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This thesis presents techniques and analysis results which look promising for analyzing blocking 

in WDM networks without wavelength interchange (WLI). The approach includes two parts—

graph enumeration and blocking analysis for graphs, which are linked by a theorem [1] that 

reduces blocking analysis for an entire WDM system to the blocking analysis of the backbone 

topography and link capacity. Graph enumeration utilizes Burnside’s Theorem and MATLAB 

computation. Blocking analysis for graphs are implemented in MATLAB. Some general 

phenomena are observed from the analysis result of graphs with four, five, and six nodes. Node 

resilience is also discussed. 
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1.0  CHAPTER 1 INTRODUCTION 

1.1 PURPOSE AND STRUCTURE OF THIS THESIS 

This thesis presents techniques and analysis results which look promising for analyzing blocking 

in WDM networks without wavelength interchange (WLI). The approach includes two parts—

graph enumeration and blocking analysis for graphs, which are linked by a theorem [1] that 

reduces blocking analysis for an entire WDM system to the blocking analysis of the backbone 

topography and link capacity. Graph enumeration utilizes Burnside’s Theorem and MATLAB 

computation. Blocking analysis for graphs are implemented in MATLAB. Some general 

phenomena are observed from the analysis result of graphs with four, five, and six nodes. Node 

resilience is also discussed. 

 This paper contains two logic parts. The first part is closely related to graph enumeration, 

which enables the counting of different topographies. The second part is related to the topic of 

blocking analysis. Both parts are intense in mathematics. The graph enumeration part reviews 

enumeration theory and gives some computer enumeration results. The blocking analysis part 

reviews some basic rules in blocking analysis. Chapter 2 introduces enumeration theory, 

which can be used to enumerate different n-node graphs considering symmetry. The theoretic 

approach is hard and opaque. This approach has high computational complexity with increase of 

n. This approach, currently, does not consider connectivity. 
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Chapter 3 introduces the background for the computer enumeration of n-node connected 

graphs using a recursive approach generating all possible candidate n-node connected graphs 

from “n-1” node graphs. After generating all the candidate graphs, we can filter out duplicate 

candidates. The results are the non-isomorphic connected n-node graphs. The theoretic 

background for blocking analysis is also included in this chapter. Complex traffic is reduced and 

modeled as traffic patterns. Blocking analysis is approached by examining all possible traffic 

patterns.  

Chapter 4 analyzes the result of the previous enumeration blocking analysis. Some rules 

are implied and indicated. The topography affects whether the graph is blocking or not. Non-

blocking graphs have two distinct categories—star topography non-blocking graphs and non-Star 

non-blocking graphs. Analysis of these two categories is done in the scope of node failure 

resilience. Chapter 5 concludes, and summarizes the content and logic of the entire paper. 

This thesis does NOT completely solve this problem. Its purpose is to demonstrate 

techniques that promise to approach a solution. 

 

1.2  BRIEF INTRO TO WDM BACKBONE NETWORK 

An optical WDM transmission scheme is similar to the FDMA scheme in electrical transmission. 

Instead of frequencies, wavelengths are the source of the transmission medium. A WDM 

backbone network can serve many edge nodes. The edge nodes serve to switch inter-node traffic 

and to transmit and receive inter-node traffic to and from the backbone network. An edge node 

can be illustrated as the following: 
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Pic 1.1 Edge node 

 

The links connecting edge nodes in a WDM network can be considered containing 

certain number of wavelengths as transmission and receiving resource. An edge node can 

transmit and receive data on multiple wavelengths at the same time. This paper discusses inter-

node traffic in such WDM networks. 

The infrastructure of optical WDM is different from the electrical FDMA system in that 

the wavelength interchanger technology does not have the performance of its counterpart in 

FDMA systems. It is easy to modulate and demodulate electric signals. But the optical 

“modulator” and “demodulator”— the wavelength interchanger—is less sophisticated. Besides, 

WLI is expensive, and is not likely to be cheap in the upcoming future. WLI also suffers from 

scale problems when the number of wavelengths is large. So there is great potential to research 

the topic of WDM networking without WLI, while meeting the requirement of data connectivity. 

In chapter 3 the analysis of a non-blocking configuration for WDM networks without 

WLI is discussed. Networks are represented as graphs. Traffic patterns are represented as 

permutations. 
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1.3 INTRODUCTION TO BLOCKING IN WDM NETWORK 

For the simplicity of stating the concept, the assumption that every link has a capacity of 1 

wavelength is used in the illustrations and examples in this section. In this section the 

transmission mechanism and a blocking analysis are briefly introduced.  

An edge node’s functions and limitations in the scope of the whole network are listed 

below.  At a particular time, an edge node can: 

� Process intra-node traffic without interfering with any inter-node traffic capacity 

� Send data from itself to one other destination via one link 

� Receive data destined to this node from one link 

� Forward tandem information as long as the incoming link and outgoing link is available. 

 

The statements change a little in multiple wavelengths per link scenario. Substitute the 

term “link” by “one particular wavelength in the link”. The following picture depicts a toy 

network illustrating the infrastructure and topography of a WDM network. Pic 1.1 assumes one 

wavelength per link. It should be noted that the wavelength in every link on the path for a 

particular data stream is the same so as to avoid WLI. 

  

Pic 1.2 Traffic AC taking path ABC 
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Considering the left part of Pic 1.2, suppose A is sending data to B, and B is sending data 

to C, via the red links, and C is sending data to A through B via the blue link. In this scenario all 

the traffic mentioned above is not blocked. Though B can’t receive any data destined to B from 

links other than the red, the blue traffic can also pass through B since the blue links, which are 

connected to B, and at the same time required by the traffic passing through B, are all available. 

Though the data from the incoming, passing, and outgoing links are all on the same wavelength, 

they do not collide because they are processed by different interfaces. 

In the WDM network structure mentioned above, intra-node traffic does not affect inter-

node performance. But the network may suffer from a variety of blocking problems, in which 

case it ends up unable to serve some traffic. The discussion for network blocking analysis is 

covered in section 3.2. 

This thesis discusses the techniques for the analysis of blocking in WDM networks 

without WLI. A WDM network without WLI is an approach which aims to reduce the cost and 

increase the system reliability and robustness for optical networks. 
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2.0  CHAPTER 2 ENUMERATION THEORY  

 

This chapter introduces Burnside’s theorem, and its application to graph enumeration. Graph 

enumeration is different from other general enumeration problems in that symmetry between 

graphs should be considered. In more precise terms, isomorphic graphs should be considered as 

one pattern during the enumeration. Different topography configurations are desired but not 

graphs with same topography and different appearance. 

2.1 INTRODUCTION OF ENUMERATION WITH SYMMETRY 

This section begins with an example leading to the core concept of enumeration considering the 

symmetry factor. Consider a case of the flag painting problem, in which the flag has k stripes 

with different width. Each stripe is to be painted a specific color which is picked from n different 

choices. For simplicity take k=3 and n=3 in the example case. The flag is like the following 

picture: 
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Picture 2.1 Flag without symmetry 

In this case, enumeration of all painting patterns is easy because every stripe is different, 

thus every coloring method produces a different pattern. The final result is   patterns for this 

case. 

It would be different if the 3 stripes are of the same width(see figure 2, it seems that red 

stripe is a bit narrow but it is an optical illusion.). In this scenario the color method [Red Blue 

Green] and [Green Blue Red] are considered to be the same pattern. Under this constraint 

introduced by the property of symmetry, duplicated patterns should not be counted. 

 

Picture 2.2 Same stripe flag  

This problem can be solved another way, by dividing the patterns into 2 categories. The 

symmetric coloring such as [Red Green Red] is considered as 1 pattern itself. The non-

symmetric colorings such as [Red Green Blue] and [Blue Green Red] are considered as 2 

different coloring methods but they produce the same pattern. In the following content of this 

paper, a pattern denotes a set of coloring methods which produce a mutually symmetric result. A 
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color method simply represents a single way of coloring without considering the property of 

symmetry. 

It can be observed that: in this case, one symmetric coloring method contributes one 

pattern(pattern RGR only contains color method RGR); two non-symmetric coloring contributes 

one pattern(pattern RGB is composed of coloring method RGB and BGR). It should be noted 

that this difference is the hard issue for the enumeration with symmetry problem. 

The overall 27 coloring method can be divided into 2 classes under the previous 

discussion: 9 of 27 color methods are self-symmetric coloring methods; the remaining 18 color 

methods are non-symmetric coloring methods. So an overall of  patterns are 

enumerated for this case. This fact means that, considering symmetry, there are only 18 possible 

painting results. 

Restate previous calculation into alphabet variables:  

    (2.1) 

To further investigate this kind of problem, intuitive reasoning becomes insufficient when 

there are multiple ways of “symmetry” defined. In order to investigate the multiple symmetry 

case, more effort needs to be conducted to delve into core of this problem, based on the previous 

case. 
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2.2 A POLYNOMIAL TRICK 

A polynomial trick can be implemented to investigate the previous case in detail. Denote each 

choice of color as a distinct variable, e.g. denote Red as x, Blue as y, Green as z. In the scenario 

where symmetry is not considered, each stripe to be painted can be expressed as the polynomial 

. In this scenario, if there are 3 stripes to be painted, the painting result can be 

expressed, in the polynomial way: . Expand this polynomial : 

        (2.2) 

 

 Inspect every part of the previous polynomial.  means that there are three ways to 

paint the flag into two red(denoted by x) stripes and one blue(denoted by y) stripe. By expanding 

the polynomial, certain paint patterns can be observed. By setting all the variables to one, the 

polynomial becomes an integer—27—which is the previous result. 

 

 For the scenario considering “symmetry”, just like the case indicated by picture 2.1, some 

tricks can be used in this case presenting the effect of “symmetry”. In this case the problem is 

approached according to (2.1) by calculating the “overall” and “symmetry” patterns respectively. 

“Overall” patterns are already calculated by (2.2) above. The trick for symmetry case is as below. 

 The fact is utilized that the left stripe is symmetric to the right stripe. In this case, the left 

stripe and the right stripe can be considered as a single unit which is colored twice with same 

color, thus eliminating the confusion brought about by the property of symmetry. The 
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polynomial for the symmetry case is: .  means that 2 stripes are 

forcefully regulated to be painted by red color, which indicates the symmetry. Expand the 

previous polynomial: 

              (2.3) 

 Compare this expansion with (2.2), it can be observed that, first, no three color( ) 

pattern is enumerated; then, only one pattern of painting is enumerated for the flags which only 

has two-and-one color patterns. It matches the observation that no any three color painting is 

symmetric and for each two-and-one color pattern there is only 1 pattern which is symmetric, e.g. 

only RGR is symmetric among all possible three patterns [RRG GRR RGR]. This observation 

validated our trick. 

 By setting all variables to 1, the result of the polynomial is 9, which corresponds to the 

previous intuitive calculation. More can be approached using this polynomial trick and the 

following Burnsides theorem is built on this fundamental, but first, the concept of permutation, 

which describes the property of symmetry, with the precise and rigorous mathematical manner, 

should be introduced. 

 It should be noted that, if the symmetry rule becomes that flipping the left and middle 

strips is considered the same, other than the previous flipping left and right strip, the result is the 

same. This phenomenon comes from the fact that, the 2 symmetry rules are similar in structure. 
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 2.3 BRIEF INTRODUCTION TO PERMUTATIONS 

Intuitively, the concept of permutation can be expressed as a rearrangement of the order of some 

objects, or a reshuffle of the objects. The reshuffle process of a set of poker cards is vivid 

example of permutation. Consider a set of objects  being listed by some order in a 

stack like following picture: 

 

 

Pic 2.3 Illustration for Permutation 

 

In the stack above, the original sequence is abcdef. After a reshuffle process, the 

sequence becomes bdafec. This process can be described as a permutation as following: 

(abdfc)(e) 

The content abdfc in the parenthesis means that if a particular slot has content a, the 

permutation changes the content a to b for that slot; if a particular slot contains content b, the 

permutation changes it to d, …, and if a particular slot contains content c, the permutation 

changes it to a. (e) means that after the permutation the content for the slot containing e is not 

changed. The no-change permutation—more formally—identity permutaion, in this scenario, is 

written as (a)(b)(c)(d)(e)(f). This permutation is formally called identity permutation. If we 
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further deploy the same permutation for the previous reshuffle result once more, it would 

become: 

 

Picture 2.4 Stack after two same reshuffle 

 

 Permutation is an abstract concept from intuitive behavior, aiming to solve more 

complicated problems. It is important to notice that, during the application of permutation, the 

definition of the permutation should be clear. For the previous reshuffle problem, there is another 

way to apply the concept of permutation to deal with the problem. It is very tricky and 

sometimes confusing. Consider the following picture restating this problem: 

 

Picture 2.5 Restatement of the reshuffle problem 
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 In this case, consider the reshuffle process as slot oriented, not content oriented as above. 

It can be observed that, slot a takes the position of slot c, slot c move to position of slot f, f 

moves to d, d moves to b, b moves back to a, and e remains unchanged. So in this way the 

permutation can be written as: 

(acfdb)(e) 

 By re-applying this permutation again, the result is: 

 

Pic 2.6 the result of 2 same shuffle in the 2nd approach 

 

It can be seen that, the result is same as the previous content oriented approach. Though 

the ways to approach the problem, and the permutation in each approach is not the same, the 

result is the same. This fact indicates that, during the application of permutation to practical 

problem, how the permutation is constructed must be clear and precise to avoid ambiguous 

definition, which is a disaster validating the solution process, and may bring about very 

ridiculous solutions. 
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 2.4 PERMUTATION AS AN OPERATION 

As mentioned above, Permutations can be intuitively considered as some reshuffle method for a 

set of cards. Consider concatenating reshuffle methods: , as stated below. 

The expression:  means that, for the original card sequence, first, shuffle it with 

method , and then shuffle it with method . It should be noted that this operation between the 

permutations does NOT satisfy the commutative property, like the matrix multiplication. 

It can be intuitively deduced that there exists a permutation . It means that 

there is a particular shuffle, which is equivalent to the two sequential shuffles. Based on this, no 

matter how and how many shuffle processes one experienced, the result can be achieved by only 

one particular shuffling. This particular shuffling is equivalent to all the shuffle process it 

experienced. 

Reconsider the permutation mentioned in section 2.3: Denote:  

 

It can be inferred that , which is the identical permutation(no-

change reshuffling). This fact can be extended that the sequence comes back to the very 

beginning state if shuffling with same method for some particular limited times. 

Now, formally, consider the permutations as the elements in a set. That is, for a set 

defined as:  and the permutation concatenation as the operation defined on 

set S, S can be considered as a Group if S satisfies the following properties: 
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� S is closed for the operation “ ” 

� Commutative law: for every  

� Identity: there exists an element for every  is the 

Identity 

� Inverse: for every . 

 

The proof of the above properties are too deep in theory and is covered in abstract algebra 

textbooks. For this reason, this paper does not provide scrutinized discussion or proof on this 

topic. 

Permutations can be applied to describe the “symmetry” property in the flag coloring 

problem mentioned in section 2.1. The symmetry pattern, can be written as a permutation (13)(2). 

This permutation presents the idea that, for some color method, if the colors of 1st and 3rd stripe 

are switched, the new flag is considered the same color pattern with the original color method, 

thus depicting “symmetry”. Also some odd and unintuitive “symmetry” pattern can be presented 

in a mathematics manner with the permutation expression. For example, consider a 5 stripe flag 

and the odd symmetry permutation: (13)(2)(4)(5). This permutation indicates a strange symmetry 

pattern, which is illustrated below. 
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Pic 2.7 An odd symmetry pattern 

 

In the picture above, the left flag is considered symmetric to the right flag under the 

symmetry rule defined by the permutation (13)(2)(4)(5). This unintuitive symmetry rule seems 

unreasonable and deviates from common sense. But this freedom to depict symmetry leads the 

way to solve some difficult symmetry enumeration problem, which is a hard approach by 

intuitive reasoning and enumeration. 

 

It should be noticed that symmetry is deducible. For a case with multiple different rules 

for symmetry, the enumeration problem becomes significantly more difficult. The reason for this 

includes that the number of symmetry rules becomes large, and that the combination of some of 

the rules may lead to a new rule, which is not explicitly mentioned. The following case illustrates 

this potential rule problem. 

Consider the previous flag-painting scenario in which both the “mirror 

symmetry”(15)(24)(3) and the “unintuitive symmetry” (13)(2)(4)(5) mentioned above are 

considered. The following picture clearly illustrates how multiple heterogeneous symmetry rules 

generate the color pattern. 
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Pic 2.8 example for multiple heterogeneous symmetry rules 

 

In the picture above the blue arrow indicates that the 2 flags are considered as same color 

pattern under the mirror symmetry rule. The green bidirectional arrow indicates that the 2 flags 

are considered as same color pattern under the odd symmetry rule. It is obvious that Flag 1 and 

Flag 2 are symmetric according to the mirror symmetry rule. Flag 2 and Flag 3 are symmetric 

according to the odd symmetry rule. Flag 3 and Flag 4 are mirror symmetric. Clearly, under the 

multiple symmetry rules, all 4 flag belongs to the same color pattern. But it would be unintuitive 

to judge whether Flag 1 and Flag 3 are the same given the 2 clearly mentioned rules since the 

direct permutation from Flag 1 to Flag 3 is (153)(24), which is not explicitly stated. This new 
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permutation is the concatenation of the 2 permutation: . (153)(24) 

is one of the implied symmetric rule of this case. Also, the permutation from Flag 1 to Flag 4—

(1)(35)(2)(4)—is another implied symmetric rule. 

Given the facts above, it can be derived that, some particular permutations should occur 

together, forming precise and integrated symmetry rules. It can be inferred that, the set of the 

permutations describing the symmetry should form a Group in algebra structure, so as to be 

mathematically precise for next step of analysis. By forming all the permutations into a Group, 

the set of permutations are closed for permutation concatenation. This means that, in the Group, 

all possible potential symmetry rules are included. It would not be necessary to claim all possible 

potential patterns when describing the symmetry rules by language. But it should be rigorous 

from the scope of mathematical purpose. 

 

 2.5 SYMMETRY IN GRAPH ENUMERATION 

A graph is defined as a set of nodes V, and a set of edges E which connect the nodes in V. Not 

necessarily all the nodes are connected. In this paper only undirected graphs are studied in the 

scope of symmetry. 

It is straightforward to investigate the symmetry patterns in the graph enumeration 

problem. The problem of finding different graph, or more formally, non-isomorphic graphs, is 

not as easy as the flag-painting case because a lot of unintuitive symmetry rules. That means that 
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a particular graph has a lot of chances to become some other graph with same structure but a 

different appearance. 

Consider a graph with n nodes. This graph would allow a maximum of  edges, 

denoted as . Consider the case that the  edges are stripes to be colored with two 

choices—connected or not—under the set of symmetry rules that depicts graph isomorphism. 

This approach is analogous to the flag-painting case. But the following problem, brought about 

from this approach, need to be specified: how does one analyze the isomorphism from the scope 

of permutation on the edges? 

Consider a simple 3 node case, denote the 3 nodes as Node1, Node2, and Node3, denote 

the edge connecting Node1 and Node2 as edge a, denote the edge connecting Node2 and Node3 

as edge b, denote the edge connecting Node1 and Node3 as edge c. The following picture 

illustrates this scenario: 

 

Pic 2.9 Graph Definition Illustration 
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The number of nodes does NOT indicate that the 3 nodes are different but serve as labels 

which help us to enumerate the isomorphism situation clearly. The method—“collect” the 

permutation of edges—is to find the change of position of edges which follows the reshuffle of 

nodes. While moving the nodes, it should be noticed that, the edges are moved according to the 

nodes they connect, so as to guarantee the same structure. 

It should be noted that the final key to graph enumeration must be the permutation of 

edges, which are to be “painted” according to the approach. It is the edge that serves as a bridge 

connecting the logic of enumeration theory and the problem of graph enumeration. This process 

can be illustrated by the picture below. The permutations defined below are the changing-content 

permutations, just as the Pic2.4 indicates. The other approach is not introduced in this illustration. 

 

Pic 2.10 Illustration of enumerating edge permutation 

 

The statement can be extended as follows. For every possible permutation on n NODES, 

there is a corresponding edge permutation. For an n-node graph, there are n! possible node 

permutations, so are the corresponding edge permutations. All of the edge permutations depict a 

graph isomorphism, and at the same time, form an algebra structure— The Permutation Group. 

It seems easier to get the previous result by observing that the right graph above is 

symmetric to the left by flipping it about the central axis. But this intuitive symmetry can only be 
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applied in easy cases with a few nodes. For a more complicated 4-node graph it is less intuitive 

to figure out all possible symmetry patterns as illustrated below. In the following case, intuition-

based reasoning and enumeration are not reliable. Duplicated patterns and missed patterns are 

likely to occur. It is never easy to observe the fact that, the two graphs in Pic 2.11 are isomorphic 

to each other with intuitive reasoning. 

 

Pic 2.11 Unintuitive Isomorphism Pattern 

2.6 ENUMERATION WITH SYMMETRY—BURNSIDE’S THEOREM 

This section presents a step by step derivation with vivid examples illustrating unintuitive 

methods of symmetry reasoning. Burnside’s Theorem uses the combination of polynomial trick 

and the permutation at an abstract level, solving more complicated problems.  

The case used in Section 2.1, as illustrated in Pic 2.2 needs to be investigated further to 

help find the key to go further. The following table lists all possible color patterns listed for the 

case. 

Table 2.1 Pattern enumeration  
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Enumerate Everything(according to (1)(2)(3)) 

RRR RRG RRB RGR RGG RGB RBR RBG RBB 

GRR GRG GRB GGR GGG GGB GBR GBG GBB 

BRR BRG BRB BGR BGG BGB BBR BBG BBB 

Enumerate Symmetric pattern according to (13)(2) 

RRR RBR RGR GRG GBG GGG BRB BBB BGB 

 

The patterns under the symmetry constraint are shown in green color in order to 

distinguish them. The final 18 color patterns can be shown in the following table. 

 

Table 2.2 Pattern classification using Table 2.1 label 

1 2 3 4 5 6 7 8 9 

RRR RBR RGR GRG GBG GGG BRB BBB BGB 

RRR RBR RGR GRG GBG GGG BRB BBB BGB 

10 11 12 13 14 15 16 17 18 

RRG RRB RGG RBB RGB RBG GBB GRB BGG 

GRR BRR GGR BBR BGR GBR BBG BRG GGB 

It can be observed from above table that: 

� Each Symmetric coloring contributes to a pattern by itself 

� Each of non-symmetric coloring methods contributes to a color pattern with a partner 

color method, which is symmetric to it according to (13)(2) 
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From the above reasoning, it can be observed that the permutations and the coloring 

patterns should be both considered in this complicated approach. For a particular coloring 

method, if it comes back to itself after some permutation, the permutations can be denoted as the 

stabilizers of the coloring method. It can be inferred that,the identity permutation is a stabilizer 

of any color method. It can be observed that, each pattern from the patterns 1-9 in Table 2.2 

contains only 1 color method. All the color methods labeled 1-9 in Table 2.2appear to have 2 

stabilizers since both identity permutation and symmetric rule (13)(2) stabilize them. For patterns 

9-18, each pattern has two distinct color methods, and each of the two color methods has one 

stabilizer respectively (identity permutation). 

Formally, consider set , and a Permutation Group G defined on S. For 

, if there exist some  then ,  is called one of the stabilizers of 

x. Some mathematical statement constraining the Permutation Group G and set of S is not stated 

here for convenience. In this analysis the set S is the abstract expression of the “all possible 

coloring methods” in the case mentioned above. And each x, , represents a particular 

possible color method. Some color method, such as [RRR], is highly symmetric and has larger 

number of stabilizers. Some less symmetric color method such as [RGB] has less stablizers. 

It can be proved that for any x(abstract term of a “color method”), the stabilizers of x 

form a permutation subgroup of G, which means that all the elements in the subgroup forms a 

group with the same operation—permutation concatenation—defined in G. It can also be 

inferred that, for any subgroup of G, the identity permutation must be included. 

Now is clear that, with the same assumptions as above, and a Permutation Group G 

illustrating symmetry, there must be some color pattern, the stabilizer of which is the 



 24 

permutation G. This means that there exists some highly symmetric elements. Each of the 

elements, after any of the permutations in G, is itself. This is illustrated below. 

 

Pic 2.12 Color pattern distribution 

The circles on the circumstance of the large circle represent the permutations in the 

permutation group G. It should be noted that the large circle is just a visual expression and does 

not imply that G is a ring. The left part of the picture indicates that, for some highly symmetric 

color method x, which does not change after any permutation, contributes to a color pattern itself. 

The right part indicates that, for some less symmetric x, the whole circle is composed of some 

different colors, which form a color pattern. This phenomenon is intuitively reasoned as 

following: 

First, if for some , it means that w and x are mutually 

“symmetric” defined by Permutation Group G. That is, at least, w and x are considered as the 

same pattern. 
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Second, denote , then, H is a subgroup of G. Investigate the left Cosets of H 

in G. Suppose , then 

. Denote , then for 

. This means that, as expressed in Pic 2.12, if there 

are |  x-es in the large circle, there would also be |  w-s, which are different from x, in the 

circle.  is the integer representing the number of permutations in subgroup H. 

According to Lagrange’ theorem and some related theorem, all different left cosets of H 

in G has same number of elements and do not have any single common elements. In this way, 

every Cosets mentioned above represents a particular “color method”, which is part of a “color 

pattern”. 

From the reasoning above, the enumeration question is reduced to enumerating all the 

stabilizers for every x (color method) in the set S. It is not easy to enumerate the number of 

stabilizers according to x since every x is different in appearance and have different number of 

stabilizers. But it can be approached by enumerating the number of elements a particular 

permutation stabilizes, utilizing the polynomial trick. For a particular permutation, the number of 

elements it stabilizes can be calculated as following: 
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By setting all x=1, F(g) is the number of elements a permutation stabilizes. The variable n 

is the number of colors, and  is the length of each ring in the permutation. For example, a 

permutation like (abcd)(e)(f)(gh) on 3 colors, the  is: 

 

 

Bunside’s Theorem is, in short: , where N is the desired 

enumeration of different elements under permutation group G. 

2.7 APPLYING BURNSIDE’S THEOREM TO GRAPH ENUMERATION 

The 1st step for the non-isomorphic graph enumeration problem is to gather the 

permutation for the graph, which depicts the symmetry. Enumeration by hand, utilizing the 

method mentioned in Section 2.5, for a 4 node graph, with the notation similar to Section 2.5 , 

the permutation group contains the following 24 permutation: 

 

Table 2.3 Permutation for four node graph 

(a)(b)(c)(d)(e)(f) (a)(be)(c)(df) (aeb)(cfd) (adcb)(ef) 

(ae)(b)(cf)(d) (a)(bd)(c)(ef) (aecf)(bd) (adf)(bec) 

(a)(bf)(c)(de) (abe)(cdf) (abf)(cde) (af)(b)(ce)(d) 

(aed)(bcf) (abcd)(ef) (ab)(cd)(e)(f) (afb)(ced) 
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(ade)(bfc) (afce)(bd) (ac)(bd)(e)(f) (ac)(bedf) 

(ad)(bc)(e)(f) (afd)(bce) (ac)(bfde) (ac)(b)(d)(ef) 

 

Then for every edge, there are two color choices for them: Connected or Not Connected. 

Applying this to the Burnside’s Theorem, the result is: 

 

 

The above expression, after setting all variable to 1, results in 11, which indicates that, 

there are 11 non-isomorphic graphs with 4 nodes. 
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CHAPTER 3  CONNECTIVITY AND BLOCKING 

This chapter introduces the methodology of connected graph enumeration and the property of 

blocking under certain assumptions. Connected graphs are hard to enumerate by a purely 

mathematical method since it is hard to define “connectivity” in the problem of graph 

enumeration. MATLAB is used to help enumerate all possible topography configurations in a 

recursive approach. 

Each different graph can be considered as a different topography configuration for 

networks consisting of particular number of nodes. The network must be connected and non-

blocking for the system configuration. There are different types blocking situations, which will 

be investigated respectively.  

 

3.1 ENUMERATING CONNECTED GRAPHS 

The process of enumerating connected graphs includes the method to enumerate all connected 

graphs and the method to distinguish whether a new graph is isomorphic to an already found 

graph. It can be inferred that, for every n-node connected graph, it must have evolved from an n-

1 node connected graph, which is also connected. Based on this fact, there is a recursive 

approach to enumerate all possible n-node connected graphs by step-by-step enumeration 
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according to the number of nodes they have. The way to distinguish the newly generated graphs 

includes the function of identifying whether a particular graph is a new one, or in formal words, 

whether it is isomorphic to some previous known solutions. MATLAB provides this 

distinguishing function in the Graph Theory toolbox. The graph isomorphism scenario was 

introduced in Chapter 2. 

For a particular connected graph with n nodes, there are  possible ways to generate 

an n+1 node connected graph. By adding a new node, there are n possible edges, and each 

possible edge has 2 choices: connect this edge, or not. It should be noted that, not only how 

many edges among the n are connected, but also how the nodes get connected, affect the 

topography. So every choice generates an (n+1)-node connected graph with the exception of the 

scenario that none of the new n edges are connected. 

Suppose there are m non-isomorphic connected graphs consisting of n nodes, there are 

overall  connected graph candidates with n+1 nodes. It is clear that some of the 

candidates are isomorphic, thus reducing the enumeration result. 

It should be noted that, for every isomorphism identifying process: 

� For all already acquired connected graphs with n nodes, set i=1; 

� Generate  n+1 nodes graph from the ith graph by some sequence 

� If one of the newly generated graphs—it may also be called candidate graph—is 

isomorphic to none of the previous found graphs, denote it is a new found graph 

� The new found graphs are labeled according to their number of nodes and number of 

edges. For those different graphs with same number of nodes and same number of edges, arrange 

them by the sequence in which they are found. 
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� Consider this new found graph as one of the “previous found” graph to prepare for the 

next run 

� i++ 

 

The previous steps can be shown in the following flow chart. The term ”set of new found 

graph” denotes the set of non-isomorphism graphs that have been found out by the program. This 

set is used to distinguish new graphs. 

 

Flow chart 3.1 

 

Some of the key points in the above method should be noted: 
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� A graph can only be isomorphic to a graph with the same number of nodes and same 

number of edges. This property reduces the computational complexity of the isomorphism 

identifying process. In the generation of an n-node graph, only n-node new found graphs need to 

be considered in the isomorphism identification process. 

� If a particular graph is found as new graph, which means that it is not isomorphic to any 

previous found graphs, it is labeled and saved with the previous found graphs. The next 

candidate graph may be isomorphic to this graph. After every new-found graph update, there is 

one more graph to be compared while distinguishing the following candidate graphs. 

When all the possible candidates are compared and distinguished, all of the new n+1 

nodes connected graph enumeration is finished.  

3.2  CATEGORIES OF BLOCKING 

In the following paragraphs of this section, it is assumed that every link has multiple 

wavelengths. The concept and scenario of blocking is introduced under this generalized 

assumption. It should be noted that the node structure mentioned here is different from the edge 

nodes. This will be illustrated at end of this section. 

Blocking occurs at a variety of different scenarios. The blocking scenarios can be 

classified in the following: 

1. Mate blocking 

2. Network blocking 

While network blocking can be divided into two mutual exclusive sets of blocking: concentration 

blocking and path blocking. 
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Mate blocking occurs in the scenario where the link and path are available but physical 

transmitters, or receivers, are not available. The following picture indicates this scenario: 

 

Pic 3.1 Mate Blocking 

 

Pic 3.1 illustrates the scenario of mate blocking when all necessary receivers at terminal 

nodes are not available. In this picture, the Node B is the receiving node for the traffic 

originating from Node A. But all the receiving ports/devices are busy processing some other 

streams. At this scenario B can’t handle the traffic from A, which is a mate blocking. Mate 

blocking occurs not only when receivers are not available, but when all necessary transmitters 

are not available as well. Mate blocking occurs in the scenario where the number of physical 

devices are less than the number of links/connections needed to serve. Some of lucky links enjoy 

the devices according to some mechanism such as FCFS, while the unlucky links are blocked 

when lucky links makes all devices busy. Mate blocking occurs only at the two nodes which are 

directly connected. 
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Network blocking describes the scenario that the network is unable to serve the stream 

while necessary physical devices are available at the two end nodes. In this situation, the exit and 

entrance are all available but a part of the road connecting the entrance and the exit may be 

jammed, or unavailable, hampering the transmission. Network blocking has two mutually 

exclusive parts: Concentration blocking and path blocking. 

Concentration blocking is the situation where all the portals for the node are busy 

forwarding other stream so that its end points are blocking from transmitting or receiving data. If 

a node is said to be concentration blocking, the streaming originating from or destined to the 

node is blocked, but the stream forwarding the node is not blocked. 

 

Pic 3.2 Concentration Blocking 

 

In Pic 3.2, all the devices on the intermediate node is busy processing other materials, 

rendering the stream originating from or destined to the node blocked. In this situation the 
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network should shift some stream passing through this node to another available path in order to 

make space for the node’s own traffic. 

This scenario should be noted that, it seems that concentration blocking and mate 

blocking are similar, but they have significant difference. Mate blocking occurs in a node-to-

node scenario. We can rely on the two directly connected nodes to negotiate the solution for 

mate blocking. For concentration blocking, the network connecting the nodes is responsible for 

this issue, which is a complicated problem. 

Path blocking happens when some or all the parts of the necessary path in the network for 

a stream to its destination is occupied, blocking the way of the stream. Path blocking is usual in 

networks and is caused by link congestion in computer networks. Traffic jam is a good analogy 

of this scenario.  

 

Pic 3.3 Path Blocking 

Picture 3.3 is the Path blocking situation, owning to the fact that the blue stream passing 

B and C occupied the B-C path, The A-D stream can’t be served by this network. At this 

situation, both of the terminal nodes have devices and links available for the data stream. Note 

that A can send data destined to B in this situation that B can receive data while forwarding the 

blue traffic given that there is no mate blocking between A and B caused by the blue stream. 
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If there is one transmitter and one receiver deliberately assigned for every connected link 

in the edge node, mate blocking can be eliminated. That is, a WDM network composed of edge 

nodes with the configuration just mentioned does not suffer from mate blocking. Network 

blocking, which is the combination of concentration blocking and path blocking, is the only type 

of blocking in the network under this circumstance. 

3.3 Traffic Patterns 

The concept of Traffic pattern is introduced in this section to further investigate the network 

blocking issue. In this section of analysis, assume every link has only a capacity of 1 wavelength, 

for the simplicity of presenting the concept. The multi-wavelength scenario can be considered as 

multiple different crosstalk-free “1 wave length links”. At the beginning it is easy to investigate 

the one wavelength easy case. 

This section discusses the traffic blocking problem from the perspective of traffic patterns. 

In this scenario, the traffic pattern is reduced so that it can be modeled as a permutation. The 

Validity of this model is stated later in this chapter. For example, consider a 4-node network, 

traffic pattern (1234) means that node 1 is sending data to node 2, 2 is sending to 3, 3 is sending 

to 4, 4 is sending back to 1. It should be noted, that, the fact 1 is sending to 2 represents that data 

from 1 are destined to arrive at 2, it does not obligate that the path connecting node 1 and 2 is 

used for this transmission. There may be no direct path connecting 1 and 2 in that network, but 1 

can still send data to 2 from some other path. If the traffic pattern is (123)(4), (4) means that 

node 4 only has intra node traffic. (4) can’t be the destination of another stream and does not 

originate streams. All the links connected to (4) can be used to forward data streams. 
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It is of great value that a particular network topography would support every possible 

traffic pattern, a non-blocking routing configuration. It has to be noted that traffic pattern is an 

ideal concept in that every node has only one destination for data stream. The multiple 

destination scenario may be achieved by rearranging traffic patterns with time, given that the 

whole network is perfectly synchronized. This field remains blank. 

 

3.4  REARRANGEABLY NON-BLOCKING 

A network topography is said to be rearrangeably non-blocking if this topography is non-

blocking for every possible traffic pattern. This means that, given the assumption that the overall 

transmission and route changes are perfectly synchronized; every possible transmission can be 

accomplished in the backbone network without WLI and blocking. It should be noted that a 

WDM network is more complicated than the network spatial topography. The topography of a 

particular WDM network depicts how the edge nodes are connected in the network. The 

endpoints a particular serves is not included in the analysis of the topography mentioned in this 

thesis. 

A Rearrangeably non-blocking network is defined on the idea that the network can be 

non-blocking by shifting current paths to make space for new transmissions or data flow changes. 

Theoretically, if the network is controlled by an central authority and the control is highly 

synchronized, it can be considered that the network is rearrangeably non-blocking, if there is a 

route for each possible traffic pattern. 
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Reaarangeably non-blocking is feasible, as mentioned above, in the scenario that the 

network is non-blocking for every possible traffic pattern. Traffic pattern can be considered as a 

set of organized streams in the scope of network transmission. A network topography is non-

blocking for a traffic pattern means that the streams in the pattern can arrive at their destinations 

in the network by some path at the same time. The fact that the a network topography blocks a 

particular traffic pattern indicates that, some of the streams in the traffic pattern can’t arrive at 

their destinations at the same time. In other words, some of the streams in the traffic pattern 

could be considered mutually incompatible with each other. In Pic 3.4 stream A to D and stream 

B to C is mutually incompatible and can’t be served simultaneously. 

It is indicated in [1] that a theorem has been proved which connects the blocking analysis 

of WDM network and the blocking analysis for connected graphs according to traffic patterns. In 

[1] this result is derived from Clos structure inequalities [2]. The theorem can be restated as 

following: 

“A WDM network is rearrangeably non-blocking without wavelength interchange if: 

� Each node’s multiplexers satisfy the RNB Clos inequality ( ) and 

� The network’s spatial topology is at least rearrangeably nonblocking.” 

In the theorem above, m is the number of wavelength in each link. The variable n 

represents the maximum number of endpoints(subnodes) any node homes in the network. It 

should be noted that the 2 conditions must all be meet, making a WDM network necessarily non-

blocking. This theorem indicates the importance investigating the blocking analysis for the 

network topography. 
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3.5  ROUTING ANALYSIS 

This section introduces the routing for non-blocking traffic patterns for some particular networks. 

If the graph has proficient connectivity, the routing problem for this network may be easier than 

that in a less-connected graph. For some less connected graphs, some traffic patterns may be 

blocked, or have only one solution, which may be hard to find. 

 

Pic 3.4 Simple traffic case 

In the left network in Pic 3.4 the traffic pattern (13)(24) blocks. But in the right network 

traffic (13) can be routed on the red path. (24) can be routed on the green path. By using this 

configuration this traffic pattern is not blocked. This observation indicates the fact that more 

connectivity provides greater opportunity for data streams reaching their destination. 

 

How to find the routing path is another difficult problem. Generally speaking there is no 

trick to find a generalized routing problem in this scenario. Computers can be used to enumerate 

every possible solution and test whether there is a way available. It can be observed that the star 

topography is always non-blocking. The Star topography is the minimum connection 

configuration that is non-blocking over all possible patterns. 
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Pic 3.5 Star topography and routing 

As illustrated in Pic 3.5, in a 5 node network there are 4 edges connecting them, which is 

the minimum connection requirement. The routing method for the streams in the traffic patterns 

can be list as following: 

� Stream originating from center node: choose direct path to destination 

� Stream destined to center node: choose direct path to destination 

� Other Stream: send it to center, center forward it to destination 

 

The advantages of star topography are: First, it requires the least connectivity to satisfy 

the non-blocking condition. Second, the routing method is easy. The path for any stream is at 

most 2 hops, and is convenient to manage. The disadvantage of this topography mainly includes 

lack of robustness. Failure on any link, any interface, or any node, would result in failure of part 

or the entire network. 

From the scope of robustness, graphs with redundant connectivity are appreciated, which 

guarantees alternative routes when part of the network goes wrong. It also implies that a node 

has fewer edges connected to it in case of a node failure. If the node 1 in Pic 3.5 has some 
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problem and is not working, all the 4 edges in the network are useless owning to the node failure. 

The next chapters include the data and analysis for the non-blocking and robustness property of 

graphs with 4, 5, and 6 nodes. 
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CHAPTER 4  DATA AND ANALYSIS 

In this Chapter the simulation and calculation result of graph enumeration is presented. The 

number of different graphs with 4,5,and 6 nodes are listed. This chapter also includes the 

blocking analysis of the listed graphs. 

4.1  GRAPH ENUMERATION 

As stated in Section 2.7, non-isomorphic graph enumeration can be calculated with Burnside’s 

Theorem—a combinatorial mathematics method. Section 2.7 already showed that there are 11 

graphs enumerated. It would be very complicated to calculate the 5 nodes scenario since there 

would be 120 permutations in the permutation group. For 6 nodes scenario there would be 720 of 

them. The data for this is from OEIS A000088 and OIES A001349. 

 

Table 4.1 Graph enumeration 

 All different graphs Connected different graphs Ratio 

4 Nodes 11 6 0.5455 

5 Nodes 34 21 0.6196 

6 Nodes 156 112 0.7179 
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It can be inferred that, as the number of nodes increases, the graph is more likely to be 

connected. The ratio of connected graphs takes more and more occupancy among all the graphs 

with increasing number of nodes. 

Among all the 6 connected graph with 4 nodes, only 1 of them blocks. This scenario is 

illustrated by the following picture. Blocking rate of four-node graph is 0.1666. 

 

Pic 4.1 Blocking analysis of 4-node graph 

 

It can be observed that, only one graph blocks and this graph contains the minimum 

number of edges to make it connected. The left most graph also contains 3 edges, but it is non-

blocking owning to its star topology. It should be clear that the 4th graph from the left is the 

same as the square topography.  

 

There are 21 different five-node connected graphs. Among them four graphs are blocked. 

This scenario is illustrated in the following picture. 
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Pic 4.2 Blocking analysis for 5 node graph 

 

It can be observed that 4 of the 21 graphs are blocking. Two of the four blocking graphs 

have four edges. The two remaining graphs have five edges. All the graphs which have more 

than five edges don’t block. The blocking rate for five-node graphs is 0.1905 

 

For six-nodes scenario it is too complicated to list every graph since there are more than 

100 of them. The analysis continues on blocking graphs and the number of edges of the blocking 

graphs. 

Table 4.2 Block analysis for six-node graphs 

Number of edges Connected graphs Blocked Graphs 

5 6 5 

6 13 12 

7 19 8 

8 22 3 

9 20 0 

10 14 0 

11 9 0 
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12 5 0 

13 2 0 

14 1 0 

15 1 0 

Overall 112 28 

It can be seen that 28 graphs block among all 112 different graphs. Graphs which have 9 

or more edges don’t block. The blocking rate for six-node graph is 0.25. 

It can be observed that an n-node connected graph is less likely to be blocking with an 

increasing of number of edges. It is summarized in the following table. 

 

Table 4.3 Blocking analysis according to number of edges 

Number of nodes Most edges for 

blocking 

Fully connected 

4 3 6 

5 5 10 

6 8 15 

In the table above, it can be inferred that: 

� For a four-node graph, if it has more than 3 edges, and it is connected, it is necessarily 

non-blocking 

� For a five-node graph, if it has more than 5 edges, and it is connected, it is necessarily 

non-blocking 

� For a six-node graph, if it has more than 8 edges, and it is connected, it is necessarily 

non-blocking 
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It should be noticed that the above statement is necessary condition for a graph to be non-

blocking. A four-node connected graph with 3 edges may also be non-blocking. But a four-node 

connected graph with more than 3 edges, such as 4 edges, must be non-blocking, and can’t be 

blocking. 

 

4.2  TOPOGRAPHY REASONING 

In this section some topography reasoning for blocking and non-blocking graphs are introduced. 

It is hard to figure out the exact condition or prerequisite to determine whether a graph is 

blocking or not. But there are some interesting phenomena observed in the scope of topography. 

  

First interesting rule: star topography never blocks. Rigorously speaking, if an n-node 

graph has a star topography, there exists a node in the graph, which has n-1 edges connected to it. 

This statement indicates that, if a graph has a star topography, there must be a node which 

connects all other nodes directly in the graph. 
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Pic 4.3 Illustration for Star topography 

 

As shown in the picture above, the left graph is star topography since the center node 

connects all other nodes in the graph. The right graph seems to be a star but not the star 

topography mentioned in this paper. There is no any node in the graph, which is able to connect 

all the rest nodes. 

Just as stated in section 3.6, a star topology is least connected and non-blocking at the 

same time. It can be further deduced that if a star topography can be found embedded in a graph, 

this graph is also non-blocking. It can be illustrated by the following picture. 

 

Pic 4.3 Illustration for star topography embedded graph 
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As observed, if a graph is embedded with a star topography, this graph is non-blocking 

because it has a non-blocking backbone—the star topography. Since star topography does not 

block, the star topography embedded graphs provide extra connectivity over star topography, and 

are also non-blocking. 

It should be noted that a mere star is not risk tolerating. Any fault in any part of the 

network would turn the system to blocking. For star topography embedded graphs, as illustrated 

in the right part of picture 4.3, the blue link provides extra connectivity. If the some of the blue 

links do not work, the network remains non-blocking. 

The inverse statement of this is not true. If a graph does not contain any star topography, 

it may also be non-blocking. Star topology is a mode which introduces non-blocking property, 

but it is not the only way. 

 

Second interesting rule: for a graph with more than three edges, chain topology must 

block.  For this chain topography, there are always some traffic patterns that the topography 

can’t handle. 

 The chain topography scenario is illustrated in the following picture. All the 

nodes are connected in sequence. It is clear that some deliberately established traffic would be 

blocked. First let Node 1 and 4 transmitting to each other. This traffic can only be handled as the 

illustrated by the arrows. Blue arrows indicate traffic from Node 1 to Node 4. Red arrows 

indicate traffic from Node 4 to Node 1. It is clear that under this scenario all paths to 2 and 3 is 

blocked. So (14)(23) is one of the traffic patterns that this network can’t afford. It is intuitive to 

see that this phenomenon can be extended to chain topography with more nodes. 
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Pic 4.5 Illustration for chain topography 

 

Third interesting rule: for a graph which has more than 4 edges, if it is a ring topography, 

this graph blocks. This rule is a bit further from the previous rule. The reasoning for this rule is 

more complicated than the reasoning of the previous, but it is not very hard. 

Literally, this rule can be stated in the following way. For a ring topography, it seems that 

all nodes are connected, but the path does not have any diversity. In this scenario, if a node has to 

send data to another node which is several nodes away, all intermediate node has no choice but 

forward the data stream. Since every node is limited connected in a ring graph, if there are 

enough “trespassing” streams in this ring, some intermediate node would use all its connection 

forwarding stream for other nodes, remaining itself unable to send out or receive its own data 

stream. 

This situation can be expressed in the following picture. The dotted line means that there 

are nodes connected in sequence in the dotted line part.  
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Pic 4.6 Illustration for ring topography 

 

In the ring topography above, if a part of the traffic pattern contains (12)(34), the traffic 

stream of (12)(34) has to be processed by the network as illustrated above. Traffic pattern (12) 

utilizes in clock-wise path. Traffic pattern (34) utilizes the counter clock-wise path. For these 2 

traffics all links in the network have been utilized. And it is easy to observe that the 2 unlabeled 

nodes on the top right and bottom left of the picture can’t communicate with each other. From 

above reasoning, it can be seen, if the ring contains at least 6 nodes, this ring blocks. 

The reasoning for five-node ring topography is a bit further tricky. The five-node ring is 

presented in the following graph. This graph only fails to support 2 similar traffic patterns 

(13524) and (14253) in the same way. With similar reasoning above, some part of the traffic 
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takes all the links, and the remaining traffic can’t be served. The key point is that the traffic has 

to trespass some intermediate nodes in order to occupy more links for a single traffic, wasting the 

resource for the other traffic streams. The following picture illustrates a typical case when the 

graph is trying to serve traffic pattern (13524).  

 

Pic 4.7 Five-node ring 

 

4.3  STAR NON-BLOCKING AND NON-STAR NON-BLOCKING 

As mentioned above in section 4.1, if a graph contains star topography, this graph is non-

blocking. But star topography introduces concentrated traffic. In a mere star graph, all traffic 

streams has to pass the center of the star in order to get to its destination. This star relied system 

may be vulnerable if some part of the core star topography is broken. 
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It is impractical, for the scope of security, to establish a full connected graph where every 

node can serve as a center of a star. An n-node fully connected graph can tolerate at least  

link failure since with any  links broken there are always some nodes connecting all other 

nodes. This node can serve as the center of a star and this graph is star topography embedded. A 

full connected graph is tolerable for any number of node failures. This means that for a fully 

connected graph, the remaining nodes can keep positive communication behavior no matter how 

many nodes are broken. 

 

Non-Star non-blocking graph is the graphs that are non-blocking and don’t contain any 

star topography. For an n-node graph, a node can have a maximum degree of n-1, meaning that 

all other nodes are connected to this node. An n-node non-star non-blocking graph is a non-

blocking graph that every node has at most a degree of n-2. It can be inferred that it is hard to 

find a non-Star non-blocking graph. It can be inferred that, generally speaking a non-Star non-

blocking graph is more balanced with a star topography embedded graph given that they have 

same number of nodes and same number of edges. 

The following example vividly illustrates this phenomenon: 
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Pic 4.8 nSnB graph with node failure resilience 

 

In the top of the picture there is a non-blocking graph with six nodes and eight edges. 

This graph has six nodes while the maximum node degree for this graph is only 3. Star 

topography requires the maximum node degree to be 5 for this graph. It can be shown that the 

remaining graph is unblocking referring Picture 4.3. No matter which single node is removed, 

the remaining graph is non-blocking. 



 53 

 

Pic 4.9 Node failure for star topography 

Next step examine all star-topography embedded graphs with six nodes and eight edges, 

as illustrated in Pic 4.9. There are four different six-node graphs with eight edges. It can be seen 

obviously that all graph suffer greatly if losing the center node of the star. The remaining graphs 

of them are even unconnected. 

It can be inferred that given limited number of edges, generally speaking, there are some 

non-Star non-blocking graph with excellent single node failure resilience property than star 

topology with same number of edges. It should be noted that not every non-Star non-blocking 

graph is perfect single node failure. Star topology enjoys the fact that, any node failure other than 

the center node does not affect the remaining network. 
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CHAPTER 5   CONCLUSION 

 

This chapter concludes this paper. The theory background, methodology, and data analysis are 

covered in brief in this section. This paper uses a variety of methodology investigating the 

blocking problem of WDM network without WLI. A WDM network without WLI is an novel 

idea and novel structure for optical communication. In this network the management of the data 

stream is a global job other than that of only nodes. 

The basis of this problem is built up upon the enumeration of non-isomorphic graphs. 

The topography of the network determines significant network properties and features in non-

WLI WDM network. Non-isomorphism graphs enumeration can be calculated using Burnside’s 

theorem. Burnside’s theorem is based on abstract algebra theory and is very complicated. 

Applying Burnside’s theorem in the scenario where the graphs contain large number of nodes in 

the graph has great computational complexity. 

Since networks must be connected. The problem becomes one of enumerating connected 

graphs. It is hard to define connectivity in mathematical word. It is even harder to apply this 

definition in the algebra system of Burnside’s theorem. The enumeration of connected non-

isomorphic graph is implemented on MATLAB. The routing analysis is also written in 

MATLAB to see whether a graph blocks a particular traffic pattern. This process has very high 

computational complexity. 
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Traffic patterns are introduced to provide an approach to analyze the blocking property of 

a particular graph. It can be inferred that, if a graph is non-blocking over all possible traffic 

patterns, this graph would provide maximum compatibility over the traffic. Complicated streams 

and multi-destination traffic can be implemented with time multiplexing or wave length 

multiplexing. This is a novel concept and has great research value. 

After analysis in detail, some basic rules can be observed in the scope of blocking 

property of graphs. Generally speaking, the star topography is a structure which supports non-

blocking property with least demand of number of edges. In this scope, non-blocking graph are 

divided into two mutually exclusive categories: star topography non-blocking graphs and non-

Star topography non-blocking graphs. Security and system robustness can be analyzed in this 

approach. More work can be done in this field. 

This topic has enormous potential. By proper scheduling of the streams, reliable systems 

can be built up. The streams may also be routed according to wavelengths. A good scheme with 

a proper graph will contribute to a new optical network system with brand new structure. The 

next steps may include: 

� Figure out some pattern for graphs and routings 

� Wavelength routing 

� Time variant scheme 

� Performance vs Scale 

� Robustness analysis(node resilience or edge resilience) 

� Robust routing considering failures 
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WDM network without WLI is an important idea in optical networks, bringing about new 

challenges in switching and routing. This field is new and has great research value. The progress 

or improvement in this field will lower the cost of implementing WDM network. 

This thesis does NOT completely solves the problem to establish a WDM network 

without WLI. But the techniques, such as blocking analysis and enumeration method, may 

optimistically lead to the solution of this problem. 
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