1.0 1.6 3.2 

LG-RhB4 37.2 1.4 1.0 2.7
 

5.4 

R-ROP 50-RhB2 32.0 1.3 0.1 2.9
 

58 

a
Molecular weights and polydispersity indices determined by SEC in THF vs. polystyrene standards. 

b
Based on 200 

mg polymer sample size, calculated according to Equation 2. 

 

From the loading capacity and loading rates of RhB in these PLGAs it appears as if LG-

RhB4 and L2G2-RhB have similar affinity for RhB (ca. 5%). L3G3-RhB, however, exhibits a 

loading rate of only 3.2%.  As the L3G3-RhB copolymer is arguable closer in structure to the 

random copolymer, this behavior is puzzling.  The only prominent difference between these 

samples is the higher molecular weight of the L3G3-RhB relative to the others, but as it is an 

increase of only about 25% it is difficult to assign this difference as the primary factor. 

The release profiles of RhB are plotted in Figure 24. L2G2-RhB and LG-RhB4 have 

very similar release profiles. During the first day of release, ~ 20% of RhB released from these 

PLGA carriers. The half-released time of LG-RhB4 is 6.5 days and L2G2-RhB is 9.5 days. 

Neither of the profiles shows a plateau during release. Both of them exhibit steady release rates 

from the 3
rd

 day to the end. And at the end of the release experiment, LG-RhB4 shows a 70% of 

RhB released and L2G2-RhB shows a 64% of RhB released in total. 

The release profile of L3G3-RhB is distinctly different from both the other sequenced 

copolymers and the random control. Release of RhB is very fast in the first day from L3G3-RhB 
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that more than 30% is released. Then a rapid but steady release profile can be observed. The 

half-released time of L3G3-RhB is the same as that of R-ROP 50-RhB3, but no release plateau 

is observed. Also, the total release is higher than that observed for the random copolymers, 

which does not seem reasonable.  We think that it is likely that the L2G2-RhB data are accurate 

and that there is a significant problem, likely in the determination of the initial loading, for the 

L3G3-RhB sample.  Without repeating the LG, L2G2, L3G3 series, however, we cannot be 

confident in our analysis. 
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Figure 24. Release of Rhodamine-B from PLGA microparticles immersed in a pH 7.4 buffer at 37 ºC: 30 day study 

focusing on the effect of sequence. 
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3.5 CONCLUSIONS 

Hydrolytic degradation rates for repeating sequence PLGAs are found to exhibit dramatically 

different hydrolysis behaviors compared with random analogues. Lactic acid release rates were 

also found to strongly depend on the monomer sequence. Thermal property changes during 

hydrolysis shows uniform degradation of polymer chains in sequence controlled PLGAs. 

Preliminary in vitro RhB release profiles shows that using sequenced PLGAs as carriers could 

effectively reduce the burst release and extend the release time of low molecular weight drug 

model compare to using random PLGAs. Repeating sequenced PLGAs are therefore good 

candidates for applications that depend on a steady and controllable degradation rate. 
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4.0  PROSPECTUS 

This study shows that hydrolytic degradation behaviors and rhodamine-B release profiles are 

related to monomer sequences of PLGA. PLGA with sequence control will be employed in 

biomedical applications to 1) achieve a controlled release of drug by a gradual degradation of 

delivery system, 2) maintain mechanical properties by slower loss of molecular weight and 3) 

avoid slow-degradation residue because of homogenous degradation. Therefore, based on the 

preliminary results we have in this dissertation, better understanding of sequence-property 

relationship is needed. 

First, release profiles of different types of drugs, such as lipophilic drugs, protein and 

DNA, in sequenced PLGA microparticles should be studied both in vitro and in vivo. Sequenced 

PLGA microparticles used in drug delivery system as carriers should be evaluated.  

Second, a comprehensive study of hydrolytic degradation behavior of sequenced PLGA 

in bulk morphology should be studied. The slow loss of molecular weight shows sequenced 

PLGA has potential to slow the uptake of water and bear a slower mass loss in bulk. This will 

extend its application in tissue engineering area. 

A mathematic model then should be build up to construct relations between degradation 

behavior and sequence of PLGA. The model will offer a guidance to utilize different sequenced 

PLGA in multiple applications, such as custom designed drug release profiles and degradable 

scaffolds in cell therapies. 
139
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APPENDIX A 

NMR SPECTRA OF NEW COMPOUNDS AND POLYMERS 
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Figure 25. 
1
H and 

13
C NMR spectra of Poly LG 
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Figure 26. 
1
H and 

13
C NMR spectra of Poly LracG 
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 Figure 27. 
1
H and 

13
C NMR spectra of Poly LLLG 
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Figure 28. 
1
H and 

13
C NMR spectra of Poly GLLL 
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Figure 29. 
1
H and 

13
C NMR spectra of Poly LracGLG 
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Figure 30. 
1
H and 

13
C NMR spectra of Poly LGGG 
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Figure 31. 
1
H and 

13
C NMR spectra of Poly GLLG 
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 Figure 32. 
1
H and 

13
C NMR spectra of Poly GGLLLG 
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Figure 33. 
1
H and 

13
C NMR spectra of GGLLLG 
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Figure 34. 
1
H and 

13
C NMR spectra of Bn-GGLLLG  



 111 

  

Figure 35. 
1
H and 

13
C NMR spectra of Bn-GGLLLG-Si 
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Figure 36. 
1
H and 

13
C NMR spectra of GLLG 
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Figure 37. 
1
H and 

13
C NMR spectra of Bn-GLLG-Si 
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Figure 38. 
1
H and 

13
C NMR spectra of LLLG 
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Figure 39. 
1
H and 

13
C NMR spectra of Bn-LLLG 
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Figure 40. 
1
H and 

13
C NMR spectra of LLLG-Si 
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Figure 41. 
1
H and 

13
C NMR spectra of Bn-LLLG-Si 
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Figure 42. 
1
H and 

13
C NMR spectra of LracGLG 
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Figure 43. 
1
H and 

13
C NMR spectra of Bn-LracGLG 
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Figure 44. 
1
H and 

13
C NMR spectra of Bn-LracGLG-Si 
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Figure 45. 
1
H and 

13
C NMR spectra of LGGG 
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Figure 46. 
1
H and 

13
C NMR spectra of Bn-LGGG-Si 
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Figure 47. 
1
H and 

13
C NMR spectra of Bn-GLLL 
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Figure 48. 
1
H and 

13
C NMR spectra of Bn-GLLL-Si 
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