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Abstract

Group B coxsackieviruses (CVB) are associated with viral-induced heart disease and are among the leading causes of aseptic
meningitis worldwide. Here we show that CVB entry into polarized brain microvasculature and aortic endothelial cells
triggers a depletion of intracellular calcium stores initiated through viral attachment to the apical attachment factor decay-
accelerating factor. Calcium release was dependent upon a signaling cascade that required the activity of the Src family of
tyrosine kinases, phospholipase C, and the inositol 1,4,5-trisphosphate receptor isoform 3. CVB-mediated calcium release
was required for the activation of calpain-2, a calcium-dependent cysteine protease, which controlled the vesicular
trafficking of internalized CVB particles. These data point to a specific role for calcium signaling in CVB entry into polarized
endothelial monolayers and highlight the unique signaling mechanisms used by these viruses to cross endothelial barriers.
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Introduction

Coxsackievirus B (CVB), a member of the enterovirus family, is

associated with a number of diverse syndromes including aseptic

meningitis, myocarditis, febrile illness, and diabetes [1]. CVBs are

transmitted via the fecal-oral route and encounter the polarized

epithelium lining the gastrointestinal tract early in infection.

Following dissemination, CVBs likely access secondary sites of

infection via transmission through an endothelial monolayer such as

that of the blood-brain barrier (BBB) and/or venous endothelium.

Thus, although both polarized epithelial and endothelial cells

function to prevent pathogen access to the interstitium, CVBs have

developed strategies to subvert these barriers in order to promote

their entry and/or dissemination. We have shown that CVB entry

into polarized intestinal epithelial cells requires the activation of

specific intracellular signaling molecules to promote viral endocy-

tosis [2,3]. However, it remains unclear if CVB also requires the

initiation of host cell signaling to facilitate its entry (a process

involving both endocytosis and vesicular trafficking) into the

endothelium and whether the same signals are required between

the epithelium and endothelium.

The binding of viruses to receptors on host cells often initiates

elaborate signaling pathways aimed at facilitating viral uptake.

The coxsackievirus and adenovirus receptor (CAR) mediates

attachment by all six CVB serotypes [4], but is inaccessible to

viruses on the luminal surface due to its localization within

intercellular tight junctions [5]. For this reason, polarized cells are

often resistant to infection by a number of CVB isolates [5]. Decay

accelerating factor (DAF) is a glycosylphosphatidylinositol (GPI)-

anchored membrane protein shown to bind several isolates of

CVB (21, 23, and 25) [4,6,7,8,9] and promote their infection of

polarized cells [5]. As DAF is a GPI-anchored protein, it is

localized to the apical surface of polarized cells and is accessible to

virus in the lumen. In addition to providing a convenient site for

virus attachment, the GPI anchor of DAF also facilitates its

association with cholesterol-enriched lipid microdomains [10].

Lipid rafts are enriched in a number of signaling molecules

including receptor tyrosine kinases, the Src family of nonreceptor

tyrosine kinases, small G proteins, and adenylyl cyclases (ACs)

[11].

Although DAF is anchored to the outer leaflet of the plasma

membrane via a GPI anchor (and thus does not contain an

intracellular domain), DAF and other GPI-anchored membrane

proteins can be induced to form larger raft patches upon lateral

crosslinking (most commonly with antibodies) [12]. We have

shown previously that CVB-induced DAF clustering is essential for

downstream signaling events required to facilitate virus entry into

polarized intestinal epithelial cells [2]. Two tyrosine kinases (Abl

and Fyn) are activated by DAF clustering and both are required

for CVB entry into polarized epithelial cells [2]. Although

clustering of GPI-anchored proteins is most commonly associated

with the initiation of tyrosine kinase-based signaling cascades, the

release of intracellular calcium (Cai
2+) following lateral cross-

linking of these receptors has also been documented [13].

Antibody-mediated crosslinking of DAF has been linked to the

release of Cai
2+ [14,15] as a means to initiate monocyte activation

[16].

Calcium is one of the most prominent second messengers in the

cell. It is involved in many signaling cascades that have diverse

outcomes depending on the spatiotemporal aspects of the calcium
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release. For this reason, intracellular calcium (Cai
2+) homeostasis is

under tight regulation by the cell. The free cytoplasmic calcium

concentration is maintained around 50–100 nM whereas intra-

cellular stores such as the ER (endoplasmic reticulum) maintain

much higher free concentrations (mM amounts). Intracellular

calcium levels rise upon a stimulus (such as ligand-receptor

interaction on the cell surface) and often converge on phospho-

lipase C (PLC), an enzyme that mediates the hydrolysis of

phosphatidylinositol-4,5-bisphophate (PIP2) into diacylglycerol

(DAG) and inositol 1,4,5-trisphosphate (IP3). IP3 diffuses through

the cytoplasm and binds to IP3 receptors (IP3R) localized on the

ER membrane. Cytoplasmic calcium levels are brought back

down to basal concentrations by multiple calcium channels such as

the plasma membrane Ca2+-ATPase (PMCA), as well as the sarco-

endoplasmic reticulum ATPase (SERCA) pump. As Cai
2+ levels

regulate a variety of cellular processes, it is not surprising that

many viral pathogens have evolved strategies to exploit Ca2+-

mediated signaling events to promote mechanisms required to

facilitate viral entry, replication, and/or spread [17].

Our previous studies have highlighted the intracellular signals

that regulate CVB entry into polarized epithelial cells [2,18]. In

the present study, we have defined the role of Cai
2+ in facilitating

CVB entry into human brain microvascular endothelia cells

(HBMEC), an in vitro model of the blood-brain barrier. These

studies have revealed that CVB-induced clustering of DAF

induces an immediate depletion of Cai
2+ stores. CVB-induced

Cai
2+ mobilization is regulated by several host cell factors

including the Src family of tyrosine kinases, PLC, and is mediated

specifically by the IP3R isoform 3. We also show that the calpain

family of Ca2+-activated proteases plays a role in mediating the

trafficking of CVB-containing vesicles within the cell. Interest-

ingly, we also find that Cai
2+ release is involved in mediating

CVB entry into primary human aortic endothelial cells, but is not

required for CVB entry into polarized epithelial cells, suggesting

that the intracellular signaling molecules hijacked by CVB to

facilitate entry are distinct between the endothelium and

epithelium.

Results

The mechanism of CVB entry is distinct between the
endothelium and epithelium

Nonenveloped viruses gain entry into host cells by endocytic

mechanisms that may include clathrin- or caveolar-mediated

endocytosis, and macropinocytosis [19]. Some of these pathways

are dependent upon the activity of dynamin, a GTPase required

for vesicle fission. In previous studies, we found that CVB entry

into polarized intestinal epithelial Caco-2 cells was independent of

dynamin II [2] and occurred by a pathway that incorporates

aspects of both caveolar-mediated endocytosis and macropinocy-

tosis [3]. Because of the unique aspects of this pathway, we

determined whether CVB entry into HBMEC occurrs via a similar

mechanism. [Unless otherwise stated, all experiments were

performed with CVB3-RD, a DAF-binding isolate of CVB].

First, we used three independent methods to alter dynamin II

activity –(1) dynasore, a cell-permeable inhibitor of dynamin [20],

(2) a dominant-negative mutant of dynamin II (dynamin II K44A)

[21], and (3) siRNA-mediated depletion of dynamin II (Supple-

mental Figure S5)–and determined the effects of this alteration on

CVB infection of HBMEC and Caco-2 cells. Under all of these

conditions, CVB infection of Caco-2 cells was unaffected

(Figure 1A) while all methods significantly reduced infection of

HBMEC by CVB (Figure 1A). Moreover, using a fluorescence-

based assay for viral internalization that discriminates between

virus on the cell surface and that which has internalized [18], we

confirmed that dynasore specifically inhibited CVB entry into

HBMEC (Figure 1B, top) while having no effect on its entry into

Caco-2 cells (Figure 1B, bottom). Interestingly, CVB infection of

primary human aortic endothelial cells (HAEC) was also inhibited

by dynasore treatment (Figure 1A), suggesting that the route of

entry of CVB into the aortic endothelium may be similar to that in

the CNS microvasculature.

We next determined the effect of dominant-negative mutants of

various endocytic pathways for their effects on CVB infection of

HBMEC. These studies revealed that CVB infection of HBMEC

was significantly impaired when mutants of the caveolar pathway

were expressed (caveolin-1 and -3), consistent with what we

observed previously in Caco-2 cells [2] (Figure 1C). Furthermore,

immunofluorescence microscopy revealed colocalization of cyto-

plasmic CVB-containing vesicles with caveolin-1 and cholera toxin

B (a marker of the caveolar pathway) (Figure 1D). In contrast,

infection was unaffected by expression of a mutant of the clathrin

endocytic pathway (Eps15) in HBMEC (Figure 1C). These data

indicate that the mechanism of CVB entry into the endothelium is

clathrin-independent, and likely occurs via a dynamin- and

caveolar-dependent pathway. In contrast, entry into the epithe-

lium occurs via a clathrin-and dynamin-independent, but

caveolin-dependent pathway [2]. Taken together, these findings

point to a divergent mechanism of endocytosis between the

endothelium and epithelium.

Ca2+ is required for CVB infection of HBMEC
We have shown that CVB entry into polarized epithelial Caco-2

cells requires the activation of intracellular signaling molecules to

facilitate viral endocytosis [2] and are initiated by viral attachment

to DAF on the apical cell surface. Because our current findings

indicate that CVB entry occurs via disparate mechanisms between

HBMEC and Caco-2 cells (Figure 1A, 1B), we investigated the

host cell signaling molecules involved in facilitating CVB entry

into HBMEC and whether these molecules were unique between

these cell types.

Author Summary

Enteroviruses are associated with a number of diverse
syndromes such as myocarditis, febrile illness, and are the
main causative agents of aseptic meningitis. No effective
therapeutics exist to combat non-poliovirus enterovirus
infections. A better understanding of the mechanisms by
which these viruses infect host cells could lead to the
design of effective therapeutic interventions. In this study,
we found that intracellular calcium stores in polarized
endothelial monolayers are depleted upon exposure to
coxsackievirus B (CVB) and that this release is mediated by
viral attachment to its receptor decay-accelerating factor.
We also discovered that the calcium release requires the
activation of signaling molecules involved in calcium
signaling such as Src tyrosine kinases, phospholipase C,
and the inositol 1,4,5-trisphosphate receptor isoform 3 on
the ER membrane. Furthermore, we found that a calcium-
activated cystein protease, calpain-2, was activated and
necessary for proper viral trafficking inside the cell.
Interestingly, we found that this signaling cascade was
critical for CVB internalization into the endothelium, but
was not involved in CVB entry into the epithelium. This is
an important advance in our understanding of how
enteroviruses hijack host endothelial cell signaling me-
chanisms in order to facilitate their entry and eventual
spread.

Calcium Facilitates Coxsackievirus Entry
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As DAF signaling has been associated with the release of

Cai
2+[14,15], we determined whether CVB infection of HBMEC

was sensitive to manipulation of Cai
2+ stores. We found that in cells

pretreated with Bapta-AM (a chelator of intracellular calcium),

infection was significantly reduced compared to no inhibitor controls

(Figure 2A). Interestingly, Bapta-AM lost its inhibitory effect when

added at a post-entry time point [2 hrs post infection (p.i.), Figure 2A],

indicating that Ca2+ may be required for events occurring at or very

close to the time of virus entry. Similar results were obtained in

primary human aortic endothelial cells (HAEC) (Figure 2A). We

found that this effect was specific for CVB as Bapta-AM had no effect

on vesicular stomatitis virus (VSV) infection of HBMEC (Supple-

mental Figure S1A). In addition, Bapta-AM had no effect on CVB

infection of intestinal epithelial Caco-2 cells either pre- or post-

treatment (Figure 2A), indicating that the role of Ca2+ in early events

associated with CVB is specific to polarized endothelia.

CVB entry induces the rapid release of Cai
2+ in HBMEC

Because we observed that Ca2+ chelation inhibited CVB infection

(Figure 2A) of HBMEC, we next determined the kinetics of CVB-

Figure 1. The CVB entry mechanism is distinct between polarized endothelia and epithelia. (A) Dynasore (100 mM), dynaminK44A, and
dynamin II siRNA all significantly inhibit CVB infection in HBMEC and HAEC, but have no effect on CVB infection in Caco-2 cells. Data are normalized to
DMSO control, wild-type dynamin II, or control siRNA-infected cells. (B) Immunofluorescence-based assay for viral internalization in HBMEC and Caco-
2 cells pre-treated with DMSO (control) or dynasore and exposed to CVB (MOI = 50) for 1 hr at 37uC. Red fluorescence (or overlapping red and green
fluorescence) indicates virus on the cell surface; green fluorescence in the absence of red indicates internalized virus. (C) HBMEC monolayers
expressing dominant-negative or wild-type forms of caveolin-1, caveolin-3, or Eps15 were exposed to CVB (MOI = 1) and stained for VP1 at 14 hr p.i.
The graph shows the number of transfected cells expressing VP1 as a percent of control infections (dashed line). (D) HBMEC monolayers exposed to
CVB (MOI = 50) and Alexa-Fluor cholera toxin-B (CTB – red) were stained for caveolin-1 (blue) and VP1 (green) at 60 min p.i.
doi:10.1371/journal.ppat.1001135.g001

Calcium Facilitates Coxsackievirus Entry
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mediated Cai
2+ release in real-time. To do this, we used live-cell

imaging of HBMEC loaded with the ratiometric Cai
2+ indicator

Fura-2 AM. This allowed for the tracking of individual cells to

pinpoint the precise timeframe during which intracellular Ca2+ store

depletion occurred. Images were captured every 5 sec at both

excitation wavelengths for Fura (340/380 nm, emission 510).

Following a brief period to establish baseline levels of Cai
2+ (t = 50

sec), CVB (MOI = 50) was added directly to monolayers. To prevent

Ca2+ influx due to alterations in membrane permeability, monolayers

were bathed in Ca2+-free HEPES-buffered saline. The addition of

CVB resulted in an almost immediate release (,20sec) of Cai
2+

[shown in still images spanning 1 min from virus addition (Figure 2B,

Supplemental Movie S1)]. As quickly as 15 sec following the addition

of CVB, the majority of cells have been almost completely depleted of

Cai
2+ [shown in the graphical representation (Figure 2C)]. Of

particular significance, this depletion occurred at a time point prior to

viral uncoating (Supplemental Figure S1D) and the production of

viral proteins (Supplemental Figure S1B, S1C), which have previously

been shown to induce Cai
2+ release at late stages of virus replication

[22].

We next tested whether primary human aortic endothelial

cells (HAEC) were also depleted of Cai
2+ in response to CVB

exposure. In some cases, microvasculature and arterial en-

dothelial cells differ in the degree of tight junction function and

in their responsiveness to calcium ionophores [23]. Further-

more, myocarditis and dilated cardiomyopathy are often

associated with CVB infection and CVB may infect aortic

endothelial cells during cardiac infections [24,25]. Interestingly,

we observed the depletion of Cai
2+ in response to CVB exposure

of HAEC similar to that observed in HBMEC (Figure 2B, C).

However, CVB-induced depletion of Cai
2+ proceeded at a more

gradual pace (,120 sec) in HAEC compared to HBMEC

(Supplemental Movie S2).

Consistent with our findings that Bapta-AM had no effect on

CVB infection Caco-2 cells (Figure 1A), we found that CVB entry

had no effect on Cai
2+ levels in these cells (Figure 2B, 2C,

Supplemental Movie S3). These data indicate that the role of

Cai
2+ in mediating CVB entry is specific to the endothelium and

suggest that there may be unique signaling molecules activated

between the endothelium and epithelium.

Figure 2. Intracellular Ca2+ is required and mobilized in endothelia but not epithelia. (A) HBMEC, primary HAEC, or Caco-2 cells were
treated with Bapta-AM [in low calcium (,300 mM Ca2+)-containing media] and infected with CVB (5 PFU/cell) for 14 hrs. Inhibitor was added to
cultures 1 hour prior to infection (pre-treat) or 2 hours p.i. (post-treat). The graph indicates the percentage of cells expressing VP1 compared to no
inhibitor controls (dashed line). (B) HBMEC (left), HAEC (middle), and Caco-2 (right) monolayers were loaded with Fura-2 AM and fluorescent images
(excitation 340 and 380 nm) were taken every 5 seconds prior to and following the addition of CVB at MOI = 50 (at t = 55 seconds). Shown are images
(pseudocolored) captured at the indicated times. (C) Fluorescence intensity ratio (340/380 nm) of Fura-2-AM versus time of HBMEC (red), HAEC
(black), and Caco-2 cells (green) exposed to CVB3.
doi:10.1371/journal.ppat.1001135.g002

Calcium Facilitates Coxsackievirus Entry
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DAF mediates CVB-induced Cai
2+ release

Although DAF is known to mediate CVB attachment to and

infection of polarized epithelial cells [5], little is known regarding

its role in mediating infection of the polarized endothelium.

Consistent with what has been observed in polarized intestinal

monolayers [5], we found that a non-DAF binding CVB isolate

(CVB-Nancy) was incapable of infecting HBMEC from the apical

surface (Figure 3A) and DAF siRNA (Supplemental Figure S5)

inhibited binding and infection by CVB (Supplemental Figure

S2A). This would indicate that DAF plays an essential role in

facilitating CVB infection of the endothelium [likely because CAR

is also sequestered in the tight junctions of HBMEC (Supplemental

Figure S2B) and is not exposed to virus approaching from the

apical domain].

To determine whether CVB-DAF interactions are involved in

Cai
2+ store depletion in HBMEC, we used a non-DAF binding

isolate of CVB (CVB4) and determined its effects on Cai
2+ release.

We found that CVB4 did not induce any noticeable Cai
2+ release

(Figure 3B,C) as CVB4-exposed cells retained their Cai
2+levels

throughout the entire 10 min time course (Supplemental Movie

S4).

To exclude any CAR-dependent signaling events upstream of

CVB-induced Cai
2+ release, we determined the extent of Cai

2+

release in HBMEC transfected with CAR siRNA and exposed to

DAF-binding CVB. We found that CAR siRNA (which led to a

.90% depletion of CAR expression, Supplemental Figure S5) had

no effect on CVB-induced Cai
2+ release in HBMEC (Figure 3B,

3C, and Movie S5). These data support a role for DAF, but not

CAR, in the induction of Cai
2+ release in response to CVB entry.

IP3R type 3 and PLCc are required for calcium
mobilization in response to CVB

Cai
2+ mobilization is often initiated by ligand interaction with

cell surface receptors which can lead to the activation of

intracellular signaling molecules such as tyrosine kinases, and/or

PLCs (reviewed in [26]). These molecules can either act directly to

increase IP3 levels (i.e. PLCs) or increase IP3R sensitivity to IP3

binding in the absence of the generation of new IP3 (i.e. tyrosine

kinases) [27,28,29]. To determine whether CVB-induced Cai
2+

release required the activation of PLC (and the subsequent IP3R-

mediated release of Cai
2+), we tested the effects of 2-APB (an

inhibitor of IP3R channels) and U73122 (a specific PLC inhibitor)

for their effects on CVB infection in HBMEC. We found that pre-

treatment of cells with both 2-APB and U73122 led to a significant

reduction in CVB infection (Figure 4A). In contrast, exposure of

cells to both inhibitors at a post-entry time point (2 hrs p.i.) had no

effect. We also found that U73122 inhibited Cai
2+ release in

response to CVB entry (Figure 4B). Consistent with our findings

that CVB entry into Caco-2 does not require Cai
2+ (Figure 1B), we

found that 2-APB and U73122 had no effect on CVB infection in

Caco-2 cells at either pre- or post-entry time points (Figure 4A).

Although we observed an inhibition of Cai
2+release in cells

treated with U73122, this inhibitor targets a wide range of PLC

isoforms. For this reason, we determined whether PLCc1

(PLCG1), a known mediator of Cai
2+ release, was specifically

involved in CVB-induced Cai
2+ release using siRNA-mediated

knockdown. We found that depletion of PLCc1 significantly

inhibited CVB-mediated release of Cai
2+ (Figure 4, Supplemental

Figure S5, Movie S6).

The majority of Cai
2+ oscillations within cells occur via bursts,

sparks, or waves produced by the activation of IP3R. Three IP3R

have been identified in mammalian cells that differ in their affinity

for IP3, but whose specific functions remain uncertain (reviewed

in[26]). The expression pattern of the different IP3R subtypes

between tissues is likely responsible for the variety of patterns

associated with Cai
2+ release between cell types (and may

ultimately determine the physiological outcomes of this release).

Endothelial cells generally express all three IP3R isoforms to some

degree [30–31]. We employed the use of siRNAs to specifically

knockdown IP3R isoforms expressed in HBMEC– IP3R-1, IP3R-2,

and IP3R-3 (Supplemental Figure S5). Whereas knockdown of

IP3R-1 and IP3R-2 had modest effects on CVB-induced Cai
2+

release (Supplemental Figure S3 and Movies S7 and S8),

knockdown of IP3R-3 resulted in a complete inhibition of Cai
2+

release upon exposure to CVB (Figure 4C, supplemental Movie

S9). These data indicate that while IP3R-1 and IP3R-2 may play

minor roles in mediating CVB-induced Cai
2+ release, IP3R-3 is

likely the critical IP3R isoform involved.

Src family kinases are upstream of CVB-induced Cai
2+

release
We have shown that CVB exploits DAF-mediated tyrosine

signaling pathways to surmount the epithelial barrier in order to

gain entry into polarized epithelial cells [2]. Because we observed

that CVB-induced Cai
2+ release in HBMEC required DAF-

binding (Figure 3B), we tested whether tyrosine kinases might play

a role upstream of Cai
2+ release in HBMEC. We found that

tyrosine kinase activity was required for CVB infection of

HBMEC as treatment of cells with the non-specific tyrosine

kinase inhibitor genistein reduced both CVB infection (Figure 5A)

and entry (Figure 5B). Because genistein targets a broad range of

tyrosine kinases, we determined the effects of PP2 (a specific Src

tyrosine kinase inhibitor) on CVB entry and infection. We found

that PP2 significantly reduced CVB infection (Figure 5A) and

entry (Figure 5A), indicating that Src family kinase activity is

required for CVB entry into HBMEC (similar to our previous

findings in Caco-2 cells).

Because tyrosine kinases, including members of the Src kinase

family [28,32], have been shown to function upstream of Cai
2+

release, we next determined whether tyrosine kinases and/or Src

kinase activity was required to facilitate CVB-mediated Cai
2+

release. To do this, we pre-treated HBMEC with either genistein

or PP2 and measured CVB-induced Cai
2+ release in real-time. We

found that there was a profound inhibition of CVB-induced Cai
2+

release by both genistein and PP2 compared to controls (Figure 5C

and D). We also found that genistein inhibited CVB-induced Cai
2+

release in HAEC, indicating a similar mechanism of release may

exist between the microvasculature and arterial endothelium

(Supplemental Figure S4). These data point to a role for Src family

tyrosine kinase signaling in CVB-induced Cai
2+ release.

Calpain activity is required for CVB trafficking
We recently performed an RNAi screen for host factors

involved in CVB infection of HBMEC and identified calpain-2,

a Cai
2+-dependent cysteine protease, as being required for CVB

infection of HBMEC (CB Coyne and S Cherry, unpublished data).

Members of the calpain family are activated by release of Cai
2+

and can be categorized into two subfamilies–m-calpains (eg.,

calpain-1) are activated by micromolar concentrations of Cai
2+;

and m-calpains (eg., calpain-2) are activated by millimolar

concentrations of Cai
2+ [reviewed in [33]]. We found that whereas

siRNA-mediated knockdown of calpain-2 decreased CVB infec-

tion significantly, downregulation of calpain-1 had little effect

(Figure 6A, bottom, and Supplemental Figure S5). In accordance

with our findings that Cai
2+ plays no role in CVB entry into Caco-

2 cells (Figure 2A, 2B, 4A), we found that reduction of calpain-2

expression had no effect on CVB infection of Caco-2 cells

(Figure 6A, bottom).

Calcium Facilitates Coxsackievirus Entry
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Figure 3. DAF mediates CVB-induced Cai
2+ release. (A) HBMEC grown in transwells were exposed to CVB3-RD or CVB3-Nancy (a non-DAF

binding isolate) on the apical and basolateral side, infected for 14 hrs, and fixed and stained for the VP1. Shown are the percentage of infected cells
(normalized to DAPI-stained nuclei). (B) HBMEC monolayers loaded with Fura-2 AM were exposed to CVB4, a non-DAF binding CVB isolate, at t = 55
seconds with MOI = 100 (left). HBMEC monolayers transfected with CAR (middle) or control (right) siRNAs were loaded with Fura-2AM and exposed to

Calcium Facilitates Coxsackievirus Entry
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To confirm the role of calpain-2 in mediating CVB infection of

HBMEC, we treated cells with three known inhibitors of calpains–

ALLN, calpeptin, and calpain inhibitor III—and found that they

significantly reduced infection by CVB in HBMEC (Figure 6B).

Likewise, HAEC pre-treated with calpain inhibitor III also had a

significant reduction in infection (Supplemental Figure 6B). In

contrast, calpain activity was not required for CVB infection in

Caco-2 cells (Supplemental Figure S6A). Although inhibition of

calpain activity exhibited potent reduction in CVB infection when

cells were pretreated with inhibitor, we found that this effect did

not occur when calpain inhibitors were added at post-entry time

points (2 hr p.i.) (Figure 6B and Supplemental Figure S6B). These

findings suggest that calpain activity is required early in the life

cycle of CVB (possibly at or near the time of viral entry).

Consistent with this, we found that calpains were activated by 30

min p.i., (Figure 6C), likely coincident with CVB entry and

following the release of Cai
2+ induced by CVB binding.

To further define the mechanism by which calpain-2 facilitates

CVB infection we used a fluorescence-based assay for viral

internalization. Using this assay, we found that while calpain

activity was not required for viral endocytosis into the cytoplasm, it

was required for proper vesicular trafficking as we observed the

appearance of large CVB-containing intracellular vesicles

.500 nm in diameter (much larger than the average size of

endosomes) when calpain activity was inhibited in HBMEC

(Figure 6D and Supplemental Figure S6C,D). These large

structures remained in the cytoplasm for extended periods of time

(.5 hours, not shown) whereas in untreated cells these vesicles

traveled to a perinuclear compartment by 60–120 min (where the

release of viral RNA likely occurs). In contrast, inhibition of

calpain activity had no effect on CVB entry or trafficking within

Caco-2 cells (Figure 6D). We found that these long-lived

cytoplasmic virus-containing vesicles were heavily associated with

calpain-2 (Figure 6E) and cholera toxin B (Figure 6F). However,

we did not observe any significant colocalization between

internalized CVB particles and calpain-2 in control cells

(Figure 6E). Although calpain-2 has been shown to regulate

endosomal trafficking [34,35], it remains unclear if calpain

associates with endosomal membranes for any significant length

of time. Consistent with a potential transient interaction between

calpain-2 and endosomal membrane protein components, we also

did not observe any significant colocalization between calpain-2

and a component of early endosomes (Rab5 GTPase) (Supple-

mental Figure S6F). Taken together, these data suggest that Cai
2+

release results in the specific activation of calpain-2 that in turn

facilitates the trafficking of virus-containing vesicles within the

cytoplasm to a perinuclear location for uncoating and RNA

replication to ensue. Furthermore, the role of calpain-2 is specific

to the endothelium as inhibition of calpain activity had no effect

on CVB infection of intestinal epithelial cells.

Because both PLCc1 and IP3R-3 appeared to play significant

roles in mediating Cai
2+ signaling in response to CVB entry, we

next determined whether they were also involved in facilitating

CVB entry and/or trafficking. Similar to our findings when

calpain activity was inhibited, we found that knockdown of PLCc1

and IP3R-3 also altered the ability of internalized CVB particles to

properly traffic within the cytoplasm and led to the accumulation

of long-lived CVB-containing vesicles within the cytoplasm

(Figure 6G and Supplemental Figure 6E). These data suggest that

the PLCc1- and IP3R-3-dependent Cai
2+ release induced by CVB

entry is required for the activation of calpain-2 to facilitate

vesicular trafficking of internalized viral particles.

Discussion

Many viral pathogens have developed strategies to subvert the

barriers presented by epithelia and endothelia in order to infect

the host or spread to secondary sites of infection. The CNS and

heart are common sites of CVB secondary infection. In order to

infect these tissues, circulating CVB would require passage

through or infection of the endothelium in order to traffic from

the circulatory system into the underlying tissue (through a

process that likely requires apical DAF engagement). Our

previous studies have established that CVB enters polarized

cells by endocytic mechanisms that require activation of specific

intracellular signaling molecules including the tyrosine kinases

Fyn and Abl [2,18]. Here we show how CVB specifically exploits

Cai
2+-mediated signaling events in order to facilitate its entry

into polarized endothelial cells. We provide evidence that CVB-

induced Cai
2+ release is triggered by virus binding to DAF and

involves the activity of the Src family of tyrosine kinases, PLCc1,

and the expression of a specific IP3R isoform, IP3R-3. The

release of Cai
2+ induced by CVB is required for the subsequent

activation of calpain-2, which facilitates CVB vesicular traffick-

ing. We also show that the Cai
2+-dependence of CVB entry is

specific to the endothelium and is not involved in mediating

CVB entry into the epithelium. The necessity for Cai
2+ release in

endothelia, but not epithelia, demonstrates that the entry of

CVB (and likely other viral pathogens) is mediated by cell-type-

specific intracellular signals that may differ between polarized

cell types.

Viral receptors often facilitate host cell signaling events required

for virus entry. Our results show that CVB-induced Cai
2+ release is

triggered by CVB-DAF interactions and occurs even in the

absence of CAR expression (Figure 3B). This is not surprising

given that DAF is located within lipid raft domains [2] and is in

close proximity to signaling molecules such as receptor tyrosine

kinases and PLCs [11]. CD59, another GPI-anchored receptor,

leads to the recruitment of tyrosine kinases, the heterotrimeric G

protein Gai2, and PLCc1 upon antibody-induced lateral cross-

linking. This crosslinking leads to the activation of PLCc1 and a

subsequent burst in Cai
2+ [13]. It is therefore likely that CVB

exploits Cai
2+-associated signaling events associated with DAF

crosslinking in order to facilitate its entry and intracellular

trafficking.

Several viruses have been shown to manipulate host cell Cai
2+

homeostasis in order to promote their entry and/or replication

[22,27,36,37,38,39,40,41]. Herpes simplex virus (HSV) has been

shown to utilize a transient increase in intracellular Cai
2+

concentration triggered by receptor binding to promote its

internalization [42]. Similar to our findings with CVB, HSV-

induced Cai
2+ release is mediated by the activation of PLC and

subsequent activation of IP3R [43]. In addition, depletion of ER-

derived Ca2+ stores inhibits infection of SV40, suggesting that

there may be modulation of Cai
2+ homeostasis induced during its

entry [44]. It is thus becoming clear that viruses from several

unrelated families have developed strategies to target Cai
2+

signaling in order to facilitate their entry.

CVB3-RD (MOI = 100, t = 55 seconds). Shown are images (pseudocolored) captured at the indicated times. (C) Fluorescence intensity ratio of (340/
380 nm) of Fura-2AM versus time of HBMEC monolayers exposed to CVB4 (red) or control- (green) or CAR-transfected (black) siRNAs exposed to
CVB3.
doi:10.1371/journal.ppat.1001135.g003
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Tyrosine kinase signaling often functions upstream of Cai
2+

release to activate PLCc and/or directly phosphorylate IP3Rs.

The role for Src family tyrosine kinases in the release of Cai
2+ is

clear–mice deficient in Fyn kinase are devoid of certain types of

Cai
2+ release [45], c-Src-specific antibodies inhibit PLCc-depen-

dent Cai
2+ release [46,47], and Fyn directly phosphorylates IP3R

to permit extended Cai
2+ release upon IP3 binding [32] [28]. We

found that Src kinases were critical for CVB-induced Cai
2+ release.

Interestingly, our previous work has shown that Src kinases,

specifically Fyn, mediate the entry of CVB into intestinal Caco-2

cells [2]. However, here we show that Cai
2+ plays no role in CVB

entry into Caco-2 cells, indicating that although Src kinases

facilitate CVB entry into both polarized epithelia and endothelia,

they target divergent downstream targets to do so. We also show

that inhibition of Src kinase activity prevents CVB entry into

HBMEC (Figure 5B). However, the point in the entry process that

was inhibited by Src kinase inhibition (e.g. cell surface) was unique

from what we observed by inhibiting calpains or PLCc and IP3R-3

expression (e.g. intracellular viral trafficking). As Src kinases

function in many aspects of endocytosis [48–49], these data

indicate that they likely serve multiple functions in regulating CVB

entry into HBMEC beyond that of Cai
2+ release. Taken together,

our findings indicate that Src kinases are pivotal regulators of

CVB-induced signal propagation in the endothelium and

epithelium, but likely target unique downstream effector molecules

to facilitate CVB entry.

Src kinases have been shown to directly phosphorylate IP3Rs in

order to modulate their affinity for IP3s and/or alter their gating

kinetics [32] [28]. There are three isoforms of the IP3R in

mammalian cells, but the precise function and cellular requirement

for each isoform remains uncertain. Although functional redundancy

likely exists between isoforms, IP3R-specific localization, gating, and

regulation by ligands/proteins for specific cell processes contributes to

isoform-specific signaling. Our results indicate that Cai
2+ release

downstream of CVB-induced DAF clustering is mediated via

activation of IP3R-3, as siRNA targeting IP3R-3 inhibited this release

(Figure 4C). However, other Ca2+ channels may be involved as we

cannot exclude the possibility that channels (such as store-operated

cation channels or Ca2+-release activated channels) are activated via

IP3R-3-mediated Ca2+ release to induce Ca2+ influx. Interestingly,

caveolin-1 has been shown to directly bind IP3R-3 to regulate

agonist-induced Cai
2+ release [50] and the endothelium of mice

deficient in caveolin-1 display alterations in Cai
2+ fluxes (despite

equivalent levels of IP3 production) [51]. As we found that CVB gains

entry into HBMEC via a caveolar-dependent mechanism (Figure 1),

it is conceivable that the activation of caveolar-mediated endocytosis

induced by CVB entry alters the association between caveolin-1 and

IP3R-3 to alter its gating properties and/or sensitivity to IP3 as a

mechanism to promote Cai
2+ release.

We observed pronounced activation of calpain coincident with

CVB entry (Figure 6) and calpain activity was required to regulate

the trafficking of CVB-containing vesicles within the cell

cytoplasm. Calpains are Ca2+-dependent cysteine proteases, most

of which are ubiquitously expressed, and function in many cellular

processes, although the vast majority of these functions are still

largely unclear (reviewed in [33]). Calpain substrates can include

cytoskeletal proteins, kinases and phosphatases, membrane-

associated proteins including ion channels, and various transcrip-

tion factors [33]. Several studies have linked calpains as important

regulators of viral replication. Latently infected HIV-1 cells utilize

Ca2+-dependent calpain activation in order to initiate viral

replication [52], hepatitis C virus utilizes calpain activity in the

cleavage of viral nonstructural proteins [53], and echovirus 1

requires calpains for an as-yet-unidentified facet of its replication

[54]. In contrast to these other viruses, we find that calpain-2 is

required at the time of CVB entry and has little role in post-entry

events in the virus life cycle. The precise role for calpain-2 in

regulating the trafficking of CVB-containing vesicles is uncertain.

However, calpains have been implicated in endocytosis, particu-

larly in the regulation of intracellular membrane fusion, and are

associated with coated vesicles within the cytoplasm [34,35,55]. A

role for calpain-2 in regulating vesicular fusion during CVB entry

is supported by our observation that internalized CVB particles

accumulate within enlarged cytoplasmic vesicles when calpain

activity is inhibited. Additionally, calpains have also been

associated with the remodeling of the actin cytoskeleton by

targeting a variety of actin-associated components. Thus, calpains

may facilitate CVB trafficking by modulating the actin cytoskeletal

network for proper vesicular trafficking. Calpain-2 is activated by

high levels of Cai
2+ (mM), consistent with the pronounced release

of Cai
2+ induced during CVB entry. Moreover, we also observed

the appearance of enlarged CVB-positive cytoplasmic vesicles

when the expression of PLCc1 and IP3R-3 were depleted,

supporting a role for PLCc1- and IP3R3-dependent Cai
2+ release

upstream of calpain-2 activation.

Although many viral pathogens target polarized cells, little is

known regarding the mechanisms used by viruses to enter

polarized monolayers or whether these mechanisms might differ

between the epithelium and endothelium. CVB entry into

polarized epithelial cells is a complex process that involves the

activation of a variety of intracellular signaling molecules that

regulate distinct aspects of the viral internalization process [2,3].

The results presented here show that CVB entry into polarized

endothelial cells is regulated by a divergent intracellular signaling

pathway than that in the epithelium–the mobilization of Cai
2+.

Thus, CVB has evolved to hijack two distinct pathways in the

endothelium and epithelium to bypass polarized cell barriers.

These results provide an illustration of the complexities likely to be

associated with viral internalization into polarized cells and may

serve as a model for how other viral pathogens circumvent the

barriers presented by polarized cell monolayers.

Materials and Methods

Cell culture and viruses
HBMEC were cultured in RPMI 1640 (Hyclone, Logan, Utah)

with 10% FBS (Gibco, Grand Island, New York), 10% NuSerum

(BD Biosciences, Bedford, MA), 100 U/ml of NEAA (nonessential

amino acids), MEM vitamins, and sodium pyruvate (all Hyclone),

10 U/ml of PenStrep (Gibco), and 30 mg/ml of Endothelial Cell

Figure 4. PLCc and IP3R-3 are involved in CVB-induced depletion of Cai
2+ stores. (A) HBMEC (left) or Caco-2 (right) cells treated with 2-APB

or U73122 1 hour prior to infection (pre-treat) or 2 hours p.i. (post-treat) were infected with CVB (MOI = 1) for 14 hrs (HBMEC) or 7 hrs (Caco-2). Graph
represents percentage of total cells expressing VP1 normalized to no-inhibitor controls (dashed line). (B) Top: Still images of HBMEC pre-treated with
U73122, loaded with Fura-2 AM, and exposed to CVB (MOI = 50, t = 55 seconds). Images were pseudo colored for Cai

2+ visualization. Bottom:
Fluorescence intensity ratio (340/380 nm) of Fura-2AM versus time in HBMEC exposed to CVB in the absence (black) or presence of U73122 (blue). (C)
Top: Still images captured at the indicated times in HBMEC transfected with control, IP3R-3, or PLCc-1 siRNAs, loaded with Fura-2AM and exposed to
CVB (MOI = 50, t = 55 seconds). Bottom: Intensity ratio plot (340/380 nm) of HBMEC loaded with Fura-2AM and transfected with control, IP3R-3, or
PLCc -1 siRNA and exposed to CVB (MOI = 50, t = 55 seconds).
doi:10.1371/journal.ppat.1001135.g004
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Figure 5. Src Family Tyrosine kinases are upstream of intracellular Ca2+ release in response to CVB3. (A) HBMEC (left) or HAEC (right)
monolayers were pre-treated with genistein or PP2 1 hr before (pre-treat) exposure to CVB3 or 2 hrs p.i. and infected for 14 hrs (HBMEC) or 7 hrs
(Caco-2). Shown are the percentage of infected cells (normalized to DAPI-stained nuclei) normalized to no inhibitor controls. (B)
Immunofluorescence-based assay for viral internalization in HBMEC pre-treated with no inhibitor, genistein, or PP2 and exposed to CVB3
(MOI = 100) for 60 min and stained as decsribed in Materials and Methods. Blue = DAPI-stained nuclei, red = externalized virus (VP1external), and
green = internalized virus (VP1internal). (C) Still images captured at the indicated times in HBMEC monolayers treated with control, genistein, or PP2,
loaded with Fura-2AM, and exposed to CVB. (D) Intensity ratio plot (340/380 nm) of control (no inhibitor)-, genistein-, or PP2-treated HBMEC loaded
with Fura-2AM and exposed to CVB3 (t = 55 seconds).
doi:10.1371/journal.ppat.1001135.g005
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Figure 6. Calpain-2 is required for vesicular trafficking of internalized CVB. (A) Top: Representative images of HBMEC and Caco-2
monolayers transfected with control, calpain-1, or calpain-2 siRNAs and infected with CVB (MOI = 1) for 14 hrs (HBMEC) or 7 hrs (Caco-2). VP1 in green
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Growth Supplement (BD Biosciences) and have been described

previously [56]. Primary HAEC were obtained from Lonza-

Clonetics (Allendale, NJ) and cultured in EGM-2 media per

manufacturer’s instructions. Caco-2 (BBE clone) were purchased

from the ATCC and grown in DMEM-H supplemented with 10%

FBS and 10 U/ml PenStrep. CVB3-RD and CVB4 were

expanded by infecting HeLa cells, purified through centrifugation

in a sucrose gradient, and tittered by plaque assays on HeLa cells

as described previously [2].

Antibodies
Mouse anti-enterovirus VP1 (Ncl-Entero) was obtained from

Novocastra Laboratories (New Castle upon Tyne, UK). Goat

polyclonal antibodies to calpain-2 (N-19) was purchased from

Santa Cruz Biotechnology (Santa Cruz, CA). Alexa fluor-

conjugated secondary antibodies and cholera toxin B were

purchased from Invitrogen (Carlsbad, CA).

Inhibitors
Genistein (20 mM), ALLN (50 mM), calpeptin (10 mM), dideox-

yadnesoine (5 mM), PP2 (10 mM), and calpain inhibitor III (5 mM)

were purchased from Calbiochem (Gibbstown, NJ); U73122

(700 mM), Bapta-AM (10 mM), 2-APB (30 mM), and dynasore

(100 mM) were purchased from Sigma (St. Louis, MO). Toxicity

panels were performed to ensure inhibitors did not cause

unwanted effects (Supplemental Figure S7).

Immunofluorescence microscopy
HBMEC monolayers grown in collagen-coated chamber slides

(BD Biosciences, San Jose, CA) were exposed to CVB in binding

buffer for 1 hour at 16uC then washed and placed at 37uC to

initiate entry (for entry experiments), or 14 hours at 37uC (for

infection experiments). For entry experiments the cells were

washed and fixed with 4% paraformaldehyde (PFA) and then

incubated with primary VP1 antibody for 1 hour. Each well was

then washed and incubated with the appropriate Alexa Fluor-594-

conjugated antibody for 30 min. After another washing the cells

were fixed again with 4% PFA, washed, permeabilized with 0.1%

Triton-X 100 in PBS, incubated again with VP1 primary antibody

for 1 hour at room temperature, washed, and subsequently

incubated with Alexa Fluor-488-conjugated secondary antibody

for 30 min, washed, and then mounted with Vectashield (Vector

Laboratories, Burlingame CA). For infection experiments cells

were exposed to virus at MOIs stated then washed and fixed with

ice-cold methanol acetone (3:1). Monolayers were then incubated

with primary VP1 antibody for 1 hour, washed, and incubated

with secondary Alexa Fluor–488-conjugated antibody. Cells were

imaged on an Olympus IX81 inverted microscope equipped with

a motorized stage for obtaining Z stacks. For virus entry

experiments, images were captured with an Olympus PlanApo

60x/1.42 NA oil objective with z stacks (0.25 mM slices) and

deconvolution performed by using the nearest neighbor function

in Slidebook 5.0. Infection images were captured with an Olympus

UplanApo 10x/0.4 NA objective and quantified using ImageJ

(http://rsb.info.nih.gov/ij/) as a ratio of VP1+/DAPI+.

Immunofluorescence-based assay for internalized virus
Immunoflorescence imaging for internalized viral particles was

performed as described in detail previously [18]. Briefly, mono-

layers were exposed to CVB (50 particles/cell) and at the indicated

times fixed in 4% PFA, washed in PBS containing 50 mM NH4Cl

for 5 min, and incubated with monoclonal anti-VP1 antibody

(NCL-ENTERO) for 1 h at RT. Cells were then washed and

incubated with Alexa Fluor (AF) 594-conjugated secondary

antibody. Following washing, cells were fixed again in 4% PFA,

incubated for 5 min in PBS containing 50 mM NH4Cl, and

permeabilized with 0.1% Triton X-100 for 10 min. Permeabilized

monolayers were re-incubated with anti-VP1 antibody, washed,

and incubated with AF 488-conjugated secondary antibody. Cells

were mounted with Vectashield containing DAPI and images

captured as described above.

Ratiometric calcium imaging
Cells grown on collagen-coated glass bottom 35 mm dishes

(MatTek Corp., Ashland, MA) were loaded with Fura-2 AM

(1 mM - Invitrogen) for 30 min at 37uC. These culture conditions

promoted the formation of polarized monolayers characterized by

the asymmetric localization of apical and basolateral protein

components (Supplemental Figure S2B). Cells were rinsed 3 times

with Ca2+- and Mg2+-free PBS, bathed in a final volume of 1 ml.

Images were captured on an Olympus IX81 motorized inverted

microscope equipped with a Hamamatsu Orca-R2 CCD camera,

Sutter Lambda 10-3 High Speed filter wheel system, and an

Olympus UApo/340 20x objective with an N.A. of 0.75. Images

were acquired using Slidebook 5.0 advanced imaging software.

Selected cells were chosen (40 regions of interest (ROI)/dish) and

images captured at both excitation 340 nm and 380 nm every 5

seconds for 10 minutes (experiments were performed a minimum

of three times). Virus was added to dishes once baseline was

established (t = 55 sec) at the specified MOIs. Intensity ratios for

selected ROIs were calculated using Slidebook 5.0, and replicates

averaged and plotted as a function of time. Images were

pseudocolored (using Slidebook 5.0) in order to better visualize

Cai
2+ mobilization with blue = low Cai

2+ and red = high Cai
2+.

siRNA transfections
siRNAs were purchased from Dharmacon. HBMEC were

transfected using HiPerFect (Qiagen, Valencia, CA) as described

and DAPI-stained nuclei in blue. Bottom: Effect of calpain-1 or calpain-2 siRNA transfection on CVB infection of HBMEC (left) or Caco-2 (right) cells.
Shown are the percentage of infected cells (normalized to DAPI-stained nuclei) normalized control siRNA-transfected cells (B) HBMEC monolayers
were treated with the indicated calpain inhibitors and infected with CVB (MOI = 1) for 14 hrs. Inhibitor was added to cultures 1 hr before infection
(pre-treat) or 2 hrs p.i. Dashed line indicates the infection level of control cells. (C) Calpain activity was measured in HBMEC infected with CVB (50
PFU/cell) for the indicated times. Dashed line indicates calpain activity in control (no virus) cells. (D) Immunofluorescence microscopy in HBMEC (top)
and Caco-2 (bottom) exposed to CVB (MOI = 50) for 60 min and treated with DMSO (no inhibitor) or calpain inhibitor III. Green staining represents
internalized virus. White arrows denote enlarged virus-contained vesicles in calpain inhibitor III-treated cells. (E) Immunofluorescence microscopy in
HBMEC exposed to CVB (MOI = 50) for 60 min and treated with either control (No Inh) or with calpain inhibitor III. VP1 (green), calpain-2 (red), and
DAPI (blue). White arrows denote enlarged virus-containing vesicles in calpain inhibitor III-treated cells that colocalize with calpain-2. (F)
Immunofluorescence microscopy in HBMEC exposed to CVB (MOI = 50) and Alexa Fluor-488 conjugated cholera toxin B (CTB) for 60 min and treated
with either control (No Inh) or with calpain inhibitor III. CTB (green), VP1 (red), and DAPI (blue). White arrows denote enlarged CTB and virus-
containing vesicles in calpain inhibitor III-treated cells that colocalize with calpain-2. (G) Immunofluorescence microscopy in HBMEC transfected with
control, PLCc-1, or IP3R-3 siRNAs and stained for internalized CVB (MOI = 50, in green) and DAPI (in blue) at 60 minutes p.i. White arrows denote
enlarge virus-containing vesicles in PLCc-1 and IP3R-3 siRNA treated cells.
doi:10.1371/journal.ppat.1001135.g006
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previously [3]. Reverse transfections were performed as follows–

OptiMEM:HiPerfect complexes were incubated for 10 min with

the indicated siRNAs and then added to cells in suspension

(harvested following trypsinization) and incubated for 48–72

hours. In some cases, siRNAs were delivered by nucleofection

[Nucleofector System (Amaxa) using Nucleofector solution V and

program T023].

RT-PCR
Total RNA was isolated with TRI Reagent Solution (Applied

Biosystems, Foster City, CA) according to the manufacturer’s

protocol. For complementary DNA synthesis, 1 mg total RNA was

used in a 20-mL reaction containing 1 mM deoxynucleotide

triphosphates (dNTPs), 2.5 mM oligo dT or random hexamers (for

CVB amplification), 1000 U/ml RNase inhibitor, 0.1 volume 10X

buffer (supplied by manufacturer), and 2500 U/ml murine

leukemia virus reverse transcriptase (Invitrogen, Carlsbad, CA).

The reverse transcription (RT) reaction was carried out at 1 cycle

in a thermal cycler at 42uC for 50 min, followed by 15 min

incubation at 70uC. PCR for IP3R-2 was carried out with primers

to the gene of interest (primer sequences can be found in

Supplemental Figure S5B) and Taq DNA polymerase for 25 cycles.

PCR products were separated on a 1% agarose gel containing

ethidium bromide. Primer sequences are as follows: IP3R-2 (sense

59-CTTGAAGATCTGGGGGATCA-39 and antisense 59-GTG-

CCTTCTTTTGCCTCTTG-39); IP3R-1 (sense 59-CAAGC-

GAGTTCCTGTTCTCC-39 and antisense 59-GTGGACTCC-

AGCTTCTCCTG-39); GAPDH (sense 59-ACCACCAACT-

GCTTAGCA-39 and antisense 59-CCCTGTTGCTGTAGC-

CAA-39). CVB PCR was performed using a Maxim Biotech

amplification kit for enteroviruses as per the manufacturer’s

instructions.

Calpain activation assay
Calpain activity was assessed in HBMEC exposed to CVB (100

PFU/cell) at the indicated times using a fluorogenic calpain

activity assay (Calbiochem). Briefly, control or CVB-exposed cells

(at the indicated times) were lysed in RIPA buffer (without

protease inhibitors) and incubated with fluorogenic calpain

substrate for 15 min at room temperature. Fluorescence intensity

measurements were acquired using a fluorescence plate reader

(BioTek Synergy 4, BioTek) at an excitation wavelength of ,360–

380 nm and an emission wavelength of ,440–460 nm. Readings

were normalized to background (RIPA alone) controls and data

presented as the fold change in calpain activity in CVB-exposed

cells compared to no virus controls.

Accession numbers
ID numbers for proteins/genes mentioned in the text (numbers

were taken from GenBank at Pubmed): inositol 1,4,5-trispho-

sphate receptor 1 (ITPR1) 3708; inositol 1,4,5-trisphosphate

receptor 3 (ITPR3) 3710; phospholipase C gamma-1 (PLCG1)

5335; decay accelerating factor (DAF or CD55) 1604; coxsack-

ievirus and adenovirus receptor (CXADR) 1525; calpain-2

(CAPN2) 824; calpain-1 (CAPN1) 823; Tec kinase (TEC) 7006;

dynamin (DNM1) 1759; dynamin II (DNM2) 1785; caveolin-1

(CAV1) 857; caveolin-3 (CAV3) 859; EPS15 2060.

Supporting Information

Figure S1 CVB-induced Cai
2+ depletion occurs prior to uncoat-

ing and replication. (A) HBMEC were treated with Bapta-AM and

infected with VSV (MOI = 1) for 8 hrs. Inhibitor was added to

cultures 1 hr before (pre-treat) or 2 hrs after (post-treat). The graph

indicates the percentage of cells expressing VSV-G compared to

control (dashed line). (B) RT-PCR or (C) Western blot analysis of

RNA/protein collected from HBMEC infected with CVB (10

PFU/cell) for the indicated times. Negative [(-) no infection] and

positive [(+) overnight infection with CVB] are shown. (D) 35S-

labeled virus particle at various stages of internalization were

recovered by cell lysis with sucrose gradient lysis buffer (10mM Tris-

HCl, pH 7.6, 1mM NaCl, 1mM EDTA, 1% NP40, 0.5% sodium

dodecyl sulfate (SDS). Cell lysates were overlaid on linear 15-30%

sucrose gradients and centrifuged at 39,000 rpm for 150 min at 4uC
in a Beckman SW41Ti rotor. Fractions (400 ml) were collected from

the top of the gradient and radioactivity was measured.

Found at: doi:10.1371/journal.ppat.1001135.s001 (0.32 MB

TIF)

Figure S2 CAR is sequestered in the tight junctions of HBMEC.

(A) HBMEC were transfected with control, CAR, or DAF siRNAs

and exposed to S35-labeled CVB (12,000 cpms) at 16uC for one

hour. Following binding, cells were washed, lysed, and radio-

activity was counted. (B) Confocal micrographs of HBMEC

immunostained for the basolateral-localized Na+/K+ ATPase

pump (green) and the tight junction marker ZO-1 (red) (DAPI -

blue). (C) Confocal micrographs of CAR (green) and ZO-1 (red,

left), or E-cadherin (red, right).

Found at: doi:10.1371/journal.ppat.1001135.s002 (1.97 MB

TIF)

Figure S3 IP3R-1 and -2 siRNAs have modest effects on CVB-

induced Cai
2+ mobilization. (A) Intensity ratio graph of HBMEC

transfected with control, IP3R-1, or IP3R-2 siRNAs, loaded with

Fura-2AM and exposed to CVB (55 sec). (B) Still images of Fura-

2-loaded HBMEC transfected with control, IP3R-1, or IP3R-2

siRNAs and exposed to CVB.

Found at: doi:10.1371/journal.ppat.1001135.s003 (3.27 MB

TIF)

Figure S4 Tyrosine kinases are required for CVB-induced Cai
2+

release in HAEC. (A) Intensity ratio graph of HAEC pre-treated

with control (no inhibitor) or genistein and exposed to CVB (55

sec). (B) Still images of Fura-2 loaded HAEC with or without

genistein and exposed to CVB.

Found at: doi:10.1371/journal.ppat.1001135.s004 (1.54 MB

TIF)

Figure S5 Efficacy of siRNA silencing in HBMEC. Western blot

or RT-PCR analysis in HBMEC transfected with the indicated

siRNAs: control (CON), calpain-1 (CALP1), calpain-2 (CALP2),

CAR, DAF, dynamin II (DNMII), IP3R1, IP3R2, IP3R3, or

PLCc1 (PLCG1). For immunoblots, membranes were stripped

and reprobed with GAPDH as a loading control. For RT-PCR,

cDNA was amplified using GAPDH primers.

Found at: doi:10.1371/journal.ppat.1001135.s005 (0.39 MB

TIF)

Figure S6 Calpain-2 is required for viral trafficking in HAEC

and HBMEC. (A) Caco-2 monolayers were treated with the

indicated calpain inhibitors and infected with CVB (MOI = 1) for

7hrs (Caco-2). Inhibitor was added to cultures 1 hr before infection

(pre-treat) or 2 hrs p.i. Dashed line indicates the infection level of

control cells. (B) Primary HAEC cells were treated with calpain

inhibitor III and infected with CVB. Inhibitor was added to

cultures 1 hr before infection (pre-treat) or 2 hrs p.i. (C)
Quantification of vesicles (with diameter .500nM) in HBMEC

in the absence or presence of calpain inhibitors. Data are

presented as the percent of total cells containing vesicles

.500nM in diameter (total number of cells counted - 75 for no

inhibitor and 117 for calpain inhibitors). (D) Representative
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images of the quantification shown in (C). VP1 (green) and DAPI

(blue). (E) Quantification of vesicles (with diameter .500nM) in

HBMEC transfected with control siRNA, PLCG1 siRNA, and

IP3R-3 siRNA. (F) Confocal images of HBMEC stained for

calpain 2 (red) and stained with mouse monoclonal Rab5 GTPase

(green) (2143, Cell Signaling Technology).

Found at: doi:10.1371/journal.ppat.1001135.s006 (1.63 MB

TIF)

Figure S7 Toxicity panels for pharmacological inhibitors and

siRNAs. (A) Extent of PI uptake in HBMEC following 7 hr

incubation with the indicated inhibitors. Toxicity was calculated as

the percent of cells positive for PI/total cells. (B) Induction of type

I interferon signaling in HBMEC transfected with a luciferase

reporter plasmid and then select siRNAs. Data are presented as a

fold increase in comparison to control (no siRNA) levels.

Found at: doi:10.1371/journal.ppat.1001135.s007 (0.93 MB

TIF)

Movie S1 Intracellular calcium store depletion is observed

immediately after exposure of HBMEC monolayers to CVB3.

Time-lapse movie of HBMEC loaded with Fura-2AM and exposed

to CVB3 (50 PFU/ml) in real time. Movie is pseudocolored for

better visualization of calcium (blue = low, red = high).

Found at: doi:10.1371/journal.ppat.1001135.s008 (6.36 MB

MOV)

Movie S2 Intracellular calcium store depletion is also observed

immediately after exposure of HAEC to CVB3. Time-lapse movie

of HAEC monolayers loaded with Fura-2AM and exposed to

CVB (50 PFU/cell) in real time. Movie is pseudocolored for better

visualization of calcium (blue = low, red = high).

Found at: doi:10.1371/journal.ppat.1001135.s009 (8.60 MB

MOV)

Movie S3 Epithelial Caco-2 monolayers exposed to CVB3 do

not mobilize intracellular calcium. Time-lapse movie of Caco-2

monolayers loaded with Fura-2AM and exposed to CVB (50

PFU/cell) in real time. Movie was pseudocolored for better

visualization of calcium (blue = low, red = high).

Found at: doi:10.1371/journal.ppat.1001135.s010 (10.37 MB

MOV)

Movie S4 CVB4 does not induce intracellular calcium release of

HBMEC monolayers. Time-lapse movie of HBMEC monolayers

loaded with Fura-2AM and exposed to CVB4 (50 PFU/cell) in

real time. Movie was pseudocolored for better visualization of

calcium (blue = low, red = high).

Found at: doi:10.1371/journal.ppat.1001135.s011 (9.93 MB

MOV)

Movie S5 Intracellular calcium store depletion in response to

CVB3 is not dependent on CAR. Time-lapse movie of HBMEC

monolayers transfected with CAR siRNA, loaded with Fura-2AM,

and exposed to CVB3 (50 PFU/ml) after 1 min. Movie is

pseudocolored for better visualization of calcium (blue = low,

red = high).

Found at: doi:10.1371/journal.ppat.1001135.s012 (6.78 MB

MOV)

Movie S6 PLCG1 is required for calcium store depletion in

response to CVB3. Time-lapse movie of HBMEC monolayers

transfected with PLCG1 siRNA, loaded with Fura-2AM, and then

exposed to CVB3 (50 PFU/ml) after 1 min. Movie was

pseudocolored for better calcium visualization (blue = low, red = -

high).

Found at: doi:10.1371/journal.ppat.1001135.s013 (10.32 MB

MOV)

Movie S7 IP3R1 siRNA has a modest effect on calcium

mobilization in response to CVB3. Time-lapse movie of HBMEC

monolayers transfected with IP3R-1 siRNA, loaded with Fura-

2AM, and exposed to CVB3 (MOI = 50) after 1 min. Movie was

pseudocolored for better calcium visualization (blue = low, red = -

high).

Found at: doi:10.1371/journal.ppat.1001135.s014 (10.19 MB

MOV)

Movie S8 IP3R-2 siRNA has a modest affect on calcium store

depletion in response to CVB3. Time-lapse movie of HBMEC

monolayers transfected with IP3R-2 siRNA, loaded with Fura-

2AM, and exposed to CVB3 (MOI = 50) after 1 min. Movie is

pseudocolored for better calcium visualization (blue = low, red = -

high).

Found at: doi:10.1371/journal.ppat.1001135.s015 (10.89 MB

MOV)

Movie S9 IP3R-3 siRNA reveals its involvement in calcium store

depletion upon exposure to CVB3. HBMEC monolayers were

transfected with IP3R-3 siRNA, loaded with Fura-2AM, and

exposed to CVB3 (MOI = 50) after 1 min. Movie was pseudoco-

lored for better calcium visualization (blue = low, red = high).

Found at: doi:10.1371/journal.ppat.1001135.s016 (10.48 MB

MOV)
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