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Proof is a foundational mathematical activity that has been underrepresented in school 

mathematics. The recently adopted Common Core State Standards in Mathematics includes eight 

process standards, several of which promote the inclusion of reasoning and proof across all 

grades, courses, and students.  If students are to reach the expectations recommended by 

mathematics researchers and explicitly identified in the Common Core State Standards, then 

students will need opportunities to construct and validate proof arguments. However, secondary 

students find it challenging to validate arguments and produce proofs and do not know what a 

mathematical proof is.  Furthermore, those preparing to be secondary mathematics teachers in 

undergraduate mathematics courses are unable to construct proofs on a consistent basis, and 

practicing secondary teachers possess a limited conception of proof.   

A six-week graduate-level course was taught with the purpose of increasing practicing 

mathematics teachers’ knowledge, expanding their conceptions of reasoning and proof, and 

preparing them to create similar experiences for their students.  Research was conducted on the 

course to study the participants’ evolving understanding of reasoning-and-proving. The results 

suggest that: 1) the course was successful at expanding the participants conception of proof; 2) 

the prospective teachers encountered five challenges when asked to write proofs that are at the 

secondary mathematics level; 3) specific types of arguments were challenging for participants to 

classify as proofs or non-proofs; and 4) even though the participants were skillful in selecting 
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high-level tasks that they could modify to include reasoning-and-proving opportunities, more 

work is needed to integrate such task across any secondary curricula.   
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1.0 CHAPTER 1: STATEMENT OF THE PROBLEM
 

1.1 INTRODUCTION 


Proof is the foundation of mathematics. Unlike the sciences, where truth is based on tested trials 

to make claims about a larger population, mathematical proof provides truth for all cases beyond 

specific cases. Mathematicians use deductive reasoning to explain why a situation is always true 

throughout all areas of the discipline.  School mathematics, in contrast, has historically relegated 

proof to a single high school geometry course while promoting a single axiomatic form, 

portraying a constrained view of this essential activity unique to mathematics.  However, over 

the past decade, mathematics educators have recommended that proof become a more central 

activity across all elementary and secondary courses for all student ability levels (Ball, Hoyles, 

Jahnke, & Movshovitz-Hadar, 2002; Knuth, 2002a, 2002b; Sowder & Harel, 1998).  In addition 

to increasing the access to proof in mathematics classrooms, there exists supporting research on 

productive instructional methods to learn proof construction (e.g. Lanin, 2005; Martin, McCrone, 

Bower, & Dindyal, 2005; A. J. Stylianides & G. J. Stylianides, 2009) beyond the conventional 

two-column form.  While the suggestions for changing the handling of proof in schools has 

gained momentum as an integrated purposeful activity, the practical adjustment is challenging.   

The curricula that schools adopt include limited opportunities for students to learn what 

proof is and how to construct valid arguments.  Johnson, Thompson, and Senk (2010) discovered 
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that less than six percent of tasks in high school textbooks outside of geometry prompt students 

to reason or prove mathematical situations.  However, this curricular issue may now being 

addressed. Textbook publishing companies align the mathematics problems in the curricular 

materials with state adopted standards. A common set of mathematics standards were adopted by 

45 states, include the development of argumentation across all grade levels and mathematics 

courses (CCSSM, 2010). However, simply adding proof activities in textbooks to align with the 

recently published standards is only a part of the practical problem. 

The larger obstacle is paradoxical.  If reasoning and proof activities have been all but 

absent from high school curricula, excluding geometry (Johnson, Thompson, and Senk, 2010), 

then it can be concluded that teachers have not been provided sufficient resources to enact such 

tasks. However, simply adding reasoning and proof tasks to the curricula is insufficient. Bieda 

(2010) observed experienced teachers implementing proof tasks and noticed that the teachers did 

not hold students responsible for justifying their thinking.  Additionally, Knuth (2002a, 2002b) 

ascertained that many high school teachers misunderstood the meaning of mathematical proof 

and struggled to identify valid from invalid solutions.  There in lies the conflict and need for 

teacher learning. If curricula materials align with the new standards, then the research 

community will continue to report that teachers lack knowledge of proof to enact such tasks 

effectively. Alternatively, fostering teacher knowledge of proof without sufficient resources in 

the curriculum could result in a continued near absence of proof instruction.  Therefore, a 

practical solution is to expand teachers’ knowledge of proof, along with skills to support their 

students’ learning, while addressing the need to identify and or modify tasks within their 

resources to provide such opportunities.  Learning how to foster student access and development 
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of proof, along with focused exercises on task modification, may support teachers in providing 

rich proving opportunities for their students. 

This design experiment1 will investigate the impact of a curriculum project, Cases Of 

Reasoning and Proving in Secondary Mathematics (CORP) on pre-service teachers’ learning of 

reasoning-and-proving in a Masters level mathematics methods course. The study described 

herein is the second implementation of the CORP materials. The findings from the first 

enactment suggest that the practicing teachers improved their ability to write proofs and identify 

valid student arguments. However, follow-up work revealed that the teachers struggled to select 

or modify worthwhile tasks so that they could provide opportunities for their students. Since the 

tasks in which students engage shape their thinking about the subject (Doyle, 1988; Stein, 

Grover, & Henningsen, 1996) and the teachers in the initial enactment of the CORP materials 

exhibited a limited ability to choose or modify reasoning-and-proving2 tasks, the materials were 

redesigned to address this issue. Therefore, an emphasis of this second iteration was to deepen 

secondary teachers’ mathematical knowledge for teaching reasoning-and-proving tasks in their 

classroom. The identified mathematical knowledge for teaching proof addressed in the course 

curriculum focused on advancing three areas: writing valid arguments, critiquing and questioning 

student thinking, and selecting and implementing appropriate student tasks. Additionally, this 

study investigates the participants’ changes in conceptions of reasoning-and-proving for 

teaching.  

The hypothesis driving this study is that through engaging in this second iteration of the 

reasoning-and-proving course for mathematics teachers, the participants will increase their 

1 Design experiments are meant to influence theory and practice through an iterative process of changing the design 
and researching the effects (Brown, 1992; Greeno, 2006). The research herein is the second iteration of the design. 
2 The hyphenated term reasoning-and-proving will be explained in more detail later in this chapter. 
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ability to identify valid arguments, improve their skill at constructing proofs, and become better 

prepared to select or modify tasks from their curricula. Moreover, while explicitly engaging in 

activities to increase their knowledge in each of the three specified areas, the participants will 

expand their conceptions of proof and the role it should play in secondary classrooms.  The 

remainder of this chapter will provide further justification for why teacher learning is required to 

increase secondary students’ opportunities to write and critique proofs. 

1.2 BACKGROUND 


The type of mathematical tasks in which teachers engage students, influence the type of learning 

students experience (Doyle, 1988; Stein, Grover, & Henningsen, 1996).  Implementing tasks that 

provide opportunities for students to make sense of mathematical concepts requires teachers to 

have knowledge of content and how students will progress mathematically including the 

misunderstandings they might have (Carpenter et al., 1989; Ball Thames, & Phelps, 2008). 

Writing proofs requires students to justify why a conjecture is true and to convince their 

classmates, as well as the teacher, that it is true (Hersh, 1993).  With the political backing of the 

National Council of Teachers of Mathematics (NCTM) (NCTM, 2000, 2010) and newly released 

Common Core State Standards in Mathematics (CCSSM) (CCSS, 2010), reasoning and 

argumentation are expected to be included in all K-12 courses.  In order to make this vision a 

reality, teachers must gain an understanding of reasoning-and-proving for teaching so that they 

are capable of fostering student learning of these practices.   
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1.2.1 Policymakers Support Reasoning and Sense Making in Schools 

The 1983 federal report: A Nation at Risk highlighted the dire need for educational improvement 

and specifically addressed mathematics as a major area of concern.  Early drafts of the federal 

report provoked the National Council of Teachers of Mathematics (NCTM) to publish An 

Agenda for Action (NCTM, 1980). The NCTM message was that basic skills are taught at the 

expense of understanding. Instead of explicitly addressing proof in An Agenda for Action, the 

document promoted problem solving. In 1989, NCTM retreated from singly promoting problem 

solving and introduced Curriculum and Evaluation Standards for School Mathematics 

(CESSM). However, proof was under represented in CESSM. Only two of 14 CESSM standards 

listed proof and reserved it for high attaining students. While the 1989 content standards 

promoted mathematical understanding, it fell short of suggesting formal reasoning for all 

students across all secondary courses. As a result, it is logical to conclude that most 

schoolteachers and textbook publishers also did not pose proof tasks during this period.  

In 2000, NCTM released Principles and Standards for School Mathematics (PSSM) and 

made a challenging statement: 

Reasoning and proof are not special activities reserved for special times or special topics 
in the curriculum but should be a natural, ongoing part of classroom discussions, no 
matter what topic is being studied (NCTM, 2000, p. 342). 

This was and still may be provocative since it directly confronts the conventional treatment of 

proof in school mathematics. The document went beyond making the proclamation to include 

reasoning and proof as one of five process standards and includes four expectations for all 

students: 

 Recognize reasoning and proof as fundamental aspects of mathematics 
 Make and investigate mathematical conjectures 
 Develop and evaluate mathematical arguments and proofs 
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 Select and use various types of reasoning and methods of proof  
(NCTM, 2000) 

The PSSM document was the first to recognize the critical role proof plays in school 

mathematics. 

NCTM most recently published a series of reasoning and sense making books.  The first 

book was published in 2009 titled: Focus in High School Mathematics: Reasoning and Sense 

Making. Three follow-up books concentrated on specific content areas: statistics and probability, 

algebra, and geometry. Reasoning encompasses a variety of activities such as: explaining, 

investigating, making conjectures, and deductive argumentation that are all construed from 

assumptions and or definitions.  Sense making involves examining contexts and linking it with 

prior knowledge. The authors define reasoning and sense making as a twisting thread in which 

the two are interconnected and move along a spectrum from informal to formal mathematical 

justification where formal reasoning and sense making both include proof (NCTM, 2009). 

In June 2010, a monumental political shift occurred in education.  Historically, local 

districts or states controlled curriculum standards. In the summer of 2010, selected 

mathematicians and mathematics educators worked with the National Governors Association to 

publish a document titled The Common Core State Standards (CCSS). As of August 2012, 45 

states plus the District of Columbia and the US Virgin Islands had formally adopted the CCSS. 

These standards will be reflected in the school curricula and assessments for the adopted states, 

resulting in the potential to directly impact instruction.  Teachers will be provided textbooks that 

are aligned with the CCSS and over the next few years, student assessments are expected to 

mirror the new standards as well.  

According to The Common Core State Standards for Mathematics (CCSSM), “One 

hallmark of mathematical understanding is the ability to justify, in a way appropriate to the 
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student’s mathematical maturity, why a particular mathematical statement is true or where a 

mathematical rule comes from” (CCSSM, 2010, p.3). Similar to the 2000 PSSM 

recommendations, the CCSSM identifies mathematical processes. While proof is not explicitly 

listed in CCSSM, the full spectrum of informal and formal reasoning is stated. For instance, the 

second mathematics practice standard reads as the following: Reason abstractly and 

quantitatively. A main thrust here is to build fluency with connecting problem context with 

generalizations. The third math process also directly relates to proof, Construct viable 

arguments and critique the reasoning of others. The seventh practice standard lies on the 

reasoning and sense-making spectrum as well: Look for and make use of structure. Here students 

are expected to understand and make connections across equivalent mathematical expressions or 

objects. The descriptions of these three mathematical practices along with the five others are in 

line with the view of proof as a communal activity while promoting a focus on conceptual 

understanding (Bell, 1976; Hanna, 1995). 

Now that national mathematics education policy is in agreement with mathematics 

educators’ view on the importance of proof in the classroom, other variables must be addressed. 

While establishing standards is encouraging, standards alone are not enough to integrate proving 

opportunities across all secondary courses and classrooms. Two questions need to be addressed: 

1) What is proof and what are the recommendations for it in secondary mathematics? 2) What is 

needed to support students’ learning of proof? 
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1.2.2 What is proof? And what are the recommendations for it in secondary 

mathematics? 

Defining mathematical proof is different from identifying characteristics for judging the validity 

of a presented argument. For instance, Hersh defines a proof as a “convincing argument, as 

judged by qualified judges” (1993, p. 389).  This obtuse definition is consistent across reports on 

proof in mathematics education (Reid, 2005).  Determining what convinces qualified judges is 

subjective based on the community in which the argument is presented (Harel & Sowder, 2007; 

Polya, 1945; Reid, 2005; A.J. Stylianides, 2007). Instead of focusing on an agreed upon 

definition, researchers have identified characteristics of arguments that qualify as proof (A.J. 

Stylianides, 2007; Weber, 2008).  The point is that a definition of proof does not necessarily 

translate into accurately judging solutions to the extent to which they prove.    

A.J. Stylianides (2007) developed a criterion for judging arguments based on the context 

in which the argument is produced as listed below: 

Proof is a mathematical argument, a connected sequence of assertions for or against a 
mathematical claim, with the following characteristics: 

1.	 It uses statements accepted by the classroom community (set of accepted 
statements) that are true and available without further justification; 

2.	 It employs forms of reasoning (modes of argumentation) that are valid and known 
to, or within the conceptual reach of, the classroom community; and 

3.	 It is communicated with forms of expression (modes of argument representation) 
that are appropriate and known to, or within the conceptual reach of, the 
classroom community. (2007, p. 291) 

He argues that each classroom community should develop a list of appropriate 

characteristics to foster student understanding of proof. Teachers could use these dimensions to 

co-construct a criterion of what counts as proof in their classroom. 
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Hanna (1990) and others (e.g. Bell, 1976; Hersh, 1993) argue that proof in schools should 

explain the truth or fallacy of a conjecture.  Hanna contends that formal logical arguments such 

as ones following the mathematical induction method are proofs, but such prescribed procedures 

fail to help students understand the validity of the claim.  She writes, “Proofs by mathematical 

induction are non-explanatory in general” (Hanna, 1990, p. 10). Explanatory power can be found 

through connecting algebraic symbols with diagrams where the diagram can help students make 

sense of why the claim is true or false.  Harel and Sowder (2007) classify a non-explanatory 

proof as one that follows the external conviction schemes where a student only follows the 

methods described in textbooks or those completed by a teacher without understanding the 

mathematical concepts questioned in the assertion to be proven.  The argument is that students 

are capable of deductive reasoning; however, the form and organization of the reasoning should 

be aligned with students’ current thinking so as to not force a formal structure.  

1.2.3 Students’ Ability to Prove 

Proof, when taught in schools, has consistently been an activity in which students at all levels of 

education struggle, both in the United States and internationally (Bell, 1976; Healy & Hoyles, 

2000; Recio & Godino, 2001; Porteous, 1990; Senk, 1985). First and foremost, students are not 

qualified judges. They are easily convinced that an assertion is true, even if the argument falls 

short of justifying all cases (Boaler & Humphries, 2006; Chazan, 1993; Healy & Holes, 2000; 

Hersh, 1993; Porteous, 1990). While it is readily apparent that students struggle to write and 

critique proofs, the following studies aid in unpacking what particular issues students encounter 

with the activity. 
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Bell (1976) placed solutions written by 15 year-old students from the United Kingdom 

into two groups, empirical and deductive arguments, with four parallel levels described for each 

argument type.  The levels ranged from a failure to work with the conditions of the problem to 

constructing a proof. For instance, the spectrum of solutions in the empirical group include a 

student generated example that does not relate to the situation (lowest empirical level) and 

exhausts all examples in the finite problem set for a complete proof (highest empirical level). 

Bell reported on two problems with 32 responses to each question.  One problem, which 

involved divisibility of three, allowed for students to exhaust all 14 cases and this was the only 

proof method chosen.  Almost one-fifth of the students chose this method meaning that 80% did 

not construct a proof. Bell was surprised that none of them checked a few cases and then 

generalized a pattern to account for all possible numbers or used algebra at all.  About half of the 

students’ solutions showed a misinterpretation of the question or concept.  The second problem 

required a proof by constructing triangles to meet a set of given conditions.  Almost 40% of the 

students misunderstood the term congruent or the problem altogether.  No student wrote a correct 

proof for the second problem. So in both cases, the majority of students were unable to write 

proofs since they did not understand the question or the mathematical content, even though Bell 

explicitly chose tasks he thought were content accessible for the age group. 

Senk (1985) analyzed US students’ ability to write proofs. She reviewed 1520 students’ 

solutions from eleven schools in five states, which was a subset of the data collected by the 

Cognitive Development and Achievement in Secondary School Geometry (CDASSG) Project. 

All of the students in the study were enrolled in a geometry course in which proof was part of the 

instruction. Almost one-quarter (24%) of the students were in honors classes, a little less than 

half (46%) were in classes labeled regular, and the final 30% were in heterogeneously grouped 
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classes. The classroom teachers administered the test during the last month of the school year. 

The six test items resembled those commonly found in geometry textbooks and varied in 

difficulty level. The students’ responses were scored using a rubric ranging from zero (writes 

little or nothing) to four (writes a proof with at most one error in notation).  Overall, 3% scored a 

perfect score on each of the six items and 29% did not write a single valid proof.  Senk 

concluded that about 25% demonstrated zero competency, 25% could write trivial proofs, 20% 

could do some proofs with complexity, and 30% mastered constructing proofs as presented in 

common geometry curriculum.  So even after enrolling in a geometry proof writing course, the 

overwhelming majority of the students did not learn the skill. 

Recio and Godino (2001) asked two large groups of students entering the University of 

Córdoba (Spain) to write two proofs during the 1994-95 and 1997-98 school years.  In 1994, 

429 students worked on the two problems and in 1997 the same two questions were given to 193 

students.  All of the students were enrolled in a university mathematics course.  The following 

task, based on number theory, was given to all students: Prove that the difference between the 

squares of every two consecutive natural numbers is always an odd number, and that it is equal 

to the sum of these numbers. The second task involved elementary geometry content: Prove that 

the bisectors of any two adjacent angles form a right angle. The researchers provided the 

students with definitions for both questions including natural numbers, bisector, adjacent angle, 

and right angle in order to support their ability to write proofs based on a possible lack of content 

knowledge. The responses for both questions were arranged along five levels (a rubric) starting 

at incoherent and ending at proof.  The middle levels included empirical examples and 

generalizations with partially correct procedures.  Recio and Godino found in 1994-95 that less 

than 50% of the students wrote a correct proof for either problem and only 32.9% of the students 
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wrote a proof for both problems.  In 1997-98 only 22.8% of the students wrote a proof for both 

mathematics statements.  So even though the mathematical concepts were elementary for the 

university mathematics students, the majority of them were unable to produce deductive 

arguments.    

While this sample does not exhaust the research, it highlights an ongoing problem: The 

majority of high school students lack the skills needed to write convincing valid arguments. 

Therefore, students need a different level of support and more opportunities to develop their 

skills in writing and critiquing proofs in order to meet the recommendations of mathematics 

educators and policymakers. 

1.2.4 Treatment of Proof in School 

From both a pedagogical and learning perspective, the transition to deductive reasoning is abrupt 

(Moore, 1994). The problem with the conventional handling of proof in school mathematics is 

that when addressed, it is presented as a completed product (Chazan, 1990). Starting with formal 

deductive logic hinders students’ intuitive reasoning skills and distorts the purpose of proof 

(Ball et al., 2002; Hanna, 1990). Many students are frustrated when presented with a proof task, 

since they do not understand where to start (Moore, 1994; Solomon, 2006). Teachers often 

present a single authoritative proof argument based on a given conjecture for students to simply 

memorize and reproduce (Harel & Sowder, 1998; Harel & Rabin, 2010). 

Proof is usually organized in mathematics classrooms as a ritual without meaning (Ball et 

al., 2002). The typical focus is on systemization and strategy, but instead of allowing students to 

choose how to organize their argument, they are generally expected to follow a particular form 

(i.e. two-column proof). Students are asked to verify known facts, as opposed to searching for 
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their own conjectures to verify. Starting with formal methods and mundane exercises paints a 

contorted picture of the purposes of proof. Furthermore, supplying the two-column formal 

deductive strategy eliminates the opportunity to develop new techniques for solving novel 

problems.  Rigor needs to play a secondary role to understanding (Ball et al., 2002; Hanna & 

Jahnke, 1996). However, Coe and Ruthven (1994) claim the opposite (rigor over understanding) 

has been the case, since the writing on proof has been from a philosophical rather than 

pedagogical stance. Implementing proof from a philosophical stance has shown to be 

unsuccessful, starting with the “new math” era in the 1960s (Hanna, 1995).  Hanna argues the 

major challenge to integrating proof throughout the curriculum is finding more ways to use it to 

promote mathematical understanding.  Therefore, proof needs to become a more substantial part 

of mathematics education, since it has the potential to deepen students’ understanding. However, 

teachers need to learn to identify opportunities within the curriculum to expose students to proof 

in authentic ways. 

G. Stylianides’s (2008) Reasoning-and-Proving framework provides access for learners 

(students and teachers) to engage in the work of developing proofs modeled after the practice of 

mathematicians. The hyphenated combination of reasoning-and-proving is intentional, 

representing a specific connotation, and will be utilized throughout this study. Reasoning 

consists of searching for patterns and proposing a conjecture from observations. Proving 

involves constructing proof or non-proof arguments to justify the generalization.  Therefore, the 

combination of reasoning-and-proving implies a set of activities, which starts with searching for 

a pattern or making a conjecture, and finishes with constructing an argument to justify why the 

proposed conjecture is always true.  While this could be interpreted as a clean or strict linear 

process, it is quite the opposite. Students may start by generating examples or make observations 
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and settle on a conjecture, only to find a counterexample. The discovery may cause them to look 

for a different conjecture for the situation. This process of allowing students to struggle with a 

mathematical situation before formalizing a proof has led to promising results  (Healy & Hoyles, 

2000; Lannin, 2005; Smith, 2006). 

1.2.5 Teachers’ Ability to Write Proof 

A plausible reaction to students’ limited ability to write and critique proofs might be to have 

teachers spend more time teaching proof.  This thinking aligns with the recommendations 

prescribed in the Common Core State Standards for Mathematics (2010) and NCTM (2000) 

standards and also supports the thinking of mathematics educators (Ball et al., 2002).  A problem 

with this suggestion is that teachers, like students, are unable to critique or write proofs on a 

consistent basis. 

Knuth (2002a) collected semi-structured interview data on 16 practicing high school 

mathematics teachers. For part of the interview, he presented teachers with researcher-produced 

solutions that varied with respect to validity.  He focused on presenting arguments that were 

mathematically accessible, so the content did not serve as an obstacle to understanding the 

argument.  They were given five problems, each with three to five solutions, for a total of 21 

responses (13 proofs and 8 non-proofs) to evaluate. Each set of five statements contained at least 

one argument that was not a proof.  Teachers were asked to use a scale of one (non-proof) to four 

(proof) to rate the 21 arguments.  A score of two or three provided teachers an opportunity to 

discuss issues such as assumed truths and completeness.  The results indicated that the 16 

teachers were successful at identifying the 13 proof arguments (93% correct).  On the other hand, 

only two-thirds of the non-proof arguments were labeled as such. Additionally, every teacher 
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labeled at least one non-proof as valid.  Knuth concluded that the teachers judged the statements 

as correct or agreed with the truth of the statements based on certain non-essential criteria.  In 

other words, he claimed that teachers lack a complete view of the criteria necessary for 

validating a proof. 

In another study, Selden and Selden (2003) examined eight, undergraduate mathematics 

(4) and mathematics education (4) majors’ ability to validate arguments. During an interview, 

students were presented with four solutions to the same mathematics statement: For any positive 

integer n, if n2 is a multiple of 3, then n is a multiple of 3. The interviews lasted about an hour 

and contained four parts. The first asked students to think about and make sense of the statement 

and to write a proof if possible.  Only two of the eight students wrote a proof.  The second phase 

of the interview asked them to read through each of the four solutions individually and think 

aloud while reading and reasoning through the argument. The third section presented the 

interviewees with all four arguments on the same page and asked them to make a decision as to 

the validity of the solution. If not a proof, they were to explain what statements in the argument 

were incorrect. The final section of the interview asked the students to explain how he or she 

judged the validity of an argument.  The researchers recorded four different times (time 1 

through time 4) during phases 2 and 3 of the interview in which students judged each argument. 

The four time periods allowed students to change their mind as they engaged in dialogue about 

specific statements in the solution with the interviewer.  During time one, the eight students 

judged less than half (46%) of the four solutions correctly.  However, the percentage increased to 

81 at time four when students were asked to make their final decision about the solution.  The 

researchers conclude that at the initial viewing, mathematics and mathematics education students 
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judged arguments no better than chance, but with explicit attention to structure and less attention 

on surface features, the students learned to identify proofs.   

College graduates with degrees in mathematics enter credentialing programs to become 

high school mathematics teachers.  So if university undergraduate mathematics courses are the 

only opportunity where teachers learn to write proofs, and research shows that some students in 

such courses struggle, then it is fair to conclude high school math teachers need a different 

experience constructing and learning about proofs. 

Appropriating more instructional time for skills with which teachers themselves struggle 

is not likely to improve their students’ understanding. In addition to Hanna’s (1995) challenge 

that more opportunities need to be added into the existing curriculum for students to reason and 

prove, teachers also need to learn to write and critique arguments.  Even if student proof 

activities existed, many teachers are not qualified to support student learning, which is why 

students continue to demonstrate poor results when their ability to write proofs is assessed. 

Therefore, there is a need in mathematics education to advance teachers’ ability to construct and 

critique proof arguments. 

1.2.6 Teachers and Students Harbor Deep Misconceptions of Proof 

Since proof has often been presented as a meaningless isolated activity, it should not be 

surprising that learners misunderstand the role and purpose it plays in mathematics.  Students 

and teachers are convinced mathematical statements are true without proof and do not think of 

proofs as convincing arguments (Coe & Ruthven, 1994; Chazan, 1993; Housman & Porter, 2003; 

Knuth 2002a; Martin & Harel, 1989). In other words, proof has become simply an institutional 
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exercise, students and teachers engage in without learning its central purpose in mathematics 

(Solomon, 2006). 

Chazan (1993) interviewed high school students at multiple schools and discovered a 

variety of misunderstandings. Some thought examples were proof. Some students in his study 

believed proofs themselves were not completely convincing, or that a counterexample could 

exist even for an argument they considered to be a proof.  For instance, one of the arguments 

Chazan presented students contained a set of four individual cases.  Some labeled the four-

example argument as non-proof, but were still convinced that the statement was true.  Another 

interview question included a typical geometry textbook two-column proof. Most interviewees 

identified it as proof, but claimed the argument only held for the provided diagram.  In other 

words, the proof did not represent a general case.  While it is important to engage students in 

more reasoning-and-proving activities to improve mathematical understanding, they also need to 

understand the implications of mathematical proof.  

High school math teachers also misunderstand the meaning of proof. Knuth (2002b) 

learned that even though teachers could identify proof arguments, they were more convinced by 

empirical examples and non-proof arguments.  Bieda (2010) found secondary teachers at the 

middle school level did not press students to produce a convincing general argument that held 

true for all cases, even when the activity asked for proof.  If teachers understand a set of 

generated examples is not a proof, but find them convincing for a particular mathematical 

situation, then they are inclined to accept an incomplete justification, which sends students an 

incorrect message about what is needed to validate a conjecture. Secondary mathematics teachers 

need to learn a criterion of proof to establish a classroom community understanding of what 

constitutes a proof, which would then be used to critique presented student solutions (Knuth, 
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2002b; A. Stylianides, 2007).  Therefore, in addition to expanding teachers’ ability to write valid 

arguments, their conceptions of the meaning of proof should be examined in order to resolve 

possible misunderstandings so that they are capable of generating a classroom criterion that can 

be used to critique student written solutions.  

1.2.7 Conclusion 

Since proof has been all but absent from high school courses outside geometry, current 

curriculum is lacking in reasoning-and-proving activities (Hanna, 1995; Johnson, Thomson, & 

Senk, 2010). Hanna (1995) explains that proof activities should be integrated in the curriculum 

across high school courses, blending with and enhancing the curriculum teachers are using. 

Geometry proof tasks would need to be altered too. Most reasoning-and-proving activities in 

geometry only prompt for a proof rather than providing opportunities for students to search for 

patterns or make their own conjectures. All students in all high school courses should be 

provided opportunities to solve tasks that cover the full spectrum of reasoning-and-proving 

activities to learn mathematics and understand that proof is not a static object to be memorized 

(Ball et al. 2002; CCSS, 2010; Housman & Porter, 2003; Harel & Sowder, 1998; Smith, 2006; 

NCTM, 2000). This implies teachers will need to expand their knowledge of reasoning-and­

proving beyond solving and critiquing arguments, but also to identify opportunities within their 

current curricula to access and advance their students’ thinking.  
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1.3 POLICY, PROFESSIONAL DEVELOPMENT, AND THE TEACHER COURSE 


Policymakers promote greater student expectations, and believe the catalyst for change is more 

ambitious instruction (Darling-Hammond, Wei, Andree, Richardson, & Orphanos, 2009; 

Spillane & Jennings, 1997; Stigler & Hiebert, 2004; USDE, 2000).  The shift in ideology to 

increasing student learning outcomes is to build teacher autonomy and community (Darling-

Hammond et al., 2009).  Prescribing curriculum guides and standards from districts or state 

departments without sustained content focused teacher learning has shown to be unproductive 

(Cohen, 1990; Firestone, Mangin, Martinez, & Polovsky, 2005; Spillane & Zeuli, 1999). 

Teachers require professional development opportunities and teacher education courses to 

expand their knowledge of content, students’ thinking, and pedagogical methods so they are 

prepared to make autonomous decisions, which are connected to teaching practices that promote 

student understanding (Ball & Cohen, 1999; Borko, 2004; Thompson & Zeuli, 1999). 

Hiebert and Grouws (2007) define teaching as: “… classroom interactions among teachers 

and students around content directed toward facilitating students’ achievement of learning goals” 

(p. 372). Ball and Cohen (1999) explain that professional teacher learning needs to be directly 

connected to the work of teaching. This implies that teachers should be provided opportunities 

outside the classroom to practice the work they are being asked to conduct in their classrooms. 

Therefore, professional developers need to engage teachers in learning situations that closely 

mirror the intended work of classroom teaching.  

The NSF funded teacher curricular materials titled: Cases Of Reasoning and Proving in 

Secondary Mathematics (CORP), which form the basis of the course that is the focus of this 

study, exemplifies these suggestions for best practice.  The activities focus on learning about 

reasoning-and-proving (the content), how students construct arguments, and ways to instruct and 
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integrate proof into practice.  For example, in the second unit teachers are asked to write a proof 

analyze student solutions to the same task, and finally to consider possible questions to pose to 

students whose solutions fall short of proof. In other words this sequence first provides teachers 

an opportunity to write a proof, consider how their students might engage in the same task, and 

finish by thinking about questions to support students’ current thinking and other questions to 

move student thinking toward a learning goal.  A course objective is to build teacher knowledge 

of reasoning-and-proving so that teachers are well prepared to make autonomous curriculum 

decisions and the teachers can prepare students to develop a complete view of proof, which is 

connected to the larger mathematics community. 

1.4 PURPOSE OF THIS STUDY 

The purpose of this research study is to investigate the impact of a Masters level mathematics 

teacher education course that focuses on expanding teachers’ knowledge of reasoning-and­

proving on pre-service secondary teachers ability to: (1) write valid arguments, (2) critique and 

question presented solutions, and (3) select and implement reasoning-and-proving tasks for their 

students. 

1.5 RESEARCH QUESTIONS 

This study analyzes pre-service teachers learning from a six-week course on reasoning-and­

proving. The course involved the participants in solving problems, analyzing solutions, 
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considering narrative case studies, and connecting the course activities with their curriculum. 

Additionally, sets of tasks, student solutions to the tasks, and teacher artifacts were collected as 

the participants’ transition into their first year of teaching secondary mathematics.  In particular, 

the study examines the following questions: 

1.	 How do pre-service teachers’ conceptions (i.e. purpose of proof, what counts, proof 
in secondary courses) of proof change over the duration of a course focused on 
reasoning-and-proving? 

2.	 To what extent do pre-service teachers construct valid and convincing arguments 
when prompted to write proofs over the duration of a course focused on reasoning­
and-proving? 

3.	 To what extent do pre-service teachers improve their ability to distinguish between 
proof and non-proof arguments created by students over the duration of a course 
focused on reasoning-and-proving? 

4.	 To what extent do pre-service teachers improve their ability to select and or modify 
reasoning-and-proving tasks for students over the duration of a course focused on 
reasoning-and-proving and during their first year in the classroom? 

1.6 SIGNIFICANCE 

This study hypothesizes that improving secondary students’ ability to reason-and-prove is based 

on the knowledge and opportunities provided by their classroom teachers.  If teachers can prove 

mathematical situations, critique and question their students’ thinking, and select and implement 

reasoning-and-proving tasks, then their students will improve their skill at writing and analyzing 

arguments.  The main purpose of the study is to determine the extent to which the teachers’ 

knowledge changes throughout the course and the impact this has on their practice during their 

first year as practicing teachers.  The results of the study contribute to the research knowledge 

base on teacher education.  Thus it has the potential to identify activities that improve teacher 
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knowledge of reasoning-and-proving in addition to the potential to identify at a smaller grain, 

challenges teachers face as they engage in this work.  

This research is also expands on the Stylianides, G. J. and Stylianides, A. J. (2009) 

coding system to validate arguments.  The coding tool developed for this study includes sub-

codes for each of the main argument types while also incorporating the idea of clear and 

convincing statements.  The statements are applied to valid arguments to distinguish among 

those that clearly state terms, define variable, and include a conclusion from arguments that are 

less convincing. The coding system described in this study could have the potential to validate 

solutions constructed in any K-16 mathematics course including teacher education. 

1.7 LIMITATIONS 

This study has several limitations. First, the sample is based on convenience choosing subjects 

who were admitted to a certificate program at a tier-one research university.  Additionally, the 

sample is small, consisting of only nine participants.  Thirdly, these nine teachers previously 

engaged in math methods courses, which focused on similar activities to enhance their 

knowledge of teaching. For instance, the subjects had prior experiences studying student 

solutions, analyzing narrative cases, and solving math tasks in several ways. Finally, the 

instructor of the course was a novice teacher educator and is a member of the curriculum 

development team.  So a more experienced facilitator or one that is less familiar with the course 

materials may generate different learning outcomes.  Hence, these results may not generalize to 

teachers more broadly. 
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1.8 OVERVIEW
 

This document is organized into five chapters. Chapter One argues the need for better preparing 

teachers who can to enact reasoning-and-proving tasks in their classrooms.  Chapter Two 

reviews previously conducted research of proof, while focusing on related frameworks and 

theories on teacher learning and knowledge needed to teach reasoning-and-proving.  Chapter 

Three describes the methodology including the data sources and analysis procedures used in this 

study. Chapter Four identifies the results of the analysis. Chapter Five presents the discussion of 

the findings, conclusions, and outlines suggestions for future research. 
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2.0 CHAPTER 2: REVIEW OF LITERATURE
 

The purpose of this research study is to investigate the impact of a Masters level mathematics 

teacher education course that focuses on expanding teachers’ knowledge of reasoning-and­

proving, in particular the extent to which the pre-service secondary teachers exhibit the following 

abilities over time: (1) write valid convincing arguments, (2) identify proof from non-proof 

solution, and (3) select or modify reasoning-and-proving tasks for their students. 

Chapter two includes a review of three areas of related research and a final section on 

how this study is situated in and expands upon the work presented in the first three sections. The 

first section details students’ and teachers’ understandings and abilities related to reasoning-and­

proving. While the focus of the investigation herein is on capturing teacher learning, exposing 

student struggles with reasoning-and-proving is critical since teachers need to learn students 

current thinking in order to support their learning. Secondly, the important role tasks play in 

students learning is explained. The third research area reviewed relates to teacher learning. Three 

professional development programs that increased teachers’ knowledge of mathematics for 

teaching are examined. The final section of chapter two explains how the existing research 

described in the first three sections influenced both the design of the teacher preparation course 

and the research project itself.   
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2.1 LEARNING AND TEACHING PROOF 


Opportunities for students to make original and authentic claims about mathematical statements 

currently are not common secondary classroom practice. Ball et al. (2002) wrote, “Proving 

should be part of the problem solving process with students able to mix deduction and 

experiment, tinker with ideas, shift between representations, conduct thought experiments, sketch 

and transform diagrams” (p. 912). The widely adopted Common Core State Standards for 

Mathematics (CCSSM, 2010) for K-12 students and the National Council of Teachers of 

Mathematics (NCTM) (2010) series: Focus in High School Mathematics: Reasoning and Sense 

Making expect students to be purposeful about constructing their own mathematical examples. 

From their examples, students will be able to identify patterns, suggest conjectures, and supply 

arguments to validate the truth of their claims. In response to previously proposed reform 

standards Thomson and Zeuli (1999) explain what teachers need to know and do to prepare 

students for them: 

To realize this conception of teaching, teachers need to know how to choose or design 

problems whose resolution will advance their students’ understanding at different points along 

the developmental pathway toward current disciplinary knowledge, how to help students 

represent and express their ideas in a variety of ways, how to establish and maintain norms 

appropriate to a scientific or mathematical classroom community, and how to orchestrate student 

discourse. (p. 354) 

Unpacking the recommendations expressed in the quote aligns with the first two sections 

of this chapter. In order for teachers to understand how to choose and design mathematical 

problems, they need to first understand how students think about reasoning-and-proving and 

their struggles to construct proofs. So the first section reviews the literature on teaching and 
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learning proof followed by a section on choosing and designing productive tasks for increasing 

student knowledge of proof. 

2.1.1 Secondary Students’ Experiences and Understanding of Proof 

In most secondary mathematics classrooms, students are not provided opportunities to make and 

prove conjectures, so it is not surprising that secondary students struggle to write proofs (Bell, 

1976; Recio & Godino, 2001; Porteous, 1990; Senk, 1985) and are unaware of what a proof 

means (Chazan, 1993; Healy & Hoyles, 2000; Knuth & Sutherland, 2004). All seven studies 

listed collected data outside of classrooms through interviews or survey questions. In other 

words, the researchers did not provide an intervention to build student understanding of proof. 

Instead they collected data by asking questions or having students write arguments to learn if 

typical classroom teaching was productive (Bell, 1976; Healy & Hoyles, 2000 Recio & Godino, 

2001; Senk, 1985) or to better understand how students think about justifying arguments 

(Chazan, 1993; Knuth & Sutherland, 2004; Lannin, 2005; Porteous, 1990). The studies, which 

take place outside the classroom environment, provide outcomes of what individuals thought or 

wrote at the moment of the survey or interview. Three other studies examined classrooms where 

proof tasks were implemented (Bieda, 2010; Martin, McCrone, Bower, & Dindyal, 2005; 

Lannin, 2005). Lannin was the researcher and instructor for 10 classes and interviewed a subset 

of the students outside of class. The other two studies examined classrooms and shared the 

challenges encountered as the teacher engaged their students in reasoning-and-proving tasks. The 

student verbal and written responses along with the classroom interactions portray a complete 

picture of what students think and how they come to understand reasoning-and-proving. 
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2.1.1.1 Outside Classroom Assessment: Are Examples Convincing to Students?  

Many researchers suggest secondary students do not use examples to exhibit truth of a 

mathematics statement, but stop at examples since it is either all they understand or they have yet 

to gain a clear grasp of generality (Chazan, 1993; Healy & Hoyles, 2000; Lannin, 2005; Knuth & 

Sutherland, 2004; Porteous, 1990). Chazan (1993) learned from interviewing students that some 

were convinced with empirical arguments, but knew that a collection of examples was not a 

proof. However, Healy and Hoyles (2000) also found students when asked to write a proof 

overwhelmingly produced one based on examples, but when asked to identify the answer their 

teacher would give the best mark among a set of presented solutions, students rarely choose 

solutions consisting of examples alone.  Additionally, Healy and Hoyles discovered that a 

majority of students even choose an illogical algebraic response (figure 2.1) as one their teacher 

would give the highest grade. The conjecture was that when you add any 2 even numbers, your 

answer is always even. The researchers concluded that these high-attaining students (aged 14­

15) choose Eric’s answer since it was “hard” to follow.  In other words, secondary students see 

using examples as a sensible approach that falls short of proof, and believe teachers want to see 

symbolic notation even if it does not make sense to them. Both studies suggest that students 

exhibited a limited understanding of generality, even though they believed it was important 

mathematically. 

Eric’s Answer 
Let x = any whole number 
      y = any whole number 
x + y = z; z – x = y; z – y = x 
z + z – (x + y) = x + y = 2z 

So Eric says it’s true. 

Figure 2.1. Eric’s answer 
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Knuth and Sutherland (2004) developed their study based on Chazan (1993), Healy and 

Hoyles (2000) and Porteous (1990) (discussed below) specifically focusing on the issue of 

generality. They argue that a limited understanding of how to generalize or what it means to 

generalize a situation may be an inhibitor for students’ to construct proofs.  Knuth and 

Sutherland collected data from 394 middle school students that used the Connected Mathematics 

Project (CMP) curriculum. In the study, students were presented two items. The first item asked 

student participants to choose between two researcher-produced solutions: an empirical argument 

and a proof. The solutions were derived from the following statement: When you add any two 

consecutive numbers, the answer is always odd. On this first item, 40% of the 6-8th grade 

students choose the solution with three examples. About 30% of the students, chose the 

deductive argument, which was written in words (not algebraic symbols). The remaining 30% 

either choose both or neither response as a proof of the statement.  Based on a pilot study the 

previous year asking students to produce an argument for the conjecture listed above resulted in 

an overwhelming reliance on empirical arguments.  This led the researchers to conclude that 

even if students could not produce a general solution, many (about 30%) recognized the need for 

one. 

The second item asked the same 394 middle school students to write an argument to a 

“number trick” (Choose a number and add 3, double the sum. Write the number down. Return to 

the number chosen and double it then add 6. Will these solutions always be the same?). The 

question included: Is it true for the numbers one through ten?  The small range of numbers (1 to 

10) allowed for students to either write a generalization or exhaust all ten numbers to construct a 

proof. A follow-up question was for students to explain if the “number trick” would produce the 

same two numbers for any starting numbers not just one through ten. The lowest level of 
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understanding consisted of responses in which students only produced a few examples to the 

“number trick” and believed that it worked for all possible numbers even those greater then ten. 

A second group produced a proof by exhaustion for the first part, but only chose a few examples 

outside the range claiming that the number trick will work for any number.  A third group also 

produced a proof by exhaustion, but recognized the limitation for numbers greater than 10, but 

were unable to produce a generalization. Another group choose exhaustion and generalized for 

all numbers.  A fifth group constructed a deductive argument from the start for all numbers, but 

some seemed unsure if their argument would always work.  The final group constructed a 

general argument, but then tried a few more examples to check if their argument was secure.  So 

this wide range of solutions suggests that some secondary students can generalize, but several 

issues arise.  Some students exhibited deficiencies in determining the difference between using 

examples and proof by exhaustion. If they believe examples are enough, then they do not have a 

need for generality. Others see the need, but have limited skill in forming a solution for all 

numbers.  Some are beginning to think in general ways, but struggle to understand how a general 

argument applies to all numbers. Overall the results make clear a wide spectrum of student 

thinking that teachers need to be made aware of in order to move their students along the 

trajectory toward generating valid arguments and understanding what generality means.  

Knuth and Sutherland (2004) identified Porteous (1990) as the source for engaging 

students in a “number trick” to focus on the issue of generality. Porteous interviewed 50 students 

three times, who ranged in age from 11 to 16 years old. Unlike the Knuth and Sutherland study, 

students were not provided a range of numbers, so a proof by exhaustion was impossible. 

However, after the students answered the original “number trick”, the interviewer asked if a 

particular number (such as 16) worked. Each interview included two general number trick 
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statements (does it work for all numbers?) and after the student responded to the general 

statement, the researcher followed up by asking if a particular number was true.  Porteous’s 

rationale was that if students truly believed that the general statement was true and understood 

that it worked for all numbers, then a specific number like 16 would be accepted as true based on 

the general being true. So even if a student used a few examples and explained that it was true 

for all numbers, then the student would not need to check 16 if he or she believed the general 

case was valid. On the other hand if the student checked 16 after claiming to have proved the 

“number trick” for all numbers, then Porteous claimed the individual did not truly believe in their 

response to the general statement. An unintended result was that some students that were able to 

provide a logical valid argument for the general case used it to check the result of the particular 

case. The overwhelming majority of student responses (247 out of 290) answered the general 

statement with examples. Only 19 of the 247 empirical responses explained that the particular 

must be true since the general was true. Of the 43 (out 290) student responses that followed a 

logical argument, 31 used their response to the general case to answer the particular. The 

researcher made two overall claims from these findings. Even though students overwhelmingly 

rely on examples, they are not confident in empirical arguments since only 19 of 247 responses 

relied on a few examples to make a claim of the particular number that they did not check.  On 

the other hand, when students that can produce a proof, they are more confident (31 out of 43) in 

claiming the particular must be true based on the general.  Therefore, students know that 

deductive arguments are required to claim the truth of a mathematical statement, but most 

students are unsure how to move beyond just checking examples.  

The final study about secondary students thinking about proof identifies an intermediate 

step between empirical examples and a deductive argument. Lannin (2005) was a crossover 
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study in that the researcher taught the 25 sixth-grade students, and he interviewed four target 

students based on their ability levels five times each. Lannin engaged the class in solving five 

contextual pattern tasks over 10 class sessions. He identified generic example as a level of 

justification between empirical and deductive reasoning, and a successful argumentation method 

for students to move beyond just checking cases.  A generic example proof explains general 

features of a situation using a particular example. The researcher uncovered that even though 

many students produced correct generalizations for the linear relationships, their justifications 

uncovered varying degrees of understanding.  Some students simply guessed formulas until they 

found one that matched several convenient cases, and other students followed recursive methods. 

Both of these forms of reasoning are based on specific examples. However, successful students 

connected their algebraic formula with general features of a specific example: generic example. 

So while constructing a generalization is essential to producing a proof, examining how students 

construct a generalization provides more insight into their reasoning skills and trajectory toward 

proof. Lannin (2005) explains that knowing how students think about their generalizations will 

allow teachers to better support student learning of mathematically appropriate forms of 

justification and that some types of tasks are better suited to highlight students thinking of 

generality.  In particular, tasks that support generic argument solutions may be a better scaffold 

than the leap from empirical examples to deductive arguments. 

Too often students rely on examples when asked to show that a mathematical statement is 

true (Bell, 1976; Chazan, 1993; Healy & Hoyles, 2000; Knuth & Sutherland, 2004; Porteous, 

1990; Recio & Godino, 2001). However, the consensus finding is not that students believe 

examples convey truth, but students are simply unsure how to construct deductive arguments 

(Chazan, 1993; Healy & Hoyles, 2000; Knuth & Sutherland, 2004; Porteous, 1990).  Lannin 

31 



 

 

 

 

 

 

 

 

suggests a generic example proof as a productive method to move students from simply checking 

a few examples toward deductive reasoning.  Ball et al. (2002) use the term transparent proof 

instead of generic example and define it as “a proof of a particular case which is small enough to 

serve as a concrete example, yet large enough to be considered a non-specific representative of 

the general case” (p. 915). Ball et al. advocate introducing students to generic example proofs 

(transparent proof) for they are more intuitive thus more accessible to students (2002). Many of 

these studies suggest a progression among students from empirical examples to deductive 

arguments (Bell, 1976; Healy & Hoyles, 2000; Porteous, 1990; Senk, 1985) or exhaustion when 

possible (Knuth & Sutherland, 2004). However, informal methods of proof (generic example) 

appear to support students in moving away from empirical arguments since a generic argument 

provides students access to think in general terms while considering a specific case.   

2.1.1.2 Secondary classroom handling of proof discourse   

Supporting student engagement in reasoning-and-proving tasks during classroom instruction 

requires an environment in which students are pressed to justify their thinking. Through 

classroom observations of proof instruction, Harel and Rabin (2010) have identified teacher 

practices that are associated with an authoritative instructional view. Instructional practices that 

position the teacher or text as the mathematical authority in the classroom contradict calls for 

students to engage in problems using multiple representations. An authoritative view relies on 

presenting polished solutions and does not support students applying their prior knowledge to 

novel situations. On the other hand, the teaching of proof must stay true to the rigor of 

mathematics (Hanna, 1995; A. Stylianides, 2007). Students need to learn the parameters of what 

is an acceptable mathematical argumentation so as to not believe all explanations are valid. If 

teachers analyze student work and accept non-proof arguments as proof, students develop 
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misunderstandings as to what counts.  Therefore, a teacher needs to establish classroom criteria 

for proof to hold students accountable as they generalize patterns and justify conjectures.   

Since finding tasks that promote opportunities for reasoning-and-proving are almost 

nonexistent in secondary curricula, Bieda (2010) choose to study classrooms using the 

Connected Mathematics Project (CMP) since it was identified as containing reasoning-and­

proving tasks (G. Stylianides, 2009).  Bieda wanted to understand whether teachers who have 

experience with a curriculum that includes reasoning-and-proving tasks enact them in a way that 

supports students in gaining an accurate view of proof.  She collected data from seven middle 

school teacher’s classrooms (3 sixth grade, 2 seventh grade, and 3 eight grade) in the same 

district. All seven participants taught for at least nine years, and each had taught the CMP 

curriculum for at least three years. Six of the seven teachers attended quarterly daylong district 

professional meetings on how to best enact the CMP curriculum. The researcher observed the 

implementation of six or seven proof-related tasks in each of the seven classrooms for a total of 

43 tasks. Bieda concluded that in particular the teachers’ discourse failed to support students 

with learning what constitutes a proof.  While the students and teachers engaged in discourse, the 

discussions were not centered on a commonly shared view of how to determine the validity of a 

proposed argument. Occasionally students presented work, but the teachers rarely provided 

feedback. This resulted in non-proof arguments being accepted as truth.  Only once did a student 

question another student’s work. Just over half of all the proving events in the classes were 

justified with non-proof arguments. These results led Bieda to recommend that curricula 

materials provide assistance to teachers on how to provide critical feedback by recommending 

standards for proving. 
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Martin, McCrone, Bower, and Dindyal (2005) analyzed the discourse of a geometry 

classroom as the teacher, Mr. Drummond (Mr. D.), engaged students in proving activities. The 

purpose was to indentify the pedagogical moves the teacher used during instruction that 

supported students’ understanding of valid arguments.  The researchers identified revoicing 

student claims and requesting for student evaluation of presented arguments as two moves that 

appeared to support learning. Mr. D provided his students opportunities to reason and make 

conjectures about mathematical situations prior to justifying their arguments. For instance, 

students were asked to list what they noticed while examining two congruent concave pentagons. 

One student suggested a conjecture that the distance between two nonadjacent vertices was 

congruent (see figure 2.2). In particular, line segment BD is congruent to line segment NP.  Mr. 

D suggested that the class justify this claim.  After observing the teacher over a 4-month period, 

the researchers determined that Mr. D’s facilitation of open-ended tasks was effective at 

providing students’ opportunities to justify and construct valid arguments in a axiomatic system. 

However as discussed in previous research, students failed to fully grasp that a proof meant that 

no counterexamples are possible.  Even after agreeing on a proof toward the end of the four-

month observation period students still checked examples to convince themselves of the truth. 

Martin McCrone, Bower, and Dindyal concluded that while the discourse may have been helpful 

to support students in developing productive axiomatic argumentation, more is needed to help 

students learn that proof is not just a ritual but how truth is reached in mathematics.   
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Figure 2.2. Conjecture made in Mr. D’s class 

Both studies (Bieda, 2010; Martin et al., 2005) identified time as a challenge to 

supporting students’ knowledge of proof.  Bieda suggested that it is possible that many of the 

observed class discussions may have fallen short of a valid justification because of time 

restrictions. Additionally, Martin et al. identified time on occasions when Mr. D took over the 

thinking of students. They noted that Mr. D presented students proofs when the end of class was 

approaching. Knuth (2002b) found that teachers also indicated that time would be a reason for 

not enacting proof tasks in their classrooms.  This obstacle deserves further consideration since 

teachers identify it as a reason for ignoring proof or limiting students to fully explore it, and if 

justification is truncated as a result of time, it can confuse students about what are acceptable 

arguments. 

Another interesting observation in both classroom studies was the absence of any 

mention of the use of classroom criterion for what counts as proof.  Bieda (2010) identified A. 

Stylianides (2007) criteria as her method for analyzing the classroom argumentations, but did not 

make it clear whether any of the classroom teachers constructed a list of proof characteristics 

with their students. Additionally, Mr. D was noted as using productive classroom discourse, but 

there was no mention of a criterion that students in the class could use to hold one another 
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accountable. A. Stylianides (2007) explains that an explicit definition of proof serves two 

important functions for instruction: 1) connecting the classroom with the mathematics 

community where the teacher is the link, and 2) being explicit as to what counts and using the 

list to validate solutions. When classroom communities do not create a shared criterion for 

judging proofs, it is possible for non-proof arguments to be accepted (A.J. Stylianides, 2007), as 

was the case in more than half of the implementations in the Bieda study.             

Most of the research on proof with secondary students focuses on students’ lack of 

understanding on two levels: 1) students possess a limited understanding of how to construct a 

valid argument; and 2) students possess an insecure knowledge of what a proof means in 

mathematics. For instance, some students can construct a valid argument, but are uncertain 

when questioned about the arguments generality. Opportunities for students to produce generic 

examples have shown to be a productive scaffold in moving students between empirical and 

deductive arguments. Classroom discourse plays a critical role with developing students 

understanding and without an explicit agreed upon list of what counts as proof, invalid responses 

may be accepted.  Accepting non-proof arguments as proof is counter productive to developing 

students thinking. 

2.1.2 College Students’ and Teachers’ Experiences with Learning to Prove 

Upon graduation from high school and prior to teaching secondary mathematics, the final 

opportunity to learn to prove statements occurs in undergraduate mathematics courses since most 

teacher certification programs do not offer specific courses on reasoning-and-proving.  In high 

school, students typically only study proof in an axiomatic Euclidian geometry course, so their 

transition to proof at the university level is unexpected and abrupt (Moore, 1994).  Students enter 
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novel fields of mathematics such as abstract and linear algebra and are exposed to new terms in 

these domains. Instead of manipulating equations or following route procedures as they did in 

most high school courses, students are called upon to make sense of definitions in new 

mathematical domains and apply them to form valid arguments. Needless to say, undergraduate 

mathematics majors struggle to understand novel concepts, so applying them to proof writing is a 

difficult undertaking (Edwards & Ward, 2004; Moore, 1994).       

In interviewing first year undergraduate students, Solomon (2006) investigated their 

previous experience and current understanding of proof. In particular, she interviewed 12 

students to gain their insight on proof construction and their role as students in the formulation of 

arguments.  Similar to Harel and Rabin’s (2010) discussion of authoritative practices, the 

participants in Solomon’s study proclaimed to be outsiders in the negotiation of conjectures and 

exploration of patterns.  Instead they labeled the professor as the authority in the construction of 

proofs and indicate that students were only asked to reproduce arguments previously presented in 

class or were shown proofs as side activities. The proofs were presented to tell the students why, 

opposed to the class constructing proofs to understand why a method works or why a conjecture 

is true. For instance, one student was quoted as saying: “I’m told ‘so and so and so and so is 

this’ then I won’t go and read and try and understand why. I just remember the result… I think 

they just do it so they don’t get criticism of just throwing it at you” (p. 387).  Consequently, these 

undergraduate students did not view proof as playing an integral part of mathematics.  Solomon 

argues that transforming student views of proof is only possible through changing pedagogical 

practices away from computational and individual result driven instruction, toward whole class 

construction and communication. The implementation of proof tasks heavily influences students’ 

perceptions and beliefs of proof (Solomon, 2006; Harel & Rabin, 2010). 
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It is possible for students to make sense of concepts if they are provided time to 

investigate worthwhile tasks. However, they need to learn reasoning skills to understand how to 

make sense of new concepts.  Dahlberb and Housman (1997) conducted cognitive interviews 

with 11 third and fourth year mathematics students at a small liberal arts college.  Most of the 

students were considering careers as secondary mathematics teachers. Students were provided a 

fictional definition related to a concept they were asked to explore with specific directions.  Then 

the interviewees were asked to verify if six suggested statements met the concept definition. The 

final part of the interview was list of four conjectures the students were asked to prove (as shown 

in figure 2.3). This study was based on the ideas of concept image (definition) and concept usage 

(application) initiated by Tall and Vinner (1981).  Students that made use of generating examples 

and representations were most successful at identifying correct conjectures.  Students that used 

other strategies such as memorization to understand the concepts were less successful and 

usually guessed (incorrectly) without much justification when asked to identify true conjectures. 

Additionally, students who utilized memorization to learn the concept relied heavily on the 

interviewer to determine correctness of their answers. Providing students opportunities to 

understand the value of generating their own examples or constructing diagrams to understand 

the context of a problem better prepared students to make conjectures, and allowed them to 

become more reliant and confident with their mathematical ability. While this study was based 

on interviews, Dahlberg and Housman recommend that classroom instruction should promote 

students to generate their own examples and connect multiple representations to support students 

in developing proof arguments. 

Definition Instructions Verification page 
(Determine and justify 

Conjecture page 

38
 



 

 

  
 

 

 

  

 

   

which are fine) 

A function 
is called 
fine if it has 
a root (zero) 

a. Give an example of a fine 
function and explain why it is a 
fine function. 
b. Give an example of a 

ƒ(x) = sin(πx)
ƒ(x) = x2 – x
ƒ(x) = 0
ƒ(x) = 0 if x is rational; 1 

No polynomial is a fine 
function. 
All trigonometric functions 
are fine. 

at each 
integer. 

function, which is not fine and 
explain why it is not fine. 

if x is irrational 
ƒ(x) = tan((π/2)x) 

All fine functions are 
periodic. 

c. In your own words and/or a graph The product of a fine function 
pictures, explain what a fine and any other function is a 
function is. fine function. 

Figure 2.3. Contents of Dahlberg and Housman interview 

Smith (2006) interviewed five students in two different introductory number theory 

courses at a large state university. Two students were in enrolled in the introductory number 

theory class taught in a lecture format, and the students’ role was to passively follow the 

professor as he solved problems. The other three students were enrolled in the same number 

theory course, but the professor engaged students in a problem-based format where students were 

expected to actively engage in solving problems in class. The students were interviewed twice 

during the semester course.  The interviewer asked students of their views of proof and the role it 

played in mathematics and to “think aloud” as they proved two number theory statements. The 

two interviews contained both parts (questions, solving problems), but the second interview had 

an additional section where the students were asked to validate arguments.  All five participants 

reviewed four solutions in the second interview that were adapted answers the students 

themselves constructed during the first interview. 

The students in the traditional course described proof with a strong focus on structure and 

form, while students in the problem-based course valued meaning.  Consequently, the students in 

the traditional course viewed proof as an algorithmic process, and the others focused on making 

sense of the concepts and writing down what they knew about the problem as they crafted their 
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argument.  Needless to say, the traditional course participants were reluctant to generate their 

own examples to gain insight into problem context. With regard to analyzing arguments, the 

students in problem-based class again applied an understanding versus judging based on form. 

For instance, the two students in the traditional course praised a solution that used a proof by 

contradiction method even though there was an obvious gap in the argument.  The results of the 

study suggest a relationship between classroom instruction and students’ practices with solving 

proof tasks and analyzing arguments.   

Traditionally presenting undergraduate students with proofs is problematic for a few 

reasons. It distances them from understanding the purpose of proof in mathematics, and denies 

them access and belief that they can construct a proof on their own. A presented proof becomes 

an object for students to memorize (Knuth, 2002b).  Providing college students an environment 

in which they can reason through example generation shows promising results toward improving 

their ability to write proofs as was shown with secondary students.  It is well documented that 

university students struggle to write proofs in university courses mostly because the students are 

unfamiliar with the content and forms of reasoning (Weber, 2001). More specifically, 

undergraduate math majors cannot write proofs because they do not know the definitions of the 

terms in the problem (Edwards & Ward, 2004; Moore, 1994).  However, even when the concepts 

are at the high school level students still struggle.  Selden and Selden (2003) interviewed eight 

undergraduate math and math education majors and found that only two were able to write a 

proof for the this statement: For any positive integer n, if n2 is a multiple of 3, then n is a 

multiple of 3.  So even college students majoring in mathematics need classrooms where they are 

supported to reason so they can make sense of new ideas, organize valid arguments, learn what 

constitutes a proof, and understand the role proof plays in mathematics. 
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As previously mentioned, most practicing teachers are not exposed to additional courses 

or learning experiences to learn proof beyond undergraduate courses.  So it should not be 

surprising that secondary teachers believed it is their responsibility to present a proof to their 

students since this was what they experienced and expected as students.  And since college 

students struggle to produce proofs, it should also not be surprising that teachers believe writing 

them is difficult. Therefore, expecting high school students to prove statements beyond 

traditional two-column geometry proofs is unlikely.  Knuth (2002a; 2002b) explored these 

issues. As with secondary and university students, he reported that experienced teachers also 

demonstrated a limited view of proof. Secondary teachers misunderstand the role proof plays in 

mathematics, do not believe all students should be exposed to proof tasks (Knuth 2002b), and 

lack an accurate criterion for evaluating student arguments (Knuth 2002a; Selden & Selden, 

2003). In others words, teachers not only need to learn how to support students learning, but 

they also have to learn for themselves about the role of proof in mathematics and need additional 

support with constructing logical valid arguments.  In particular they saw it as a separate topic of 

study rather than a way to makes sense of content.  Teachers conveyed a limited understanding 

of which arguments count as proof.  In addition to limiting proof to special topics, they also 

believed it should be reserved only for the highest achieving students and not an activity in 

which all students could or should participate. Restricting access and opportunity to reason-and­

prove contradicts what mathematics educators and standards have suggested as its role in schools 

(Ball et al. 2002; Hanna, 1995; NCTM, 2000; CCSS, 2010).  Providing teachers an opportunity 

to engage in tasks that provide access for more students across a variety of contexts could help 

them to realize how proof can be accessible to all students and applicable in beyond special 

occasions. 
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2.2 REASONING-AND-PROVING TASKS 


Instructional tasks provide students opportunities to learn concepts, and shape students thinking 

about the subject in general (Doyle, 1983; NCTM, 1991).  In other words, if teachers only 

engage students in tasks that require them to follow a provided procedure, then students will only 

improve their ability to carry out procedures and believe that to study mathematics and gain 

competence is to perform procedures.  Moreover, if students are asked to engage in classroom 

tasks that promote reasoning, then students will not only see mathematics as a creative process, 

but will also become proficient.  “Worthwhile tasks” not only address the topics in the grade 

level curriculum, but also provide access to a diverse group of learners, allow for more than one 

correct answer, and stimulate students to interact with one another as they reason (NCTM, 1991). 

Teachers’ ability to choose or design reasoning-and-proving problems is especially 

important since many secondary curricula contain a limited supply of tasks requiring these 

processes (Johnson, Thompson, & Senk, 2010). G. Stylianides (2008) designed the reasoning­

and-proving framework as a research tool, and since explained how teachers could use it as a 

trajectory for scaffolding students thinking toward valid arguments (G. Stylianides, 2010). A 

mathematically acceptable criterion for judging the validity of proofs should be constructed in 

classrooms so that students can hold each other accountable (A. Stylianides, 2007).  Specific 

reasoning-and-proving discourse would address both moving students along the activities in the 

framework and contrasting whole class presented arguments against the develop criterion. 

Preparing teachers to choose worthwhile tasks and support their students with understanding and 

constructing proofs in this way is half of the challenge.   

Doyle (1988) introduced the concepts “cognitive level” and “academic demands” of a 

task. He described tasks that prompt students to recognize or memorize information such as 
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multiplication facts or provide the name of a geometric shape as a low cognitive level tasks. A 

high cognitive level task promotes problem solving.  Mathematics standards (NCTM, 1989, 

2000; CCSS, 2010) promote both procedural and conceptual understanding, but the majority of 

tasks in secondary curricular materials do not provide opportunities for students to develop 

reasoning skills (Hanna, 1995; Johnson, Thomson, & Senk, 2010).  

The researchers on the QUASAR project also noticed the importance of tasks and their 

affect on student learning (Stein, Grover, & Hennigsen, 1996). Stein and Smith (1998) expanded 

upon Doyle’s (1988) work with cognitive levels, later articulated in the Task Analysis Guide 

(TAG). Similar to Doyle’s levels, the TAG is divided into low and high cognitive levels of 

demand.  However, Stein and Smith specified the TAG for specifically analyzing mathematics 

tasks as opposed to Doyle’s subject neutral descriptions.  The two lower level cognitive 

categories are Memorization and Procedures Without Connections. Procedures with Connections 

and Doing Mathematics are the titles of the high cognitive demand levels.  Each of the four 

levels possesses distinctive qualities. 

Low-level tasks lack a press for conceptual understanding or justification, and focus on 

producing one correct answer (Stein, Smith, Henningsen, & Silver, 2000). Memorization tasks 

involve students recalling previously learned concepts in which no procedure is needed or the 

amount of time allotted for the task restrains the possibility of following one.  Asking students to 

list a definition or theorem is an example of a memorization task.  Procedures without 

connections tasks require a procedure, but suggest following a method without explaining why it 

works or how to relate multiple representations. An example could be to ask students to write an 

equation from coordinate points in a given x-y table. A scripted rehearsed procedure is the 

expected solution path such as: the y-intercept is substituted for b in the slope-intercept form of a 

43 



 

 

 

 

 

 

 

 

linear equation (y = mx + b) and m is replaced with the fraction comprised of the change in the y 

values in the numerator and difference between the x values in the denominator.  While this is a 

popular procedure taught in pre-algebra and algebra classrooms, it does not explain why or in 

which situations this process works. A procedure without connections might ask students to 

explain their procedure, but the explanation only retells the steps without attention to 

mathematical understanding. Additionally, connections to other representations such as a graph, 

which could lead to conceptual understanding is ignored. Overall low-level tasks require limited 

thinking on behalf of the student, but can be used to improve speed and precision with routine 

problems (Stein et al., 2000). 

High-level cognitively demanding tasks are intended to build a deep understanding of 

particular concepts and gain a greater sense of what mathematics is in general (Doyle, 1988; 

NCTM, 1991; Stein et al., 2000). Procedures with connections tasks allow for students to choose 

a solution path based on their prior knowledge or to draw comparisons across multiple 

representations or methods (Stein et al., 2000).  While a process is used, it is not followed 

without thinking through the problems context or underlying meaning.  An example of a 

procedures-with-connections task would be the following problem: 

Tim has $1,000 and places it in a bank, which earns a simple 5.5% annual interest rate. 

Ginny also has $1,000 saved and finds a bank that offers a 5% compounded quarterly interest 

rate. Ginny tells Tim to move his money into her bank because in 6 years when they graduate 

high school she will have more money than him. Tim says that is impossible my bank provides a 

greater interest rate. Make a graph of the first six years of Tim and Ginny’s money and explain 

who has the better savings plan. 
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The Tim and Ginny bank task is procedures with connections since it expects students to 

follow the procedure to find simple and quarterly compound interest, and tells students to make a 

graph. However, as students follow the procedures they will notice the differences between the 

two savings plans and more generally simple versus compounded interest.  The problem is not 

simply asking for how much each child has in the bank in six year. Doing mathematics tasks are 

the highest level and require students to investigate novel problems and at times, multiple 

solutions.  The ambiguity of these doing math problems may cause students to become frustrated 

for they require sustained attention to try various methods and simultaneously keep track and 

organize successful and failed attempts to recognize patterns. An example of a doing 

mathematics task is: 

The Glee Club wants to order shirts for their 5K fundraising event. Last year 250 people 

ran in the race. This year they expect many more runners based on the club’s Facebook page. 

Two shirt companies expressed interest in providing support through offering special discounted 

prices for the fundraiser. Tina’s T-shirt shop will charge $40 to create the 5K running logo and 

$6 for the first 200 shirts and $4 per additional shirt beyond 200.  Stevie’s Shirts offers $100 to 

create the shirt logo and $5 per shirt.  Make an argument to convince the Glee Club in support of 

one of the shirt companies. 

The t-shirt buying task is at the doing mathematics level since there is no correct answer. 

Students will need to develop a contextual argument based on their estimates for how many 

runners they expect at the race. They could choose to solve the problem in several different 

ways. Extensive practice with high-level tasks will improve students’ ability to solve problems 

and reason in a variety of contexts. As the standards call for more student understanding 

(NCTM, 1989, 2000; CCSS, 2010), these cognitively demanding tasks are gaining extensive 
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attention in mathematics research and professional develop since they are scarce in curriculum 

materials (Hanna, 1995; Johnson, Thomson, & Senk, 2010) and are difficult for teachers to 

implement (Henningsen & Stein, 1997; Stein, Grover, & Henningsen, 1996).    

In addition to the work of Stein and colleagues on tasks in general, Stylianides (2008, 

2010) proposed a framework for looking at reasoning-and-proving in particular, which includes 

three components (Figure 2.4).  The term, reasoning-and-proving is hyphenated to include the 

full range of activities associated with scaffolding students’ thinking with constructing proofs. 

The mathematical component includes two sections generalization and argumentation. Explicitly 

requiring students to first examine cases to find a pattern provides students access to begin 

thinking about a mathematical situation.  Once students observe regularity within a pattern that 

they constructed, they are better prepared to suggest a conjecture. Both looking for patterns and 

making conjectures contribute to developing a generalization. Arguments are simply non-proofs 

or proofs, with two types in each category. While empirical arguments are not proofs, starting by 

generating examples helps students to make sense of the mathematics, which can lead to 

developing a proof (Dahlberb & Housman, 1997; Lannin, 2005; Smith, 2006).  A rationale, also 

not a proof, is not example based, but the solution makes logical leaps or includes statements that 

have yet to be accepted by the mathematical classroom community (Stylianides, 2008).  All 

proof tasks do not need to include the full range of activities, but initially supplying students with 

tasks that first allows them to look for patterns provides a scaffold toward a generalization and 

proof. Teachers should choose tasks that explicitly call for the generalization activities, so that 

students come to realize how the activities in the framework are helpful in producing a proof. 

The hope then would be that students would look for patterns and make conjectures even when 

tasks are more open-ended.  
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Reasoning-and-proving  

What are the major activities involved in reasoning-and-proving? 

Making generalizations Developing arguments 
Mathematical 
Component 

Identifying a 
pattern (plausible or 
definite) 

Making a conjecture 

Developing a proof 
(generic argument or 
demonstration) 

Developing a non-
proof argument 
(empirical argument or 
rationale) 

Learner  
Component 

What are students’ perceptions of the mathematical nature of a pattern / conjecture / 
proof / non-proof argument? 

Pedagogical 
Component 

How does the mathematical nature of a pattern / conjecture / proof / non-proof argument 
compare with students’ perceptions of this nature? 

How can teachers help their students reconsider and change (if necessary) their perceptions to 
better approximate the mathematical nature of a pattern / conjecture / proof / non-proof argument? 

Figure 2.4. Reasoning-and-Proving Framework adapted from G. Stylianides (2010) 

The learner component focuses on the students’ conception of the four different 

arguments.  The teacher questions the learner to try and uncover misunderstandings about the 

nature of a proof. Porteous (1990) tested learners’ understanding of generality when he asked 

the students to determine if the number 16 would work after students already were expected to 

write a proof. How the students answered the question, provided the researcher with insight into 

the learners thinking of proof.  Knuth and Sutherland (2004) also questioned students thinking of 

proof and noticed some students continued to examine cases after they claimed to have generated 

a valid argument.  In other words, known student misconceptions about reasoning-and-proving 

are turned into questions to press students thinking toward a broader understanding of proof 

beyond just constructing valid arguments. 
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The pedagogical component builds on both the learner and mathematical components. 

Based on what the teacher learns from engaging with his or her students, the teacher will need to 

make decisions that connect the students’ current thinking and to the more conventional 

understanding of the broader mathematical community.  Here the teacher is positioned to choose 

tasks or choose specific questions to bridge students’ knowledge. For instance, students who 

seem satisfied with empirical arguments could change their thinking if they were asked to solve a 

task where the initial pattern fails after the first few examples.  Engaging in such a task could 

provide the students with a need for something more than checking a few cases and becoming 

convinced of its truth (G. Stylianides & A. Stylianides, 2009).  Once students believe that a few 

examples is not enough, Lannin (2004) suggested providing students with tasks that provide an 

opportunity for them to generate generic arguments since such tasks are useful at bridging 

students thinking from empirical to deductive thinking.  A teacher is attending to the pedagogical 

component of proof as he or she specifically chooses tasks that foster students’ growth along the 

trajectory from non-proof to proofs and illuminates their knowledge of each of the arguments. 

Proof tasks do span all four levels (as shown in Figure 2.5). The memorization task in the 

top left corner of the figure (2.5) only asks students to fill in blanks of an almost complete two-

column proof. Students are expected to recall reasons or statements to complete a very 

structured and rigid argument.  Memorization proof tasks do not engage students in any of the 

activities listed in the reasoning-and-proving framework. Related to procedures without 

connections, most pre-service secondary mathematics teachers do not understand how the 

multiple steps used in the process of mathematical induction proves conjectures true (G. 

Stylianides, A. Stylianides, & Philippou, 2007).  Using a procedure to produce a solution without 

reasoning or a complete understanding of how or why the procedure works is the essence of the 
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procedures without connections category. Therefore, low-level tasks call for the completion of a 

proof, and neglect the opportunity for students to reason and justify their thinking. 

Memorization Proof Task 

Write statements and reasons to complete the proof. 
! "  

Given:  ABCDE is a regular pentagon 
Prove: The lengths of line segments AD and 

#"  $"  

&" 
%" 

AC are equal.

 Statements 

AE  ED

AB BC 

! AED  ! ABC 

AD AC

Reasons 

    _____________________________ 

   Sides lengths of a regular pentagon    
    are congruent 

All angles of a regular pentagon  
   equal 108°
   ______________________________ 

     Similar sides of congruent triangles 
are congruent 

Procedures without Connections Proof Task 

Use mathematical induction to prove that for any positive 
integer n, 1 + 2 + 3 + …+ n = (n(n + 1)) / 2 

Figure 2.5 Cognitive levels of proof tasks      

Procedures with Connections Proof Task 

Use the diagram to show that for any whole number n:  
1 + 2 + 3 + … n = (n(n + 1))/2 

Doing Mathematics Proof Task 

Prove that the sum of two odd numbers is even 

A procedures with connections proof task is an example of making an explicit connection 

between an equation and diagram.  There are multiple ways to prove the conjecture, but 

connecting the two representations would help students develop understanding as to the truth of 

the statement.  A student could start with examples such as a 3x3 square and relate that to the 

sum of the first three counting numbers and build a pattern of more examples. Starting with 

examples can scaffold students thinking toward constructing a generic example, which is helpful 

in bridging thinking from empirical to deductive arguments (Ball et al., 2002; Lannin, 2005; G. 

Stylianides, 2008). A doing mathematics proof task is not explicit about how to start the 

problem and could be frustrating for some students.  These tasks are useful to assess students 

understanding of the usefulness of reasoning activities to generate a proof.  In other words, 
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would students know to generate examples on their own without the problem explicitly 

requesting them?  Additionally, it could be used to learn which students are able to generalize or 

construct a demonstration.  High-level cognitively demanding proof tasks either explicitly or 

implicitly engage students in the full range of reasoning-and-proving activities to develop 

justification for proposed conjectures.  

While there is an abundant amount of research, which points to secondary students’ 

inability to write proofs (e.g. Bell, 1976, Chazan, 1993; Healy & Hoyles, 2000; Lannin, 2005; 

Knuth & Sutherland, 2004, Porteous, 1990, Senk, 1985), research is scarce on how to support 

students learning in the domain.  Knuth and Sutherland argue that “If more students are to 

develop their understanding of generality – and of proving more specifically – then they must be 

given opportunities to engage in activities which highlight important ideas about proving” (2004, 

p. 7). High-level mathematics tasks provide students an opportunity to develop understanding. 

Furthermore, G. Stylianides’s (2010) reasoning-and-proving framework provides a full range of 

activities that provide students access to proof.  Therefore, engaging more students more often in 

high-level reasoning-and-proving tasks along with serious considerations of both the learner and 

pedagogical components of the framework is a promising path with supporting students in 

exceeding the recommendations detailed in the policy documents (NCTM, 2000, 2010; CCSS, 

2010). However, a serious challenge is to prepare teachers to select or design reasoning-and­

proving tasks since many secondary curricula contain a limited supply of tasks requiring these 

processes (Johnson, Thompson, & Senk, 2010). 

The following section will provide a theoretical rational for professional development. In 

other words, what do teachers need to know? Three examples of professional development are 
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provided for empirical evidence. The results of these cases of teacher learning will then be 

explained in how they are applied to the learning situation for the participants in this study. 

2.3 THEORETICAL PERSPECTIVE FOR PREPARING TEACHERS TO 

IMPLEMENT R&P TASKS 

Prior to the publication of the earliest standards document, Shulman proposed the existence of a 

“knowledge base for teaching” (1987, p.4). While Ball, Lubienski, and Mewborn (2001) credit 

Shulman for introducing a knowledge base for teaching, they point to the importance as common 

sense. While the theory of a certain knowledge base for teaching seems obvious, actually 

identifying what teachers should know and how they might come to know content and skills to 

successfully engage students in learning mathematics is not obvious (Ball, Lubienski, & 

Mewborn, 2001; Shulman, 1987).   

Shulman (1987) listed seven types of teacher knowledge and identified pedagogical 

content knowledge as the one of special interest.  Over two decades later, Ball, Thames, and 

Phelps ask, “What have we learned and what do we yet need to understand [about pedagogical 

content knowledge]” (2008, p. 392)?  Their conclusion was that the research field has not made 

much progress on reaching Shulman’s vision of building a theoretical framework of a knowledge 

base for teaching. 

Following a related but more practical perspective, Doyle (1983) explained that the tasks 

teachers provide to students in the classroom strongly influence students’ thinking about the 
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content. The QUASAR3 project team expanded upon Doyle’s concept of academic task from 

both a practical and theoretical perspective.  The Mathematical Tasks Framework (MTF) (as 

shown in figure 2.6) was created and applied to analyze classroom instruction (e.g. Boston & 

Smith, 2010; Stein, Grover, & Henningsen, 1996; Henningsen & Stein, 1997) and was used as a 

conceptual instructional tool in developing professional development materials (e.g. Stein, 

Smith, Henningsen, & Silver, 2009).    

Mathematical 
Task: as 
represented in 
resource 

Mathematical 
Task: as set up 
by teacher in 
the classroom.  

Mathematical 
Task: as 
implemented 
by students in 
the classroom Student 

Learning 

Factors influencing 
set up 
Teacher Goals 
Teacher Subject 
Matter Knowledge 
Teacher Knowledge 
of Students 

Figure 2.6. Mathematical tasks framework adapted from (Stein & Lane, 1996) 

3 The QUASAR (Quantitative Understanding: Amplifying Student Achievement and Reasoning) Project was a 
national reform project aimed at assisting schools in economically disadvantaged communities to develop middle 
school mathematics programs that emphasized thinking, reasoning, and problem-solving (Silver & Stein, 1996). 
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The Mathematical Tasks Framework (MTF) is a conceptual perspective that can be used 

to think about how instructional tasks unfold prior to and during classroom instruction (Stein et 

al., 2009). The three rectangles represent the phases through which a task passes as it moves 

from selection to implementation.  The theoretical hypothesis is that choosing high-level tasks 

during the selection process (first rectangle), and maintaining the high level demands of the task 

during the subsequent two phases (second and third rectangles) results in student learning (the 

triangle). 

The circle between phases 1 and 2 in Figure 2.6 includes the factors that influence the 

task set up. In addition to the intended learning goals, knowledge needed for teaching is listed. 

Similar to Shulman’s (1987) identification of knowledge needed for teaching, Stein and Lane 

(1996) also recognized the importance that teacher knowledge contributes to their ability to 

implement a mathematics task. In other words, knowledge needed for teaching is embedded in 

the MTF where a teacher’s understanding of the content and students thinking influences their 

instructional decisions. 

Supporting teachers to select and enact reasoning-and-proving tasks (the three phases of 

the framework) is the basis of the course embedded within this design experiment.  For instance, 

solving tasks was intended to build content knowledge to make better instructional decisions. 

Analyzing narrative cases allowed for the participants to reflect on their own instruction and 

identify factors that support learning at each of the three phases.  However, this study is focused 

on the first phase including the knowledge of reasoning-and-proving and how student think 

about the domain since they are factors that influence the task set up. Pilot data from the initial 

implementation of the course materials showed that teachers struggled to identify high-level 

reasoning-and-proving tasks. Starting with low-level tasks rarely provides students with 
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opportunities to reason during implementation (Stein et al., 1996). So knowing how to produce a 

proof or identify valid arguments alone was not enough support for teachers to select of modify 

high-level reasoning-and-proving tasks. Explicit instruction was provided to the participants to 

identify a task in addition to solving tasks and analyzing student work with respect to proof.  

The last section of this chapter will explain more about how this study will expand on the 

first phase of the MTF along with the knowledge needed to set-up a reasoning-and-proving task.     

2.4 THREE EXAMPLES OF PRODUCTIVE PROFESSIONAL DEVELOPMENT 

THAT EXPANDED TEACHER KNOWLEDGE 

The previous sections focused on what students understand about reasoning-and-proving, how 

classrooms can support learning, the types of tasks that promote reasoning-and-proving, and a 

theoretical model for task unfolding. Through reviewing the content and context of productive 

professional development programs, ones that expand teachers’ knowledge and change their 

practice, this section will glean the properties from the programs that make them successful. The 

previous section helps the mathematics education community understand what teachers need to 

know, but the question addressed in this section is how teachers might best learn the knowledge 

for teaching reasoning-and-proving. 

The focus on supporting teachers’ efforts to improve student-learning outcomes is a new 

area of study when considering the history of education in this country.  Prior to the latest reform 

movement, teaching was described as an autonomic occupation, not a learned profession 

(Shulman, 1987).  However, research has provided evidence that teacher knowledge and 

classroom practice can change given a sustained and focused professional development program 
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(Boston & Smith, 2009; Carpenter, Fennema, Peterson, Chiang, & Loef, 1989; Simon & 

Schifter, 1991). While policymakers are eager to identify the relationship between professional 

development and improved student-learning outcomes (Guskey & Yoon, 2009), finding how 

teachers internalize concepts as learners and enact them in their classroom are essential 

intermediate steps. Scher and O’Reilly (2009) designed a theoretical model where they identify 

three stages of professional development.  The first step includes expanding teachers’ content 

and pedagogical knowledge and dispositions.  The middle phase of growth is focused on 

teachers’ change in instructional practices to match their expanded knowledge and beliefs.  The 

final outcome to professional development is increased student achievement and change in 

student attitudes. Their theoretical model implies that student improvements are dependent on 

teacher growth, or without a change in teacher knowledge, student achievement will not 

improve. They do not suggest the teacher learning as a linear model. Instead teachers would 

engage in activities to increase their knowledge content and practice outside of the classroom. 

This model aligns with the productive professional development programs that will be explained.  

The content of the professional development learning programs that have shown a 

positive change on instructional practices and teacher knowledge address three critical areas: 1) 

building content knowledge, 2) students’ thinking about and learning of the subject, and 3) 

pedagogical skills (Borko, 2004; Guskey & Yoon, 2009; Scher & O’Reilly, 2009; Thompson & 

Zeuli, 1999). In order to learn these three constructs for teaching, the professional development 

curriculum materials should be situated in the everyday practice of teaching (Ball & Cohen, 

1999; Putnam & Borko, 2000; Smith, 2000).  For example, narrative cases of teacher instruction 

have shown to improve pedagogical knowledge (Barnett, 1993).  Others authentic activities of 

practice include but are not limited to videos, analyzing student work, solving math problems, 
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and others related to planning instruction such as anticipating student thinking.  For learning 

these materials to occur, a level of disequilibrium must occur (Ball & Cohen, 1999).  Teachers 

need to experience a cognitive conflict between their current thinking and or beliefs of the 

content, pedagogy, or students with their engagement with materials as learners.  In other words, 

if teachers interpret their experiences as consistent with their current practices or understanding 

of the content, then change is unwarranted in the mind of the teacher.  To change teachers’ 

knowledge and beliefs about content, pedagogy, and student thinking, professional development 

programs need to engage teachers in tasks and pedagogy that are grounded in their everyday 

practice and cause a sense of disequilibrium. 

The following three sections will examine the contexts, content, and effects on teacher 

learning from three separate professional develop programs: Educational Leaders in Mathematics 

(ELM), Cognitively Guided Instruction (CGI), and Enhancing Secondary Mathematics Teacher 

Preparation (ESP). These three programs were chosen based on the aforementioned 

characteristics of situating the professional learning in everyday teacher activities and the 

premise that change in thinking and practice occurs when the learner enters a conflict between 

their current habitual understanding and an unfamiliar yet rationale situation.  Additionally, CGI 

and ELM are identified as exemplars programs in mathematics education (Borko, 2004; Punam 

& Borko, 2004; Thompson & Zeuli, 1999) and ESP is a more recent study of secondary 

mathematics teachers that references both of the other two studies and incorporates ideas learned 

from another well-respected and referenced program, QUASAR. This current study draws on the 

ELM, CGI, and ESP professional development programs in practice and research methods to 

identify changes in teacher knowledge and instruction. 
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2.4.1 Educational Leaders in Mathematics (ELM) 

The Educational Leaders in Mathematics (ELM) was created to prepare in-service teachers for 

the demands of the Curriculum and Evaluation Standards for School Mathematics (NCTM, 

1989) as both a research and instructional program (Simon & Schifter, 1991).  The program 

supported teachers’ growth in understanding the standards, and studied the effects of learning on 

both the participants and their students. ELM follows a constructivist perspective of learning.  In 

the classroom, the vision is for students to construct their own meaning of mathematical 

situations. A mental dissidence occurs between the learners’ current understanding and 

realizations that result from engagement on a task.  The disequilibrium causes the individual to 

modify his or her knowledge by negotiating prior thinking with new experiences. Additionally, 

the classroom community of learners’ develops a shared understanding based on individual 

contributions. Three founding guidelines provide structure for the ELM program (Simon & 

Schifter, 1991 p. 312): 

1) Teachers must be encouraged to examine the nature of mathematics and the 
process of learning mathematics as a basis for deciding how to teach 
mathematics, 

2) Teachers’ learning can be viewed in much the same way as mathematics 
students’ learning, and 

3) Provide follow-up supervision and support. 

The ELM professional development program prepared teachers to support their students 

in constructing mathematical knowledge through four stages of development.  The four stages 

consisted of a two-week summer program (stage 1), follow-up though classroom support (stage 

2), planning sessions (stage 3), and lead local professional development (stage 4).  
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The first ELM stage of professional development for 7-12th grade teachers included 

professional learning sessions. Stage one was a two-week long summer program, which included 

three courses. Course one provided an opportunity for teachers to learn math and discuss 

solutions followed by reflecting on the learning experiences. In this course teachers also 

analyzed and discussed videotaped interviews to study students’ thinking and planned lessons in 

grade level groups for future implementation around critical concepts.  The second course 

involved working with computer software programs as a tool to study shapes and, in particular, 

to make and verify conjectures.  During the final course teachers learned tennis for a week and 

jazz dance instruction for the second week.  The three-course two-week summer program 

provided teachers opportunities to explore mathematics topics in new ways and understand what 

it is like to learn unfamiliar activities such as dance or tennis. 

Following the summer program, ELM project staff provided classroom support and 

additional learning opportunities to foster student conceptual understanding, which was 

considered the second stage. In the following school year after the summer program, an ELM 

staff member attended each teacher’s classroom for one period once per week.  The weekly in 

class observations included a thirty-minute instructional follow-up.  On occasion the ELM 

facilitator taught a portion of a lesson.  In addition to the weekly observations, the teachers 

attended four workshops during the school year to discuss implementation and revisit the 

summer learning activities: solving tasks, analyzing student understandings, and planning 

lessons. The third stage was for the teachers that applied after participating in stage 2.  While 

teachers continued to reason about mathematical content and examine how students enter and 

make sense of the same concepts, the focus shifted toward planning instructional lessons. 

Teachers examined published curriculum and were asked to adapt the written text problems and 

58 



 

 

 

 

 

 

 

 

 

plan lessons to incorporate their new understanding of teaching and learning.  Another piece of 

this stage was to prepare the teachers for new roles as instructional leaders. The final stage (four) 

was an effort to scale up the ELM program.  The teachers took on even greater leadership roles 

as they facilitated ELM workshops. So the teachers started as learners in the initial stage, taught 

lessons in their classrooms to refine their pedagogy in stage two, gained more experience 

planning lessons in the third ELM stage, and finally were asked to facilitate workshops with their 

colleagues. 

The ELM staff members collected teacher writings and conducted interviews to study the 

programs effect on teacher knowledge and beliefs.  The researchers identified several themes that 

emerged upon reviewing teacher written reflections about their experiences at the conclusion of 

the first stage. Teachers’ written reflections conveyed new insights into thinking about how 

students learn mathematics, and their role as teachers in supporting students’ growth.  The 

features of the professional learning environment identified as positive contributors to their new 

thinking about teaching included: engaging participants in small group work, the modeling 

teaching with thought provoking questions, providing time for groups to explain their current 

understanding of a problem, and observing how their colleagues solved tasks.  One teacher 

indicated that stage one created “disequilibrium” between his past teaching and learning 

experiences and this new opportunity. Specifically addressing how his role as a learner of 

mathematics shifted from mindlessly applying procedures to solve problems to actively thinking 

of his solution paths and reflecting on his chosen methods.   

During the follow-up year, teachers completed questionnaires to comment on how the 

ideas learned in the summer session were working during the school year.  They wrote that they 

listen more to what students were saying as part of integrating the ELM strategies.  Focus shifted 
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from getting the right answer to actively involving all students in building conceptual 

understanding. While the first year was not considered ideal, some teachers mentioned that this 

was just the first step in trying to improve instruction. In general the self-reports pointed toward 

shifts in their beliefs about mathematics and how to teach it, and suggested that they had gained 

new knowledge about their role in supporting students in an organized productive learning 

environment.  

A total of 56 teachers were interviewed at the end of stage two and 15 teachers that 

continued until the final stage were interviewed a second time. The interviews were assessed on 

two 5-point scales (0, III, IVa, IVb, V): ACMI: Assessment of Constructivism in Mathematics 

Instruction and LoU: Levels of Use. Both scales range from lowest level (not using a particular 

strategy: LoU or no use of constructivist epistemology: ACMI) to the highest is (collaborating or 

assisting colleagues with implementing the programs practices).  The ELM staff identified nine 

different instructional strategies that the interview raters tagged and rated the teacher’s level of 

use (LoU). For instance, asking non-leading questions and using non-routine problems were two 

of the nine strategies. The ACMI scale was based on the following two-part definition of 

constructivism (p. 325): 

1.	 Constructivism is a belief that conceptual understanding in mathematics 
must be constructed by the learner. Teachers’ conceptualizations cannot 
be given directly to students. 

2.	 Teachers strive to maximize opportunities for students to construct 
concepts. Teachers give fewer explanations and expect less memorization 
and imitation. This suggests not only a perspective on how concepts are 
learned, but also a valuing of conceptual understanding.  

A 99% rater reliability was reached on both scales.  The results show that teachers were 

able to adopt the constructivist perspective and practices.  At the end of stage two only two 

teachers (4%) were assessed at level five on the ACMI scale. Of the 15 teachers that completed 
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stage four, none reached level five at the end of level two, however, 11 (73%) reached level five 

by the end of stage four. On the strategies LoU scale, eight teachers (14%) were rated at level 

five after stage two. Only two of the 15 achieved level five after stage two, but 11 teachers (73%) 

reached the highest level after participating in levels three and four. Simon and Schifter (1991) 

concluded that teachers could learn new practices and views of learning consistent with the 

reform standards (NCTM, 1989), provided intensive in-service learning and support similar to 

ELM is provided. Providing teachers the opportunity to gain ownership of the curricula they 

teach was identified as the main professional development feature, which led to successful ELM 

outcomes.  As teachers chose their own tasks, plan them, and reflect on student learning and 

engagement, they become more confident instructional leaders (Simon & Schifter, 1991).  

2.4.2 Cognitively Guided Instruction (CGI) 

The CGI program focused on using information gathered from research on students thinking to 

improve teacher knowledge, instructional practices, and student learning outcomes.  The 

researchers’ rationale was that research exists on how students apply a variety of strategies to 

solve addition and subtraction problems, but teachers do not make use of or have access to the 

research information (Carpenter, Fenema, Peterson, Chiang, & Loef, 1989).  The CGI project 

employed a control (n = 20) versus experimental (n = 20) group methodology to identify 

differences. The treatment group participated in a four-week summer program while the control 

group was provided two separate two-hour workshops on problem solving.  The CGI research 

team developed classroom-coding protocols used to observe each of the forty teachers classroom 

instruction. Toward the end of the school year after the summer professional development, 

teachers were asked to anticipate how their students would solve particular problems and this 
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was measured against how students actually solved the questions on an end of the year student 

assessment. Additionally, teachers completed a survey gauged to capture their beliefs about 

student thinking and teaching of addition and subtraction. The data collected showed that CGI 

professional development, which focused on sharing students’ thinking with teachers, affected 

their classroom practice and student learning outcomes. 

The learning goal for the treatment group was to understand how elementary students 

employ various methods to solve addition and subtraction problems, and explore how the 

teachers could use this information to support their students in learning the same concepts.  The 

researchers engaged teachers in analyzing student solutions. They sorted tasks into different 

groups according to possible student solution methods. After recognizing the features of the 

different types of adding and subtracting word problems, the teachers began to design their own 

instructional plans.  The twenty teachers and CGI facilitator discussed instructional approaches, 

but none were prescribed. The four guiding instructional principles were (p. 505): 

1.	 Instruction should develop understanding by stressing relationships between 
skills and problem solving where problem solving is the organizing focus. 

2.	 Instruction should be organized to facilitate students’ active construction of their 
own knowledge with understanding. 

3.	 Each student should be able to relate problems, concepts, or skills being learned 
to the knowledge that he or she already possessed. 

4.	 It is necessary to continually assess not only whether a learner can solve a 
particular problem but also how the learner solves the problem. 

As designed, the teaching practices focused on what students were communicating and 

this implied that the teachers needed to think of ways to assess students’ knowledge so that they 

could advance their understanding.  In particular, teachers considered and planned questions to 

elicit children’s thoughts. Finally, the experimental teachers examined curricula materials to 
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learn if the various types of problems discussed were represented and to what extent.  CGI 

conducted minimal follow-up during the instructional year meeting once in October and a project 

member was assigned to respond to all teacher questions.  

The control group attended one two-hour workshop in September and a second one in 

February. These sessions focused on solving non-routine problems.  Instructional frameworks 

were omitted.  Teachers solved the problems and discussed the various solution methods.  The 

group did discuss student thinking, but this focused only on how students might solve a 

particular problem not on sharing actual student work.  The teachers also look at books that 

contained other non-routine problems and their own curricula for possible ways to encourage 

problem solving. 

During classroom observations an elaborate coding systems was used to capture the 

teacher and target students’ actions. One observer focused only on the teacher and other on the 

target students. The coders switched between observing and coding for 30-second intervals every 

minute.  The observation protocol for the teacher included setting (student grouping: whole, 

small group, etc.), content, (i.e. number facts, word problems, etc.), expected strategy (i.e. recall, 

direct modeling, advanced counting, etc.), teacher behavior, process focus, and answer focus. 

The student protocol included setting, content, strategy used and lesson phase.  These 

observations were used to measure the teachers’ use of CGI instructional strategies. Some 

observation factors did not show a difference between the two groups. However, the CGI 

teachers administered significantly fewer memorizing tasks (low-level) and more problem 

solving tasks (high-level) than those in the control group.  Secondly, the students in the CGI 

classrooms were more often presented problems to solve and the teacher more often listened to 
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the processes students used than their counterparts. The final interesting finding from the 

observations was that CGI teachers spent less time reviewing concepts. 

Teachers’ knowledge of students thinking across three areas was assessed with 

interviews. The teachers were asked to predict target students’ ability of number fact strategies, 

problem-solving strategies, and problem-solving abilities. For instance, in the first part of the 

interview the teacher was presented five number fact problems and asked to predict what strategy 

each of their target students would use.  The teachers’ responses were matched with how the 

students solved the problems.  The CGI teachers outperformed their colleagues in all three areas, 

and were significantly better are predicting both students number fact and problem-solving 

strategies. There was not a significant difference with knowing how students would perform on 

complex addition and subtraction word problems. 

The final CGI teacher instrument was four sets of 12 Likert style questions. The five-

point Likert scale ranged from strongly agree to strongly disagree to determine a change in 

teacher beliefs between the control and experimental groups. The four sets of questions focused 

on the role of the learner, the relationship between skills, understanding and problem solving, 

sequencing of mathematics, and the role of the teacher, and was administered both pre and post 

treatment. On the first scale, the role of the learner a high score meant that the teacher believes 

the student needs to construct his or her own knowledge.  A low score on the next section 

indicated that the teacher believes students first need to learn facts before they can engage in 

reasoning. The third set of 12 questions focused on how teachers should choose tasks where 

high score indicated that teachers believe they should be based on how students learn concepts. 

The final group questioned teachers belief about either engaging students in developing their 

own understanding versus presenting information to students.  The CGI teachers changed their 

64 



 

 

 

 

 

 

 

beliefs closer to the programs in all four categories between the pre and posttest.  Both groups 

significantly improved with believing that students need to construct their own knowledge. 

While the control group reported a slight decrease in thinking students first need to practice basic 

skills before problem solving, the CGI significantly changed their belief that problem solving 

should drive student engagement in learning basic skills.   

Carpenter et al. (1989) also report that these changes in CGI teachers’ knowledge and 

beliefs also increased student-learning outcomes.  The students, whom teachers participated in 

the treatment group, significantly outperformed their peers on basic skills and solving complex 

addition and subtraction problems.  The researchers identify the fact that CGI teachers learned 

about the research on student thinking as a key ingredient to the programs success.  As teachers 

gain a full understanding of research findings, this knowledge allows them to make more 

educated instructional decisions.  Additionally, the research findings need to be practical and 

grounded in explicit students examples.  Finally, Carpenter et al. recommend the mathematical 

content of professional development should be chosen judiciously to bridge student thinking with 

critical content. 

A follow-up study (Fennema et al., 1996) to the original CGI project showed the 

sustainability of the program. Four years later, 18 of the 21 teachers improved their instructional 

practices. Initially teachers were identified as modeling routine procedures for students to 

reproduce and several years after the CGI, teachers engaged students in solving problems and 

conducting whole class discussions for students to communicate their thinking.  Additionally, the 

change in instructional practices attributed to improved student outcomes.  Students in 

classrooms where teachers changed their practice improved their students’ ability to solve 

problems and these changes in instructional practices did not affect students’ procedural 
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knowledge. Therefore, the CGI project showed increased knowledge and assimilated reform 

instructional practices following the initial professional development sessions, and the teachers 

were able to sustain the CGI teaching principles four years later resulting in improved problem 

solving skills for the teachers’ students.  

2.4.3 Enhancing Secondary Mathematics Teacher Preparation (ESP) 

The ESP project also identified the teacher and improving teachers’ knowledge and practice as a 

way to increase student outcomes.  The main program hypothesis is if teachers enact high-level 

tasks in pedagogically sound ways, then secondary students will improve their ability to reason 

mathematically.  ESP was a professional development program to improve teacher’s knowledge 

of cognitively demanding tasks and skill with implementing them.  

ESP wanted to develop teacher leaders. The rationale was that the ESP teachers would 

mentor pre-service teachers and provide a classroom environment that brought to life the same 

practices the interns were learning about in their course work.  So similar to the ELM project, 

ESP had stages of development over two years to educate the practicing teachers about enacting 

cognitively demanding tasks, and to define the teachers’ role in supporting the teachers they 

were mentoring.  In the first year, the teachers and the ESP facilitators met for six full days.  At 

the end of the first year the group meet for a week to focus on their role as teacher leaders and 

mentors.  In the second year, mentor teachers and the pre-service teachers assigned to their 

classrooms along with the ESP staff met for five half days.  Boston and Smith (2009) studied the 

data collected from 18 mentor teachers as they participated in the ESP professional development 

during the first year. 
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The six full day professional development sessions were spread out during the school 

year where the teachers engaged in authentic teacher activities as recommended in the ELM 

(Simon & Schifter, 1991) and CGI (Carpenter et al. 1989) programs.  The ESP teachers solved 

high-level cognitively demanding tasks, identified tasks based on their cognitive level, and 

analyzed instruction. In addition to working on the problems and activities posed in the 

professional development sessions, the teachers connected their thinking about solving and 

sorting tasks to their own curricula.  For instance, they identified and planned activities to teach 

in their own classrooms.  The teachers shared their classroom experiences during ESP sessions. 

Additionally, the ESP facilitators modeled the instruction they intended their teachers to utilize 

to create a collaborative learning environment, which supported the teachers in constructing their 

own knowledge. Finally, the ESP project also followed an explicit philosophy for their 

professional learning (p. 130): 

1)The importance of building professional development experiences on teachers’ 
prior knowledge and beliefs 

2)The assertion that change occurs as new conceptions of mathematics teaching and 
learning conflict with the teachers’ prior knowledge and beliefs, and 

3)The role of social interaction in stimulating and maintaining this type of conflict 

A total of 10 teachers were selected as a control group.  This group did not participate in 

any of the ESP professional development, nor were they provided any other workshops.  They 

were asked to participate only for research purposes to contrast their use and implementation of 

tasks. 

Boston (2006) collected and analyzed data to identify changes in teacher’s knowledge 

and instructional practices. During the first year of instruction data sets were collected at three 

different time periods (fall, winter, and spring) in addition to completing a pre-test, post-test, and 
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post interview.  A data set consisted of collecting instructional tasks for five consecutive days, 

collecting student work from three of the five tasks, and observing instruction in one of the five 

classes. All six of the professional development sessions were videotaped and course artifacts 

were collected. Finally, a post-test was administered and the ESP teachers were interviewed at 

the conclusion of the first year. The contrast group also completed the pre-test and each teacher 

in this group was observed one time at the same time as the spring data collection for the 

experimental group. 

The pre and post-test was a task sort activity to identify teachers’ ability to distinguish 

between high and low level tasks. The teachers scored the tasks as high, low or not sure and also 

provided a rationale. After scoring and providing rationales for all 16 tasks the teachers 

generalized their particular rationales. In other words, the teachers created their own general 

criteria that they could use for sorting any task.  Boston (2006) used the TAG that was discussed 

earlier in this chapter to score responses. The results showed that there was a significant 

difference between the ESP teachers’ post-test scores and the control group. In particular, 

improvement was shown in terms of teachers’ ability to identify low-level tasks between the ESP 

pre and post-test. 

Teachers collected all tasks that they engaged their students in solving for five 

consecutive days during the fall, winter, and spring seasons. The collected tasks included warm-

up problems, main instructional activity, and homework assignments. Tests and quizzes were 

excluded. The Instructional Quality Assessment Academic Rigor (IQA AR-Math) rubric was 

used to score the instructional potential of each task, which is a five-point scale (0-4).  Boston 

and Smith (2009) reported that teachers significantly improved their ability to choose high-level 

tasks over the course of the professional development. Additionally, it was noted that some 
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teachers used a standards-based curriculum while others were in school that adopted a 

conventional text. The curricula showed no effect with choosing high-level tasks.       

During the week of task collection, the teachers collected a full class set of student work 

from any three days.  The teachers labeled the work as examples of low, medium, and high with 

respect to their expectation of quality solutions.  Boston & Smith (2009) analyzed student-work 

among the three data collection periods to learn if the students engaged with the task at a high-

level. The IQA AR-Math for potential was used to measure the level of potential of the 

mathematics task. The IQA AR-Math for implementation measured student engagement. Also a 

five-point scale (0-4), the implementation rubric is similar to the potential of the task rubric, but 

the implementation rubric addresses the actual student engagement as they solved the task.  So 

two scores were given for each class set during each data collection the Fall, Winter, and Spring. 

Since three sets of student work were provided during a collection period, the potential and 

implementation scores were averaged separately.  The two averages were compared to find out if 

the cognitive demands were maintained during instruction.  Boston and Smith reported that 

students were afforded greater opportunities to learn at a high level between the Fall and Spring.   

One classroom observation took place during the task collection week for each teacher. A 

total of 11 ESP teachers were observed three times during the school year and 10 control 

teachers were observed one.  The lesson observer scripted various features of how the teacher 

enacted the class tasks including how the task was launched, the various interactions as the 

students worked on the problem, and the organization of the whole class discussion. The 

observations were scored on the tasks potential (IQA AR-Math), implementation (IQA AR-

Math), and to score the factors of decline or maintenance the IQA Lesson Checklist was 

employed. The findings show that during implementation more tasks were maintained at a high 
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level during the spring than the fall.  The initial data collection of the experimental group showed 

a similar ability to select and enact tasks as the control group.  However, a comparison between 

the control group and the ESP teachers’ third implementation showed significant differences in 

both the potential of the tasks chosen and the actual instruction. Qualitatively, the IQA Lesson 

Checklist was useful in showing that the ESP teachers were seen holding students accountable 

for high-level outcomes, teachers questioning students thinking more, and pressing students to 

make more connections between the Fall and Winter data collections. 

Boston and Smith (2009) provided evidence of teacher growth in terms of selecting and 

implementing high-level tasks based on the ESP professional development and research.  The 

ESP is a learning program that chooses tasks closely aligned with teachers’ practice and adopted 

the theory that change occurs when the learner experiences a cognitive conflict in a social 

setting. The research utilized the IQA in multiples ways to capture the teacher’s growth.  A 

unique feature of the ESP project was the use of the IQA on student work to study the 

implementation and selection of high-level cognitively demanding tasks. 

ESP also studied the sustainability of their professional development program (Boston & 

Smith, 2011).  The researchers found that two years after the professional development sessions 

and a full year of any professional develop support most teachers were still selecting high-level 

tasks and implementing them at a high-level.  The researchers contributed the sustained affect to 

both the teacher’s engagement as learners and mentors and the design of professional 

development project.    

All three professional develop programs (ELM, CGI, and ESP) credited the success of 

increasing teacher knowledge and change in instructional practice on the professional 

development design features. These productive features are extracted and expanded upon in the 
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context of the study herein in the next section to show how this study mimicked productive 

programs to also improve participants’ knowledge for teaching mathematics. 

2.5 SITUATING THE RESEARCH IN THIS CURRENT STUDY 

This study draws on three areas of research: reasoning-and-proving, the role of mathematical 

tasks, and enacting and studying professional development that improves teacher knowledge and 

practices. The first two sections of this chapter (2.1 and 2.2) detailed what teachers need to learn 

to develop students ability to reason-and-prove, section 2.3 argued the importance of selecting 

high-level and section 2.4 explained how successful professional development programs were 

designed to improve teacher knowledge and practice.  This last section of chapter 2 connects the 

features of the reasoning-and-proving course with the successful professional development 

programs to show why it too will be successful. 

2.5.1 Features of Productive Professional Development Programs 

This study draws on three areas of research: reasoning-and-proving, the role of mathematical 

tasks, and enacting and studying professional development that improves teacher knowledge and 

practices. The first two sections of this chapter (2.1 and 2.2) detailed what teachers need to learn 

to develop students ability to reason-and-prove, section 2.3 argued the importance of selecting 

high-level and section 2.4 explained how successful professional development programs were 

designed to improve teacher knowledge and practice.  This last section of chapter 2 connects the 
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features of the reasoning-and-proving course with the successful professional development 

programs to show why it too will be successful. 

A recent policy document reported on the results of eight professional development 

programs that impacted teacher instruction and or student outcomes (Wei, Darling-Hammond, & 

Adamson, 2010).  All the studies occurred in either mathematics or science between 2004 and 

2007. Wei et al. identified five design characteristics of the eight impactful professional 

programs as the following: 

	 A strong focus on content and content-pedagogy in math or science; 
	 An annual duration ranging from 45 to 300 hours (or 9-12.5 graduate credit hours), 

and in most cases a design requiring more than 100 hours of engagement with both 
off- site (e.g., a two-week summer institute) and school-based components; 
	 Explicit links to, and thereby coherence with, the participants’ school curriculum 

and organization; 
	 Elements of collective participation, bringing teachers together to engage in 

professional learning through coaching and mentoring by master teachers, lesson 
study with colleagues, additional training sessions focused on content pedagogy, 
and participation in learning activities with grade-level teams; 
	 Designs that are school-based and involve the schools as strong partners  (p. 6-7, 

2010). 

Comparing the five design characteristics with the three programs (ELM, CGI, and ESP) 

previously discussed shows some overlap and discrepancy. All three programs fell within the 45­

300 hour time frame and focused on content and pedagogy. Furthermore, Carpenter et al. (1989) 

emphasized the first and third bullets.  The addition and subtraction story problems were not only 

part of the curriculum, but existing research on student thinking on the subject was used to 

support teacher learning. In other words, focusing on the content is listed as impactful, but going 

a step further to include research on how students think about the content could be an expanded 

form of the first bullet.  The ELM and ESP projects both included mentoring as additional steps 

to the professional learning. However, none of the three productive programs were school-based 
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(last bullet). Finally, Wei et al.’s (2010) list is missing a connection to the greater research 

community in particular an organizing professional development framework and a learning 

theory to focus the instructional situations, which were explicitly described as instrumental in the 

three professional development programs.         

2.5.1.1 Learning theory 

Wei et al.’s (2010) five design characteristics includes the connection to content and content-

pedagogy, but were not very specific about the types of teacher activities or a belief about how 

the teachers will expand their knowledge of content or pedagogy for teaching. The ELM 

program followed a social constructivist learning approach. The belief is that to conceptually 

understand mathematics the learner must construct the knowledge since an expert’s 

conceptualization cannot be given directly to a novice (Simon & Schifter, 1991).  As the teachers 

were engaged in activities that changed their perception of knowing mathematics a mental 

disequilibrium occurred which is labeled a cognitive conflict.  The conflict is seen as a necessary 

part of the process in transforming teachers’ view of mathematics in particular what it means to 

understand it. The mental conflict provides the learner with a reason to restructure their old 

thinking based of the new learning experiences. The ESP program also followed the 

constructivist theory to induce a cognitive conflict about the role tasks play in student learning 

along with the importance of not lowering the level of cognitive demand throughout the 

implementation of a task.  The CGI researchers followed a related route to teacher change in 

knowledge and practice. The focus was on student thinking as they solved a variety of word 

problems.  The teachers learned that listening to students as they explained their solution method 

and responding with appropriate questions is important in developing students understanding on 

mathematics. This realization promoted the CGI teachers to change their practice to 
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accommodate their new understanding of how students think. In other words, the new 

understanding of how students make sense of situations conflicted with their previous belief 

what it meant to know addition.  The teachers had to construct this understanding on their own to 

make instructional changes.     

The reasoning-and-proving course also drew on these learning perspectives to expand 

teacher knowledge. The course aimed to promote disequilibrium in order to expand teachers 

understanding of how to evaluate and construct valid arguments. By engaging teachers in solving 

tasks and analyzing student solutions, they would reconstruct their view of what counts as proof. 

For example, a sequence of three mathematical tasks was specifically designed to create a 

cognitive conflict around the known misunderstanding that empirical examples count as proof 

(G. Stylianides & A. Stylianides, 2009). The typical trajectory is that learners write a 

generalization from a few examples and claim it as proof. The second problem in the three-task 

sequence encourages inductive reasoning, but after checking several cases the pattern fails.  The 

learner reaches a conclusion that one must check more cases before generalizing.  The final 

problem in the sequence forces the learner to reach a conclusion after checking many more 

examples only to learn that a counter example exists.  The task sequence creates a conflict 

between what they previously believed proof to be and a new understanding that a generalization 

is not a proof and a formula cannot be trusted after only testing a few examples. Additionally, the 

learning occurs in a whole class setting so that the learners can discuss their thinking of the 

three-task sequence and, more generally, their understanding of what counts as proof.   

Analyzing student arguments was included in the course design to also shape teachers’ 

ability to identify proof from non-proof arguments.  The design and intended implementation of 

the analyzing student solutions also contribute to a cognitive conflict and constructivist 
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perspectives. The participants are asked to negotiate their personal criteria of proof as they label 

arguments.  The student solutions chosen for teachers to evaluate were strategically selected to 

promote learners to rethink their view as to what is and what is not a proof.  For instance, many 

students and teachers believe that proof needs to take on a specific form or be organized in a 

particular way. So solutions to proof tasks were chosen for teachers to critique that did not fit 

the conventional structure to reshape their mental image of what counts in some cases leading to 

a cognitive conflict. However, the reorganization was negotiated in a social context. Therefore, 

the reasoning-and-proving course drew on cognitive conflict and constructivist perspectives of 

learning. 

2.5.1.2 Explicit use of organizing frameworks 

The explicit course frameworks address learning what reasoning-and-proving means with respect 

to mathematical activities and planning reasoning-and-proving instructional tasks.  The class was 

introduced to the Reasoning-and-Proving framework as they read the Stylianides (2010) article 

and labeled student arguments in a class activity. This framework highlights the various types of 

possible arguments students might produce, the range of activities that are involved with writing 

proofs, and provides a reminder for discourse with constantly questioning the learner about his or 

her conceptions of proof and why any presented argument may or may not count.  On the same 

discourse thread, another purpose of the framework is that after recognizing and identifying an 

argument the teacher can choose questions to assess and advance students’ thinking and move 

them toward deductive reasoning. Lannin (2005) found that promoting generic arguments is a 

productive path away from empirical, which is listed in the framework.   

A second organizing framework explicitly discussed in the course is to promote the 

planning of reasoning-and-proving. Instead of presenting this framework, the teachers read 

75 



 

 

 

 

 

 

 

 

various articles on each of the three constructs: Task, Tools, Talk.  From the articles the teachers 

list the essential characteristics of each “T”, and the class creates an encompassing shared 

understanding. For instance, the task is expected to problematic and leaves students with a type 

of learning residue. The residue could either lead to students learning a new mathematics concept 

or a mathematical process. Tools can be diagrams, algebraic symbols, or any other instrument 

useful to help students access the mathematics.  For example, when the teachers engaged in an 

activity that required circles the facilitator provided them with a sheet of paper with the circles 

already drawn. Since drawing circles was not the goal of the lesson, the tool was useful with 

assisting the learners with focusing on the mathematics. In other words, the course facilitator also 

modeled the framework.  The teachers applied their understanding of this planning framework as 

they engaged in various activities before using it to plan a complete lesson.      

The design and implementation of the reasoning-and-proving course included most of the 

bulleted list and all three of the features identified in the three productive professional 

development programs: focus on content, explicit use of frameworks, and implementation of 

authentic activities of practice. The only feature missing from the reasoning-and-proving course 

design was a strong the connection to a school. None of the pre-service teachers in the course 

were placed in the same school. The course aimed to build teachers’ capacity to implement high-

level reasoning-and-proving tasks, which includes learning to reason-and-prove, select tasks, and 

understand pedagogical practices to support student development. To increase teachers’ 

knowledge, teacher educators need to engage teachers in authentic activities of practice (Boston 

& Smith, 2009; Putnam & Borko, 2000; Simon & Schifter, 1991). The student in the reasoning­

and-proving course solved high-level math tasks, discussed episodes of practice, and planned 
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instructional lessons. As discussed in section 2.1 of this chapter, student understandings were 

utilized in the design of the activities. The teacher tasks will be explained further in chapter 3.   

2.5.2 Grounding study in a theoretical model 

Hanna (1995) identifies the main challenge to increasing students experiences with proving is the 

lack of opportunities across K-12 content. Phase one of the Mathematical Tasks Framework 

(MTF) includes selecting or designing high-level tasks.  Given the limited number of tasks found 

in high school textbooks outside of geometry  (Johnson, Thompson, & Senk, 2010), secondary 

teachers will need to do more designing of tasks in order to provide student opportunities to 

engage in reasoning-and-proving across all secondary curricula.  From experience during the 

first iteration of the reasoning-and-proving course materials (summer 2010) it became clear that 

teachers struggled to select and or modify tasks. Since a mathematical task sets the stage for the 

work of teaching and student learning (Doyle, 1988; Hiebert et al., 1996; Smith & Stein, 2011; 

Stein et al., 2010), teachers need to improve their skill selecting and or modifying reasoning-and­

proving tasks (unpacking phase one of MTF as shown in figure 2.8).  Furthermore, learning to 

modify reasoning-and-proving tasks cannot be taught to teachers that do not know what is proof 

or are unable to produce a valid argument.   

Just as it is believed that different types of mathematics knowledge for teaching is needed 

to move between selection and set up of a mathematics task (Stein et al., 1996), similar 

knowledge is needed to modify a task to include reasoning-and-proving (as shown in the circle in 

figure 2.8). Narrowing the scope to reasoning-and-proving tasks, the hypothesis is that the R&P 

goal the teacher chooses, the teachers’ knowledge of R&P, and knowledge of students about 

R&P all impact the modification process. Identifying a mathematical goal should not be 
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overlooked (Smith & Stein, 2011), since the solutions student write provides the teacher with 

information about whether the goal was or was not accomplished (Hiebert, Morris, Berk, & 

Jansen, 2007). Identifying a learning goal was developed throughout the course as the 

participants read narrative cases and were directly asked what they believe students learned. 

Secondly, teachers’ ability construct arguments may influence their skill with selecting or 

modifying tasks. Throughout the course, including the interviews, the teachers were asked to 

write eight proofs and then think about why the argument is or is not a proof. Finally, teachers 

need to know what typical students do when asked to write a proof. Knowledge of student 

solution methods and prior knowledge in the domain is useful in selecting appropriate tasks 

(Carpenter et al., 1989). While the course aimed to build teachers ability to identify a goal, write 

and evaluate proofs, understand student thinking, the participants were explicitly taught how to 

modify tasks. 

Mathematical 
Task: as 
represented in 
resource Mathematical 

Task: as set up 
by teacher in 
the classroom. 

Mathematical 
Task: as 
implemented 
by students in 
the classroom 

Student 
Learning 

Factors influencing 
task modification 
Teacher R&P Goal 
Teacher Knowledge 
of R&P 
Teacher Knowledge 
of Students 

Mathematical 
Task: as 
modified by 
teacher to 
include R&P 
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Figure 2.7. Unpacking Phase 1 of MTF and identifying factors that influence task modification 

Deciding on a mathematical goal along with an increased knowledge of reasoning-and­

proving including student thinking are factors that may contribute to task modification.  Explicit 

instruction followed a ‘to with by’ model which is a form of what Collins, Brown, and Newman 

(1989) call a “cognitive apprenticeship” or scaffolding. The three parts include a modeling (to), 

coaching (with), and then a fading (by) of support to promote development. The participants 

were shown typical tasks along with a modified version of the same task. In other words the 

modifications were shown to the participant to think about how each task was altered to include 

reasoning-and-proving. After a series of such activities, the class derived a set of modification 

principles. The principles were then applied to a new set of unmodified tasks and the facilitator 

modified the tasks with the participants.  Finally, the participants were asked to modify tasks 

from their curricula by themselves.  During each of the three phases the concept of solving the 

tasks as both a knower of mathematics and a learner to focus on the student perspective. 

Therefore, knowledge of R&P and student thinking were developed along with explicit learning 

with how to modify tasks.  Again, this was a main focus of the course since high school 

curriculum provides limited opportunities for students to reason and prove. Supporting teachers 

with selecting and or modifying their current curricula is intended to increase the number of 

reasoning-and-proving experiences for students, which currently a challenge (Hanna, 1995).   
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3.0 CHAPTER 3: METHODOLOGY 


This design-based research study investigated teachers’ developing understanding of reasoning­

and-proving during their participation in a methods course focused on reasoning-and-proving in 

secondary mathematics. Teachers’ developing understanding was evaluated through the 

examination and analysis of structured interviews, work produced during the course, and artifacts 

provided by teachers from their classrooms in the academic year following their completion of 

the course. The specific research questions that are the focus of analysis in this study are: 

1.	 How do pre-service teachers’ conceptions (i.e. purpose of proof, what counts, proof 
in secondary courses) of proof change over the duration of a course focused on 
reasoning-and-proving? 

2.	 To what extent do pre-service teachers construct valid and convincing arguments 
when prompted to write proofs over the duration of a course focused on reasoning-
and-proving? 

3.	 To what extent do pre-service teachers improve their ability to distinguish between 
proof and non-proof arguments created by students over the duration of a course 
focused on reasoning-and-proving? 

4.	 To what extent do pre-service teachers improve their ability to select and or modify 
reasoning-and-proving tasks for students over the duration of a course focused on 
reasoning-and-proving and during their first year in the classroom? 

The following sections describe the context of the intervention including the participants, 

the collected data, and how the data was coded and analyzed.  The first section explains the 

course that was implemented to increase the participants understanding of reasoning-and­
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proving, and how this course fits into other courses that are part of the teacher-credentialing 

program the participants completed.  The second section in this chapter details the data collected 

from the course and interviews.  The third and final section explains how the collected data was 

coded and analyzed related to each of the four research questions. 

3.1 CONTEXT OF R&P COURSE 

This study focused on the extent to which learning occurred in a course intended to develop 

teachers’ knowledge related to reasoning-and-proving.  The course engaged teachers in writing 

proofs, critiquing student work, analyzing narrative cases, selecting and modifying tasks, 

discussing mathematical and pedagogical issues, and reflecting on their own learning.  A total of 

10 students enrolled in the course, of which nine participated in the study.  The following two 

sections explain the course and those who participated in it. 

3.1.1 The reasoning-and-proving course 

The reasoning-and-proving course included 12 (3 hour and 15 minute) sessions equally 

sequenced over a six-week time period starting on May 10, 2011 and concluding on June 16, 

2011. The course was designed around a set of materials developed under the auspices of NSF-

funded Cases Of Reasoning and Proving in Secondary Mathematics (CORP) project. The 

purpose of the CORP project is to design curriculum materials that can be used in the 

professional education of pre-service and in-service secondary mathematics teachers. Three key 

questions guided the development of the materials and the course: 
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1.	 What is reasoning-and-proving? 
2.	 How do high school students benefit from engaging in reasoning-and-proving? 
3.	 How can teachers support the development of students’ capacity to reason-and-

prove? 

The guiding questions were embedded throughout the course activities. The first and 

second questions were directly asked of the teachers, and the third question was embedded in the 

course frameworks. The implementation of the activities included individual work, pair-share, 

small group and whole class discussions.  The next two sections will detail the course activities 

and how they were enacted. 

3.1.1.1 Course activities 

The course map (as shown in Figure 3.1) outlines the six key ideas explored, and the types of 

activities enacted across the class sessions.  The numbers across the top of the map signifies each 

of the 12 course meetings. The figures in each column reflect the nature and sequence of the 

activities enacted during each class period. The six key ideas explored, listed below the map are, 

for the most part, grouped as consecutive activities and tagged with a symbol.  For instance, in 

the map the third and fourth activity on day one and the first activity on day two have check 

marks. All three of these activities explore the same key idea of Motivating the Need for Proof as 

indicated in the key below the map.  

The shapes identify the type of teacher learning activity. For instance, the rectangles 

identify the instances when the participants were asked to solve a mathematical task.  The 

exploration of five of the six key ideas includes a mathematics task (rectangle). The activities 

such as analyzing student work (hexagon) or a narrative case (oval) relate to the mathematical 

task that participants had previously solved related to the key idea.  The only exception is that the 

third idea does not start with a proof task. The narrative case of Nancy Edwards is the “Odd + 
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Odd = Even” task solved in the second unit.  So teachers explored a variety of practice-based 

activities in order to develop their understanding of a key idea and in most units a task was 

solved first.   

Reflection on learning (cloud) was an ongoing process.  The teachers also read articles 

about the course frameworks to develop a shared understanding for selecting and planning 

reasoning-and-proving tasks. The reasoning-and-proving (R&P) framework, discussed in unit 

two, was introduced when the teachers read Stylianides (2010) at the beginning of class three. 

Additional activities were used to develop their understanding of each of the terms in the 

framework. Throughout the course the R&P framework was utilized to identify the potential of 

tasks and to sort arguments. The homework assignments are listed below the horizontal grey 

strip across the bottom of each class period. 

The arrows represent connecting to practice (CtoP) activities that were intended to 

support the participants in applying course concepts to actual teaching practice, namely the 

planning of a reasoning-and-proof lesson. CtoP are not specifically related to one key idea, 

which is why they are not marked with a symbol. They were inserted throughout the course to 

provide the participants an opportunity to apply the course concepts, and serve as a formative 

assessment for the instructor.  

Finally, there are six other figures in the map without an identified connection to a key 

idea (two on day one, one on day four, and three on the last class meeting).  These activities were 

intended to gather information based on the participants’ current understanding or thinking about 

previous activities or to share information about reasoning-and-proving in general. The meaning 

of the shaded activity shapes will be explained in the data collection section 3.2.2.  

83 



 

 

 

 

 

 

 

 

The six key ideas aim to reach larger goals and the individual activities within each key 

idea promote smaller goals to foster teachers’ development with implementing reasoning-and­

proving tasks in their classrooms.  For instance, the first key idea is Motivating the Need for 

Proof, which focuses on the shortcomings of empirical arguments or the use of examples to 

generate a generalization. The sequence of three tasks (Squares, Circle & Spots, and Monstrous 

Counterexample) (G. Stylianides & A. Stylianides, 2009) presses on the participants’ 

mathematical knowledge of the limitations of developing a generalization from any set of 

examples.  The main question is: how many cases must one check to determine the truth of a 

generalization? The realization is that no number of examples is enough, which is why proof is 

needed. Within the same unit or key idea, two narrative cases describe how two different 

teachers implemented the same set of three tasks with their students.  One of the narrative cases 

(Kathy) provided the participants with an exemplar case with how to support students with 

learning the limitations of an empirical argument.  The other teacher (Charlie) inhibited his 

students in learning why empirical arguments are not proof by taking over the thinking for them. 

In other words, the overall goal of the unit is to Motivate the Need for Proof and the first activity 

(sequence of three tasks) is intended to support the participants’ mathematical knowledge of the 

limitations of examples and the second activity (analyzing narrative cases) focuses on building 

the participants pedagogical knowledge with how to implement such tasks so that students are 

supported in reaching the same mathematical goal that proof is needed.  The other five units are 

similar in that the main idea is general and the individual activities aim to build mathematical or 

pedagogical understanding related to proofs. 
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Figure 3.1. Course map summer 2011  
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3.1.1.2  Facilitation of activities in reasoning-and-proving course 

The author of this study was the instructor for the reasoning-and-proving course.  The 

implementation intended to engage the students in constructing individual and a collective 

understanding of the key ideas related to reasoning-and-proving as described in the course map. 

For instance, the participants worked on each mathematics task individually before sharing each 

other’s thinking. Then pairs of students would share and connect their thinking with the class 

community. Most discussions were held at the whole class level, while the reflections were 

individual recordings. The reflections were not typically shared instead the instructor collected 

them to make future instructional decisions. One goal of implementing the course activities was 

to model pedagogical practices intended for the participants to enact in their own classrooms 

(Simon & Schifter, 1991).  

3.1.2 The Participants 

The students in the course were the participants in this research study. A total of 10 students 

enrolled in the Master’s level course at the University of Pittsburgh.  There exist two types of 

Masters programs for mathematics education at the university. The Masters of Arts in Teaching 

(MAT) is a credentialing yearlong program for those with an undergraduate degree in 

mathematics (or equivalent). The cohort group in the MAT program spends their days at their 

assigned secondary school with a mentor teacher and evenings taking courses at the university. 

The Masters in Education (MEd) is designed for teachers that have already earned a teaching 

credential, but are seeking an advanced degree in mathematics education for various reasons. 

Eight of the ten students in the class were part of an MAT cohort. This cohort group was 
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considered unusual based on their strong mathematics aptitude and overall ability to discuss and 

comprehend new pedagogical concepts.  One student, not part of the MAT cohort, earned a 

secondary credential and MEd over two years.  All nine of these students were enrolled in their 

final course prior to earning their respective degrees.  The tenth student did not participate in the 

study. Nine of the participants are female and one male. The nine participants completed the 

class activities and their notebooks were collected at the end of course and photocopied. 

Since this was the participants’ last course in the program they had many opportunities in 

previous courses to engage in similar work.  For instance, the participants were use to solving 

open-ended tasks and discussing their solutions.  The participants also learned the difference 

between low and high level tasks. In particular, the participants had previously solved pattern 

tasks and shared the different ways one could generalize the pattern, analyzed episodes of 

teaching that highlight the implementation of pattern tasks, and analyzed students’ thinking 

related to these tasks..  It is likely that their experiences in previous courses prepared these 

participants for the curriculum expectations and instructional style they encountered in the 

reasoning and proving course. 

In addition to the courses the participants completed during their credentialing program, 

those in the MAT cohort spent the school year teaching and observing a mentor teacher in a 

secondary classroom.  This afforded the MAT students the opportunity to experiment as a 

teacher with ideas they were learning at the university.  For instance, two participants engaged a 

group of students in solving a task they selected for the reasoning-and-proving course to gain a 

better insight into how typical students may engage with the problem.  The MEd student was in a 

classroom for one semester and she spoke about her teaching experience as being limited. 

Therefore, since most of these participants spent a year with a mentor teacher and students, they 
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were provided an advantage with engaging students in the practices they learned as university 

students. 

Prior to the start of the reasoning-and-proving course the registered students were 

contacted for interview purposes. All nine participants were interviewed three times: 1) prior to 

the start of the course, 2) between the fourth and fifth classes, and 3) after the last class meeting. 

(The 10th student registered late for the course, which is why she did not participate in the study.) 

All the interviews were audio recorded, which were then transcribed.  The participants were 

compensated $24 per interview. 

At the conclusion of the course all participants who were employed as secondary teachers 

mathematics teachers were contacted. Of the seven who secured teaching positions, six were 

contacted and all six agreed to participate in the follow-up study which involved collecting 

artifact packets around R&P lessons they implement during their first year as teachers for which 

they would be compensated $100 for each returned packet.  The seventh participant moved out 

of the area and new contact information was not available.  Five of the six that agreed to the 

follow-up study where part of the MAT cohort, all six earned an undergraduate degree in 

mathematics, and all are female.  In the end, however, only two teachers (1 MAT, 1 MEd) 

actually collected materials.  It is not clear why the other four teachers did not choose to submit 

artifact packets. To promote clarity throughout the rest of this document, “participants” will be 

used solely to refer to the subjects in this study as opposed to pre-service teachers, teachers, or 

students. Additionally, all nine participants are named using pseudonyms.  

88 



 

 

 

 

   
  

 
 

 
 
  

 
 

 
 

 

 

 

 
 
 

 

 
 

 

 

 

3.2 DATA COLLECTION 


Three main data sources were used to answer the research questions:  interviews, course 

notebooks, and task packets completed by participants who took part in the follow-up study.  The 

research questions will be answered using the data as shown in table 3.1.  

Table 3.1 Collected data for analysis 

Research Questions Data Sources Analyzed Data 

1. How do pre-service teachers’ 
conceptions (i.e. purpose of proof, 
what counts, proof in secondary 
courses) of proof change over the 
duration of a course focused on 
reasoning-and-proving? 

a. Interviews 

b. Notebooks 

a. Open-ended questions in each 
interview 

b. Opening activity; final reflection 

2. To what extent do pre-service 
teachers construct valid and 
convincing arguments when 
prompted to write proofs over the 
duration of a course focused on 
reasoning-and-proving? 

a. Interviews 

b. Notebooks 

a. Solutions to three R&P interview 
tasks 

b. Solutions to five course tasks 

3. To what extent do pre-service 
teachers improve their ability to 
distinguish between proof and non-
proof arguments created by students 
over the duration of a course focused 
on reasoning-and-proving? 

a. Interviews 

b. Notebooks 

a. 14 student arguments  

b. 18 student arguments from two 
problem sets 

4. To what extent do pre-service 
teachers improve their ability to 
select and or modify reasoning-and­
proving tasks for students over the 
duration of a course focused on 
reasoning-and-proving and during 
their first year in the classroom? 

a. Interviews 

b. Notebooks 

c. Task packets 

a. First and third interviews (5 
participants brought a task to interview 
3) 

b. Two tasks selected during the course 

c. Two teachers enacted five tasks each 
during their first year as teachers (2011­
2012) 
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The timing of the data collection is shown in figure 3.2.  The twelve solid vertical lines 

represent the class meetings distributed across the six weeks. The dotted lines indicate when the 

interviews took place. Notebooks include participant responses to course activities from 12 class 

meetings as indicated below the timeline. The artifact packets were collected between November 

4th and March 1, 2012. The following three sections will further explain the interviews, task 

packets, and notebooks. 

Interview 2 after 4th 

and prior to 5th class Interview 1 
occurred prior to 

the first class 

Interview 3 
conducted after 

the last class 

Collected participant 
notebooks at the end 
of the course. 

1st class 
May 10th 

2011 

12th class 
June 16th 

2011 

7th  class 
May 31st 

2011 

Participants mailed artifact packets 
from their implementation of R&P 
tasks. All packets collected prior to 
March 1, 2012. 

Figure 3.2. Data collection timeline 

3.2.1 Structured interviews 

As shown in figure 3.2 the participants were interviewed prior to the first class, between the 

fourth and fifth classes, and after the conclusion of the course.  The participants were contacted 

and appointments were arranged for the interviews. At the time the interviews were scheduled, 

only nine students were enrolled in the course. All nine students were interviewed three times. 

The multiple part interview design, implementation of interviews, and questions in the protocols 
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were based on previous proof interview studies (Chazan, 1993; Knuth, 2002a, 2002b; Morris, 

2002; Smith, 2006; Solomon, 2006). Three members of the CORP project team conducted and 

audio recorded the 27 student interviews. The researcher / instructor did not interview students 

and not revealed until the course was over.   

The author of this study and the three interviewers collaborated in the development of the 

three interview protocols (Appendix A). The three interview protocols included a consistent 

design of at least three parts.  In the first part, participants responded to open-ended questions, 

followed by solving a reasoning-and-proving task, and then by analyzing student work to the 

task they solved in part two.  Interviews one and three each had a similar fourth part, which 

included the participant sharing a reasoning-and-proving task they selected prior to the interview.  

Open-ended Questions: Part 1 Interview. The first part of each interview engaged the 

participant in explaining their understanding of reasoning-and-proving through open-ended 

questions. The interview questions were designed to probe the participants evolving conceptions 

of proof and the impact the course had on their thinking. Since the first interview was conducted 

before the course started, the first question (see column one of table 3.2) was intended to gather 

information about the participant’s previous experiences. The next three questions focused on 

learning the teachers’ conceptions of proof in the discipline of mathematics.  The final two 

questions in interview one press the participants to think about proof in secondary schools.  The 

second and third interviews also include questions about the participants’ conceptions and ask 

about the impact the course was having on their thinking. The participant responses to these 

questions were analyzed to answer the first research question. 

To promote reliability and validity among the three interviewers and across the 

interviews, the interviewers were asked to only pose the stated questions and in the order 
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presented in table 3.2. The interviewers did ask generic follow-up questions to encourage a 

participant to talk more about a particular topic or to clarify responses.  For instance, an 

interviewer asked questions such as: Can you say more about that? I am not sure I understand, 

can you explain that for me again? 

Table 3.2. Opened-ended interview questions 

Open-ended questions (Part 1) 

Interview 1 Interview 2 Interview 3 

What experiences have you 
had with proofs –as a 
student in high school and 
college and as a 
mathematics teacher? 

What does it mean to prove 
a statement?  

What should be included in 
a proof? 

What should or could a 
proof look like? 

What role do you think 
proof should play in the 
secondary mathematics 
classroom? 

Which courses in the 
secondary curriculum 
should or could include 
work on proofs? 

What do you think is required 
for an argument to count as 
proof? Why? 

How, if at all, has your 
understanding of reasoning 
and proving changed over the 
last four classes? 

What specific activities do 
you believe have most helped 
YOU to better understand 
reasoning-and-proof? 

What, if anything, about 
reasoning-and-proof still is 
unclear or confusing? 

How has the course 
influenced your thinking 
about teaching reasoning and 
proving in your classroom? 

1a. How, if at all, has your understanding 
of reasoning-and-proving changed over 
the past six weeks (12 classes)? That is, 
what is it you understand now that you did 
not understand prior to taking this class? 

1b. What specific activities do you believe 
have most helped YOU in better 
understanding reasoning-and-proof? 

1c. What, if anything, about reasoning­
and-proof still is unclear or confusing? 

2a. How has the course influenced your 
thinking about teaching reasoning-and­
proving in your classroom? 

2b. What specific activities do you believe 
have influenced YOUR thinking about 
teaching students to reason-and-prove?  

2c. What, if anything, about teaching 
reasoning-and-proof still is unclear or 
confusing? 

Solve R&P Task: Part 2 of Interview. Part two of all three interviews engaged the 

participants in solving a reasoning-and-proving task (as shown in Table 3.3).  The problems were 

chosen based on several factors such as: the opportunity for multiple solution paths, accessible 
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content relating to the secondary school mathematics content, and the task either explicitly called 

for a proof or requested a convincing argument.  The first problem (1st column table 3.3) was 

adapted from an interview study Morris (2002) conducted with undergraduate students.  It is a 

typical number theory problem, which allows for the generation of examples or to draw a 

diagram using a square and rectangle without explicitly calling for either. The task used in the 

second interview (2nd column in table 3.3) was adapted from the Interactive Mathematics 

Program (IMP) high school curriculum.  It explicitly promotes the use of a diagram, and the 

generation of a conjecture. Being a pattern task, it is more accessible for the participant to 

produce a generic argument proof (Lannin, 2005).  The contextual task (3rd column in table 3.3) 

used in the third interview was adapted from a middle school standards project (Achieve, 2002). 

The task promotes multiple mathematical representations and an opportunity to generate 

examples. While the task does not use the word prove or proof, it does ask for a justified 

argument.  This is the only problem selected where the proof is a counterexample.     

After the participants were provided sufficient time to solve a task, the interviewers asked 

two follow-up questions addressing the validity of their argument and understanding of 

generality (as shown at the bottom of each column in table 3.3). The first question was to find 

out if the participant believed that he or she wrote a proof.  The purpose of this question was to 

gain access into their thinking about their established criteria of proof. For instance, Chazan 

(1993) and others reported that just because a student constructs an argument to a proof task does 

not mean he or she believes their solution is a proof.  The second questions differed across the 

three interviews such as: generality of proof (interview 1), multiple proof methods (interview 2), 

and an opportunity to verbalize a proof if they did not believe they wrote one (interview 3). 
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The participants were provided a task sheet, which included the task only and not the 

follow-up questions. While the participants were solving the R&P task, the interviewers asked 

the participants to talk through their thinking to understand how they were approaching the 

problem.  The interviewers did not suggest solution paths, nor did they try to advance a 

participant’s thinking toward a proof.  Instead the interviewers only asked clarifying questions to 

capture progress as each participant worked on a solution.  The two follow-up questions were 

asked in the order listed in table 3.3. The participant responses to the reasoning-and-proving 

tasks were analyzed to answer the second research question.  

Table 3.3. Reasoning-and-proving tasks: Part 2 of each interview      

Interview 1 R&P Task Interview 2 R&P Task Interview 3 R&P Task 
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1.) Prove that for every 
counting number n (1, 2, 
3, 4 …), the expression 
n2 + n will always be 
even. 

Provide time for 
interviewee to prove the 
task. Then ask: 

2.) What about your 
solution makes it a 
proof? 

3.) Do you think that 
there is a counting 
number n which would 
cause the expression n2 

+ n NOT to be even? 
Why or why not? 

The diagram below shows the frame 
for a window that is 3 feet by 3 feet.  
The window is made of wood strips 
that separate the glass panes. Each 
glass pane is a square that is 1 foot 
wide and 1 foot tall. Upon counting, 
you will notice that it takes 24 feet of 
wood strip to build a frame for a 
window 3 feet by 3 feet.   

Determine the total length of wood 
strip for any size square window. 
Prove that your generalization works 
for any size square window. 

3ft-by-3ft 

Provide time for the interviewee to 
create a proof.  Then ask: 
What about your solution makes it a 
proof? 
Can you think of other possible ways 
to prove that your generalization 
works (without writing it out)? 

Long-distance Company A charges a 
base rate of $5 per month, plus 4 cents 
per minute that you are on the phone.  
Long-distance Company B charges a 
base rate of only $2 per month, but they 
charge you 10 cents per minute used. 

Keith uses Company A and Rachel uses 
Company B.  Last month, Keith and 
Rachel were discussing their phone bills 
and realized that their bills were for the 
same amount for the same number of 
minutes.  Keith argued that there must 
be a mistake in one of the bills because 
they could never be the same.  Rachel 
said that the phone bills could be the 
same. 
Who do you think is right, Keith or 
Rachel? Why? 
For any two phone plans, is there always 
a number of minutes that will yield the 
same cost for both plans?  Provide an 
explanation to justify your position. 

Provide time for the interviewee to 
create a proof.  Then ask: 
Is your solution a proof?  Why or why 
not? 
If not, what would it take to make it a 
proof? 

Analyze student work: Part 3 of interview. The participants analyzed constructed 

solutions based on the task they solved in part two in the third part of each interview. The 

solutions were carefully selected to include all the argument types in the R&P framework.  For 

instance, every solution set included an empirical argument.  Additionally, the types of proofs 

included both generic arguments and demonstrations, and were designed to include a variety of 

representations such as the use of diagrams and narrative language.  All 14 constructed 

arguments across the three interviews are listed in appendix A, and table 3.4 categorizes the 
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types of argument with descriptive language to highlight the variety of the solutions the 

participants were asked to analyze.  The student solutions to the task in the first interview were 

modified from Morris (2002) where she interviewed pre-service elementary and middle school 

teachers. Two solutions are empirical arguments, two are proofs, and one is a rationale (non­

proof) since all statements are not clearly developed.  The second and third interviews include a 

variety of types of proofs and non-proof arguments.   

During each interview, the interviewer presented the participant with the collection of 

arguments and asked two or three questions.  The first question was: which of the solutions are 

and which are not proofs and why?  The participant would review each argument individually 

and then provide a rationale for their classification. Then after providing their rationale the 

interviewer asked which argument was most convincing.  Finally, interview two included a third 

question about supporting a student in order to improve their argument.  The questions that 

accompanied the work samples in interview one and three specifically focused on the validity of 

the five student solutions.  While the participants were analyzing sample solutions during each of 

the three interviews, the interviewer encouraged them to write down comments or to talk through 

their thinking. The participant responses to the student work were analyzed to answer research 

question three. 

Table 3.4. Argument types for each student solution: Part 3 of each interview 

Solution Argument type with explanation 

Interview 1 Interview 2 Interview 3 

A 

Proof (demonstration): 
elegant novel response using 
narrative language and 
algebraic symbols 

Empirical: constructs a 
generalization from a few 
examples without justifying 
why the pattern will always 
be quadratic. 

Not a valid argument. An 
incorrect narrative 
response. 

96 



 

 

 

 
 

 

 

B 

Empirical: Uses small and 
large numbers 

Proof (generic example) 
uses a particular case to 
generalize to any size 
window. 

Proof: counterexample. 
Provides a narrative 
general and a specific 
counterexample. 

C 

Empirical: A single example 
to generalize even numbers 
and a second single example 
to generalize odd numbers. 

Proof (generic argument) 
uses a particular case and 
generalizes it different from 
solution B. 

Not valid. Provides a 
convincing response 
without attending to the 
question. 

D 

Proof/rationale: Could be 
considered a rationale since 
the argument makes 
assumptions such as: If n is 
even, then n2 is even. 

Empirical: finds a pattern by 
extending the diagram 

Not valid. Again not 
responding to the question. 

E 

Proof (generic argument): 
relies on diagram (specific 
cases) to generalize for all 
cases 

N/A Proof: provides a general 
counterexample argument. 

Select a reasoning-and-proving task: Interview Part 4 of interview one and three.  The 

first and third interviews included a fourth part which was for the participant to select a 

reasoning-and-proving task prior to the interview that they believed provided students an 

opportunity to reason with or prove a mathematical statement.  The interviewer asked why the 

participant selected the particular task.  The task the participant brought to the first interview was 

revisited at the final interview along with the new task the participants were asked to bring. The 

participant selected reasoning-and-proving tasks were analyzed to answer research question four.   

Each interviewer was assigned three participants for all three interviews. The interviews 

ranged in time between 30-60 minutes. All 27 interviews were audio recorded and transcribed 

and all written work was collected. The transcripts and written work were analyzed in order to 

address all four research questions as shown in table 3.1. 
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3.2.2 Course Notebooks 

The CORP project materials, which were used in the course, include both facilitator resources 

and teacher handouts. The handouts varied depending on the specific activities as outlined in the 

course map (figure 3.1). On the first day of class the participants were given a binder to store all 

of their notes and materials. This included the handouts related to each of the key ideas, and the 

narrative cases, frameworks, and articles. The binder was equipped with 12 hard stock sheets 

labeled day one through day twelve to separate their work by class meeting.  All of the course 

handouts were hole punched so that the students could file their work in their notebook binders at 

the conclusion of each class period.  On the last day of class the binders were collected, 

photocopied, and subsequently, returned. 

The shaded activities shapes in figure 3.1 are the activities that were analyzed to answer 

the research questions.  The participant responses to the first and last activities both labeled 

“what is proof?’ were analyzed to answer the first research question. The open-ended question 

was asked as the first and last course activities to gauge the breadth at which the participants 

could communicate their understanding of proof.  

The participant solutions to the shaded rectangles (solving tasks) contribute to answering 

the second research question. These activities provided the participants an opportunity to 

improve their reasoning-and-proving skills with secondary content. Furthermore, the reasoning­

and-proving course tasks were specifically chosen to expose the participants to a variety of 

mathematical situations, which allow for multiple solution paths. The rationale was that if 

teachers were capable of solving problems using a variety of representations and solution paths, 

then the teacher would hold a positive disposition toward implementing reasoning-and-proving 

tasks and be more successful with interacting with students’ multitude of approaches. 
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The participants completed handouts in which they analyzed student work (two shaded 

hexagons), which will contribute toward answering research question three. These analysis 

activities provided the participants with examples of how students may solve problems, 

strengthen their criteria for proof, and begin to think about how to support students thinking. 

These are instructional skill teachers need to develop in order to implement high-level tasks 

successfully (Smith & Stein, 2011).     

The two shaded arrows represent the two tasks the participants selected for planning 

purposes and will be coded and analyzed to answer question four.  To reach the goal of 

integrating proof throughout the secondary curricula, teachers need have a broad conception of 

proof, develop an ability to construct proofs in multiple ways, understand how to support student 

thinking, and build their skill with selecting and or modifying tasks to met their instructional 

goals. The teacher handouts for the five reasoning-and-proving tasks and student work analysis 

handouts including the student work are attached (Appendix B).   

3.2.3 Artifact task packets  

During the 2011-2012 school year, six of the seven participants who secured a secondary 

teaching position volunteered to collect classroom data around their instruction related to 

reasoning-and-proving. Participants were asked to complete an artifact task packet for each task, 

which includes selecting a reasoning-and-proving task and a modified version if applicable, nine 

pieces of students’ work organized into three categories (below expectations, met expectations, 

exceeded expectations), and any materials created in preparation for the lesson or during 

implementation.  Additionally, the participants were asked to complete a task cover sheet and a 

background sheet. 
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The material found in appendix C details the information that was emailed to each of the 

six participants on November 4th. The first page of the document lists the requested data for each 

lesson packet they return.  The second page is the task cover sheet, which will be completed for 

each task. The teachers were asked to collect student work on any reasoning-and-proving tasks 

they implemented or will implement prior to March 1, 2012.  If they modified any task from 

their text or an outside resource they were asked to send both the original and modified versions 

of that task. The participants were also asked to provide photo copies of three pieces of student 

work that exceeded their expectation (1: EE), three pieces that met their expectation (2: ME) and 

three that they regarded as failed their expectation (3: FE) for a total of nine pieces of student 

work in each task packet.  In the task cover sheet that the participants completed for each task 

they explained what their expectation was for each problem such as producing a proof, non-proof 

argument, make a generalization, etc.  Furthermore, the teachers were asked to send any and all 

documents that they prepared to support their preparation for implementation of the task. 

Finally, a background sheet was included to be complete once to explain how they perceive the 

support they are provided by their colleagues and administration related to enacting reasoning­

and-proving activities. Each participant was mailed an initial five envelopes affixed with postage 

and mailing addresses. Teachers had the option to send more than five task packets if 

appropriate.  However, in the end only two of the six participants submitted task packets and 

only the enacted tasks and task cover sheets were used in the analysis of this study.  

The rationale for the task packet is to gain a greater understanding of the selected and 

implemented R&P tasks opposed to just asking for the activity sheets. The type of tasks teachers 

select and enact affords students particular opportunities (Doyle, 1983). The cover sheet allowed 

for the participant to both foreshadow anticipated outcomes and reflect on the class engagement. 
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The student work supplies credence to the task being implemented and provides the participant 

an opportunity to compare their anticipated outcomes with the actual student solutions.  The 

classification of student work provides evidence for student expectations.  Finally, the 

background sheet was designed as to not make false claims about a participant based on how 

often they select R&P tasks. Since all of these teachers were new to their schools, it would make 

sense that they adhere to school and or district norms.  The background sheet is intended to give 

the participant an opportunity to explain the extent to which they felt supported by their 

administration and colleagues. The returned tasks were analyzed to answer research question 

four. 

3.3 DATA CODING & ANALYSIS 

This section presents rubrics and explains how the data were coded and analyzed to answer the 

four research questions. So the first section explains how the participants’ conceptions of proof 

was coded and analyzed.  Then an explanation is provided for how the participants’ solutions are 

coded and reported. Thirdly, the coding system for how the participants’ analysis of student 

solutions is explained. Finally, a description for how the reasoning-and-proving tasks the 

participants’ selected and or modified were coded is shared.  Data from this study is used to 

explain the coding and analysis process.    
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3.3.1 Conceptions of Proof 

Two perspectives to consider when reviewing secondary teachers conceptions is the nature of 

proof in mathematics and the handling of it in the classroom (Knuth 2002b).  For instance, one 

may think of the construction of proof as a creative process for mathematicians, but believes 

students need to be constricted to particular forms based on their novice knowledge of 

mathematics or believe that students are unable to construct proofs at all.  Also, understanding 

what teachers count as proof is instrumental since it will be the implicit or explicit criteria they 

use to critique their students’ work (Martin & Harel, 1989).  The way students’ arguments are 

evaluated will influence students’ conceptions of proof.  

Table 3.5 was designed to capture the participants evolving conceptions of proof.  The 

themes that were promoted and questioned throughout the course makeup the four main 

categories: criteria, equity, opportunities, and purpose.  Mathematics educators (Ball et al. 2002) 

and the Common Core State Standards (CCSSM, 2010) specifically promote the equity and 

opportunity themes.  For instance, the standards suggest that the goals are intended for all 

students in all grade levels.  If teachers only believe students of certain ability level are capable 

of writing proofs, they may exclude them from participation in R&P activities.  Furthermore, the 

course engaged the participants in solving several reasoning-and-proving tasks that were outside 

geometry, which is the conventional course where students are asked to write proofs.   

The other two themes or dimensions in the conceptions of proof table are connected to 

research on the criteria and purpose of proof.  In order for students to develop a clear 

understanding of what counts as a valid argument, their teachers must hold them accountable and 

not accept empirical or other non-proof arguments as proof (Bieda, 2010).  Additionally, Harel 

and colleagues have argued that students not be expected to memorize or follow external 
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construction of proofs as is typically the case in classrooms when proof is taught (Harel & 

Sowder, 1998; Harel & Rabin, 2010). Instead, students should be provided opportunities to think 

and reason through various proof form, types or representations as teachers provide support. 

Finally, Bell (1976) explains that proof tasks in schools should also be used to help students 

understand and learn mathematics. Traditionally proof is only taught in schools to systematize 

definitions and statements.  The single view promotes a distorted conception of the purpose of 

proof in mathematics.   

Table 3.5. Conceptions of proof categories 

Conceptions of proof categories 
Criteria: What counts as proof? Equity: Who should write proofs? 
Argument must show that the conjecture is (or is Closed: honors students, 
not) true for all cases. Middle: All students can reason, but writing 
The definitions and claims must be true and proofs might not be possible for some 
accepted by the community. students 
The conclusion follows logically from the Open: All students can write proofs 
argument  including special educational students 
A proof may vary along these dimensions: 
type of proof; form of the proof; representation 
used; explanatory power  
Purpose: Why teach proof? Opportunities: When (how often) should 
To learn new mathematics proof be taught? 
To systematize definitions and statements in an Not a priority: Time permitting, it comes up 
axiomatic system in the curriculum or do a little in geometry  
To verify truth Special topics or units or courses: will teach 
To communicate knowledge proof in geometry and may fit it in here and 
To explain why something is true there in algebra 
To explore meaning Priority: possible in every unit of every 
To construct an empirical theory course 
 (Bell, 1976; de Villers, 1990; Hanna, 2000) 

The reasoning-and-proving course, through the various course activities, aimed to expand 

the participants’ views of proof beyond conventional conceptions of proof in secondary schools. 

The interview questions along with the opening course activity and final course reflection 
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explicitly asked the participants their position on the four themes described in table 3.5. These 

themes address the nature of proof in mathematics and instructional decisions teachers make 

with regards to implementing reasoning-and-proving tasks. 

Starting in the left top corner, the goal would be to recognize teachers developing a full 

criterion of proof. In the course this was specifically discussed in terms of constructing generic 

arguments and or demonstrations.  The student work analyzed along with the reasoning-and­

proving framework introduced the participants to a variety of ways to construct valid arguments.   

Moving in a clockwise direction, Knuth (2002b) learned that some secondary teachers do 

not believe all students should engage in writing proofs. The course took an equitable stance that 

all students should be provided opportunities to engage in reasoning-and-proving tasks. So 

statements, which convey a movement away from a closed conventional stance on proving, were 

coded as evidence of growth in this theme.   

The bottom right corner (opportunities) is also a point of contention.  If textbooks do not 

include many opportunities to reason and prove, then how often should R&P tasks be taught? 

The course espoused a belief that reasoning-and-proving should be integrated into all secondary 

course units though the explicit engagement in modifying tasks.  The traditional view would be 

that proof is only taught in a few chapters in a geometry course.  So talking about enacting 

reasoning-and-proving tasks outside the conventional geometry course was coded as movement.   

Finally, the bottom left theme describes the purposes of proof in mathematics as well as 

the purposes advocated for school mathematics. The traditional use of proof in school is only to 

organize definitions and statements into axiomatic systems.  The course encouraged multiple 

solution paths and multiple representations to show the value of proof for mathematical 

understanding.  Additionally, participants were provided opportunities to show why a statement 
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was true, and engaged in communicating arguments orally and in writing within the class 

community. Coding themes on the purpose of proof identifies movement if the participant 

suggests opportunities of engagement outside typical two-column axiomatic proofs.  The point is 

that if the participants come to recognize a broad number of purposes, then they may be more 

likely to implement reasoning-and-proving tasks to support students with attaining the broader 

set of goals. 

3.3.1.1 An explanation of how the data was analyzed to address the four conceptions of 

proof? 

The transcripts from the open-ended questions (part 1) for each of the nine interviews were 

organized along with the written responses to the course “opening activity” and the final 

reflection. A table was created for each of the nine participants that resembled table 3.5.  Then 

each of the participant’s responses were reviewed and instances that matched one of the four 

categories were copied and pasted into the individuals table.  All information a participant shared 

during the first interview was bolded in the their table.  The data the participants shared during 

the second interview was italicized and placed into their table.  The responses to the third 

interview and the final course reflection were underlined so as to distinguish when the 

participants shared their thinking. This process resulted in 46 pages of information into nine 

tables (one table for each participant). 

The data placed into each of the four conception categories were reviewed to identify 

themes.  First, the information the participants explained about their understanding about what is 

needed for an argument to count as proof was analyzed and categorized against the course 

criteria of proof as follows: 

Course Criteria of Proof 
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 Argument must show that the conjecture is (or is not) true for all cases. 
 The definitions and claims must be true and accepted by the community. 
 The conclusion follows logically from the argument 

A proof may vary along these dimensions: 
type of proof; form of the proof; representation used; explanatory power 

Secondly, what the participants said about the purpose of proof was also organized into 

themes across the nine participants.  For instance, the participants learned that participants need 

opportunities to engage in proof tasks to learn what reasoning-and-proving means.  Thirdly, the 

participants’ beliefs based on what they said or wrote was grouped to discuss their conception of 

which students they believe should have access to writing proofs.  The final category was 

analyzed in the same way with respect to the classes the participants believed that proof should 

be taught and how often during a school year proof should be include.  Specific quotes were 

chosen and shared in the analysis to highlight what a group of participants said and in other 

situation tables were developed to report the results of what the participants wrote during the 

opening activity and final reflection and said during the open-ended interview questions.   

Growth is explained by a comparison to what the participants said or wrote prior to the 

course to what he or she shared during, and at the end of the course.  For the criteria of proof, all 

three time periods are analyzed separately.  For the purpose, equity, and opportunities category 

conceptions, there are only two data points: 1) prior to course and 2) interview two and end of 

the course are grouped together. 

The reason the criteria of proof is discussed at all three time points is because the analysis 

includes the instances in which participants expanded upon and initial characteristic of the 

criteria of proof.  For instance, two participants initially explained that they knew that a proof 

needed to cover all cases, but after engaging in a particular course activity they explained that 

their thinking about an argument covering all cases was enhanced.  The other three categories 
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were not conducive for the participants to expand upon their initial thinking.  The point was to 

learn if the participants included added new purposes or changed their initial belief as to which 

students or courses should include proof.  When they changed their conception is not relevant, 

only they a change was detected based on their initial thoughts from the first interview. 

3.3.2 Solving Reasoning-and-proving Tasks 

The participants solved reasoning-and-proving tasks in the interviews and during the course. 

The teachers were asked to solve one task in each of the interviews, and solved five problems 

during the course.  The written solutions to all eight tasks for the nine students sum to a total of 

714 arguments that were be coded and analyzed.  

Since the eight tasks vary among mathematics topics and the types of problems could be 

more or less familiar to some participants, it does not make sense to show improvement over 

time in their ability to write a proof.  Instead the solutions were coded to learn the extent to 

which each participant was able to construct a proof for each of the eight tasks.  Since the tasks 

are at the secondary level, and data of prospective teachers or practicing teachers’ ability to write 

proofs for this type of content does not exist, this data begins to fill that void.   

Many studies on proof employ a five point system for scoring responses including 

empirical arguments and proofs (e.g. Lannin, 2005; Recio & Godino, 2001; Senk, 1985; A.J. 

Stylianides & G.J. Stylianides, 2009).  This study modified the rubric from the A.J. Stylianides 

and G.J. Stylianides (2009) study. Their rubric included five argument types, which became the 

4 	Karen	did	not	solve	one	of	the	 course	tasks	since	she	was	late to	class.	 
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main categories for this study. This author then expanded the rubric to include subcategories and 

a clear and convincing dimension for valid arguments (as shown in table 3.6).   

Table 3.6. Reasoning-and-proving task coding tool 

Argument Codes Code Details Code Directions 

Incoherent or not 
addressing the stated 
problem (A0) 

(1) Solution shows a misunderstanding of the 
mathematical content. 
(2) Ignores the question completely. 

List A0 and either 1 or 2 

Empirical (example (1) Examples are used to find a pattern, but a List A1 and either 1 or 2 
based) (A1) generalization is not reached. 

(2) Only examples are generated as a complete 
solution. 

Unsuccessful attempt 
at a general argument 
(A2) 

(1) There is a major mathematical error  
(2) Illogical reasoning; several holes and or errors 
exist causing an unclear or inaccurate argument.  
(3) Reaches a generalization from examples, but 
does not justify why it is true for all cases.  
(4) Solution fails to covers all cases.  
(5) Solution is incomplete. Argument stops short of 
generalizing the stated claim. 

List A2 and match the 
bulleted number (1-5) in 
the middle column with 
the work in the solution. 

Valid argument but (1) The solution assumes claims in other words the List A3 and either 1 or 2 
not a proof (A3) solution exhibits a leap of faith before reaching a 

conclusion 
(2) The solution assumes a conjecture or lists a 
non-mathematical statement as a conjecture.  

& address each of the 
points below ** 

Proof (A4) Deductive reasoning or makes a general claim from 
a single case 
Justifies the particular case in the problem. 
Provides a specific counterexample  

List A4 and address 
each of the three clear 
and convincing points 
below. ** 

** A clear and convincing proof is characterized as: 
(+/-) The flow of the argument is coherent since it is supported with a combination of pictures, 
diagrams, symbols, or language to help the reader make sense of the author’s thinking.  
(+/-) There are no irrelevant or distracting points. Variables and definitions are clearly defined and any 
terms introduced by the author are explained.   
(+/-) The conclusion is clearly stated. 
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The first column is the list of main arguments codes that were used in the A.J. Stylianides 

and G.J. Stylianides (2009) study. The second column shows sub codes that were developed to 

better distinguish among the various participant solutions. The final column includes directions 

on how to code a solution that meets the main category code.  The three clear and convincing 

categories are listed below the table and are only applied to valid arguments (A3 or A4). 

The code A0 was used on solutions that were incoherent or it was evident the participant 

did not address the problem situation. A1 was used if the participant was unable to reach a 

solution or make a generalization. There are two sub-codes to accompany the main codes A0 or 

A1. The code A2 is applied to solutions where the argument is missing or the argument lacks 

generality.  The various sub codes (1-5) in the second column identify specific issues as to how 

the solution is limited. The A3 code represents a valid argument, but includes too much 

interpretation on the part of the reader to count it as proof.  In other words, A3 was applied when 

assumptions were detected in the argument including an assumption about the conjecture the 

participant is attempting to prove. A4 is a proof, and no sub-codes follow the A4 main codes, 

which is why the bullets are used, opposed to numbers in the second column.  Finally, a plus or 

minus symbol is used to code all A3 and A4 main codes.  A plus is listed for each clear and 

convincing statement that is represented in a valid argument or a minus is used to indicate that a 

clear and convincing statement is absent.  Therefore, each valid argument code (A3 or A4) is 

followed by a combination of three plus or minus symbols. 

An example is provided to explain how a solution is coded (as shown in figure 3.3).  The 

N2 + N is always even problem was the first task the participants solved during the first 

interview.  Tanya’s solution is mathematically correct, but she includes an assumption when she 

wrote that an even times and odd is even without justifying why this is true.  The valid argument 
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with the assumption means that the solution is coded A3.1.  Since the solution is a valid 

argument, all three clear and convincing statements need to be check.  The argument does not 

include jarring statements, missed defined terms or variables, but there is no clear conclusion. 

The two cases are addressed without summarizing the argument to explain why the conjecture is 

indeed true. Therefore, Tanya’s solution was coded A3.1 ++ -. 

Figure 3.3. Tanya’s solution to the N2 + N is always even task 

In addition to coding all 71 solutions, the challenges the participants encountered while 

trying to construct arguments were identified across all eight tasks.  The challenges provide 

insight into what prospective teachers may need more support with to construct proofs.  

A second coder was trained to account for rater reliability, and coded 18 of the 71 

solutions.  Agreement was reached on 13 out 18 (72%) main codes, but every researcher labeled 

valid argument (A3 or A4) was also labeled as such by the second coder.  There was one 
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instance in which the second coder labeled a solution as a valid argument and the researcher 

coded it as an A2. Therefore, four of the disagreements were between A3 and A4 and only one 

between A3 and A2. There were a total of eight solutions that required a sub-code and there was 

agreement on seven of the eight possible sub-codes.  There were 33 opportunities to include a 

plus or a minus for the 11 valid arguments, and agreement was met on 26 of the 33 (79%) 

instances.  

3.3.3 Critiquing Student Arguments 

The participants critiqued student solutions to tasks they solved in part two of each of the three 

interviews and were also provided two opportunities during the course to analyze and make 

judgments about student work.  In all, the interviewed participants each analyzed 32 student 

solutions to five different reasoning-and-proving tasks.  The participant responses to the 288 

student solutions were coded and analyzed. 

Several of the 32 arguments included in the samples were intended to be “distracter” 

items.  These student solutions either fall short of being a proof for some reason or are proofs 

that do not fit a more traditional view. A total of 12 student solutions are identified as 

“distracter” items and organized chronologically as to when the participants where asked to 

analyze the solutions (as shown in table 3.7). These solutions were purposely placed in the set of 

solutions to create a cognitive conflict to reshape the participants’ mental image of what counts 

as proof. 

Each participant’s coding of the student solutions were analyzed.  Then the 12 identified 

distracter solutions were further analyzed to determine growth in recognizing various types of 

arguments.  All 32 solutions were coded with the following identifiers: CI & RC (correctly 
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identified & reason correct), CI & RNC (correctly identified & reason Not correct, or IC 

(incorrectly classified).  So in addition to a participant correctly identifying an argument as proof 

or non-proof they also needed to explain a correct rationale for their choice.  While validating the 

student solutions during the course, the participants were given the opportunity to label a 

solution as yes (a proof), no (not a proof), or unsure.  The participants provided a rationale for 

any of the three choices.  For example, if a participant identified a non-proof argument as such 

and explained why the solution is not a proof, then he or she was said to have given a correct 

response. The solutions labeled “unsure” were not marked incorrect since it is believed that 

saying an argument is indeed a proof when it is not is different than explaining that one is 

uncertain. In some cases a participant labeled an argument “unsure” and provided a correct 

explanation for why the solution is or is not a proof.  Instead of reporting such a case as correct, 

it is left as a separate category (unsure) since the participant is still negotiating their 

understanding of their criteria of proof.         

Table 3.7. Twelve Student Solution Distracter Items   

Twelve Identified Distracter Student Solutions 

1) N2+N is even 3) O + O = E 4) NxN square 
window 

6) Sticky Gum 8) Calling Plans 

Student D: 
Proof/rationale: 
Could be 
considered a 
rationale since the 
argument makes 
assumptions such 
as: If n is even, 
then n2 is even. 

Student B: 
Generic 
example: 
makes a 
general claim 
from a specific 
diagram 
example  

Student A: 
Empirical: 
constructs a 
generalization 
from a few 
examples without 
justifying. 

Student C: 
Provides 
Justification; 
non-proof 

Student A: Not a valid 
argument. An incorrect 
narrative response. 

Student B: Proof: 
counterexample. Provides 
a narrative general and a 
specific counterexample. 
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Student E: 
Proof (generic 
argument): relies 
on diagram 
(specific cases) to 
generalize for all 
cases 

Student I: 
Rationale: 
Correct 
statement, but 
assumes too 
much. 

Student B: 
Proof (generic 
example) uses a 
particular case to 
generalize to any 
size window. 

Student H: 
Provides 
justification, 
but not 
general to all 
cases. 

Student C: Not valid. 
Provides a convincing 
response without 
attending to the question. 

Student E: Proof: provides 
a general counterexample 
argument. 

The results of this analysis are presented in Chapter 4 in a table, such as the one shown in 

table 3.8. The top row lists the students solutions from A-J.  The first column includes the five 

tasks during the course and interviews that include student solutions. The diamonds () in the 

cells identify the student solutions within each task that are distractors. The “P” means that the 

particular argument is a proof and “NP” represents non-proof student solutions.  The student B 

“O + O = E” solution code of 2U:5/9 means that 5 participants correctly identified the argument 

as proof. The 2U means that two participants said they were unsure. So the remaining two 

participants claimed the solution is a non-proof. Ratios are shared for all students solutions in 

which at least one participant misidentified an argument. Finally, in addition to the table, 

common participant challenges are discussed arcoss all 32 solutions.  
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If I take the numbers 5 and 11 and organize the counters as shown, you can see the pattern. 

You can see that when you put the sets together (add the numbers), the two extra blocks will form a 
pair and the answer is always even. This is because any odd number will have an extra block and the 
two extra blocks for any set of two odd numbers will always form a pair. 

Adapted from: Coxford, A. F., Fey, J. T., Hirsch, C. R., Schoen, H. L., Burrill, G., Hart, E. W., et al. (2003). Contemporary 
mathematics in context: A unified approach: Course 3. New York, NY: Glencoe McGraw-Hil 

Figure 3.4. Student B solution to the “O + O = E” task 

Table 3.8 Tweleve distracter items represted across five student work activities 

Consider figure 3.5, as a model for all possible solutions constructed for any reasoning­

and-proof task. The vertical black line separates proof from non-proof arguments.  Solutions 

placed to the far left could be labeled “most definitely not a proof.”  Similarly, the solutions to 
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the far right could be labeled “most definitely a proof.”  On the other hand, just to the left of the 

black vertical bar are non-proofs, but solutions close to the vertical bar may be labeled proof by 

some participants.  Additionally, just to the right of the black vertical bar, even though these are 

proofs it is likely that participants would disagree.  Over time the goal would be for a community 

of learners to develop a common criteria of proof so that they would come to agree about the 

placement of solutions as either proof (right side of black line) or non-proof arguments (left 

side). The 32 solutions the participants analyzed in this study spanned a spectrum of possible 

argument types.  The CORP design challenge was to select student solutions for teachers to 

analyze that would foster prospective or practicing teachers understanding of the criteria of 

proof. Choosing only solutions that are easy to identify would not help teachers distinguish 

between those close to the vertical black bar, but only choosing student arguments that cause 

disagreement would not provide a facilitator with information regarding what participants know, 

which is why some solutions are easier and others more difficult to analyze.  Therefore, the 

results, which will be shared in the subsequent chapter indicate what the participants found to be 

challenging and what types of arguments were easier to analyze.   

Figure 3.5. Spectrum of solutions to reasoning-and-proving tasks 
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3.3.4 Selecting Reasoning-&-Proving Tasks 

During the course, including the interviews, the participants had the opportunity to identify three 

tasks that could be used to promote reasoning-and-proving.  All the participants selected and 

modified the two tasks for the two required course assignments.  Five participants selected a fifth 

task, which was discussed during interview three.  After the course, two participants identified 

reasoning-and-proving tasks that they enacted in their classrooms with their students as first year 

teachers. 

A main goal of the course was to prepare participants to select or modify reasoning-and­

proving tasks. Modifying tasks includes taking low-level tasks or non-reasoning-and-proving 

problems and, through the addition or deletion of information, creating high-level tasks that 

include reasoning-and-proving activities.  For instance, if a task requires students to follow a 

procedure, then questions could be added that ask students to explain why the process works, to 

make connections using context, or to link several mathematical representations to develop a 

deeper understanding of the method.  Given, that the participants were asked to select reasoning­

and-proving tasks beyond just any high-level mathematics problem, the identified task needed to 

prompt students to make a mathematical generalization and or develop an argument to support a 

conjecture. Selecting and or modifying tasks that allow for students to develop a generic 

argument could support students in developing a proof (Lannin, 2005; G. Stylianides, 2010).       

The rubric used to analyze the tasks is a combination of the reasoning-and-proving 

framework and the task analysis guide (TAG). With regards to the TAG, instead of parsing the 

tasks into memorizing or procedures without connections, any activity that fits into either one of 

these categories were labeled low-level.  Additionally, the procedures with connections and 

doing mathematics problems were grouped into a single high-level category. The two broad 
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mathematical components in the R&P framework, making generalizations and developing 

arguments, serve as the second dimension. Furthermore, some tasks neither provided students an 

opportunity to make a generalization or provide, which are labeled either low or high-level non-

reasoning-and-proving tasks.  Therefore the six possible codes in order from lowest cognitive 

demand to highest level cognitive demand with reasoning-and-proving are: L non-R&P (Low­

level non-reasoning-and-proving), LG (low-level make a generalization), LP (low-level provide 

an argument), H non-R&P (high-level non-reasoning-and-proving), H-L P (high-level make a 

generalization), and HP (high-level provide an argument). Four example tasks are provided in 

table 3.9 to serve as a guide for coding teacher-selected tasks that are reasoning-and-proving 

types. 
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TABLE 3.9 EXAMPLES OF THE FOUR DIFFERENT CATEGORIES OF PROOF TASKS 

! 

! 

! 

! 

! 

Cognitive 
Level of 
Tasks 

Reasoning-and-Proving Activities 
Making Mathematical Generalizations Providing Support to Mathematical Claims 

Low Level 

High Level 

Refer to the trapezoid pattern below. 

1.What is the perimeter of the pattern containing 12 
trapezoids? 

2. Use the diagram to describe how you can find the 
perimeter of a pattern containing any number of 
trapezoids. 

3. Find a second way to find the perimeter of a pattern 
containing any number of trapezoids.   

Jordan and Adam decided to prove their conjecture (that 
the sum of two consecutive numbers was equal to the 
difference between the squares of the two consecutive 
integers) by drawing a picture as shown below. The bell 
rang before they could label or explain the picture so they 
quickly wrote, “the white squares tell the story”, and put it 
in the pile on the teachers’ desk. 

What do you think Jordan and Adam 
were trying to communicate with this 
picture? 
Does this picture constitute a proof? 
Why or why not? 
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All of the participants selected two tasks (2 times 9 or 18) and modified the same two 

tasks (2 times 9 or 18 more) during the course (36 total) and five participants brought a task to 

the final interview (5 additional).  Two teachers selected and implemented five tasks each during 

their first year as a classroom teacher (10 additional).  So there are a total of 51 (36 + 5 + 10= 51) 

tasks. In addition to coding all 51 tasks, the initially selected 18 course tasks (2 per each 

participant) were analyzed against the modified version of those tasks.  The five interview three 

tasks are discussed separately as are the ten participant “classroom” implemented reasoning-and­

proving tasks. 

In order to report reliability coding for the selected and or modified reasoning-and­

proving tasks, 12 were randomly selected and coded by a second coder.  Ten of the 12 tasks were 

classified the same for an 83% reliability rating. 
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4.0 CHAPTER 4.  RESULTS
 

The results of the analysis as described in chapter three organized by each research question are 

presented in this chapter.  Specifically, section 4.1 details the participants’ conceptions of proof. 

Data collected during individual interviews conducted outside the regular class meetings and 

written responses to two in class prompts are used to provide evidence. Section 4.2 reveals the 

results of the participants’ abilities to construct valid arguments, which included five 

opportunities during the course, as well as opportunities presented during each of the three 

interviews. All responses were coded using the reasoning-and-proving coding tool. The eight 

tasks are analyzed and the participant responses presented.  Finally, an analysis of the 

participants’ arguments across the eight tasks is reported to uncover and identify changes with 

respect to their solution methods over time.   

Section 4.3 addresses the participants’ skills in distinguishing between proof and non-

proof arguments. The participants analyzed two sets of student solutions during the course and 

one set of student work during each of the three interviews.  In addition to identifying a solution 

as proof or non-proof the participants’ reasons for making a decision are considered and 

reported. The final research question reported in section 4.4 showcases the results of the 

participants’ abilities to select and or modify reasoning-and-proving tasks.  All of the participants 

selected and modified two tasks during course, were asked to bring one to the final interview, 

and were invited to share tasks they enacted as first year teachers.  The tasks were analyzed 
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along two dimensions: 1) level of cognitive demand (high or low) and 2) extent to which the 

tasks includes reasoning-and-proving activities (make a generalization, provide an argument, or 

not a reasoning-and-proving task).   

4.1 PRE-SERVICE TEACHERS CONCEPTION OF PROOF 

The results in this section are in response to the first research question: 

1. How do pre-service teachers’ conceptions (i.e. purpose of proof, what counts, proof in 
secondary courses) of proof change over the duration of a course focused on reasoning-
and-proving? 

The participants’ conception of proof is assessed according to four main categories (as shown in 

table 4.1).  Two of the perspectives pertain to a mathematical understanding of proof for teaching 

(1st column of table 4.1): a teacher’s criteria of proof and the purposes for teaching reasoning­

and-proving activities. The second pair of conceptions (2nd column of table 4.1) address the 

participants’ perspective about which students they believe are capable of engaging in reasoning­

and-proving activities, including the courses that should contain it, and how often students in 

such courses should be provided opportunities to reason-and-prove.  Each participant answered 

questions during interviews and wrote written responses to two course prompts, which relate to 

each of the four categories.  The analysis was organized along each conception of proof category 

and summarized to explain changes in the participants’ thinking.  

At the beginning of the first class session, the participants wrote individual responses to a 

series of questions about proof.  These written responses, along with the open-ended participant 

replies during the first interview, are combined to establish each participant’s initial conception 
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of proof. The second data point for establishing participants’ conceptions of proof is based 

solely on the responses to the open-ended questions during the second interview.  The third and 

final data collection consists of the questions posed during the third interview and the final 

written class reflection, which included two questions about proof.  The participants’ conceptions 

of proof over the three time periods across four dimensions are reported according to criteria, 

purpose, equity, and opportunities.  

  Table 4.1. Four conceptions of proof categories 

Conceptual R&P Themes 

Criteria: What counts as proof? Equity: Who should write proofs? 
Argument must show that the conjecture is (or is Closed: honors students, 
not) true for all cases. Middle: All students can reason, but writing 
The definitions and claims must be true and proofs might not be possible for some 
accepted by the community. students 
The conclusion follows logically from the Open: All students can write proofs 
argument  including special educational students 
A proof may vary along these dimensions: 
type of proof, form of the proof, representation 
used, explanatory power 
Purpose: Why teach proof? Opportunities: When (how often) should proof 
 To learn new mathematics be taught? 
 To systematize definitions and statements in an  Not a priority: Time permitting, it comes up 

axiomatic system in the curriculum or do a little in geometry 
 To verify truth  Special topics or units or courses: will teach 
 To communicate knowledge  proof in geometry and may fit it in here and 
 To explain why something is true there in algebra 

 To explore meaning  Priority: possible in every unit of every 

 To construct an empirical theory course 

(Bell, 1976; de Villers, 1990; Hanna, 2000) 
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4.1.1 Criteria of Proof: What is proof and what counts as proof? 

The course criterion was used as a measure for judging the quality of each participant’s 

conception of proof (as shown in table 4.2). The criterion of proof from the course is parsed 

along the second row of table 4.2. The term sensible argument was used instead of logical 

argument since “logical” has a specific meaning in proof writing.  The participants used the word 

logic and logical argument to mean sensible and mathematically correct, opposed to various 

logical (e.g. contradiction, contra-positive, direct) or illogical (e.g. converse) forms.  Participant 

names are listed along the first column of the table. The numbers in the cells represent the time 

period (1: prior to start of course, 2: between the 4th and 5th class meeting, 3: at the conclusion of 

the course) when each participant described a particular characteristic of the criteria. The bolded 

numbers mean that the participant expanded upon what he or she said in the previous interview. 

The cells that include multiple numbers represent the case where a participant mentioned the 

characteristic multiple times.  Blank cells indicate that the participant did not discuss the 

particular criterion factor. For instance, Tina has a ‘1, 2, 3’ in the “true for all cases” cell, means 

that during each of the three time periods Tina explained that a proof must cover all cases, but 

did not expand on her initial thoughts about this characteristic.  Thus, the ‘2, 3’ code in Tina’s 

row under the “claims and statements accepted by community” means that she did not mention 

this characteristic prior to the second interview.  Furthermore, Tina has a ‘1, 2, 3’ code in the 

“type, form, and representation can vary,” which signifies that she mentioned the possibility of 

multiple forms or representations during the first interview then expanded upon what she said in 

the second (bolded 2), and referenced the variety of forms proofs can assume in the final 

interview without explaining any new understanding from the second interview at the conclusion 

of the course. 
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Table 4.2. Participants’ criteria of proof compared against course criteria 

Participants’ Criteria of Proof 

True for all 
cases 

Counter-
example 

Claims and 
statements 
accepted by 
community 

Sensible 
argumen 

t 

Conclusion 
should be 
included 

Clearly 
articulated 
language 

Type, form, 
and 

representation 
can vary 

Nathaniel 1, 2 1 2 1 1 1 1, 3 

Tanya 2 2 1, 2, 3 1 

Karen 1, 2, 3 2 3 1 2, 3 

Tina 1, 2, 3 1 2, 3 1, 2, 3 3 1, 2, 3 

Lucy 1, 2 2 2 

Uma 1, 2, 3 2, 3 1, 2, 3 1 1, 2 

Brittany 2 2, 3 1, 2, 3 1, 3 3 1, 2, 3 

Katie 2, 3 2, 3 2, 3 1, 3 1, 2, 3 1, 3 

Katherine5 1, 2, 3 2 2, 3 1, 2, 3 2 1, 2, 3 

5 Kather ine’s 	first 	interview	data	was	lost	so	the	information	is	only	based	on	what	she	wrote	during	the	first	class.	 
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Many participants claimed their understanding of proof did not change. However, one 

finding is that no component was mentioned by all of the participants prior to the start of the 

course and every characteristic was added by at least one participant during a subsequent 

interview (as shown in table 4.2). For instance, three participants (Tanya, Brittany, and Katie) 

did not mention that proofs need to be true for all cases prior to the start of the course, but they 

each added the requirement to their criteria during the second interview.  Looking at each 

column there is at least one ‘2’ or ‘3’ without a ‘1.’    

Also every participant expanded his or her criteria of proof by at least two new 

characteristics, and four participants (Katherine, Katie, Brittany, Karen) expanded upon or 

described four new components after the course started.  Looking across any row there is at least 

one ‘2’ or ‘3’ without a ‘1,’ and most (7 out of 9) participants expanded on (a bolded number) a 

previously discussed characteristic.  For example, Katie never mentioned the characteristics 

generalize for all cases, that a community must agree upon what is acceptable, or that true 

mathematical statements need to be organized into a sensible argument prior to the course until 

the second interview. Then during the third interview she explained how her view of the form of 

proofs changed from a more formal structure to where she now believes a proof could assume 

many forms.  Therefore, even though only Nathaniel discussed all seven characteristics, all nine 

participants expanded upon their initial criteria of proof.      

To better understand how the participants thinking about the characteristics expanded, the 

next few sections will explain three of the four most discussed criteria and then discuss the three 

least mentioned components as a group.  The second and fifth columns are similar in that every 

participant discussed both, and two-thirds of participants (6 out of 9) first started talking about 

each characteristic during the first interview.  The difference is that two participants expanded 
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upon the “must be true for all cases” criteria, and no participant spoke specifically about how 

their understanding of a “sensible argument” changed.  Therefore, columns two (must be true for 

all cases), four (claims and statements accepted by community) and eight (type, form, and 

representation can vary) are explained to gain a deeper insight into what the participants said and 

how they changed their understanding of these three characteristics.  Finally, an explanation is 

provided for the three criteria (columns 3, 6, 7) that were not mentioned by many participants.  

4.1.1.1  Proof must be true for all cases 

The fact that a proof must cover all cases was a criterion discussed by all nine participants (as 

shown in table 4.2). Two-thirds of the participants (6 of 9) mentioned the need to cover all cases 

prior to the start of the course.  Many participants made general comments about the need for 

proof to cover all cases prior to the start of the course and a few did not make mention of it until 

the second interview. For instance, Lucy said, “If it’s like a written proof, then it should prove 

something is true 100 percent of the time for every case.”  However, just over half of the 

participants (5 of 9) made specific reference to a clearer understanding of covering all cases 

during the second interview. The sequence of three tasks specifically reshaped their conception 

of the use of examples to generate a generalization.  They realized that allowing themselves and 

students to write a formula from a few examples is not a secure method of proof.  This new 

realization changed their thinking about how one needs to show a situation is true for all cases. 

For example, Karen talked about how the sequence of three tasks during the first class changed 

her own thinking about the use of examples and showing a situation is always true: 

I really liked doing the problems of squares, problems like the 60 by 60, and then the dots 
on the circle and then the – I mean the counterexample is pretty crazy, but I kind of like 
doing that because I have always been used to finding a pattern, make a conjecture all 
that, and then we did that circle thing and we saw that it doesn’t always hold.  I think 
that’s been pretty interesting to just kind of remember that just because it works for a few 
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cases, a few situations, it doesn’t mean that it’s going to hold forever.  So that was pretty 
– a cool thing to remember and definitely something that I want to try to use next year 
when I try to do these sorts of things.  

Prior to the course, Karen knew a few cases were insufficient for proof, but she admitted that she 

accepted generalizations based on a few cases.  Therefore, the course supported her change in 

understanding that it is not acceptable to assume the truth of a generalization from a set of 

examples.  Karen’s comment was representative of just over half the participants (5 of 9).  

4.1.1.2  Claims and statements accepted by community 

A shift in thinking was evident in understanding that proof is a communal activity (fourth 

column in table 4.2).  Prior to the course, no participant mentioned that an argument needs to be 

accepted by others.  In other words, they came to understand that proof is not an individual 

activity, and the classroom (or mathematical) community must accept the claims and statements 

used in an argument.  Eight of the nine participants mentioned this new realization during the 

second interview. Katie explained that prior knowledge and the use of it in a community as “the 

toolbox of statements” that are acceptable.  She made the follow comment: 

For an argument to count as a proof, it needs to be logical and clear.  You have to have 
like a set of understanding for whatever community you are kind of working with, and 
that can be different you know for each community, it has to be, you have to have a sort 
of a set of statements, what I consider to be like in your little mathematical toolbox. 

Katie references the importance of a community agreeing upon the truth of mathematical 

statements. These truths within a community is accepted as prior knowledge or what Katie and 

others called their ‘mathematical toolbox.’  These community wide accepted truths can then be 

inserted into arguments so that the statement does not need to be justified again.  Tina explains 

her understanding of the acceptance of claims in a proof as: 

128 



 

 

 

 

  

 

Like what can we allow to be prior knowledge kind of seems like it’s not really something 
that an outsider can determine. It’s more something that you have to be the actual 
teacher to make a judgment call on whether that’s allowed.  Yeah. Just thinking about 
assumptions and things that they can make about numbers. As the teacher, you’re kind of 
the only one that knows what you’ve done all year and what they can use without 
explaining or proving necessarily inside their proof. 

Tina is more specific about the inclusion of assumptions and how a classroom teacher 

would need to make clear what is accepted and what students would need to further explain. 

These teacher decisions would be based on what the classroom community previously proved.   

4.1.1.3  Type, form, and representation of a proof can vary 

The participants expanded their view of proof throughout the course with respect to the various 

types, possible representations, and forms (last column of table 4.2). Prior to the course, most of 

the participants already knew that proofs could take on different forms, but it was limited to two-

column or paragraph. The last column in table 4.2 shows a ‘1’ for 7 of the 9 participants, 

meaning that they knew proofs could assume a variety of forms and representations, but during 

the subsequent interviews most (8 of 9) participants commented on how the course changed their 

view as to the extent in which a proof needs to be formal.  The eight participants implicitly or 

explicitly indicated that after engaging in various course activities such as analyzing student 

work, reading the article about the reasoning-and-proving framework, and developing the criteria 

of proof, their view of what counts as proof expanded to accept that proofs do not necessarily 

need to be formal and can include diagrams and or narrative language.  

For example, during the third interview, Nathaniel explained his new understanding: 

I guess before coming to this course I said I really hadn’t had much experience teaching 
what I would’ve called reasoning and proving tasks, when I initially heard reasoning and 
proving, I would’ve thought of pretty formalized proofs.  But after kind of learning a little 
bit more with them trying to say about the process of going through like the reasoning 
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and developing of the conjectures and then finalizing it out with actually like 
mathematically like proving your arguments. 

Here, Nathaniel discusses his understanding of reasoning-and-proving as a set of 

activities that lead toward proof.  During the first interview, Nathaniel mentioned proofs could 

take on various forms, which is represented by the ‘1’ in the last column.  In the quote above, 

Nathaniel explains how the course changed his thinking about his criteria of proof; specifically 

how it does not need to be a formal argument. This change is articulated during the third 

interview and represented in the table with the ‘3.’ He spoke implicitly about the reasoning-and­

proving framework in that there is a range of activities that teachers can engage students in doing 

prior to writing a formal proof that could include narrative language or diagrams.   

Uma is an interesting case since she mentioned multiple forms and representations during 

her first interview, but she commented more specifically during the second interview on the 

struggle she was having about the inclusion of diagrams in a proof.  She explains: 

I mean, I guess I’m – when I see an argument that’s just based on pictures, I’m always a 
little leery about them. But I feel like if they – if they use the pictures and explain 
something, some people are more visual learner, so I do think the pictures are 
acceptable.  We have been arguing about that a lot in class.  But you just need to make 
sure that they’re clear about what they’re drawing. 

She clarifies that she is leery of pictures alone, but is now reconsidering diagrams if they 

are clear and in conjunction with an explanation.  This change in thinking shows how Uma 

expanded her conception about acceptable proof representations. 

Finally, Katie seemed to posses a full conception of the various forms, types, and 

representations at the beginning of the course, but she too admitted that the course clarified her 

thinking about what is an acceptable proof.  During the first interview she said: 
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Yeah, a full proof could sort of be anything, I think it could be a paragraph, I think it 
could be a picture, I think it could be… anything, yeah, I don’t think that there’s a single 
rule for what a proof should look like.  It can use numbers, it can use symbols, it can use 
words and pictures, pretty much anything. 

During the third interview, Katie indicated that she experienced growth with respect to 

what a proof could be. She explained: 

Yeah, I think that if anything changed it just it gives me a clearer picture of what it 
involves. For example I know that we can have a paragraph it could be a picture, you 
know with some words, it could be, you know it doesn’t always have to contain like a 
generalized statement like a function or…Yeah, and just like the makeup of it 
Yeah, I really had just more of the formal idea, like the two column proof and the proofs 
we did in college which were more like by induction or just the, in the one article we read 
the proofs, not as much the proofs that explain, so, you know this class maybe 
enlightened me on the proofs that you can do in high school that are different from the 
ones we’re asked to do in college. 

Even though Katie initially portrayed a broad view about the style of a proof, she still had a 

formal conception of how words and symbols could be arranged in an argument.  She explains 

“the makeup of it” has changed for her; where the information contained in a proof should 

convey understanding opposed to following a particular form.  The way students choose to 

demonstrate understanding could include words and does not necessarily need to include 

symbols.  Katie seemed to have a complete conception of logical proof forms, or what they could 

look like or contain, but was able to the recognize the limitations of her initial view during her 

final interview.  

4.1.1.4  Summary of participant changes with respect to criteria of proof 

All of the participants expanded or changed their conception of the criteria of proof. Mostly the 

participants showed growth along three measures: 1) reconsidered the form, type, and 

representation of a proof; 2) learned how relying on specific cases to make a generalization is not 
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a secure method for constructing a proof; and 3) statements and claims made in an argument 

must be agreed upon by the classroom community. The final point, addressed in this section, is 

whether or not the participants articulated a complete understanding of the criteria of proof. 

As noted in table 4.1, this section addresses “what counts as proof.” The seven 

characteristics listed across the top of table 4.2 align with the question, but they are not of equal 

weight. For instance, not all participants commented on a counterexample.  Some participants, 

using their prior knowledge, explained that a statement must be true for all cases or one must 

find a counterexample to provide evidence as to why a statement is false.  However, this was not 

a learning objective in the course.  Additionally, the need for clearly articulated language and 

summarizing an argument (columns six and seven in table 4.2) was discussed, but neither was 

addressed as essential components to accepting an argument as proof during the course.  In other 

words, focusing on concise language was secondary to making sure the participants understood 

that a valid mathematical argument must be true for all cases. 

While just over half of the participants (5 of 9) discussed six or more of the 

characteristics, not all of the participants were able to articulate the same level of understanding. 

For example, Katherine addressed six of the seven characteristics of proof across the three time 

periods and at the end of the course summarized her understanding in the following way:   

Mathematical proof is showing that a conjecture is true or not true for all possible cases. 
In order to form a proof, the student must generalize (or be supplied) a pattern, a 
conjecture, and an argument. There are two types of proof arguments: generic 
arguments, which generalize an example and demonstrations, which show a complete 
generalization. Proofs can take many different forms, including diagrams, paragraph 
proofs, and 2-column proofs. In order for a proof to be valid, it cannot use any statement, 
which have not previously been proven. 

In her first sentence, Katherine addresses the true for all cases and the possibility of a 

counterexample (not true). Secondly, she shares her understanding of the reasoning-and-proving 
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framework with her explanation of reasoning as looking for patterns and making a conjecture 

prior to making an argument.  Then she unpacks the term “proof argument” to include the two 

types addressed in the course: generic argument and demonstration.  She also includes various 

proof forms. Finally, Katherine adds the importance that all mathematical claims made 

throughout the argument need to be accepted by the community.  While Katherine did not list all 

seven characteristics, she addressed specific course topics to explain her understanding of what 

counts as proof at the end of the course. 

On the other hand, Lucy struggled the most to articulate a broad understanding of the 

criteria of proof. She consistently shared one-sentence statements and either repeated her 

sentences in subsequent interviews or just said that her definition did not change.  For instance, 

Lucy started with a sentence for her understanding of proof by saying, “a proof means that 

something is true 100% of the time for every case.”  In follow-up interviews, Lucy stated her 

thinking about proof did not change, but added that a proof could assume many different forms 

during the second interview. So even though Lucy was unable to articulate a complete criterion 

of proof, she did expand on her original conception. 

Therefore, eight of the nine participants were able to articulate a broad conception of the 

criteria proof based on what was addressed in the course by the last interview.  All of the 

participants expanded their view by at least one characteristic. More specifically, the 

participants expanded their view of proof beyond a formal object to understand that proof is part 

of a set of activities that starts with making generalizations.  Several participants also noted that 

the sequence of three tasks completed during the first class changed their thinking about the uses 

of specific cases to generalize a mathematical situation.  Finally, most participants articulated 

that proof is a communal activity, such that mathematical claims and statements made in an 
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argument need to be accepted truths.  If the statements are not accepted, then they also need to be 

proven within the larger argument.  Overall, the participants’ criteria of proof changed 

throughout their engagement in the course and most were able to articulate a complete 

understanding of what is needed for an argument to qualify as proof.      

4.1.2 Purpose: Why teach proof? 

The rationale behind the question “why teach proof” is that if teachers have a broad view of the 

purpose of proof, then teachers will find a variety ways to incorporate it into the curricula or see 

it as an important practice to address.  Hanna (2000) recommends that proof in mathematics 

classrooms should focus on explanation: “The fundamental question proof must address [in the 

classroom] is ‘why?’ (p. 8).” While asking ‘why’ is useful in supporting students to explore 

mathematical ideas, this research does not claim that a specific purpose should take priority over 

others. This section will report on the purposes the participants shared prior to the course and 

then again during and after the course to learn if their conception of the purpose of proof 

expanded. Finally, the purposes that the participants identify will be compared to those 

researchers suggest for school mathematics to see the extent to which the participants gained a 

broad conception for why they will teach proof and how their views align with those of 

researchers. 

4.1.2.1  Purpose of proof before the start of the course 

The participants were not directly asked about the purpose of proof in secondary mathematics 

courses, but the following two questions contributed to the participants’ communication of their 

thoughts on the issue. The first question was asked during the first interview and the second was 
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part of the course opening activity in which they wrote out their answer. The opening activity 

was the first prompt the participants were given during the first class meeting.  The responses to 

these questions along with other comments the participants said during the first interview and 

opening activity are used to gain their initial perception of the purpose of proof. 

1.	 What role do you think proof should play in the secondary mathematics 
classroom? 

2.	 Is it important to engage secondary mathematics students in proof-related 
activities?  Why or why not? 

Three themes capture what the participants believed to be the purposes of proof before the start 

of the course that include: 1) the organization of definitions and mathematical statements; 2) gain 

a deeper understanding about the truth of mathematics concepts; and 3) develop logical and 

rationale thinking skills. No one participant communicated all three of these purposes, but each 

of them mentioned at least one of the three purposes and no one discussed roles of proof beyond 

the three. 

Three participants (Tina, Uma, Katie) explained axiomatic structures and learning to 

organize theorems and definitions as a purpose to engaging students in proof.  The short 

explanations the three participants shared varied, but their responses seem connected to what the 

three participants believe is a proof.  For instance, Katie said: 

Begin with basic, universally accepted concepts (axioms) and reason with them to arrive 
at the desired result. Proof requires substantial justification of an argument. 
You’ve proved a mathematical statement when each “step” contains no assumptions. 
Each “step” is justified using universally accepted axioms, and the result is clear  

Katie’s statement is a longer version and more directed at what she believes is a proof than what 

Tina and Uma shared. Uma’s thoughts are related and connect to another purpose (develop 

logical and rationale thinking skills) when she said: 
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It is important for students to develop an organized and thought provoking way of 
thinking and be able to provide valid arguments. In addition, it is important that students 
understand theorems and rules that they use and why they work. 

Therefore, at the beginning of the course these three participants have identified the need for 

students to learn proof so that understand theorems and how to organize them in logical steps. 

Six participants (Nathaniel, Tanya, Karen, Tina, Lucy, Brittany) believe that proofs are 

important since they promote a deeper understanding of mathematical ideas.  When students 

understand the truth of theorems or why procedures work, they will build a stronger 

mathematical foundation, which leads to better recall or reconstruction of knowledge to solve 

new problems.  Brittany, Karen and Tanya each shared examples to convey their thinking about 

the benefits of teaching proof. Brittany and Karen’s views are similar and are examples of 

writing proofs to better understand the concepts. Tanya goes one step further to say that after 

they prove a theorem they will not only know it; they will be better position to reconstruct it if 

necessary. Karen and Tanya’s comments are shared: 

I think it should play a much bigger role than when I was in school, because when I was 
working through all of those things with the Pythagorean theorem, I never knew where it 
came from. But working through the proofs for it - at least the things that we're kinda 
like proofs for my kids to work through, I figured out where the heck it started.  So I think 
it would give - by thinking about why it holds true always and why something is what it 
is, will help give the students a deeper understanding of that idea. (Karen) 

It is important because it helps students develop a deeper understanding of mathematics 
if they can prove it rather than just being told that something is true. For example, 
students might forget that an odd times an odd is always odd. But if they prove the fact, 
then they will be more likely to remember it because they understand why it is true. If 
they forget, they can reconstruct a proof to remind themselves of this fact. (Tanya) 

Three participants (Katherine, Uma, Lucy) discussed the final purpose (develop logical 

and rationale thinking skills) as to why students should write proofs prior to the start of the 

course. The communication around this reason did not spark examples or experiences. Instead 
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the participants stated that learning to think logically is an important life skill and writing proofs 

is an activity that would provide noteworthy experiences in developing the skill. 

Therefore, most participants believed that proofs should be taught in secondary 

classrooms so that students have the opportunity to gain a deeper understanding of mathematical 

concepts. Only three participants (Tina, Uma, Lucy) identified more than one purpose of proof 

and three others created an example or during on personal experiences for why students should 

learn to construct proofs. 

4.1.2.2  Purpose of proof during and after the conclusion of the course 

As a group, during the follow-up interviews the participants explained new purposes for why 

they believe secondary students should engage in writing proofs. The three purposes that were 

discussed prior to the course continued to be important, but most of the participants shared four 

new reasons for including proof activities in the secondary mathematics curricula: 1) learn what 

is proof, 2) communicate mathematical truth, 3) build ownership or authority of the content, and 

4) develop an ability to construct a proof. 

The sequence of three tasks (Squares, Circle & Spots, Monstrous counterexample) the 

participants solved during the first class and reading the case of Nancy Edwards (class 5) caused 

some participants to realize that students may believe that examples are enough evidence to 

count as proof. Prior to the course no participant commented on the need to enact proof 

activities with the purpose of supporting students with learning what is proof.  Six participants 

(Tanya, Karen, Lucy, Uma, Brittany, Katherine) focused on the idea that they will need to 

scaffold students learning of proof in particular that any number of examples is not enough. 

Lucy discussed this new realization during the second interview: 
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I think before I started this class, I kind of took it for granted that students would know 
when something was completely – when something was proven, and now I’m kind of 
seeing that they don’t – they kind of have to be taught.  Like, yeah, just because you 
proved it for five cases doesn’t mean it’s true for every case.  

Lucy shared a similar comment during her third interview.  

During her third interview, Karen connected this new purpose of writing proofs with 

what she said during the first interview about enacting proof tasks so that students come to 

understand mathematics while making a connection to the case of Nancy Edwards: 

You can’t just assume that they’re going to know examples aren’t enough.  That kind of 
goes along the line with things that you need to work on from the start.  I don’t know 
whose case it was, but those cases helped me to see that, too, and to take tasks maybe not 
always just because there’s a big mathematical idea but I think somebody picked a task 
where the math was a little bit simpler, but the point was to figure out how do you prove 
your answer. That was a good thing to understand 

Tanya commented on this same purpose and connected her new thinking to the series of three 

tasks during her second interview: 

Just the challenge of how you get students to be convinced that they’re, that they have a 
proof. And that they haven’t just made an argument, like how do you teach students that 
it’s a good proof? 
I think that activity that we did on the first day was helpful in showing the 30 septillion 
whatever, that counterexample was useful of just in thinking about how wanted to make 
sure students understand that they have to check every possible case. 

Therefore, these six participants who spoke about the importance of engaging students in 

reasoning-and-proving activities to support students with learning a criteria of proof seemed to 

have made this realization based on course activities. 

Three participants (Tina, Tanya, Katie) added the purpose of proof to include the 

communication of mathematical ideas.  None of the three participants referenced course 
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activities, but they suggested that proof could develop students’ ability to articulate their 

thoughts. For instance, during the third interview Katie said: 

R&P plays a big role with developing classroom norms & math-talk learning 
communities. Good opportunities to engage in R&P lead to norms like communication, 
authority, etc. that we want students to have.  

Katie’s comment leads into the final new purpose for including proof in secondary classrooms: 

develop student’s mathematical authority. 

As with improving communication, just under half of the participants (4 of 9) 

(Katherine, Nathaniel, Katie, Tanya) mentioned mathematical authority without making specific 

reference to a course activity. Tanya shared comments about this during the third interview. She 

explained a connection with supporting students to reason-and-prove and how that process will 

lead to gaining mathematical knowledge. As students are provided opportunities to 

communicate their understanding of content, they will develop ownership. Tanya said: 

I think that proof is connected to helping students develop mathematical authority. 
Students cannot have authority if they honestly cannot say whether or not their solution is 
correct. I think that helping students develop reasoning and proving skills will help 
students gain confidence in their solution and demonstrate more mathematical authority. 

Therefore, it is difficult to know exactly how the course may have influenced their thinking of 

mathematical authority, but several participants recognized it as a reason for implementing 

reasoning-and-proving tasks. 

Even though each of the participants explained at least one new purpose for proof in 

secondary mathematics, most continued to discuss what they shared during the first interview. 

Since the course was not trying to downplay any purposes of proof, it is encouraging to report 

that participants continued to view their original reasons for proof where these new purposes 

simply expanded their view of the purpose of proof.    
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Finally, an interesting finding is that two-thirds of the participants (6 out 9) articulated a 

broader view of proof as a set of activities.  In other words, during the first interview Katie 

shared a purpose of proof in which to prepare students to organize axioms, definitions and 

mathematical statements in a step-by-step order until the result is reached.  During the second 

interview, she explained that this is how she viewed the purpose of proof as an undergraduate 

mathematics student.  Since her view of proof expanded to include reasoning-and-proving, Katie 

as well as five other participants (Nathaniel, Karen, Tina, Lucy, Uma), began to talk about the 

need to engage students in the spectrum of activities so that students come to understand how to 

construct a proof. Katie realized that as a teacher she does not want to just focus on the end 

result of proof as an object. She explained that all students in all courses need opportunities to 

reason and develop their own conjectures just as she did in the course.  During the second 

interview Katie explains her thinking: 

Just whenever I was in, you know whenever I was an undergrad I did a lot of proving, but 
I honestly didn’t think much about it in terms of…I guess I definitely made sure that my 
proofs were valid but I didn’t think about the different parts of it you know what I need to 
do, I guess just thinking about it in terms of teaching it, I’m just getting a little different 
viewpoint of what it is. Before you know I knew it had to be logical and you know I had 
the axioms that I could use, but I guess just thinking about it from the other side is 
definitely just giving me a clearer picture. 
Just basically in any class because it’s not just about the proof, it’s about the logical 
reasoning and you know being able to build an argument and defend it and I think that’s 
so applicable in real work situations too so I think so far this class has shown me the 
value in taking the time to do it. 

The five other participants were not as reflective as Katie, but they too recognized the 

course provided them with a fuller understanding of the need to provide student with a variety of 

tasks so that the focus in not only on developing a complete valid argument. Students need 

different reasoning opportunities to support them in developing a proof.  During the third 

interview Nathaniel shared his detailed perspective of his revised thinking when he said: 
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Since the last time I think I’ve had a more of a developed understanding of what they 
mean by reasoning, as like, leading up to the proof, and like the initial thinking where the 
student needs to identify a pattern or formulate some conjecture, and the process the 
student can engage in there, to maybe give them a more deep mathematical 
understanding they can then lead and assist in helping them to come to a more 
formalized proof, so that’d probably be the main change of my thinking of both reasoning 
and proving together. 

Therefore, the majority of participants were able to articulate that a purpose of reasoning-and­

proving is to support students with constructing formal deductive arguments over time. 

Overall the participants articulated a total of seven purposes for engaging secondary 

students in reasoning-and-proving activities.  Over the past several decades, researchers have 

expanded their list for the purpose of proof in secondary mathematics to also include seven 

purposes: 

Researchers lists of purposes of proof 
1) To learn new mathematics
 
2) To systematize definitions and statements in an axiomatic system 

3) To verify truth 

4) To communicate knowledge  

5) To explain why something is true 

6) To explore meaning 

7) To construct an empirical theory 


 (Bell, 1976; de Villers, 1990; Hanna, 2000) 

The participants identified several of the purposes in the researcher list.  However, two 

noticeable reasons to engage students in writing proofs that garnered attention from the 

participants during and after the course are not in the researcher list.  The course promoted the 

importance of implementing reasoning-and-proving tasks so that students come to understand a 

common criterion of proof. Additionally, the participants explained that reasoning-and-proving 

tasks could be implemented over time to support students with developing a proof that meets the 

designated criteria. Therefore, the researcher purpose highlights a variety of goals for 
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implementing a proof task, but the participants identified a couple fundamental reasons not on 

the research list (to learn what is a proof, reasoning activities to support students with producing 

a proof) that may be useful for secondary teachers with supporting students to construct proofs. 

4.1.3 Equity: Who should write proofs? 

The nine prospective teachers who participated in this study will have classrooms of their own 

and will need to make decisions about the opportunities they provide their students.  If they 

understand what reasoning and proving is and the purpose of teaching secondary students proof, 

then it is more likely they will make choices to include reasoning-and-proving tasks in the course 

they teach. The next question then is which students should be provided such opportunities. 

Previous research suggests that high school mathematics teachers believe that only honors or 

high achieving students should have access (Knuth, 2002b).  However, the Common Core 

Mathematics Standards (CCSSM, 2010) recommends that all students regardless of their ability 

should have access to constructing and critiquing arguments across all content.  Therefore, this 

section will report on what these participants believe about reasoning-and-proving as an equity 

issue. 

In general, most participants believed that all students should have access to reasoning­

and-proving while at the same time some hinted at reservations for including it in their future 

classrooms.  Some participants changed their view on the topic over time, since they did not 

think much about proof as an element in secondary classrooms prior to the course. Based on 

concepts and ideas they learned in the CORP course, many participants believe they are better 

prepared to incorporate it in all courses for all their future students. 
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4.1.3.1  Participant perception of equity and proof writing: Prior to start of course 

During the first interview, most of the participants (7 of 9) identified proof as a formal activity 

that was not taught by either them or their mentor teacher during their field placement.  Eight of 

the nine participants said that they believe it is appropriate for all students. Three participants 

(Tanya, Karen, Lucy) explained that they enacted “reasoning like” activities since they asked 

students to explain why. Four participants (Tina, Uma, Katie, Katherine) explained that proof 

was not studied in their classrooms, but believed it should be include in secondary mathematics. 

An interesting finding is that even though most participants believed proof should be included in 

all secondary mathematics classrooms, several were less optimistic or specific about enacting 

proof tasks in their own classroom. 

Only Brittany and Nathaniel spoke of experience with trying to enact proof tasks. 

Nathaniel was the only one to suggest that proof is more appropriate for honors level students. 

Brittany seemed conflicted saying that in general it is important, but through experience she 

wondered if it was appropriate for all students.  Nathaniel talked about his experience and 

rationale with engaging students in writing proofs prior to the start of the course: 

We actually did do some units on actually having the students make formal proofs, 2-
column proofs. It’s an honors geometry class, and so we try and bring proof in a little bit 
more because they are able to handle it and actually construct or actually articulate their 
arguments a little bit better than other students. 

Nathaniel’s comment is forthright in explaining that he believes honors geometry students are 

better prepared to write and articulate proofs, and so he and his mentor teacher (the we) provided 

those students with the opportunity to construct proofs.  He explained that he did not do proofs in 

high school and credits his experiences in college for his strong proof writing ability.  However, 
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he seems conflicted about what types of activities students should do in secondary classrooms 

when he says: 

Simply engaging students in replication of procedures does not ensure that skills can 
translate to other areas; however, formal proofs may confuse students and actually 
hinder overall learning. 

Nathaniel was not the only participant to start the course with a formal view of proof, but was the 

only one to articulate that teaching formal proof construction might not have a place in the 

secondary education for all students. 

Brittany believed that there should be more opportunities for students to write proofs in 

high school geometry.  She said, “I wish there were more in geometry because there are so many 

theorems.” However, when she spoke about her teaching experience with her mentor, Brittany 

explained: 

Now as a teacher my students don’t do two-column proofs in my geometry class.  I teach 
geometry and college algebra. We don’t really do any proving in algebra either.  But we 
do - I mean we did at the very beginning of the year we did do the two-column proofs, but 
I found that my students weren’t able to do it.  Like they just – they struggle with it a lot 
no matter what kind of supports we were trying to give them.  So I think we kind of 
backed away from that. 

Brittany did not directly mention proof being more for lower or higher tracked students, 

but explained that ‘her students’ were not able to construct proofs.  In general, Brittany 

commented on the need for more proof in geometry, but the enactment of it was impractical with 

her students. 

The majority of the participants (8 out of 9) were unopposed to the general inclusion of 

proof for all students but, as with Brittany, when the attention redirected toward their own 
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classrooms they changed their belief in that all students are capable.  Tina talked about her 

middle school students: 

So like pre-Algebra, general math, I guess. I guess if I think about the students that I 
teach, there would be a barrier there just because of like reading comprehension and 
fluency, being able to put together a statement that clearly proves something.  Being able 
to put together a sentence that gets across their thinking and how they’re connecting to 
ideas. But I guess that’s definitely something that you want in general in math is the 
ability to be able to connect to ideas and show why you can connect them.  I guess that’s 
kind of the whole point of how we’ve been taught to teach.  Yeah. Definitely. It seems 
necessary in every kind of math if I think about it like that. 

The conflict is the tension between recognizing that proof is an important mathematical 

process for students to learn, and the reality that the students they teach find it difficult to 

construct proofs, so maybe it is not appropriate for ‘my students.’  Tina seems to become aware 

of the dichotomy as she is speaking and retracts her words to say that her students too should 

have the opportunity.  Additionally, while the prospective teachers attempt to enact proof tasks in 

their mentor teacher’s classroom, they recognize their limited pedagogical skills as well as with 

those of their mentor. This leads to the mentor teacher making a decision that they should “back 

away” from requiring students to produce proofs. 

Other participants (3 of 9) shared how they value informal reasoning and explanation, but 

not did not see proof as part of the curricula or that they did not implement formal proof tasks. 

Lucy and Tanya shared similar thoughts while Karen addressed the curricula and grade level she 

taught. Tanya and Karen’s explanations are shared:  

Right now I don’t do like formal proofs in my classes, but I do like a lot of justifying your 
work, so like I guess like right now I think that it takes a less like a less formal role but 
students should be able to explain and justify their work, but not necessarily write like a 
formal proof, write out a whole paragraph with each step of why. (Tanya) 

So as far as this year, I think since in seventh and eighth grade they don't straight out 
have to prove something but they have to reason through why two things might be 
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equivalent or why something might be - you have to provide some justification even if 
that isn't a formal proof.  (Karen) 

The comments address the inclusion of justification in their classroom without specifying if it 

was more or less appropriate for certain ability levels.  From these quotes, the take away is that 

prospective teachers believe making sense of mathematics is important for all students and this is 

attainable through informal communication of ideas.  The quotes could also be interpreted to 

mean that they do not engage their students in proof because they do not believe it is appropriate 

or that their students are not capable. Tanya commented that she did not believe proof as she 

currently conceives it as a ‘necessary’ activity.  Karen seems to be referencing her curriculum 

when she said that 7th and 8th graders do not have to prove mathematical statements.  It is evident 

that some (3 of 9) participants believe informal sense making is an important part of teaching 

secondary mathematics, but students are not held accountable for constructing valid arguments. 

Katherine, Katie, and Uma also spoke about the general need for writing proofs in high 

school without mentioning specific student ability levels.  Katherine and Uma also did not share 

information about enacting proof tasks prior to the start of the course, so they both thought in 

general that students should have access, but it is not clear if they believe all students should 

engage in constructing proofs. Katie was the only one of the three that spoke personally about 

proof and her pre-service teaching experience in a secondary classroom.  Katie said the 

following about her student teaching situation: 

I really only finished my student teaching experience two weeks ago, so I really only had 
four months of being in the classroom, and it was a fairly traditional experience.  The 
kids were not really asked to do anything out of the ordinary.  Even when I asked them to 
explain things, they said “with words?”  So it was very traditional, so no, we weren’t 
able to really do too much with that. But if I have a chance in my own classroom, I think 
I would try to pull some of that in, because I think it’s neat. 
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Katie’s comment addresses the common struggle for many pre-service teacher 

placements where they are trying to promote explanation of ideas, but they are confronted with 

the established classroom norms set by the mentor teacher.  Katie explains that justification was 

not a norm, so she struggled to encourage communication of mathematical ideas. However, Katie 

believes it is a practice she wants to establish when she is hired as a new teacher.  Katherine, 

Uma, and Katie each conveyed their belief with the importance of having students engage with 

proof activities in secondary classrooms without mentioning ability levels, nor did they discuss 

situations with teaching students to reason or prove.  

The design of the CORP material anticipated these teacher challenges.  Researchers have 

reported that students struggle to write proofs even after successfully completing courses that 

require them to write proofs.  Additionally, it has been reported that teachers are not prepared to 

support students with learning to write proofs.  A course goal was to support the prospective 

teachers with knowledge of reasoning-and-proving and skills to enact tasks so that they are better 

prepared to support their students. 

4.1.3.2  Participant perception of equity and proof writing: During and after the course 

Since the participants’ perception of proof as a formal product expanded to a set of activities that 

end with proof, most of the prospective teachers continued to recognize the utility of proof, but 

believed it is more accessible and applicable over time.  Overall the participants recognized 

proof as an accessible addition to the informal explanation they were already encouraging in 

their classrooms, learned new ways to include proof, and believe they want to integrate 

reasoning-and-proving activities into their classrooms without specifying student ability groups. 

The final result is that the participants either believed that all students should have the 
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opportunity to construct viable arguments or that no students should be provided a chance 

reason-and-prove, which in a sense is an equitable stance. 

While all the participants recognized the range of activities associated with reasoning­

and-proving as a way to prepare students to construct proofs, it is not clear that all participants 

came to believe that such tasks should be integrated into their curriculum based on what they 

said during the second and third interviews.  Four participants were enthusiastic at the prospect 

with engaging all students’ access to reasoning-and-proving tasks.  Two participants make 

general statements about the importance about including reasoning-and-proving opportunities for 

all students and that it should be a priority, but reasoning-and-proving tasks do not seem to be 

something they personally will integrate into their future secondary courses.  Three participants 

seem conflicted as to providing any students an opportunity to engage in reasoning-and-proving 

tasks. Also, eight of the nine participants did not identify proof as being an activity for a 

particular student ability group. 

Four participants were enthusiastic with the prospect to integrate reasoning-and-proving 

tasks into their future classrooms. Tanya, Karen, Brittany, and Katie expressed an increased 

interest with implementing reasoning-and-proving activities in their classrooms.  During the 

second interview Tanya said: 

It’s not something I’ve really thought about before this class.  But now I think I wish we 
started learning this earlier because it would have been useful to do with my students 
throughout this year. 

So originally Tanya related her current practice of asking students to explain their thinking as 

similar to just an informal version of proof.  After the first few classes Tanya comes to recognize 

the differences. During the third interview Tanya continued to say that she looks forward to 

incorporating reasoning-and-proving into her curricula as a new teacher.   
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Katie and Brittany both spoke about how they believed in the importance of proof and 

valued it prior to the start of the course, but now they have an even greater understanding of why 

it is important and how they would integrate it into the their curricula.  They shared their 

thoughts during their third interviews and Katie’s words below are representative of how both 

expressed their excitement about applying what they learned: 

I think this class gave you tools of how you can implement into algebra classrooms, how 
you can better implement it in geometry, just by taking something that’s even a more 
traditional question and sort of rewording it. Yeah I’ve always valued it, but I think this 
just gave you, you know a better way to do it. 

Prior to the course Brittany talked about how she and her mentor ‘backed away’ from 

having their students write proofs.  Katie’s quote highlights the point that it is not enough for 

teachers to want to or should integrate proof into their classrooms. Prospective teachers need to 

gain the knowledge to support their students successful engagement with proof.  Katie and 

Brittany believe the course provided them with the ‘tools’ to implement what they believed was 

important.     

Karen views it as her responsibility to prepare students for writing proofs and explained 

this during her third interview: 

I think I just want to start from the beginning of the year, talking about how important it 
is to provide justification and to be thinking about how you can support your answers, so 
like to say, “Is that enough to convince a skeptic?” or whatever.  I want to start with that 
right off the bat, saying things like that, to get students in the mindset of “How am I 
supporting what I’m saying? How do I know my answer’s always going to work?”  It’s 
strange because that’s something you have to start from at the very, very beginning.  I 
really can’t just start it in the middle of the year and expect everything to be perfect.  It’s 
definitely a process. 
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Karen understands that developing students’ ability to reason-and-prove will not be a simple 

exercise. As she explains it needs to be an ‘ongoing process.’  She is prepared and motivated to 

engage all of her future students to justify their mathematical thinking.    

Two participants (Uma and Katherine) believe reasoning-and-and-proving is a beneficial 

activity for all students, but spoke in more general terms in that it is something mathematics 

teachers as a group need to integrate over the duration of courses without specifying if it is 

something they plan to do.  Uma’s quote below is representative of the general view that all 

teachers should include proof tasks in their classrooms: 

Reasoning and proof is something that needs to be taught & students to develop over 
time. Students need to be aware of your expectations for what counts as proof. But in 
order for your expectations to mean anything to the student they have to develop an 
understanding of what counts as a proof what is needed what is sufficient. As a teacher, 
we need to scaffold their development of R&P skills by consistently incorporating it into 
the curriculum on a regular basis. 

While Uma and Katherine recognize what will be needed to prepare students, it is difficult to 

know if they view it as their responsibility to do so.   

The final three participants (Nathaniel, Lucy, Tina) are conflicted about the possibility of 

including reasoning-and-proving activities in their future classrooms.  For instance, even after 

discussing the purpose of proof as a useful skill that you want students to develop, Nathaniel still 

questions the benefit of having students in high school engage in the activity.  Nathaniel 

identifies two concerns: 1) there is lots of content high school students need to study to build a 

foundational base, and 2) students might not be ready to develop proof arguments.  Nathaniel 

shared the following thoughts during his third interview: 

I would still say that I still have some questions about the benefits that the proof aspect 
could have to student learning. I’ve really come to see the reasoning because it gives 
students some understanding, and I can see how the proof will have some benefit, like 
holding students accountable and having them develop arguments, but I think sometimes 
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the development of the proofs still might be too difficult that the foundation isn’t already 
there for the students to think like that, or it hasn’t been there for the past years, and it 
might be too tough 

He believes students need to learn lots of content or all content before they are ready to articulate 

proofs or he may be suggesting that high school students are not developmentally ready to 

construct proof arguments.  Therefore, Nathaniel wonders if proof is appropriate for any high 

school student. 

Tina and Lucy also identify covering content as a challenge with including proof.  Tina is 

concerned that a future school district would not support the inclusion of reasoning-and-proving 

tasks.  She explains that these tasks are worthwhile and practical, but feels it might be too time 

consuming and she also worries about keeping on pace with her peer teachers within the 

curricula. She shared her thoughts on this issue during the third interview: 

I think it's more practical.  But, you know, in like a district that didn't really see the need 
for it, it would be something that would be very hard to do.  And although I don't think 
that you should necessarily try to go at it all by yourself you could – Even if it wasn't, 
like, the main focus of your curriculum you could sprinkle in tasks like these through the 
years and try to get students to think or see math in this particular way.  That might help 
them actually like other things that are not necessarily taught where they have to prove 
something, but get them to think about things differently. …potentially more time 
consuming than other lessons that we've – other types of lessons that we thought about or 
planned throughout the year. But I would say just as worthwhile, if not more. 

Overall, Tina seems conflicted between student learning and identifying her role as a teacher, 

which is to follow a prescribed curriculum guideline. In addition to covering content, Lucy is not 

sure how to handle both formative and summative assessments with respect to proof.  Lucy 

shared this quote on assessment, “How to grade student’s proofs so I don’t know.  It seems like 

there is a very like fine line between what counts as a rationale and what counts as a generic 

example or whatever.”  Even though Lucy recognizes how the inclusion of reasoning-and­
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proving tasks can elevate student thinking beyond procedural skills what she calls ‘plug and 

chug,’ the challenge to assess along with the pressure to align with a mathematics department 

pacing guide is a real concern. 

The point of this section was to uncover each participant’s conception regarding the level 

of students who should have access to writing proofs.  Prior to the course, only Nathaniel 

verbalize the belief that honors geometry students are more qualified to engage in writing and 

articulating arguments.  The remaining eight participants did not distinguish among ability 

groups either before or after the course. Of the eight who believed students are capable, four 

conveyed their increased understanding with how to support students and are interested to 

expand their knowledge with more teaching experience.  The other four are not opposed to the 

idea. Two shared reservations about time and staying on pace with their peer teachers.  The final 

two understand the commitment with preparing students, but spoke about incorporating 

reasoning-and-proving as something important for teachers in general, but not specifically 

identifying it as something they plan to do.   

4.1.4 Opportunities: When (how often) should students engage in reasoning-and-proving 

activities? 

This section focuses on which courses should include proof and how often students should write 

proofs in each of those courses. This section is related to the previous one in that if a teacher 

believes all students should be provided opportunities to construct viable arguments then it is 

important to learn if they believe that this means all students in all secondary courses and to what 

extent a course curricula should include opportunities for students to construct arguments. The 

point of this section is to learn if the course influenced the participants’ conception about proof 
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being an isolated topic in a single high school course.  The next section will report on the course 

the participants believe should include proof activities and the section that follows will explain 

how often throughout a secondary course the participants believe students should engaging in 

reasoning-and-proving activities. 

4.1.4.1  What secondary courses should include reasoning-and-proving tasks? 

The participants suggested that proof should be included beyond geometry even prior to the start 

of the course (as shown in table 4.3). Even though they started out believing proof could be 

included in courses beyond geometry, their focus changed from suggesting how it might be 

possible in all courses to discussing about how they would specifically integrate it based on what 

they learned in the course. For example, Nathaniel said that teaching proof is possible in all 

secondary content and at the end of the course explained that selecting and modifying tasks 

provided him a skill in which to provide students opportunities to construct arguments.    

Prior to the course, only three of the eight participants mentioned that they thought proof 

was mostly for geometry students, but they extended the possibility to courses that follow 

geometry.  Three participants could not imagine the type of problems students could prove in an 

algebra class. The other five participants suggested that they believed proof could be taught in 

all secondary courses. Seven of the eight participants changed their belief about the number of 

courses that could include proof based on their expanded view of what is proof and experience 

modifying tasks to include reasoning-and-proving.  
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Table 4.3. Participants’ beliefs about which secondary courses should include proof 

In which courses should proof be taught? 

Prior to the course After the course 

Nathaniel Possible in all including 
elementary; not sure about benefits 
in any 

Modifying and creating tasks showed me how 
reasoning and proving can be a very useful tool 
in developing students’ ability to explain what 
is going on (still questioning the benefits) 

Tanya All high school courses (Algebra – 
Calculus) could include it 

I think I will teach reasoning and proof from 
the very beginning of the year, regardless of 
the subject I teach. 

Karen Think everything specifically 
mentions pre-alg, algebra and 
geometry 

Important to start from the beginning of the 
year and continue as an ongoing process 

Tina Probably most of them; algebra, 
essential to geometry, calculus 
even general math and pre-alg 

I think that reasoning and proving is extremely 
worthwhile and should be attempted in 
secondary classrooms. 

Lucy Definitely geometry, not sure what 
they would look like in algebra 
and probably calculus 

Even with a ‘crappy’ curriculum you can 
change questions without reinventing 
something to get at proof 

Uma Definitely geometry, not sure 
about algebra, probably Calculus 

Two-column geometry are not the only kind; 
There’s pattern-type tasks or any type of like 
algebra problem you could set up as a word 
problem 

Brittany Geometry and Calculus, not so 
much in algebra (basic stuff); Geo 
and above 

I think reasoning & proof should be 
incorporated into every math course a student 
takes in high school. 

Katie All courses should include it 
(algebra through calculus even 
middle school 

Learned tools to implement proof in all classes 
Algebra – Calculus 

Katherine (no record) Reasoning and proving has long been relegated 
to geometry classes, but as the foundation of 
mathematical thought it should be taught at all 
levels. 

At the end of the course, six of the nine participants specifically communicated that they 

believe reasoning-and-proving should be taught in all secondary courses.  One participant, Uma, 

initially said definitely geometry, but after the course explains that she has come to understand 

how it can also be included in algebra.  The three other participants did not specify courses, but 
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similar to Uma explained how the reasoning-and-proving course taught them ways to provide 

students with opportunities to reason-and-prove.  In fact, all of the participants explained how the 

course provided them with practical ways to modify existing tasks to include opportunities for 

students to develop arguments.  For example, Tanya indicated that she wanted to include 

reasoning-and-proving in her future classes, but also during her third interview explained how 

modifying tasks will enable her to do it: 

Okay, so it’s [the course] influenced that by making me realize that it’s more important 
than I previously thought to include reasoning and proving in my classroom, and like 
how I could do it, I’ve gotten better ideas about how I can do that, like with modifying 
tasks. 

Tanya hints at the fact that she may have wanted to include reasoning-and-proving, but know 

believes she has the practical knowledge to do it.  Nathaniel and Lucy specifically address 

modifying tasks as an influence for how they can implement reasoning-and-proving in their 

classes as noted in table 4.3. Karen explains task modification as the ‘big thing” she learned in 

the class, and others attribute it as how they will incorporate proof in any of the courses they may 

be assigned to teach. 

Most of the teachers prior to the course suggested they proof could be included in all high 

school classes, and this view persisted throughout the course.  However, they now believe they 

are better prepared with how to do it.  Katie summarized this point in her third interview when 

she says: 

Like I said before I mean I’ve always thought that it was important and not just at the 
college or calculus level.  I think this class gave you tools of how you can implement into 
algebra classrooms, how you can better implement it in geometry, just by taking 
something that’s even a more traditional question and sort of rewording it.  Yeah I’ve 
always valued it, but I think this just gave you, you know a better way to do it. 
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The participants believed teaching students how to construct and communicate arguments 

was important before they started the course, but now they have a better understanding with how 

they can choose and or modify tasks to implement with their students.  

4.1.4.2  How often will the participants include reasoning-and-proving activities? 

Since the participants are prospective teachers, their only experience teaching is with their 

mentor teacher during the past year in their field placements.  So only a few of them spoke about 

trying to include proof as teachers in their current placements.  Most of the participants said they 

did not teach proof at all, but did press their students to explain their thinking.  Those they 

attempted to have their students write proofs commented on how it was an isolated topic.  For 

example, Nathaniel explains how the textbook he used treated proof as an isolated topic, and the 

proof activities seemed to clash with the other exercises in the book: 

I mean, cause I have limited experience even trying it, where our geometry curriculum 
already had it putting it in there, and even then it didn’t seem to really match with the 
rest of the curriculum. 

Brittany was the only other prospective teacher to have experience teaching proof in a 

geometry course. She explained that she and her mentor teacher ‘backed away’ from proof 

lessons since the supports they were providing students were unsuccessful.  Therefore, prior to 

the course the only participants who had tried to teach proof was in geometry classrooms and 

those were not situations were proof was integrated throughout the curriculum.     

As was discussed earlier, at the end of the reasoning-and-proving course the participants 

felt better prepared to choose or modify tasks so that they can engage their students in 

constructing arguments.  The rest of this section will report on how often they thought they 

would engage students in such activity in a secondary mathematics course.   
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Most of the participants expressed interest with integrating reasoning-and-proving tasks 

across their curricula (as shown in table 4.4).  The categories are listed across the first row of the 

table show the options for integrating reasoning-and-proving from everyday to no integration of 

proof tasks. The column labeled ‘isolated topic’ is in line with the typical handing of proof in 

conventional geometry textbooks in which specific chapters are dedicated to writing proofs.  The 

grouping of the participants is similar to how they were discussed in the previous section on 

equity. 

Table 4.4. Participants thinking about how often they plan to implement proof tasks 

 All concepts 
everyday 

Integrate it 
throughout 
curriculum 

Limited 
integration 
depending 
on time 

Isolated 
topic 

No 
integration 

Nathaniel X 

Tanya X 

Karen X 

Tina  X  

Lucy  X  

Uma  X*  

Brittany  X 

Katie X 

Katherine  X* 

None of the participants talked about engaging students in reasoning-and-proving tasks 

everyday. Those that eagerly discussed the importance of incorporating proof fell into the 

second category. However, two of the participants (represented by the asterisks) spoke about the 

general inclusion of proof into secondary classroom rather than speaking specifically about doing 

it themselves, which was discussed previously.  For example, Katherine explained the placement 

of proof in secondary courses in the following way: 
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Students need scaffolding to understand what constitutes a proof, but should afterwards 
see that it can be integrated into any topics. Though extra work is required of the teacher, 
the development and modification of tasks will lead to greater student (and perhaps 
teacher) understanding. 

Katherine and Uma both spoke similarly that ‘the teacher’ can support students with 

learning how proof is a process students’ can learn across many content topics.  However, it is 

unclear if Katherine or Uma plan to integrate reasoning-and-proving tasks across ‘any topic’ 

themselves.   

The other four participants in the second category had a different tone about how ‘they’ 

planned to include it. For instance, during the third interview Brittany emphatically explained: 

Okay. I definitely think whatever class that I’m gonna be teaching I’m gonna try to now 
incorporate it into the curriculum even if it has to be kind of like an extension off 
something but I think that we definitely need to make sure that it’s in every math course 
in high school and I know it will be the first interview.  I believed that in the first 
interview but I strongly believe it now.  

Here Brittany is using the pronoun ‘I’, which provides a different level of responsibility 

from saying “a teacher” should.  Additionally, she explains that she might use it as an extension 

to her curriculum as opposed to saying that it will be included in every lesson or that proof will 

be designated for a particular week or month.  The only addition that Katie, Karen, and Tanya 

suggested beyond what Brittany stated is that they plan to start at the very beginning of the year.     

The remaining three participants (Nathaniel, Lucy, Tina) are more skeptical of the 

possibility of including proof with their future students.  Lucy falls into the third category 

(limited integration depending on time), since she identifies barriers to including proof so it 

seems as though it will be less of a priority for her.  Lucy believes she is prepared to modify 

tasks and identifies benefits, but seems conflicted with the possibility.  Her first quote seems to 
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mean she is interested and aligned with the second category (integrate it throughout curriculum), 

when she says: 

I said this before also that it’s something that needs to be ongoing so it can’t just be one 
lesson in the year. It has to be pretty consistent throughout the year for students to 
develop those skills. 

Then during the same interview her perspective seems to change as she talks about 

curriculum coverage as she explains: 

Maybe how – I know this year for me pacing was a big issue.  Or our curriculum was 
very – we had to teach a lot and we had very little time to teach it so maybe how you can 
incorporate these types of lessons and how you can get your students to think and reason 
like this when you are on a pretty strict time constraint. 

So Lucy understands the level of commitment needed to develop students’ ability to reason and 

prove throughout a school year, but it seems as though this might become a secondary goal 

where the first is to cover the curriculum.   

Tina also seems concerned about covering curriculum, but she says something specific 

that might mean she believes proof is a topic of study: 

I guess when to do it, how early to do it, how often to do it, you know, how many of my 
tasks should I be changing to be more reasoning and proof like, how many – I don't think 
that every one of them should be like that.  I think that'd be a little bit overwhelming.  And 
I think they're fun, but definitely time consuming.  So, you know, how much time do you 
spend pushing this reasoning and proving idea before you need to get back to doing 
something else or maybe a little bit less fun or interesting?  I don't know. 

During the third interview, she begins to question and wonder about how often she might 

include reasoning-and-proving tasks and specifies that she would not include it everyday.  Then 

she says reasoning and proving is an idea and how do you spend on it before returning to other 

topics. This quote seemed to suggest that Tina believes proof is not a process that needs to be 

integrated throughout various mathematical content areas, but a topic in itself.   
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Nathaniel’s thinking about the teaching reasoning-and-proving was the most conflicting, 

making it difficult to gain insight with regard to what he may do as a classroom teacher.  It seems 

as though Nathaniel will not include it at all when he said, “I would still say that I still have some 

questions about the benefits that the proof aspect could have to student learning.”  Nathaniel 

continues to think about the possibility and says that he is able to see how the reasoning connects 

to the types of thinking he promoted as a pre-service teacher, but he seems to believe even at the 

end of the course that writing valid arguments will be too difficult for high school students.  He 

elaborates on his previous comment: 

I’ve really come to see the reasoning because it gives students some understanding, and I 
can see how the proof will have some benefit, like holding students accountable and 
having them develop arguments, but I think sometimes the development of the proofs still 
might be too difficult that the foundation isn’t already there for the students to think like 
that, or it hasn’t been there for the past years, and it might be too tough 

He seems as though he is considering the inclusion of reasoning-and-proving tasks as he realizes 

the benefits, but in the end he seems to believe it would not be appropriate for high school 

students. 

One of the goals of the course was to develop pre-service and in-service teachers capacity 

to integrate reasoning-and-proving tasks with their students.  Seven of the prospective teachers 

never implemented proof tasks prior to the course and the two that tried did not believe they did 

so successfully. After engaging in the course, all are confident that they can implement 

reasoning-and-proving tasks, but just under half of the participants (4 of 9) are eager to get try 

enacting proof tasks, a couple of them (2 of 9) seem to believe it is important but seem reluctant 

to assume responsibility, and the final three participants identified challenges that may persuade 

them from attempting to implement proof tasks into any course they may eventually teach.  

160 



 

 

 

 

  

 

 

4.1.5 Summary of participants’ conceptions of reasoning-and-proving 

Interviews and in class written responses at the beginning, middle, and end of the course were 

analyzed to report on the participants’ conception of reasoning-and-proving. Four predetermined 

categories were designed to capture the participants’ perceptions of proof. The four individual 

conceptions will be summarized to portray a complete conception.  The rationale for these four 

conceptions of proof is that if teachers have a full knowledge of what counts as proof, then they 

know the criteria in which they should hold students accountable.  However, it is important to 

know for what reason students should construct proofs.  So it is essential to broaden teachers’ 

conception of proof beyond the narrow focus of a deductive organization of definitions and 

statements to include inductive reasoning to explore mathematical content.  As teachers begin to 

expand their view of what counts as proof and how students can gain access, they may begin to 

recognize that it is appropriate for more students in more courses and that the benefits are such 

that students should engage in reasoning-and-proving more often.   

All nine participants changed their conception of proof from a formal structure to include 

a variety of forms, representations, and types. While only one participant articulated all seven 

characteristics, eight of the nine participants articulated the three essential criteria of proof from 

the list.  In addition, all of the participants expanded their conception of the criteria of proof by at 

least two of the seven characteristics throughout the course based on what they articulated prior 

to the course.  The participants overall changed conception of proof seemed to impact their 

thinking about the purpose for enacting proof tasks as well.   

Each of the nine participants expanded upon why they believe students should have 

access to constructing proofs.  As a group the participants identified three purposes of proof prior 

to the course, and identified four additional reasons for engaging students in reasoning-and­
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proving. Researchers identified seven purposes for engaging students in writing proofs (i.e. Bell, 

1976; de Villers, 1990; Hanna, 2000). The participants discussed several of the researcher 

purposes, but added two foundational reasons for secondary students: to learn what counts as 

proof and to support students in constructing argument that meet the expectation in the criteria. 

Since the participants developed an appropriate criterion for proof throughout the course, they 

now recognize the importance of choosing reasoning-and-proving activities to not only create a 

shared meaning for their classrooms, but to also choose tasks to scaffold students skill with 

constructing proofs. So if the participants believe they have the knowledge to choose tasks to 

provide students access, then the next two questions are which students in which classes should 

teachers engage students and how often (i.e. everyday, once a week, once a month etc.) during a 

school year should teachers choose reasoning-and-proving activities. 

Research suggests that most teachers believe proof is an activity that should be relegated 

to honors students or courses with high ability students (Knuth, 2002b).  Prior to the course, most 

of the participants (8 of 9) did not discuss how certain students are more capable or that proof 

should be reserved for a particular level of students. Of the eight who believed students are 

capable, four conveyed an increased understanding and personal interest with providing 

reasoning-and-proving opportunities. Two other participants understand the commitment with 

preparing students, but spoke about incorporating as something important for teachers in general, 

but not specifically identifying it as something they plan to do. These six participants who are 

generally interested or eager to include proof tasks, believe it needs to be integrated across all 

mathematical concepts.  In addition, two shared reservations about time and staying on pace with 

their peer teachers. One of which may include it across multiple topics, but the other may view 

proof as an isolated topic of study. 
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The participants, prior to starting the course, defined proof, as a formal product that they 

thought could be included in courses outside geometry.  The course expanded their conception of 

proof as a practice that can be included in courses outside geometry, and confident in their ability 

to modify tasks from whatever curriculum they teach to include reasoning-and-proving 

opportunities for all students. Therefore, proof evolved from a formal object toward a set of 

activities called reasoning-and-proving that result in constructing valid arguments that should be 

integrated into all secondary courses regardless of the student ability grouping level for most 

participants. 

4.2 PRE-SERVICE TEACHERS ABILITY TO CONSTRUCT PROOFS 

The results presented in this section correspond to the second research question: 

2. To what extent do pre-service teachers construct valid and convincing 
arguments when prompted to write proofs over the duration of a course 
focused on reasoning-and-proving? 

The purpose of this research question was not only to identify which participants could write a 

valid argument, but also to examine the extent to which prospective teachers learned to reason­

and-prove, including their ability to evaluate their own work. This research makes a distinction 

between a proof and a valid argument. All valid arguments are not proofs. A valid argument 

includes both proofs and rationales. A rationale is not a proof since it could include claims that 

require further explanation based on the community, or the mathematically correct argument 

fails to include statements to fully justify the conjecture.  The participants’ solutions to the eight 

tasks solved in class or during one of the three interviews were analyzed using the R&P codes, 
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which were adapted from A. J. Stylianides and G. J. Stylianides (2009). This section analyzes 

the eight tasks while reporting on how the participants solved each problem. The participant 

challenges and demonstrated abilities are shared with respect to each task and summarized across 

the eight problems.  

4.2.1 Analyzing participant results 

The coding scheme described in chapter three was applied to all 716 solutions and the results are 

displayed in table 4.5. The names of the participants are listed in the first column and the eight 

tasks are listed in the order in which they were completed along the first row.  The vertical 

shaded columns indicate the interview tasks. The codes A1 through A4 (A1: Example based or 

inability to make a generalization, A2: Incomplete or incorrect attempt to construct a general 

argument, A3: Valid argument but not a proof, A4: proof) represent the main argument category 

as described in the R&P codes. The number following the main code identifies the sub-code, 

which further specifies the type of argument.  The trailing plus/minus symbols are applicable 

when the participant wrote a valid argument (i.e., they received either A3 or A4). The 

plus/minus symbols correspond individually from left to right to the three clear and convincing 

components: a) clarity in flow of argument including the use of symbols, language, and 

diagrams; b) clearly defined symbols and definitions; c) a clearly stated conclusion.  A “plus” 

means the component was addressed in the proof, and a “minus” shows that the component was 

not addressed. The codes in table 4.5 indicate what each participant produced on each of the 

6 Karen was late to the class in which the Parallelogram construction task was solved and 
therefore did not do this task. 
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eight tasks. Some of the tasks were easier for the participants to write proofs than others as 

indicated in the last two rows of table 4.5. 

Several themes emerge from reviewing table 4.5.  There are no A0 codes and only three 

A1 codes among the 71 solutions. The absence of A0 suggests that the participants were, at a 

minimum, able to access the problem. Also the absence of the code A1.2 indicates that no 

participant presented a subset of examples and claimed they reached proof.  Although some 

arguments were inductive, in most cases participants were able to produce a generalization.  In 

each of the three instances where a generalization was not produced (code A1.1) the participant 

recognized the limitations of their solution.  
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Table 4.5. Results of participant solutions to all eight R&P tasks using the R&P codes 

1) N2+N is 
even 

2) Squares 3) O + O 
= E 

4) NxN 
square 
window 

5) Parallelo­
gram 

6) Sticky 
Gum 

7) Explain 
Number 
Patterns 

8) Calling 
Plans 

Nathaniel A4+ - + A4 - + + A4+++ A4+++ A4 - ++ A4+++ A4 - ++ A4+++ 

Tanya A3.1++ - A4 - + + A4+ - + A3.1 + + - A3.2++ - A4+++ A4++ - A4+++ 

Karen A4 + - - A2.5 A2.4 A2.3 N/A A2.3 A2.5 A2.3 

Tina A2.4 A1.1 A2.4 A1.1 A2.1 A2.3 A3.2 - - - A4+++ 

Lucy A2.4 A2.5 A4+ - + A2.3 A3.1+++ A4++ - A3.2- - - A2.2 

Uma A2.2 A3.1 - - - A4+++ A3.1 + - - A2.1 A2.3 A3.2++ - A2.2 

Brittany A2.4 A2.3 A4+ - + A2.3 A2.2 A2.3 A3.2- - - A2.3 

Katie A2.4 A2.3 A4+++ A1.1 A2.2 A2.3 A2.5 A4+++ 

Katherine A2.2 A2.2 A4+++ A3.1- - + A2.2 A3.1++ - A3.2- - - A4+++ 

# of valid 
arguments 

# of proofs 

3 3 7 4 3 4 7 5 

2 2 7 1 1 3 2 5 
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The majority of the codes (32/71) were of the A2 variety.  In general, the A2 codes 

signify the participants’ limited ability to explain why a generalization is always true.  In some 

situations, the participants were aware of the limitations of their argument, but they were not able 

to improve it. However, in other cases, participants claimed to have produced a proof. Across the 

eight tasks, all seven participants that produced an A2 coded argument said that at least one was 

a proof. However, only two participants believed that each of their A2 coded arguments were 

proof.  The lack of ability to evaluate the argument they produced demonstrates an inability to 

successfully apply their criteria of proof, which could lead to the prospective teachers accepting 

invalid student arguments as proof, which is what Bieda (2010) reported.   

Combining A3 (13/71) and A4 (23/71) codes shows that the participants produced more 

valid arguments (36/71) than invalid (A1 or A2) (35/71).  The A3.1 sub-code represents 

rationales and the A3.2 is applied when a conjecture was not stated and the participant assumed 

the statement they were attempting to prove.  When creating the class criteria for proof, the 

participants agreed that all assumptions needed to be explained as something already proven.  If 

the claim had not previously been proven, then it required further justification.  However, 

recognizing assumptions within their own work was a challenge. In other words, all of the 

situations where a solution was coded A3, the participant believed she constructed a proof.  Only 

two tasks (task 3: odd + odd is even and task 8: calling plans) did not yield any solutions that 

included assumptions.  On the other hand, five participants produced solutions that included 

assumptions for the Explain Number Patterns problem. 

While every participant constructed at least one proof, only two participants (Nathaniel 

and Tanya) were successful with producing more than two.  A strong ability to develop valid 

arguments is defined as above a 75% success rate (7 or 8 valid arguments out of 8).  Three 
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prospective teachers (Lucy, Uma, and Katherine) demonstrated a moderate skill. Here, moderate 

is defined as those able to construct valid arguments on at least half the tasks (4, 5 or 6 valid 

arguments).  The remaining four conveyed a limited ability, producing three or less valid 

arguments, which means they were unable to produce a valid argument on at least half the tasks 

(0, 1, 2, or 3 valid arguments). 

Some tasks were more difficult for participants than others.  For instance, only one proof 

was written for the Parallelogram Construction task, but seven out of nine participants wrote a 

proof for the “O + O = E” task.  The lack of growth in participants’ ability to write proofs may 

be due in part to the fact that tasks sampled different content knowledge (i.e. performance does 

not improve as more tasks are completed there are not more A3 and A4’s later). It may be the 

case that the tasks were too different from one another for the participants to show improvement.  

Finally, each of the 37 valid arguments was coded with the three clear and convincing 

“plus/minus” codes.  Proofs to particular tasks were less likely to include minuses than others. 

For instance, many minuses are present for the Explain Number Pattern task, but none are listed 

in the Calling Plan arguments.  No proof-code (A4) was followed by three minus symbols, but 

one non-proof valid argument (Lucy’s parallelogram solution) was clear and convincing along 

all three measures.  Some participants struggled with one of the three particular clear and 

convincing constructs. For instance, two participants (Uma and Tanya) did not include a 

concluding statement while writing at least three different arguments. As with constructing 

arguments, there is no evidence that participants improved along the clear and convincing 

dimension.   
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The following two sections: (1) provide an analysis of the eight tasks including the 

differences among them and the challenges that emerged across the participants’ solutions; (2) 

summarize the challenges and provide possible reasons why growth was not detected.  

4.2.2 Reasoning-and-proving task analysis 

As each task is analyzed, representative solutions are shared to highlight successful solutions 

along with the challenges participants encountered, which will then be summarized across the 

eight tasks.  Additionally, when known, a participant’s evaluation of their solution will be 

provided. Finally, the tasks are compared to help explain why the participants may not have 

improved their ability to construct a proof from task one through eight.  

4.2.2.1  N2+N is always even  

The first task participants were asked to prove is shown in figure 4.1. It was administered during 

the first interview and participants were not provided feedback on their work or asked questions 

to improve their argument.  The task supplies a variable (n), defines it as a counting number, and 

the conjecture to be proven is provided. It is a typical problem students may have encountered in 

a college number theory course, in which exposure to high school algebra is the prior knowledge 

required to access the task. 

Task 1: N2+N is even: Interview 1 
Prove that for every counting number n (1, 2, 3, 4 …), the expression n2 + n will always be 
even.

Figure 4.1. N2+N is always even task. 

7 Problem adopted from Morris (2002) 
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Overall, four different solution methods were employed to solve the task. Karen (A4 +- -) 

applied mathematical induction. Four participants (Tanya: A3++-, Tina: A2.4, Uma: A2.2, 

Brittany: A2.4) factored the expression into n(n+1), noticed that n and n+1 were consecutive 

counting numbers, and created two cases where n is either even or odd. Three participants 

(Nathaniel: A4+ - +, Lucy: A2.4, Katie: A2.4) employed a third method where they did not 

factor the expression, but defined a new variable to explain both the even (let n = 2k) and odd 

(let n = 2k -1) cases. A fourth method (Katherine: A2.2) was unique, in that a participant defined 

even as a number divisible by 2 (n = m/2), and squared the alternative form of the counting 

number before adding it to itself ((m/2)2 + m/2).  Finally, she factored out a two to show the 

expression is even. The four solution paths resulted in three valid and six invalid arguments, but 

the solution method alone did not determine validity. 

Two of the valid arguments are proofs (Nathaniel and Karen) and one is not (Tanya), 

since the argument included assumptions.  Tanya does recognize the use of the assumption, but 

does not further justify her claim.  However, the most interesting comment of the three who 

wrote a valid argument came from Karen who used mathematical induction. The interviewer 

asked, “Why does the method of mathematical induction prove the conjecture?  Karen admitted 

that it was a procedure she learned in college, but was unsure why it worked.  All three claimed 

their argument proved the conjecture, but Karen was not sure why the method she used was valid 

other than her college professors telling her it was a viable procedure for proving.    

The other six participants also claimed they proved the conjecture, even though they did 

not. Two of the six non-proof arguments were coded A2.2. Mathematically they did not define 

odd and even in a useful way to show the expression is always true. To highlight the challenge to 

define the terms even and odd, we can examine Katherine’s solution: 
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 even
 
m = 2n n = m/2 


(m/2)2 + (m/2) = m2/4 + m/2 = ((m2 + 2m)/4) 


= 2 ((m2 + 2m)/8)  n2 + n is even
 

Katherine understood that her conclusion needed to show two times some quantity. 

However, she defined a counting number as any even number divisible by two.  This definition 

did not provide her with anything different from what she was given.  So instead of proving why 

the expression always worked, she manipulated the variable to produce an expression times two, 

which raises the question: Why is (m2 + 2m)/ 8 a counting number?  Therefore, the A2.2 codes 

represent solutions that were mathematically incorrect or unproductive with proving the 

conjecture. 

The second noticeable challenge other participants encountered is related. They defined 

the terms even and odd in a way that could be useful in proving the statement, but were unaware 

that their algebraic argument did not account for all counting numbers (A2.4) or that they were 

defining variables several different ways in the same problem.  Brittany’s response is 

representative of how several participants struggled with using variables correctly to cover all 

cases: 

Even number is 2n 
n2 + n 
n(n + 1) 

n = odd 
2n + 1 
odd • even number = even 

 
odd • 2n = 

(2n + 1) (2n + 2) = 4n2 + 4n + 2n + 2 = 2 (2n2 + 3n + 1) 



        even number 
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n = even 
even (odd) 
2n • odd 
2n(2n + 1) 
2 (2n2 + n) 

even 

Brittany writes that n is odd, but then on the next line writes 2n + 1.  If she is defining n 

as all odd numbers, then only odd numbers are valid numbers to substitute into the expression 2n 

+ 1. Mathematically this means that n is odd (1, 3, 5…), then 2n + 1 is a subset of the odd 

numbers (3, 7, 11…).  Therefore, she is not proving the conjecture for all odd numbers, which 

conflicts with the way ‘n’ was defined in the problem statement.   

Even if the issue of labeling ‘n’ as an odd number is overlooked, the problem with 

covering all cases is not resolved.  Assume 2n + 1 represents any odd number, since n is given to 

be any counting number.  This leads to the product Brittany wrote (2n + 1)(2n + 2). Substituting 

the smallest counting number in the product yields 3(4), which does not cover the case of the 

first counting number (one times two is not covered). Hence the argument is invalid.   

Brittany and Katherine’s solutions to the first task are representative of six of the nine 

participant solutions.  They manipulated algebraic symbols and claimed the mathematical 

statement would always be true.  While the given conjecture is true, their arguments were not 

clear about defining terms or variables.  When an interviewer asked a participant why her 

argument was a proof, her response was because it was algebra.  In other words, the prospective 

teachers (6 of 9) appear to believe that proof consisted of correctly manipulating algebraic 

symbols without attending to what the variables represent with respect to the problem situation. 
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4.2.2.2 Squares Problem 

The Squares task shown in figure 4.2 asks for the number of 3x3 size squares that can fit into a 

60x60 size square. It is the only task among the eight that does not ask for a proof of a general 

situation. The first two questions in the problem encourage inductive reasoning since it requires 

the solver to first find the number of 3x3 squares in a 4x4 and then a 5x5 square before moving 

the larger case (question three) that would be cumbersome to draw and count.   

The main difference between the Squares problem and the previous task is that the solver 

first needs to find a solution before explaining why it always works.  In the N2 + N task it is 

given that the sum is always even and the participants were expected to either explain why it is 

true or find a counterexample.  In general, in solving this task the participants followed two 

different inductive solution paths, which included: 1) using the smaller cases to make sense of 

how the 3x3 could move about the 60x60 square which leads to the correct solution (Nathaniel: 

A4 -++, Tanya: A4 -++, Uma: A3.1- - -, Lucy: A2.5) and 2) using the smaller cases to generalize 

the situation, using the general formula to find the answer for the specific (60x60), and then 

explaining why the answer must be true for the 60x60 case (Karen: A2.5, Tina: A2.4, Brittany: 

A2.3, Katherine: A2.2). These two solution methods are shared below with specific examples.  

Task 2: The Squares Problem: Class 1 

1. How many different 3-by-3 squares are there in the 4-by-4 square below? 
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2.	 How many different 3-by-3 squares are there in a 5-by-5 square? 
3.	 How many different 3-by-3 squares are there in a 60-by-60 square?  Are you sure 

that your answer is correct? Why? 
Figure 4.2. The Squares Problem 

Nathaniel’s solution is shared to highlight the first solution method described above, 

which leads to a proof: 

All 3x3 squares have a bottom left corner. This square must have two squares to the right 
and two above it. 
The bottom left corner may not occupy the top two rows or the top two columns. In a 60 
by 60 square there are 120 squares in the top two rows and 120 squares in the right most 
columns subtracting the 4 that are in both we get that there are 120+120-4=236 squares 
that cannot contain the bottom left corner.   
That’s how (60x60) -236 = 3600-236 =3364 remaining. Hence there are 3364 total. 

Additionally, Nathaniel included two drawings in his solution, but neither was explicitly 

referenced in his argument.  

Nathaniel uses the information in the problem to explain his methods for proving the problem 

situation. He first explains how he will use the 3x3 square to count within the 60x60 square. 

The drawings support the reader to understand why the top two rows and last two columns are 

not counted as he explains in his written argument even though he does not explicitly reference 

his pictures. He does make a labeling mistake with initially writing “top two columns,” but 

corrects it in the next sentence writing “right most columns.”  This misstep along with not clearly 
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explaining why he multiplied 60x60 is why the code reads A4 - + + for his argument.  Overall 

the reader is convinced as to why 3364 is the correct solution since he used clear language and 

defined his terms to explain how he counted the total possible number of unique 3x3 squares that 

can be placed into a 60x60 square. 

On the other hand, Karen is representative of those following the second solution path. 

She first drew out the first two cases 4x4 and 5x5. She drew nine 5x5 squares and showed all 

uniquely placed 3x3 squares within each 5x5.  Then she created a table of values without labels 

as shown below: 

3x3 
4x4 
5x5 
6x6 
nxn 

1 
4 
9 
16 
(n/2)2  (n – 2)2

 60x60 (60/2)2 = 900 

    (n – 2)2 = (60 – 2)2 = 582 = 3364 

So instead of finding a pattern for how she counted the movement of the 3x3 square 

about the smaller six squares (4x4, 5x5, etc.), Karen looked for a numerical pattern in the table to 

make a generalization from empirical cases.  She then used the generalization to find the correct 

answer to the problem. However, this method was not useful in justifying why 3364 is correct, 

since she was unable to justify how the length of the side the 60x60 square minus two [(60 -2)2] 

is connected to the problem situation.   

The squares problem is part of a sequence of tasks where the goal is to learn that making 

a generalization from several cases is not a secure method for proving.  In other words, the point 

of this problem is to teach participants, like Karen, that abstracting numbers from a few cases to 
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justify a general case is not a viable method to prove this or similar situations.  Therefore, it was 

expected that learners (practicing or prospective teachers and secondary students) would follow 

this method with the hope of learning through follow-up activities that this method is not secure. 

Additional issues raised in this task include participants exhibiting a limited ability to 

articulate their thinking. Nathaniel explicitly chose the bottom left corner of the 3x3 square to 

support the reader with knowing how he counted the 60x60 squares.  Others struggled to define 

terms in the problem and did not develop a complete argument.  For instance, Uma writes, “you 

can only put the beginning of the 3x3 square in columns 1-58.”  There is no explanation about 

what exactly ‘the beginning of a square’ means.  Brittany and Katie wrote about the number of 

shifts without specifying what was shifting or from where a shift starts.  This problem required 

the solver to define terms to support the reader with understanding how they counted the 

movement of the 3x3 square, but many participants introduced new terms without clearly 

defining them. 

4.2.2.3  Odd plus Odd is Even 

More participants (7 out of 9) wrote a proof for the odd plus odd is always even task (as shown 

in figure 4.3) than any other task. 

Task 3: O + O = E: Class 2 

Prove that when you add any 2 odd numbers, your answer is always even. 

Figure 4.3. Odd + Odd is Even Task 

This task is similar to the first task (N2 + N is always even) in that the conjecture is given 

so the solver does not need to first find a solution as is with the Squares problem.  However, this 
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problem does not suggest the use of a variable.  While most of the participants wrote a proof for 

this task, defining the terms odd and even along with appropriately choosing variables to show 

why the sum of any two odd numbers is always even was challenging for some participants.  The 

question elicited multiple solutions.  Most participants combined words and symbols as they did 

in their solution to the N2 + N task and most drew a diagram as a second method when 

encouraged to it another way. Only the first method was coded.  The participants were asked to 

solve the problem a second way so that they could experience multiple solution paths and 

representations. 

While seven participants constructed a proof, three were less clear with how they defined 

terms and or variables (Tanya: A4+ - +, Lucy: A4+ - +, Brittany: A4+ - +).  The other four 

proofs were clear and convincing (Nathaniel: A4+++, Uma: A4+++, Katie: A4+++, Katherine: 

A4+++). Katie’s clear and convincing proof for this task is as follows: 

Odd numbers can be written in the form 2n + 1 because by definition they are not 

divisible by 2. 

Let 2n1 + 1 be one odd number and 

2n2 + 1 be another odd number n1, n2 are integers 

then 2n1 +1 +2n2 + 1 = 2n1 +2n2 + 2 = 2(n1 +n2 + 1) 

Thus, the result is divisible by 2 and is by definition an even number. 


Katie defined both n1 and n2 as integers and explicitly defined odd and even numbers.  The 

argument is clear including a conclusion to justify the conjecture.  A few participants defined an 

odd number as 2k + 1 and either did not explain what subset of numbers k represented or defined 

it as a natural number.  Even though odd and even numbers are defined as integers, constraining 

an even number to the set of natural numbers is acceptable.  In other words, focusing on the set 

of counting numbers and showing that the sum of any two odd counting numbers is even was 

accepted as proof for this problem.   
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Tina and Karen (both A2.4) are the only participants that did not write an acceptable 

proof. Karen defined the two odd numbers as n + 1 and n + 3.  She defined n as an even number.  

Karen proved that the sum of any two consecutive odd numbers is even, which falls short of 

covering all cases. Tina defined any two odd numbers as n + 1 and n + 1, and went on to show 

that the sum is divisible by two. This shows the specific case of adding the same two odd 

numbers is even. The misunderstanding could be that a variable (n) can represent any number, so 

n + 1 and n + 1 are two different numbers. In other words, n can be any even number so one 

could substitute a six for the first n and 18 for the second n.  Therefore, the odd plus odd problem 

like the n2 + n showed that some participants struggled to construct a proof since they exhibited a 

limited utility with defining variables.   

More participants wrote a proof for this task than any other task.  Some participants 

defined odd numbers as natural opposed to integers and a couple participants incorrectly defined 

any odd numbers as either the same number or consecutive odd numbers. This challenge to 

define terms and variables was more evident when participants followed a diagram solution 

method.    

4.2.2.4  N-by-N Window Problem 

The N-by-N Window problem as shown in figure 4.4 was administered during the second 

interview. The task first requires the solver to find the total length of wood strips for any size 

window prior to justifying why the generalization is always true.  While similar to the Squares 

problem in that the participant needs to find and justify a solution, the NxN window problem 

requires a formula for any size window instead of a specific larger case. Five of the nine 

participants (Nathaniel: A4 +++, Tanya: A3.1 ++-, Lucy: A2.3, Uma: A3.1+- -, Katherine: A3.1- 
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- +) applied the method used to count the wood strips for smaller cases to find a generalization. 

Of the seven participants that generalized the N-by-N situation, three struggled to produce a 

valid argument (Karen: 2.3, Lucy: 2.3, Brittany: 2.3).  Two participants (Katie: A1.1, Tina: A1.1) 

were unable to reach a generalization. 

Task 4: N-by-N window: Interview 2 

The diagram below shows the frame for a window that is 3 feet by 3 feet.  The window is made 
of wood strips that separate the glass panes. Each glass pane is a square that is 1 foot wide and 1 
foot tall. Upon counting, you will notice that it takes 24 feet of wood strip to build a frame for a 
window 3 feet by 3 feet.   

1. Determine the total length of wood strip for any size square window.   
2. Prove that your generalization works for any size square window. 

        3ft – by – 3ft Window 

Figure 4.4. N-by-N Window Problem 

Participants needed to seek a secure method for counting wood strips in order to provide 

a valid argument.  Four levels of sophistication emerged in the analysis.  The lowest level was to 

make tables of numbers  (Tina: A1.1, Karen: A2.3).  An argument needs to be based on how the 

windows are growing and a table of numbers is too far removed from the context to do this. 

Brittany related her generalization to the context, but does not provide an argument for why her 

generalization works for all cases.  Four others (Tanya: A3.1++-, Lucy: A2.3, Uma: A3.1+- -, 

Katherine: A3.1- - +) made an attempt to provide an argument with varying levels of success. 

Katie (A1.1) tried to explain a secure counting method, but never reached a generalization. 
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Nathaniel (A4+++) reached the top level of sophistication since he constructed a clear and 

convincing proof. 

Karen made a table of values and then encountered difficultly in making progress. 

Karen’s solution is shared below:     

Dimensions # of wood window strips 
1 x 1 4 +8 

2 x 2 12 
3 x 3 24 +12 

4 x 4 40 +16

 n n n 

3 + 4 + 3 + 4 + 3 + 4 + 3 = 24 


n-1 


4n + n(n – 1) + (n – 1)n 

outside inside 


She realized the perimeter of any window was four times the length of the window. 

However, it is not clear why she labeled 4 with an n since n is three in that case.  Basically, she 

found a correct generalization from the numerical values in the table, but was not able to justify 

why the generalization would always work for any size window.  Karen admitted during the 

interview that her solution was not a proof. 

The next level of sophistication was to concentrate on developing an argument for why 

the generalization always works from a specific case, in other words, construct a generic 

argument.  Brittany never made a table of values and was clearer about explaining her 

generalization, but never developed an argument.  Her solution is shared below: 

3-by-3 window 

O V H 

4(3) + 2(3)  + 2(3)
 

4-by-4 window 
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 O V H 

4(4) + 3(4)  + 3(4)
 
N-by-N window 


O V H 

4n + n(n -1) + n(n – 1) 


 
# of wood strips will always be 1 less the # of panes  

For any size window a square always has 4 equal sides 


Brittany found a secure method to count the wood strips for two cases and then applied it 

to the general case, but failed to justify why the formula will always work.  She labels individual 

parts of her formula without explaining why her method for counting will always work. 

Furthermore, Brittany believed this solution was a proof.  In other words, she believed at this 

time that labeling parts of a formula that was generated from two cases was justification that it is 

always true. 

Uma moves one step closer to constructing a proof since she did produce an argument, 

which is shared below. 

nxn 

4(n) perimeter 

(n-1)n  columns 

(n-1)n
 

4n + n(n -1) + n(n – 1) 

4(3) + 3(2) + 3(2)
 
12 + 6 + 6 = 24 


For any size square window, the perimeter of the window = 4n, since a square is a quad 

w/ 4 equal sides. 

When you divide the window into panes you create n columns by adding strips of wood. 

To create n columns you need n-1 vertical strips, & the strips need to be n ft long. 

When you divide the panes into n rows you must also add strips to create n rows you need 

n-1 horizontal strips & the strips again need to be n ft long. Then add pieces together 
4n +n(n-1) + n(n-1)
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Uma applies the definition of a square to explain why the perimeter for any size window 

is 4n, but does not define the variable n.  She also does not justify why any size window will 

have n-1 vertical and n-1 horizontal strips of wood. Uma believed her argument was a proof even 

though she was unable to justify why there would always be n-1 rows and columns. 

Nathaniel was the only participant to clearly articulate why his generalization will work 

for any size window. Even though his generalization is different, it is his explanation for why it 

always works that elevates his argument to proof.  Nathaniel wrote the following solution: 

n2+ n + n2+ n 
Assume nxn window. Then there are n rows of n panes. So there are nxn strips on the 
bottom of all panes and we add n for the strip on top. This gives us nxn + nx1 horizontal 
panes =n2+n. 
The argument is the same for vertical panes. Thus counting the left side of each pane and 
noticing this counts all vertical strips but the right most side of the window frame.  
This will also give us n2+n vertical wood strips for a total of 2(n2 +n) = 2n(n +1) 

Nathaniel clearly explained how he counted the wood strips surrounding each pane 

without leaving the reader to wonder if his method would always work. The only vertical column 

of strips not counted is the right most one, which he adds to his argument. Specifically 

identifying how he counts the wood strips enables the reader to understand his thinking and why 

the counting works for any size window. 

Starting with a table to find a formula, which Karen and Tina did, seems to interfere with 

promoting reasoning-and-proving. In other words, making tables of values supports students 

with a procedural or guessing method to reach a generalization, but the process of extracting 

numbers from the situation to place in a table does not foster a learner’s ability to reason about 

the problem situation in general terms. The Squares task and the other problems in that sequence 

intended to foster participants’ knowledge that it is not mathematically acceptable to derive 

general formulas to show that the generalization is always true from testing cases.  It seems as 
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though Brittany believes testing cases to derive a formula is an acceptable approach if the parts 

of the formula are connected to the problem context.  The participants who constructed valid 

arguments relied on the diagram to explain how the total number of wood strips for any size 

window. 

4.2.2.5  Parallelogram Construction Task 

The Parallelogram construction problem is different from the previous four problems since it is a 

geometric situation and the task itself does not provide a conjecture. Based on a participant’s 

construction, there is the potential to prove special parallelogram cases (i.e. rhombus, square, 

etc.). That is, there is more than one conjecture that could be made and proven.  The task is 

shown in figure 4.5. 

Solve. 

Consider the construction below. 

Use the construction with a variety of starting segments. What type of figure does the 
construction produce? 

Using the results, make a mathematical argument that explains why that figure is produced 
each time by the construction.  Be sure to provide reasons for your statements using 
axioms, properties, or theorems where appropriate. 

Create a new construction that also begins with a segment and its midpoint but is different in 
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some way.  What generalization can you make about any figure created by this 
construction? 

(Adapted from McDougal Littell (2004), Geometry, p. 343, #29) 

Figure 4.5. Parallelogram Construction Task 

Question ‘a’ prompts the solver to identify the figure constructed and question ‘b’ 

requires the solver to create an argument that explains why this occurs.  This implicit call for a 

conjecture was ignored by many (6 out of 8) of the participants.  The task intended individuals to 

construct a variety of specific types of parallelograms based on the chosen construction.  For 

instance, if the two line segments are bisected at a right angle, then a rhombus is formed.  In 

other words, the construction becomes the conjecture for which to form an argument for why a 

particular figure is always formed.  Most (6 out of 8) participants did not state how they 

constructed their figure. For example, Lucy wrote, “Conjecture: the construction always yields a 

parallelogram.” For the reader it is difficult to know what Lucy constructed or that Lucy knew 

that a parallelogram is constructed whenever two line segments intersect at their midpoints 

regardless of the angle formed and the length of the line segments.  Other participants did not list 

a conjecture, nor did they provide a description of how their figure was constructed.  For 

example, Nathaniel did not explicitly list a conjecture, but within his argument he explains that 

the intersection of the line segments create vertical angles and lists that each half of the line 

segments are congruent based on the construction of the figure.  His conclusion explains that the 

construction is indeed a parallelogram.  Tanya never wrote a conjecture and did not explain in 

the conclusion what she proved. 
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Even if it is assumed that all the participants understood the general constraints to 

produce a parallelogram, most (5 out 8) of them were not able to organize accurate geometric 

statements to prove the assumed conjecture.  Uma’s solution below provides an example of a 

typical argument that includes an error. 

A 

D C 

B 

1 
2 

E 

Produces a parallelogram 

1. AE  EC     1. Def of midpoint
 BE  ED 

2. < 1 2     2. vert. angle thm. 

3. AEB =  CED     3. SAS
 

4. AB  DC     4. CPCTC 
ABD  < DCE 

5. AB ⁄⁄ CD     5. Converse of ⁄⁄ line cut
       by transversal 

6. ABCD parallelogram 6. def. 

Uma’s solution looks like a typical two-column proof.  The statements are listed on the 

left and the reasons listed in the right column.  As with most participants, she did not connect her 

construction with a conjecture to explain to the reader what she is proving.  More problematic 

though is the error in the fourth line.  It is true that the length of AB is equal to DC since the 

triangles are congruent, but angle ABD congruent to angle DCE is not a result of the triangles 

being congruent, nor do these two angles being congruent imply that AB is parallel to DC.  This 
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could have been a simple mistake where she meant to write BDC instead of DCE, but it could be 

a misunderstanding about congruent angles and which angles need to be congruent in order for 

the line segments to be parallel.   

Where Uma’s argument is an example of an A2.1 code, Katie wrote a solution that is 

representative of those coded A2.2 and is shared below.    

D 

B 

F 

CE 

A 

1 

2 

3 4 

Vertical angles 

Same follows for
    1 !  2 



     3 and  

A and B are = 

4 
 C and D are = SAS  E and F are = 

Since < E = < F, the lines are parallel 
SO we have a parallelogram 

While Katie’s argument is not organized in the traditional two-column format, it does 

provide reasons to support claims.  However, the arrows she uses in the second line highlight 

illogical results.  Katie’s notation for triangles one and two should be congruent instead of 

similar, but the bigger issue is that she does not explain why the triangles are congruent.  She 

wrote SAS, but it is not clear which sides and angles are equivalent.  In other words, it is not 

logical to claim two triangles are congruent without explaining which parts of the two triangles 

are equivalent and how they came to be equivalent. 

The Parallelogram construction task is unique in that it is the only geometry problem in 

the set and the participants were expected to state a conjecture based on their construction. Since 

geometry is where proof is typically addressed in secondary curricula, it might be reasonable to 

suspect that most prospective teachers would be familiar with the content and would demonstrate 
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a strong ability to construct a proof for the task. However, the opposite was the case with these 

prospective teachers, since no participants connected their construction with a clearly written 

conjecture, and only one wrote a proof.  The majority of them made mathematical errors or made 

claims without logically supporting how or why the claim is true.   

4.2.2.6 Sticky Gum Problem  

The Sticky Gum problem is most like the N-by-N window problem since it requires the solver to 

make a generalization and then justify why the formula works for any case.  However, the Sticky 

Gum problem (as shown in figure 4.6) is more complicated since two variables are required in 

making a generalization. This task is also similar to the Squares problem in that it promotes 

inductive thinking for it requires the solver to first explore specific cases.    

In solving the Sticky Gum problem, all participants were able to make a generalization of 

the situation, but many (5 out of 9) were unable to construct a valid argument.  Most participants 

wrote convincing rationales for the first three questions, but many relied on explaining the parts 

of the formula as proof for the situation as was also noticed in the NxN window problem.  It is 

important to note that the NxN window problem was an interview task, and the participants were 

not provided feedback on the accuracy of their work on interview tasks.  
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A Sticky Gum Problem 

Ms. Hernandez came across a gumball machine one day when she was out with her twins.  Of 
course, the twins each wanted a gumball.  What’s more, they insisted on being given gumballs of 
the same color.  The gumballs were a penny each, and there would be no way to tell which color 
would come out next. Ms. Hernandez decides that she will keep putting in pennies until she gets 
two gumballs that are the same color. She can see that there are only red and white gumballs in 
the machine. 

1)	 Why is three cents the most she will have to spend to satisfy her twins? 
2) The next day, Ms. Hernandez passes a gumball machine with red, white, and blue 

gumballs.  How could Ms. Hernandez satisfy her twins with their need for the same color 
this time?  That is, what is the most Ms. Hernandez might have to spend that day? 

3)	 Here comes Mr. Hodges with his triplets past the gumball machine in question 2.  Of 
course, all three of his children want to have the same color gumball.  What is the most 
he might have to spend? 

4) Generalize this problem as much as you can. Vary the number of colors.  What about 
different size families?  Prove your generalization to show that it always works for any 
number of children and any number of gumball colors. 

Figure 4.6. The Sticky Gum Problem 

Overall the participants followed two different solution paths (similar to those used on 

the NxN window problem). One method that four participants (Karen: A2.3, Tina: A2.3, Uma: 

A2.3, Brittany: A2.3) followed was to make tables of numerical values, which extended beyond 

the required cases outlined in questions one, two, and three to find a general formula.  The 

second method included the participants’ (Nathaniel: A4+++, Tanya: A4+++, Lucy: A4++-, 

Katie A2.3, Katherine: A3.1++-) reasoning from the first few cases and then extending their 

thinking to reach and justify the general case.  None of the participants that followed the table 

method wrote a valid argument (similar to the NxN window problem).  Katie was the only 

participant to follow the second method and not write a valid argument.    

Tina’s work is representative of the four participants who extracted values from the 

problem situation to build a table.  Then she used the table of numbers to make a generalization, 

but does not explain why it always works. It seems as though Tina and others following this 
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method first worked on finding a formula and then thought about how they might be able to 

create an argument.  Tina’s solution is shown below. 

X Y 
Kids Colors Cost 

2 2 3 
3 2 5 
4 2 7 
5 2 9 

2n – 1  # of kids 

Kids Colors Cost 
2 3 4 
3 3 7 
4 3 11 

3n – 1 
Let m = # of colors 

n = # of kids 
m (n – 1) +  1 
 

 of colors one less gumball to make the set 
than # of 
needed per 

   kid 

The five other participants reasoned about the specific cases and used them to generalize 

the situation. It appears as though they thought about making a generalization and developing an 

argument as a connected activity versus first making a generalization and then thinking how 

might their formula be connected to the problem context.  Then they explained how they 

envisioned the situation in general terms.  Lucy’s response below is representative of this second 

method to the Sticky Gum problem. 

Let c = # of colors 
Let n = # kids 
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If you have c colors, you could get each of the c colors in choices 1  c. On the next 
choice you have to have one duplicate. To get another duplicate, however, you might 
have to choose 

Assume there are n-many kids & c-many diff colors. We know that the maximum amount 
of money spent will occur if each color is drawn w/o any duplicates. Assume that each 
color is drawn without any duplicates. This will give you one of each color gumball. 
Assume that you again draw each color again w/o repeats. So then you will have two of 
each color. If this process continues and you choose each color n – 1 many times, you 
will have n – 1 many of each of the c many colors of gumballs. On the next choice (c(n -
1) + 1) you will get an nth duplicate of one color. 

Instead of just thinking about how to find a general formula, she thought of the situation 

in a general way and explained her thinking.  All of the participants that were successful with 

writing a valid argument followed a similar thinking process.  In other words, the participants 

who made a generalization after constructing tables of values struggled to communicate the 

situation in general terms.  They are able to explain the individual smaller cases, but did not 

reason about these smaller cases in productive ways in order to write about the situation from a 

general perspective. They did not show an ability to move beyond an inductive toward a 

deductive perspective. 

4.2.2.7  Explaining Number Patterns Task 

The Explaining Number Patterns task is similar to the Parallelogram construction task in that no 

conjecture was provided. However, unlike the Parallelogram problem, the Explaining Numbers 

Patterns problem explicitly requires a conjecture as shown in figure 4.7. The task also 

encourages inductive reasoning through example generation.  The idea is that the solver would 

generate examples, notice a pattern, and then state a conjecture.  The last question requires the 

solver to prove the conjecture.  

190 



 

 

 
 
 
 
 

 
 

 

 

 
     

  

 

Explaining Number Patterns 

1.	 Pick any two consecutive whole numbers 
2.	 Square each number and subtract the smaller square from the larger 
3.	 Add the two original numbers together 
4.	 Make a conjecture about the numbers you found in #2 and #3 (try more examples if you 

like!) 
5.	 Prove that the conjecture you made in #4 will always be true.  After you have proven the 

conjecture in one way, see if you can prove it using another strategy or method. 

Figure 4.7. Explaining Number Patterns Task 

The majority (7 out of 9) of the participants selected a variable without explaining how 

the variable related to the problem and did not write solutions to the first four questions. They 

created and manipulated equations similar to the N2 + N task. As was the case with the 

Parallelogram construction problem, the participants did not state a conjecture, so it was not clear 

what they set out to prove. Furthermore, a fully stated conclusion was also missing. Two 

participants did not complete their argument (coded A2.5), two others wrote a proof and the 

remaining majority ignored the call for a conjecture (coded A3.2). 

Katherine’s response (A3.2- - -), shared below, is representative of what the majority (5 

out of 9) of the participants produced. 

They are the same. 
#2 	 (n + 1)2 – n2 = n2 + 2n + 1 – n2 = 2n + 1 

#3 	(n +1) + n = 2n + 1 

#2 = #3 

Questions one through three did not receive a written response.  The conjecture just reads 

that “they are the same” without explaining what exactly is the same.  This is a concern since the 

conjecture could be written in a ‘p implies q or q implies p’ format. In other words, the converses 

are equivalent for this situation.  The participants who produced similar solutions (Brittany, 
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Uma, Lucy, Tina) also introduced a variable without defining it or explaining what it represents. 

While the task is unlike most of the problems they solved previously, the lack of explanation is 

surprising given that it was the last task completed in the course.   

Similar to the “O + O = E” problem, this task asks for multiple solution methods, so most 

(7 out 9) participants moved from a method similar to Katherine’s above to drawing diagrams. 

As was the case with previous diagram solutions, the variables were not clearly defined and the 

participants did not incorporate language to support the reader with understanding the diagram, 

variables, or the overall argument.   

Finally, a few participants defined consecutive whole numbers inaccurately.  When ‘n’ is 

the larger consecutive whole number and n – 1 is the smaller consecutive whole number there is 

a problem.  Since a whole number includes zero (a lower bound), it is inappropriate to label the 

subsequent number as n – 1.  For the case where n is zero, the number one less than zero is 

negative one, which is not a whole number.  Therefore, again several participants demonstrated 

challenges with defining variables that represent abstract sets of numbers. 

4.2.2.8  Calling Plans Task 

The Calling Plans task was the final problem the participants were asked to solve (as shown in 

figure 4.8). It was most unique since it required a counterexample to prove the given conjecture. 

All of the participants were able to answer question one correctly, but ambiguity caused some 

participants to not write a proof for question two.    
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The Calling Plans Task 

Long-distance Company A charges a base rate of $5 per month, plus 4 cents per minute that you 
are on the phone. Long-distance Company B charges a base rate of only $2 per month, but they 
charge you 10 cents per minute used. 

Keith uses Company A and Rachel uses Company B.  Last month, Keith and Rachel were 
discussing their phone bills and realized that their bills were for the same amount for the same 
number of minutes.  Keith argued that there must be a mistake in one of the bills because they 
could never be the same.  Rachel said that the phone bills could be the same. 

A. Who do you think is right, Keith or Rachel?  Why? 

B. For any two phone plans, is there always a number of minutes that will yield the same cost 

for both plans?  Provide an explanation to justify your position. 

Figure 4.8. The Calling Plans Task 

Focusing on question two of the Calling plans task, the majority (5 of 9) of the 

participants did identify a specific counterexample or a classification of counterexamples.  For 

instance, Katie wrote the following solution. 

Parallel lines won’t intersect – won’t have a # of min. that yield same cost 
Ex. y = 3 + .1x x : # of min 

y = 5 + .1x y: monthly cost 

Katie started with a classification of counterexamples, which is the case where the lines 

are parallel. She then provided a specific counterexample.  This is all that was needed to answer 

the second question. However, some (4 out of 9) participants were either confused by the 

question or did not understand counterexamples. 

Those who did not provide a counterexample (Karen, Lucy, Uma, Brittany) answered the 

question similar to Brittany.  They explained several possible cases for two calling plans without 

specifically answering the question. Brittany’s response is provided below. 
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Case 1 
Phone plans different rates / min. different monthly rates  2 lines with different 
y – intercepts and different slopes  1 intersection cost the same at some minute. 

Case 2 
Different monthly rates, same rate/minute 
Two parallel lines and may will never intersect 

Case 3 
Same monthly rate and different rates/min 

Case 4 
Both parameters are the same 
Always same 

Brittany provided the four cases without explaining which cases or cases answer 

the question. Case one could be a solution if the two lines intersect beyond the maximum 

number of minutes in a month or intersect in the second quadrant.  It is also not clear if 

Brittany believes that case three is a solution.  If two people do not use a cell phone 

during the month they would only pay the monthly fee meaning their bills would be the 

same.  Other participants provided similar solutions to Brittany, and it is not clear if they 

were confused by the question or the concept of a counterexample. Since this was the 

only task that assessed an understanding of counterexample it is not possible to compare 

the participants work on this problem with a previous problem.   
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4.2.3 Summary of participant challenges with reasoning-and-proving  

The reasoning-and-proving tasks the participants solved surfaced the following mathematical 

challenges: 1) defining terms and variables, 2) transitioning from inductive to deductive 

reasoning, 3) stating conjectures, 4) clearly explaining thinking, and 5) indentifying a 

counterexample to prove a statement. The first four mathematical challenges were noticed 

across several tasks while the last one was only applicable to the Calling Plans task.   

This research shows that prospective teachers encounter various challenges in writing 

proofs even if the content is at the high school level.  None of the eight tasks required knowledge 

of mathematics beyond high school algebra or high school geometry, yet most were unable to 

construct proofs. In some situations the cause may have been a lack of knowing what is needed 

for an argument to count as proof, but some problems highlighted a lack of understanding about 

variables with respect to problem context.  Therefore, it is clear that prospective teachers, even 

those with degrees in mathematics, need support with learning what makes an argument as proof 

and opportunities to construct proofs especially in secondary content so that they are prepared to 

supports students.  The next five sections will discuss the challenges that surfaced across tasks. 

4.2.3.1 Defining terms and variables 

Some participants incorrectly or failed to define terms and variables on the following tasks: 1) N2 

+ N is always even, 2) Odd + odd is even, and 3) Explaining number patterns.  The common 

thread across these three problems is that they are all number theory type problems.  The context 

is abstract since it is situated in sets of numbers. Regardless if the problem providing a defined 

variable (N2 + N is always even) or the solver was expected to define variables, errors were 

present. If a set of numbers has a lower bound such as counting numbers, then it is essential to 
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make sure how the terms are defined cover the entire set of numbers. In the case of the 

Explaining Numbers problem most participants did not even define the variable they choose. It 

was also evident that more support is needed when prospective teachers incorporate diagrams. 

The terms and variables were rarely defined in diagram solution methods.    

4.2.3.2 Transitioning from inductive to deductive reasoning 

Several participants struggled to transition from examining examples to providing a deductive 

argument.  This issue was evident with the following problems: Squares, NxN window, and 

Sticky Gum. The common feature of these problems is the examination of specific cases to make 

a generalization, and explain why the generalization is always true.  The issue always included 

making a table to generalize the situation.  The participants who demonstrated this challenge 

were able to understand and explain the smaller cases that they could visualize followed by 

extracting the numbers from the smaller cases to make a table of values to develop a formula. 

The final step was to explain and connect parts of the generalization to the problem context.  The 

problem with this method is that the generalization is based on a few cases meaning it lacks 

justification for why the formula will always work. The alternative is the explain why a specific 

case will always which was discussed in the course as a generic argument or extrapolate what is 

changing in the smaller cases to justify why they will always hold true. 

4.2.3.3 Stating conjectures 

Making a conjecture can take on several forms.  When a conjecture is in the form of a formula, 

the participants knew to state the generalization. However, when the conjecture should have 

taken the form of a statement such as an if-then statement, the conjecture was not stated.  The 

participants were asked to state a conjecture for both the Parallelogram construction task and the 
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Explaining number patterns problem.  Of the eighteen solutions to these two problems only one 

conjecture was stated. Prospective teachers need more support realizing the importance with 

clearly stating what it is they are proving or it may be the issue that they need more support 

learning how to write out a conjecture. 

4.2.3.4 Clearly explaining thinking 

Clearly articulating thinking was also a concern. In certain situations it was difficult to discern 

between mathematical errors and simple writing errors. This was most relevant to the 

Parallelogram construction task.  Additionally, participants introduced new nonmathematical 

terms through arguments without clearly explaining what the words mean.  This was noticed 

while reading arguments to the Squares, NxN window, and Sticky Gum problems.  If the issue is 

a simple writing error, it could be corrected simply by asking teachers to reread their work. The 

remaining errors are either mathematical or a limited ability to articulate thinking, which if 

addressed as an issue during instruction may improve.   

4.2.3.5 Identifying a counterexample to prove a statement  

Only the Calling Plans task required a counterexample to prove the statement and since the 

problem was solved during an interview, there was no opportunity to learn from it.  Regardless 

of the fact that this problem was solved without a previous attention to counterexamples, it 

would be expected that secondary mathematics teachers should know what a counterexample 

implies and when it is appropriate to use one to prove a statement.  However, a few participants 

appeared to not understand the role of a counterexample. It could be based on the wording of the 

question, so this concept requires more attention.   
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4.3 PRE-SERVICE TEACHERS ABILITY TO ANALYZE STUDENTS 

REASONING-AND-PROVING SOLUTIONS 

The results in this section are in response to the third research question: 

3. To what extent do pre-service teachers improve their ability to distinguish 
between proof and non-proof arguments created by students over the duration 
of a course focused on reasoning-and-proving? 

There were a total of 32 student solutions across five tasks that the nine participants were asked 

to classify as proofs or non-proofs. During each of the three interviews after the participant 

solved a task they were asked to judge the validity of four or five selected student arguments to 

the same task (N2 + N is even (n=5), NxN window (n=4), and Calling Plans (n=5)).  In addition, 

after solving the “O + O = E” task (n =10) and Sticky Gum problem (n =8) the participants were 

asked to analyze solutions. Here ‘n’ refers to the number students solutions analyzed for each 

task. The 32 total student solutions were selected for several reasons including the opportunity 

to question teachers’ conception of their criteria of proof along with supporting teachers in 

gaining experience with anticipating the wide array of solution methods.  Therefore, this section 

will share the results of the participants’ ability to distinguish between the proof and non-proof 

arguments to all solutions, and then concentrate more specifically on the student solutions that 

were chosen to assess teachers’ understanding of the criteria for proof. 

4.3.1 General analysis of student solutions and participant results   

The results for each of the nine participants are shown in table 4.6.  The first number in each 

ratio indicates the total number of solutions that the participant correctly categorized as ‘proof’ 
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or “non-proof”. The denominator represents the total number of solutions the participant 

critiqued. All ‘unsure’ responses and lost data did not contribute to the total.  So each participant 

was asked to evaluate 32 solutions, some data was lost and some participants said that they were 

‘unsure’ if the argument was or was not a proof.  For example, the audio recorder stopped during 

Tanya’s first interview, which is why she only critiqued 31 arguments.  Brittany was the only 

other participant for which the data was lost due to recording issues.  Her last two responses in 

the third interview were not recorded, and Brittany also said that she was unsure twice while 

evaluating the odd + odd is even solutions. The two responses lost to collecting data plus the 

two ‘unsure’ replies combines to four non-responses, which is why Brittany is only credited with 

analyzing 28 solutions. The other participants with less than 32 analyzed solutions listed are a 

result of them saying ‘unsure’ about their decision with labeling the argument. 

Table 4.6. Percentage correct while evaluating reasoning-and-proving solutions 

Nathaniel Tanya Karen Tina Lucy Uma Brittany Katie Katherine 

28/32 27/31 24/31 25/29 26/29 27/32 21/28 29/32 26/30 
(88%) (87%) (77%) (86%) (90%) (84%) (75%) (91%) (87%) 

All of the percentages were rounded to the nearest whole number.  Each participant 

correctly identified three fourths or more of the arguments. Katie and Lucy each only 

misidentified three solutions while Karen and Brittany each incorrectly analyzed seven.  While 

some of the student solutions were proofs and others non-proof arguments, the solutions varied 

with respect to the extent to which they addressed the criteria of proof. 

To answer this third research question, the participant results will be shared for all 32 

solutions.  Then the types of solutions that were easy and more challenging for the participants to 
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identify will be discussed.  It is important to note that a “correct” analysis of a student solution is 

not just picking between proof and non-proof. The participants needed to provide an accurate 

explanation. Finally, to determine growth, a deeper analysis of the more challenging solutions is 

reported. The results fall into three categories: 1) expected to be easy and they were, 2) expected 

to cause a challenge and they did, and 3) expected to be a challenge but were not.  

4.3.2 Analysis of the student solutions and participant results  

The participant group results are displayed in table 4.7 for each of the 32 student solutions.  The 

tasks are listed chronologically in the first column in the order in which participants encountered 

them and the letters across the first row are associated with the individual solutions for each task. 

For instance, the interview one task (N2 + N is even) included five pieces of student work for the 

participants to evaluate (A – E).  The ratios in each cell signify the total number of participants 

who correctly identified the argument as proof or non-proof to the total number of participants 

who responded to the solution. The blank cells represent solutions in which all the participants 

correctly identified the tasks as proof or non-proof.  The ‘’ identifies the solutions which are 

considered distracters, which will be discussed in more detail later in this section. The P and NP 

signify whether the solution is a proof or non-proof respectively.  For example, the cell for task 1 

(N2 + N is even) student A includes the ratio 7/9 and a P. This code means that the solution is a 

proof (P) and that seven of the nine participants correctly identified it as a proof and therefore 

two participants identified it as a non-proof argument.  The ‘U’ listed in some cells represents 

instances in which a participant was unsure of whether or not the solution was a proof. The 

number before a U indicates the number of participants that were unsure about the solution. Only 

one student wrote that they were unsure of a solution within the set of Sticky Gum student 

200 



 

 

 

 

 

  

                                                 

solution set (solution H), and all the other instances in which a participant used “unsure” referred 

to the “O + O = E” student work. All nine participants correctly evaluated 12 out of 32 

solutions. Furthermore, five “O + O = E” solutions were correctly evaluated by eight of nine 

participants where the ninth person was unsure.  Overall the participants demonstrated a strong 

ability with analyzing most of the solutions, and struggled as a group to correctly identify several 

‘distracter’ () solutions. 

The participants collectively critiqued 288 student solutions while data was collected on 

285 solutions. Overall 234 responses matched the designated labeling8, making for an 82% 

(234/285) success rate.  Furthermore, 11 of the responses were coded ‘unsure’, and 40 responses 

disagreed with the argument categorization meaning that only 14% (40/285) of the responses 

were incorrectly labeled. 

8 	The	CORP	development	team	identified	the	 18	student	 solutions	 analyzed	 in	the	course,	
and	the	author	validated	the	14	 students	solutions	in	the	 interview	protocols.	 
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8) Calling 
Plans  
           

     

Table 4.7. Total participant responses to each of the 32 solutions 

Student 
Work: 

A B C D E F G H I J 

1) N2+N is 
even 

P 
(7/9) 

NP: 
(4/9) 

P: 
(7/8) 

--------­ --------- ---------­ ---------­ --------­

3) O + O = 
E 

1U P: 
2U(5/9) 

1U 1U 1U 1U NP: 
3U(5/9) 

4) NxN 
square 
window 

NP: 
(7/9) 

P: 
(8/9) 

P 
(8/9) 

---------­ --------­ --------- ---------­ ---------­ --------­

6) Sticky 
Gum 

NP: 
(3/9) 

P 
(8/9) 

NP: 
1U(7/9) 

---------­ --------­

NP: 
(4/9) 

P: 
(6/9) 

P: 
(6/9) 

NP: 
(1/8) 

--------­ --------- ---------­ ---------­ --------­
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The 40 (40/285 or 14%) incorrect responses were spread across 15 student solutions in 

which seven are non-proofs and eight are proofs. The participants were more likely to label a 

non-proof argument as proof than the opposite case. The eight proofs resulted in 71 (8 solutions 

times 9 participants with one missing piece of data) recorded participant responses of which 13 

did not match the researcher labeling for an 18% (13/71) disagreement.  On the other hand, the 

seven non-proofs were misidentified 44% (27/62) of the time.  Therefore, based on the 15 of the 

32 solutions where participants incorrectly analyzed student solutions, they were more willing to 

label non-proof arguments as proof than the proofs as non-proofs. 

While the analysis in this section paints a broad view of the participants’ ability to 

identify student solutions with respect to proof, focusing on the actual solution and what the 

participants communicated provides a deeper understanding of the results.  The next section will 

share the types of student solutions that the participants were successful at identifying along with 

those that were more challenging.  

4.3.3 Participant understanding of applying criteria of proof 

The general results reported in table 4.7 show that the participants as a group seem to be 

successful in applying the criteria for proof on many student solutions and struggled to do so on 

several others. The types of solutions were designed to span the spectrum of possible argument 

types (i.e. empirical, rationale, generic, demonstration).  While all 32 solutions will not be 

analyzed, themes will be discussed followed by examples to support the claims. 
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4.3.3.1 Student solutions, which were straightforward to identify 

Some secondary teachers are convinced by empirical arguments (Knuth 2002a), as are some 

secondary students (Healy & Hoyles, 2000).  Therefore, student solutions were selected to learn 

if prospective secondary teachers were convinced by example-based arguments.  The findings 

suggest that the participants were not convinced by examples. 

The first set of student work (N2 + N is even) and the third set (Sticky Gum) included 

example only solutions and no participant labeled these as proofs.  The N2 + N student work 

contained two solutions with example only solutions.  The problem expected the solver to prove 

why any number when substituted into the expression would yield an even number. Morris 

(2002) found that prospective elementary teachers were convinced of the example-based 

solutions such as the one shown below in figure 4.9. 

Argument 2 – Student B (Ben’s Solution): 
Let n = 1. Then n2 + n = 12 + 1 = 2. 2 is even, so this works. 

Let n = 2. Then n2 + n = 22 + 2 = 6. 6 is even, so this works. 

Let n = 3. Then n2 + n = 32 + 3 = 12. 12 is even, so this works. 

Let n = 101. Then n2 + n = 1012 + 101 = 10,201 + 101 = 10,302. 10,302 is even, so this works. 

Let n = 3056. Then n2 + n = 30562 + 3056 = 9,339,136 + 3056. 9,342,192 is even, so this works. 


I randomly selected several different types of numbers. Some were high, and some were low. 

Some were even and some were odd.  Some were prime and some were composite.  Since I 

randomly selected and tested a variety of types of counting numbers, and it worked in every case, 

I know that it will work for all counting numbers.  Therefore, n2 + n will always be even.
 
Figure 4.9. Student B’s solution to N2 + N is always even 


None of the participants in this study identified Ben’s solution as proof.  Additionally, 

they knew why it fell short of being classified as such.  For example, during the interview, Lucy 

explained her rationale; “He proved it worked for a number of choices, but not for all. They 

don’t prove that it always works.”  Lucy’s criteria of proof included that an argument must apply 
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to all numbers and recognized that what Ben produced was only convincing for the numbers he 

checked. Lucy’s response is representative of the group of participants.  While some students or 

prospective elementary teachers are convinced by examples, these participants were able to 

apply their criteria of proof that an argument must cover all cases and were able to recognize that 

student B only checked a few examples.  

Empirical arguments are not limited to a set of examples and can extend to include a 

generalization. The Stick Gum problem included two solutions that based a generalization on 

examples, but the participants recognized the limitations of these arguments.  The Sticky Gum 

student F solution (shown in figure 4.10), which is shared below is an example of a 

generalization. 

Figure 4.10. Sticky Gum student solution F 
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The student who produced solution F reached a correct generalization and explained their 

process. However, all nine participants identified the argument as a non-proof argument and 

were able to explain why it was not a proof. For example, Tanya reasoned: “Found a pattern in 

tables, but does not explain it in general.” Tanya’s rationale is similar to the others in that a 

generalization needs an explanation for why the formula will always work.  The generalization is 

an extension of the example only based solution, and they are both considered empirical 

arguments. By the end of the course the participants knew that these types of empirical 

arguments are not proof. 

The participants knew prior to the course that examples were insufficient for proof, but it 

is possible that some learned that generalizations are not proofs.  A goal of the second task and 

first in course (Squares problem) was to support the participants with understanding that a 

generalization based on a set of examples is not proof.  There was no assessment of a 

generalization as proof prior to the participants engaging in the Squares problem.  

4.3.3.2  Student solutions, which were more challenging to identify 

In order to assess teachers’ conception of proof, the student solutions were designed to include 

argument types that were expected to cause conflict among the participants such as: empirical 

arguments with justification, generic arguments, counterexamples, and rationales.  Also different 

representations (i.e. words, diagrams, etc.) were mixed among the four argument types to 

challenge participants to consider form and representation in creating a proof.  

A distracter is an argument that is likely to challenge a community of learners in coming 

to agreement on the classification as a proof or not a proof. The participants in this study 

recognized that example only based solutions or reaching a generalization were not proofs and 
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there was no disagreement so those types of solutions are not distracters for this group.  Based on 

the first iteration of the course materials and a review of research, twelve distracters were 

identified that included non-proof (rationale and empirical) and proof arguments (generic 

argument and counterexample).  It is important to emphasize that this study distinguishes among 

various types of empirical arguments where adding justification to a generalization based on 

examples is more sophisticated than an empirical argument comprised of examples only.  As 

shown in figure 4.11, it is the ‘gray area’ that includes argument types where disagreement 

occurs. Depending on the group such as elementary pre-service teachers or undergraduate 

mathematics majors, the ‘gray area’ may include different argument types.   

Figure 4.11. Types of arguments that were distracters 

In addition to the argument type, the solutions were intended to press on teachers’ 

conception of representation. A traditional view of proof would generally mean that a valid 

argument would not include narrative language or pictures. The distracters not only vary along 

argument type (i.e. rationale, empirical argument, generic argument), but also include pictures 

and narrative language. The twelve student solution distracters are listed in table 4.9 along with 
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the ratio of correct to number of participants that responded and the argument type.  All twelve 

tasks listed in table 4.9 correspond to the distracters ‘’ labeled in table 4.8. 

The task names are listed in the second row and the student solutions are listed vertically 

below each task name.  For instance, the student D and student E solutions in the first column are 

solutions to the N2 + N is even task.  The argument is listed below the student identifier.  Below 

the explanation in each cell is the ratio of the number of participants that correctly identified the 

argument.  So at least one participant disagreed with each of the twelve distracters.  There were 

only three non-distracter labeled solutions in which participants disagreed. 

Table 4.8. Twelve pre-determined distracters  

Twelve Identified Distracter Student Solutions 

1) N2+N is 
even 

3) O + O = E 4) NxN square 
window 

6) Sticky 
Gum 

8) Calling Plans 

Student D: 
Rationale: The 
argument 
makes several 
assumptions. 
(4/9) 

Student B: 
Generic 
argument: 
makes a 
general claim 
from a specific 
diagram 
example  
2U(5/9) 

Student A: 
Empirical: 
constructs a 
generalization 
from a few 
examples 
without 
justifying. 
(7/9) 

Student C: 
Empirical: 
Provides 
justification 
for one case. 
(3/9) 

Student A: Not valid 
An incorrect narrative 
response. 
(4/9) 

Student B: Counterexample 
Provides a narrative general 
and a specific 
counterexample. 
(6/9) 

Student E: 
Generic 
argument: 
makes a 
general claim 
after 
examining 
specific 
diagram 
examples  
(7/8) 

Student I: 
Rationale: 
correct 
statement, but 
assumes too 
much. 
3U(5/9) 

Student B: 
Generic 
argument: uses a 
particular case 
to generalize to 
any size 
window. 
(8/9) 

Student H: 
Empirical: 
Provides 
justification, 
but not 
general to all 
cases. 
1U(7/9) 

Student C: Counterexample: 
Provides a convincing 
response while mentioning 
the counterexample.  
(7/9) 

Student E: Not valid: Provides 
a general counterexample 
argument with errors 
(1/8) 
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Rationale: There are two rationale distracters listed in table 4.9: student D (N2 + N is 

even) and student I (O + O = E). These solutions are mathematically correct and are intended to 

assess the participants’ ability to identify assumptions.  While the goal is not to reprove every 

statement in every argument, the message is for teachers to support their students with 

constructing proofs that draw on previously proven concepts (A.J. Stylianides & G.J. Stylianides, 

2009). 

More than half the participants incorrectly labeled the student D (shown in figure 4.12) 

solution during the first interview.   

Student D (Dominique’s Solution) 

If n is an odd counting number, then n2 will be odd. An odd plus an odd is even, so since n2 and 
n are odd, n2 + n is even. 
If n is an even counting number, then n2 will be even.  An even plus an even number is even, so 
since n2 and n are even, n2 + n is even. 
Since all counting numbers are either even or odd, I’ve taken care of all numbers. Therefore, I’ve 
proved that for every counting number n, the expression n2 + n is always even. 
Figure 4.12. Student’s D solution to N2 + N is always even 

This argument is considered a rationale and not a proof based on the four imbedded assumptions: 

1) If n is an odd counting number, then n2 will be odd, 2) An odd plus an odd is even, 3) If n is an 

even counting number, then n2 will be even, and 4) An even plus an even number is even. Each of 

these claims should be justified or explained as previously proven. 

Five participants labeled this argument a proof. They focused on the mathematical 

correctness and how the argument was similar to or different from how they approached the 

problem without attending to the unsupported claims. For example, Karen’s response is typical 

of the five participants that identified student D as proof: 
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So that would be kind of general –starting with the case that I did where it would have 
been the next step so that it happened for every time to generalize it. And she did the 
same thing for even. And so then she’s saying since our choices are only even or odd, 
she’s taken care of all of the different possibilities. So, yes, that’s a proof. 

It seems clear that Karen is applying her current criteria of proof which includes being 

general, mathematical correct and covering every case.  However, she did not attend to the 

assumptions.  The other four participants drew attention to the assumptions as to why the 

solution falls short of proof. For example Tina said: 

There is nothing in Dominique’s proof to show that an odd number plus an odd number 
is always going to give you an even number. Whether that’s a definition of something or 
a theorem or a postulate or something, that would need to be included. 

Tina is explicitly questioning one of the claims in the argument for justification on why the 

solution is a non-proof argument.  Therefore, even though the argument is valid, it fails to 

support all the claims or does not explain that the claims were previously proven.   

The second rationale solution is student I (O + O = E) (shown in figure 4.13), which also 

challenged the participants. While five correctly identified the solution as a non-proof, only 

Nathaniel labeled the one sentence solution as a proof.  The other three participants said they 

were unsure. 

Student I 

If you add two odd numbers, the two ones left over from the two odd numbers (after circling 
them by twos) will group together to make an even number. 

Adapted from: Coxford, A. F., Fey, J. T., Hirsch, C. R., Schoen, H. L., Burrill, G., Hart, E. W., et al. (2003). 
Contemporary mathematics in context: A unified approach: Course 3. New York, NY: Glencoe McGraw-Hill. 

Figure 4.13. Student I solution to the “O + O = E” task 
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Even though Nathaniel wrote yes that student I is a proof, he was not overly supportive of 

the solution. He wrote “conditional” followed by “enough info (information) is present; 

however, it probably should be explained in better detail.”  Brittany, Lucy, and Katherine all 

wrote that they were unsure, and explained that the argument was correct but suggested that it 

did not fully convince them of the truth as to why an odd plus an odd was always true.  For 

example, Katherine wrote, “The logic is sound, but the student is unclear about what she means 

by ‘the 2 ones left over from the 2 odd numbers’.”  Therefore, all four participants that did not 

label the solution as a non-proof argument held considerable reservations about the strength of 

the argument. 

Most of the participants did not seem concerned about the lack of algebraic symbols in 

either of these arguments.  Brittany was the only participant to make a comment that could be 

related to the informal structure of the argument.  While reviewing the student D solution, 

Brittany explained that she would like “more math.”  It is difficult to know if she needed more 

explanation or she wanted to see more symbols in place of the language.  Comments about the 

lack of algebraic symbols did not resurface again while analyzing solutions after this task, but the 

inclusion of symbols will be discussed again later in this section. 

It is difficult to know if the participants improved their ability to identify unsupported 

claims.  During the first interview, several participants’ criteria of proof did not require the 

justification of assumptions.  This requirement was specifically addressed after the participants 

analyzed the “O + O = E” student work, which included the student I solution.  The class 

community came to an agreement that assumptions need to be thoroughly explained or labeled as 

previously proven, but there were no rationale arguments in subsequent student solution sets to 

test whether this had been learned.    
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Generic argument: A generic argument is a proof that justifies the general features of a 

mathematical situation while examining a specific case (G.J. Stylianides, 2008).  There are three 

generic argument distracter solutions, all which include a picture.  Only one participant disagreed 

that both Student E (N2 + N is even) and Student B (NxN window) solutions were proofs and 

two participants incorrectly identified Student B (O + O = E) as a non-proof.  The reasons for 

disagreements varied, but none of the participants labeled the arguments non-proofs based on the 

inclusion of a picture. 

The first time the participants were exposed to a generic argument was during the first 

interview (task 1) when they were asked to analyze student E’s solution (as shown in figure 

4.14). The solution is generic since the odd case is based on the specific number five and the 

even case on six.  This solution combines narrative language and diagrams, which was intended 

to question teachers view of what is an acceptable representation for proof.  Seven of the 

participants accepted the generic argument as proof, data on one participant was lost, and the 

remaining student identified the solution as a non-proof.  

Student E (Edward’s Solution) 

So if I start with a square say 5 by 5 and add it to the number 5 

Ok now I will match up the colums so that all but one column has a pair (the blue one). The blue 
column will be matched with the gray 5 coulmn that is added to the square.  So that will make 
the whole thing even because you can divide the entire thing into two equal pieces. 
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Let me try another one. 

The columns in the 6 by 6 match up perfectly with none left over and the added part 6 folds in 
half. So every number is paired which makes 62 + 6 an even number. 
Now I got it. If the square is an odd by an odd like 5x5, then there will always be a column left 
over since an odd number does not divide by 2 evenly.  The left over column of an odd sided 
square will always match with the added column part. 
If the square is even by even, then every column has a match. The added part for an even by even 
will also be even based on the problem. And an even number divides two with nothing left over 
or folds perfectly. 
So it does not matter the counting number that you start with when you square it and add it to 
itself it will always result in an even number. 
Figure 4.14. Student E’s solution to N2 + N is always even 

The student E solution first examines two cases before moving to the more general case. 

The two cases are not explicitly labeled, but reach a conclusion where the odd and even cases are 

connected to justify the conjecture.  The definition of even and odd is also embedded through out 

the language and diagrams.  Therefore, the specific case of five is used to generalize the odd case 

and six is the special case to explain the odd, which is why student E’s solution is a generic 

argument and proof. 

Brittany was the only student to not accept the generic argument, but seemingly for a 

different reason. She explains that she likes the visual approach, but claims it needs to be more 

formal.  Brittany explains her discomfort when says: 

It’s different from the other ones because they try to do it visually. I think the proofs have 
to be more formal. I think as an informal proof this might be good. But if we’re talking 
about a formal proof, then I don’t think this would be justified by just trying – again he 
tried some examples but – and he is tying to generalize for any case that would either be 
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odd or even. I mean I like it but I wouldn’t say this is the strongest proof that we could 
have done for this question. 

Brittany’s analysis makes it difficult to know exactly why she is saying that it is not a 

proof, but she may be saying that a proof cannot include a picture.  Immediately following the 

comment about visual she says that proofs need to be more formal.  She does not comment on 

the lack of symbols or the use of language, but this could be interpreted to mean that formal 

proofs are not suppose to be visual. It is also possible that she is uncomfortable with the use of 

examples when she says that he tried examples that represent cases and follows this statement 

with the word ‘but.’ Overall it seems as though Brittany is uncomfortable with both features 

purposely designed to be distracters: 1) the use of examples and 2) the use of a diagram.   

Even though the seven others said yes student E wrote a proof, some participants 

examined the two distracting features before making a decision.  Some focused on the use of 

specific examples, but were convinced with the transition to generalizing the situation to all 

cases. None of the participants thought the diagrams were problematic.  Uma explained that it 

was not needed, but thought it provide beneficial support with understanding the language.  Tina 

was the most conflicted about accepting the generic argument, but finally decided that the picture 

persuaded her to accepting the argument as proof.  She directly considers the definition of 

generic argument when she says, “I think he’s very confusing because they’re using a picture of 

a specific instance but talking about it generally.”  So even though the idea was not discussed 

prior to evaluating the student E argument, Tina was considering the definition of generic 

argument and wondering if it is acceptable as proof.  After reading through the argument several 

times she said that she would accept it while commenting that the diagrams were necessary for 

her to understand the argument.   
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The student B solution (O + O = E: task 3) (as shown in figure 4.15) utilizes a specific 

example, but talks about it in general ways. 

Student B 

If I take the numbers 5 and 11 and organize the counters as shown, you can see the pattern. 

You can see that when you put the sets together (add the numbers), the two extra blocks will 
form a pair and the answer is always even. This is because any odd number will have an extra 
block and the two extra blocks for any set of two odd numbers will always form a pair. 

Adapted from: Coxford, A. F., Fey, J. T., Hirsch, C. R., Schoen, H. L., Burrill, G., Hart, E. W., et al. (2003). 
Contemporary mathematics in context: A unified approach: Course 3. New York, NY: Glencoe McGraw-Hil 

Figure 4.15. Student B solution from the “O + O = E” task  

Brittany was the only participant to comment on the use of a specific example.  She indicated 

that she was unsure and provided the following reason:  

I can’t say yes or no because the student uses a specific example to generalize, but then 
does not mention this is true for all different odd numbers. Maybe a less specific diagram 
would prove it. 

Clearly, Brittany is applying her knowledge that a proof must cover all cases and she is not 

concerned about the use of the picture.  However, Brittany is not convinced about the use of a 

specific diagram.  It may seem that she is contradicting herself when she says that the specific 

example is used to generalize, which is the definition of a generic argument, but the students 
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were not introduced to the concept of generic argument prior to analyzing this student work (“O 

+ O = E). 

Three other participants were also either unsure or labeled the solution a non-proof. Tina, 

Tanya, and Lucy accepted the use of the specific example to generalize, but did not believe that 

defining odd as having ‘an extra block’ as acceptable. For example, Tanya wrote, “Does not 

prove that extra blocks always form a pair.”  In other words, the diagram of specific numbers 

five and eleven was accepted, but the fact that these two numbers have an “extra block” implies 

that all odd numbers will have an “extra block” was not accepted which is a valid criticism.  A 

critical criterion of proof is that it needs to be accepted by the community, and based on how the 

term odd may have been defined (if at all), the classroom teacher needs to make a judgment what 

is and is not accepted.   

While four participants did not label the argument as proof, it was only Brittany that 

disagreed or was conflicted with the idea of a generic argument counting as proof.  The other 

three participants focused their disagreement on the way the student solution defined an odd 

number.  Therefore, all of the participants accepted pictures, and only Brittany did not view the 

generic argument as proof prior to the concept being formally discussed.       

The participants examined the third and final generic argument (task 6) after they learned 

about the reasoning-and-proving framework where they considered the various argument types. 

As was explained in the previous two solutions, most participants were not distracted by the use 

of specific example to generalize the situation and most were not concerned about the use of 

language or diagrams.  This continued to be the case for the student B solution of the NxN 

window problem.  However, there are two points worth noting: 1) Lucy labeled the solution as a 

216 



  

 

 

 

 

non-proof, and 2) Brittany not only accepted the argument as proof she called it a generic 

argument.   

Lucy labeled the student B argument a non-proof because she was not convinced with 

how the student generalized the argument. Lucy labeled the argument a rationale. She wanted 

more explanation to support the claim. Again this is a legitimate complaint for her to recognize a 

weakness in how the student articulated their thinking and she expected more clarity.  In other 

words, Lucy found a point of contention in the argument and was not directly disputing the use 

of a specific example to generalize or that the argument failed to be considered a proof since the 

student used a picture. 

On the first two examples (student D: task 1 & student B: task 3) of a generic argument, 

Brittany claimed the solutions were non-proof because of the use of pictures and or specific 

example.  While analyzing the student B and student C solution (NxN window: task 4), Brittany 

explicitly categorized the solution a generic argument, which she said is a proof.  The three 

generic argument student examples with different representations did not distract most of the 

participants.  Brittany was the only one to state that a diagram or using examples was too 

informal causing the solution to not count as proof.  Finally, most of the participants (8 of 9) 

correctly identified the Sticky Gum student G (generic argument) as a proof, and the one 

disagreement was not related to the use of a specific example or the inclusion of a diagram, it 

pertained to the clarity of the argument.   

Empirical Argument: An empirical argument is an example-based argument that fails to 

generalize the situation for all cases.  A generic argument is a proof that is generalized from a 

specific case. This can be confusing since they both include examples, but the distinction is that 

the argument needs to be general for it to count as proof.  Two types of empirical arguments 
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were previously discussed (example only and generalization from examples) did not cause 

conflict among the participants.  However, there exist additional types of empirical arguments 

not yet discussed that are different from one another, and from the types previously analyzed. 

The first is the student A (NxN window) solution, which is a formal argument that includes 

algebraic symbols in which it is expected that teachers would accept based on the use symbols. 

The second is student C (Sticky Gum), which is a less formal solution containing language and a 

diagram. 

The student A (NxN window) (as shown in figure 4.16) solution is not a proof since it 

generalizes a situation based on five examples without explaining why the pattern will always 

work. Seven participants recognized the limitations of the argument.  Tanya was able to connect 

this example to what she learned on the first day of class.  She explains that the generalization is 

based on the several examples in the table and then makes the connection to a class activity:  

So like it could be a different pattern like if he would have looked at the second problem 
that we looked at on the first day, and wrote out a table for the first five. He could have 
come up with a pattern that will miss, and it would be wrong, is like a similar thing could 
happen here so I don’t think this is a proof. 

Tanya recalled the Circle and Spots problem, which was the second problem she solved 

during the first class. The pattern detected in examining the first five cases does not continue in 

the same way from the sixth case on.  Other participants made similar comments with how the 

solution falls short of proof since it does not explain why the pattern will continue in the same 

way. 
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Student A 

Window # of wood 
size pieces 
x y 

1 by 1 4 

2 by 2 12 

3 by 3 24 

4 by 4 40 

5 by 5 60 

I notice that the first difference in the table is 8, 12, 16, and 20 and all of the second differences 

are 4. Since the second difference is constant (4), then the equation is quadratic.   

I know that the y-intercept is 0 since a 0 by 0 window will have zero wood pieces.   

Also half of the second difference gives the leading coefficient.  Now I just need to find the 

coefficient for x, which I will call b.
 

Y = 2x2 + bx 

Choosing a random coordinate will allow me to find b.  So I will choose (2, 12). 
12 = 2(2)2 + b(2) 
12 = 8 + 2b 
4 = 2b 
b = 2 

So for any square size window length x, the number of wood pieces is 
2x2 + 2x 

Figure 4.16. Student A solution to NxN window 

The algebraic procedures in the student A solution, however, did cause three participants 

to rethink their decision and two participants decided to identify the argument as a proof.  Three 

participants (Tina, Karen, and Brittany) talked about the procedures in the problem as possibly 

being previously accepted in the community in which it was constructed.  In other words, if the 

methods used in the solution are accepted classroom methods that it should be acceptable as 

proof. However, they failed to realize the generalization was based on five examples and the 
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argument does not justify why the pattern will continue to be quadratic.  Karen, after 

considerable thought, changed her mind as she explained:  

I don’t think so because they found it but they didn’t explain why it worked, and so I 
don’t think finding the equation is showing why it works and why it’s always going to 
hold. So I don’t think it is. I got thrown off because they were doing all these like math 
things. 

Karen realized she was distracted by the solution because of the algebraic procedures or 

what she called “math things.”  Then she reconsidered her criteria of proof, which included the 

need to explain ‘why’ something works in which this solution did not do.  Therefore, the 

algebraic symbols were a distraction for a few participants and the symbols cause two of the 

participants to not recognize the insecure method used to generalize the situation even though it 

was directly attended to during the first class meeting.      

The student C (Sticky Gum) (as shown in figure 4.17) solution is also an empirical 

argument. The solution reaches a generalization, but describes the generalization using a specific 

case. 

Student C 

Here is the formula needed to rewrite problem 4 algebraically: 
x = colors 

y = children 
z = cents 

xy – (x – 1) = z = 
3  3 – (3 – 1) = 

9 – 2 = 7¢ 
The reason I chose this formula is as follows. I needed to multiply the colors by the children in 
order to get the maximum amount of money needed (including children getting more than one 
color of the same color). But since the children only have to have the same color as one of the 
gum balls, I needed to take away the other two possibilities, which is why I subtracted the color 
minus 1. Look at the following diagram: 
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X: 1¢ 1¢ 1¢ 

Y: 1¢ 1¢ 1¢ 

Z: 1¢ 1¢ 1¢ 

See, we don’t need the last two results, of the triplets getting the same color of all the gum balls, 
just one color – which is why we subtracted the last two numbers, by taking the number of 
colors, and subtracting one, which in this case is 3 – 1, giving us two, which we subtracted from 
the kids times the colors, resulting in 3  3 – (3 – 1) = 9 – 2 = 7. Whew! Long sentence! 

Figure 4.17. Student C solution to the Sticky Gum problem 

The shortcoming with the Student C solution is that the explanation of the generalization uses the 

specific three children three-gumball color case instead of using the specific to explain the 

general case. The second sentence is general where it reads, “multiply the colors by the 

children,” but the very next sentence explains that they needed to subtract “two.”  Also the  

general statement does not justify why you would want to multiple colors by children or what the 

product would mean.  The “long” sentence below the diagram does not make any attempt at 

being general. Therefore, it is not clear how the generalization is reached, but it is explained 

using a specific example (empirical argument) opposed to generalizing the situation from a 

specific case (generic example).  This nuance caused conflict with deciding on how to identify 

the argument. 

None of the participants were distracted by the use of the narrative language or pictures 

to make a decision.  However, seven participants were unable to initially recognize that the 

language is situated in a specific case, or they have a misunderstanding of a generic argument. 

Only Katie and Nathaniel recognized the fact that this is a non-proof argument.  Lucy first wrote 

yes (proof) then wrote no, but her reason suggests she originally thought it was, but the class 

discussion persuaded her to change her decision to non-proof.  Katie wrote out her reason for 
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why the solution is insufficient, “[The solution] focused on a single example – needs to extend to 

a general case to hold true for all possible cases.”  Katie and Nathaniel understood that 

explaining a generalization based on a single case does not count as proof and it seems as though 

Lucy agreed with their rationale. 

Since the reasons are only a sentence or two long, it is difficult to discern differences 

among the six other responses.  In other words it is challenging to know if the remaining 

participants believe they that student C’s argument was an empirical argument or if they thought 

it was acceptable to use an example to explain a generalization.  It seems as though Karen 

belongs to the former perspective when she writes, “Generalizes based on an example, explains 

the variables and explains the colors – 1 part.” It appears that she views the solution as a generic 

argument. Brittany may belong to the other perspective since she wrote, “Shown for general case 

and have explained why each piece of the formula exists.” Brittany may believe that reaching a 

generalization and explaining it is a proof. While both views are incorrect, believing the solution 

is proof is a greater concern since it reveals a general misunderstanding of proof where the other 

perspective is a misinterpretation of this specific solution.   

These student solutions highlight the complexity with evaluating teacher’s understanding 

of empirical arguments.  While they all recognize that examples alone and a generalization with 

little to no explanation is not a proof, a few participants were distracted with the use of algebraic 

symbols.  Determining the validity of an argument was most challenging for the participants 

when an argument includes generalization even if the explanation does not include all cases.   

Counterexample: The term counterexample was introduced on the first day of class as 

part of the sequence of three tasks, but understanding what a counterexample means was not the 

focus of the set of activities. The learning outcome for the three task series was to understand 

222 



  

 

 

 

 

 

 
 

  

  

  

  

  

   

  

  

  

  

  

  

 

that a solution based on any number of examples is not a proof.  The next time the concept of 

counterexample was introduced was during the final interview.  The problem included a false 

statement and the expectation was to find an example to prove the statement false.   

More than two participants incorrectly identified four out of five arguments.  In this 

section, the analysis will be on the two most controversial solutions (Student A and E).  Both of 

these solutions are identified as non-proof arguments, but the majority of participants labeled 

each solution a proof.  The focus of this analysis is on part B of the calling plans since this is 

question in which a counterexample is needed to solve the problem.  

Student A’s solution (as shown in figure 4.18) is not a proof since it failed to include the 

monthly fee variable. If the monthly fee is the same in two plans, and the cost per minute is the 

same in both plans, then the plans are identical and will always cost the same.  

Student A 

A. I think that Rachel is right because both Company A and B cost $7 for 50 minutes.  I figured this 
out by making a table. 
# Cost A Cost B 
0 5.00 2.00 

10 5.40 3.00 

20 5.80 4.00 

30 6.20 5.00 

40 6.60 6.00 

50 7.00 7.00 

60 7.40 8.00 

70 7.80 9.00 

80 8.20 10.00 

90 8.60 11.00 

100 9.00 12.00 

B. Any two phone plans that don’t have the same cost per minute will be lines that intersect.  If they 
have the same cost per minute they will be parallel lines that never meet. 

Figure 4.18. Student A solution to the Calling Plans task 
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Another issue that was not addressed by any of the participants is the error in the first 

sentence of the argument.  The graphs of two linear functions with different slopes will intersect, 

but only an intersection in the first quadrant makes sense in this context.  Negative time is not a 

realistic quantity.  In other words, when plotted, two calling plans could intersect in the second 

quadrant and never share the same total cost for the same number of minutes.   

Four participants labeled the argument as a non-proof, but only three of them provided 

legitimate rationales.  Tanya commented that she would like more information without 

specifically commenting on what she thought was missing.  The three other participants (Lucy, 

Tina, and Katie) recognized that the general case was problematic since student A did not 

account for the possibility of the monthly fee being the same.  

Katherine and Nathaniel recognized the limitation, but accepted the argument as proof 

anyway. Katherine first recognizes the situation in which the same cost per minute and same 

monthly fee would mean the two plans are identical, but she further explained that her analysis 

might be too critical.  At this point, Katherine explains that she believes student A is providing a 

counterexample ‘of sorts’ in recognizing that parallel lines would be a situation in which two 

plans would never cost the same.  In summary, Katherine and Nathaniel recognized the 

limitations of what was written, but assumed the student was aware of the issue that contradicts 

their solution. 

The remaining three participants (Uma, Brittany, and Karen) seem to have a limited 

knowledge of a counterexample.  They focused on explaining all the possible situations and 

believe a valid solution must attend to multiple cases.  They claim that since student A is only 

focused on the case in which the monthly fee are different and the cost per minute are equal and 

graphically this would produce two parallel lines.  They labeled this argument as not a proof 
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because it did not covering all of the other possible situations.  So regardless of the fact that they 

correctly characterized the solution, their response incorrectly explains why the argument is not a 

counterexample. 

It is challenging to know what Karen, Uma, and Brittany understand about a 

counterexample, because they each make conflicting comments.  For example, Karen first labels 

student A as a proof, but then after analyzing the student C solution she returns to the student A 

solution to change her mind saying, “Yeah A isn’t a proof because of the same thing that I did, 

didn’t talk about this one [a situation where two plans would not have a common cost], this case 

as well.” It seems as though Karen learned that a proof must cover all cases and is applying that 

rule to a false statement, so she does not seem to understand that a false conjecture only requires 

a single specific instance that disputes the claim. Brittany, Karen, and Uma each changed their 

decisions several times while evaluating the Calling Plans solutions so it is difficult to know if it 

was the question they did not understand or what it means to prove a false claim. At one point 

Brittany did seem to recognize that the situation only required a specific example, but mentioned 

contradiction, counterexample, and generic argument in the same sentence as if these terms are 

related somehow. Therefore, the overall issue may be that they are conflicted about applying 

their criteria of proof to a situation where it does not apply. 

Student E (as shown in figure 4.19) was labeled proof by seven of the eight9 participants. 

As with the other Calling Plan solutions, the response focuses on a general argument opposed to 

providing a specific counterexample.  The part B question for the Calling Plans task is as 

follows: “For any two phone plans, is there always a number of minutes that will yield the same 

cost for both plans?”  The student E response focuses on when two plans do intersect while 

9  The audio recorder did not capture Brittany’s response to the student E argument.  
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writing “No” they will not always be the same. The answer only focuses on when the two plans 

share a common total cost for a specified minute during a month.  While it does not seem as 

though student E believes that the general case shared is the only possible situation for the 

problem, he or she did not explain any situation in which any two plans would not yield the same 

cost. 

Student E 

A. 	 Rachel is right. I used my graphing calculator and put in the two equations  
CA = .04m + 5 
CB = .10m + 10 

And found that the lines intersect at (50, 7) so that means both plans cost $7 for 50 minutes. 

B. No. Two plans DO NOT ALWAYS have the same cost for the same minutes.  I made two 
phone plans c1 and c 2 and set them equal.  I found that x (number of minutes) has to be greater 
than 0 to make sense, so when you subtract the monthly fee and the slopes (cost per minute) you 
have to have positive values. This ONLY happens when plan 1 has the lower monthly charge 
and the higher cost per minute. 

Figure 4.19. Student solution E to the Calling Plans task 
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Additionally, the conclusion conflicts with the argument, and the constraints on the monthly 

fee variables change throughout the argument. The solution restricts the difference between the 

costs per minute (m1 – m2) rates to be positive and the difference between the monthly fees (b2 – 

b1) to be positive.  When the differences are written symbolically in ratio form, the constraint on 

the difference between the monthly fees is changed to include zero from previously only 

including numbers greater than zero.  This may see to be a slight error, but it has real 

implications for the problem situation. Also throughout the argument, the assumption is that plan 

one has the greater cost per minute and lesser monthly fee.  However, the conclusion claims it 

does not matter which monthly fee is greater. Finally, the difference between the monthly fees 

could be zero as well. It does not make sense to have a zero in the denominator of a fraction, but 

in the problem situation it means that the two plans have the same cost per minute. So if the two 

plans have the same cost per minute and the same monthly plan then they would also share 

common total costs. In summary, even though Student E did not answer the question and 

exhibited errors in their reasoning, seven of the eight participants said that it was a proof. 

Nathaniel and Katie recognized that the solution ignored the question, but Nathaniel was 

the only one to label the solution a non-proof argument.  He analyzed the solution and then 

summarized all the issues with the solution and summed it correctly by saying, “They haven’t 

given me at least one specific example when it wasn’t true [one counterexample], because their 

only specific example when it’s not true is saying the opposite of what they said is true, which 

isn’t true.” He realized that student E did not answer the question, and the work they did present 

has multiple errors. 

Not only did most of the participants label the argument as a proof, they thought it was 

the most convincing of all five Calling Plans solutions.  Several participants focused on the 
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correct use of symbolic manipulation without discussing what the symbols represented in the 

problem context.  Tina explained that she found student’s E solution to be the most convincing. 

When the interviewer asked why, Tina says:   

Cause it’s algebraic. As far as being the best kind of, I mean, this is kind of without a 
doubt talking about just how it has to work, how the equations have to work to intersect, 
what has to be true for them to intersect, and they’re using variables and it is very 
general terms. It makes more sense to me than the other one did. 

Tina mentioned that the argument is justifying when the equations intersect, and she 

seems to miss the point of the question is to find a situation when they do not intersect.  She 

seems more enamored by the use of variables within equations and the manipulation of the 

equations than studying whether the question is being answered.  Uma also thought this solution 

was the most convincing response. She said this type of response is what you would be trying to 

get your own high school students to do since it is proving for all cases. Overall, six participants 

praised Student E and were impressed by the use of algebraic symbols without thoroughly 

examining the relationship between the words, symbols and problem context.  Katie and 

Nathaniel were the only two participants who found flaws in the argument, but Katie accepted 

the errors. In relating this solution back to the question it is striking that some participants found 

this argument convincing since it never provided a counterexample. 

Solution E highlights the symbolic issue that has been discussed as a concern in research 

related to secondary students where they accepts arguments as proof because it includes 

algebraic symbols even if the argument does not make sense (e.g. Healy & Hoyles, 2001).  Most 

participants may not have been critical of this solution since it looked sophisticated.  Even 

though the symbolic manipulation is correct, the solution did not answer the question. This raises 

the question of whether or not the use of algebraic symbols was the reason for the limited 
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scrutiny, or if the participants did not connect the symbols to the problem context as they 

evaluated the solution. Therefore, this student solution E raises three concerns: 1) a limited 

understanding of variables, 2) failure to be critical of the solution since it included algebraic 

symbols, and 3) not knowing that a single solution is all that is needed to prove a false statement.     

4.3.4 Summary of participant growth with critiquing reasoning-and-proving solutions 

Overall, the participants did reasonably well as a group in distinguishing between proof and non-

proof arguments, but a few challenges emerged.  The distracter solutions intentionally pressed on 

the participants’ understanding of the argument types: generic argument, empirical argument, 

counterexample and rationale. Counterexamples were not directly studied and proved the most 

challenging arguments to analyze.  Some types of empirical argument solutions were easier than 

others to identify. Since there were only 12 distracters and they were distributed among four 

argument types, it is difficult to show growth. 

Four of the 12 distracters were counterexamples and they all were analyzed at the same 

time period, so it is not possible to discuss growth in the participants understanding of 

counterexamples. However, a challenges arose that would be useful to further explore.  It 

seemed as though some participants did not understand what a counterexample means or where 

trying to apply the criteria of proof. 

The participants also evaluated four different types of empirical arguments that were 

meant to cause conflict.  The participants were successful with identifying example only 

solutions and generalizations without explanations as non-proofs.  However, it was more difficult 

for a third of the participants to identify empirical arguments when a generalization was reached 

using an algebraic method. Two participants accepted the algebraic procedure as prior 
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knowledge without questioning the appropriateness of the method.  Finally, seven out of nine 

participants confused an empirical argument with a generic example. A generic argument 

explains a general situation using a specific example. However, using a specific example to 

explain a general formula is an empirical argument. Since there were only four empirical 

arguments and they represented different types, it was difficult to identify growth overtime.   

There are also two rationale arguments in the set of distracters.  Most participants were 

successful with identifying unwarranted claims, but prior knowledge seemed to complicate the 

issue. Some participants said that it might be possible that they already learned a particular 

mathematical truth so it would be acceptable to state the claim. Since we are not the teacher, how 

do know what prior knowledge anyone student might know?  The confusion with identifying 

prior knowledge was rectified with the class agreeing that if a claim is made in an argument that 

is not justified then it must state it was previously proven.  While this was agreed upon while 

analyzing the “O + O = E” student work and there were no other rationales to evaluate, it is not 

possible to know if the participants improved in this regard.  

While it may be acceptable to claim that participants were successful at identifying 

generic arguments, it is important to note that there were only four of this type (three of the four 

generic arguments were labeled distracters). The participants, who disagreed with how the CORP 

materials development team categorized the generic arguments, were concerned about how terms 

were defined or other legitimate disagreements.  During the analysis of the first two generic 

argument solutions, only one participant labeled it as a non-proof based on being generalized 

from examples.  However, after she learned the definition of a generic argument she labeled the 

last two generic argument solutions as proof. Therefore, eight of the nine participants were 
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comfortable identifying generic arguments as proof from the start, and the one who was not came 

to accept them.  

Finally, the participants were accepting of a variety of representations including the use 

of diagrams and narrative language, but seem to be too accepting of solutions that include 

algebraic symbols. The use of diagrams or narrative language was not distracting, and only one 

student during the first interview said that she thought proofs needed to be more formal.  Most 

accepted narrative language and diagrams prior to the start of the course, and they all came to 

accept multiple representations by the end of the course.  Therefore, the only concern with 

respect to representation is that seven of the nine participants seemed to be less critical of 

arguments that included symbolic manipulation.    

4.4	 PRE-SERVICE TEACHERS ABILITY TO SELECT AND OR MODIFY 

REASONING-AND-PROVING TASKS 

The results in this section are in response to the fourth research question: 

4. To what extent do pre-service teachers improve their ability to select and or 
modify reasoning-and-proving tasks for students over the duration of a course 
focused on reasoning-and-proving and during their first year in the 
classroom? 

The participants were required to select two reasoning-and-proving tasks, one of which needed to 

be from a secondary textbook.  A timeline is presented in figure 4.20 to better understand the two 

course assignments along with the process in which the tasks were selected and modified 

throughout the course. The development of task assignment one is listed below the timeline, and 

highlights two instances during the course where the participants were provided an opportunity 
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to gain feedback with modifying their initially selected task.  The second task assignment was an 

individual activity in which they selected a task from their curriculum and modified it to include 

reasoning-and-proving.  After the course, participants were asked to select and bring a reasoning­

and-proving task to the third interview.  Finally, two participants with teaching positions 

collected reasoning-and-proving tasks they implemented as first year teachers. 

Task Modification 
Unit: classes 6 thru 8 

Task 2 Task 2 
assigned: due: 

Class 12 Class 1 class 6 class 9 
Selected 

Select task 3 tasks for 
for interview 3 enactment 

Selected task 1 Discussed Presented task 1 to Task 1
 
and brought to task 1 with whole class: assignment
 
interview one partner:  classes 7&8 due
 

 class 4 

Figure 4.20. Timeline of task selection and modification 

The participants were asked to bring a reasoning-and-proving task to the first interview 

without knowing what reasoning-and-proving meant, and they also did not know that they would 

be using the task as a course assignment. Eight of the nine participants brought a task to the first 

interview.  After the participants read the Reasoning-and-Proving Framework article in class 

three (Stylianides, 2010) and learned that they their selected task would need to be modified to 

include student opportunities to reason-and-prove (class 4), they were given the option of 

choosing a new task. For the second assignment, the participants were required to select a task 

from their curricula (class 6) that had the ‘potential’ to be modified to include reasoning-and­

proving. For interview three, the participants were asked to select and or modify a task so that 
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students would have an opportunity to reason-and-prove.  So the tasks selected for assignment 

one and two are similar in that the participants knew that the tasks would be modified to include 

reasoning-and-proving and different from the task selected for interview three since it was 

expected to look more like the modified versions of the tasks used in the course assignments.   

This research combines the tasks selected for assignments one and two as one group of 

initially selected tasks, which were then modified to include reasoning-and-proving.  The 

modified versions are coded to compare the initially selected versus the modified versions.  The 

interview three tasks are analyzed as a group to learn if the participants were able to sustain their 

skill with selecting and or modifying reasoning-and-proving tasks.  Finally, the 10 tasks the two 

participants chose to implement with their students in the 2011-2012 school year are discussed to 

determine what the teachers appeared to have learned about selecting reasoning-and-proving 

tasks. 

All of the participants completed the two required course assignments. Five participants 

(Tanya, Uma, Karen, Katie, and Katherine) brought a task to the third interview.  In addition, 

Karen and Katie submitted five tasks each that they implemented as first year teachers (as shown 

in Table 4.9) 

The participants were provided the option of modifying the initial task they selected or 

choose an entirely new task. The numbers in the parentheses represents the number of times the 

participant modified their selected task.  Six participants selected a task and made modifications 

on two separate occasions (Nathaniel, Tina, Lucy Uma, Brittany, and Katherine). Karen 

modified her original task once.  Tanya chose to select a second task and then modified the new 

task once. Katie selected a second task, modified it then made a decision to choose a third 

reasoning-and-proving task. 
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Table 4.9. Total number of reasoning-and-proving tasks each participant selected 

Participant Assignment 1 
(modified) 

Assignment 2  Interview 3 Selected & 
implemented as 1st 
year teachers 

Nathaniel 1 (2) 1 0 0 
Tanya 2 (1) 1 1 0 
Karen 1 (1) 1 1 5 
Tina 1 (2) 1 0 0 
Lucy 1 (2) 1 0 0 
Uma 1 (2) 1 1 0 
Brittany 1 (2) 1 0 0 
Katie 3 1 1 5 
Katherine 1 (2) 1 1 0 

4.4.1 Ability to modify tasks to include reasoning-and-proving opportunities 

The twenty10 initially selected course tasks were coded using a two dimensional matrix that 

combines the Reasoning-and-Proving Framework and Task Analysis Guide (TAG) (as shown in 

table 4.10). The tasks were determined to be either high level (procedures with connections or 

doing mathematics) or low level (procedures without connections or memorization) along the 

TAG dimension and coded as either a call for an argument (proof or non-proof) or a requirement 

to make a generalization (identify patterns or make a conjecture). It is also possible that a task 

was not a reasoning-and-proving task. 

10 	Two	for	each	participant	and	one	 extra	for	Katie	 and	Tanya. 
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Table 4.10. Results of initially chosen reasoning-and-proving tasks 

Low-level task 


High-level task 


Make a 
generalization 

Provide an argument 
Not a reasoning-and-
proving task 

0 1 0 

11 5 3 

The results show that one of the chosen tasks was low level and required a proof.  Just 

over half of the 20 selected tasks were high-level and required a generalization.  One fourth of 

the tasks were high level and directly asked students to justify specific cases or explain why a 

conjecture is always true. So eighty percent of the selected tasks were high-level reasoning-and­

proving tasks. However, three11 of the “high-level provide an argument” tasks were not used for 

assignment one.  Therefore, while the goal was for participants to modify tasks to be “high-level 

provide an argument” type tasks, additional factors contributed to how and why tasks were 

modified and or discarded. 

It is important to note that these selected tasks were not expected to be of a particular 

type. It is possible that students purposefully did not chose a proof task since they may have 

thought it would not be modifiable.  Also, the CORP materials includes the case of Nancy 

Edwards, which highlights the modification a “low-level make a generalization” task to be a 

“high-level provide an argument” task. Therefore, the participants were left to determine what a 

reasoning-and-proving task with potential meant.  

11 Katie	abandoned	two	and	Tanya 	abandoned	 one	of	the	 tasks. 
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Growth was detected by comparing the eighteen12 originally identified tasks to the final 

form of the two course assignments (as shown in table 4.11) and to the task selected for the third 

interview, and ultimately the tasks selected and used in the classroom.  The 18 initially selected 

problems are listed in the first column, and the second row lists all six possible outcomes of task 

types in order from least to most sophisticated.  For instance, the 11 high-level “make a 

generalization” tasks were modified in three different ways where nine became high-level 

“provide an argument” (column 7).  One task became a low level provide an argument (column 

four). At least one task from each of the four original categories did not change task type after 

modification and this is shown in the table where the numbers form a diagonal line. No 

reasoning-and-proving tasks were altered to become non-reasoning-and-proving problems. 

Overall, 11 tasks were modified to improve their sophistication level (above the diagonal line), 

six stayed the same (those along the diagonal line) and one task was modified to where the 

cognitive demand was lowered. 

Table 4.11. The 18 selected and modified reasoning-and-proving course tasks 

Initially 
Selected 

Modified Course Assignments Tasks 

L-L 
Non-
R&P 

L-L 
Make a G 

L-L Provide 
an Argument 

H-L 
Non-R&P 

H-L 
Make a G 

H-L Provide 
an Argument 

(1) L-L 
Provide an 
Argument 

1 

(3) H-L 
Non-R&P 1 1 1 

12 	Katie’s	third	task	is	labeled	a 	modified	 version 	of	her	second 	task.		 The	two	tasks	 Katie	 
and	Tanya	selected	 and	 abandoned	 are	not 	included.		 
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(11) H-L 
Make a G 1 1 9 

(3) H-L 
Provide an 
Argument 

3 

In general, the participants learned to apply the criteria discussed during the course to 

modify tasks. During the task modification unit in the course, several activities led to the 

development of a set of principles as shown in figure 4.21.  The idea was that asking the types of 

questions listed in the principles would provide opportunities for students to reason-and-prove. 

The participants learned to modify tasks to include these principles.     

Task modification principles 

 Scaffolding 
o Remove scaffolding (to increase number of solution paths) 
o Add scaffolding 

 Organize thinking 
 Multiple Entry points: access 

 Ask Why? Or Why not? 
 Connect Representations 
 Explore patterns – make observations  
 Students produce conjectures 

Figure 4.21. Course developed principles for reasoning-and-proving task modification 

Most (13/18) of the modified written tasks provide students with opportunities to provide 

high-level arguments. Some revisions removed scaffolding to focus on argumentation, others 

added questions so that students could review multiple examples before making a generalization. 

An interesting finding is that the number of examples requested before asking students to provide 

an argument varied between one and four.   
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Many modified tasks included asking why? or why not?  As a follow-up question to 

calling for a generalization, many revised tasks included the question: “How do you know?”  So 

instead of asking why is your generalization true or write a proof, the participants overwhelming 

opted to ask how do you know that your conjecture will be true for any possible situation. 

However, simply adding this question to a task does not make it high-level or a proof task. 

There needs to be a conjecture in the problem for students to justify and the task must have 

multiple solution paths or opportunities to make connections. Therefore, not only were most 

(8/9) of the participants able to select or modify reasoning-and-proving tasks during the class, 

they applied multiple principles creating opportunities for students to reason-and-prove. 

The next section explains how the tasks were changed to align with the different 

categories including the modification principles.  Tasks in each of the four initial categories are 

discussed in juxtaposition with how they were altered. 

4.4.1.1 High-level make a generalization task 

The 11 high-level “make a generalization” tasks were selected for both the first task (n=4) and 

the second task (n =7) selection assignment. The 11 tasks were grouped into three categorizes: 1) 

pattern tasks (n =4), 2) examination of cases tasks (n =5), and 3) extrapolate general features 

from a single example tasks (n =2).  Four of the eleven are pattern tasks and the other five 

examination of cases problems (second category) prompted students to analyze a set of 

examples, polygons, or numbers.  The final two tasks in the third group focused on a single case, 

and asked general questions from the provided example.  The distinction between “make a 

generalization” and “provide an argument” is that provide an argument tasks must explicitly 

require an explanation for why a specific or general case always works.  In other words, explain 
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a rule (generalization) was coded different from explaining why a rule is true for all cases 

(provide an argument).  One of each of the three types of high-level “make a generalization” 

tasks along with how they were modified are shared. 

While the four prototypical-pattern tasks varied, they each followed a common 

modification structure: 1) extend pattern past what is given, 2) explain or describe a figure 

without drawing it, 3) make a generalization and explain why it is always true (see to the 

rectangular dot pattern Karen selected and modified in figure 4.22 as an example). Karen made 

several changes to modify her task from “make a generalization” to “provide an argument.”  In 

other words, she did not simply write prove your generalization as a sixth question.  The first set 

of questions focus on the number of dots, how the numbers are changing, and finally to write an 

equation based on the numbers extracted.  Her modification draws attention to how the 

organization of the dots are changing and making connections with the figure number.  For 

instance, her modified question (d) does not simply ask for the number of dots for the 10th figure, 

since she is more interested with how the student is thinking about the shape. These changes 

support students with answering part two of question (e) about justifying how students know 

their equation will be true for any counting number.   

 Initially Selected Version  Modified Version 
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Figure 4.22. Karen’s initial task and modified version completed her second course assignment 

Of the five “examine cases tasks” four were modified to require an argument.  The final 

task did not initially require students to generalize the situation. Two of these tasks pertained to 

the exponent rules, two others related to the interior angle measure of polygons, and the problem 

related to exponential decay.  

Tina’s modification of her exponent rule task, which stayed high-level and required an 

argument, is shared in figure 4.23.  The original exponents task that Tina selected is labeled 

high-level “make a generalization” since it prompts for an explanation of the conjecture.  A 

judgment is made here that explain does not mean that same as “provide an argument.”  In this 

case, explain means to tell why you choose positive or negative, and citing the four examples is 

considered sufficient evidence.   

The modified version includes the same examples, but removes the “either or” 

conjecture. Students are open to make a variety of observations before focusing on negative 

numbers raised to an odd and even whole number exponent.  Tina’s part (b) for both questions 
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three and four presses students to think beyond the provided examples to make an argument for 

both cases. The addition of these two questions account for why the modified task is labeled 

“provide an argument.” 

Initially Selected Version 

1.	 Simplify each expression 
(–2)2  (–2)3  (–2)4  (–2)5 

(–3)2  (–3)3  (–3)4  (–3)5 

2.	 Make a conjecture: Do you think a negative number raised to an even power will be 
positive or negative? Explain 

3.	 Do you think a negative number raised to an odd power will be positive or negative? 
Explain 

Modified Version 

1) Solve the following examples. 
(–2)2  = _____ (–2)3  = _____ (–2)4  = _____ (–2)5 = _____ 
(–3)2 = _____ (–3)3 = _____ (–3)4 = _____ (–3)5 = _____ 

2)	 Make some observations about any patterns that you notice. 
3) a. Using what you notice about the examples above, make a conjecture about negative 

numbers to an even power. 
b. How do you know that this will be true for all negative numbers? 

4) a. Using what you notice about the examples above, make a conjecture about negative 
numbers to an odd power. 
b. How do you know that this will be true for all negative numbers? 

Figure 4.23. Tina’s exponent task that is high-level and make a generalization 

The final two tasks ask students to make generalizations from a single case, and Lucy 

identified and modified both.  In one task, after exploring the single example, students are 

expected to generalize convergence and divergence for the area for a general situation (y = xn). 

Parallel lines problem is shared in figure 4.24 to further explain the case in which a task 

promotes generalizing and proving a situation from a single example.  The initially selected 

version is labeled “make a generalization” since it asks students to generalize the relationship 

241 



  

 

 

 

 

 

 

 

 
  
 

 
  
 
 

 

 

between the slope and y-intercept of two equations that are parallel from a single case.  Students 

are not asked to consider additional cases or justify why their conjecture is true for any pair of 

parallel lines. 

Lucy modified the task to have students start to consider the possibilities of any pair of 

linear equations before focusing on the particular system. The task requires that students solve 

the pair of equations in multiple ways including a graphical representation.  After examining this 

specific case, questions prompt students to think about any pair of parallel lines.  The wording of 

the original version caters to students making a conjecture after exploring a single example. 

Lucy’s modified version is also centered on the same case, but she words the questions so that 

students are expected to provide support or a counterexample to the general case.   

Initially Selected Version 
Parallel lines problem: Show that the graphs of 3x – 2y = 6 and 6x – 4y = 18 must be parallel 
lines by solving each equation for y.  What is the slope and y-intercept for each line? What does 
this mean? If a linear system is inconsistent, what must be true about the slopes and y-intercepts 
for the system’s graphs? 

Modified Version 
1.	 What do the solutions to a system of equations represent graphically? 
2.	 Solve the following system: 


3x – 2y = 6 

6x – 4y = 18 


Definition: A linear system with no solution is called inconsistent. 
3.	 Interpret your solution in terms of another mathematical representation. 
4.	 Show that the lines given by the following two equations are parallel. 
5.	 Explain why your solution to #4 proves that the lines are parallel and why this makes 

sense. 
6.	 Can the solution to a system of equations of lines, which are not parallel, ever be 

inconsistent? If yes, give an example to verify this statement. If no, explain why not. 
7.	 Can lines that are parallel ever have one or more solutions? If yes, give an example to 

verify this statement. If no, explain why not. 

Figure 4.24. Lucy’s selected and modified parallel lines problem  
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The three examples discussed in this section are different with respect to the amount of 

scaffolding each task provides even though each task was modified away from “make a 

generalization” to “provide and argument.”  For example, Karen’s modification (figure 4.21) 

included question (d) to support students with moving from concrete provided examples to 

explaining the general structure of the pattern.  Lannin (2005) suggests that this type of 

scaffolding supports students with constructing a generic argument.  Tina (figure 4.22) asked 

students to examine a few cases, but never had them consider examples beyond what she 

presented. Instead, students are expected to move from the provided set of examples to 

justifying why what they observe will always be true.  Finally, Lucy’s (figure 4.23) modification 

provides less scaffolding since students are only given one example to explore. 

4.4.1.2 High-level provide an argument tasks 

Five of the initially selected 20 tasks for one of the two course assignments included 

opportunities for students to provide an argument. Three of the five proof tasks, however, were 

discarded since the participants were uncomfortable with how they might engage students in 

solving the tasks. Of the two remaining proof tasks only one explicitly called for a proof.  The 

other promoted a non-proof argument.   

Katie selected two of the five high-level “provide an argument” tasks and she did not 

modify either task for the two course assignments.  After trying to modify one task (shown in 

figure 4.25) she came to the realization that it might be too difficult for students to access.  Her 

second task provides multiple solution paths making it more accessible to secondary students, 

which was her rationale for discarding the first problem.  Therefore, even though both are 
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identified as high-level “providing an argument,” Katie considered how students could solve the 

task including possible representations as additional principles for selecting her final task 

assignment.   

Initially Selected Version (discarded) 
Multiply 4 consecutive positive integers and add 1 to the product. What kind of number do you 
get? Will this always happen? If you think so, prove it.   

Newly Selected Version 
Pick any positive integer. Add 2 to it. Take the product of this number and your original number 
and add 1. Make a conjecture about the resulting number.  Try more examples if you need help 
conjecturing.  Will your conjecture always be true? Find a counting number that does not work 
OR show why your conjecture always works. 

Figure 4.25. Katie’s assignment one proof tasks 

Nathaniel also modified a high-level “provide an argument” task, which prompted 

students to prove that the formula for the area of any triangle is A = ½ bh.  Even though the task 

started as a high-level providing an argument task, Nathaniel still considered ways to modify the 

problem (as shown in figure 4.26).  Nathaniel considered the principle that students may not 

know how to start the original problem.  The modified version includes much more scaffolding 

with the requirement to examine four specific examples (inductive reasoning) to provide students 

access and for students to make an explicit connection between the number of unit squares and 

the formula.  The third question moves away from examining specific cases to thinking about the 

relationship for any triangle. Therefore, Nathaniel included scaffolding questions to modify the 

initial task from strictly a proof task to one that includes a broad range of reasoning-and-proving 

activities.  
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Initially Selected Version 
Area of a Triangle Task: 

You have always been told that the area of a triangle can be obtained from the formula (1/2 bh). 
 But how do we know that is always true?  Will this formula really work for any triangle? 

Prove that this formula will provide the area for any triangle. 

Modified Version 
Area of a Triangle Task: 

1. The area formula for a triangle is given by (1/2/ b h), but where does this formula come from? 
Investigate the origin of this formula by filling in the table below (see italic). 
 First, identify the base and height for each triangle. 
 In the third column calculate area by using the formula. 
 In the last column, find an approximation for area by determining the number of squares inside 

each triangle. 
(Provides a table for students to complete: base, height, area, # of interior squares) 
(Provides four triangles on a grid for student to use to complete table) 

2. Draw a new triangle in the grid below and explain how its area is connected to the formula: ½ bh.  
3. Explain why the formula, ½ bh, is always the same as the number of squares inside of a triangle? 
4. Are you convinced that the formula will work for all triangles? Why or why not? 

Figure 4.26. Nathaniel’s modified Area of Triangle Task 

4.4.1.3 Low-level reasoning-and-proving tasks 

Two tasks were modified to be a low-level ‘provide an argument,” and one of the two started in 

the same category.  One of Katherine’s tasks that included rules for exponents started as a high-

level “make a generalization,” and was modified to have students provide a justification for two 

laws of exponents rules. Brittany did modify her task  (as shown in figure 4.27), but the changes 

were not enough to increase the cognitive demand.   

The solution method is considered a derivation of the formula and is low-level since it 

only promotes use of an algebraic procedure without making connections to why or how the 

constants relate to the y coordinate of the vertex.  Brittany’s revisions to her task attempts to 

provide access through inductive reasoning after students are asked to consider what they know 

about parabolas. However, the questions do not scaffold students toward providing an argument. 
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Students will need to create their own quadratic equation examples and graphs, but it seems 

unrealistic to think that students could make connections between the coefficients that they 

choose in their examples and the y coordinate of the vertex in the graphs especially given the 

complexity of the relationship (–(b2 / 4a) + c). Therefore, since the scaffolding does not support 

students in writing an argument or with making connections across representations, the task did 

not change from its original categorization. 

Initially Selected Version 
For the graph of y = ax2 + bx + c show that the y coordinate of the vertex is –(b2 / 4a) + c. 

Modified Version 
For the graph of y = ax2 + bx + c: 

a) Compile a list of everything you know about parabolas. 
b) Graph a few parabolas and make a list of observations about how the vertex relates to the 

rest of the graph. 
c) Prove or Disprove that the y coordinate of the vertex is –(b2 / 4a) + c for all parabolas. 

Figure 4.27. Brittany’s parabola problem, which stayed a low-level provide an argument task 

4.4.1.4  High-level non-reasoning-and-proving 

Three of the originally selected tasks were not reasoning-and-proving tasks.  One was modified 

to become a “high-level make a generalization,” one remained as non-reasoning-and-proving, 

and one was modified to become a high-level ‘provide an argument.”  So none are representative 

of the group, but the two that changed are different from the kinds of tasks previously shared. 

Tanya’s task was modified from a non-reasoning-and-proving to a “make a 

generalization,” and the cognitive demand of both tasks stayed at a high-level (as shown in figure 

4.28). Tanya’s original task asks students to apply their understanding of parabolas to find a 

specific example, but it does not provide an opportunity for students to reason-and-prove.  The 

modified version is not a typical “make a conjecture problem.”  Students are not asked to find a 
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formula or explicitly state a conjecture.  However, the second question asks students to consider 

multiple cases. Students could generalize the situation from exploring multiple cases, but 

examining cases and explaining what is noticed constitutes identifying a pattern, which is part of 

“make a generalization.” 

Initially Selected Version 

Is it possible to make a parabola that lies only in quadrants II, III, and IV? If so, write an 
equation for such a parabola. If not, say why not. 

Modified Version 

1. Is it possible to make a parabola that lies only in quadrants II, III, and IV? If so, write an 
equation for such a parabola and explain how you know it only lies in these quadrants. If 
not, say why not. 

2. How many such parabolas exist? Explain your answer. 

Figure 4.28. Tanya’s parabola problem 

Katherine’s task was modified from non-reasoning-proving to “make a generalization” 

(as shown in figure 4.29). The original task is label high-level based on the second question 

in which students are asked to make connections between the balloon arch, the graph, and the 

equation. However, they are not asked to identify a pattern, make a conjecture or provide an 

argument.  The modification could be considered low-level.  Students that are unable to solve the 

equation, make a take of values, or graph the equation to find the x-intercepts or vertex will not 

be able to start the problem. However, students are not asked to follow a particular method and 

multiple methods are possible.  Katherine removed the diagram and changed the questions. The 

mathematical focus changed from finding possible x values for the situation to discussing a 

general connection between x-intercepts and the x value of the vertex for any quadratic function. 

Students are not prompted to explore additional examples, but as was previously discussed the 
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task could be an attempt to remove examples so that students learn to generate their own. 

Finally, the conversation around this task could be broader than Katherine intended.  Not all 

quadratic functions intersect with the x–axis leading to lots of possible solutions based on the 

constraints different students may place on parabolas and their understanding of functions.     

Initially Selected Version 
An arch of balloons decorates the stage at a high school graduation.  The balloons are tied to a 
frame. The shape of the frame can be modeled by the equation y = -(1/4)x2 + 3x where x and y 
are measured in feet. 

a. Make a table that shows the height of the balloon arch for x = 0, 2, 5, 8, and 11 
feet. 

b. For what additional values of x does the equation make sense? Explain. 
c. At approximately what distance from the left end does the arch reach a height of 9 

feet?  Check your answer algebraically. 
A diagram showing the arch and indicating that the maximum is 9ft is included. 

Modified Version 
An arch of balloons decorates the stage at a high school graduation.  The balloons are tied to a 
frame. The shape of the frame can be modeled by the equation y = -(1/4)x2 + 3x where x and y 
are measured in feet. 

1. What are the x-intercepts of the function? 
2. What is the vertex of the function? 
3. How do the x-values of the x-intercepts and the vertex relate? 
4. Will this be true for all quadratic functions? Explain how you know. 

No diagram is provided. 

 Figure 4.29. Katherine’s quadratic function problem 

4.4.1.5  Summary of tasks selected and modified for the two course assignments 

All nine participants selected two tasks each for which they saw potential to modify to include 

reasoning-and-proving (as shown in table 4.13).  The participants’ names are listed in the first 

column, and the next two columns in order represent the initially selected and modified coding 

for each of the two course tasks. The codes were abbreviated to cut back on the amount of text in 
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each cell.  The 1) and 2) used to represent the first and second course assignments. The shaded 

rows are included to help with distinguishing between the participants.   

Table 4.12. Participants’ skill with selecting and modifying reasoning-and-proving tasks  

Initially selected versions Modified versions 

Nathaniel 
1) H-L argument 1) H-L argument 

2) H-L generalization 2) H-L argument 

Tanya 
1) H-L not reasoning-and-proving 1) H-L generalization 

2) H-L generalization 2) H-L argument 

Karen 
1) H-L generalization 1) H-L argument 

2) H-L generalization 2) H-L argument 

Tina 
1) H-L generalization 1) H-L argument 

2) H-L generalization 2) H-L argument 

Lucy 
1) H-L generalization 1) H-L argument 

2) H-L generalization 2) H-L argument 

Uma 
1) H-L argument 1) H-L argument 

2) H-L generalization 2) H-L generalization 

Brittany 
1) H-L not reasoning-and-proving 1) H-L not reasoning-and-proving 

2) L-L argument 2) L-L argument 

Katie 
1) H-L argument 1) H-L argument 

2) H-L generalization 2) H-L argument 

Katherine 
1) H-L generalization 1) L-L argument 

2) H-L not reasoning-and-proving 2) H-L argument 

Five participants’ (Nathaniel, Karen, Tina, Lucy, and Katie) tasks were all modified to be 

high-level proof tasks. Both of Uma’s and Brittany’s tasks were modified, but stayed in the 

same categories.  Tanya’s non-reasoning-and-proving task became a “make a generalization” and 
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her second assignment “make a generalization” task was modified to “provide an argument.” 

Katherine’s “make a generalization” problem became a low-level “provide an argument”, and 

her non-reasoning-and-proving problem became a high-level “provide an argument” task.       

4.4.2 Five selected tasks for interview three 

All nine participants were asked to bring a reasoning-and-proving task to the third and final 

interview, and five participants (Tanya, Karen, Uma, Katie, Katherine) brought a task.  All five 

selected tasks were high-level.  Four (Tanya, Karen, Uma, Katherine) are high-level “provide an 

argument” and the fifth (Katie) is high-level non-reasoning-and-proving.  The point in asking 

them to bring a task to the third interview was to begin to understand if they could continue to 

select and or modify appropriate reasoning-and-proving tasks.    

None of the third interview tasks were selected from a textbook, and only one task was 

slightly modified.  Two of the tasks were participant designed pattern tasks, and the other three 

tasks were selected from a resource. Tanya and Katherine both designed pattern tasks that 

follow a similar sequence of questions as Karen’s rectangular number pattern task (figure 4.21) 

shared in the previous section.  Students were asked to examine three or four figures before 

explaining a figure that is too big to draw.  Tanya modified a similar linear task for the second 

course assignment, but this was Katherine’s only pattern task. 

After choosing a pattern task for each of her first two assignments, Karen chose a 

different problem for the third interview.  Instead she selected a task called the Blocks Task (as 

shown in figure 4.30) from a previous course as a graduate student and added the question: 

“How do you know your answer is correct?”  The Blocks task allows students to either identify a 

particular or general solution and the follow-up question Karen added requires students to 
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develop an argument for their solution to the first question.  This question promotes the use of a 

manipulative and helps students to make connections between factors and multiples.  In other 

words the question provides students an opportunity to construct an argument through the use of 

tools and supports students in exploring typical mathematics content.       

Blocks Task 

Yolanda was telling her brother Damian about what she did in math class. 

Yolanda said, “Damian, I used blocks in my math class today. When I grouped the blocks in 

groups of 2, I had 1 block left over. When I grouped the blocks in groups of 3, I had 1 block left 

over. When I groped the blocks in groups of 4, I still had 1 block left over.” 

Damian asked, “How many blocks did you have?” 

What was Yolanda’s answer to her bother’s question? 


Karen added: How/why do you know your answer is correct? 
Figure 4.30. Karen’s blocks task 

The final two tasks were not selected from a conventional curriculum either.  Uma 

choose a number theory task in which the solution is a counterexample.  A conjecture is provided 

with a series of examples and students are expected to decide if it is true.  Katie chose the only 

task that was non-reasoning-and-proving (as shown in figure 4.31). Katie’s squares task is high-

level since it can be solved in many different ways where the sides of the squares can be labeled 

with generic numbers or variables.  An accurate solution would require students to apply the 

Pythagorean theorem. 

Squares, Shaded Area 

The figure at the right consists of squares and isosceles triangles.           

What percent of the entire figure is shaded? 
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Figure 4.31. Katie’s squares and shaded area problem 

4.4.3  Ten implemented classroom reasoning-and-proving tasks 

Katie and Karen each selected and implemented five high-level reasoning-and-proving problems 

during their first year as secondary teachers, and all 10 tasks were high-level “provide an 

argument.” The two teachers capitalized on modifying tasks from both their curriculum and the 

CORP course. While most of the tasks were modified, in this analysis only the enacted tasks are 

discussed and not how the task may have appeared in a curricula resource. 

4.4.3.1 Karen’s enacted proof lessons 

Karen enacted the tasks in her high school geometry classroom.  While it may seem as though 

there would be many opportunities to engage students in proof in the geometry curricula, Karen 

still choose tasks outside the content area and modified the tasks she selected from her textbook. 

She implemented two pattern tasks, two tasks from her curricula materials, and one task related 

to her content from an outside resource.  While it is not certain these are the only proof tasks she 

enacted during the 2011-2012 school year, the five she submitted show that she did provide 

opportunities for students write proofs. 

Karen’s first three reasoning-and-proving tasks were related to her geometry curriculum. 

She focused on wanting students to understand that a proof is mathematical argument that can 

take on many different forms in which they ultimately need to convince others of the truth.  This 

is evident throughout each of her first three tasks.  
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The first task asked students to write an argument about how to divide a square into four 

equal parts. Students were expected to explain and convince their classmates why the parts of 

their square that they drew were equal.  This activity provided her students an opportunity to 

construct an argument that included the connection of words and a diagram while applying prior 

knowledge about squares and area. 

Karen’s second modification required that students write a proof of a situation using two 

different forms since she expected all students to follow a two-column form for at least one 

method.  While the solution was basic in that it only required two steps, Karen’s point was for 

students to explain the proof using two forms.   

Karen modified the 3rd task to separate the conjecture from the argument and choose to 

include ‘proof or explanation’ so that students do not feel constrained to producing a two-column 

structure. First students were asked to apply prior knowledge about a transversal and two 

parallel lines to make a conjecture about same side exterior lines before justifying their 

conjecture. Therefore, these three tasks Karen enacted were connected to her curricula, and she 

made similar modifications across the problems to support students in learning that a proof can 

assume many different forms. 

After the third task, Karen implemented two pattern tasks.  As a participant in the 

reasoning-and-proving course Karen modified two pattern tasks and choose to implement one of 

them with her geometry students: Pool Border problem. The other pattern task was the “S” 

pattern problem she solved in a previous graduate course.  She implemented the Pool Border 

problem as she previously modified it.  However, she modified the “S” pattern task to include 

reasoning-and-proving which emulated the structure she and others developed in the course: 1) 

draw next two figures, 2) explain what the 50th figure would look like, and 3) generalize and 
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prove for any size figure. So it is evident that not only was Karen comfortable and successful 

with modifying pattern tasks during the course, she was able to modify similar tasks as a 

classroom teacher.   

4.4.3.2 Katie’s enacted proof lessons 

Katie taught a mixed 11th / 12th grade pre-calculus course, which she= labeled as remedial.  She 

modified four of her five tasks to extend toward proof, make connections between 

representations, and or to “plant a seed of doubt.” Three tasks were selected from the CORP 

materials, one modified from her textbook, and the fifth was from her methods course.  Only two 

of Katie’s five tasks related to the content she was teaching.  Even though proof tasks are 

typically not implemented outside high school geometry, Katie was motivated to provide at least 

five opportunities for her students to engage in these practices. 

Katie explained that she implemented a modified version of the “O + O = E” task from 

the course after she finished a chapter in her curricula on unit circle.  She modified the task so 

that students would complete a conjecture and justify the statement or find a counterexample, 

which she also labeled as “plant a seed of doubt.”  She implemented this task just before the 

December holiday break.  After a unit on probability, Katie enacted a pattern task that involved 

finding the perimeter of a hexagon pattern.  She modified it to ask students if they are sure their 

formula will always work.  Prior to a unit on sequences and series, Katie implemented the Sticky 

Gum problem without any modifications.  Therefore, three of Katie’s proof tasks were selected 

or modified to provide her pre-calculus students an opportunity to provide arguments, but the 

problems were disconnected from her course curriculum.       
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During the unit on sequences and series, Katie included two of the exploring and 

explaining visual proof tasks as a single activity that she solved as a student in the CORP course. 

She modified the geometric series that were originally accompanied with a diagram to connect 

with the terminology used in her textbook.  Also, while engaged in a unit on the binomial 

theorem, she identified a triangular number pattern that she modified and implemented.  Her 

modification promoted a connection between the number of dots in each triangle and the figure 

number.  Therefore, Katie was able to include proof tasks that connected to her curriculum when 

the content related to tasks she already solved or recognized a pattern task in her textbook, which 

she knew how to modify.   

4.4.4 Summary of selecting and modifying reasoning-and-proving tasks 

Two of the required assignments for CORP course, was for the participants to select a task from 

their curricula and one from any other resource. After engaging in several activities the 

participants identified general modification principles in which they used.  When asked to look 

through curriculum resources to select a task with potential, several participants focused on 

pattern tasks. The inductive nature of the problems align well with the reasoning-and-proving 

framework since students can look for patterns, make a generalization, and explain why the 

formula works for all cases.  The participants began to recognize the inductive structure to 

modify tasks to include a set of examples, or used a single example in which students were 

expected to extrapolate generality.  For instance, Nathaniel added the requirement for 

participants to first find the area of four triangles before explaining why the formula (A=1/2(bh) 

is always true.  Additionally, Katherine modified her parabola problem for students to explore 

one quadratic function before discussing the relationship between x-intercepts and the x value of 
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the vertex. It is unknown if those that provided modified tasks that only included one example 

expected students to generate more to justify an observed relationship or if they thought students 

could recognize generality from a single case, typical of deductive proof tasks in Euclidean 

geometry courses. 

An interesting finding was that none of the required 18 course tasks the participants 

selected were from a geometry textbook.  However, Karen taught geometry her first year and did 

not share any proof tasks that promoted students understanding of geometric concepts through 

inductive reasoning. For example, one task presented a pair of parallel lines with a transversal. 

Students were not asked to explore several cases in which the transversal cut the lines at various 

angle measurement, nor was the task altered to ask students to investigate what happens if the 

parallel lines were close together or further apart.  Instead they were given a single example and 

were expected to prove the situation using deductive reasoning.  In other words, Karen modified 

geometry tasks so that students would produce multiple forms instead of modifying them to 

resemble pattern tasks so that students could make sense of the definitions through inductive 

reasoning. 

Overall the participants proved capable with identifying tasks to modify that include an 

inductive pattern. Also many were able to select proof tasks from alternative resources that were 

accessible and included students to make a conjecture and write a proof, which were mostly in 

the number theory content.  Two teachers selected five high-level “provide an argument” tasks 

each and enacted them with their students, and the content of the tasks align with the course 

curricula five out of ten times. 
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5.0 CHAPTER 5: DISCUSSION 


In this chapter, the findings reported in chapter 4 are discussed more broadly to explain the 

implications for teacher learning, mathematics education research, and the design of professional 

development curricular materials.  The first section integrates relevant research while 

summarizing the results of this study with respect to the prospective teachers’ learning about 

proof. Next, comparisons are made between what the participants said and how they actually 

completed the course and interview tasks.  Additionally, the participants’ ability to construct 

proofs will be contrasted against their skill with validating arguments.  Finally, the chapter 

provides a conclusion and directions for future research. 

5.1 IMPORTANCE OF STUDY: EXPLAINING THE RESULTS 

This design research study provided the participants opportunities to learn about proof.  The 

course expanded participants’ conceptions of proof and identified the challenges prospective 

teachers face when they engaged in proof activities, including selecting and/or modifying 

reasoning-and-proving tasks. Current research provides information on prospective and in-

service teachers limited views of proof (e.g. Knuth, 2002a, 2002b, Solomon, 2006, Smith, 2006), 

their inability to distinguish between proof and non-proof arguments (Knuth, 2002a, Morris, 
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2002; Selden & Selden, 2003), their lack of skill in constructing a proof (e.g. Moore, 1994; 

Morris, 2002; Recio & Godino, 2001; Weber, 2001), and their pedagogical challenges with 

supporting students in producing a proof (Bieda, 2010; Edwards & Ward, 2004; Martin et al. 

2005; Smith, 2006).  The work to date has been useful with identifying limitations in teachers’ 

knowledge and practice, but little is known regarding how to address these limitations.  This 

research study aimed to gain insights into what prospective teachers understand, believe, and 

struggle to learn as they engage in a course designed to improve their knowledge and ability to 

enact reasoning-and-proving tasks with students. The results suggest participants did expand 

their conception of proof and important insights were gained as they were asked to construct 

arguments, analyze student solutions, and select and/or modify reasoning-and-proving tasks. 

The next four sections will discuss the results of each research question in connection with the 

existing research on proof in secondary mathematics education.  

5.1.1 Expanded conception of proof 

As a group, the participants changed their conceptions of proof through the engagement in 

various course activities. While the four categories pertaining to the conception of proof (criteria, 

purpose, equity, and opportunity) were analyzed individually, there seems to be obvious 

connections across them. In other words, as a participant expanded their understanding and 

beliefs in one area, say purpose of proof, then it seemed to affect another conception area, such 

as the ability to provide more opportunities for proof.  These connections will be discussed 

further in this section. 

At the beginning of the course, most participants mentioned that a proof needed to 

include logical steps to show why a statement is always true. These results are similar to what 
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Knuth (2002b) found when he asked teachers what constitutes a proof and Smith’s (2006) 

findings about undergraduate students understanding of what makes a proof valid.  In other 

words, the form of the argument includes definitions and statements following from the 

conjecture to the conclusion. During follow-up interviews, the participants identified course 

activities that attributed to their expanded view of proof. Many participants specifically 

mentioned how the analysis of students work (“O + O = E”: task 3, Appendix 3.2) broadened 

their view of the representation of a proof.  So while a proof could include a series of statements 

and definitions that lead to the conclusion, they also began to accept that proofs could include 

diagrams and everyday language as well.  In addition, they learned the importance of developing 

a list of commonly accepted definitions and mathematical statements; allowing the class 

community to keep track of what claims require further justification and which ones do not need 

explanation, since they were already proven and are accepted truths (Hanna, 1990).  Since all of 

the participants expanded upon their original perception of what counts as proof, they were able 

to communicate new reasons for including proof in secondary mathematics.       

The course expanded participants’ conception of the purpose of teaching proof in 

secondary mathematics from three initial reasons to a total of seven at the end of the course. The 

participants identified most of the purposes for proof in secondary education suggested in 

research (Bell, 1976; de Villers, 1990; Hanna, 2000), which were also identified by the teachers 

in Knuth’s (2002b) study. Additionally, the participants explained that they believe students 

should engage in proofs to develop their own mathematical authority (Harel & Sowder, 1998; 

Smith, 2006). Finally, the participants identified specific course activities (i.e. Case of Nancy 

Edwards, reading articles, etc.) as contributing to their new realization that students need to 

engage in proof tasks so they can learn to do them and understand what constitutes a proof.  It is 
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difficult to assign causality, but it is reasonable to believe that since the participants gained a 

more defined criteria of proof, they began to think about additional purposes to include it.  For 

instance, since the participants accepted the fact that a proof is not an objective product, they also 

recognized that engaging students in construction could develop communication skills and build 

students mathematical authority.  In other words, a change in the criteria of what a proof could 

look like may have supported the participants’ thinking about the kinds of tasks students could 

engage in solving and how such an activity has the potential for multiple purposes during 

instruction. 

Knuth (2002b) found that the teachers in his study possessed varying views of proof 

(formal versus informal), and those with a formal view did not believe proof should be included 

in high school mathematics except for maybe honors students.  However, the teachers with an 

informal view of proof recognized its usefulness and applicability across all courses for all 

students. This was also the case in this current study.  A broader understanding of proof 

supported the participants in recognizing how reasoning-and-proving tasks can be implemented 

more often in all secondary courses and with all students.  The difference between Knuth’s study 

and the current study is that the participants in the study reported herein learned that informal 

empirical arguments are not sufficient and they believed it is possible to hold students 

accountable for developing valid arguments.  Therefore, the participants not only expanded their 

understanding of what counts as proof, they came to believe that all students can construct proofs 

for a variety of mathematical purposes with appropriate support. 

A view that the course was not able to change for the same teacher is the belief that the 

purpose of secondary mathematics is to cover the school or district adopted textbook chapters 

and with limited number reasoning-and-proving tasks in the curricula (Thompson, Senk, 
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Johnson, 2012), there is not enough time to fit it in.  Given the girth of topics most secondary 

books include, the foreseen time commitment to supporting students with learning to construct 

arguments, and the fact that state tests did not assess student knowledge of proof, a few 

participants expressed reluctance to incorporate proof tasks into their future courses.  

5.1.2 Constructing proofs 

There existed two major reasons why participants were unsuccessful with producing a greater 

number of proofs: 1) a limited understanding about the meaning of variables; and 2) an inability 

to develop a clear general argument or one without assumptions.  Some participants thought that 

a variable could hold multiple meanings in the same problem. This issue was most evident in the 

tasks that were not situated in an everyday context (“O + O = E,” N2 + N is always even, 

Explaining Number Patterns).  For example, one participant wrote n is even and followed it with 

writing 2n.  As a reader, this could be interpreted to mean 2n represents multiples of four, even 

though the problem states that n is any counting number.  This type of response suggests the 

participant did not realize that she defined the same variable in two different ways in the same 

problem, which is mathematically incorrect.  In the same task (N2 + N), two other participants 

defined an odd and even case for n, which is an acceptable way to use the same variable in the 

same problem.  However, their definition of odd (n = 2k +1) where k is a natural number does 

not allow for n to be any counting number. The second example could be an oversight and might 

be corrected by simply highlighting the error, but it could be a larger issue about understanding 

variables.  The third issue is that participants introduced variables without defining them.  In all, 

seven of the nine participants demonstrated at least two of the three defining variable issues.  
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Every participant initially solved each of the three non-contextual tasks (“O + O = E,” N2 

+ N is always even, Explain Number Patterns) using algebraic symbols.  However, current 

research has not addressed how prospective or practicing teachers use variables when 

constructing proofs. Findings involving secondary students, suggest that most of them do not 

use symbols when asked to write proofs (e.g. Bell, 1976; Porteous, 1990; Healy & Hoyles, 

2000). Therefore, there is a gap in research with how students learn to incorporate variables into 

proof arguments, since high school students avoid them and it is assumed that undergraduate 

students know how or should know how to use them (e.g. Recio & Godino, 2001). This research 

suggests that many prospective teachers prefer to use algebraic symbols, but demonstrate 

multiple limitations in using them appropriately to prove statements. Given the known research 

from secondary and university students, they may also need more support learning to 

appropriately use variables when writing proofs. 

The second important reason for the low number of proofs involves the development of 

an argument within a proof.  In general, the participants did not struggle to make a 

generalization, but stating a general argument to support their formula (NxN window: task 4, 

Sticky Gum: task 6) or solution (Squares: task 2) was a challenge for most them.  There were 

two popular argument types (A2.3 and A3.1), which means that the participants either did not 

produce a general argument at all (A2.3) or they developed an argument that included 

assumptions (A3.1).  The non-argument solutions were typically generalizations with 

explanations stating how each part of the formula related to the problem situation, and provided 

no justification for why the formula works for any situation defined in the problem.  The 

attempts at an argument go beyond explaining the generalization, but the solution lacked a 

complete argument.  Anticipating these shortcomings as the participants develop their solutions 

262 



  

 

 

 

 

 

 

or in whole class discussion could support future prospective or in-service teachers with 

developing complete arguments.    

The negotiation between generalization and proof was directly addressed in the course 

with the sequence of three reasoning-and-proving tasks (G.J. Stylianides & A.J. Stylianides, 

2009) in which participants engaged during the first class, and these activities appeared to 

positively influence the participants understanding that it is insufficient and invalid to base a 

generalization on a set of examples.  For instance, several participants referenced the set of 

activities and Karen’s thinking provides a good representation of what was said: 

I really like doing this through problems of squares, problems like the 60 by 60, and then 
the dots on the circle and then the – I mean the counter example is pretty crazy, but I kind 
of like doing that because I have always been used to finding a pattern, like finding likes 
– make a conjecture all that, and then we did that circle thing and we saw that it doesn’t 
always hold.  I think that’s been pretty interesting to just kind of remember that just 
because it works for a few cases, few situations, it doesn’t mean that it’s going to hold 
forever. 

These three tasks intended to promote a cognitive conflict and based on what Karen said 

it seems as though she now feels as though she needs to make a change.  However, the conflict 

seems to include two levels: 1) the participants come to recognize that a method they previously 

deemed valid is now insecure; and 2) they have to learn a new acceptable method.  Lannin 

(2005) and others (e.g. Ellis, 2007; Knuth & Sutherland, 2004) have studied the challenges 

middle school students encounter when asked to provide a valid justification.  For example, 

Lannin explained, “When justifying an algebraic model, an argument is viewed as acceptable 

when it connects the generalization to a general relation that exists in the problem context” (p. 

235). This study shows that some prospective secondary mathematics teachers may also need 

support learning how to connect a generalization to general features of an algebraic model.     
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The insights into the challenges teachers face in solving proof-related tasks provided by 

this study can inform the work of teacher educators.  Specifically, the reasoning-and-proving 

codes developed for this research could be used to analyze solutions teachers construct 

constructed to provide more direct feedback to support them in understanding how to improve 

their arguments.  

The activities used in this study were not useful in detecting growth with critiquing or 

constructing arguments.  The codes were useful in identifying the participants’ shortcomings 

across the various activities. However, after closer inspection, it seems that some of the 

participants did improve their ability to construct arguments, although this is not evident from 

examining the codes.  For example, Karen became cognizant of the fact that she could rely on 

her own knowledge of the concepts in the problems instead of trying to follow a particular proof 

format such mathematical induction.  While solving the first task, Karen wrote the following 

solution: 

For any counting number n, n2 + n is always even. 

32 + 3 = 9 + 3 = 12 

42 + 4 = 16 + 4 = 20 


n = 1 12 + 1 = 2 
Assume n2 + n even 
(n + 1)2 + n + 1 will always be even 
n2 + 2n + 1 + n + 1 = 
= n2 + n + 2n + 2 will always be even

 even even even 

This was the only proof Karen wrote. However, during the interview she explained that 

she did not understand why this method worked it was just a process she learned in college to 

produce a proof. When asked to solve the second task (Squares), she also attempted 
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mathematical induction.  However, when asked to solve the “O + O = E” task she wrote the 

following argument: 

Let n be an even number, so n+1 is an odd number.  Suppose you have 2 odd numbers, 
n+1 and n+3. When you add them together, you obtain (n + 1) + (n + 3) = 2n + 4 
Since 2n is divisible by 2, it is even; 4 is also an even number (divisible by 2), so if you 
add 4 to any even number, the sum is still even (still divisible by 2). 
Therefore, the sum of any 2 odd numbers is always even 

While Karen’s solution the “O =O = E” task (third problem) is not a proof, it shows that she 

moved away from a formal method that she did not understand, and applied what she knew about 

odd and even numbers to make an argument.  So even though the codes show regression from 

A4 to A2, Karen actually made progress in learning that a proof does not need to follow a 

particular method that she does not even understand. 

A second important issue relates to the environments in which participants constructed 

arguments during this study.  The participants were asked to complete the interview tasks 

individually in 10 to 15 minutes and given about the same amount of time for tasks completed in 

class. This raises a question about how much time these participants would take to solve a task 

they planned to implement in their classrooms? In others words, should a participant be labeled 

as one with a limited ability to construct proofs because she is unable to complete it in 15 

minutes?  The final question is, how much does a teacher need to be able to do on her own in 

order to successfully implement a reasoning-and-proving task with her students?  If a teacher 

solved a problem in several ways with a knowledgeable colleague, would this be sufficient to 

enact the task with students?  It might be interesting in future studies of teacher learning to have 

participants solve some problems outside the classroom and interview environment to understand 

if added time would improve the number of proofs written.  
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5.1.3 Critiquing arguments 

Overall, the participants were fairly successful in identifying whether or not a solution was a 

proof and in providing accurate reasons for their choices.  However, two important insights 

emerged: 1) not all ‘types’ of empirical arguments are convincing; and 2) algebraic arguments 

that were not proofs were still convincing.    

Research suggests that students are convinced by empirical arguments (e.g. Chazan, 

1993; Healy & Hoyles, 2000; Porteous, 1990), and some teachers also consider example-based 

arguments as proof (Healy & Hoyles, 2000; Knuth, 2002a).  However, the ‘types’ of empirical 

arguments that were convincing to the participants varied.  Chazan studied high school students 

exploring geometric conjectures using a software tool.  The empirical arguments in the Healy & 

Hoyles study were specific sets of numerical examples with no explanation.  Knuth had teachers 

critique two different empirical arguments in which both displayed a single example with a 

detailed explanation of the particular case.  While all of these studies did ask participants to 

analyze empirical arguments, these examples represent different ‘types’ of empirical arguments. 

This current study promoted the inclusion of a generic argument as proof, so distinguishing 

between empirical arguments where the explanation may seem to be general (Knuth, 2002b) and 

a generic argument were challenging for some participants.  However, no participant identified a 

set of examples (Healy & Hoyles, 2000) or a generalization without an argument as proof. 

Therefore, some ‘types’ of empirical arguments are more challenging than others. 

Of the 32 samples of student work analyzed by participants, there was one solution that 

was not a proof but included correctly manipulated algebraic symbols.  However, all but two 

participants questioned the validity of the argument, and only one participant identified it as non­
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proof. The more surprising result is that when asked why it is a proof, the participants seemed to 

employ a different criterion to evaluate the solution.  For example, participants indicated that 

‘they used algebra’ or ‘algebra is what you want’ although it seemed as though they only 

checked to see that the symbols were manipulated correctly.  In other words, they did not seem 

to try to make sense of the symbols in connection with the problem context.  On the other hand, 

if the argument used everyday language, most participants would read through it several times 

until they understood what was being said before making a decision.  Some teachers claimed that 

the best arguments were those that were valid and easiest to understand and did not prefer 

symbols to everyday language for student solutions (Healy & Hoyles, 2000).  Other teachers 

when asked to review an algebraic solution that was not a proof may have “focused on the 

correctness of the manipulations performed in the argument as opposed to the nature of the 

argument itself” (Knuth, 2002a, p. 393).  So in one instance teachers claimed to favor arguments 

that made sense to them and in another study teachers make sense of the correctness of the 

manipulated symbols without attending to how the argument relates to the conjecture.  This may 

be an interpretation issue where “make sense” could just mean no mathematical errors as 

opposed to trying to understand what the variables mean and to what extent the argument proves 

the conjecture. It is possible then that most of the participants in this study made sense of the 

algebra instead of checking to see that the symbolic manipulation provided a valid argument to 

prove the conjecture. 

Given the nature of the instruments used it is not possible to know if the course improved 

participants’ ability to validate solutions.  The explanations the participants provided were useful 

to gain insights into why they identified an argument as a proof or not.  However, the student 

solutions used in the packets were chosen for additional reasons such as to have the participants 
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develop questions to support a particular student solution to advance closer to proof.  In a 

subsequent implementation of the same materials, the student solutions in the interviews were 

changed to include arguments that the participants in this study produced and included all four 

argument types (i.e. generic, empirical, rationale, demonstration) to learn if growth can be 

detected with the participants ability to critique solutions.   

5.1.4 Selecting and or modifying reasoning-and-proving tasks 

A goal of the course was to prepare prospective secondary mathematics teachers to integrate 

reasoning-and-proving tasks throughout their curricula so that their future students were 

provided ongoing opportunities to reason and justify their mathematical knowledge, which are 

also included expectations in the current standards movement (NCTM, 2000, 2009; CCSSM, 

2010). To prepare teachers for this goal, the course design and implementation included a wide 

variety of activities, in which the most practical for teaching, based on participants comments 

during the final interview, was the opportunity to select and modify reasoning-and-proving tasks. 

The rationale for including this activity in the course was that if the participants could select and 

or modify reasoning-and-proving tasks for instruction throughout their curricula, then students 

could engage in an integrated curriculum in which proof played a central role and teachers would 

have a tool for working with any curriculum they encountered. 

The overwhelming majority of the selected and modified tasks were classified as having 

high-level cognitive demand (Stein et al., 2010).  The participants in the course that was the 

focus of this study were in previous graduate classes in which they learned the difference 

between high and low-level tasks. This course seemed to support teachers in modifying high-

level “make a generalization” into a high-level “provide an argument” task.  The list of 
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modification principles, which was developed as a whole group during the course was useful in 

modifying the tasks.  An interesting insight is that one modification principle (make 

observations) was applied at a surface level and another modification (‘how do you know’) was 

applied with meaning and purpose. 

When analyzing tasks it could be argued that all modifications are surface level, and the 

implementation of the task is the only way to learn the depth at which a modification is truly 

understood. Another perspective, and the one that undergirds this research, is that instruction is 

complicated and many factors can alter a teacher’s intention.  So another way to understand the 

extent to which a teacher understands the potential of a question she modified or added to a task 

is how she answers it herself.  The rationale is that a teacher’s solution to a task suggests what 

she considers to be an appropriate answer and it is unlikely that the teacher expects a greater 

level of sophistication than she herself produced. For example, if a task prompts students to 

make as many observations as possible, and the teacher solves the task and lists only one 

observation, then it could be argued that the modification is at a surface level.  In other words, 

any questions added or modified that the teacher does not fully answer could be considered 

surface level modifications. This particular example occurred in several instances.   

The participants were asked to solve their selected and modified tasks in several different 

ways except for the tasks the participants brought to the third interview.  The modification “make 

as many observations as possible” seemed to be added to tasks at a surface level. Participants 

that included this modification did not include exhaustive lists of possible observations.  On the 

other hand, the most popular and seemingly surface level modification was to add ‘how do you 

know’ as the final question of a task.  The teachers in every case answered this question with a 

proof or non-proof argument.  So even though the question may seem to just be added to every 
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task mindlessly, the participants actually expected students to construct an argument.  So this 

leads to the question of why prospective teachers added questions that they did not expect 

students to fully answer?  Two possible rationales are that conventional textbooks are full of 

questions that have potential the solutions to which typically provide little insight.  Another 

possibility, related to the course is that the participants learned to attach meaning to the question 

“how do you know.” The participants came to understand that this question requires an 

argument that will be critiqued against a criterion of proof.  The course never supported the 

participants with associating a common meaning to “make observations,” and they saw the 

question as a way to give students access without considering how students would respond. 

Therefore, with future implementations of the CORP materials more explicit conversations may 

be needed around why one might include a question in a task and what expectations the 

questions has for students while prospective or in-service teachers learn to select and modify 

reasoning-and-proving tasks. 

5.2 INTERESTING INSIGHTS THAT EMERGED ACROSS THE RESEARCH 

QUESTIONS 

The implementation of the reasoning-and-proving course changed participants’ perceptions of 

proof and how they thought about teaching it. However, a changed conception of proof does not 

seem to automatically provide prospective teachers with skills to solve proof tasks, critique 

arguments (Selden & Selden, 2003), or select appropriate reasoning-and-proving tasks.  For 

instance, Selden and Selden suggest that university students “talk a good line” when asked to 

explain the process they follow to check whether or not an argument is a proof, but the 
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researchers claim students’ talk is a “poor indicator of whether they can actually validate proofs 

with reasonable reliability” (p. 27). Another interesting comparison is to highlight the difference 

with how the participants in the current study solved tasks and analyzed student solutions.  A 

strong ability to construct valid arguments seems to positively impact one’s ability to critique 

solutions; however, a limited skill with producing proofs does not necessarily equate to a poor 

aptitude with judging the validity of an argument.  If a teacher possesses a strong ability to 

develop deductive arguments and dismisses solutions based on the use of diagrams or narrative 

language, then it would be possible for a teacher to be good at writing proofs and possess a 

narrow criterion for analyzing them. The next two sections will examine participants’ responses 

and how they completed various activities and compare participants’ ability to construct proofs 

against their skill with critiquing arguments.  

5.2.1 Comparing what they said with what they did 

This section will compare the analyses from multiple sections in Chapter 4, namely the first 

section (conceptions of proof), against the analysis reported in research questions three and four. 

The first part will compare what the participants said about the criteria of proof against how the 

participants analyzed student solutions.  The second section will contrast the purposes for 

including proof in secondary mathematics that participants reported against the selected and/ or 

modified tasks. Finally, the third section focuses on the implemented tasks and weighs them 

against the described equity and opportunity conceptions. 
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5.2.1.1  Conception of criteria versus critiquing students’ solutions 

As a group, the participants mentioned all seven characteristics of the criteria of proof 

throughout the three designated time periods, but some participants identified more 

characteristics more often.  In section three of chapter 4, the results of the participants’ ability to 

distinguish between proof and non-proof arguments were shared.  This section will compare the 

two separate results of what they said versus their skill with critiquing solutions to identify any 

discrepancies. 

The participant (Lucy) who talked the least about the seven criteria of proof 

characteristics, did not have the lowest ability to critique solutions.  The three participants 

(Karen, Tina, Brittany) with the lowest ability (25 or less correctly identified arguments out of 

32) to distinguish between proof and non-proof arguments discussed five or six of the seven 

characteristics.  However, two participants (Katie, Nathaniel) with a high ability (28 or more 

correct out of 32) to evaluate students’ solutions also identified most (6 or 7 out of 7) of the 

characteristics. So what do these comparisons show?  One view could be that talk and ability are 

unrelated or what Selden and Selden (2003) claim that some students can “talk a good line.” 

Other participants might not be good at articulating their understanding, but are able to apply 

their knowledge. Another view is that only Katie and Nathaniel really have a full understanding 

of the criteria of proof for teaching, since they were able to both articulate their understanding 

and apply it. Therefore, this second perspective acknowledges that both are important and both 

need to be developed to support teachers with gaining a full criterion of proof.      
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5.2.1.2  Conception of purpose versus selecting and or modifying tasks 

The reason participants were asked about the purpose of proof was to help them begin to think 

about selecting and modifying reasoning-and-proving tasks to align with their various purposes, 

and for them to see proof as vital component of mathematics.  The participants listed a total of 

seven purposes throughout the course (shown in table 5.1).  Most participants conveyed the goals 

of the required course tasks as a way to help students learn what is proof (5) and to develop 

students’ ability to develop an argument (7).  These two main participant purposes were also 

goals of the implemented course tasks.  While it was the case that the participants were able to 

identify a broad variety purposes for wanting to enact a proof task, some purposes seem more 

relevant in practice depending on students’ experience with reasoning-and-proving.   

Table 5.1. Purposes of proof that the participants identified  

Purposes for proof in secondary mathematics 

1) To organize definitions and statements  

2) To gain a deeper understanding of the truth of 
mathematics statements 

3) To develop logical and rationale thinking skills 

4) To learn what is proof 

5) To communication mathematical truth 

6) To build mathematical authority 

7) To develop an ability to construct a proof 

During the early portion of a school year, perhaps most of the chosen tasks would be 

dedicated to supporting students with learning what constitutes a proof.  Later in a semester, the 
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teacher would transition into selecting tasks that support students in gaining a deeper 

understanding of the truth of statements.  In other words, students may first need to understand 

the reasoning skills (find a pattern, make a conjecture, etc,) before this scaffolding is removed in 

future tasks. This idea surfaces in a task Nathaniel selected in which he wanted students to prove 

the formula for the area of a triangle.  The nature of the task matched purpose two: to gain a 

deeper understanding of the truth of a mathematical statement.  However, he was provided 

feedback that students may not be able to access the task, since they might not know how to go 

about developing an argument.  He modified the task to include scaffolding so that students 

would first be required to examine particular cases (reasoning) before developing an argument. 

The modified version of the task still provided students with an opportunity to gain a deeper 

understanding of the formula for the area of a triangle, but the added scaffolding included 

additional purposes for the task that might be more beneficial for secondary students, especially 

as they gain experience with reasoning.   

5.2.1.3 Conception of equity and opportunity versus implementing reasoning-and-proving 

tasks 

All of the participants said they believed all students could engage in reasoning-and-proving 

opportunities. Six of them believed that teachers should integrate reasoning-and-proving tasks 

across all topics of all courses, and four participants (Karen, Tanya, Brittany, Katie) 

communicated an interest in engaging their future students in writing proofs.  Two (Karen, 

Katie) of the four who said they would implement reasoning-and-proving tasks actually did. 

Attempts to contact Tanya were unsuccessful, but she may have engaged students in solving 
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reasoning-and-proving tasks. Brittany, along with three additional participants (Tina, Lucy, 

Uma), agreed to the follow-up portion of the research but never returned task packets.  A 

possible reason for the low return rate could be that the new teachers were overwhelmed by their 

responsibilities at their new schools and struggled to incorporate opportunities into a curricula 

that may not have included proof tasks.  After getting more familiar with the curricula they teach, 

they may become more comfortable with modifying their curricula to include reasoning-and­

proving tasks. 

Karen said that proof tasks should be implemented in all secondary courses; explaining 

that all students were capable and it should be integrated throughout all course topics. However, 

she did not suggest that she would provide reasoning-and-proving opportunities on a daily basis. 

Karen was the only geometry teacher at her school and engaged all of her students in reasoning­

and-proving tasks. The one discrepancy is that the last two tasks she implemented were pattern 

tasks, which do not seem to fit a geometry curriculum.  Additionally, the geometry tasks she 

implemented were missing the inductive reasoning quality that she included in her pattern tasks. 

For example, students were not asked to find a pattern or make a conjecture.  Since Karen 

enacted the pattern tasks (inductive reasoning) after the geometry tasks (deductive reasoning), it 

seems as though she may not have known how to modify the geometry tasks to include 

opportunities for students to explore cases. 

Katie agreed with Karen’s beliefs about students’ opportunities to reason-and-prove, 

stating that proof tasks can be enacted with all students in all course topics.  Katie engaged her 

low-level pre-calculus students in reasoning-and-proving tasks.  Since she did not teach 

geometry, she had a more difficult time identifying tasks that matched the curriculum.  She 

explained that most (3 of 5) of her tasks were implemented between units or before holidays. 
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Therefore, the challenge for both participants seemed to be finding opportunities to include 

reasoning-and-proving tasks throughout a secondary curriculum, including geometry.  This could 

mean that the participants believed they were more prepared to include reasoning-and-proving 

tasks into their curricula than they were or there was a mismatch between what they said and did. 

5.2.2 Comparing ability to construct proofs versus critiquing arguments 

Selden and Selden asked the question directly, “How does the ability to validate proofs relate to 

the ability to construct them” (2003, p. 29)?   To date, this question has yet to be answered.  This 

current study begins to provide evidence of prospective secondary teachers’ abilities and how 

these two activities are related.  The main finding shows that limited skill to validate arguments 

tends to translate into low ability to construct proofs.  The second one is that the converse is not 

necessarily true; a limited ability to construct proofs does not mean a poor ability to critique 

arguments.  However, the linchpin seems to be the individual’s conception of an accurate 

criterion of proof. 

Three participants (Karen, Tina, Brittany) who struggled to construct valid arguments 

also demonstrated the lowest ability to validate arguments.  However, another participant (Katie) 

who had the greatest ability to validate student solutions did not produce a high number of 

proofs. The two participants (Nathaniel, Tanya) who wrote the greatest number of proofs also 

were among the best at critiquing solutions.  The difference seems to rest on a participant’s 

conception of proof. Brittany believed that some of her non-proof arguments that she 

constructed actually counted as proof, which carried over into misidentifying similar student 

arguments as proof.  On the other hand, Katie was well aware that the non-proof arguments she 

produced were not valid.  Other participants who thought the solutions they constructed included 
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assumptions were less critical of assumptions as they read student solutions.  Finally, two 

interesting findings within this comparison are three participants (Karen, Brittany, Uma) who 

struggled the most with counterexamples (Calling Plans: task 8) did not talk about 

counterexamples as part of their criteria of proof.  Additionally, the two participants (Uma, 

Tanya) who failed to include a conclusion on three or more arguments when they solved tasks 

did not mention the need for proofs to have a conclusion.  Therefore, not talking about a 

particular characteristic could mean that the individual is not aware of its importance.  Thus, both 

the feedback participants are provided on the arguments they produce and conversations around 

validating student solutions contribute to developing a complete criterion of proof.  A full 

understanding of what counts as proof, which supports teachers with knowing what is required, 

along with additional opportunities to write them, could lead to the construction of more proofs.         

5.3 CONCLUSION AND FUTURE RESEARCH IDEAS 

A decade ago Knuth (2002b) proposed a challenge: 

Thus, perhaps the greatest challenge facing secondary school mathematics teachers is 
changing both their conception about the appropriateness of proof for all students and 
their enactment of corresponding proving practices in their classroom instruction (p. 83). 

He went on to explain that this is the responsibility of mathematics teacher educators.  The 

current research study was the first to take on both parts of his challenge and was successful at 

changing prospective teachers’ conception of the appropriateness of proof for all students.  It is 

also known that two teachers began to enact tasks related to proof with their students.  One 
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shortcoming, which requires additional work, was that the participants did not seem to be fully 

prepared to integrate reasoning-and-proving tasks seamlessly throughout their curriculum.   

The participants explained that the process of selecting and modifying task activities they 

engaged in during the course was very practical and useful.  Most of the participants were 

successful with selecting high-level “provide and argument” tasks.  However, the missing piece 

seems to be integration.  The participants who were not enthusiastic about enacting proof tasks 

all mentioned time issues; specifically there is already too much other content to cover.  In others 

words, they view proof as an extra topic of study, not essential to learning secondary 

mathematics.  The participants who enacted tasks in their classrooms treated it as a side topic in 

five out of ten implementations.  Therefore, this leads to the question of how might mathematics 

teacher educators prepare teachers to learn how to integrate proof throughout the secondary 

curricula? What activities might be most useful? 

If the integration of reasoning-and-proof tasks throughout secondary curricula is to occur, 

then mathematics teacher educators need to first learn what this entails.  For instance, is it 

possible to select any unit out of traditional textbook and identify or modify a task in the chapter 

to include reasoning-and-proving?  If so, then perhaps this should be the focus of task 

modification. If it is not possible for every unit, then we may need to decide which units are the 

most appropriate and focus prospective and practicing teacher on that particular content. 

Aligning tasks with specific units could support teachers with recognizing how it is related to the 

content they teach.  For example, Katie remembered the sequence of three tasks she solved 

during the course and engaged her own students in a slightly modified version of the tasks when 

the content (geometric series) surfaced in her curriculum.  Ten years later, this course almost met 
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Knuth’s (2002b) challenge. More work is needed, however, to learn the extent to which 

reasoning-and-proving tasks can be integrated throughout secondary curricula.   

In conclusion, recommendations are provided as ways to improve the CORP curriculum 

materials.  In a subsequent implementation of the course, revisions were made to the activities in 

the interviews. The NxN window task was moved from the second interview (task 4) to the third 

interview (task 8). The purpose of this was to sequence this problem after participants had 

solved the Sticky Gum task since both tasks required the solver to make a generalization and 

explain why the formula is always true. Hence it would be possible to see if work on this ideas in 

class improved performance on the interview task. The Calling Plans task was removed since the 

course did not focus on counterexamples, but the results do suggest that prospective teachers 

need opportunities to learn about counterexamples.  The first interview task (N2 + N is even) was 

moved to the second interview so that it follows the “O + O = E” task.  A Trapezoid Pattern task 

was used for the first interview.  The rationale for using this problem was that it provided a pre-

assessment to the Squares problem.  The point was to learn if participants would base a 

generalization on a set of cases or believe that a generalization is proof.   

The selected student solutions in the three interviews were altered to better reflect the 

types of challenges that were encountered in this study.  For the two tasks that were retained (N2 

+ N is even and NxN window), solutions developed by the participants in this study that aligned 

with the three argument types (generic, empirical, and rationale) were used.  New solutions were 

designed for the Trapezoid Pattern task that also aligned with the argument type.  The intent of 

these changes was to provide participants with more challenging solutions to analyze and to be 

able to look across to the arguments types across the interviews to see if any challenges persist or 

if improvements are made.   

279 



  

 

 

 

  

  

 

 

 

  

Changing some of the student solutions in the course materials may better reflect the 

three argument types. Many of the student solutions in the Sticky gum set are similar in that they 

make tables to find a generalization. Since the Sticky Gum problem appears later in the course, it 

may be useful to include more generic and rationale argument type solutions especially since all 

of the participants correctly identified more than half (5 of 8) of the current solutions.   

Finally, even though most of the participants (8 of 9) were able to select and or modify a 

task to be high-level “provide and argument,” there seems to be a challenge with how to 

integrate reasoning-and-proving tasks across all secondary concepts. It was previously 

mentioned that this is an important issue to further explore, but a first step in this process might 

be to create or modify a reasoning-and-proving task for each unit in a secondary curriculum. 

The next step would be to help teachers apply similar principles to their curricula to create unit 

reasoning-and-proving tasks. 
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APPENDIX A 

Copies of Each of the Interview Protocols 

First Interview 
(Interviewer Copy) 

Part 1: 
Read the following statement so that all teachers are provided the same rationale regarding why 
they are being interviewed. 
Thank you for agreeing to participate in this interview.  As you know, we are interested in better 
understanding your views on reasoning-and-proving and how the course is shaping or reshaping 
those views. Today's interview has three parts: 
Part 1: Respond to a few general questions about proof 
Part 2: Create a proof for a mathematical statement 
Part 3: Analyze work produced by students when they were asked to create a proof 
What I am most interested in is HOW YOU ARE thinking. I will be recording this but we can turn 
it off anytime. 

1.) 	 What experiences have you had with proofs – as a student in high school and college and as 
a mathematics teacher? 

2.) 	 What does it mean to prove a statement?  

3.) 	 What should be included in a proof? 

4.) 	 What should or could a proof look like? 

5.) 	 What role do you think proof should play in the secondary mathematics classroom? 

6.) 	 Which courses in the secondary curriculum should or could include work on proofs? 

Part 2: 

1.) Prove that for every counting number n (1, 2, 3, 4 …), the expression n2 + n will always be 
13even.

Provide time for interviewee to prove the task.  Then ask: 

2.) What about your solution makes it a proof? 

13 	Problem	adopted	from	Morris	(2002)	 
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3.) Do you think that there is a counting number n which would cause the expression n2 + n 
NOT to be even?  Why or why not? 
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Part 3: 
Present the five arguments to the teacher and indicate that these arguments represent 

students’ efforts to create a proof for the task that they themselves have just completed. 
Once the participant has had enough time to read through each argument, ask the 

following question. 

Do any or all of the arguments prove that the conclusion is true for each and every 
counting number? Explain why each of the five arguments is or is not a proof. 

Argument 1 - Anne’s Solution: 
Since n2 + n can also be written as n(n + 1), then we see that the product represents 

consecutive numbers.  Consecutive counting numbers implies that one of the numbers is even 
and the other is odd. The product of an odd and even number is even sine one of the numbers is 
divisible by 2. In other words, n or n+1 divides 2 with no remainder.  This implies the product is 
also divisible by 2. Thus, since n(n + 1) is divisible by 2, it is even.  Therefore, n2 + n is even. 

Argument 2 - Ben’s Solution: 
Let n = 1. Then n2 + n = 12 + 1 = 2. 2 is even, so this works. 
Let n = 2. Then n2 + n = 22 + 2 = 6. 6 is even, so this works. 
Let n = 3. Then n2 + n = 32 + 3 = 12. 12 is even, so this works. 
Let n = 101. Then n2 + n = 1012 + 101 = 10,201 + 101 = 10,302. 10,302 is even, so this 

works. 
Let n = 3056. Then n2 + n = 30562 + 3056 = 9,339,136 + 3056. 9,342,192 is even, so this 

works. 
I randomly selected several different types of numbers. Some were high, and some were 

low. Some were even and some were odd.  Some were prime and some were composite.  Since I 
randomly selected and tested a variety of types of counting numbers, and it worked in every case, 
I know that it will work for all counting numbers.  Therefore, n2 + n will always be even. 

Argument 3 - Cara’s Solution:  
Let n = 1. Then n2 + n = 12 + 1 = 2. 2 is even, so it works. Let n = 2. Then n2 + n = 22 + 

2 = 6. 6 is even, so it works. I tried an even and odd number.  Since it worked for both an even 
and an odd number, it will always work. The expression n2 + n where n is any counting number 
will always be even.  

Argument 4 - Dominique’s Solution:  
If n is an odd counting number, then n2 will be odd. An odd plus an odd is even, so since 

n2 and n are odd, n2 + n is even. 
If n is an even counting number, then n2 will be even. An even plus an even number is 

even, so since n2 and n are even, n2 + n is even. 
Since all counting numbers are either even or odd, I’ve taken care of all numbers. 

Therefore, I’ve proved that for every counting number n, the expression n2 + n is always even. 
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Argument 5 - Edward’s Solution:  
So if I start with a square say 5 by 5 and add it to the number 5 

Ok now I will match up the colums so that all but one column has a pair (the blue one). 
The blue column will be matched with the gray 5 coulmn that is added to the square.  So that will 
make the whole thing even because you can divide the entire thing into two equal pieces. 

Let me try another one. 

The columns in the 6 by 6 match up perfectly with none left over and the added part 6 
folds in half. So every number is paired which makes 62 + 6 an even number. 

Now I got it. If the square is an odd by an odd like 5x5, then there will always be a 
column left over since an odd number does not divide by 2 evenly.  The left over column of an 
odd sided square will always match with the added column part. 

If the square is even by even, the every column has a match. The added part for an even 
by even will also be even based on the problem. And an even number divides two with nothing 
left over or folds perfectly. 

So it does not matter the counting number that you start with when you square it and add 
it to itself it will always result in an even number. 

Part 4: 

Did you bring a task with you today? 

Why did you select this particular task? 

284 



  

 

 

 

 

 

 

 
 

 
 

 

 

 

  

 

 

 
 

 

 

 
 

 

Second Interview 

Thank you very much for participating in this second interview. We want to gain insight 
into your evolving understanding of reasoning-and-proving and of how to help secondary 
students develop this capacity.  The interview will be three parts: general questions about 
reasoning-and-proving, create a proof, and evaluate student approaches to the same proof task. 
I will be recording this interview, but I will turn the recorder off at your request any time.    

Part 1 

1) What do you think is required for an argument to count as proof? Why? 

2) How, if at all, has your understanding of reasoning and proving changed over the last four 

classes? 

3) What specific activities do you believe have most helped YOU to better understand 

reasoning-and-proof? 

4) What, if anything, about reasoning-and-proof still is unclear or confusing? 

5) How has the course influenced your thinking about teaching reasoning and proving in your 

classroom? 

Part 2 
The diagram below shows the frame for a window that is 3 feet by 3 feet.  The window is 

made of wood strips that separate the glass panes.  Each glass pane is a square that is 1 foot wide 
and 1 foot tall. Upon counting, you will notice that it takes 24 feet of wood strip to build a frame 
for a window 3 feet by 3 feet. 

1. Determine the total length of wood strip for any size square window.   
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2. Prove that your generalization works for any size square window. 

3ft – by – 3ft Window 

Provide time for the interviewee to create a proof.  Then ask: 
3.	 What about your solution makes it a proof? 
4.	 Can you think of other possible ways to prove that your generalization works (without 

writing it out)? 
Part 3 

Present the four arguments to the teacher and indicate that these arguments represent students’ 
efforts to create a proof for the task that they themselves have just completed. 

Ask the participant: 

1) Which of the arguments would you classify as proofs?  Why?
 
2) Which argument do you think is most convincing?  Why? 

3)  What questions might you ask Student D to help him in forming a generalization? 


Analyze Student Solutions 

Student A 
Window # of wood 

size x pieces 
y 

1 by 1 4 

2 by 2 12 

3 by 3 24 

4 by 4 40 

5 by 5 60 

I notice that the first difference in the table is 8, 12, 16, and 20 and all of the second differences 

are 4. Since the second difference is constant (4), then the equation is quadratic.   

I know that the y-intercept is 0 since a 0 by 0 window will have zero wood pieces.   

Also half of the second difference gives the leading coefficient.  Now I just need to find the 

coefficient for x, which I will call b.
 

Y = 2x2 + bx 
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Choosing a random coordinate will allow me to find b.  So I will choose (2, 12). 
12 = 2(2)2 + b(2) 
12 = 8 + 2b 
4 = 2b 
b = 2 

So for any square size window length x, the number of wood pieces is 
2x2 + 2x 

Student B 

I first counted the four wood pieces 
around the top left windowpane as shown in the 
diagram.  As I move to the right. I noticed that 
only 3 new wood pieces are being added.  I 
continued this pattern along the top and along 
the left side. I wrote 2 in the squares that only 
had two new windowpanes. 

From this diagram I know that a 1 x 1 window 
has 4 wood pieces 

A 2 x 2 has 4 + 3 + 3 + 2 = 12 

A 3 x 3 has 4 + 3 + 3 + 3 + 3 + 3 + 2 + 2 + 2 + 2 
= 24 

A 4 x 4 has 4 + 3 + 3 + 3 +3  + 3 + 3 + 3 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 = 4 + 6(3) + 2 (9) = 
4 + 18 + 18 = 40 

So there will always be a 4 (in the top left corner) and 2 rectangles of 3s (along the top and along 
the left side) and a square of 2s. 

So for any square there would always be: 
1 pane that you counted 4 pieces of wood 
(n-1) panes across the top were you counted 3 pieces of wood 
(n-1) panes down the side were you counted 3 pieces of wood 
(n-1)2 panes were you counted 2 pieces of wood 

So when you add it all together you get 
4 + 3(n-1) + 3(n-1) + 2(n-1) 2 

Student C 
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In a 3 x 3 square there are 3 panes across and in each row there are 4 vertical pieces of wood 
(shown in red). So there is one more vertical piece of wood than there are panes.  So the total 
number of vertical pieces is 12.   

There are 3 panes going down and in each column there are 4 horizontal pieces of wood 
(blue). So there is one more horizontal piece of wood than there are panes. So the total number 
of horizontal pieces is 12. 

So 12 vertical pieces plus 12 horizontal pieces is 24 pieces and each is a foot long so it is 
24 feet total. 

So if you have a n x n square, it would have: n panes across and there would be n+1 
vertical pieces and n panes down and there would be n+1 horizontal pieces.   

So the total number of pieces would be n(n+1) + n(n+1) and this would be the number of 
feet too because each piece is 1 foot long. 

Student D 

The first one has 4 and the second has 12 and the third one has 24 and the fourth one has 
40. So you add +8, then +12, then +16. And each time you add 4 more than you did the time 
before. So the fifth one would be +20 and the sixth one would be +24 and so on. 
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Interview 3 

Thank you very much for participating in this third interview.  We want to continue to gain 
insight into your understanding of reasoning-and-proving and your view regarding how to help 
secondary students develop this capacity.  The interview has four parts.  In part one you will be 
asked to discuss what you learned in the course and how you learned it; in part two you will be 
asked to solve a task and justify your solution; in part three you will be asked to evaluate student 
arguments; and in part 4 you will be asked to talk about the task you brought with you.  I will be 
recording this interview, but I will turn the recorder off at your request any time.    

Part 1 

1a. How, if at all, has your understanding of reasoning-and-proving changed over the past six 
weeks (12 classes)? That is, what is it you understand now that you did not understand 
prior to taking this class? 

1b. What specific activities do you believe have most helped YOU in better understanding 
reasoning-and-proof? (Provide teachers with a copy of the course map and ask them to 
identify specific activities that impacted their learning.  For each activity identified, press 
teachers to explain how the activity caused them to think differently.) 

1c. What, if anything, about reasoning-and-proof still is unclear or confusing? 

2a. How has the course influenced your thinking about teaching reasoning-and-proving in your 
classroom?  

2b. What specific activities do you believe have influenced YOUR thinking about teaching 
students to reason-and-prove? (Provide teachers with a copy of the course map and ask 
them to identify specific activities that impacted their thinking about teaching reasoning-
and-proving. For each activity identified, press teachers to explain how the activity caused 
them to think differently.) 

2c. What, if anything, about teaching reasoning-and-proof still is unclear or confusing? 

Part 2 
1. 	 Provide teachers with a copy of The Calling Plans Task shown below and ask them to 

answer the questions A and B. (Note that the task does not ask teachers to create a proof. 
Part of what we are trying to assess here is whether or not teachers spontaneously produce 
proofs when asked to explain and justify.  They will be asked later if they have produced a 
proof. If a teacher asks if you want them to create a proof, simply remind the teacher that 
the task asks them “to explain and justify” and that they should do what ever they think is 
necessary to satisfy this request.] 

2. 	 Once teachers have completed the task, ask: 

Is your solution a proof?  Why or why not? 
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If not, what would it take to make it a proof? 

The Calling Plans Task 
Long-distance Company A charges a base rate of $5 per month, plus 4 cents per minute 

that you are on the phone. Long-distance Company B charges a base rate of only $2 per month, 
but they charge you 10 cents per minute used. 

Keith uses Company A and Rachel uses Company B.  Last month, Keith and Rachel were 
discussing their phone bills and realized that their bills were for the same amount for the same 
number of minutes.  Keith argued that there must be a mistake in one of the bills because they 
could never be the same.  Rachel said that the phone bills could be the same. 
C. Who do you think is right, Keith or Rachel?  Why? 

D. For any two phone plans, is there always a number of minutes that will yield the same cost 

for both plans?  Provide an explanation to justify your position. 

290 



  

 

 

 

 

  

 

 
 
 

 

 
  

 

 

 

 

 

  

 

 

 

 

 

 

 
 
 

 

 

Part 3 

Provide teachers with copies of student solutions A – E to both questions A and B and ask: 
1. Which students do you think provide adequate justification for their position? 

2. Which argument do you think is most convincing?  Why? 

3. Which, if any, of the arguments actually counts as a proof?  Why? 

4. What questions would you ask Student D to help him make progress on the task? 

Student A 
A. I think that Rachel is right because both Company A and B cost $7 for 50 minutes.  I 

figured this out by making a table. 

# min Cost A Cost B 

0 5.00 2.00 

10 5.40 3.00 

20 5.80 4.00 

30 6.20 5.00 

40 6.60 6.00 

50 7.00 7.00 

60 7.40 8.00 

70 7.80 9.00 

80 8.20 10.00 

90 8.60 11.00 

100 9.00 12.00 

B. If two phone plans don’t have the same cost per minute, they will form lines that intersect.  If 
they have the same cost per minute they will produce parallel lines that never meet so, NO there 
is not ALWAYS a number of minutes that gives the same cost.  

Student B 

A. I think Rachel is right because her bill and Keith’s will be the same when they have 
talked 50 minutes. I made a graph of both plans and saw that they had a point of intersection at 
(50, 7). 
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B. This will not be true for ALL phone plans.  If the monthly fee and the cost per minute for Plan 
1 are greater than both the monthly fee and the cost per minute for Plan 2, then they will never 
have the same cost for the same number of minutes. 

For example, 
Plan 1: cost per minute 4 cents, monthly fee $5 
Plan 2: cost per minute 3 cents, monthly fee $4 

If I graph these two plans they will intersect but not in the first quadrant which is the only 
one that makes sense when you are talking about phone plans because both the number of 
minutes and the cost have to have positive values. 

Student C 
A. Rachel is right. I made two equations and set them equal to each other. 
CA = .04m + 5 and CB = .10m + 10 
.04m + 5 = .10m + 10 
.04m - .04m + 5 = .10m - .04m + 2 
5 = .06m + 2 
5 – 2 = .06m + 2 – 2 
3 = .06m 

3 = .06m 
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.06 .06 

50 = m 

If I put 50 back in either equation I get 7.  

CA= .04 (50) + 5 

CA= 2 + 5 

CA= 7
 
So for 50 minutes they are both $7.
 

B. Two plans will have the same cost for the same number of minutes ONLY when the 
plan with the lower monthly cost has the higher per minute charge like the picture in case 2.  So 
it is not always true. 

Student D 

A. I think that Keith is right. If the cost per minute and the monthly fee are different then 
the plans can’t have a value that is the same.  A mistake must have been made in figuring out the 
bills. 

B. The number of minutes will never give the same cost for both plans unless the plans 
have both the same fee and the same cost per minute. 

Student E 

A. Rachel is right. I used my graphing calculator and put in the two equations  
CA = .04m + 5 
CB = .10m + 10 
And found that the lines intersect at (50, 7) so that means both plans cost $7 for 50 

minutes. 
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B. No. Two plans DO NOT ALWAYS have the same cost for the same minutes.  I made 
two phone plans c1 and c 2 and set them equal. I found that x (number of minutes) has to be 
greater than 0 to make sense, so when you subtract the monthly fee and the slopes (cost per 
minute) you have to have positive values.  This ONLY happens when plan 1 has the lower 
monthly charge and the higher cost per minute. 

Part 4 
Teachers were asked to bring a task that they think would be appropriate for engaging 

students in some aspect of reasoning-and-proof.  Ask them if they brought a task with them 
today. If they did not bring a task then concluded the interview.  If they did bring a task, proceed 
with the following question IF YOU HAVE TIME. If you do not have enough time, simply collect 
the task from the teacher and conclude the interview.  If you have time, ask the following 
questions. 

1. Why did you select this particular task? 

294 



  

 

 

 
 

 
 

 
  

2.	 With whom would you use this task? 

3.	 How is this task similar to or different from the task you brought to Interview 1 (provide 

teacher with copy of the task they selected initially)? 

4.	 In what ways did your experiences in the course influence your selection of the task? 
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APPENDIX B
 

Teacher activity sheets for the five course R&P tasks and student work with activity sheets 

Sequence of three tasks 

The Squares Problem 
1. How many different 3-by-3 squares are there in the 4-by-4 square below? 

How many different 3-by-3 squares are there in a 5-by-5 square? 
How many different 3-by-3 squares are there in a 60-by-60 square?  Are you sure 
that your answer is correct? Why? 

2. 
3. 

The Circle and Spots Problem 

Place different numbers of spots around a circle and join each pair of spots by straight lines. 
Explore a possible relation between the number of spots and the greatest number of non-
overlapping regions into which the circle can be divided by this means. 

When there are 15 spots around the circle, is there an easy way to tell for sure what is the 
greatest number of non-overlapping regions into which the circle can be divided? 

Looking for a Square Number Problem 

Does the expression 1 + 1141n2 (where n is a natural number) ever give a square number? 
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Sum of Two Odds Task 

Prove that when you add any 2 odd numbers, your 
answer is always even. 

Analyzing Student Work 

Imagine that the students in your class produced responses A-J to the “odd + odd = even” task.  

	 Review the ten student responses and use the matrix to record whether or not each 
response qualifies as a proof and provide the rationale that led you to that conclusion.  

	 Discuss your ratings and rationale with members of your group, come to a group 
consensus on which responses are and are not proofs and why, and record you group’s 
decision on the Proof Evaluation Chart. 

	 Develop a list of criteria for what characteristics an argument must have in order to 
qualify as a proof. 
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Student Responses A-J 

Student A 

If a and b are odd integers, then a and b can be written a = 2m + 1 and b = 2n + 1, where 
m and n are other integers. 


If a = 2m + 1 and b = 2n + 1, then a + b = 2m + 2n + 2. 

If a + b = 2m + 2n + 2, then a + b = 2(m + n + 1). 

If a + b = 2(m + n + 1), then a + b is an even integer.
 

Adapted from: Coxford, A. F., Fey, J. T., Hirsch, C. R., Schoen, H. L., Burrill, G., Hart, E. W., et al. (2003). 
Contemporary mathematics in context: A unified approach: Course 3. New York, NY: Glencoe McGraw-Hill. 

Student B 

If I take the numbers 5 and 11 and organize the counters as shown, you can see the pattern. 

You can see that when you put the sets together (add the numbers), the two extra blocks 
will form a pair and the answer is always even. This is because any odd number will have an 
extra block and the two extra blocks for any set of two odd numbers will always form a pair. 

Adapted from: Coxford, A. F., Fey, J. T., Hirsch, C. R., Schoen, H. L., Burrill, G., Hart, E. W., et al. (2003). 
Contemporary mathematics in context: A unified approach: Course 3. New York, NY: Glencoe McGraw-Hill 

Student C 
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If I take the numbers 5 and 11 and organize the counters as shown, you can see the pattern. 

You can see that when you put the sets together (add the numbers), the two extra blocks 
will form a pair and the answer is always even. 



  

  

 

 
  

 

 

 

 
 

 
 

 

 

 

 
 
 

 
  

 

 

 
 

Adapted from: Coxford, A. F., Fey, J. T., Hirsch, C. R., Schoen, H. L., Burrill, G., Hart, E. W., et al. (2003). 
Contemporary mathematics in context: A unified approach: Course 3. New York, NY: Glencoe McGraw-Hill. 

Student D 

An odd number = [an] even number + 1. e.g. 9 = 8 + 1 
So when you add two odd numbers you are adding an even no. + an even no. + 1 + 1. So you get 
an even number. This is because it has already been proved that an even number + an even 
number = an even number.  
Therefore as an odd number = an even number + 1, if you add two of them together, you get an 
even number + 2, which is still an even number. 

Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics 
Education, 31(4), 396-428. 

Student E 

Any odd number can be written as 2x + 1.  So let’s add two odd numbers. 

2x + 1 + 2x + 1 = 4x + 2 
4x + 2 is even since 4 and 2 are both even. 
Or 2(2x + 1) shows that 4x + 2 is even. 

Student F 

3a + 3b = 6(a + b) for a = 3; b = 9 

(3 * 3) + (3 * 9) = 36 
5a + 5b = 10(a + b) 
93a + 57b = 140(a + b) 
An even number of odd numbers make an even answer but an odd number of odd 

numbers makes an odd answer: 
Odd Even: 7a  + 9b = 16(a + b) 
Odd Even Odd: 7a  + 9b  + 11c  = 27(a + b + c) 
Odd Even Odd Even: 7a  + 9b  + 11c + 13d = 40(a + b + c + d) 
Odd Even Odd Even Odd: 93a  + 7b + 13c  + 101d  + 39e = 153(a + b + c + 

d + e) 

Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics 
Education, 31(4), 396-428. 
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Student G 

An odd number has to have an odd digit in the ones place. When you add any two single 
digit odd numbers you would get an even number in the ones place.  So here are all of the 
numbers you get when you add two single digit odd numbers.   

1 3 5 7 9 

2 4 6 8 1 
0 4 6 8 1 

0 
1 

2 6 8 
0 

1 
2 

1 
4 8 1 

0 2 
1 

4 
1 

6 1 
0 

1 
2 4 

1 
6 

1 
8 

The ones place is the only place that matters in determining if a number is odd so it 
doesn’t matter how many other digits it has. If it is odd it will always have a 1, 3, 5, 7, or 
9 in the ones place 

Student H 

My answer 

add 1 (a) add 2 (b) a + b I 
1 
7 

11 
21 

113 
1111 
1003 

3 
9 

13 
23 
97 

1111 
10003 

4 
16 
24 
44 

210 
2222 

11006 
I noticed all the sums will be an even number.  a + b = c 
Test: a = 35, b = 73 
35 + 73 = 108 

108 is also even so it is true. 

Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for Research in Mathematics 
Education, 31(4), 396-428. 
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Student I 
If you add two odd numbers, the two ones left over from the two odd numbers (after circling 
them by twos) will group together to make an even number. 

Adapted from: Coxford, A. F., Fey, J. T., Hirsch, C. R., Schoen, H. L., Burrill, G., Hart, E. W., et al. (2003). 
Contemporary mathematics in context: A unified approach: Course 3. New York, NY: Glencoe McGraw-Hill. 

Student J 
Definition of an even number: An integer p is even if and only if there is an integer k such that p 
= 2k 
Definition of an odd number: An integer q is odd if an only if there is an integer k such that q = 
2k + 1. Let’s assume X and Y are odd where X = 2n + 1 and Y = 2m + 1, and n and m are 
integers. 

Statement Reason 

X is an odd number Given 

X = 2n + 1 Definition of odd number 

Y is an odd number Given 

Y = 2m + 1 Definition of an odd number 

X + Y = 2n + 1 + 2m + 1 Addition Property of Equality 

X + Y = 2n + 2m + 1 + 1 Commutative Property of Addition 

X + Y = 2n + 2m + 2 Substitution 

X + Y = 2 (n + m + 1) Distributive Property 

Closure Property of Addition for n + m + 1 is an integer
 
Integers
 

X + Y is an even number Definition of an even number 
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Activity Sheet 4.2 
Construction Conjectures 

Consider the construction below. 

(Adapted from McDougal Littell (2004), Geometry, p. 343, #29) 

Record your work on the following questions in your notebook or binder. 
A. Use this construction with a variety of starting segments. What type of figure does the 
construction produce? 

B. Using the results, make a mathematical argument that explains why that figure is produced 
each time by the construction. 

C. Create a new construction that also begins with a segment and its midpoint but is different in 
some way.  What generalization can you make about any figure created by this construction? 
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Activity Sheet 5.1 

Solving a Mathematical Task: A Sticky Gum Problem 

A Sticky Gum Problem 
Ms. Hernandez came across a gumball machine one day when she was out with her twins.  Of 
course, the twins each wanted a gumball.  What’s more, they insisted on being given gumballs of 
the same color.  The gumballs were a penny each, and there would be no way to tell which color 
would come out next. Ms. Hernandez decides that she will keep putting in pennies until she gets 
two gumballs that are the same color. She can see that there are only red and white gumballs in 
the machine. 

Why is three cents the most she will have to spend to satisfy her twins? 

1) The next day, Ms. Hernandez passes a gumball machine with red, white, and blue 

gumballs.  How could Ms. Hernandez satisfy her twins with their need for the same color this 

time?  That is, what is the most Ms. Hernandez might have to spend that day? 

2) Here comes Mr. Hodges with his triplets past the gumball machine in question 2.  Of course, 
all three of his children want to have the same color gumball.  What is the most he might have to 
spend? 

3) Generalize this problem as much as you can. Vary the number of colors.  What about different 
size families?  Prove your generalization to show that it always works for any number of 
children and any number of gumball colors.  

Activity Sheet 5.2 

Evaluating Student Responses 

Imagine that the students in your class produced responses A-H to A Sticky Gum Problem. 
	 Review the eight student responses and determine which of the students actually 

produced a proof. (Use the Criteria for Judging the Validity of Proof from Activity 2.2 to 

justify your selections.) 
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	 Discuss your ratings and rationale with members of your group, come to a group 

consensus on which responses are proofs and why, and record you group’s decision on 

the Proof Evaluation Chart. 

	 As a group, select one response that you think is “close” to being a proof and determine 

what is missing and what questions you could ask to help the student make progress. 
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Sticky Gum Student Work Packet 

305
 



  

 

306
 



  

 

307 



  

 

308 



  

 

309 



  

 

310 



  

 

311 



  

 

312 



 

 

 

 

 

 

 

 

 

 

 

  

Activity Sheet 6.1A 

Explaining Number Patterns 

1. Pick any two consecutive whole numbers 

2. Square each number and subtract the smaller sum from the larger 

3. Add the two original numbers together 

4. Make a conjecture about the numbers you found in #2 and #3 (try more examples if you like!) 

5. Prove that the conjecture you made in #4 will always be true.  After you have proven the 
conjecture in one way, see if you can prove it using another strategy or method. 

Adapted from Slavit, D. (2001). Revisiting a difference of squares. Mathematics Teaching in the Middle School, 
6(6), 378-381. 



 

 

 

 

 

APPENDIX C
 

Reasoning-and-Proving Task Collection Packet 

Please collect artifact packets on reasoning-and-proving lessons.   


Each artifact packet includes: 


1) The original task as you found it and if you modify it the modified version as well. (1 copy of 
each) 

2) See Sorting Students Solution Sheet 


3) Any thing that you created in preparing or in enacting the lesson (e.g. lesson plan, solutions, 

lists your class created, power point, etc.) 


4) R&P Task Cover Sheet (complete for each task) (Attached Next Page) 


5) Background sheet (complete once) (Attached after R&P Task Cover Sheet) 




 

 
 

 
 

 

 
 
 
 

 
 

 
 
 

 

 

 
 
   

 
 

Name ________________________________ Task Name ___________________ 

R&P Task Cover Sheet 

Number of Students in Class______  

Date Implemented __________ 

Please use the space provided as a general guide for the length of your answers. If you 
need additional space please use the back of this sheet. 

1. What mathematics unit was the class studying when this task was implemented? 
Where did you find the task (textbook or another resource)? 

 If you made modifications, please explain your rationale. 

Reflection 
Describe any directions, oral or written, you gave to students that are not included on the task 
itself. Please explain any expectations you relayed to your class. (e.g. Did students work in 
groups?, Did you grade their work?) 

Did you implement the task differently than you had planned? If so, what changes did you make 
and why? What, if anything, surprised you during enactment? 

Explain your overall reaction to your implementation with this task. (What do you 
believe the students’ learned or you learned, would you teach this task again, etc. 

Background Sheet 
The responses to these questions are meant to be your current perceptions and not 

questions that you need to investigate. So if you are unsure, then please indicate it. 
1. For the class you are collecting data: 

Number of students ______ 


Title of class & grade level (please indicate if it is honors, remedial, etc.)  
Did you grade any of the proof tasks? If so explain your method (attach a rubric if you 

created one) 
Did the class develop a criterion for judging proof? If so, please attach. 

2. Describe the extent and ways in which colleagues in your department engage their 
students in R&P and/or support your efforts. 



 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

4. Describe the extent and ways in which your school or district supports R&P activities. 
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