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G protein coupled receptors (GPCRs) are the largest receptor family in mammalian 

genomes and are known to regulate wide variety of signals such as ions, hormones and 

neurotransmitters. It has been estimated that GPCRs represent more than 30% of current drug 

targets and have attracted many pharmaceutical industries as well as academic groups for 

potential drug discovery. Cannabinoid (CB) receptors, members of GPCR superfamily, are also 

involved in the activation of multiple intracellular signal transductions and their endogenous 

ligands or cannabinoids have attracted pharmacological research because of their potential 

therapeutic effects. In particular, the cannabinoid subtype-2 (CB2) receptor is known to be 

involved in immune system signal transductions and its ligands have the potential to be 

developed as drugs to treat many immune system disorders without potential psychotic side-

effects. Therefore, this work was focused on discovering novel CB2 ligands by developing novel 

quantitative structure-activity relationship (QSAR) methods and performing virtual and 

experimental screenings. Three novel QSAR methods were developed to predict biological 

activities and binding affinities of ligands. In the first method, a traditional fragment-based 

approach was improved by introducing a fragment similarity concept that enhanced the 

prediction accuracy remarkably. In the second method, pharmacophoric and morphological 

descriptors were incorporated to derive a novel QSAR regression model with good prediction 

accuracy. In the third method, a novel fingerprint-based artificial neural network QSAR model 
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was developed to overcome the similar scaffold requirement of many fragment-based and other 

3D-QSAR methods. These methods provide a foundation for virtual screening and hit ranking of 

chemical ligands from large chemical space. In addition, several novel CB2 selective ligands 

within nM binding affinities were discovered. These ligands were proven to be inverse agonists 

as validated by functional assays and could be useful probes to study CB2 signaling as well as 

potential drug candidates for autoimmune disesases. 
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1.0  INTRODUCTION 

1.1  RECENT ADVANCES IN QSAR METHODS 

1.1.1 Introduction 

Quantitative structure-activity relationship (QSAR) analysis is based on the general principle of 

medicinal chemistry that the biological activity of a ligand or compound is related to its 

molecular structure or properties, and structurally similar molecules may have similar biological 

activities [1]. Such molecular structural information is encoded in molecular descriptors and a 

QSAR model defines mathematical relationships between descriptors and biological activities of 

known ligands to predict unknown ligands’ activities. QSAR methods have been applied in 

several scientific studies including chemistry, biology, toxicology and drug discovery to predict 

and classify biological activities of virtual or newly-synthesized compounds [2-5]. QSAR models 

can also be used in designing new chemical entities (NCEs) and are now regarded as essential 

tools in pharmaceutical industries to identify promising hits and generate high quality leads in 

the early stages of drug discovery [4, 6]. In other words, QSAR studies can reduce the costly 

failures of drug candidates by identifying the most promising hit compounds and reducing the 

number of costly experiments. 
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In general, QSAR modeling (Figure 1-1) involves a systematic process with multiple steps. 

These include dataset preparation, molecular descriptors selection and generation, mathematical 

or statistical models derivation, model training and validation using a training dataset and model 

testing on a testing dataset.  

During the first step, or dataset preparation, it is important to pay attention to the quality of 

data to develop a reliable QSAR model. Data should come from the same bioassay protocols and 

it is preferable to collect and use the data generated from a single lab or source in order to avoid 

data inconsistencies and interlaboratory variability. Moreover, the dataset should have a large 

enough number of compounds to ensure statistical stability of a QSAR model and the bioactivity 

should cover a range of values with a good distribution [4].  

The second step in QSAR modeling is the selection and generation of molecular descriptors 

for ligands in the dataset. There are many descriptors available and only some of them are 

significantly correlated with the activity. Therefore, selection of appropriate descriptors, which 

best capture the structural variation and information is important to derive a robust QSAR model. 

Several methods such as evolutionary algorithms (for example, genetic algorithm) and machine 

learning techniques (for example, forward selection) can be used for descriptor/variable/feature 

selection.  

After molecular descriptors are defined and generated for all ligands in the dataset, the next 

step is to decide a suitable statistical or mathematical model to find the relationship between such 

descriptors and biological activities. For instance, linear approaches such as multiple linear 

regression (MLR) or partial least square (PLS) and non-linear methods such as neural networks 

or support vector machine can be used as correlation or mapping functions.  
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Once a model is chosen, it is then trained on a training dataset which contains a subset of 

randomly selected compounds from a known dataset, leaving the remaining to be used as testing 

compounds. During the model training, validation methods such as leave-one-out cross-

validation (LOOCV) are often performed to ensure the statistical stability of the QSAR model. 

The training process is repeated until a satisfactory training performance is achieved. Finally, a 

testing process is performed in which the trained model is used to predict activity values of those 

compounds in the testing set.  
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Figure 1-1.  A general scheme of a QSAR model development which includes systematic 

training and testing processes. 

 

A wide range of QSAR methodologies have been invented since the concept was first 

introduced by Free, Wilson, Hansch, and Fujita [7, 8] in 1964. Traditional 2D-QSAR methods 
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such as the Free-Wilson and Hansch-Fujita approaches use 2D molecular substituents or 

fragments and their physicochemical properties to perform quantitative predictions. Since then, 

QSAR has experienced a fast development and the first novel 3D-QSAR method called 

comparative molecular field analysis (CoMFA) was introduced by Cramer et al. in 1988. The 

CoMFA method brought a foundation for the development of other 3D-QSAR methods such as 

CoMSIA, SOMFA, CoMMA as well as multidimensional (nD)-QSAR methods such as 4D-

QSAR, 5D-QSAR, etc., to tackle known 3D-QSAR problems such as subjective molecular 

alignment and bioactive conformation problems. In recent years, fragment-based methods have 

attracted some attention because predicting molecular properties and activities based on 

molecular fragments is simple, fast and robust. In this chapter, we present recently available 

fragment-based QSAR methods and multidimensional (nD)-QSAR methods developed over the 

past few decades.  

1.1.2 Fragment-based 2D-QSAR methods 

Over the years, improved methods—that are based on such traditional QSAR methods—have 

been introduced. 2D methods allow modeling of a wide variety of ligands or compounds 

including cases where 3D crystal receptor or target structures are not available [6].  

Hologram-QSAR (HQSAR) 

One earlier example of a fragment-based method is HQSAR (Hologram QSAR) from 

Tripos [9, 10]. Given a method based on 2D molecular fragments, HQSAR does not require 

molecular alignment and therefore allows for automated analyses of large data sets without 

manual intervention. The first step in the HQSAR method is to generate molecular holograms 
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which contain counts of molecular fragments and can be related to 2D fingerprints. As depicted 

in Figure 1-2, the input dataset contains 2D structures of compounds and they are split into all 

possible linear and branched fragments. Then each unique fragment is assigned to a specific 

large positive integer by using a cyclic redundancy check (CRC) algorithm. All fragments 

generated are then hashed into array (hologram) bins in the range from 1 to L (total length of 

hologram). Bin occupancies represent counts of fragments in each bin. In other words, they are 

structural descriptors, which contain topological and compositional molecular information. 

During the second step, such fragment counts or hologram bins are correlated to corresponding 

biological activities (dependent variables) in a form of mathematical equation. Leave-one-out 

cross-validation (LOOCV) is performed to identify an optimal number of explanatory variables 

or components which yields an optimal model. Then by using standard partial least square (PLS) 

analysis, a following mathematical regression equation is derived to correlate hologram bin 

values or components with corresponding biological activities: 

∑
=

+=
L

j
jiji CxconstBA

1
 

 

( 

 

1.1 

 

) 

 

where BAi is the biological activity of the ith compound such as Ki or IC50, xij is the occupancy 

value of the molecular hologram of the ith compound at position or bin j, Cj is the coefficient for 

the bin j derived from the PLS analysis, and L is the length of the hologram.  

One drawback of HQSAR is a phenomenon called a fragment collision problem which 

happens during the hashing process of fragments. Although hashing reduces the length of the 

hologram, it causes bins to have different fragments in the same bin. The hologram length, a 

user-definable parameter, controls the number of bins in the hologram and alteration of hologram 
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length can causes the pattern of bin occupancies to change. The program provides 12 default 

lengths which have been found to give good predictive models on different datasets. Each of 

these default lengths provides a unique set of fragment collisions [10].  

Several HQSAR models for different ligand datasets including cases where 3D crystal 

structures of receptor targets or proteins are unavailable have been developed in recent years [11-

14]. For example, HQSAR was used to study a set of 9-substituted-9-deazaguanine analogs 

which inhibit the human purine nucleoside phosphorylase (PNP) enzyme. HQSAR was used to 

identify structural features with poor and favorable contributions towards molecular interactions 

in the active site [11]. In addition, HQSAR has been used in virtual screening to identify hits [15-

17]. For instance, Salum et al. studied a set of 180 indole derivatives having potent anticancer 

activity. They developed several HQSAR models and compared them to determine optimal 

cutoff values in virtual screening procedures [6]. 
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Figure 1-2. Hologram-QSAR (HQSAR) model development, which includes molecular 

hologram generation and partial least square analysis to derive a final predictive HQSAR 

equation. 

 

Fragment-Based QSAR (FB-QSAR) 

Recently, Du et al. [18] introduced a 2D-QSAR method based on molecular fragments. 

The method uses a mixed Hansch-Fujita [8] linear free energy equation and Free-Wilson [7] 

equation. In particular, molecular fragments are first generated from ligands and the total binding 

free energy o
iG∆  between ligand i and the receptor is considered as the sum of contributions ∆gi,α 

from all fragments: 

∑
=

∆=∆
M

i
o
i gbG

1
,

α
αα  

 

( 

 

1.2 

 

 

) 

 

where ∆gi,α is the free energy contribution of fragment Fi,α and bα is a weight coefficient 

for each fragment. The binding free energy of a fragment, ∆ gi,α, is described by a set of physical 

and chemical properties of the fragment: 

∑
=

=∆
L

l
lili pag

1
,,, αα  
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) 
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where pi,α,l is the l-th property of fragment Fi,α in molecule mi and al is the coefficient of 

l-th property of the fragment.  

In their studies, a total of 48 neuraminidase (NA) inhibitor analogs were used to train and 

test the model. Ten physicochemical properties were calculated for each substituent. Using an 

iterative double least square (IDLS) procedure, two sets of coefficients, one for fragments (bα 

from Equation 1.2) and another for physicochemical properties (al from Equation 1.3), in the 

linear equation were solved alternately and iteratively until the model met the convergence 

criterion. After 176 iterations, the model converged and both sets of coefficients were solved. 

Such converged coefficients were used for the test calculation and the correlation coefficient (r) 

was 0.9525 (or r2 = 0.91). They also tested on Free-Wilson and Hansch-Fujita models, which 

achieved r values of 0.2488 (r2 = 0.06) and 0.9373 (r2 = 0.88), respectively. The quantitative 

results proved the IDLS procedure enhanced the predictive power, and, given a novel method, 

more applications are necessary to fully explore its predictive potential. 

Fragment-Similarity Based QSAR (FS-QSAR)  

More recently, Myint et al. developed a fragment-similarity based QSAR (FS-QSAR) 

method to solve the major limitation of the original Free-Wilson method by introducing the 

fragment-similarity concept in the linear regression equation [19]. Such a similarity concept was 

applied for the first time to improve the traditional Free-Wilson equation instead of using 

physicochemical properties which often produce non-unique solutions. In this approach, the 

fragment similarity calculation was carried out by the similarity. It used the lowest or highest 

eigen values calculated from BCUT-matrices [20, 21], which contained partial charges of 

individual atoms and their atomic connection information in each individual fragments. In 

Section 2.0 , the method is described in details. 
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Top Priority Fragment QSAR  

Casalegno et al. [22] introduced a fragment-based QSAR approach to predict pesticide 

aquatic toxicity to the rainbow trout. The method prioritizes fragments’ contributions to toxicity 

with the assumption that one fragment among others present in a compound is mainly 

responsible for the toxicity. They used 282 carefully selected pesticides which were partitioned 

into 240 training and 42 testing molecules. In the first stage, all 282 molecules were broken into 

small substructures or atomic centered units (ACUs). Then, a numerical criterion based on the 

training set toxicity data was applied to assign one fragment or top-priority fragment (TPF), 

made up of one or more ACUs, to each training molecule. Once the TPFs were extracted, a 

‘priority matrix’ was used to extract all priority relationships. A priority matrix contains 

information among training TPFs and can be used to find out which TPF has a priority to be 

assigned to a testing molecule. In the last stage, testing molecules were submitted to check for 

the presence of TPFs and information from the priority matrix was used to identify the ones(s) 

with highest priority, and final prediction was made based on average fragment toxicity. The 

final r2 for the training set was 0.85 and 0.75 for the test set proving the model’s effectiveness. 

 

Other Fragment-Related QSAR Studies 

In recent years, some new fragment-based QSAR methods have been discovered as well 

as applications to biological interests. Zhokhova et al. [23] introduced a method which uses 

fragmental descriptors with labeled atoms and applied it to their QSAR/QSPR (quantitative 

structure-property relationship) studies. In their approach, the fast stepwise multiple linear 

regression (FSMLR) and three-layer artificial neural network (ANN) methods implemented in 
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the NASAWIN program [24] were used to generate fragmental descriptors with labeled atoms 

and to construct QSAR/QSPR models. Andrade et al. [25] used HQSAR and other 2D-QSAR 

programs to study a series of hydrazides as antituberculosis agents. They used DRAGON 5.4 

[26], BuildQSAR [27], PIROUETTE [28] programs for generation and selection of 2D 

molecular descriptors. Tsygankova et al. [29] also did the QSAR studies of barbituric acid 

derivatives using 2D fragments as descriptors with different regression approaches such as step-

by-step regression to construct correlation equations.  

1.1.3 3D-QSAR 

3D-QSAR methods have been developed to improve the prediction accuracies of 2D methods. 

3D methods are computationally more complex and demanding than 2D approaches. In general, 

there are two families of 3D-QSAR methods: alignment-dependent methods and alignment-

independent methods. Both families need experimentally or computationally derived bioactive 

conformations of ligands as templates for studies. Such 3D conformers are one of the most 

important factors to produce reliable 3D-QSAR models and are also the major drawbacks of 3D 

methods. Examples of both families are discussed below. 

Comparative Molecular Field Analysis (CoMFA) and Comparative Molecular Similarity 

Indices Analysis (CoMSIA) 

One of well-known methods is a three dimensional QSAR method called CoMFA 

developed by Cramer et al. [30]. It is a method to describe 3D structure-activity relationship 

quantitatively by considering 3D structures, and steric and electrostatic fields of ligands which 

are superimposed to generate such molecular fields. In other words, CoMFA is an alignment-
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dependent method in which molecular field interaction energy terms are correlated with 

biological activities/responses using multivariate statistical analyses. Figure 1-3 illustrates a 

general CoMFA modeling process where active molecules are first placed in a 3D grid. Using a 

probe atom, steric and electrostatic energies are measured at each grid point for each molecule. 

Partial least square (PLS) analysis is then performed to correlate such field energy terms to 

activity values and make predictions. Such features and calculations make CoMFA an improved 

and different method from other traditional QSAR approaches. 

Another 3D QSAR method named CoMSIA by Klebe et al. is similar to CoMFA in terms 

of using a probe atom along grid points. However, additional molecular fields have been 

implemented in the CoMSIA approach. In particular, electrostatic, steric, hydrophobic, hydrogen 

bond acceptor (HBA), and hydrogen bond donor (HBD) properties are generated using a 

Gaussian distance function [31]. Using such a Gaussian-type potential function instead of 

Lennard-Jones and Coulombic functions provides accurate information at grid points for 

calculating molecular fields [32]. 

However, the major drawback of both methods is that all molecules have to be aligned 

and such alignment can affect the final CoMFA/CoMSIA model and predictions. A good 

alignment is necessary and quality of such alignment can be subjective, time-consuming [33] and 

CoMFA/CoMSIA models are sometimes non-reproducible [32]. Nevertheless, several 

CoMFA/CoMSIA models have been developed for many drug design and molecular modeling 

studies [5, 34-38]. 
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Figure 1-3. A general CoMFA workflow. 

 

Topomer CoMFA  
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Recently, Cramer et al. introduced a new QSAR method named the Topomer CoMFA 

[39] which is a rapid fragment-based 3D-QSAR method to predict significant R-groups, which 

can optimize the biological activities as well as optimized structural changes for lead scaffold 

hopping. It uses the compound library collection as a source of molecular fragments to identify 

such substituents or R-groups. The Topomer CoMFA method, unlike CoMFA, does not require 

the subjective alignment of 3D ligand conformers and uses automated alignment rules. A 

topomer describes both a conformation and orientation of a molecular fragment and it is 

generated based on 2D structure without any relation to a receptor site or other ligands [33, 39]. 

After such topomers are generated, CoMFA analysis is then carried out where electrostatic and 

steric fields are calculated using a probe atom around the 3D grid. Subsequently, partial least 

square (PLS) with leave-one-out cross-validation is performed to generate a predictive model. 15 

3D-QSAR analyses retrieved from the literature yielded an average q2 of 0.520 compared to 

literature average q2 of 0.636 [39]. Topomer CoMFA has the potential to optimize biological 

activities of ligands via fragments and has been used in lead-optimization and R-groups virtual 

screening studies [33, 39]. 

Self-Organizing Molecular Field Analysis (SOMFA) 

Robinson et al. [40] introduced another alignment-dependent 3D-QSAR method called 

SOMFA, which is based on both molecular shape and electrostatic potentials. Briefly, 3D grids 

are created as in other 3D-QSAR methods and for each grid point, molecular shape and 

electrostatic potential values are calculated. Shape values are binary meaning 1 for being inside 

the van der Waals envelope and 0 outside. The key step is that the electrostatic potential value at 

each grid point is multiplied by the mean centered activity for that molecule as a weighing factor 

which causes the most active and least active molecules to have higher values than other 
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common and less interesting molecules which are closer to the mean activity. The SOMFA grid 

value at a given x,y,z is defined as: 

ActivityCenteredMeanzyxopertySOMFA
SetTraining

i
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Using such a property master grid, an estimate of the activity of the ith molecule as 

defined by a certain property can be derived as: 
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In the final stage, correlations between calculated SOMFA property values 

( ipropertySOMFA , ) and biological activities are derived via multiple linear regression and a final 

predictive model is produced. Robinson et al. tested the model using two datasets : 31 steroid 

compounds and 35 sulfonamides. The corresponding correlation coefficient values (r2) of 0.5776 

(r = 0.76) and 0.5329 (r = 0.73) were achieved, respectively. Compared to other methods such as 

CoMFA [30], MS-WHIM [41] and few others on steroid dataset, SOMFA had the lowest 

standard deviation of errors of prediction (SDEP), which is the root-mean-square error of the 

predictions. In short, SOMFA is similar to CoMFA in terms of using grids and necessity of 

molecular alignment but is not as statistically rigorous as CoMFA [1], as the SOMFA model is 

conceptually simple without heavy statistical elements such as partial least square (PLS). 

Alignment-Free 3D-QSAR Methods 

In the last few decades, other 3D-QSAR methods which do not rely on alignments were 

introduced. Some examples include autocorrelation of molecular surfaces properties (AMSP) 
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[42], comparative molecular moment analysis (CoMMA) [43], WHIM (Weighted Holistic 

Invariant Molecular) method [44, 45], Molecular surface (MS)-WHIM [41], and GRIND [46].  

Autocorrelation of Molecular Surfaces Properties (AMSP) 

Wagener et al. introduced the AMSP method to map the physical properties of ligands to 

a van der Waals surface and individual atoms, respectively. It uses a 3D descriptor based on 

spatial autocorrelation of molecular properties at distinct points on the molecular surface. The 

points are randomly distributed to have a continuous surface and the autocorrelation coefficient 

is obtained by summing the products of property values at various pairs of points at particular 

distances. For a series of distance intervals (dlower, dupper), a vector of autocorrelation coefficients 

is obtained as follows: 

∑ <<=
ij

upperijlowerjiupperlower dddpp
L

ddA )(1),(  
( 1.6 ) 

where pi is the molecular property value at point i, pj is the molecular property value at 

point j and L is the total number of distances in the interval [42]. 

Therefore, the vector contains a compressed expression of the distribution of a property 

on the molecular surface. After autocorrelation vectors were obtained, a multilayer neural 

network was then trained using such vectors to derive a predictive model of biological activity of 

31 steroid compounds. The correlation coefficient value, r, of 0.82 (r2 = 0.6724) was achieved 

with a cross-validated r2 of 0.63. In summary, the advantages of such autocorrelation vectors are 

the facts that they are shown to be invariant to translation and rotation since only spatial 

distances are used and have condensed description of molecular surface. However, original 

information cannot be reconstructed from such condensed vectors and the pharmacophore nature 

of a ligand may not be clear or interpretable [42]. 
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Comparative Molecular Moment Analysis (CoMMA) 

Silverman et al. [43] introduced the CoMMA method, which calculates the zeroth-, first-, 

and second-order spatial moments of the charge (such as quadrupolar moments) and the mass 

distribution (such as moments of inertia). Such molecular moment descriptors may be classified 

in three different categories: descriptors relating solely to molecular shape, descriptors relating 

only to molecular charge and descriptors relating to both shape and charge. The authors 

calculated 13 such descriptors and used them in partial least square analysis to generate 

predictive QSAR models for 31 steroid compounds. A range of statistical performance was 

obtained depending on different partial charge calculation methods used to derive electrostatic 

moments. Cross-validated r2 values ranging from 0.412 to 0.828 were obtained using 

electrostatic moment descriptors calculated from Gasteiger charges or Gaussian molecular orbital 

ab initio methods. The results showed that using quantum chemistry calculation-based moments 

produced better predictive models than using only Gasteiger charge-based moments. Despite 

CoMMA’s comparable statistical performances to CoMFA’s, there are some limitations which 

may account for the limited number of published CoMMA applications. One reason is that the 

value of these descriptors, which measures the displacement between the center of mass and 

center of dipole with respect to the principal inertial axes, equals infinity for symmetric 

molecules whose dipole moment is zero [4].  

Weighted Holistic Invariant Molecular (WHIM) Descriptor-Based QSAR 

WHIM descriptors contain 3D molecular information such as molecular size, shape, 

symmetry and distribution of molecular surface point coordinates [44, 45]. Molecular surface 
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(MS)-WHIM is a WHIM-based 3D descriptor derived directly from molecular surface properties 

[41]. For WHIM descriptors, two types of matrices are defined: a molecular matrix containing 

cartesian coordinates of the n atoms and diagonal matrices containing the weights which are 

physicochemical properties associated with the n atoms of the molecule [41]. Each element of 

the diagonal matrix is defined as: 
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where n is the number of atoms, wi is the weight of ith atom, qij is the jth coordinate of the 

ith atom and 
jq is the average of the jth coordinates [44]. 

In this expression, atoms can be weighted by mass, van der Waals volume, atomic 

electronegativity, electrotopological index of Kier and Hall, atomic polarizability and molecular 

electrostatic  potential [32]. Elements in each diagonal matrix are subjected to principal 

component analysis (PCA) to obtain the scoring matrix, which is used to calculate PCA eigen 

values and eigen value proportion. Such values and proportions are then correlated with the 

molecular size and shape, respectively. One major advantage of the WHIM approach is that it 

provides a 3D QSAR descriptor which is invariant to translation and rotation of 3D molecular 

structures. In MS-WHIM, properties associated with the molecular surface points are used as 

different weighting schemes to compute statistical parameters. In particular, the unitary value 

and molecular electrostatic potential (MEP) are computed at each point of the Connolly 

molecular surface [47], and they are considered as weights. The unitary value contains 

information about the molecular surface shape and MEP provides the electrostatic information 
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about the electron density distribution [41]. Although the WHIM approach is not sensitive to 

molecular orientation, MS-WHIM descriptor values are affected by the facts that the Connolly 

surface points are dependent on the 3D orientation of the molecule and indices for different 

weighting schemes are sensitive to surface point density [41]. The authors tested both WHIM 

and MS-WHIM on 31 steroid compounds and achieved the SDEP (standard deviation error of 

prediction) values of 1.750 and 0.742, respectively while CoMFA’s SDEP was 0.837. The results 

suggested that MS-WHIM prediction performance was comparable to CoMFA’s. SDEP was 

defined as follows: 
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WHIM/MS-WHIM descriptors are invariant to 3D molecular orientation but both 

methods, like other 3D-QSAR methods, rely on ligand conformation, which may be subjective if 

ligand-receptor  

co-crystal structures are not known for the target of interest. 

Grid-Independent Descriptors (GRIND)-Based QSAR 

In an attempt to provide alignment-free descriptors which are easy to understand and 

interpret, Pastor et al. introduced grid-independent descriptors [46]. The method utilizes specific 

probes such as the O probe (carbonyl oxygen) and N1 probe (amide nitrogen) to calculate 

molecular interaction fields (MIFs) at grid points. At each node of the grid, the energy between 

the probe and target ligand (E) is calculated as:
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where Ees is the electrostatic energy, Ehb is the hydrogen-bonding energy, and Elj is the 

Lennard-Jones potential energy [48]. 

In this method, electrostatic interactions, hydrophobic interactions, hydrogen bond 

acceptor and hydrogen bond donor fields are considered to get a set of positions which defines a 

‘virtual receptor site’ (VRS). VRS regions are then encoded into GRIND via an auto- and cross-

correlation transform so that those regions are no longer dependent upon their positions in the 3D 

space. In other words, autocorrelation descriptors of the fields are calculated and only the highest 

products of molecular interaction energies are stored while others are discarded. This difference 

is responsible for the ‘reversibility’ of GRIND and the descriptors can be back-projected in 3D 

space using another related program called ALMOND [49]. The statistical performance of 

GRIND is comparable to other methods, but the advantage is that it is alignment-free and easy to 

interpret. However, bioactive conformations of ligands are valuable information to derive the 

virtual receptor site (VRS) and limitations on such information may affect final predictive 

models like other 3D methods. 

Multi-Dimensional (nD) QSAR Methods 

Multi-dimensional (nD) QSAR methods are essentially extensions of 3D-QSAR methods. 

These methods incorporate additional physical characteristics or properties (or a new dimension) 

to tackle the drawbacks of 3D-QSAR methods. One example is 4D-QSAR by Hopfinger et al. 

[50] which samples molecular conformations and alignments during the generation of a QSAR 

model. While incorporating some CoMFA features, it introduces the fourth dimension, which is 

the conformational Boltzmann sampling, and enables the method to be used as a receptor-

independent (RI) method as well as receptor-dependent (RD) method in which the geometry of 
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the receptor is known. It should be noted that their 4D-QSAR method does not solve the 

alignment problem but it allows a rapid evaluation of individual trial alignments [50]. Such 4D-

QSAR implementation can be found in XMAP program [50, 51]. Recently, it has been shown 

that 5D- and 6D-QSAR can be used for multiple representations of the receptor as well as its 

solvation states [52-54]. In the reported 5D-QSAR method, Vedani et al. introduced a multiple 

representation of induced-fit hypotheses, i.e., the adaptation of the receptor binding pocket to the 

individual ligand topology, as the fifth dimension. In other words, they generated a family of 

quasi-atomistic receptor surrogates [55] which are optimized by using a genetic algorithm. The 

binding energy was calculated as:
 

  

fitinducedstrainernalligandsolvationreceptorligandbinding EESTEEE −−∆−−≈ − int,  ( 1.10 ) 

 

where Eligand-receptor is the force field energy of the ligand-receptor interaction, Esolvation,ligand 

is the ligand desolvation energy, T∆S is the change in the ligand entropy upon receptor binding, 

Einternal strain is the change in ligand internal energy upon receptor binding, and Einduced fit is the 

energy uptake required for adapting the receptor surrogate [53]. 

The 5D-QSAR method was tested on a set of 65 NK-1 receptor antagonists and a set of 

131 Ah receptor ligands, achieving predictive r2 values of 0.837 and 0.832, while 4D-QSAR 

model resulted in 0.834 and 0.795, respectively [53]. They concluded that the binding affinities 

of new molecules were predicted more accurately with 5D-QSAR than with other lower 

dimension models. In the reported 6D-QSAR model, the simultaneous consideration of different 

solvation models was introduced by mapping parts of the surface area with different solvent 

properties [54]. 3D, 4D, 5D and 6D models were explored as comparison studies and the results 
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showed the 6D-QSAR model produced the best predictive r2 of 0.885 [54]. Both 5D- and 6D-

QSAR methods are implemented in the Quasar and VirtualToxLab software [55, 56]. 

1.1.4 Comparison of 2D or fragment-based QSAR versus 3D or nD-QSAR methods 

In general, the predictive quality of 3D-QSAR methods depends on several factors such as the 

quality of molecular alignments/superimpositions, and information on ligand bioactive 

conformations. Especially molecular superimpositions are subjective and ligand bioactive 

conformations always remain unclear when there is no structural information on the 

corresponding receptor-ligand complexes. Conventional CoMFA results may often be non-

reproducible because the model depends on the orientation of alignment of molecules, which can 

be varied and subjective. Although various improved methods and other procedures, which were 

discussed earlier in the paper, have been introduced to overcome major limitations of 3D-QSAR 

methods, i.e., subjective molecular alignment and bioactive conformation problems, many of 

them still require manual interventions and superimpositions [57, 58]. From this prospect, 2D 

fragment-based QSAR methods have certain advantages over multi-dimensional QSAR methods 

since fragment-based or 2D-QSAR methods are simple and robust and do not require subjective 

(or time consuming) molecular alignment or putative binding conformation or determination of 

3D structures. However, the disadvantage is that some of 2D-QSAR methods such as Hansch-

Fujita method may provide non-unique solutions and the overall predictive quality may not be as 

good as some multi-dimensional methods which are computationally more complex and 

demanding. A summary of QSAR methods discussed in the paper is listed in Table 1-1. It should 

be noted that the performance of each QSAR model depends on the choice of dataset and 

different datasets can result in different predictive q2 or r2 or SDEP value. 
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Table 1-1. Summary of different QSAR methods and source information.  

 

 

Method nD Dataset 
Statistical 
model Performance Reference/Website 

HQSAR 2D 21 Steroids PLS 
q2 = 0.71;  
r2 = 0.85 [10] 

[10] 
http://www.tripos.com 

FB-QSAR 2D 48 NA analogs  IDLS 
r = 0.95  
(r2 = 0.91) [18] [18] 

FS-QSAR 2D 
85 bis-sulfone analogs; 
83 COX2 analogs MLR 

r2 = 0.68;  
r2 = 0.62 [19] [19] 

TPF-QSAR 2D 282 pesticides 
PM-based 
prediction r2 = 0.75 [22] [22] 

CoMFA 3D 
21 Steroids 
54 HIV-1PR inhibitors 

PLS 
 

q2 = 0.75; r2 = 0.96 [10] 
q2 = 0.68; r2 = 0.69 [59] 

[30] http://www.tripos.com 
[59] 

CoMSIA 3D 
Thermolysin inhibitors 
54 HIV-1PR inhibitors PLS 

q2 = [0.59, 0.64] [31] 

q2 = 0.65; r2 = 0.73 [59] 
[60, 61] http://www.tripos.com 
[59] 

Topomer 
CoMFA 3D 15 datasets from literature PLS average q2 = 0.636 [39] [39] http://www.tripos.com 

SOMFA 3D 
31 steroids; 35 
sulfonamides MLR r2 = 0.58; r2 = 0.53 [40] [40] 

AMSP 3D 31 steroids MNN q2 = 0.63; r2 = 0.67 [42] [42] 
CoMMA 3D 31 steroids PLS q2 = [0.41, 0.82] [43] [43] 

WHIM 3D 31 steroids PCA SDEP = 1.750 [41] 
[44] 
http://www.vcclab.org/lab/indexhlp/whimdes.html  

MS-WHIM 3D 31 steroids PCA SDEP = 0.742 [41] [41] 

GRIND 3D 
31 steroids 
175 hERG inhibitors 

PLS; PCA 
PLS; SVM 

q2 = 0.64; SDEP = 0.26 [46] 
q2 = 0.41; r2 = 0.57; SDEP = 0.72 [62] 

[46] http://www.moldiscovery.com/soft_grid.php  
[62] 
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Method nD Dataset 
Statistical 
model Performance Reference/Website 

4D-QSAR 4D 

20 DHFR inhibitors; 
42 PGF2a analogs;  
40 2-substituted 
dipyridodiazepione 
inhibitors 
33 p38-MAPK inhibitors PLS 

GL-PLS 

r2 = [0.90, 0.95]; 

r2 = [0.73, 0.86];  

r2 = [0.67, 0.76] [50] 

q2 = [0.67, 0.85] [63] [50] http://www.seascapelearning.com/4DsgiSW/  
[63] 

5D-QSAR 5D 
65 NK-1 antagonists;  
131 Ah ligands MLR 

r2 = 0.84;  
r2 = 0.83 [53] 

[53] 
http://www.biograf.ch  

6D-QSAR 6D 
106 estrogen  
receptor ligands MLR 

q2 = 0.90; 
r2 = 0.89 [54] 

[54] 
http://www.biograf.ch  

HQSAR = Hologram QSAR 
FB-QSAR = Fragment-based QSAR 
FS-QSAR = fragment-similarity-based QSAR 
TPF-QSAR = Top priority fragment QSAR 
CoMFA = Comparative molecular field analysis 
CoMSIA = Comparative molecular similarity indices 
analysis 
SOMFA = Self-organizing molecular field analysis 
AMSP = Autocorrelation of molecular surface properties 
CoMMA = Comparative molecular moment analysis 
WHIM = Weighted holistic invariant molecular QSAR 
MS-WHIM = Molecular surface WHIM 
GRIND = Grid independent descriptor 

PLS = Partial least square 
IDLS = Iterative double least square 
PM = Priority matrix 
MNN = Multilayer neural networks 
MLR = Multiple linear regression 
PCA = Principal component analysis 

q2 = cross-validated r2 

SDEP = standard deviation of errors of prediction 
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1.2 VIRTUAL SCREENING APPROACHES 

1.2.1 Structure-based method 

Detailed crystal structure coordinate data are used to design novel small molecules for structure-

based virtual screening approaches. There are several structure-based methods and two basic 

subclasses of methods are: fragment position method and molecule growth method [64]. Two 

well-known programs for fragment-position methods are GRID [65] and MCSS (Multiple copy 

simultaneous search) [66] [67]. Generally, these methods find binding pockets or sites which are 

energetically favorable for various interacting fragments, position them appropriately and link 

these fragments together by other linker fragments [68]. For growth methods, a seed atom or 

fragment is placed in the binding site first. Then a ligand is grown by bonding atoms or 

fragments. There are several important issues that one should be wary of in de novo designs. For 

example, the algorithms to some extent should be able to reproduce known chemotypes for 

different targets without having prior knowledge of known solutions as well as novel structures 

[68]. Some programs that uses the growth methods are SMoG (small molecule growth) [69], 

GrowMol [70], GenStar [71] and GROW [72].  

Two important components in structure-based virtual screening are molecular docking 

and scoring. Docking is the process which brings two molecular species together with a 

predicted conformation and orientation (or posing). Scoring is a method of accessing the binding 

affinity of such two species. In other words, docking and scoring complements each other. 

Historically, docking of small molecules to protein/receptor binding sites was started in the early 
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1980s [73] and many docking programs such as DOCK [74], GOLD [75], AUTODOCK [76] 

and Surflex-Dock [77] have been developed. Many docking programs assume the protein to be 

rigid because of the high computational cost required by the flexibility. However, most of current 

docking programs consider ligand and protein flexibility since flexible docking produce better 

results than rigid body docking [78]. Categorization of different docking methods and sample 

programs are listed in Figure 1-4 and Table 1-2. Given different docking methods, the success of 

docking molecules into a target site depends on the accuracy of scoring functions which rank the 

hit compounds based on how well they bind to the receptor site. There are four main classes of 

scoring functions: force field-based, knowledge-based, empirical and consensus scoring 

functions. All of them aim to approximate the binding free energy. Force field-based scoring 

functions use classical molecular mechanics energy calculations such as van der Waals and 

electrostatic interactions. However, force fields are computationally more costly than the other 

types of scoring functions. Empirical scoring functions estimate the binding free energy by a 

weighted sum of ligand-receptor interaction parameters. The weights are obtained by a 

regression analysis of experimental binding constants of protein-ligand complexes. Knowledge-

based scoring functions use a sum of protein-ligand atom-pair interactions to calculate the 

binding affinity and frequencies of each possible pair of atoms in contact to each other are 

determined [78, 79]. Consensus scoring combines scores from different scoring functions to 

compensate errors in single scores. 

1.2.2 Ligand-based method 

Ligand-based design methods result from a lack of a 3D crystal structure of a target protein. 

Such lack of information leads to an alternative solution of using active compounds of the target 
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protein as the basis to further generate novel structures. Ligand-based methods make use of 

pharmacophoric, structural or topological features from known ligands/compounds and derive 

putative ligands as well as queries for database screening. Particularly, in a pharmacophore-

based design, a three dimensional ligand pharmacophore model is derived first and then the 

model is used to screen compound databases or design structures which are complimentary to the 

primary target constraints. Another subclass of ligand-based screening is based on structural 

similarity of test molecules to a reference molecule(s). In this approach, a test molecule is 

superimposed or aligned to the reference molecule and similarity is measured. Such similarity 

value can then be used as a scoring factor to rank hits from database searches. However, such 

alignment techniques require manual intervention and a considerable amount of time and, 

therefore, descriptor based representations were introduced for faster database screening. There 

are 1D, 2D and 3D descriptors based on the number of properties used to represent molecules. 

1D descriptors are molecular properties such as molecular weight and log P whereas 2D 

descriptors are classified as linear descriptor and tree-type descriptor. 3D descriptors consider 

conformational information of ligands in addition to other molecular properties. 2D Linear 

descriptor has two cases: binary descriptor and real value descriptor. Structural keys and 

molecular fingerprints belong to binary descriptors and Feature tree and MTree are considered as 

tree-type descriptors [80, 81]. Some ligand-based methods use molecular fragments to screen 

compound databases. These methods use different approaches to break molecules into smaller 

fragments and use such fragments to do virtual screening. One example of a fragment-based 

method is called Topomer Search from Tripos [82] which can perform R-group search, scaffold 

search or whole molecule search.  Figure 1-5 illustrates a hierarchical description of ligand-based 

methods and Table 1-3 contains a list of selected ligand-based programs.  

 



 28 

Force field-based Evolutionary method Fragment-based
1) QXP
2) ICM
3) Glide

1) PRO_LEADS
2) GOLD 
3) Autodock

Structure-based virtual screening

Shape similarity-based
1) LigandFit
2) FRED

1) DOCK
2) FlexX
3) Hammerhead
4) Surflex
5) SMoG  

Figure 1-4. Categorization of structure-based virtual screening methods and sample programs 

 

Structural similarity-based Pharmacophore-based Descriptor-based
1) FlexS
2) GASP
3) ROCS

1) ALMOND
2) Tripos UNITY 
3) BRUTUS

2D descriptor 3D descriptor
1) DISCO

Tree type descriptor Linear descriptor

Binary Descriptor Real value Descriptor
1) MAD

Structural Keys Molecular fingerprint
1) MACCS 1) Daylight fingerprints

Ligand-based methods

1) FTree
2) MTree
3) NipalsTree

Fragment-based
1) Tripos Topomer
2) Fflash

 

Figure 1-5. Hierarchical descriptions of ligand-based design and some sample programs (adapted 

from Reddy et al.)  
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 Table 1-2. List of selected structure-based docking programs 

 

 

Docking Method Programs Description Reference 

Force field-based 
  

  

QXP 
QXP (quick explore) uses a fast Monte Carlo (MC) search method to match proposed molecules 
to a template and dock flexibly to a binding site. [83] 

ICM 

ICM (Internal Coordinate Modeling) performs the optimization of ligand conformation during 
docking by changing internal coordinate system variables and Monte Carlo minimization 
procedure. [84] 

Glide 

Glide (Grid based ligand docking with energetics) uses a series of hierarchical filters to look for 
possible ligand locations in the binding region. After a systematic search of conformation, 
orientation and position of docked ligands, it uses a Monte Carlo sampling method to further 
refine the best candidates.  [85] 

Evolutionary 
method 
  

  

PRO_LEADS 

It uses an evolutionary method called a tabu search algorithm which calculates the root mean 
square deviation between current molecular coordinate and previous conformations of other 
molecules in order to decide if a molecular conformation will be rejected or accepted.  [73] 

GOLD 
GOLD (Genetic Optimization for Ligand Docking) docks a flexible ligand to a semi-flexible 
receptor by using a genetic algorithm (GA). It uses a force-field-based scoring function. [75] 

Autodock 
It uses not only an evolutionary/genetic algorithm but also the Monte Carlo simulated annealing 
methods to predict the binding interaction of small molecules to the protein. [76] 

Fragment-based 
  
  

  

DOCK 
It uses a clique-detection procedure to fit compounds into the binding site. Hydrophobicity 
descriptors are considered in scoring the docked ligand-protein complexes. [74] 

FlexX 

The program, after breaking the ligand at rotatable bonds into fragments, puts one fragment after 
another at the binding site and rebuilds the whole ligand. It uses a pose-clustering algorithm to 
classify the docked ligand conformers. 

[81, 86, 
87] 

Hammerhead 

It is a fast and automated flexible docking program which can screen large databases. The 
program is fully automated: from the binding site search, small molecules docking  and final 
compound selection for in vitro assays. [88] 

SMoG 
SMoG (Small Molecule Growth) uses a metropolis Monte Carlo growth algorithm and its 
scoring function is derived from a knowledge-based pair-wise atom potentials. [69] 
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Table 1-3. List of selected ligand-based programs (adapted from Reddy et al) 

 

Method Programs Description Reference 

Shape 
similarity-based 

LigandFit It uses a grid-based approach to examine shapes of the ligand and the target. [78, 89] 

FRED 
It applies Gaussian functions to fit the ligand shape to the negative image of the shape of the 
protein. [78, 90] 

  
Structural 
similarity-based 

  

FlexS 
It superimposes a test molecule which is kept flexible to a rigid reference molecule. It can be 
used to compare small and medium sized molecules. [91] 

GASP 
Unlike FlexS, both test and reference molecules can be kept flexible during alignments. But it 
is slower than FlexS because of such flexibility. [92] 

ROCS 
ROCS (Rapid Overlay of Chemical Structures) is a shape similarity-based algorithm that uses 
the Gaussian representation of molecular volume to screen for lead compounds. [93, 94] 

Pharmacophore-
based 

  

  

ALMOND 

It can calculate the locations of pharmacophore features in 3D space and provide geometric 
correlation between such features. It also provides information related to pharmaco-kinetic 
properties of molecules. [46, 81] 

BRUTUS 
This is a fast grid-based algorithm which uses charge distribution to do rigid body molecular 
alignment. [95] 

Tripos UNITY  
It can define a pharmacophore model by using multiple pharmacophore feature points and use 
such model for 3D database screening. [96] 

  
  
Descriptor-
based 
  
  

DISCO 

DISCO is a three dimensional pharmacophore descriptor program. It identifies 3D 
pharmacophore features from template compounds, generates interpoint distances among these 
features and uses the Bron-Kerbosch clique detection algorithm for interdistance comparisons. [97, 98] 

Ftrees 
It is a graph-based algorithm which condenses molecular descriptions into a graph object and 
search for active compounds from large molecular databases. [99] 

NipalsTree 
It is a hierarchical clustering algorithm which is based on the principle component analysis 
(PCA) using NIPALS method. [100] 
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MAD 

MAD (Mapping to Activity-class-specific Descriptor value ranges) is a real-value descriptor 
based mapping method which searches for test compounds which has similar activity-class-
specific descriptor values as reference compounds.  [101] 

MACCS 
MACCS keys are the structural keys and it considers not only the presence or absence of 
each fragment but also the frequency of its occurrence. [102] 

Daylight 
Fingerprint 

It is a structural path-based fingerprint method which uses a hashing algorithm to generate 
distinct fingerprints. [103] 

Fragment-
based 

Tripos 
Topomer 

It can perform various fragment-based database queries such as R-group search, scaffold 
search or whole molecule search based on topomer (specific pose or alignment of a 
molecular fragment) similarity.  [82] 

Fflash 
Like Topomer, it can perform fragment-based similarity search using graph based clique 
detection procedure. [104] 
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1.3 CANNABINOID RECEPTORS AND THEIR LIGANDS 

1.3.1 Background and significance 

GPCRs (G-protein-coupled receptors), with more than 1000 different members, are the 

largest receptor family in mammalian genomes and represent, to the best of our 

knowledge, more than 60% of all receptors which is the reason why the superfamily of 

GPCRs is one of the largest families of proteins in the human genome [105]. They are 

known to regulate wide variety of signals such as ions, hormones and neurotransmitters. 

It has been estimated that GPCRs represent more than 30% of current drug targets [106, 

107] and have attracted many pharmaceutical industries as well as academic groups for 

potential drug discoveries. Cannabinoid (CB) receptors, members of G-protein coupled 

receptor (GPCR) superfamily, also involve in the activation of multiple intracellular 

signal transductions and their endogenous ligands or cannabinoids have attracted 

pharmacological research because of their potential therapeutic effects. In particular, the 

CB2 receptor is known to be involved in immune system signal transductions and its 

ligands have the potential to be developed as drugs to treat many immune system 

disorders. Currently there is no CB2 drug on the market yet although a CB1 selective 

drug namely Rimonabant has been withdrawn from the market recently because of its 

several psychotic side effects. Therefore, CB2 selective drugs may have better 

therapeutic potential because CB2 receptors are mainly present in the immune system 
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instead of the nervous system. In fact, CB2 ligands have been proven to be useful in 

treating autoimmune and immunological disorders such as multiple sclerosis [108]. They 

could be used as anti-inflammatory agents that alleviate inflammatory pain [109, 110] 

and as anti-cancer agents that inhibit the growth of tumors of immune origin [111]. 

Therefore, it is valuable to study CB2 ligands and identify novel CB2 selective ligands 

with the potential to be developed as therapeutic drugs. However, up until 2011 only 6 

GPCR crystal structures were available, but, in 2012, additional 7 crystal structures have 

been resolved. This leaves us with 98% of GPCR structures remaining to be solved [112]. 

No experimental crystal structure of cannabinoid receptors are available yet to be used in 

a receptor-based drug design. Many groups including ours have developed three 

dimensional CB2 receptor models using homology modeling approaches based on known 

GPCR crystal structures. Below I will discuss some methods which have been used to 

model CB receptors. 

1.3.2 Computational modeling of CB1 and CB2 receptors 

There are two main types of cannabinoid receptors: CB1 cloned in 1990 [113], and CB2 

cloned in 1993 [114]. The CB2 receptor shows 44% identity with the CB1 receptor [114, 

115]. In modeling CB receptors in the past decade, the bovine rhodopsin crystal structure 

[116] was often used as a template. Such modeling was done via homology/comparative 

modeling in which rhodopsin and CB receptor sequences are compared to analyze highly 

conserved residues among GPCRs and such information is used to build the receptor 

model. The only problem with using the reported structure of rhodopsin as a template is 

that the structure was obtained in its inactive form without any native ligand bound to it 
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and, therefore, it may not provide the best representation of ligand binding site(s) of an 

active form of this GPCR.  

One of early work on a 3D GPCR model before the availability of high resolution 

(2 Å) crystal structure of bovine rhodopsin was done by Joyce Baldwin [117]. The author 

examined a probable arrangement of the seven transmembrane helices by visually 

aligning 204 sequences of GPCRs and incorporating them in a database using the 

homologous sequence editor HOMED. As a result, the author established constraints 

such as each helix must be positioned next to its neighbors in the sequence, and helices I, 

IV, and V must be exposed to the lipid while helix III is the least exposed. His work 

agreed with a CB1 model proposed by Bramblett et al [118] at around the same time. 

They determined the length and orientations of the transmembrane helices of the CB1 

receptor by using a variety of mathematical formulae in order to build a 3D model. 

During that time, the bovine rhodopsin structure at 9 Å resolution [119] became available 

and the structure supported the validity of a seven transmembrane alpha helix model for 

GPCRs. In their work, Bramblett et al aimed to get the ends and orientations of the seven 

transmembrane helices of the CB1 receptor. They first aligned the amino acid sequence 

of the CB1 receptor with the sequences of fifty-eight other GPCRs. Based on the 

alignment, they found out highly conserved residues in the GPCRs. Then using Fourier 

transform methods, they calculated alpha periodicity index (AP) which was used to 

determine the amino acids which form each of the seven transmembrane helices. Next 

they calculated variability moment vectors to find out the position of each helix in the 

membrane. Based on these vectors, they constructed a tentative helix bundle which was 

found to be largely consistent with the model proposed by Baldwin. 
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In the last decade, many modeling software packages became available and 

several research groups have taken advantage of them. One of the groups was Montero et 

al [115] who built homology models of the CB1 and CB2 receptors in their docking 

analysis study. They started out by sequential alignment of CB1 and CB2 with the 

Rhodopsin (Rho) as a template structure using CLUSTALW program [120]. Then they 

performed a manual adjustment of multiple alignment sequence with the program 

SEAVIEW and formatted using the program JOY [121]. Based on the best alignment, 3D 

models were automatically built using MODELLER [115, 122, 123]. A 3D model was 

obtained after the optimization of a molecular probability density function (pdf) and 

minimization of the models were done using the CHARMM force field with conjugate 

gradient method with a convergence gradient of 0.01. Out of 15 models generated by 

MODELLER, the model with the lowest value of the pdf and fewest restraints violations 

was chosen for further refinement. Short loop regions were built using MODELLER and 

long loops were refined using the Search-Loop option in the SYBYL program [82] 

software suite coupled database. The database contained protein structural fragments. 

After minimization of final models and refinement process, the models were validated 

using the VERIFY [124], PROCHECK [125] and COMPARER [126] programs. One of 

their results indicated that the major sequence difference between the Rhodopsin and the 

CB receptors lie in the transmembrane region 5 where CB receptors show strong 

aromatic environment. Another finding was that the main differences between CB1 and 

CB2 lie in the N-terminal, extracellular loop 2 (EL2), C-terminal of transmembrane helix 

7 (TM7) and the C-terminal. The CB2 receptor shows a rich proline region in EL2 while 

CB1 has a serine located in the intracellular loop 6 (IL3) which is a phosphorylate site of 
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protein kinase C (PKC) [115, 127]. They also found out that only CB1 of all members of 

the class I of GPCR family has a long N-terminal.  

Xie et al [128] also built the comparative CB2 model using multiple sequence 

alignment methods and the crystal structure of bovine rhodopsin. They used nine 

complete GPCR sequences from the GPCR database to align with the CB2 sequence 

using InsightII homology module [129]. Then they performed manual multiple sequence 

alignments using MSI Biosym software to locate homology aligned regions for all 10 

GPCR sequences including the sequence of CB2 receptor. The aligned sequences were 

evaluated with the hydrophobicity scoring matrix [129] to assess the transmembrane, 

intra- and extracellular segments of the CB2 receptor. They analyzed conserved motifs 

and residues, hydrogen-bond networks and helix-tilt angles and their model was shown to 

be consistent with the known experimental findings derived from site-directed 

mutagenesis, X-ray crystallographic and NMR studies. Their modeling results indicated 

that a salt bridge is formed between R3.50(131) and D6.30(240), an interaction 

responsible for acting as an ionic lock for rhodopsin-like GPCR activation [130]. They 

identified the presence of a cytoplasmic helix from computer modeling and NMR 

experiments. They, in contrast to earlier studies, also reported novel putative binding sites 

of the CB2 receptor. 

Gonzalez et al [131] has recently performed the computational modeling study of 

microdomains in the CB1. In their study, they built the CB1 receptor model (R) using the 

crystal structure of bovine rhodopsin as template for comparative/homology modeling. In 

this method, CB1 and rhodopsin sequences are aligned based on known highly conserved 

residues among GPCRs. Once the alignment information was obtained, the authors used 
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several software packages such as MODELLER [122] to generate comparative models 

and PROSA II [132] and Verify 3D [133] to evaluate those models. The best model was 

further refined by optimizing the loop regions via a simulated annealing (SA) technique 

in which backbone residues of transmembrane helices were constrained and loop regions 

were optimized. A conjugate gradient energy minimization was followed using 

CHARMM22 force field. They also generated a second conformation of CB1 model (R*) 

which could be a putative active state of CB1 by perturbing transmembrane helices 3 and 

6. Choosing these particular helices was based on empirical evidence that these two 

helices are proved to have an important role in the activation of various class A GPCRs. 

The authors used the rotating constraint (RC) module implemented in NAMD v2.5 [134] 

for such perturbation. The simulation was then carried out using the CHARMM22 force 

field for 1 ns in vacuum. Their simulation results indicated that their CB1 model is a 

useful starting point for further structural characterization of CB1 receptor.  

1.3.3 Computational design and screening of cannabinoid ligands 

More than five major classes of structurally different, but biologically similar CB ligands 

have been discovered (Figure 1-6). Four structural classes of representative CB agonists: 

∆9-THC, CP-55940, AEA, and WIN5212-2 are known to bind on both CB1 and CB2 

receptors. A few antagonists, such as SR141716A and SR144528 [135], have been 

discovered for specific binding of only one of each receptor subtype. SR141716A is the 

first CB1 selective antagonist displaying nanomolar affinity to the CB1 receptor but has a 

low activity to the CB2 receptors [136] whereas SR144528 is a CB2 antagonist ligand. 
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Figure 1-6. Representative structures of major classes of cannabinoid ligands 

 

Our group has reported 3D QSAR (Quantitative Structure-Activity Relationship) 

study of CB1 and CB2 pyrazole-type agonistic and antagonistic specificities using 

comparative molecular field analysis (CoMFA) approach [5, 30]. (-)-∆9-

tetrahydrocannabinol (THC), a classical cannabinoid (CC), is the most active constituent 

in marijuana [137]. Early SAR studies [138-141] generated a 3-point pharmacophore 

model with a free phenolic OH, an optimal 1, 1’-dimethylheptyl side chain, and a 

hydroxyl in the cyclohexyl ring that enhances CB activity. Anandamide, also known as 

N-arachidonoylethanolamine (AEA), was isolated from porcine brain and identified as an 

endogenous CB ligand [142]. AEA binds to both CB receptor subtypes and induces 

certain CB activities [143, 144]. Win55212-2, one of the most potent aminoalkylindoles 

(AAIs), was synthesized by Sterling Winthrop, Inc. [145, 146]. AAIs were originally 

synthesized as cyclooxygenase inhibitors [147, 148]. Some other CB ligands have been 

discovered, such as 2-AG (2-arachidonyl-glycerol) [149, 150], biphenylic CB analogs 

[151, 152], triaryl bis-sulfones [153-155] and as well as other novel inverse agonists 

[156, 157]. Computational design of CB ligands is mainly based on experimental SAR 

studies of known CB ligands and partially based on 3D models of CB receptors. Several 
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methods including ligand-based design, structure-based design and de novo algorithms 

which have been used for the design and screening of CB ligands are discussed below.  

Rogers-Evans and co-workers [158] applied one of de novo design algorithms 

called TOPAS (TOPology-Assigning System) [159] to identify novel CB1 ligands. 

TOPAS is based on an evolution algorithm which uses molecular fragments as building 

blocks to design novel compounds. In their work, they focused on the indole 

cannabinoids derived from pyrrole series to generate novel structures via scaffold 

hopping using TOPAS algorithm. To construct new molecules, they first collected 1381 

known GPCR modulators which underwent fragmentation using the RECAP procedure 

[160]. Then using TOPAS algorithm, they constructed new generation of virtual 

molecules iteratively by taking the best of the previous generation as the ‘parent’. They 

computed the fitness of molecules as the pair-wise similarity to the seed compound. 

Finally, they tested their compounds in vitro and found out two novel selective hits which 

could undergo further refinement and lead optimization. 

An example of a structure-based virtual screening approach to find CB2 

antagonists was done by our lab [161]. In this work, the Xie group’s previous 3D CB2 

receptor homology model was used and a 3D database query algorithm was developed to 

examine the receptor model and predict binding pocket. First, an antagonist (SR144528)-

bound CB2 receptor model was developed via flexible docking and molecular 

dynamic/mechanic simulation using important binding residues information obtained 

from site mutagenesis data. The generated ligand-bound CB2 model was then used to 

analyze the antagonist binding site of CB2. The predicted binding pocket was then 

evaluated using a testing compound database. The FlexX-Pharm docking algorithm was 
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then used for virtual screening and consensus scoring (CScore) procedure to rank hits 

from five different scoring functions: FlexX [86, 87], PMF [162], ChemScore [163], 

D_Score [164], and G_Score [165]. Finally, the enrichment factor was calculated to 

evaluate the performance of different CScore functions for the CB2 antagonists. The 

results indicated that the CB2 model can be a promising model for future structure-based 

CB2 leads screening. 

The Xie lab also developed ligand-based virtual screening protocol [5] in which 

3D-QSAR studies of arylpyrazole antagonists of CB1 and CB2 in combination with 2D 

NMR spectroscopy were performed. First, the solution conformation of N-(piperidin-1-

yl)-5-phenyl-1-(n-pentyl)- 4-methyl-1H-pyrazole-3-carboxamide (AM263), a high 

affinity arylpyrazole analogue, was determined using NOESY NMR data and computer-

assisted conformational search in which molecular dynamic (MD) and mechanic (MM) 

simulations were performed using the Tripos Sybyl software package [82]. The starting 

structure of AM263 was built using Sybyl and performed conformation simulation by 

first relaxing the initial compound structure through minimization. MD simulations were 

then carried at 1000 K using Tripos force field to sample different conformations that 

were then minimized using a combination of the steepest descent and conjugate gradient 

methods. Twenty-nine arylpyrazole compounds in the training set for parallel CoMFA 

(comparative molecular field analysis) analyses were used to build 3D-QSAR models. 

These models were based on experimental binding affinity values of arylpyrazole 

analogues for CB1 and CB2 receptors. Different conformations of AM263 from previous 

MD simulations were used as templates to align compounds in the training set and nine 

other compounds from literature were used in the test set to evaluate 3D-QSAR models. 
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In such evaluation, cross-validated r2 values were calculated via CoMFA Partial Least-

Squares (PLS) analysis.  3D-QSAR/CoMFA study suggested a bioactive conformation of 

arylparazole that was congruent to its solution conformation. Therefore, CoMFA analyses 

gave necessary information to better understand the binding characteristics of 

arylpyrazoles to the CB1 and CB2 receptors. 

1.4 OUTLINE OF THE DISSERTATION 

There are two main parts in this dissertation: novel QSAR methods development and 

discovery of new CB2 ligands. While fulfilling those two major goals, our research work 

has been reported in 5 manuscripts including 4 research articles and 1 review article. 

There are 4 manuscripts related to QSAR methods development and 1 manuscript for 

discovery of novel CB ligands which are discussed in greater details in later chapters. 

Specifically, I and Prof. Xie reviewed recent fragment-based and other novel QSAR 

methods in: 

• Myint, K-Z. and Xie, X-Q. Recent Advances in Fragment-Based QSAR and 

Multi-Dimensional QSAR Methods, International Journal of Molecular Sciences 

11 (2010), pp. 3846-3866. 

In addition, I and others in the Xie lab have published our results from a novel 

fragment-based QSAR method in: 

• Myint, K-Z., Ma, C., Wang, L. and Xie, X.Q. Fragment-Similarity-Based QSAR 

(FS-QSAR): A Novel 2D-QSAR Method to Predict Biological Activities of 
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Triaryl Bis-sulfone and COX2 Analogs, SAR and QSAR in Environmental 

Research 22 (2011), pp. 385-410.  

 

Moreover, the results from combining pharmacophoric and morphological 

descriptors to derive a novel QSAR model were reported in: 

• Chen, J-Z., Myint, K-Z. and Xie, X-Q. A Novel QSAR Approach for GPCR CB2-

Antagonistic Triaryl Bis-Sulfone Analogs: A Combined Molecular Morphological 

and Pharmacophoric Approach, SAR and QSAR in Environmental Research 22 

(2011), pp. 525-44. 

 

In order to tackle similar-scaffold requirement limitations of fragment-based, 

CoMFA and other 3D-QSAR methods, a novel fingerprint-based artificial neural 

networks QSAR  (FANN-QSAR), which no longer requires compounds to have similar 

or same scaffold to make effective ligand activity predictions, was developed. This work 

has been accepted for publication in the journal Molecular Pharmaceutics: 

• Myint, K-Z., Wang, L. and Xie, X-Q. Fingerprint-based Artificial Neural 

Networks QSAR (FANN-QSAR) for Ligand Biological Activity Predictions, 

Molecular Pharmaceutics (2012). Accepted. 

 

Moreover, the Xie group’s discovery of novel CB ligands has been reported in a 

recently submitted manuscript: 

• Yang, P.*, Myint, K-Z.*, Cao, H., Tong, Q., Almehizia, A., Alqarni, M., Feng, R., 

Wang, L. and Xie, X-Q.  Lead discovery, chemistry optimization and biological 
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evaluation studies of novel bi-amide derivatives as CB2 receptor inverse agonists 

and osteoclast inhibitors, Journal of Medicinal Chemistry (2012). Submitted. (*: 

equal contribution) 

These developed methods, results and discussions are further described in details 

in Chapters 2-5.  
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2.0  FRAGMENT-SIMILARITY-BASED QSAR (FS-QSAR) ALGORITHM 

FOR LIGAND BIOLOGICAL ACTIVITY PREDICTIONS 

2.1 INTRODUCTION 

Various QSAR methods have been developed and they differ in which statistical method 

is used and which molecular descriptors are used [166]. As previously discussed, 3D-

QSAR has some known problems such as subjective molecular alignment and bioactive 

conformations whereas 2D-QSAR is attractive because predicting molecular properties 

and activities based on 2D molecular structures is simple, fast and robust. 2D-QSAR 

methods allow modeling of a wide variety of ligands or compounds including cases 

where 3D crystal receptor or target structures are not available [6]. As described 

previously, QSAR methods were first introduced by Free, Wilson, Hansch, and Fujita [7, 

8]. In Free-Wilson QSAR models [7], biological activity values were correlated with the 

presence and absence of molecular substituents, whereas Hansch-Fujita model [8] 

predicted biological activities based on physicochemical parameters or properties. 

Typically, such molecular properties used in the Hansch-Fujita equation were calculated 

based on a whole molecule structure. On the other hand, the Free-Wilson method focused 

on the effect of substituent changes on the overall biological activity. In general, it is 

often noted that Hansch-Fujita models are not unique, i.e. many models can be derived 
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for the same dataset [167], whereas Free-Wilson models are unique but predictions are 

only possible for combinations of existing chemical substituents that appear in the 

training set, but not for any other substituents. In other words, the traditional QSAR 

model often has poor predictions if substituents in the test set do not exist in the training 

set. 

Therefore, a novel fragment-similarity-based QSAR method (FS-QSAR) was 

developed to address such major limitations of the traditional method by introducing a 

fragment-similarity concept. In this FS-QSAR method, any testing substituent or 

fragment not found in the training set were compared to those training fragments, and the 

most similar training fragment was selected along with its corresponding regression 

coefficient. Regression coefficients were then weighted by the similarity values between 

testing and training fragments, and overall biological activity of a compound was 

predicted by considering such corrected fragment contributions. The FS-QSAR method 

was examined and validated in various cases studies, including a dataset of COX2 

inhibitors [168] and a dataset of CB2 triaryl bis-sulfone antagonist analogs [153-155]. 

Quantitative predictions demonstrate that the FS-QSAR method improved the traditional 

QSAR method remarkably and affords a robust and effective model that can be used to 

predict biological activities of target compounds.  
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2.2 METHODS 

2.2.1 Data sets 

The FS-QSAR model was trained and tested on two independent datasets: COX2 

inhibitors and triaryl bis-sulfone analogs. The COX2 inhibitor dataset is a well-known 

dataset in QSAR studies [168, 169]. There are several analogs of COX2 inhibitors and 

Table 2-1 lists all 83 compounds used in this work. The second dataset is a set of 85 

triaryl bis-sulfone analogs (Table 2-2, Table 2-3, Table 2-4) that have strong CB2 binding 

affinities with Ki’s less than 1000 nM. The bis-sulfone analogs were obtained from three 

different papers that were reports of studies conducted by the same group of authors 

[153-155].  

2.2.2 Computational method 

Fragment-similarity based QSAR (FS-QSAR) 

The fragment-similarity-based QSAR (FS-QSAR) method is an improvement of the 

traditional Free-Wilson method which is a linear combination of the effects of 

substituents. In order to solve the limitation of the Free-Wilson model discussed above, 

we developed the fragment-similarity-based QSAR method. In this approach, each testing 

fragment not present in any of training compound is compared to those existing training 

fragments. Then the most similar fragment is picked for each substituent position and 

contributions of such fragments are used to predict the overall biological activity of the 

compound. In the original method, fragments of a new compound have to be in the 
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training set for an effective activity prediction. In this new method, such requirement is 

no longer necessary and the most similar training fragments will be used if they are not 

present in the training set. The method is based on the hypothesis which implies similar 

functional groups may have similar chemical and physical properties which attribute to 

similar biological activities. The hypothesis is induced based on a central premise of 

medicinal chemistry which states structurally similar molecules have similar 

physicochemical properties and possibly similar biological activities and has been stated 

in many computational chemistry and similarity-based virtual screening drug design 

studies [170-177].  

The FS-QSAR equation can be described as: 
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BA    = biological activity of a given compound (such as Ki or IC50). 

N    = a total number of substituent positions.  

Pj    = a total number of possible substituents at the jth substituent position.  

max       = a maximum function which picks the maximum score among similarity 

scores. 

Fjk     = the kth fragment (a known fragment in the training set) at the jth 

substituent position.  

Fjg   = a given fragment (the fragment from a testing/unknown compound) at 

the jth substituent position. 

Sim[Fjk, Fjg] = the fragment similarity function compares Fjg to Fjk and calculates 

a similarity score. 
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 MSF
jA      = the coefficient of the most similar fragment (MSF) at the jth substituent 

position. 

Multiple linear regression (MLR) implemented in Matlab® computing software 

[178] was used to solve for all the variables in the equation. Molecular substituents or 

fragments found in training molecules represent independent variables and no duplicate 

training fragments were included. Corresponding regression coefficients ( MSF
jA ) for 

training fragments and the constant (const) were solved via MLR. Sim[Fik, Fig] represents 

either BCUT-similarity or Tanimoto similarity function, which calculates a similarity 

score between a training and testing fragment. The score is used as a weighting factor for 

the regression coefficient of the most similar training fragment. 

BCUT-similarity function 

The chemistry space BCUT-similarity function is defined as: 
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EV(Fjk) = lowest/highest eigen value of BCUT matrix of a fragment (Fjk). 

BCUT matrix [20] of a fragment is defined as below. For an n * n square matrix, 

each atom in a fragment from atom 1 to atom n is represented in each row and column of 

the matrix. s  represents the scaling factor to scale the off-diagonal elements. A diagonal 

element (mxx) is equal to the partial charge of the xth atom. An off-diagonal element 

(mxy) is equal to the number of bonds between the xth atom and yth atom, i.e. mxy  is equal 
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to 1 for single bond, 2 for double bonds, 3 for 

triple bonds,1.5 for conjugated bonds and 0.01 

if there are no direct bond(s) between two (x 

and y) atoms. There are two other parameters 

used in constructing BCUT matrices: whether 

hydrogens should be kept (K) or removed (R), 

and whether to use the lowest (L) or highest 

(H) eigen value. K (keep hydrogens) or R (remove hydrogens) defines if hydrogen atoms 

are considered when constructing the matrix. Lowest (L) or highest (H) eigen values of 

BCUT matrices are used for similarity measurement. In this work, it was decided to keep 

hydrogens (K) since hydrogen bonds are important for ligand-protein binding. L (lowest 

eigen value) or H (highest eigen value) and scaling factor were decided by the leave-one-

out cross validation (LOOCV) for each training dataset. The parameters which gave the 

best cross-validated r2 (q2) value were used to test the model.  

Tanimoto similarity function 

In Tanimoto similarity calculation [177, 179], each fragment is represented as 

strings of 0 and 1. Based on these bits (fingerprint), the Tanimoto similarity function is 

defined as: 

cba
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where a = number of ‘1’ bits in fragment 1; b = number of ‘1’ bits in fragment 2; 
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for the fingerprint generation [180] and Tanimoto similarity calculations. 

2.3 CALCULATIONS 

Error! 

Bookmark not defined. 

2.3.1 Partial charge calculation and fragment generation 

Before fragments were generated, partial charges of individual atoms in a totally 

connected compound were calculated. The type of partial charge is the Gasteiger-Hückel 

type calculated using Sybyl8.0 from Tripos [77]. Then desired fragments were cleaved. It 

is important to calculate charges before cleaving the fragments since charges will not be 

the same if they are calculated after cleavage. By calculating as a whole molecule, the 

effects of neighboring atoms and their electron environment are considered. When 

fragments were retrieved from COX2 inhibitor analogs, a benzene ring was also regarded 

as part of the fragment. For example, when an R2 fragment of a COX2 inhibitor analog 

was 4-OMe, not only the oxygen-methyl (-OMe) group but also the benzene ring attached 

to the fragment were considered as follows: 

. 

The benzene ring was included as part of a fragment to prevent from having a 

fragment with only one atom when a substituent is an atom such as chlorine (Cl) instead 

of a functional group. This rule was applied consistently to all fragments generated.  
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Similarly, fragments for bis-sulfone analogs were generated as follows. For 

fragment linkers at L2 position, two neighbor carbon atoms were included as part of any 

given L2 fragment. For example, when L2 linker fragment was mentioned as an oxygen 

(O), a C-O-C fragment was used instead of only O, since a fragment should have more 

than one atom. To be consistent, all other L2 fragments were considered in the same 

manner. Similarly, for X and Y substituent positions, we included the benzene-ring as 

part of the fragment. For example, when an X-fragment was 4-Cl, then instead of using 

Cl (chlorine) atom alone, the following fragment was considered: 

. 

2.3.2 Parameter tuning using leave-one-out cross-validation (LOOCV) 

Two parameters (scaling factor and H or L parameters) involved in constructing BCUT 

matrices were determined using the LOOCV method. For each BCUT matrix derived 

from each fragment, eigen values were calculated using the JAMA/C++ library from 

TNT (Template Numerical Toolkit) package [181] and the lowest or highest eigen value 

was kept for each fragment. For a given training set, scaling factors were varied from 

0.005 to 1.0 with 0.005 increment and H and L were used alternatively. For each pair of 

parameters (scaling factor and H or L), corresponding BCUT matrices and eigen values 

were calculated for every fragment in the training set. Then FS-QSAR model was trained 

using the LOOCV method and the pair of parameters which gave the best cross-validated 

correlation coefficient value (q2 value) was chosen for model testing. During the LOOCV 
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process, for a dataset containing N compounds, the model was trained using N-1 

compounds and tested on the excluded nth compound. The process was repeated for n = 1, 

2, 3, …, N and the cross-validated correlation coefficient (q2) was then calculated. 

2.3.3 Generation of training and testing data sets 

For each dataset (COX2 inhibitor analogs and Bis-sulfone analogs) the training 

and testing sets were generated by randomly picking compounds from the original 

dataset. For statistical FS-QSAR modeling, the process was repeated five times resulting 

in five different pairs of training and testing sets (Table 2-5 and Table 2-6). During the 

training process, the constant (const) and the regression coefficients ( MSF
jA ) from 

Equation 2.1 were solved and were used in subsequent model testing. 

2.4 RESULTS AND DISCUSSION 

2.4.1 FS-QSAR modeling on COX2 inhibitor analogs 

COX2 inhibitor dataset is a well-known dataset used in many QSAR studies [168, 169]. 

A total of 83 COX2 analogs having the same scaffold were used, 69 of which were used 

as training data and 14 were used as testing data. All q2 values (Table 2-7) provided good 

correlations and the average r2 of five different testing sets was 0.62 (Table 2-9, “FS-

QSAR (BCUT)” column) with the variance of 0.01, which inferred the consistency of the 

model in predicting activities of random testing compound sets. 
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2.4.2 FS-QSAR modeling on bis-sulfone analogs 

The FS-QSAR regression model was generated and tested on bis-sulfone analogs. Eighty-

five bis-sulfone analogs with strong CB2 binding affinities (Ki < 1000 nM) were selected. 

All q2 values (Table 2-8) provided good correlations and the average r2 of five different 

testing sets was 0.68 (Table 2-10, “FS-QSAR (BCUT)” column), which implied that the 

model predicted biological activities effectively for the bis-sulfone dataset as well as the 

COX2 dataset. In other words, the model worked effectively for the well-known and 

standard QSAR dataset such as COX2 inhibitor analogs as well as a real world 

cannabinoid ligand dataset such as bis-sulfone analogs.  

2.4.3 BCUT-similarity score analysis 

As mentioned, BCUT similarity function calculates fragment similarity values and finds a 

training fragment which is most similar to a given/unknown testing fragment if the 

testing fragment does not exist in the training set. Results from such similarity calculation 

for bis-sulfone fragments can be found in Table 2-11. Specifically, column 1 contains 

testing compounds found in one of five testing sets (column 2). Column 3 refers to 

fragments of the testing compound at a particular substituent position which were not 

found in the training fragments and was necessary to match and find the most similar 

training fragment at the substituent position with a non-zero regression coefficient. Those 

similar training fragments are listed in column 4. Column 5 lists substituent positions 

where the testing and training fragments are found and column 6 contains two parameters 

(scaling factor and H or L) which were used in calculating BCUT similarity scores. 
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Column 7 lists the BCUT-similarity score between the testing fragment and the training 

fragment calculated using the Equation 2.2. It can be observed that the majority of 

training fragments selected by the BCUT similarity function resembled their counterpart 

testing fragments. There were, however, some drawbacks of the method. For example, 

one would expect the following pair of fragments (for “1,29” testing compound, Table 

2-11):  

 and  

to have a lower similarity value than the following pair of fragments (for “3,50” 

testing compound,Table 2-11):  

 and . 

This is because of the presence of intrinsic drawback of the method; this is further 

explained in the following section by comparing to the Tanimoto method, a molecular 

similarity comparison method that is widely used in two-dimensional molecular 

comparisons [177]. It is important to note that the similarity calculation was used as a 

part of the regression equation, and the model should be judged based on final statistical 

performances rather than individual fragment similarity scores. 
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2.4.4 Comparisons with different approaches 

Traditional Free-Wilson QSAR and 1-nearest-neighbor-QSAR (1NN-QSAR) analyses 

were performed on the testing sets used in the FS-QSAR model testing for comparison. 

For all the methods, predictions were done for all the compounds in each testing set. 

Free-Wilson QSAR failed to make successful predictions on many testing sets and 

achieved an average correlation coefficient of 0.46 for COX2 inhibitor dataset (Table 2-9, 

“Free-Wilson QSAR” column) and 0.42 for bis-sulfone dataset (Table 2-10, “Free-

Wilson QSAR” column). This is because of the major limitation of the Free-Wilson 

method where if there is a new fragment which is not in the training set, the activity 

prediction for a compound with such fragment becomes less accurate. However, FS-

QSAR method achieved average r2 values of 0.62 for COX2 inhibitor dataset and 0.68 for 

bis-sulfone dataset and performs better than the traditional Free-Wilson QSAR method 

because of the addition of fragment-similarity concept to the regression equation. 

In order to better compare the FS-QSAR model, 1-nearest-neighbor QSAR (1NN-

QSAR) analysis were performed. In this analysis, whole-molecule fingerprints were used 

to calculate similarities among testing and training molecules and the activity of the most 

similar training molecule was predicted as that of the testing molecule. Tripos Selector 

program [77] was used to generate fingerprints and calculate similarity scores. Using 

whole-molecule fingerprints allowed us not to split molecules into scaffolds and 

substituents as in the Free-Wilson and FS-QSAR methods and to better compare our 

method. It was observed that 1NN-QSAR failed to make any successful predictions on 

both COX2 and bis-sulfone datasets resulting in average r2 values of 0.37 and 0.21 

respectively (Table 2-9 and Table 2-10 “1NN-QSAR” column). The results implied that 
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non-linear whole-molecule-fingerprint 1-nearest-neighbor QSAR approach is not suitable 

for datasets containing highly similar molecules varied only to a small extent on R-

groups and the FS-QSAR approach is more appropriate for such studies. In addition, 

whole-molecule-fingerprint model may not be suitable for mechanistic interpretations 

whereas the FS-QSAR model improves the predictability of the original method while 

retaining the ease of mechanistic interpretation. In particular, for testing molecules 

having training fragments, one would interpret the model as one would in the Free-

Wilson model while for testing molecules having fragments other than training 

fragments, the FS-QSAR model provides most similar training fragments which are used 

in activity prediction of the testing molecule. These fragments may also be used in 

mechanistic interpretation since, for example, they may help a chemist in analog selection 

with which kind of fragments to further synthesize.  

Moreover, the BCUT similarity function as defined by Equation 2.2 had some 

intrinsic drawbacks and, in order to justify the function, the performance of the BCUT-

similarity function was compared to the traditional Tanimoto coefficient (Tc) similarity 

function (Equation 2.3). The BCUT-similarity function was simply replaced with the Tc 

similarity function and the quantitative activity prediction on the same testing sets was 

performed. The Tripos Selector program [77] was used for Tc value calculations. The FS-

QSAR with Tanimoto similarity function (FS-QSAR-Tanimoto) was tested on the same 

five testing sets used for testing the FS-QSAR with BCUT similarity function (FS-

QSAR-BCUT). Table 2-9 and Table 2-10 contain the prediction summaries for COX2 

inhibitor and bis-sulfone data sets. The average r2 on COX2 inhibitor testing datasets was 

0.62 from both FS-QSAR-BCUT and FS-QSAR-Tanimoto whereas the average r2 on bis-
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sulfone testing datasets were 0.68 and 0.62 respectively. It can be inferred that the 

BCUT-similarity function performs similarly as the Tc similarity function for COX2 

dataset and performs better for bis-sulfone dataset in terms of prediction accuracy (r2).  

In order to better compare the two similarity methods and further address an 

intrinsic drawback present in each similarity function, random fragment pairs from bis-

sulfone analogs were selected and the corresponding Tc and BCUT similarity scores were 

calculated. The scores were then plotted in Figure 2-1. The curve fitting line followed the 

functional form of BCUT = log (Tc) with r2 = 0.52 and it can be observed that for small 

Tc scores, BCUT scores did not agree well and there were significant score differences 

between those fragment pairs. However, they agreed with higher Tc similarity values. 

This illustrates the presence of inherent weakness in each method and can be better 

explained by looking at some of example fragment pairs from Figure 2-1. 7 fragment 

pairs (labeled circles) were selected and they are listed in Table 2-12. Pair 1 and 5 

illustrates that Tc similarity function is better than BCUT method because in pair 1, 

fragments are not similar and Tc scores reflect such dissimilarity but BCUT failed to do 

so. In pair 5, two fragments are identical except an extra ring in one of fragments and Tc 

score indicates they have approximately 60% similarity which is reasonable. On the other 

hand, pairs 2 and 7 shows BCUT method is superior to Tc method since in pair 2, 

fragments have similar pharmacophore features such as hydrogen bond donor/acceptor 

atoms and hydrophobic rings, and BCUT score reflects such similarities to some extent. 

In pair 7, two fragments are structurally identical, but they are not identical in terms of 

their electron environments and partial charges since they are attached to different 

substituent places on the bis-sulfone analogs. Such subtle differences can be captured by 
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BCUT method while Tc function fails to produce any difference between them. Pairs 3 

and 4 explain that both methods have weakness since both Tc and BCUT similarity 

scores do not reflect all the structural and feature similarities between each pair of 

fragments. For these two pairs, Tc scores were too low while BCUT scores were too 

high. However, in pair 6 the only difference between two fragments is an extra methyl 

group and both methods produce reasonable scores which mirror the similarity between 

fragments. Hence these particular fragment pairs show intrinsic drawbacks of each 

similarity function which reflect similarity scores and choices of similar fragments. 

However, it should be noted that the similarity function is used as a part of the FS-QSAR 

equation, and both similarity functions performed similarly and improved the traditional 

Free-Wilson QSAR method. 

2.5 CONCLUSION 

In this study, a novel and effective QSAR method has been developed to compensate the 

major limitation of the traditional QSAR method. As a result, the FS-QSAR method has 

an improved predictive power. The increased performance was attributed to the newly-

introduced fragment-similarity concept which tackles the major limitation of the original 

method. Two types of similarity functions were implemented in the FS-QSAR method 

for fragment similarity calculations. It was observed that the BCUT similarity function 

performed similarly as the Tc similarity function for COX2 dataset, and performed better 

for bis-sulfone dataset. The FS-QSAR method is for the first time presented as the 2D-

QSAR method using fragment similarity concept to model cannabinoid (bis-sulfone) 
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dataset and COX2 inhibitor dataset, showing the superior predictive power when 

compared to the traditional and 1NN-QSAR methods. To conclude, the FS-QSAR is 

robust and easier to implement with good prediction accuracy and this approach provides 

a novel fragment-based QSAR method which can potentially be a useful tool in 

fragment-based drug discovery for ligand biological activity prediction and analog 

selection. 
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Table 2-1. COX2 analogs [168] used for FS-QSAR modeling 

Compound R1 R2 R3 IC50 (µM)
3-5 -4-SO2Me -4-Cl -Me 0.24 
3-6 -4-SO2Me  -4-Cl -CF3 0.11 
3-9 -4-SO2Me  -4-F -CF3 0.1 
3-10 -4-SO2Me  -H -CF3 0.12 
3-11 -4-SO2Me  -4-Me -CF3 0.16 
3-12 -4-SO2Me  -4-OMe -CF3 0.57 
3-13 -4-SO2Me  -4-NHMe -CF3 1.47 
3-14 -4-SO2Me  -4-NMe2  -CF3 0.7 
3-15 -4-SO2Me  -4-SMe -CF3 0.16 
3-17 -4-SO2Me  -4-SO2Me -CF3 5.7 
3-18 -4-SO2NH2  -4-Cl -CF3 0.01 
3-19 -4-SO2NH2  -4-F -CF3 0.01 
3-20 -4-SO2NH2  -H -CF3 0.04 
3-21 -4-SO2NH2  -4-Me -CF3 0.04 
3-22 -4-SO2Me  -3-Cl -CF3 0.06 
3-23 -4-SO2Me  -3-F -CF3 0.12 
3-24 -4-SO2Me  -3-Br -CF3 0.08 
3-25 -4-SO2Me  -3-Me -CF3 0.06 
3-26 -4-SO2Me  -3-CF3  -CF3 0.21 
3-27 -4-SO2Me  -3-OMe -CF3 0.35 
3-28 -4-SO2Me  -3-SMe -CF3 0.35 
3-29 -4-SO2Me  -3-CH2OMe  -CF3 68.1 
3-30 -4-SO2Me  -3-NMe2  -CF3 3.2 
3-31 -4-SO2Me  -3-NHMe -CF3 0.92 
3-32 -4-SO2Me  -3-NH2  -CF3 5.89 
3-33 -4-SO2Me  -3-NO2  -CF3 0.58 
3-34 -4-SO2NH2  -3-Cl -CF3 0.008 
3-35 -4-SO2NH2  -3-F -CF3 0.03 
3-36 -4-SO2NH2  -3-Br -CF3 0.007 
3-37 -4-SO2NH2  -3-Me -CF3 0.03 
3-38 -4-SO2Me  -2-Cl -CF3 0.9 
3-39 -4-SO2Me  -2-F -CF3 0.4 
3-40 -4-SO2Me  -2-Me -CF3 0.8 
3-42 -4-SO2NH2  -2-F -CF3 0.1 
3-43 -4-SO2NH2  -2-Me -CF3 0.2 
3-44 -4-SO2Me  -4-OMe-3-F -CF3 0.15 
3-45 -4-SO2Me  -4-OMe-3-Cl -CF3 0.13 
3-46 -4-SO2Me  -4-SMe-3-Cl -CF3 0.04 
3-47 -4-SO2Me  -4-NMe2-3-Cl  -CF3 0.32 
3-48 -4-SO2Me  -4-NMe2-3-F -CF3 0.33 
3-49 -4-SO2Me -4-NHMe-3-Cl -CF3 0.66 
3-50 -4-SO2Me  -4-Me-3-Cl -CF3 0.03 
3-51 -4-SO2Me  -4-Me-3-F -CF3 0.11 
3-52 -4-SO2Me  -3-Me-4-F -CF3 0.17 
3-53 -4-SO2Me  -3-Me-4-Cl -CF3 0.09 
3-54 -4-SO2Me  -3-OMe-4-Cl -CF3 0.25 
3-55 -4-SO2Me  -3-NMe2-4-Cl  -CF3 1.04 
3-56 -4-SO2Me -3,4-OCH2O -CF3 0.17
3-57 -4-SO2Me  -3,4-F -CF3 0.12 
3-58 -4-SO2Me  -3,4-Me -CF3 0.33 
3-59 -4-SO2Me  -3-Me-5-Cl -CF3 0.08 
3-60 -4-SO2Me  -3-Me-5-F -CF3 0.11 
3-61 -4-SO2Me  -3-OMe-5-F -CF3 0.96 
3-63 -4-SO2Me  -3,5-Cl -CF3 0.17 
3-66 -4-SO2NH2  -4-OMe-3-F -CF3 0.03 
3-67 -4-SO2NH2  -4-OMe-3-Cl -CF3 0.02 
3-68 -4-SO2NH2  -4-OMe-3-Br -CF3 0.03 
3-69 -4-SO2NH2  -4-SMe-3-Cl -CF3 0.01 
3-70 -4-SO2NH2  -4-Me-3-Cl -CF3 0.003 
3-71 -4-SO2NH2  -3-OMe-4-Cl -CF3 0.02 
3-72 -4-SO2NH2  -3,4-F -CF3 0.03 
3-73 -4-SO2NH2  -3-Me-5-Cl -CF3 0.04 
3-74 -4-SO2NH2  -3-Me-5-F -CF3 0.03  
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3-75 -4-SO2NH2  -3-OMe-5-Cl -CF3 0.46 
3-76 -4-SO2Me  -4-OMe-3,5-F -CF3 0.17 
3-77 -4-SO2Me  -4-OMe-3,5-Cl -CF3 0.14 
3-78 -4-SO2Me  -4-OMe-3,5-Br -CF3 0.09 
3-79 -4-SO2Me -4-OMe-3,5-Me -CF3 0.72 
3-80 -4-SO2Me -4-OMe-2,5-Me -CF3 12.2 
3-81 -4-SO2Me -4-NMe2-3,5-Cl -CF3 0.14 
3-82 -4-SO2NH2  -4-OMe-3,5-F -CF3 0.03 
3-87 -4-SO2Me 4-Cl -CHF2 0.61 
3-88 -4-SO2Me  -4-Cl -CH2F 0.41 
3-89 -4-SO2Me -4-Cl -CHO 1.6 
3-90 -4-SO2Me -4-Cl -CN 0.23 
3-91 -4-SO2Me  -4-Cl -CO2Et 5.7 
3-96 -4-SO2Me -4-Cl -Ph 0.24 
3-97 -4-SO2Me  -4-Cl -CH2OC6H4-4-Cl 0.03 
3-98 -4-SO2Me  -4-Cl -CH2SC6H4-4-Cl 0.05 
3-99 -4-SO2Me  -4-Cl -CH2OMe 3.72 
3-100 -4-SO2Me  -4-Cl -CH2OH 8.35 
3-101 -4-SO2Me  -4-Cl -CH2SMe 0.32 
3-103 -4-SO2Me  -4-Cl -CH2CN 1.54  
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Table 2-2. Bis-sulfone analogs from Shankar et al. [155] used for FS-QSAR modeling 

 

Note: A combination of Table 2-2, Table 2-3 and Table 2-4 represents all 85 bis-sulfone 

compounds used in this work. The unit for Ki values is nM.  
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Table 2-3. Bis-sulfone analogs from Lavey et al. [153] used for FS-QSAR modeling 
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Table 2-4. Bis-sulfone analogs from Lavey et al. [154] used for FS-QSAR modeling 
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Table 2-5. A list of COX2 analogs for 
5 different testing sets 
Testing Set Compound Testing Set Compound

1 3,6 3 3,37
1 3,12 3 3,47
1 3,20 3 3,51
1 3,34 3 3,69
1 3,40 3 3,74
1 3,57 3 3,75
1 3,60 3 3,78
1 3,68
1 3,69 4 3,9
1 3,70 4 3,10
1 3,76 4 3,19
1 3,90 4 3,32
1 3,97 4 3,34
1 3,99 4 3,36

4 3,44
2 3,10 4 3,45
2 3,12 4 3,46
2 3,14 4 3,57
2 3,23 4 3,63
2 3,27 4 3,66
2 3,28 4 3,67
2 3,32 4 3,78
2 3,38
2 3,40 5 3,5
2 3,42 5 3,14
2 3,59 5 3,19
2 3,66 5 3,36
2 3,74 5 3,40
2 3,91 5 3,42

5 3,48
3 3,9 5 3,58
3 3,10 5 3,59
3 3,11 5 3,61
3 3,12 5 3,70
3 3,15 5 3,77
3 3,24 5 3,80
3 3,32 5 3,90  

 

 

 

 

 

 

Table 2-6. A list of bis-sulfone 
analogs for 5 different testing sets 
 

Testing Set Compound Testing Set Compound
1 1,29 3 2,4p
1 1,15 3 3,18
1 2,4b 3 3,20
1 2,4k 3 3,36
1 2,4p
1 3,26 4 1,33
1 3,29 4 1,15
1 3,42 4 1,46

4 1,52
2 1,24 4 2,4b
2 1,31 4 3,24
2 1,19 4 3,33
2 1,39 4 3,43
2 2,4i
2 3,29 5 1,32
2 3,40 5 1,18
2 3,50 5 1,41

5 1,43
3 1,1 5 1,47
3 1,44 5 2,4L
3 2,2 5 2,4p
3 2,4n 5 3,39  
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Table 2-7. Results of leave-one-out cross-validation (LOOCV) on COX2 analogs 

Training Set Q2 Scaling Factor L  or H
1 0.60 0.05 L
2 0.63 0.66 L
3 0.63 0.69 L
4 0.58 0.71 L
5 0.60 0.06 L  

q2 = leave-one-out cross-validated correlation coefficient; L or H = Lowest or Highest eigen values used. 

Table 2-8. Results of leave-one-out cross-validation (LOOCV) on bis-sulfone analogs 

Training Set Q2 Scaling Factor L  or H
1 0.64 0.36 H
2 0.49 0.36 H
3 0.63 0.38 L
4 0.58 0.36 H
5 0.65 0.06 L  

Table 2-9. Result summary on five COX2 testing sets 

 Correlation coefficients (R2) 

Testing Set Free-Wilson QSAR FS-QSAR (BCUT) FS-QSAR (Tanimoto) 1NN-QSAR 

1 0.70 0.69 0.69 0.38 

2 0.39 0.56 0.53 0.35 

3 0.07 0.53 0.46 0.18 

4 0.45 0.69 0.76 0.41 

5 0.69 0.65 0.65 0.52 

average R2 0.46 0.62 0.62 0.37 

standard deviation 0.26 0.08 0.12 0.12 

variance 0.07 0.01 0.01 0.02 

FS-QSAR (BCUT) = FS-QSAR using BCUT similarity function; FS-QSAR (Taminoto) = FS-QSAR using 
Tanimoto similarity function; 1NN-QSAR = 1-nearest-neighbor QSAR 
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Table 2-10. Result summary on five bis-sulfone testing sets  

   Correlation coefficients (R2)   

Testing Set Free-Wilson QSAR FS-QSAR (BCUT) FS-QSAR (Tanimoto) 1NN-QSAR 

1 0.00 0.55 0.14 0.02 

2 0.82 0.77 0.87 0.39 

3 0.02 0.78 0.64 0.14 

4 0.67 0.56 0.63 0.38 

5 0.60 0.74 0.82 0.14 

average R2 0.42 0.68 0.62 0.21 

standard deviation 0.39 0.12 0.29 0.16 

variance 0.15 0.01 0.08 0.03 

 



 68 

Table 2-11. Fragment pairs and their BCUT-similarity scores for each bis-sulfone testing set.  

BCUT scores were calculated using eigen values that were derived based on the 
parameters listed in the table. SF = scaling factor; H or L = Highest or Lowest eigen values used. 

 

Testing 
compound Set

Testing fragment 
not found in training set

Chosen 
training fragment

Substituent 
position

Parameters
(H or L)_SF

BCUT 
Sim Score

1,29 1 3-CF3 3-F Y H_0.36 0.9962

1,15 1 C-(C:CH2)-C C-(C=O)-C L2 H_0.36 0.9286

2,4b 1 (C=O)-Ethyl (CONH)-Propyl Z H_0.36 0.9964

2,4k 1 (SO2)-Ethyl (C=O)-Trifluoromethyl Z H_0.36 0.9921

2,4p 1 (SO2)-Benzyl (C=O)-p-Toluyl Z H_0.36 0.9994

3,26 1 NHCOCF3 SO2CH3 Z H_0.36 0.9931

3,29 1 NCH2CF3 (C=O)-t-Butyl Z H_0.36 0.9862
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Figure 2-1. A plot of Tanimoto (Tc) vs. BCUT similarity scores of random fragment pairs from 

bis-sulfone analogs. The labeled points are the selected fragment pairs listed in Table 2-12. 
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Table 2-12. Fragment pairs chosen in Figure 2-1 and their corresponding similarity scores 
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3.0  NEW QSAR PREDICTION MODELS DERIVED FROM GPCR CB2-

ANTAGONISTIC TRIARYL BIS-SULFONE ANALOGS BY A COMBINED 

MOLECULAR MORPHOLOGICAL AND PHARMACOPHORIC APPROACH 

3.1 INTRODUCTION 

Among several ligand-based virtual screening technologies as discussed in Section 1.2.2, 

pharmacophore modeling has been used extensively in drug discovery research to search for 

novel lead  compounds in both academic and pharmaceutical industry environments [166, 182]. 

Common pharmacophore features derived from known ligands are often used to search 

compound databases such as PubChem database [183, 184] in order to identify molecules with 

similar molecular features as potential bioactive ligands. On the other hand, such 

pharmacophore-based methods do not often consider molecular morphological or shape 

characteristics of a bioactive ligand which is also an important property for a ligand to bind to an 

active site of a receptor. In fact, both pharmacophoric feature compatibility and molecular 

surface complementarity between a ligand and its receptor would influence its binding to the 

receptor. In other words, in-silico screened hits based solely on a pharmacophoric model may or 

may not be bioactive since recognition of small molecules by a protein receptor is also mediated 

by molecular surface complementarity [82]. In fact, molecular shape similarity search approach 

is emerging as a valuable ligand-based virtual screening strategy. However, there is still not a 
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good score function that has been developed by combining both pharmacophoric features and 

molecular surface similarity to evaluate and rank virtual screening hits from ligand-based drug 

design procedures.  

 In this work, a novel QSAR ranking score function was developed to exploit the 

combination of both pharmacophoric features and molecular shape similarity in order to predict 

bioactivities of hits from a ligand-based virtual screening process. A set of triaryl bis-sulfonal 

derivatives regarded as CB2 antagonists was used to generate the QSAR model employing 

pharmacophore and shape-based descriptors as well as other calculated molecular properties. In 

our studies, four bioactive triaryl bis-sulfones were first applied to produce a 3D pharmacophore 

model using Sybyl/GALAHAD program [82]. According to the CB2 antagonistic SAR results 

[153-155] of bioactive triaryl bis-sulfonal derivatives, the simulated pharmacophore model was 

then modified to eliminate unnecessary pharmacophore features. The refined pharmacophore 

query was then used for virtual screening of a compound database containing 45 triaryl bis-

sulfonal derivatives to determine their pharmacophoric similarity using the Sybyl/UNITY 

module [96]. Furthermore, the same four triaryl bis-sulfones were employed to build up 

hypermolecular superimposition hypothesis by using a shape-based molecular alignment 

algorithm. The generated hypothesis was regarded as a structural template to measure the 

molecular shape similarity of 45 triaryl bis-sulfonal compounds using the Surflex-Sim program 

[185]. The whole database of 45 triaryl bis-sulfonal compounds was then randomly split into two 

datasets, a training set of 25 compounds and a test set of 20 compounds. By combining 

pharmacophore-based molecular similarity, shape-based molecular similarity, and calculated 

molecular properties (e.g., molecular weight, ClogP, molecular volume, molecular polar area as 

descriptors), a QSAR model was generated with partial least squares (PLS) regression analysis 
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using the training set of compounds. The developed pharmacophore and shape-based (or 

Pharmshape) QSAR score function allowed us to predict the Ki values of 20 triaryl bis-sulfones 

in the test dataset. Our results suggested that the established Pharmshape computational 

algorithm which generates QSAR prediction models by combining pharmacophore-based 

molecular similarity and shape-based molecular similarity can be used to predict the biological 

properties of untested compounds or virtual hits obtained from ligand-based virtual screening 

studies. 

3.2 METHODS 

3.2.1 Pharmacophore-based molecular similarity calculation 

In our studies, four highly CB2 selective triaryl bis-sulfones, namely compounds 2, 5, 8, and 11 

in Table 3-1, were first selected to develop pharmacophoric queries for this class of CB2 

antagonist using Sybyl/GALAHAD program [82]. They were aligned based on their 

pharmacophoric features to produce pharmacophore hypotheses. The default definitions included 

six types of features: H-bond donor and acceptor atoms, positive nitrogen, negative and 

hydrophobic centers, and steric features.  The alignment process was divided into two stages. 

The selected ligands were first aligned to each other in an internal coordinate space with an 

advanced genetic algorithm (GA) to allow ligand flexibility and the generation of a molecular 

alignment was then based on the superimposition of their pharmacophoric features in the GA-

generated conformations of ligands in the Cartesian space. In order to get rational 

hypermolecular alignments, the population size and max generations for the GA simulation were 
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set up to 200 and 15000, respectively. Other default parameters for genetic operators were 

Chromosome-Torsion options and Chromosome-Conformer options such as Mutation Rate (0.4, 

0.2), Mutation Decay (1.0, 1.0), and Crossover Rate (1.0, 1.0) in the Tripos/GALAHAD program 

[82]. The GALAHAD scoring terms include H-bonding, Sterics, and Energy. After GALAHAD 

simulations, the generated pharmacophore model was modified to delete the unnecessary 

pharmacophoric features and to retain the pharmacophoric features required for their 

bioactivities based on the SAR studies of triaryl bis-sulfones as CB2 antagonists [153-155]. 

Following the simulation and modification of the pharmacophore model for triaryl bis-sulfones, 

the model was used as a query to search a compound training dataset composed of 45 bioactive 

triaryl bis-sulfones listed in Table 3-1 and Table 3-2 via the Tripos/UNITY program. A QFIT 

value was computed for each screened compound hit to rank the matching rate of its required 

structural features on the pharmacophoric query. 

3.2.2 Morphology-based molecular similarity calculation 

In our studies, the Surflex-Sim program [185] was utilized to conduct the shape-based molecular 

similarity comparison among the triaryl bis-sulfones as CB2 antagonists. Surflex-Sim [185] is 

one of the shape-based molecular similarity computational methods. It utilizes a morphological 

similarity function and a fast pose generation technique to make putative alignments of 

molecules or molecular fragments to other molecules. The same four triaryl bis-sulfones 

(compounds 2, 5, 8, and 11 in Table 3-1) used in the pharmacophore-based modeling were 

applied to develop the hypermolecular superimposition/alignment hypotheses based on their 

morphological similarity. This was achieved by the Surflex-Sim Mutual Alignment mode in the 

Surflex-Sim program. The default parameters were selected with a max of 20 conformations per 
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fragment, additional starting conformations of 0 per molecule, and a maximum number of 100 

rotatable bonds per molecule to ensure valid geometries of four triaryl bis-sulfones to the 

hypothesis generated during the calculation. After simulation, the generated superimposition 

hypotheses were sorted by scores ranging from 0 to 1 with a higher score indicating a better 

alignment. The best-scored hypothesis was chosen to serve as a template in the subsequent 

calculation for the measurement of the shape-based molecular similarity. After generating the 

shape alignment hypothesis as a template, it was then applied to perform a molecular shape 

similarity comparison to all 45 triaryl bis-sulfones (Table 3-1 and Table 3-2) using the Surflex-

Sim Flexible Superposition mode in the program with the same default parameters as stated 

before. Such shape-based alignment simulations resulted in molecular poses and corresponding 

similarity scores of all bis-sulfone analogs to the alignment hypothesis generated based on four 

highly bioactive bis-sulfones.  

3.2.3 QSAR model generation 

QSAR analyses are often used to derive relationships between the molecular properties of 

compounds and their biological activities by statistical methods [186]. In order to develop a 

reliable QSAR model for triaryl bis-sulfones as CB2 antagonists, additional molecular 

properties, including molecular weight, ClogP, molecular volume, molecular polar volume, 

molecular polar surface area, and molecular area, were calculated using Tripos/Sybyl [82]. 

Besides molecular weight and ClogP, other molecular properties were defined as follows. The 

molecular polar surface area [187] was computed as a solvent accessible surface to all O, N, and 

S as well as protons covalently bonded to these atoms, essentially a van der Waals (vdWs) 

surface with inflated radii in a compound. Molecular area is defined as the total surface area of a 



 78 

compound. Similarly, molecular polar volume was computed as the polar volume corresponding 

to all O, N, and S atoms as well as hydrogen atoms covalently bonded to these atoms in a 

compound. Molecular volume is defined as the total volume of a compound. These molecular 

properties as well as the dipole moment were calculated for all 45 triaryl bis-sulfones based on 

their conformations that resulted from the previous shape-based simulation. After the molecular 

properties of 45 triaryl bis-sulfones were calculated, the PLS regression analyses were performed 

to derive QSAR regression models between the CB2 receptor binding affinities (Ki) and 

molecular descriptors including query fit (QFIT) values (from pharmacophore-based modeling), 

the molecular morphology similarity scores (from shape-based modeling), and the calculated 

molecular properties using a training database of 25 triaryl bis-sulfones (Table 3-1). In particular, 

with different combinations of molecular properties, QFIT, and morphological similarity score, 

the PLS analyses were performed with a “Leave-One-Out” cross-validation to get an optimal 

number of components. Then, the calculated component value was used for the PLS analysis 

with no-validation to get the regression equation representing the relationship between pKi (-log 

Ki), and molecular descriptors including molecular properties, QFIT, and similarity score. In the 

mean time, r2 and standard error of the estimates were determined to characterize the predictive 

ability of the generated Pharmshape-QSAR model. The generated QSAR model was further 

validated using a test set of 20 triaryl bis-sulfones (Table 3-2). 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Generation of the pharmacophore model and score of the pharmacophoric match 

Figure 3-1 (Left) shows four representative computer-generated hypermolecular alignments 

(templates) and their corresponding pharmacophore queries generated from four triaryl bis-

sulfones, including compounds 2, 5, 8, and 11. A pharmacophore is an ensemble of steric and 

electronic features that are necessary for a ligand to have for optimal molecular interactions with 

a specific biological target and to trigger (or block) its biological response [188]. In principle, a 

pharmacophore model could be simulated by deriving common essential structure characteristics 

responsible for their bioactivities based on molecular alignment of a set of known bioactive 

ligands. The generated pharmacophore model could then be applied to virtually screen a 

compound database for chemically-diverse molecules that share similar structural features and 

their relative spatial arrangement defined in the pharmacophore model. 

Other important results are also given in Figure 3-1 (Left) for each GALAHAD-

generated pharmacophore model. For example, the ENERGY term of computer-generated 

pharmacophore model A is 6.78 kcal/mol, which designates the total energy (using the Tripos 

force field) of all four molecules in their respective conformations encoded in the torsional 

chromosome. Meanwhile, the values of STERICS, HBOND, and MOL_QRY were computed to 

be 5052.30, 277.10 and 200.25 respectively in the model A. In the GALAHAD algorithm, 

STERICS is defined as the overall steric similarity among ligand conformers, HBOND as the 

overall pharmacophoric similarity among ligand conformers, and MOL_QRY as the agreement 

between the query tuplet and the pharmacophoric tuplets of  target ligands as a group [96]. In 

general, a good pharmacophore model should  have a maximized steric consensus, maximized 



 80 

pharmacophore consensus, and minimized energy. As shown in Figure 3-1 (Left), the 

pharmacophore model A had the highest values of STERICS and MOL_QRY, the second 

highest value of HBOND, and the lowest value of ENERGY in the comparison with the other 

three models.  Thus, the model A was selected as the final pharmacophore model for triaryl bis-

sulfones.  

As illustrated in Figure 3-1 (A), the GALAHAD-generated pharmacophore model A 

consists of five H-bond acceptor features (AA_1, AA_2, AA_5, AA_6, AA_7), an H-bond donor 

feature (DA_1), and three hydrophobic centers (HY_8, HY_9, HY_10). Obviously, an active 

pharmacophore model of a typical small molecule does not require so many hypothetic 

pharmacophore features, which is reflected by a low Specificity value of 4.32 for the model A.  

The GALAHAD-calculated term Specificity [82] is a logarithmic indicator of an expected 

discrimination for each query based on its numbers of pharmacophore features, their allotment 

across any partial match constraints, and the degree to which the features are separated in space. 

Since the Specificity value of the model A is below 5, the query could not be directly used for a 

UNITY flexible search and it was needed to be manually modified. It was also clear that not 

every pharmacophoric feature in the model A was necessary or should be weighted equally for 

their bioactivities according to the published SAR studies [153-155] of triaryl bis-sulfones as 

CB2 antagonists. For example, some compounds, such as compounds 1 to 5 in Table 3-1, with a 

methylene-linkage but no sulfone-linkage between rings A and B show high CB2 binding 

activity. Thus there is no H-bond structural feature necessary in the corresponding position. 

Another thing to consider is that each oxygen atom in the sulfone group could be treated as an H-

bond acceptor feature in the GALAHAD results. As a result, there are two closed H-bond 

acceptor features in the L1 and L2 (AA_5 and AA_6) positions or in the Z (AA_1 and AA_2) 
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position (Figure 3-1 (A) and Table 3-1). There are several bioactive compounds in Table 3-1 and 

Table 3-2 with only a carbonyl group in either L1 or Z position. Therefore, only one H-bond 

acceptor feature is enough in either L1 or Z site for this class of CB2 antagonist ligands. There is 

no biological data to indicate that the AA_7 feature on the 4- substituent position of B-ring is 

required for the bioactivity of ligands binding to the CB2 receptor. Previous pharmacological 

data show that the aromatic ring is necessary only at the ring B position but not for the rings A 

and C positions to be bioactive as CB2 antagonists. As a result, the hydrophobic center HY_9 

was re-defined as an aromatic center but HY_8 and HY_10 were kept as hydrophobic centers. 

Based on the SAR discussion above, the pharmacophore model was modified accordingly to a 

query consisting of two hydrophobic centers, an aromatic center, two H-bond acceptors, and an 

H-bond donor as shown in Figure 3-2 (Left). This refined pharmacophore model was used as a 

hypothetic query in the next UNITY database screening.  

After the 3D flexible UNITY database search using the pharmacophore query defined in 

Figure 3-2 (Left), all 45 ligands in both training set and test set were returned as “hits”. UNITY 

uses a query fit (QFIT) as a score to measure the feature match value of a hit to the 

pharmacophore model. The QFIT value for each ligand was summarized in Table 3-3 and Table 

3-4. The QFIT score is a value between 0 and 100, where 100 is the best and represents how 

close the ligand’s features match the query’s. The QFIT value could be regarded as a measure of 

the degree of closeness that the hit pharmacophore matches the corresponding query features 

coordinates within the certain range of a spatial constraint tolerance. The closer the fit is, the 

higher the value is. However, the later statistical results indicated that the QFIT values of ligands 

did not have a strong correlation with their Ki values.  In fact, this is one of the reasons to 
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develop a QSAR model by not only considering pharmacophore features but also other 

morphological properties. 

3.3.2 Generation of hypermolecular alignment and scoring of shape-based molecular 

similarity 

In the current study, the Surflex-Sim program [185] was applied to perform molecular shape-

based virtual screening simulation using triaryl bis-sulfone analogs. By using molecular 

fragmentation to address molecular flexibility and Gaussian-like function to score molecular 

shape similarity, Surflex-Sim generates putative alignments of molecules or molecular fragments 

to other molecules. Figure 3-1 (Right) illustrates four hypermolecular alignments generated from 

4 highly bioactive bis-sulfones by the Surflex-Sim program.  One of them will be used as a 

template for the calculation of shape-based molecular similarity. 

 Pharmacophore-based design methods seek to identify important molecular feature 

points, assumed to directly interact with proteins, within a range of tolerances among them. 

However, molecular surface complementarity, which is not generally considered in the 

pharmacophore-based or fingerprint-based methods, plays a critical role in the recognition of 

small molecules by their receptors. As described above, a pharmacophore-based virtual 

screening procedure is based on a structural template with a spatial arrangement of important 

molecular interaction features. Such a method does not consider the molecular volume of a 

bioactive ligand, which is also a critical property of a ligand binding to its receptor. Therefore, 

pharmacophore consistency alone does not mean that the screened hits will have a similar 

binding capability at a protein as a true bioactive ligand. This is because molecular structure (or 

morphological) inconsistency could block a small molecule fitting into a binding pocket of a 
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protein. Thus, shape consistency should also be considered as a necessary condition in ligand-

based virtual screening.  In fact, such molecular morphological features have become 

increasingly important factors in order to improve virtual screening effectiveness during the 

identification of high-quality leads [189-191]. 

In our shape-based simulation of four triaryl bis-sulfones, 100 hypotheses, with their 

shape similarity scores, were generated. As shown in Figure 3-1 (Right), molecular alignments 

were first performed for four representative superimposition triaryl bis-sulfones models with 

varied surface similarity scores. The data shows that the generated four hypermolecular 

alignments have the Surflex-Sim scores in a range of 0.468 to 0.482. The highest score alignment 

(Hypothesis_30, model III) in Figure 3-1 (Right) was then chosen as a morphological template to 

score shape-based similarity for all 45 triaryl bis-sulfones. The result also indicated that the 

shape hypothesis was quite similar to the molecular alignment models produced by 

pharmacophore based method when the pharmacophore model A (Figure 3-1 (A) or Figure 3-2 

(Left)) and the shape-based model III (Figure 3-1 (III)) were superimposed. Figure 3-2 (Right) 

illustrates the MOLCAD-generated graphical representation of a combination of Surflex-Sim 

shape hypothesis and the GALAHAD pharmacophoric query. Such a congruent result provided 

us a foundation for further QSAR model calculation by the combined pharmacophoric and 

morphological approaches.  

 Unlike pharmacophoric feature modeling using  a pharmacophore-based method, 

Gaussian-like morphological similarity function [185] makes the molecular alignment procedure 

much more complicated and slower than the pharmacophore-based alignment since it is 

dependent on surface shape and atomic charge characteristics of the ligands. Our Surflex-Sim 

simulation studies indicated that Surflex-Sim had a slow screening rate due to the intrinsic 
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properties of the Surflex-Sim search and match algorithm [185]. Such a slow screening speed 

would not be efficient enough for computer-aided virtual screening of a huge compound 

database like PubChem compound database [192]  containing more than 15 million compounds. 

Therefore, the Surflex-Sim method was used to screen a focused library that has a limited 

number of compounds from a pharmacophore-based virtual screening. Such a secondary search 

filtered out molecules with incompatible shapes.  

 Therefore, based on the selected optimal hypothetic alignment that has the highest 

morphological similarity score as the template, flexible superimposition searches were then 

carried out to calculate shape similarity score for each compound in Table 3-1 and Table 3-2. 

Calculated shape-based molecular similarity scores (Surflex-Sim Search score, SSS) were 

summarized in Table 3-3 and Table 3-4.  The later statistical analyses indicated that the shape-

based molecular similarity has a much better relationship with molecular biological activity than 

QFIT. Our results also revealed that when the shape-based molecular similarity was applied to 

rank the screened hits from the pharmacophore-based virtual screening, it improved the hit rate 

of ligand-based virtual screening in the identification of potential bioactive leads as discussed 

below. 

3.3.3 Development of the PharmShape algorithm based on the QSAR prediction model 

In addition to the QFIT value from a pharmacophore-based query search and the SSS 

(morphological similarity score) values from Surflex-Sim search, other calculated molecular 

properties, including molecular weight, ClogP, molecular volume, molecular polar volume, 

molecular area, molecular polar surface area, and dipole moment for all of 45 triaryl bis-sulfones 

are summarized in Table 3-3 and Table 3-4. By incorporating these 2D/3D molecular 
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descriptors, the QSAR prediction models were developed to predict biological activity (Ki) 

values.  This was done by partial least squares (PLS) regression using a training set of 25 triaryl 

bis-sulfones listed in Table 3-3. The PLS analyses were performed with the leave-one-out cross 

validation (LOOCV) to get an optimal number of components with  different combination of 

molecular properties, QFIT and morphological similarity score. Then, with the calculated 

component value, non-cross-validated PLS analysis with “No Validation” was performed to get a 

regression equation representing the relationship between Ki and the defined molecular 

descriptors. Cross-validated 2
cvr , non cross-validated r2, and standard error of estimates were 

determined to characterize the predictive ability of the generated QSAR model. They are defined 

[82] as follows:  
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where SD is the sum of the squared deviations of each biological property value from their mean; 

PRESS (PRedictive Error Sum of Squares) is the sum, over all compounds, of the squared 

differences between the actual and “predicted” biological property values; N is number of 
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descriptors; n is number of components; pKi(pred) is the calculated –logKi; pKi(expt) is experimental 

–logKi; pKi(mean) is the best estimate of the mean of all values that might be predicted. 

 Table 3-5 summarizes the PLS analysis results of the generated quantitative 

relationships between the bioactivity pKi and different combinations of pharmacophore QFIT 

value, morphological similarity SSS score, and calculated molecular properties. The low r2 value 

(0.05) of the model 1 indicates the QFIT value could not be directly applied to judge whether the 

hit is a good lead or if it should be selected for further experimental bioassay testing. A better r2 

value (0.77) of model 2 suggests that morphological similarity score (SSS) has much better 

relationship with pKi than QFIT.  In addition, statistical analysis with the combination of SSS 

and QFIT values (the model 3 in Table 3-5) did not significantly improve the relationship 

between pKi and two score values, showing r2 value of 0.78. Furthermore, as shown from models 

3 to 13 listed in Table 3-5, incorporating calculated molecular properties into statistical analyses 

significantly improved the 2
cvr value up to 0.84, in particular the model 4 showing a good 

relationship between -logKi and the combination of pharmacophore-based and shape-based 

molecular similarity, as well as molecular area and molecular polar area descriptors.   

 QSAR models 14 to 27 represent additional different combinations of the calculated 

descriptors for PLS analyses, showing no improvement of 2
cvr  value in comparison with that of 

model 4. PLS analysis without QFIT value produced QSAR models 28 and 30 with the low r2 

values of 0.77 and 0.78, respectively, suggesting a decreased relationship between pKi and the 

combination of Surflex-Sim score and calculated molecular properties. In addition, no good 

QSAR relationships were achieved by using only the calculated molecular properties descriptors 

without shape-based and pharmacophore-based descriptors. For example, 2
cvr  was 0.36 when PLS 

analysis was performed to generate the relationship between -logKi and molecular properties of 
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molecular weight, ClogP, molecular area, molecular volume, molecular polar area, molecular 

polar volume, and Dipole_Moment. Our results demonstrated that both pharmacophore-based 

molecular similarity (QFit) and shape-based molecular similarity (SSS) played important roles in 

generating QSAR models. 

 Thus, it was concluded that the highest 2
cvr  and r2 values (Model 4 in Table 3-5) were 

obtained when PLS analysis was used to generate the relationship between bioactivity -logKi and 

the combination of pharmacophore similarity, shape similarity, molecular surface area, and 

molecular polar surface area. Such an analysis gave the following regression equation for the 

generated QSAR prediction model:  

 

-logKi  =  -10.675 + 22.595 * SSS + 0.016 * QFIT – 0.005 * MolSA + 0.014 

* MolPSA 

( 3.4 ) 

where SSS is molecular surface similarity score obtained from Surflex-Sim similarity; QFIT is 

pharmacophore feature fit obtained from UNITY based on GALAHAD-generated 

pharmacophore query; MolPSA is molecular surface area; and MolPSA is molecular polar 

surface area. The equation do not enclose other molecular properties, including molecular polar 

volume (MolPV), molecular volume (MolVol), ClogP, molecular weight (MW), and molecular 

Dipole_Moment (DM) descriptors as shown in Table 3-3, because these molecular descriptors 

decreased the value of 2
cvr  in PLS analyses as indicated in Table 3-5.  

In order to evaluate the robustness of our generated Pharmshape QSAR model validated 

by the leave-one-out cross validation protocol, progressive scrambling method, which was 

developed by Clark [193, 194], was further carried out to examine our generated QSAR model 

that correlates molecular bioactivities of pKi with their SSS, QFIT, MolSA, MolPSA. With the 
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number of components set to 3, triple screen mode and other default parameters defined in the 

Scrambling Stability Test of QSAR module in Tripos Sybyl [82], the progressive scrambling 

produced the values of r2
yy’, cSDEP (cross-validated standard error of prediction), and dq2’/dr2

yy’ 

as 0.61, 0.81, and 1.03, respectively. According to the literature and Sybyl QSAR manual [82, 

193, 194], dq2/dr2yy’ is regarded as the critical statics in progressive scrambling. In general, 

QSAR model will be accepted as stable when dq2’/dr2
yy’ is less than 1.20, and stable models have 

the dq2’/dr2
yy’ values of near unity. Therefore, the progressive scrambling test demonstrated that 

our generated Pharmshape QSAR has reliable predictive capability.         

After the Pharmshape QSAR model was derived from the training set of compounds 

shown in Table 3-1, compounds listed in Table 3-2 were then used to test the model. The 

predicted pKi values for the test set were summarized in Table 3-4.   As shown in Figure 3-3, the 

linear relationship plotting between the calculated and measured Ki values of all of 45 

compounds in both training set ( 2
cvr  = 0.84, Table 3-5) and test set ( 2r =0.89, Table 3-5) reveals a 

good correlation for the QSAR score function model for the binding affinities of triaryl bis-

sulfones as CB2 antagonists. Our results confirmed that the QSAR model generated from the 

training dataset has a relatively good prediction capability of the receptor binding affinity for the 

testing dataset.  Again, our studies concluded that both pharmacophore feature similarity and 

molecular shape similarity have positive influence to the prediction of the biological activity of a 

ligand. 
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3.4 CONCLUSION 

In this chapter, our presented a successful work of generating QSAR score function model by 

combining pharmacophoric and morphological approaches. The developed QSAR prediction 

model for triaryl bis-sulfones as CB2 antagonist indicated that there was a good structure-activity 

relationship between their bioactivities and the combination of pharmacophore-based molecular 

similarity, shape-based molecular similarity, and calculated molecular properties. The PLS cross-

validation (training set) 2
cvr  value of 0.84 and no-validation (test set) r2 value of 0.89 conclude 

that the developed Pharmshape QSAR model has a relatively good capability to predict binding 

activities of hits obtained from ligand-based virtual screening based on triaryl bis-sulfone 

analogs. Our studies are congruent with the current research reports [189-191] demonstrating 

that the combination of the pharmacophore-based molecular similarity and the shape-based 

molecular similarity might be useful for ranking the virtual hits based on the predicted 

bioactivity values. The established Pharmshape QSAR score function algorithm, combining both 

the shape-based simulation and the pharmacophore matching comparison, provides a practical 

route to predict the CB2 bioactivity of hits from CB2 ligand-based virtual screening before 

bioassay testing. 
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Table 3-1. The structures and Ki values of the Triaryl bis-sulfones used as a training set to 

generate QSAR prediction model  

L1

NHZ

L2

AB

C

X

Y

4

4

 

Cmpd. L1 L2 X Y Z Ki (CB2) (nM) CB1/CB2 

1 CH2 SO2 4-OCH3 4-OCH3 -SO2CH3 0.6 1300 

2 CH2 SO2 4-Cl 4-Cl -SO2CH3 6.7 188 

3 CH2 SO2 4-OCF3 2-F -SO2CH3 0.4 1178 

4 CH2 SO2 4-CF3 2-F -SO2CH3 1.0 674 

5 CH2 SO2 4-CF3 2,6-Di F -SO2CH3 1.8 584 

6 SO2 CO 4-Cl 4-Cl -SO2CH3 192.0 284 

7 SO2 SO2 4-OCH3 4-OCH3 -SO2CH3 0.4 2262 

8 SO2 SO2 4-OCH3 -H -SO2CH3 0.6 2482 

9 SO2 SO2 4-OCH3 4-Cl -SO2CH3 0.9 1146 

10 SO2 SO2 4-OH 4-Cl -SO2CH3 0.3 783 

11 SO2 SO2 4-OCH3 4-OCH3 -COCF3 0.3 783 

12 SO2 SO2 4-OCH3 4-OCH3 -COCH3 7.7 231 

13 SO2 SO2 4-OCH3 4-OCH3 -COC2H5 29.0 122 

14 SO2 SO2 4-OCH3 4-OCH3 -COC3H7 6.2 189 

15 SO2 SO2 4-OCH3 4-OCH3 
O

 

15.7 676 
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16 SO2 SO2 4-OCH3 4-OCH3 
O

 

38.6 7.41 

17 SO2 SO2 4-OCH3 4-OCH3 
O

 
412.0 1.2 

18 SO2 SO2 4-OCH3 4-OCH3 -SO2CH3 0.4 9.40 

19 SO2 SO2 4-OCH3 4-OCH3 -SO2C2H5 1.0 9.00 

20 SO2 SO2 4-OCH3 4-OCH3 -SO2C4H9 41.0 27 

21 SO2 SO2 4-OCH3 4-OCH3 -SO2C6H5 239.0 3.6 

22 SO2 SO2 4-OCH3 4-OCH3 
O2
S

 
495.0 3.9 

23 SO2 SO2 4-OCH3 4-OCH3 -CONHC3H7 495.0 145 

24 SO2 SO2 4-OCH3 4-OCH3 
N
H

O

 

802.0 125 

25 SO2 SO2 4-OCH3 4-OCH3 
N
H

O
F

 

1136.0 15 

 

Table 3-2. The structures and Ki values of the Triaryl bis-sulfones used to test the generated 

QSAR prediction model  

 

L1

NHZ

L2

AB

C

X

Y

4

4
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Cmpd. L1 L2 X Y Z Ki (CB2) (nM) CB1/CB2 

26 CH2 SO2 4-OCF3 4-CF3 -SO2CH3 35.0 27 

27 CO SO2 4-OCH3 4-OCH3 -SO2CH3 44.0 108 

28 CO SO2 4-OCF3 2-F -SO2CH3 179.0 28 

29 C(CH3)2 SO2 4-Cl 4-Cl -SO2CH3 76.0 48 

30 SO2 SO2 4-CF3 4-Cl -SO2CH3 8.0 558 

31 SO2 SO2 H 4-Cl -SO2CH3 58.0 127 

32 SO2 SO2 4-CH3 2-F -SO2CH3 0.5 1741 

33 SO2 SO2 4-CF3 2-F -SO2CH3 0.9 3552 

34 SO2 SO2 H 2-F -SO2CH3 9.0 1449 

35 SO2 SO2 4-Cl H -SO2CH3 2.0 1941 

36 SO2 SO2 4-Cl 2-Cl -SO2CH3 6.0 1778 

37 SO2 SO2 4-OCH3 4-OCH3 O

 

289.0 884 

38 SO2 SO2 4-OCH3 4-OCH3 

OCH3

O

 

1258.0 0.9 

39 SO2 SO2 4-OCH3 4-OCH3 O

Cl

Cl 

167.0 0.5 

40 SO2 SO2 4-OCH3 4-OCH3 O2
S Cl

Cl  

2476.0 0.05 

41 SO2 SO2 4-OCH3 4-OCH3 S
O2

160.0 0.5 
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42 SO2 SO2 4-Cl 3-Cl -SO2CH3 23.0 238 

43 SO2 SO2 4-Cl 4-Cl -SO2CH3 10.0 687 

44 SO2 SO2 4-Cl 2-F -SO2CH3 1.0 4387 

45 SO2 SO2 4-Cl 2-OCF3 -SO2CH3 128.0 134 
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Table 3-3. Pharmacophore-based molecular similarity score, shape-based molecular similarity score and the calculated molecular 

properties for the training set of triaryl bis-sulfones listed in Table 3-1.  

Compd. -logKi MW MolVol SSS QFIT MolSA ClogP DM MolPV MolPSA Pred. -logKi 

1 9.22 489.61 1328.87 0.89 62.29 786.16 3.87 5.81 262.47 159.78 9.01 

2 8.17 498.45 1232.71 0.88 80.50 736.43 5.07 4.71 241.64 136.82 8.91 

3 9.40 531.54 1294.72 0.88 80.55 759.27 5.15 5.09 252.74 152.33 8.95 

4 9.00 515.54 1252.52 0.88 80.45 736.56 4.76 5.59 227.30 137.68 9.01 

5 8.74 533.53 1266.55 0.88 75.88 741.87 4.92 6.53 226.13 136.29 8.82 

6 6.72 512.43 1214.70 0.82 27.85 722.65 4.36 6.44 220.11 148.93 6.94 

7 9.40 539.65 1380.27 0.87 73.84 797.10 2.28 8.89 349.27 206.08 9.31 

8 9.22 509.62 1277.83 0.88 79.36 745.86 2.31 9.44 322.73 197.61 9.79 

9 9.05 544.06 1334.95 0.88 73.43 772.74 3.06 9.19 328.56 193.77 9.41 

10 7.89 530.04 1266.15 0.76 75.42 738.84 2.98 8.40 337.57 237.27 7.56 

11 9.52 557.56 1376.24 0.86 83.03 808.49 3.53 8.12 248.52 159.48 8.56 

12 8.11 503.59 1297.88 0.86 79.98 783.38 2.42 5.56 234.15 161.89 8.50 
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13 7.54 517.62 1358.23 0.84 81.89 810.06 2.95 5.48 280.22 153.55 7.98 

14 8.21 531.64 1399.92 0.83 80.37 847.23 3.48 5.69 243.94 150.94 7.38 

15 7.80 529.63 1396.75 0.83 58.88 824.67 3.00 5.38 260.81 158.01 7.41 

16 7.41 545.67 1469.80 0.83 79.30 853.53 3.65 6.31 266.06 139.41 7.28 

17 6.39 579.69 1537.59 0.79 78.46 899.26 4.19 5.28 243.11 151.42 6.27 

18 9.40 539.65 1374.74 0.87 74.51 797.91 2.28 6.84 347.91 207.09 9.33 

19 9.00 553.67 1434.67 0.86 74.51 825.38 2.81 8.90 368.69 159.78 8.87 

20 7.39 581.73 1535.77 0.82 77.04 889.46 3.86 8.77 396.90 136.82 7.62 

21 6.62 601.72 1529.91 0.79 64.55 870.29 4.16 8.69 375.07 152.33 6.96 

22 6.31 615.74 1574.43 0.78 64.54 900.86 4.66 8.79 371.28 137.68 6.52 

23 6.31 546.66 1415.69 0.79 78.63 871.78 3.75 5.60 281.90 136.29 6.64 

24 6.10 594.70 1539.06 0.77 78.22 921.42 4.84 5.60 236.48 148.93 6.02 

25 5.94 598.67 1495.68 0.77 78.28 899.16 4.78 6.19 264.55 206.08 6.15 

MW is molecular weight, MolVol is molecular volume, SSS is molecular surface similarity score obtained from Surflex-Sim 
similarity, QFIT is pharmacophore feature fit obtained from UNITY based on GALAHAD-generated pharmacophore query, CLogP is 
molecular octanol-water partition coefficient computed with Tripos/Sybyl8.0, MolPSA is molecular polar surface area,  MolPV 
molecular polar volume MolSA is molecular surface area, and DM is molecular Dipole_Moment. 
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Table 3-4. Pharmacophore-based molecular similarity score, shape-based molecular similarity score and the calculated molecular 

properties for the testing set of triaryl bis-sulfones listed in Table 3-2.  

Compd. -logKi MW MolVol SSS QFIT MolSA ClogP DM MolPV MolPSA Pred. -logKi 

26 7.46 581.55 1384.38 0.84 80.57 817.97 5.98 10.90 224.76 147.20 7.64 

27 7.36 503.59 1336.87 0.88 57.58 791.13 2.95 3.48 277.68 181.80 8.65  

28 6.75 545.53 1296.39 0.85 57.63 773.89 4.24 14.08 255.77 167.37 7.94 

29 7.12 526.50 1285.34 0.87 80.94 751.14 5.87 10.62 226.99 120.56 8.16 

30 8.10 582.04 1352.13 0.86 80.83 775.77 4.04 24.71 326.08 182.34 8.79 

31 7.24 514.04 1231.31 0.84 80.11 724.95 3.08 24.5 305.28 182.11 8.56 

32 9.30 511.61 1244.56 0.86 80.12 737.15 3.01 24.49 304.53 180.87 8.98 

33 9.05 565.58 1302.28 0.87 79.92 756.22 3.47 24.44 318.10 180.63 8.98 

34 8.05 497.58 1201.77 0.85 79.69 705.99 2.51 23.77 306.95 180.63 8.74 

35 8.70 514.04 1226.46 0.87 80.19 724.28 3.10 24.89 302.26 182.17 9.17 

36 8.22 548.48 1253.48 0.84 79.9 737.27 3.82 24.82 298.68 178.21 8.46 
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37 6.54 579.69 1526.59 0.77 55.89 899.82 4.80 9.91 247.10 156.66 5.37 

38 5.90 595.69 1566.49 0.75 53.99 910.66 4.50 9.76 259.55 173.03 5.10 

39 6.78 634.55 1565.53 0.76 65.05 910.12 5.87 10.00 229.73 154.94 5.25 

40 5.61 670.61 1634.02 0.74 60.62 914.54 5.99 8.76 369.10 206.89 5.28 

41 6.80 615.74 1591.99 0.81 78.10 906.91 3.97 6.78 338.32 192.19 7.01 

42 7.64 548.48 1278.64 0.85 79.82 747.54 3.82 24.69 300.33 182.12 8.62 

43 8.00 548.48 1274.41 0.86 80.55 747.97 3.82 25.52 309.26 182.12 8.91 

44 9.00 532.03 1238.06 0.87 79.82 729.02 3.25 24.80 309.24 180.59 9.09 

45 6.89 598.04 1362.59 0.82 80.23 782.14 3.84 24.80 309.90 183.12 7.76 

MW is molecular weight, MolVol is molecular volume, SSS is molecular surface similarity score obtained from Surflex-Sim 

similarity, QFIT is pharmacophore feature fit obtained from UNITY based on GALAHAD-generated pharmacophore query, CLogP is 

molecular octanol-water partition coefficient computed with Tripos/Sybyl8.0, MolPSA is molecular polar surface area,  MolPV 

molecular polar volume MolSA is molecular surface area, and DM is molecular Dipole_Moment. 
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Table 3-5. Partial Lease Squares Analysis to generate relationships between bioactive data and 

combinations of their pharmacophore-based molecular similarity, shape-based molecular 

similarity and calculated molecular property descriptors  

  Partial Lease Squares Analysis 

Model Relationship Leave-One-Out No Validation 

  2
cvr  

Optimum # of 

components 

r2 Standard Error 

of Estimate 

1 -log(Ki) vs QFIT N/A N/A 0.05 1.27 

2 -log(Ki) vs SSS N/A N/A 0.77 0.59 

3 -log(Ki) vs SSS, QFIT 0.72 1 0.78 0.58 

4 -log(Ki) vs SSS, QFIT, MolSA, MolPSA 0.84 3 0.89 0.43 

5 -log(Ki) vs SSS, QFIT, MolPSA 0.81 2 0.87 0.45 

6 -log(Ki) vs SSS, QFIT, MolSA 0.73 1 0.79 0.57 

7 -log(Ki) vs SSS, QFIT, MolPV, MolVol 0.73 3 0.85 0.51 

8 -log(Ki) vs SSS, QFIT, MolPV 0.75 3 0.82 0.56 

9 -log(Ki) vs SSS, QFIT, MolVol 0.68 1 0.75 0.62 

10 -log(Ki) vs SSS, QFIT, MW, ClogP 0.68 1 0.75 0.62 
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11 -log(Ki) vs SSS, QFIT, MW 0.66 1 0.72 0.66 

12 -log(Ki) vs SSS, QFIT, ClogP 0.75 2 0.83 0.52 

13 -log(Ki) vs SSS, QFIT, DM 0.78 1 0.84 0.51 

14 -log(Ki) vs SSS, QFIT, MW, MolSA, 

ClogP, MolVol. 

 

0.72 

 

3 

 

0.87 

 

0.46 

15 -log(Ki) vs SSS, QFIT, MW, MolSA, 

ClogP, MolVol, DM 

 

0.76 

 

3 

 

0.87 

 

0.46 

16 -log(Ki) vs SSS, QFIT, MW, MolSA, 

ClogP,  MolVol, DM, MolPSA 

 

0.76 

 

4 

 

0.88 

 

0.46 

17 -log(Ki) vs SSS, QFIT, MW, MolSA, 

ClogP, MolVol, MolPSA 

 

0.81 

 

3 

 

0.89 

 

0.43 

18 -log(Ki) vs SSS, QFIT, MW, MolSA, 

ClogP, MolVol, DM, MolPSA, MolPV 

 

0.74 

 

3 

 

0.86 

 

0.48 

19 -log(Ki) vs SSS, QFIT, MW, ClogP, DM, 

MolPV 

0.75 2 0.85 0.50 

20 -log(Ki) vs SSS, QFIT, MW, ClogP, DM, 

MolPV, MolVol 

0.73 3 0.86 0.50 

21 -log(Ki) vs SSS, QFIT, MW, ClogP, 

MolPV, MolVol 

0.74 3 0.86 0.50 

22 log(Ki) vs SSS, QFIT, MW, MolSA, 0.82 4 0.90 0.43 
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ClogP, MolPSA 

23 log(Ki) vs SSS, QFIT, MW, MolSA, 

ClogP 

0.73 3 0.88 0.46 

24 log(Ki) vs SSS, QFIT, MW, MolPSA, 

ClogP 

0.80 3 0.88 0.45 

25 log(Ki) vs SSS, QFIT, MW, MolPSA, 

ClogP, DM 

0.76 3 0.87 0.47 

26 log(Ki) vs SSS, QFIT, MW, MolPSA, 

ClogP, MolSA, DM 

0.77 4 0.87 0.46 

27 log(Ki) vs SSS, QFIT, MolSA, ClogP, 

MolPSA 

0.82 4 0.89 0.44 

28 log(Ki) vs SSS, MolSA, MolPSA 0.77 2 0.84 0.51 

29 log(Ki) vs QFIT, MolSA, MolPSA 0.39 1 0.55 0.83 

30 -log(Ki) vs SSS, MW, MolSA, ClogP, 

MolVol, MolPSA, MolPV 

0.74 3 0.87 0.47 

31 -log(Ki) vs QFIT, MW, MolSA, ClogP, 

MolVol, MolPSA, MolPV 

0.40 1 0.52 0.86 

32 -log(Ki) vs SSS, MW, MolSA, ClogP, 

MolVol, DM, MolPSA, MolPV. 

 

0.67 

 

2 

 

0.77 

 

0.61 

33 -log(Ki) vs MW, MolSA, ClogP, MolVol, 0.37 2 0.54 0.86 
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DM, MolPSA, MolPV. 

34 -log(Ki) vs MW, MolSA, ClogP, MolVol, 

MolPSA 

0.36 1 0.43 0.90 

MW is molecular weight, MolVol is molecular volume, SSS is molecular surface similarity score 

obtained from Surflex-Sim similarity, QFIT is pharmacophore feature fit obtained from UNITY 

based on GALAHAD-generated pharmacophore query, CLogP is molecular octanol-water 

partition coefficient computed with Tripos/Sybyl8.0, MolPSA is molecular polar surface area, 

MolPV molecular polar volume MolSA is molecular surface area, and DM is molecular 

Dipole_Moment. 
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Scheme 1, Triaryl bis-sulfones 
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Figure 3-1. (Left) Four representative GALAHAD-generated hypermolecular 
superimpositions and correspondent pharmacophore models with four triaryl bis-sulfones 2, 5, 8, 
and 11. (Right) Four representative Surflex-Sim generated hypermolecular superimposition with 
four triaryl bis-sulfones 2, 5, 8, and 11. 

As shown, the annotation label AA (green color) means the site of H-bond acceptor atom, 
DA (magenta color) is the site of H-bond donor atom, and HY (cyan color) means the site of 
hydrophobic center.  
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Figure 3-2. (Left) The modified pharmacophore query defined according to the SAR studies. 
(Right) Combination of the MOLCAD-generated molecular surface based on molecular shape 
hypothesis and the modified pharmacophore query based on GALAHAD-generated 
pharmacophore model.  

The color bar indicates the color ramps for lipophilic properties on the molecular surface, 
and the top (or brown) is the most lipophilic. 
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Figure 3-3. Plot of the corresponding QSAR calculated and experimental values of binding 
affinity (given as pKi) of triaryl bis-sulfones in the training and testing sets at the CB2 receptor.  

Filled squares indicate the training compounds, and unfilled circles indicate the testing 
compounds. 
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4.0  FINGERPRINT-BASED ARTIFICIAL NEURAL NETWORKS QSAR (FANN-

QSAR) FOR LIGAND BIOLOGICAL ACTIVITY PREDICTIONSINTRODUCTION 

Artificial neural networks (ANN) have been shown to be an effective tool in solving non-linear 

problems in several case studies ranging from engineering to biological applications [195-201]. 

ANN have several unique attributes that make them robust for non-linear generalization 

problems with multidimensional inputs. For instance, the networks have adaptive learning 

behaviors in which they learn from previous examples and adapt to changes in input parameters. 

In addition, they possess good generalization and pattern recognition property for unseen data. 

Several studies have used ANN to predict physicochemical and biological properties of chemical 

analogs. 2D and 3D molecular descriptors of molecular physical properties were used as neural 

network inputs to predict molecular properties or biological endpoints in several case studies 

such as anti-diabetes, anti-cancer and anti-HIV research [202-204]. However, to the best of our 

knowledge, there are no studies which use molecular fingerprints as descriptors in developing 

ANN-QSAR models to predict biological activities (such as pIC50 or pKi) of chemical ligands 

although there are a few studies reported to predict ligand classes [205, 206]. In this work, three 

types of molecular fingerprints were used to train ANN-QSAR models, namely fingerprint-based 

ANN-QSAR (FANN-QSAR), and the results were compared to known 2D and 3D QSAR 

methods using five data sets.  As a case study, the FANN-QSAR approach was used to predict 

cannabinoid receptor binding activities using a large and structurally diverse cannabinoid ligand 

data set.  In fact, cannabinoid drug research is experiencing a great challenge as the first CB1 
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antagonist drug, Rimonabant, launched in 2006 as an anorectic/anti-obesity drug, was recently 

withdrawn from the European market due to the complications of suicide and depression side 

effects [157].  As is known, structure-based design of novel CB2 ligands that do not confer 

psychotropic side effects is hindered because of a lack of information about experimental 3D 

receptors structures, which is true, in general, for all drug discovery research involving G-protein 

coupled receptors (GPCRs). Thus, developing ligand-based QSAR approaches has its advantage 

for new CB2 ligand design and discovery.  To prove one of useful applications of the FANN-

QSAR model, it was applied as a virtual screening tool to find new cannabinoid ligands from a 

large NCI database containing over 200,000 compounds, and four compounds with good 

cannabinoid receptor binding affinities were found through this exercise. This study 

demonstrated that combination of molecular fingerprints and ANN can lead to a reliable and 

robust high-throughput virtual screening method that can be a useful tool in chemogenomics and 

computer-aided drug discovery research. 

4.2 METHODS 

4.2.1 Data sets 

A total of six data sets were used in this study. Five of them were compiled by Sutherland et al. 

[207] and were downloaded from their supplemental data. The sixth data set was curated by our 

lab. Data sets are: (1) A set of 114 angiotensin-converting enzyme (ACE) inhibitors [208] with 

pIC50 values ranging from 2.1 to 9.9. (2) A set of 111 acetylcholinesterase (AchE) inhibitors 

[209, 210] with pIC50 values ranging from 4.3 to 9.5. (3) A set of 147 ligands for the 
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benzodiazepine receptor (BZR) [211] with pIC50 values ranging from 5.5 to 8.9 after removal of 

16 inactive compounds with a single pIC50 value of 5.0. (4) A total of 282 cyclooxygenase-2 

(COX2) inhibitors [212-221] with pIC50 values ranging from 4.1 to 9.0 after removal of 40 

inactive COX2 compounds with a single pIC50 value of 4.0. (5) A total of 361 dihydrofolate 

reductase inhibitors (DHFR) from the work of Queener et al. [222-226] with pIC50 ranging from 

3.3 to 9.8 after removal of 36 ligands with a single pIC50 value of 3.3. Figure 4-1 contains 

representative structures from the above 5 data sets. (6) A set of cannabinoid receptor subtype 2 

(CB2) ligands [227] with pKi values ranging from 3.9 to 10.8. For the cannabinoid ligand 

(CBID) dataset, ligand structures and their bioactivities (Ki) were curated by our lab. If there 

were more than one reported CB2 activity for a ligand, an average activity was used. Figure 4-2 

contains representative CB2 ligands displaying the structural diversity of the data set. 

For the ACE, AchE, BZR, COX2 and DHFR datasets, the same training and testing data 

sets provided by Sutherland et al. were used for direct comparisons of FANN-QSAR models to 

3D and 2D QSAR models reported by Sutherland et al. For each dataset, 10% of randomly 

selected compounds from the training set were used as a validation set. For the cannabinoid data 

set, the training and test sets were randomly divided. The training set contained 80% of 

compounds while the test set contains 10%. The other 10% were used as a validation set. 

Numbers of compounds found in each training, validation and test sets for each data set are 

summarized in Table 4-1. The training set was used to train the model while the validation set 

was used to prevent overfitting of the model. The test set was used as an external set to evaluate 

the generalization ability of the trained FANN-QSAR models. For statistical modeling, the 

process was repeated five times resulting in five different pairs of randomly divided training and 

test sets.  
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Figure 4-1. Representative compounds from five QSAR data sets: (A) enalaprat (ACE); (B) 

E2020 (AchE); (C) Ro14-5974 (BZR); (D) celecoxib (COX2); (E) methotrexate (DHFR). 

 



 109 

N
N

O
N
H

Cl SO2

SO2

NHSO2CH3

Me

H3CO

H3CO

OHN
O

O

O NH

OO

O

I

N

N

O

O

HO

O

O

HU308

S

N

S

N

S

F3C

943331-33-7AM1241 L768242

JWH133 946004-40-6

O

O

N

O

O

O

N

NH

875148-95-1

O

N
S

O

ONO

N

959938-48-8

SR144528 JTE907 AM630 Sch225336

Cl
Cl

O

O

O

N

N

I

O

N

N

NO2

O

H

H

Cl

Cl

F

FF

O

O

N
H

N

N NH

GW842166X
 

Figure 4-2. Representative CB2 compounds from CBID data set, reflecting the structural 

diversity of the data set. 

 

Table 4-1. Numbers of training, validation and test set compounds in each data set. 

 ACE AchE BZR COX2 DHFR CB2 

Training size 69 67 89 170 214 1361 

Validation size 7 7 9 18 23 169 

Test size 38 37 49 94 124 169 

Total 114 111 147 282 361 1699 
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4.2.2 Fingerprint generation 

Three different types of molecular fingerprints, namely FP2 [228, 229], MACCS [230] and 

Extended-Connectivity Fingerprint (ECFP6) [231], were used in this study. FP2 is a path-based 

fingerprint which indexes molecular fragments and MACCS is a key-based fingerprint which 

uses 166 predefined keys whereas ECFP6 is a circular topological fingerprint which is derived 

using a variant of the Morgan algorithm [232]. FP2 and MACCS fingerprints were generated 

using the ‘babel’ command from the OpenBabel program [228, 229] while ECFP6 fingerprints 

were generated using the ‘generatemd’ command from the ChemAxon program [233]. Ligand 

chemical structures stored in SDF format were used as inputs to generate fingerprints. For each 

ligand, polar hydrogens were added using the OpenBabel program [228] before fingerprint 

generations. All fingerprints are fixed-length binary representations with 1024 bits for both 

ECFP6 and FP2, and 256 bits for MACCS fingerprint. Fingerprints were generated for each 

ligand in the datasets and used as inputs to train the FANN-QSAR models. 

4.2.3 Fingerprint-based Artificial Neural Network QSAR 

A feed-forward back-propagation neural network method was implemented using MATLAB® 

R2007b Neural Network Toolbox [234]. As shown in Figure 4-3, there are three layers in the 

network: an input layer, a hidden layer and an output layer. The number of input layer neurons is 

equal to the size of fingerprint. For example, FP2 and ECFP6 fingerprints have 1024 bits and 

therefore, the number of input neurons is equal to 1024. Similarly, there are 256 input neurons 

for MACCS fingerprint. The number of hidden layer neurons was varied between 100 and 1000. 

The networks were trained using the gradient descent with momentum training function 
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(traingdm) to update weights and biases, the tangent sigmoid transfer function (tansig) for the 

hidden layer and the linear transfer function (purelin) for the output layer. 10% randomly 

selected compounds from the training data was used as a validation set to decide when to stop 

training. The model training was stopped after 4000 epochs (iterations) or if the mean-square-

error (MSE) of prediction on the training set had reached the minimum value of 0.1. In addition, 

an early stopping was enabled when the prediction error on the validation set kept increasing for 

300 epochs and the weights and biases at the minimum of the validation error were returned. The 

optimal number of hidden neurons was selected via cross-validation experiments in which the 

model was trained using different number of hidden neurons and an average of training set and 

validation set mean squared errors (MSE) was calculated. The number of hidden neurons which 

gave the lowest average MSE was used as the optimal number for subsequent model testing on 

the test set. The mean square error (MSE) is defined as: 

 

 

( 

 

4.1 

 

) 

where T is the total number of training samples; t(i) is the target value of ith sample and p(i) is the 

predicted value of ith sample. 
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Figure 4-3. The architecture of fingerprint-based ANN-QSAR (FANN-QSAR) model. 

 

4.2.4 Radioligand competition binding assay 

In order to evaluate CB2 binding activity of virtually screened ligands, competition binding 

assays were performed to determine each ligand’s ability to displace radioactive [3H]CP-55940 

radioligand. The experimental protocol has been established based on previously reported 

procedures [235-237] and is described briefly below.  

A Perkin Elmer 96-well TopCounter was used in our laboratory to measure the CB 

receptor binding affinity (Ki) of the in silico screened ligands by displacing [3H]CP-55940. In 

competition binding experiments, ligands were diluted in dilution buffer (50 mM Tris, pH 7.4, 

containing 5 mM MgCl2, 2.5 mM EGTA, 0.1% (w/v) fatty acid free bovine serum albumin 

(BSA), 10% dimethylsulfoxide and 0.4% methyl cellulose). Various concentrations of 

ligands/samples were added in the same volume to 2.5 nM [3H]CP-55940. Incubation buffer (50 

mM Tris, pH 7.4, containing 2.5 mM EGTA, 5 mM MgCl2, and 0.1% (w/v) fatty acid free BSA) 
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and cell membrane preparations from CHO cells that expressing CB2 receptors (5 µg per well) 

were added to a final volume of 200 µL.  For the saturation binding experiments, varying 

concentrations of [3H]CP-55940 (0.05-4 nM) with or without 5 µM of an unlabeled known 

ligand (CP-55940) were incubated with the receptor membrane preparations to determine Kd and 

nonspecific binding. After the binding suspensions were incubated at 30 °C  for 1 hr, the reaction 

was terminated by rapid filtration through microfiltration plates (Unifilter GF/B filterplate, 

Perkin Elmer)  followed by 5 washes with ice cold TME buffer containing 0.1% BSA on a 

Packard Filtermate Harvester (Perkin Elmer).  The plates were then dried overnight and 30 µl 

MicroScint 0 scintillation liquid was added to each well of the dried filter plates. Then the bound 

radioactivity was then counted using a Perkin Elmer 96-well TopCounter.  The Ki was calculated 

by using nonlinear regression analysis (Prism 5; GraphPad Software Inc., La Jolla, CA), with the 

Kd values for [3H]CP-55940 determined from saturation binding experiments. This assay was 

used for determining binding affinity parameters (Ki) of ligand-receptor interactions between the 

CB2 receptor and ligands. 

 

4.3 RESULTS AND DISCUSSION 

The FANN-QSAR models were first compared to known QSAR methods and then it was used to 

predict cannabinoid receptor binding activity on structurally diverse data set. Moreover, the 

generalization ability of the FANN-QSAR model was also examined by predicting activities of 

newly reported cannabinoid ligands. In addition, it was used as a virtual screening tool to screen 
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large NCI compound database for potential cannabinoid lead ligands and virtual hits were also 

validated by radioligand competition binding assays. 

4.3.1 Comparisons with other 3D and 2D-QSAR methods 

The performances of the derived FANN-QSAR models were evaluated and compared to the 

reported 3D and 2D QSAR methods,  including CoMFA [30], CoMSIA [61], Hologram QSAR 

(HQSAR) [10, 185], QSAR by eigenvalue analysis (EVA) [238], back-propagation feed-forward 

neural network implemented in Cerius2 using 2.5D descriptors (NN 2.5D) and ensemble neural 

network [239] (NN-ens) using 2.5D descriptors which were implemented and tested by 

Sutherland et al. [207] For an objective comparison, the FANN-QSAR models were trained and 

tested on the same training and test data sets provided by Sutherland et al. Three different 

fingerprints were used as inputs for FANN-QSAR models and each model was trained separately 

for each fingerprint type. During each training process, a cross-validation experiment was 

performed to decide the optimal number of hidden neurons which was used subsequently on the 

test set prediction. Cross-validation results can be found in Appendix A (Figures A1-A5). 

Final correlation coefficient (r2 train and r2 test) values of each dataset are listed in Table 

4-2. Comparisons of r2 (test) values across all data sets show that ECFP6 fingerprint-based 

ANN-QSAR model (ECFP6-ANN-QSAR) performed better than FP2 and MACCS fingerprint-

based models for all data sets. For ACE, AchE and COX2 data sets, the CoMFA model 

performed better than ECFP6-ANN-QSAR model but by a small margin. The ECFP6-ANN-

QSAR model performed better for the DHFR and BZR datasets. The CoMSIA model performed 

similarly as the ECFP6-ANN-QSAR model. It is important to note that CoMFA and CoMSIA 

are field-based 3D QSAR methods which require similar scaffolds and high quality molecular 
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alignments to make effective predictions [5]. On the other hand, ECFP6-ANN-QSAR is a 

fingerprint-based method which works on structurally diverse data sets and requires no 

alignment during the model training process which makes it more robust and high-throughput in 

virtual screening. However, different fingerprints can produce different results and, in our work, 

ECFP6 produced an overall better result across different data sets compared to FP2 and MACCS 

fingerprints. In addition to 3D QSAR methods, the FANN-QSAR models were compared to 

another 2D QSAR method known as Hologram QSAR (HQSAR), which is based on molecular 

holograms containing counts of molecular fragments similar to fingerprints. It can be observed 

that ECFP6-ANN-QSAR performed consistently better than HQSAR in all datasets except for 

DHFR dataset resulting in the same r2 test value (0.63). Moreover, the FANN-QSAR models 

were also compared to other neural network approaches that used 2.5D descriptors as reported by 

Sutherland et al. ECFP6-ANN-QSAR model performed better than NN (2.5D) method in 3 out 

of 5 datasets and an ensemble of 10 neural networks (NN-ens) approach using 2.5D descriptors 

performed slightly better than ECFP6-ANN-QSAR model in 3 out of 5 data sets. It is important 

to note that all QSAR models failed for COX2 and BZR datasets (r2 test < 0.34) and had 

moderate performances (r2 test < 0.64) for the other three datasets. Overall, ECFP6-ANN-QSAR 

model performed consistently across all datasets and its performance was comparable to other 

3D, 2D, and neural networks QSAR methods previously reported. 

 

Table 4-2. FANN-QSAR performance comparisons with other QSAR methods* 

  ECFP6-

ANN-

QSAR  

FP2-

ANN-

QSAR 

MACCS-

ANN-

QSAR 

CoMFA CoMSIA 

basic 

HQSAR EVA NN 

(2.5D) 

NN-

ens 

(2.5D) 
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              ACE      

r2 train 0.75 0.93 0.23 0.80 0.76 0.84 0.84 0.78 0.84 

r2 test 0.41 0.20 0.08 0.49 0.52 0.30 0.36 0.39 0.51 

              AchE      

r2 train 0.94 0.57 0.62 0.88 0.86 0.72 0.96 0.68 0.63 

r2 test 0.43 0.13 0.04 0.47 0.44 0.37 0.28 -0.04 0.21 

            BZR      

r2 train 0.76 0.78 0.78 0.61 0.62 0.64 0.51 0.62 0.66 

r2 test 0.31 0.08 0.06 0.00 0.08 0.17 0.16 0.39 0.34 

             COX2      

r2 train 0.73 0.76 0.89 0.70 0.69 0.70 0.68 0.65 0.65 

r2 test 0.28 0.22 0.23 0.29 0.03 0.27 0.17 0.31 0.32 

             DHFR      

r2 train 0.94 0.72 0.84 0.79 0.76 0.81 0.81 0.78 0.79 

r2 test 0.63 0.43 0.48 0.59 0.52 0.63 0.57 0.42 0.54 

*Other QSAR methods including CoMFA, CoMSIA basic, HQSAR, EVA, NN (2.5D) and NN-

ens (2.5D) performance indicators were taken from the work of Sutherland et al. [207] FANN-

QSAR models were trained and tested on the identical training and test sets provided by 

Sutherland et al. for comparison purposes. 
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4.3.2 Prediction of Cannabinoid receptor binding activity using FANN-QSAR method      

A total of 1699 structurally diverse cannabinoid ligands with reported CB2 binding affinities 

were used. The ligands were randomly divided into training and test sets. FANN-QSAR models 

using different fingerprints were trained on training sets and the optimal numbers of hidden 

neurons were selected via cross-validation. Figure 4-4 contains a summary of cross-validation 

results for all three FANN-QSAR models. It can be observed that different training and test sets 

as well as different types of fingerprints resulted in different optimal number of hidden neuron 

which suggested that cross-validation experiments are necessary to train neural networks for the 

best results. 

After such training and parameters tuning, the predictive accuracy of the final model on 

the test set was evaluated. The process was repeated 5 times and a summary of r2 values from 

each round of experiment can be seen in Table 4-3. Within each round, the same training and test 

compounds were used across all three FANN-QSAR models. For example, the same training and 

test compounds in Round 1 of ECFP6-ANN-QSAR model were used in the Round 1 of FP2-

ANN-QSAR and MACCS-ANN-QSAR model. As shown in the table, ECFP6-ANN-QSAR 

model consistently outperformed FP2- and MACCS-ANN-QSAR models in all five rounds of 

experiments. The ECFP6-ANN-QSAR model achieved an average r2 test value of 0.56 (r = 0.75) 

across all repeat experiments while 0.48 (r = 0.69) and 0.45 (r = 0.67) for FP2- and MACCS-

ANN-QSAR models respectively. Results showed that ECFP6 fingerprint was better than FP2 

and MACCS fingerprints for the cannabinoid data set as well as other five data sets. In fact, it 

has been also reported that circular fingerprints such as ECFP6 fingerprints are found to be more 

useful in virtual screening and ADMET properties prediction studies [240, 241]. Our results 

suggested that ECFP6 fingerprint-based ANN-QSAR model can be used in virtual screening of 
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chemical ligands in high throughput manner since it only requires 2D fingerprints as inputs 

instead of 3D molecular alignments and bioactive conformations as in other 3D QSAR methods.  

MACCS-
ANN-QSAR

Optimal No. of 
Hidden Neurons

Training 
Set MSE

Validation
Set MSE

Average 
MSE

Round 1 800 0.354 0.781 0.567

Round 2 600 0.384 0.783 0.583

Round 3 900 0.361 0.617 0.489

Round 4 800 0.352 0.749 0.550

Round 5 800 0.339 0.605 0.472
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Average 
MSE

Round 1 700 0.300 0.809 0.554

Round 2 800 0.360 0.713 0.537

Round 3 800 0.360 0.466 0.413

Round 4 700 0.305 0.716 0.511

Round 5 700 0.290 0.606 0.448
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Optimal No. of 
Hidden Neurons

Training 
Set MSE
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Set MSE

Average 
MSE

Round 1 1000 0.182 0.795 0.488

Round 2 600 0.257 0.749 0.503

Round 3 200 0.176 0.593 0.384

Round 4 900 0.223 0.594 0.409

Round 5 300 0.151 0.638 0.394
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Figure 4-4. Cross-validation results of each FANN-QSAR method on CB2 ligand data set. 
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Table 4-3. A summary of the performance of each FANN-QSAR model on CB2 ligand data set  

Round r2 training r2 test 

 ECFP6-ANN-QSAR  

1 0.86 0.55 

2 0.81 0.63 

3 0.87 0.53 

4 0.84 0.56 

5 0.89 0.54 

 FP2-ANN-QSAR  

1 0.78 0.55 

2 0.74 0.60 

3 0.74 0.38 

4 0.77 0.46 

5 0.79 0.40 

 MACCS-ANN-QSAR  

1 0.74 0.48 

2 0.72 0.53 

3 0.74 0.37 

4 0.74 0.47 

5 0.75 0.41 
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4.3.3 Generalization ability of FANN-QSAR method on newly reported cannabinoid 

ligands 

To test the predictive ability of FANN-QSAR method on new cannabinoid compounds which are 

not in the Xie group’s cannabinoid ligand training data set, the most recently reported 

cannabinoid ligands and associated CB2 binding affinity data were downloaded from ChEMBL 

database [242]. These compounds were not found in the training (CBID) data set and were 

collected to be used as a new test set in order to evaluate the FANN-QSAR performance. The 

new test data set consists of 295 compounds with reported CB2 Ki values which were then 

converted to pKi values. 41.55% of new CB2 ligands were less than 80% similar (2D Tanimoto 

similarity) and 25.34% were less than 70% similar to the training compounds. This similarity 

analysis indicated that the newly reported CB2 compounds contained a good mixture of similar 

and dissimilar compounds to the training database. As discussed in Section 4.2.3, an ECFP6-

ANN-QSAR model was trained accordingly using the 1699 CB2 ligand (CBID) data set. Twenty 

independent rounds of training and testing were performed. For each round, randomly selected 

90% of the database was used for training and 10% was used for validation. During this exercise, 

more training rounds, compared to 5 rounds in the previous section (Section 4.3.2), were applied 

in order to have a better coverage on the diversity of training molecules since the models would 

be tested on molecules that were not found in the training CBID data set. A summary of training 

and cross-validation results can be seen in the supplemental table in Appendix A (Table A1). 

After 20 rounds of predictions, an average predicted value for each test compound was 

calculated. Probability density function and cumulative distribution function plots of residual 

values of test compounds can be seen in Figure 4-5 indicating the values fall under the Gaussian 

distribution with the average residual value of 0.046 and standard deviation of 1.03. Seventeen 
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outlier compounds with residuals more than two standard deviations away from the average 

residual were removed. Figure 4-6 shows a scatter plot of experimental and predicted pKi values 

of 278 test compounds after such outlier removal. The linear regression of these 278 data points 

provided an r of 0.75, slope of 0.686, and Y intercept of 2.249. A plot of these data shown in 

Figure 4-7 indicated that there was a good correlation between experimental and predicted values 

given the fact that many of these test compounds have novel structures and were not included in 

the model training and validation process. The result suggested that the FANN-QSAR possessed 

good generalization ability for newly reported cannabinoid ligands. 

 

 

Figure 4-5. Probability density function (left) and cumulative distribution function (right) plots 

of residual values of 295 newly reported cannabinoid compounds. 
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Figure 4-6. Scatter plot between experimental pKi and predicted pKi values of 278 test 

cannabinoid ligands after the removal of 17 outliers. 
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Figure 4-7. Experimental and predicted pKi values of 278 test cannabinoid ligands  
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4.3.4 An application of FANN-QSAR: virtual screening of the NCI compound database        

To further illustrate a possible application of FANN-QSAR in drug discovery research, a virtual 

screening experiment on NCI compound database [243] was performed to search for CB2 lead 

ligands. For consistency, the same 20 trained models in the previous section were used. As a test 

set, compounds from NCI database were used for each round of prediction. Before testing, the 

database was filtered to remove duplicate compounds, isotopes, metals and mixtures using the 

Tripos Selector program [185]. The NCI database contained 329,089 compounds, and after such 

filtrations it was reduced to 211,782 compounds. For each compound, the ECFP6 fingerprint was 

generated and used as network inputs to predict the CB2 activity (pKi). After 20 rounds of 

predictions, an average predicted value for each compound was calculated. The top ranked 50 

compounds were selected, but only 10 compounds were available from the NCI via material 

transfer agreement (MTA). These 10 were for CB2 activities using [3H]CP-55940 competition 

binding assay experiments as a validation of the method.  

Among the 10 tested NCI compounds, four (NSC49888, NSC174122, NSC369049 and 

NSC76301) had CB2 Ki between 6.70 nM (pKi = 8.17) and 3.80 µM (pKi = 5.42). One 

compound, which has a similar chemical scaffold as the well-known cannabinoid ligand, delta-9-

tetrahydrocannabinol, was found to be a high affinity compound with an average CB2 Ki value of 

6.70 nM (pKi = 8.17). These four compounds and other similar compounds (70% 2D Tanimoto 

similarity threshold was used) [21] were not found in the training database used to train the 

model. Among top 50 ligands, there was one NCI compound (NSC768843) which was more than 

90% similar (Tanimoto coefficient ≥ 0.9 using FP2 fingerprint)  to a known classical 

cannabinoid ligand (CAS ID: 112830-95-2 or HU210), an analog of delta-9-

tetrahydrocannabinol, reported in the literature [244]. These findings proved that FANN-QSAR 
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method can find not only novel compounds with good CB2 binding affinities but also compounds 

similar to known ligands from a testing database containing thousands of compounds with 

diverse scaffolds. Hit ligands with novel scaffolds can be used as lead compounds for further 

medicinal chemistry optimization and SAR studies while hits similar to known ligands provide 

additional information for scaffold hopping and R-group variations which may be useful for 

medicinal chemists. Table 4-4 contains the structures of NCI hit compounds and their 

experimental pKi as well as predicted values. Except for one compound (NSC746843) that was 

not available from NCI, the other four compounds were experimentally tested in our lab and 

competition binding curves are shown in Figure 4-8. 

It should be noted that the predicted pKi correlated well with experimental pKi for two of 

five hit ligands but not for the other three ligands. It could be attributed to the experimental 

variability of the reported CB2 binding activities of training compounds among different research 

labs or a possible limitation of 2D fingerprint descriptors which considers individual fragment 

contributions but sometimes may not be as effective as other 3D descriptors when considering an 

overall structure of a ligand. Fingerprints such as ECFP6 have, however, been found to be useful 

in this study as well as other several cheminformatic studies [240, 241], and they are known to 

be robust and time efficient for high throughput virtual screening applications where hundreds of 

thousands of chemicals are involved like in this study. To conclude, results from the virtual 

screening exercise that was validated experimentally demonstrated that the derived FANN-

QSAR model is capable of successfully identifying lead CB2 compounds with good CB2 binding 

affinities as well as compounds similar to known cannabinoid ligands, and providing additional 

insights for R-group and scaffold hopping of known ligands. 
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Table 4-4. Identified NCI hit compounds with CB2 binding activities   

 
Structure NSC  

ID 
MW ClogP Experimental 

pKi 
Predicted 
pKi  

 

746843 

 

400.55 6.61 

 

8.81* 8.66 

 

49888 330.46 

 

5.59 

 

8.17** 8.28 

 

174122 

 

463.52 4.76 

 

5.59*** 8.41 

 

369049 

 

488.66 

 

4.00 

 

5.51*** 8.48 
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76301 354.44 3.99 5.42*** 8.21 

*An average literature reported Ki value of a known cannabinoid compound (HU210) which is 
more than 90% similar to 746843. **An average Ki value of two independent experiments 
performed in duplicate. ***An experimental Ki value of one experiment performed in duplicate. 

Ki = 6.70 nM
pKi = 8.17

Ki = 2.52 µM
pKi = 5.59

Ki = 3.05 µM
pKi = 5.51

Ki = 3.75 µM
pKi = 5.42

 

Figure 4-8. CB2 receptor binding affinity Ki values of four NCI hit compounds measured by 

[3H]CP-55940 radioligand competition binding assay using human CB2 receptors harvested 

from transfected CHO-CB2 cells.  
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4.4 CONCLUSION 

In this work, a novel fingerprint-based QSAR algorithm using artificial neural networks 

approach was introduced. Five data sets were used to compare the developed FANN-QSAR 

approach to known 3D and 2D QSAR models. The FANN-QSAR model’s results were similar to 

both 3D CoMFA and CoMSIA, and better than HQSAR method for all five data sets. It should 

be noted that 3D CoMFA and CoMSIA requires knowledge of ligand bioactive conformations 

and high quality molecule alignments for predictive models whereas the FANN-QSAR model 

requires only two-dimensional structures for fingerprint generations. The model performance 

was comparable to other reported QSAR methods such as EVA and neural network approaches 

using 2.5D descriptors. In addition, the FANN-QSAR model was applied to a large structurally 

diverse cannabinoid ligand data set to predict CB2 binding activities and achieved an average r 

(test) value of 0.75. In addition, to evaluate the generalization ability of FANN-QSAR method 

on unseen cannabinoid ligands, it was tested on a set of 278 newly reported cannabinoid ligands 

not presented in the training data set and achieved good prediction accuracy. Moreover, to show 

a useful application of the FANN-QSAR method, it was used to virtually screen NCI compound 

database and top hits were experimentally validated. Four out of 10 tested compounds were 

found to have good CB2 binding affinities. The lead compounds are currently being subjected 

for further lead optimization and SAR studies. To conclude, the FANN-QSAR method can be a 

useful application in computer-aided drug discovery research to predict biological activities or 
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properties of unknown ligands and screen large structurally diverse databases for novel lead 

discovery.
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5.0  MOLECULAR MODELING, DISCOVERY AND QSAR STUDY OF NOVEL 

CANNABINOID LIGANDS 

5.1  INTRODUCTION 

As mentioned in Section 1.3.1, the therapeutic potential of CB2 receptor modulation has 

prompted the development of CB2 receptor selective ligands, either as agonists or as 

antagonists/inverse agonists. Several reviews have already been published to summarize the 

advances of new CB2 ligands (Figure 5-1) from literature and patents [130, 157, 245-247]. This 

chapter discusses efforts in finding novel CB2 selective inverse agonists.  

The first CB2 inverse agonist discovered is the 1,5-diarylpyrazole, 5-(4-chloro-3-

methylphenyl)-1-[(4-methylphenyl)methyl]-N-[(1S,4R,6S)-1,5,5-trimethyl-6-bicyclo[2.2.1]-

heptanyl]pyrazole-3-carboxamide (SR144528) [248]. This compound, as well as (6-iodo-2-

methyl-1-(2-morpholinoethyl)-1H-indol-3-yl)(4-methoxyphenyl)methanone (AM630) [156], has 

been extensively used as standards against which to measure the specificity of various 

cannabinoid agonists at CB2 receptors in animal models. Recently, the 2-quinolone derivative N-

(benzo[1,3]-dioxol-5-ylmethyl)-7-methoxy-2-oxo-8-pentyloxy-1,2-dihydro-quinoline-3-

carboxamide (JTE-907) [249] and the sulfone derivative N-[1(S)-[4-[[4-methoxy-2-[(4-

methoxyphenyl)sulfonyl]phenyl]-sulfonyl]phenyl]ethyl]methanesulfonamide (Sch225336) [250] 

have received much attention for their immunomodulatory properties against inflammatory 
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disorders in which leukocyte recruitment is involved. Recently, the natural product 4-O-

methylhonokiol (MH) [251] and several derivatives were shown to selectively target CB2 

receptors and to act as inverse agonists with anti-inflammatory and anti-osteoclastogenic 

properties. Similarly, JTE-907, Sch225336, MH, the pyrimidine derivative 2-[(2,4-

dichlorophenyl)amino]-N-[(tetrahydro-2H-pyran-4-yl)-methyl]-4-(trifluoromethyl)-5-

pyrimidinecarboxamide (GW842166X) were found to be potential promising therapeutic agents 

for the treatment of inflammatory and neuropathic pain [252]. More recently, it was reported that 

(6aR,10aR)-3-(1,1-dimethyl-butyl)-6a,7,10,10a-tetrahydro-6,6,9-trimethyl-6H-dibenzo[b,d]pyran 

(JWH-133) dose-dependently inhibited intravenous cocaine self-administration, cocaine-

enhanced locomotion, and cocaine-enhanced accumbens extracellular dopamine in wild-type and 

CB1 receptor knockout mice [253]. This result suggests that brain CB2 receptors may be a drug 

target for the pharmacotherapy of drug abuse and addiction. More and more novel chemotype 

CB2 ligands were discovered, and many of them showed good therapeutic potentials. Such as the 

natural product (E)-β-caryophyllene [(E)-BCP] was identified as a functional nonpsychoactive 

CB2 receptor ligand and as a macrocyclic anti-inflammatory cannabinoid in Cannabis [235]. 

Taken together, these published studies show that CB2 receptors are an attractive target for 

developing potentially therapeutic ligands. 

Within a high-throughput screening research program aimed at characterizing new 

cannabinoid ligands, we identified compound 1 (N,N'-((4-

(dimethylamino)phenyl)methylene)bis(2-phenylacetamide)) (PAM, Figure 5-2) as a novel 

chemotype with selective CB2 activity, which showed significant CB2 receptor affinity (Ki = 777 

nM) and good selectivity over the CB1 receptor (selectivity CB1/CB2 > 26). On the basis of this 

promising result, we chose compound 1 as the prototype for further SAR medicinal chemistry 
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studies. In this report, we have designed and synthesized a series of novel PAM derivatives. CB2 

binding activities and functional effects of these derivatives have also been investigated to define 

their structure-activity relationships and functionality. This led to the identification of five new 

derivatives (Figure 5-2) as potential CB2 selective ligands. Importantly, some showed promising 

inhibition activity to osteoclast cells derived from human bone marrow. The toxicity of PAM 

compounds on normal human mononuclear cells was then investigated. Furthermore, we 

performed molecular docking studies to assist in our initial ligand design as well as 3D-QSAR 

CoMFA studies which reveal sterically and electrostatically favored and disfavored regions 

which play important roles in CB2 receptor binding activity and selectivity of PAM derivatives. 

 

5.2 EXPERIMENTAL AND COMPUTATIONAL METHODS 

5.2.1 Chemistry 

All compounds (bolded numbers) mentioned from this point can be found in Table 5-1, Table 

5-2, Table 5-3, Table 5-4, and Table 5-5. Syntheses of all the compounds were performed by Dr. 

Peng Yang and Mr. Abdulrahman Almehizia. All reagents were purchased from commercial 

sources and used without further purification. Analytical thin-layer chromatography (TLC) was 

performed on SiO2 plates on Alumina. Visualization was accomplished by UV irradiation at 254 

nm. Preparative TLC was conducted using preparative silica gel TLC plates (1000 μm, 

20cm×20cm). Flash column chromatography was performed using the Biotage Isolera flash 

purification system with SiO2 60 (particle size 0.040-0.055 mm, 230-400 mesh). 1H NMR was 
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recorded on a Bruker 400 MHz spectrometer. The chemical purity of the target compounds was 

> 95% as determined using the following conditions: a Shimadzu HPLC-MS with a 

HAMILTON reversed phase column (HxSil, C18, 3 µm, 2.1 × 50 mm (H2)); Eluent A: 5% 

CH3CN in H2O, eluent B: 90% CH3CN in H2O; flow rate of 0.2 mL/min; UV detector, 254 nm 

and 214 nm.  

5.2.2 Radioligand competition binding assays 

CB ligand competition binding assay was carried out as described previously [235]. Briefly, non-

radioactive (or cold) ligands (PAM derivatives and reference ligands) were diluted in binding 

buffer (50 mM Tris-HCl, pH 7.4, containing 5 mM MgCl2, 2.5 mM EGTA, 0.1% (w/v) fatty acid 

free BSA), 10% dimethylsulfoxide, and 0.4% methyl cellulose. Each assay plate well contained a 

total of 200 μL of reaction mixture comprised of 5 μg of CB1 (or CB2) membrane protein, 

labeled [3H]-CP-55,940 at a final concentration of 3 nM and the unlabeled ligand at its varying 

dilutions as stated above. Plates were incubated at 30 oC for 1 h with gentle shaking. The 

reaction was terminated by rapid filtration through Unifilter GF/C filter plates using a Unifilter 

Cell Harvester (PerkinElmer). After the plate was allowed to dry overnight, 30 µL MicroScint-0 

cocktail (PerkinElmer) was added to each well and the radioactivity was counted by using a 

PerkinElmer TopCounter. Data from these assays were analyzed using GraphPad Prism 5.0 

Software. All assays were performed in duplicate and data points represented as mean±S.E.M. 

Bound radioactivity was analyzed for Ki values using non-linear regression analysis by 

GraphPad Prism 5.0 software.  

The saturation binding of [3H]-CP-55,940 to the membrane proteins was performed as 

described previously [237]. Briefly, the CB1 (or CB2) membrane fractions (5 μg) were incubated 
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with increasing concentrations of [3H]-CP-55,940 (0.05-4 nM) in 96-well plates at 30 °C with 

slow shaking for 1 h. The incubation buffer was composed of 50 mM Tris-HCl, pH 7.4, 

containing 5 mM MgCl2, 2.5 mM EGTA, and 0.1% (w/v) fatty acid free BSA. Ligand was 

diluted in incubation buffer supplemented with 10% dimethylsulfoxide and 0.4% methyl 

cellulose. Non-specific binding was determined in the presence of 1:1000 unlabeled CP-55,940 

(5,000 nM) in excess. The reaction was terminated and the radioactivity was counted as stated 

above. The difference between total and nonspecific binding equals the receptor specific binding. 

Non-linear regression analysis revealed the receptor density (Bmax) and the equilibrium 

dissociation constant (Kd) values of [3H]-CP-55,940 for the CB2 receptor. 

5.2.3 cAMP assays 

cAMP levels were measured according to reported method with modifications using LANCE 

cAMP 384 kits (PerkinElmer) [237]. The assay is based on competition between a Europium-

labeled cAMP trace complex and total cAMP for binding sites on cAMP-specific antibodies 

labeled with a fluorescent dye. The energy emitted from the Eu-chelate is transferred to the dye 

on the antibodies, which in turn generates a time-resolved fluorescent resonant energy transfer 

(TR-FRET) signal at 665 nm. The fluorescence intensity (665 nm) decreases in the presence of 

cAMP from the tested samples and resulting signals are inversely proportional to the cAMP 

concentration of a sample. CB2 receptor wild type (WT) transfected CHO cells were seeded in a 

384-well white ProxiPlates with a density of 2000 cells per well in 5 μL of RPMI-1640 medium 

containing 1% dialyzed FBS, 25 mM HEPES, 100 μg/mL penicilin, 100 U/ml streptomycin and 

200 μg/mL of G-418. After culture overnight, 2.5 μL of cAMP antibody and RO20-1724 (final 

concentration50 μM) in stimulation buffer (DPBS 1x, containing 0.1% BSA) was added to each 
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well, followed by addition of either 2.5 μL compound or forskolin (final 5 μM) for agonist-

inhibited adenylate cyclase (AC) activity assay. After incubated at room temperature for 45 min, 

10 μL of detection reagent was added into each well. The plate was then incubated for 1 h at 

room temperature and measured in Synergy H1 hybrid reader (BioTek) with excitation at 340 nm 

and emission at 665 nm. Each cAMP determination was made via at least two independent 

experiments, each in triplicate. EC50 values were determined by nonlinear regression, dose–

response curves (GraphPad Prism 5). 

5.2.4 Osteoclast formation assay 

Human marrow-derived mononuclear cells (2 x 105 cells/well) were seeded in 96-well 

multiplates at 100 µL/well in a-MEM containing 20% horse serum, 10 ng/mL M-CSF, and 25 

ng/mL RANKL. The tested compounds at the indicated final concentrations were added to the 

appropriate wells. Half-media changes were carried out twice a week using drug-containing 

media where appropriate. The culture was incubated for a total of 3 weeks at 37 °C with 5% CO2 

and 95% humidity. Differentiation into OCLs was assessed by staining with monoclonal 

antibody 23c6 using a Vectastatin-ABC-AP kit (Vector Laboratories, Burlingame, CA). The 

antibody 23c6, which recognizes CD51/61 dimer constituting the OCL vitronectin receptor, was 

generously provided by Michael Horton (Rayne Institute, Bone and Mineral Center, London, 

UK). The 23c6-positive multinucleated OCLs containing 3 or more nuclei per OCL were scored 

using an inverted microscope [254]. This assay was performed by Dr. Rentian Feng. 
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5.2.5 Cytotoxicity assay on human mononuclear cells 

Peripheral blood was drawn in a heparinized syringe from healthy fasting volunteers who had 

been without medication for at least 2 weeks. The Peripheral blood mononuclear cell (PBMC) 

fraction was obtained by gradient centrifugation over Ficoll-Hypaque (Amersham), as described 

previously [255]. PBMC were washed three times with ice-cold PBS, followed by resuspension 

at 5 × 105/mL in the culture medium supplemented with 10% inactivated FBS, 2 mM glutamine, 

100 U/mL penicillin and 100 μg/mL streptomycin (Sigma). The compounds in a stock solution 

(50 mM in DMSO) was diluted with the culture medium to application conditions and further 

used for the treatment of PBMC for three days. The final DMSO concentrations were 0.02%. 

After treatment for 72 h, cell viability was determined using trypan blue exclusion assay. These 

human cell studies conformed to the guidelines of the Institutional Review Board of the 

University of Pittsburgh. This assay was performed by Dr. Rentian Feng. 

 

5.2.6 Molecular docking and 3D-QSAR model development 

Molecular docking studies were carried out initially to aid in the early design of PAM analogs. 

The Xie group previously published a CB2 homology model using bovine rhodopsin as a 

template in 2003 [128]. In order to reflect and include more recent GPCR crystal structure 

information, our CB2 homology was modified using other known GPCR crystal structures, 

including antagonist-bound A2A receptor (3EML.pdb) [256], human dopamine D3 receptor in 

complex with eticlopride (3PBL.pdb) [257], bovine rhodposin (1L9H.pdb and 1F88.pdb) [116, 

258], human beta2-adrenergic receptor (2RH1.pdb) [259], turkey beta1-adrenergic receptor 
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(2Y00.pdb and 2VT4.pdb) [260, 261] using the I-TASSER program [262, 263]. The best 

predicted model with the highest C-score was selected and further minimized using a conjugate 

gradient method with the AMBER force field (AMBER7 FF99) defined in Tripos Sybyl software 

[77]. 

Once the final model was obtained, further molecular docking simulations were 

performed using the Surflex-Dock program [77] to predict putative binding pocket and potential 

ligand-receptor interactions such as hydrophobic interactions, hydrogen-bonding and pi-pi 

interactions. To predict a putative binding pocket, MOLCAD analysis [77] was performed on the 

CB2 model to find a solvent-accessible cavity around important binding residues such as SER90, 

PHE91, PHE94, PHE106, LEU108, ILE110, SER112, VAL113, MET115, PHE117, PRO168, 

LEU169, TRP172, LEU182, TYR190, TRP194, PHE197, TRP258, SER268, LEU269 and 

SER285 reported in the literature [264-268]. During the docking simulation, the receptor 

structure was fixed while allowing only the ligand to be flexible. The docking mode was GeomX 

and other default docking parameters were used. The binding interaction energy was calculated 

to include van der Waals, electrostatic, and torsional energy terms defined in the Tripos force 

field [77].  

Out of the 52 compounds from Tables 1-5, 40 compounds were used in the subsequent 

3D QSAR CoMFA studies. Twelve compounds that showed no binding, hence no experimental 

Ki, were ignored in the analysis. Approximately 75% (29 compounds) and 25% (11 compounds) 

were randomly selected as a training set and a test set respectively. Molecular modeling and 

CoMFA studies were performed using the Sybyl-X1.2 from Tripos Molecular Modeling package 

[269]. Using our established protocol [5, 270, 271], molecular dynamic simulations were carried 

out for the best compound 17. Briefly, dynamic simulations were simulated at a temperature of 
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300K with time steps of 1 fs for a total duration of 300 ps, and conformation samples were 

collected at every 1 ps resulting in 300 conformers of compound 17. All conformers were then 

minimized and converged into four families. These four representative conformers derived from 

MD simulations were compared to the docking pose resulted from the molecular docking 

experiment using our in-house 3D CB2 receptor model. The docking experiment was done using 

the Surflex-Dock module from Tripos modeling software. The conformer with maximum 

agreement between these two experiments was chosen as a preferred conformer for further 

CoMFA studies. Structural alignments of all molecules in the training and test sets to the 

preferred conformer of compound 17 were performed using the MultiFit program in SybylX1.2. 

The CoMFA study was then carried out using the Sybyl/CoMFA module. The steric and 

electrostatic field energies (Gasteiger-Hückel charge) were calculated using the default 

parameters, namely: the Tripos Standard CoMFA field class, distance-dependent dielectric 

constant, steric and electrostatic field value cutoff set at 30 kcal·mol-1. Leave one-out cross-

validation (LOOCV) Partial Least-Square (PLS) analysis was then performed with a minimum σ 

(column filter) value of 5.0 kcal·mol-1 to improve the signal-to-noise ratio by omitting those 

lattice points whose energy variation was below this threshold. The final model (non cross-

validated analysis) was developed from the LOOCV model with the highest cross-validated r2 

value, using the optimal number of components determined by the LOOCV model. 
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5.3 RESULTS AND DISCUSSION 

5.3.1 Pharmacology and SAR analysis 

The binding affinities of these 52 derivatives to CB2 receptor were determined by performing 

[3H]CP-55,940 radioligand competition binding assays using membrane proteins of  the CHO 

cells stably expressing human CB2 receptor. The CB1 binding assay was also conducted for those 

compounds with high CB2 receptor binding potency (Ki < 1,000 nM) using membrane proteins 

harvested from the CHO cells stably transfected with the human CB1 receptors. CB2 receptor 

ligand SR144528 and CB1 ligand SR141716 were used as positive controls respectively along 

with the tested compounds. Structures, physiochemical properties and binding activities are 

shown in Table 5-1, Table 5-2, Table 5-3, Table 5-4, and Table 5-5. 

First, the SAR study was focused on the effect of the side chains on aromatic ring C. A 

set of twenty-one compounds was synthesized (2-22, Table 5-1). The aromatic ring C was 

modified with substituents that varied in their size, electronic character, and position. Removal of 

the p-dimethylamino group (compound 2, CB2 Ki = 9930 nM) dramatically decreased the CB2 

binding activity. Introducing fluorine atoms to different positions of ring C also lowered the CB2 

receptor affinity (compound 3-5, CB2 Ki = 35330, 12670 and 10900 nM, respectively). The CB2 

receptor binding affinities of the F-substituted compounds decreased in the order of o-F < m-F < 

p-F. From these results, we deduced that substitution at the para-position of the phenyl ring may 

play an important role in the CB2 receptor binding activity. This deduction was also confirmed 

by compounds 13 and 14. Compound 14 bearing p-trifluoromethyl showed improved activity 

(14, CB2 Ki = 596 nM), while compound 13 bearing o-trifluoromethyl showed dramatically 

decreased activity (13, CB2 Ki = 11780 nM). Moreover, replacing the para-fluorine with chlorine 
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(compound 6) or bromine (compound 7) relatively increased the activity, but the binding 

affinities were still weak. While introduction of a methyl group to the para-position (compound 

8) improved CB2 receptor affinity, unfortunately, compound 8 also had high affinity for the CB1 

receptor; the only compound that exhibited significant CB1 receptor binding activity among the 

52 compounds (8, CB1 Ki = 109 nM; CB2 Ki = 494 nM). Replacement of p-dimethylamino group 

with bioisostere isopropyl (compound 9) dramatically improved the binding activity and 

selectivity (CB2 Ki = 85 nM, selectivity index > 235).  

 

As for the compounds with alkoxyl groups (compounds 10-12), compound bearing 

methoxyl (10) showed similar activity and selectivity compared to the parent compounds, 

compound bearing ethoxyl (11) showed slightly decreased activity, and compound bearing 

isopropoxyl (12) showed slightly increased activity. This result indicated a variety of alkoxyl 

groups was tolerated, but their activity and selectivity for the CB2 receptor were sensitive to the 

group size. To explore the electronic and steric effects on CB2 binding activity, we introduced a 

nitro group to the benzene ring (15), but compound 15 completely lost its binding affinity to 

CB2. Reduction of compound 15 to the corresponding amine resulted in compound 16, which 

displayed relatively improved activity but was still weak. Replacement of the amine with a 

diethylamine group, however, resulted in a promising compound (17), which showed much 

improved activity and selectivity compared to the lead compound (CB2 Ki = 64 nM, selectivity 

index > 313). When the p-diethylamino group was identified as a better chemical group on ring 

C, additional substituted amino groups were further studied, resulting in several potent 

compounds 18-22 with p-dipropylamino, p-dibutylamino, p-pyrrolidinyl, p-piperidyl and p-

dibenzylamino respectively. Compared with the lead compound 1, these five compounds showed 
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greatly improved activity and selectivity (CB2 Ki: 22-595 nM, selectivity index: 34-909). When 

compared to compound 17 bearing a diethylamine group, compound 18 with a p-dipropylamino 

group showed the most potential binding affinity and selectivity (CB2 Ki = 22 nM, selectivity 

index > 909). Compound 21 with a p-pyrrolidinyl group showed similar activity (CB2 Ki = 71 

nM, selectivity index > 281). The modification result showed that CB2 binding affinity decreased 

as the size of the functional group at the para position of the benzene ring C increased 

(compound 19, 20 and 22). Hence, we conclude that the substituted amino group at the para 

position plays a significant role in CB2 receptor binding activity and the p-dipropylamino group 

is optimal. 

 

Subsequently, the SAR was further explored on the variation on aromatic rings A and B 

by introducing Cl or CF3, resulting in two series of compounds: 23-31 and 32-38. Among the 

first series compounds bearing Cl on ring A and B (23-31), five compounds (26-30) showed 

increased CB2 binding affinity and selectivity. All the compounds with CF3 on ring A and B in 

the second series (32-38) showed no binding activity to CB2 receptors. The results indicated that 

para-Cl is a better substituent than CF3 and H on rings A and B. Comparison of compound 29 

with o-CF3 and compound 30 with p-CF3 further indicates that the para-position of the phenyl 

ring C plays an important role in the CB2 binding activity. 

 

The distance from ring C to the methylene amide group as well as from rings A and B to 

the amide group was also explored (compound 39-41, Table 5-2; compound 42-44, Table 5-3). 

The data indicated that inserting CH2 (compound 39), CH2CH2 (compound 40) or CH=CH 

double bond (compound 41) between ring C and methylene amide group resulted in a complete 
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loss of activity or weak binding affinity. While removing CH2 from compound 17 or inserting 

CH2CH2 (compound 43) or CH=CH double bond (compound 44) between rings A/B and the 

methylene amide group led to a slight decrease in binding affinity, these compounds still showed 

good CB2 binding affinity and selectivity (167 ≤ CB2 Ki ≤ 688 nM; 29 ≤ selectivity index ≤ 119). 

 

Furthermore, the importance of aromatic ring C in the CB2 binding activity was explored 

(compound 45 and 46, Table 5-4). Replacing ring C with alkyl chain butyl (40) or pentyl (41) 

group led to a complete loss of activity or very weak binding affinity. We conclude that the 

aromatic ring C plays a significant role in CB2 receptor binding affinity and may be an essential 

element to retain the activity. 

 

After discovering the importance of the aromatic ring C for CB2 binding affinity, we then 

explored the importance of rings A and B by replacing aromatic rings A/B with different alkyl 

chains (compound 47-52, Table 5-5). The results indicated that replacing the benzyl group with a 

branched chain isopropyl (compound 47) or tert-butyl group (compound 48) dramatically 

decreased the CB2 binding affinity, whereas replacing the benzyl group with a long alkyl chain 

butyl (compound 49) showed slightly decreased affinity. Interestingly, replacement of benzyl 

with the straight chain pentyl group led to another promising compound 50, which showed 

greatly improved binding affinity and selectivity (CB2 Ki = 25 nM, selectivity index > 800). To 

further explore the effect of the alkyl chain, we also replaced aromatic rings A/B with longer 

chains n-C7H15 (compound 51) and n-C9H19 (compound 52). Compared to compound 50, 

however, they both showed slightly decreased binding affinity (51, CB2 Ki = 146 nM, selectivity 
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index > 136; 52, CB2 Ki = 160 nM, selectivity index > 125). From these results, we conclude that 

the aromatic ring A/B may be replaced by alkyl chain and the pentyl group is optimal. 

5.3.2 Functional bioactivity at CB2 receptors in vitro 

Cellular bioassay was also carried out by using our published protocol [237] in order to 

measure the agonistic or antagonistic activities of the CB2 selective compounds. Briefly, the cell-

based LANCE cAMP assays were performed on 384 well plates using CHO cells stably 

expressing the CB2 receptors in the presence of phosphodiesterase inhibitor RO20-1724 and 

adenyl cyclase activator forskolin.  Since CB2 is a Gαi-coupled receptor, an agonist inhibits the 

forskolin-induced cAMP production, resulting in an increase of the LANCE signal. On the other 

hand, an antagonist or inverse agonist decreases the LANCE signal toward forskolin-induced 

cAMP accumulation. Therefore, the detected LANCE signal is inversely proportional to cAMP 

level. As shown in Figure 5-3, reduction of the LANCE signal occurred with increasing 

concentrations of compounds 1, 9, 17, 18, 21, 50 and SR144528. These ligands acted as inverse 

agonists, indicated by increasing forskolin-induced cAMP production, with EC50 values of 

159.1±8.68 nM, 4.11±3.66 nM, 5.73±6.37 nM, 28.33±2.54 nM, 17.08±2.11 nM, 13.42±2.07 nM 

and 13.71±2.81 nM, respectively. Such a phenomenon was not observed with agonsits CP55940 

and HU308, which inhibited cAMP production with EC50 values of 23.29±4.17 nM and 

83.81±5.63 nM, respectively. The results clearly indicated that six compounds (1, 9, 17, 18, 21 

and 50) indeed behaved as inverse agonists. 
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5.3.3 Osteoclast Formation Assay 

Based on binding affinity, selectivity and drug-likeness, four compounds were selected as 

candidates for further study. As shown in Figure 5-8, we tested the effect of these most 

promising CB2 ligands on osteoclast (OCL) formation using human nonadherent mononuclear 

bone marrow cells [272]. Each ligand tested induced a concentration-dependent inhibition of 

osteoclastogenesis. Compared with the known CB2 inverse agonist SR144528, our compounds 

exhibited the same or stronger potency in suppressing OCL formation. Especially, compound 17 

showed the strongest inhibition activity, with inhibition rates of 72%, 79% and 84% at 0.1 µM, 1 

µM and 10 µM, respectively. Importantly, 17 showed a more potent inhibitory effect than the 

parent ligand Xie95 (PAM), suggesting our medicinal chemistry modification and SAR studies 

of Xie95 led to overall improved compounds not only for CB2 activity but also for 

osteoclastogenesis inhibition. 

5.3.4 Cytotoxicity analysis using normal human cells 

Our newly discovered compounds showed promising inhibition activity with respect to 

osteoclastogenesis. To examine whether the impaired osteoclastogenesis in the presence of PAM 

compounds is due to their toxicity, we investigated the cytotoxicity profile of PAM compounds 

on normal human cells. First, mononuclear cells were isolated from healthy donors. After 

treatment of these normal cells with the PAM compounds for 3 days, it was shown that the cell 

viability was not significantly affected compared with the vehicle control group (Figure 5-9). 

The best compound 17 did not show any cytotoxic effects at the concentration (1 µM) of 79% 

inhibition of osteoclastogenesis, and only slight effects on cell viability were observed at high 
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concentration of 10 µM. These results indicate that our compounds possess favorable therapeutic 

indexes and the inhibition of human osteoclastogenesis is not a result of their cytotoxicity. 

5.3.5 Molecular docking and 3D-QSAR studies 

First of all, a putative binding pocket (Figure 5-4) was predicted via MOLCAD analysis [77] to 

find a solvent-accessible cavity around known important binding residues such as SER90, 

PHE91, PHE94, PHE106, LEU108, ILE110, SER112, VAL113, MET115, PHE117, PRO168, 

LEU169, TRP172, LEU182, TYR190, TRP194, PHE197, TRP258, SER268, LEU269 and 

SER285 which were previously reported in the literature [264-268]. Then known CB ligands 

such as CP55940 (agonist) and SR144528 (inverse agonist) as well as our compound 1 and 17 

(inverse agonists) were docked to the binding pocket using the Surflex-Dock program [77]. 

Docking results of each ligand can be seen in Figure 5-5. Several ligand-receptor interactions 

were observed. For example, CP55940 showed hydrogen-bonding with ASN188 and HIS95 as 

well as hydrophobic interactions with LEU196, VAL261, LEU201, TRP258, VAL113. 

Similarly, the bulky group of SR144528 had interactions with other hydrophobic residues such 

as LEU196, VAL261, LEU201, TRP258 and VAL113. Compound 1 and 17 also had 

hydrophobic interactions with LEU192, LEU196, VAL261, LEU201, TRP258 and VAL113 in 

addition to a hydrogen bond with SER285. From such docking results and our previous CoMFA 

modeling results [5], we concluded that introducing a hydrophobic group to one of aromatic 

rings of PAM analogs while keeping the hydrogen bond donor/acceptor groups may help 

improve the binding affinity and selectivity of the analogs. 

A series of PAM analogs were then synthesized and 3D QSAR studies were carried out 

to derive CB2 CoMFA models by using our published protocol [5, 271]. To search for the 
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preferred conformations of the most potent CB2 ligand (compound 17), molecular dynamic 

simulations and molecular mechanics (MD/MM) were carried out based on our established 

computational protocol [270]. As described in the Section 5.2.6, MD simulations were performed 

with time steps of 1 fs for 300 ps with 1 ps interval recording time, which resulted in 300 

conformers sampled after the simulations. All 300 conformations were minimized and converged 

to four families. Among four representative MD-generated conformers, one conformer had the 

most similar conformation to the docking pose (Figure 5-5) that resulted from the molecular 

docking simulation using the CB2 homology model. The conformer was chosen as one of the 

preferred active templates and then all compounds from the training and test data sets were 

aligned to such preferred conformer of compound 17. The final alignments of each set are 

depicted in Figure 5-6 (A, B). 

After molecular alignment, leave-one-out cross-validation (LOOCV) analysis was 

performed to determine the optimal number of components and to evaluate the predictive ability 

of the derived CoMFA model which was measured by a cross-validated r2 (rcv
2) value. It is 

defined as: 

Cross-validated r2 = (SD-PRESS)/SD 

where SD is the sum of the squared deviations of each biological property value from their mean, 

and PRESS is the sum, over all compounds, of the squared differences between the actual and 

predicted biological activity values. The LOOCV analysis showed that the optimal number of 

components was 4 and the rcv
2 was 0.52, which was within the range of generally accepted 

criterion for statistical validity.  

   Subsequently, non-cross-validated PLS analysis was performed and an r2 value of 

0.92 with a standard error of estimate of 0.28 was obtained. Such a result indicates the trained 
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CoMFA model successfully correlates between PAM analog structures and their CB2 receptor 

affinity values. In order to evaluate the derived CoMFA model’s generalization ability on unseen 

compounds, it was used to predict the CB2 binding activity values of test set compounds which 

were separated from the training set and hence were not included during the model training. A 

good correlation coefficient (r2) value of 0.76 was obtained from such prediction and the result 

demonstrated that the CoMFA model had a good generalization performance on the test set 

compounds. As shown in Table 5-6, the predicted pKi values are close to the experimental pKi 

values for molecules in both training and test sets. Figure 5-7 shows the relationship between the 

calculated and experimental pKi values for the non-cross-validated training set predictions as 

well as for the test set predictions. The linearity of the plot indicates a very good correlation and 

predictive ability of the developed CoMFA model to predict CB2 receptor binding affinities of 

PAM derivatives, which is currently used in our new CB2 ligand design.   

To further predict favorable and unfavorable regions of PAM derivatives for CB2 

receptor binding activity, CoMFA contour maps were derived. In particular, CoMFA contour 

maps depict the color-coded regions around the molecules which associate with ligand biological 

activities. Green regions indicate favorable steric interactions that enhance binding affinity 

whereas yellow regions display unfavorable steric interactions. On the other hand, the blue and 

red regions show preferred and not-preferred electrostatic interactions respectively. As shown in 

Figure 5-6 (C), there is a sterically preferred region near the p-dimethylamino group, which 

means the hydrophobic pharmacophore feature in this part of the molecule is expected to 

enhance CB2 receptor binding affinity. In fact, such a hydrophobic moiety may interact and fit 

well in the previously suggested hydrophobic pocket within transmembrane regions 3, 5, 6 and 7 

[237, 273-275]. Moreover, this finding is consistent with our previous CoMFA studies [5], which 
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showed that the presence of a steric bulky group enhanced the CB2 receptor binding activity and 

selectivity. It also agreed with our initial docking results which suggested introducing a 

hydrophobic group to PAM analogs. On the other hand, electrostatic interactions are not 

preferred near the p-dimethylamino group as highlighted by a red region (Figure 5-6 (C)). This is 

congruent with the chemistry modifications of compounds 16 and 31 with para –NH2 and –NO2 

groups respectively, which lost CB2 binding activity. However, once a hydrophobic feature was 

reintroduced, the CB2 affinity and selectivity were restored as demonstrated by compounds 8, 9, 

12, 17, 18, 19, 20, 21, and 22. Such CoMFA results confirmed our SAR hypothesis that aromatic 

ring C plays an important role in CB2 receptor binding activity and introducing a hydrophobic 

feature at the para position of ring C is expected to enhance CB2 receptor activity and selectivity. 

5.4 CONCLUSION 

We reported PAM as a novel chemotype with selective CB2 receptor binding activity. In 

continuation of our studies on PAM derivatives, we have synthesized 52 new PAM derivatives 

designed through variations of the aromatic rings A-C and the substituents of different positions 

on these three rings. The SAR analysis reveals that: (i) the para-substituted amino group on ring 

C plays a significant role in CB2 receptor binding activity, a variety of functional groups was 

tolerated, and the p-dipropylamino group is optimal; (ii) para-Cl is a much better substituent 

than CF3 and H on rings A and B, and aromatic rings A/B may be replaced by alkyl chains with 

the pentyl group being optimal; and (iii) aromatic ring C is an essential element to retain 

compound potentcy to CB2. Among the derivatives, five compounds 9, 17, 18, 21 and 50 were 

confirmed as CB2 inverse agonists with the strongest CB2 receptor binding affinity and best 



 148 

selectivity. 3D-QSAR CoMFA modeling studies also confirmed our SAR findings that aromatic 

ring C is important for CB2 receptor activity and a hydrophobic feature at the ring C’s para 

position is crucial to improve CB2 activity and selectivity of the PAM analogs. The results were 

congruent by chemistry, bioassay validation and computer modeling studies. More importantly, 

osteoclastogenesis assay indicated that PAM compounds have promising inhibition activity to 

osteoclast cells derived human bone marrow. The most promising compound, 17, showed 72% 

inhibition activity even at the low concentration of 0.1 µM. The inhibition of human 

osteoclastogenesis is not due to cytotoxic effects. Therefore, these PAM derivatives could be 

used as potential leads for the development of a new type of antiosteoporosis agent. Overall, the 

data presented here show that PAM is a useful scaffold for the design of new selective CB2 

receptor inverse agonists for further CB2 signaling and anti-osteoclast studies.  

. 

 

 

Figure 5-1. Representative CB2 selective compounds with various chemical scaffolds. 
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Figure 5-2. Structures of the lead compound 1 (or XIE95 or PAM) and the modified target 

compounds 9, 17, 18, 21 and 50. 
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Figure 5-3. Comparisons of LANCE signal of different CB2 receptor ligands in stably transfected 

CHO cells expressing human CB2 receptors in a concentration-dependent fashion. 

EC50 values of compounds 1, 9, 17, 18, 21, 50 and SR144528 are 159.1±8.68 nM, 

4.11±3.66 nM, 5.73±6.37 nM, 28.33±2.54 nM, 17.08±2.11 nM, 13.42±2.07 nM and 13.7±2.81 

nM respectively. EC50 for CP-55,940 and HU308 are 23.29±4.17 nM and 83.81±5.63 nM. Data 

are mean±S.E.M. of one representative experiment of two or more performed in duplicate or 

triplicate. 
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Figure 5-4. A predicted binding pocket around important binding residues of the CB2 receptor  
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Figure 5-5. CP55940, SR144528, compound 1 and compound 17 (ball and stick models) docked 
to the CB2 binding pocket displaying hydrogen-bonding and hydrophobic interactions with the 
receptor  
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Figure 5-6. Overall alignments of training set molecules (A) and test set molecules (B) to the 

compound 17 as well as CoMFA contour maps of compound 17 showing steric and electrostatic 

(C) interactions. 

Sterically (bulk) favored areas are color-coded in green and sterically disfavored areas are 

in yellow. Electrostatically (charge) preferred regions are in blue and red regions are 

electrostatically disfavored areas. 
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Figure 5-7. Scatter plots of CoMFA-calculated and experimental binding affinity values (pKi) 

for the training and test sets. 
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Figure 5-8 Inhibition of human osteoclastogenesis by CB2 ligands. 

 Human bone marrow-derived mononuclear cells were cultured in a 96-well plate for 

three weeks in the presence of RANKL (50 ng/mL) to form osteoclast-like cells. After 3 weeks, 

the cultures were stained with the 23c6 antibody. 23c6-positive OCLs containing 3 or more 

nuclei were scored microscopically. All experiments were performed in triplicate. Results are 

shown as mean ± SD. SR = SR144528. Note: the control on left is vehicle control and the right 

one is positive control.  
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Figure 5-9 Cytotoxic effects of PAM compounds on normal human mononuclear cells. 

Samples of primary PBMCs (105 cells per well in 96-well plate) from healthy donors 

were treated in culture for 72 h with the indicated compounds. The viability of cells was 

determined using trypan blue exclusion assay. The results were presented as mean ± SD of three 

assays.  
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Scheme 1. General Synthesis of PAM Analogues 

 

Reagents and conditions: (a) concentrated H2SO4, 0 oC, 12 h; (b) method 1: aldehyde, 

anhydrous dichloroethane, TMSCl, 70 oC, 3-12 h; (c) method 2: aldehyde, anhydrous DCM, 

F3CSO3SiMe3, r.t, 12 h; (d) ethanol, palladium (10%), hydrazine, 70 oC, 3 h; (e) DMF, K2CO3, 

r.t, 12 h. 

.
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Table 5-1. Radioligand Competition Binding Affinity (Ki) Data of PAM Derivatives 

 
 
Compd R1 R2 MW cLog P Ki (CB2), nMb, c Ki (CB1), nMa, d SIe 

1 H p-(CH3)2N- 401.50 4.04 777 > 20,000 > 26 
2 H H- 358.43 3.93 9,930 NT  
3 H o-F- 376.42 4.08 35,330 NT  
4 H m-F- 376.42 4.08 12,670 NT  
5 H p-F- 376.42 4.08 10,900 NT  
6 H p-Cl- 392.88 4.54 3,081 NT  
7 H p-Br- 437.33 4.70 2,226 NT  
8 H p-CH3- 372.46 4.45 494 109  
9 H p-i-C3H7- 400.51 5.18 85 > 20,000 > 235 
10 H p-CH3O- 388.46 3.78 783 > 20,000 > 26 
11 H p-C2H5O- 402.49 4.13 1,500 NT  
12 H p-i-C3H7O- 416.51 4.55 313 > 20,000 > 64 
13 H o-CF3- 426.43 4.81 11,780 NT  
14 H p-CF3- 426.43 4.81 596 > 20,000 > 34 
15 H p-NO2- 403.43 3.87 NB NT  
16 H p-H2N- 373.45 2.51 12,550 NT  
17 H p-(C2H5)2N- 429.55 4.76 64 > 20,000 > 313 
18 H p-(C3H7)2N- 457.61 5.80 22 > 20,000 > 909 
19 H p-(C4H9)2N- 485.66 6.69 221 > 20,000 > 90 
20 H p-(Benzyl)2N- 553.69 7.33 203 > 20,000 > 99 
21 H p-pyrrolidinyl- 427.53 4.45 71 > 20,000 > 281 
22 H p-piperidyl- 441.56 4.89 595 > 20,000 > 34 
23 Cl H- 427.32 5.14 NB NT  
24 Cl o-F- 445.31 5.29 10,850 NT  
25 Cl p-F- 445.31 5.29 NB NT  
26 Cl p-Cl- 461.77 5.75 154 > 20,000 > 130 
27 Cl p-CH3- 441.35 5.66 462 > 20,000 > 43 
28 Cl p-CH3O- 457.35 4.98 310 > 20,000 > 65 
29 Cl o-CF3- 495.32 6.02 158 > 20,000 > 127 
30 Cl p-CF3- 495.32 6.02 101 > 20,000 > 198 
31 Cl p-NO2- 472.32 5.08 NB NT  
32 CF3 H- 494.43 5.69 NB NT  
33 CF3 o-F- 512.42 5.83 NB NT  
34 CF3 p-F- 512.42 5.83 NB NT  
35 CF3 p-Cl- 528.87 6.29 NB NT  
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36 CF3 p-CH3- 508.46 6.20 NB NT  
37 CF3 p-CH3O- 524.45 5.53 NB NT  
38 CF3 p-CF3- 562.43 6.57 NB NT  

SR1f, g     2.1 NT  
SR2f, h     NT 10.6  

 

 

a, b Binding affinities of compounds for CB1 and CB2 receptor were evaluated using [3H]CP-

55,940 radioligand competition binding assay. c NB no binding, Ki > 20,000 nM. d NT = not 

tested. e SI: selectivity index for CB2, calculated as Ki(CB1)/Ki(CB2) ratio. f The binding affinities 

of reference compounds were evaluated in parallel with compounds 1-52 under the same 

conditions. g CB2 reference compound SR144528 (SR1). h CB1 reference compound SR 141716 

(SR2). 

 

Table 5-2. Radioligand Competition Binding Affinity (Ki) Data of PAM Derivatives 

 

 

Compd R1 X MW cLog P Ki (CB2), nMb, c Ki (CB1), nMa, d SIe 

39 H CH2 372.46 3.99 NB NB  
40 H CH2CH2 386.49 4.44 9,319 NB  
41 H CH=CH 384.47 4.54 5,683 NB  

SR1f, g     2.1 NT  
SR2f, h     NT 10.6  

 a -  h Same as described in Table 1. 
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Table 5-3. Radioligand Competition Binding Affinity (Ki) Data of PAM Derivatives 

 

 

Compd Y MW cLog P Ki (CB2), nMb, c Ki (CB1), nMa, d SIe 

42  401.50 4.80 688 > 20,000 > 29 
43 CH2CH2 457.61 5.64 213 > 20,000 > 93 
44 CH=CH 453.58 5.80 167 > 20,000 > 119 

SR1f, g    2.1 NT  
SR2f, h    NT 10.6  

a -  h Same as described in Table 1. 

 

Table 5-4. Radioligand Competition Binding Affinity (Ki) Data of PAM Derivatives 

 

 

Compd R MW cLog P Ki (CB2), nMb, c Ki (CB1), nMa, d 

45 H 338.44 3.75 35,970 NT 
46 CH3 352.47 4.19 18,200 NB 

SR1f, g    2.1 NT 
SR2f, h    NT 10.6 

a -  h Same as described in Table 1. 
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Table 5-5. Radioligand Competition Binding Affinity (Ki) Data of PAM Derivatives 

 

 

Compd R1 R2 R3 MW cLog P Ki (CB2), nMb, c Ki (CB1), nMa, d SIe 

47 H CH3 CH3 333.46 3.57 2636 NB  
48 CH3 CH3 CH3 361.52 4.69 3553 NB  
49 H H C3H7 361.52 4.27 182 > 20,000 > 109 
50 H H C4H9 389.57 5.16 25 > 20,000 > 800 
51 H H C6H13 445.68 7.9 146 > 20,000 > 136 
52 H H C8H17 501.79 10.0 160 > 20,000 > 125 

SR1f, g      2.1 NT  
SR2f, h      NT 10.6  

a -  h Same as described in Table 1. 
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Table 5-6. Experimental (expt) and predicted (pred) pKi values of PAM derivatives in the 
training set and test set  

Compd pKi (expt) pKi (pred) Residual 

1 6.11 6.23 -0.12 

2 5.00 4.99 0.01 

3 4.45 4.287 0.16 

4 4.90 4.879 0.02 

5 4.96 4.791 0.17 

6a 5.51 5.54 -0.03 

7a 5.65 5.73 -0.08 

8 6.31 6.141 0.17 

9 7.07 7.147 -0.08 

10a 6.11 5.81 0.30 

11 5.82 5.978 -0.16 

12 6.50 6.431 0.07 

13 4.93 5.083 -0.15 

14 6.22 6.336 -0.12 

16a 4.90 5.37 -0.47 

17 7.19 6.987 0.20 

18 6.66 6.711 -0.05 

19a 6.23 6.77 -0.54 

20a 6.69 6.4 0.29 

22 4.96 5.024 -0.06 

24 6.81 6.67 0.14    
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25 6.34 6.45 -0.11 

26a 6.51 6.6 -0.09 

27 6.80 6.746 0.05 

28 7.00 6.971 0.03 

38 5.03 5.078 -0.05 

39 5.25 5.24 0.01 

40 4.44 4.571 -0.13 

41 4.74 4.679 0.06 

a Molecules from the test set. 
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6.0  SUMMARY AND FUTURE WORK 

In this dissertation work, several novel QSAR methods were developed and presented. They 

could be used in virtual screening and hit ranking of chemical ligands. In addition, novel CB2 

selective inverse agonist ligands were discovered. To recap, three different QSAR methods were 

discussed. Each method has slightly different uses and purposes. In particular, the FS-QSAR and 

PharmShape-QSAR methods are useful to study local changes given a series of compounds with 

similar scaffolds. Different R-groups can affect the biological activities of analogs and these two 

methods incorporate such local changes in predictions. On the other hand, the FANN-QSAR 

method can be used as a high throughput virtual screening tool to screen large and structurally 

diverse compounds in order to find lead compounds. This method uses 2D molecular fingerprints 

of whole molecule and no longer requires compounds to have similar scaffolds. Using the 

approach, new chemical scaffolds having good CB2 binding affinities were discovered. These 

developed methods could be useful in the early phases of drug discovery process to screen out 

biologically active chemical ligands to save time and costly experiments. The last chapter 

discussed the discovery of novel CB2 ligands within nM binding affinities through medicinal 

chemistry and molecular modeling studies. Using experimental binding and functional assays, 

these ligands were confirmed to be CB2 selective inverse agonists. These novel scaffolds could 

be used as probes to investigate CB2 signaling.   
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In the future, the developed QSAR models can be updated using new SAR studies from 

literature. In addition to the fingerprints used in the research, addition fingerprints can be further 

explored to examine if there is any different effect on final QSAR predictions. It is expected that 

there will not be significant changes in the quality of QSAR model by using different 2D 

fingerprints. However, using properly defined 3D descriptors may improve the model’s quality. 

But one should keep in mind that 3D descriptors may require additional information such as 

ligands’ conformation and superimposition. Additional QSAR and medicinal chemistry studies 

will be carried out to make lead compounds better affinity and selectivity. For example, 

developed 3D-QSAR model can be further improved and updated by incorporating newly 

synthesized compounds. New SAR studies from other scaffolds can be used as references to 

infer important molecular moieties which may be useful substituents in our lead compounds. As 

a proof of principle, only NCI compound database was used for virtual screening in this study. In 

the future, developed QSAR model can be used to screen several other databases such as ZINC 

database to find novel lead compounds with different scaffolds as well. As a complimentary 

approach to ligand-based design, a receptor-based modeling was also used in this study to guide 

the early design of our lead compounds. In the future, the predicted binding pocket can be further 

validated via site-directed mutagenesis studies to elucidate important binding residues for 

successful ligand binding. Results from such studies will provide insights for essential receptor-

ligand interactions which can be used in modifying lead compounds for better affinity and 

selectivity. These lead compounds can be further tested for other in vitro and in vivo studies for 

potential therapeutic applications. 
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APPENDIX A 

SUPPORTING INFORMATION FOR FINGERPRINT-BASED ANN QSAR (FANN-

QSAR) METHOD 

Number of hidden neurons
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e 

M
SE

Optimal no. of 
hidden neurons

Training 
Set MSE

Test Set 
MSE

Average 
MSE

ECFP6-ANN-QSAR 800 0.208 0.770 0.489

FP2-ANN-QSAR 800 0.368 0.789 0.579

MACCS-ANN-QSAR 200 0.337 0.742 0.539
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Figure A1. Cross-validation results of three FANN-QSAR models on ACE data set 
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ECFP6-ANN-QSAR 100 0.100 0.184 0.142

FP2-ANN-QSAR 800 0.381 0.685 0.533

MACCS-ANN-QSAR 1000 0.176 0.391 0.283
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Figure A2. Cross-validation results of three FANN-QSAR models on AchE data set 
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hidden neurons
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Set MSE

Test Set 
MSE

Average 
MSE

ECFP6-ANN-QSAR 900 0.100 0.332 0.216

FP2-ANN-QSAR 400 0.100 0.104 0.102

MACCS-ANN-QSAR 400 0.100 0.285 0.193

 

Figure A3. Cross-validation results of three FANN-QSAR models on BZR data set 
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ECFP6-ANN-QSAR 200 0.186 0.418 0.302

FP2-ANN-QSAR 100 0.187 0.482 0.335

MACCS-ANN-QSAR 300 0.112 0.293 0.202
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Figure A4. Cross-validation results of three FANN-QSAR models on COX2 data set 
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Average 
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ECFP6-ANN-QSAR 200 0.100 0.261 0.180

FP2-ANN-QSAR 300 0.241 0.340 0.291

MACCS-ANN-QSAR 600 0.207 0.557 0.382
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 Figure A5. Cross-validation results of three FANN-QSAR models on DHFR data set 
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Table A1. Twenty rounds of model training and cross-validation results using CB2 ligand data 

set before testing compounds from NCI database 

Round 
Training 

MSE 
Validation 

MSE 
Avg. 
MSE 

Optimal No. of Hidden 
Neurons r2 training 

r2 
validation 

1 0.169 0.733 0.451 1000 0.87 0.47 
2 0.126 0.832 0.479 500 0.91 0.49 
3 0.362 0.645 0.504 600 0.74 0.53 
4 0.262 0.555 0.409 400 0.81 0.59 
5 0.332 0.776 0.554 800 0.74 0.49 
6 0.214 0.830 0.522 200 0.84 0.41 
7 0.207 0.622 0.415 500 0.85 0.56 
8 0.181 0.764 0.472 400 0.87 0.51 
9 0.255 0.563 0.409 800 0.82 0.60 
10 0.227 0.713 0.470 900 0.84 0.52 
11 0.217 0.636 0.427 600 0.83 0.51 
12 0.239 0.832 0.535 600 0.82 0.50 
13 0.185 0.729 0.457 800 0.87 0.43 
14 0.137 0.656 0.396 400 0.90 0.54 
15 0.389 0.565 0.477 900 0.70 0.55 
16 0.159 0.727 0.443 500 0.87 0.50 
17 0.303 0.709 0.506 500 0.78 0.50 
18 0.182 0.515 0.348 600 0.87 0.64 
19 0.219 0.681 0.450 900 0.83 0.53 
20 0.208 0.567 0.388 1000 0.85 0.53 
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