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Abstract

Knockout mice deficient in the gap junction gene connexin43 exhibit developmental anomalies associated with abnormal
neural crest, primordial germ cell, and proepicardial cell migration. These migration defects are due to a loss of directional
cell movement, and are associated with abnormal actin stress fiber organization and a loss of polarized cell morphology. To
elucidate the mechanism by which Cx43 regulates cell polarity, we used a wound closure assays with mouse embryonic
fibroblasts (MEFs) to examine polarized cell morphology and directional cell movement. Studies using embryonic fibroblasts
from Cx43 knockout (Cx43KO) mice showed Cx43 deficiency caused cell polarity defects as characterized by a failure of the
Golgi apparatus and the microtubule organizing center to reorient with the direction of wound closure. Actin stress fibers at
the wound edge also failed to appropriately align, and stabilized microtubule (Glu-tubulin) levels were markedly reduced.
Forced expression of Cx43 with deletion of its tubulin-binding domain (Cx43dT) in both wildtype MEFs and neural crest cell
explants recapitulated the cell migration defects seen in Cx43KO cells. However, forced expression of Cx43 with point
mutation causing gap junction channel closure had no effect on cell motility. TIRF imaging revealed increased microtubule
instability in Cx43KO cells, and microtubule targeting of membrane localized Cx43 was reduced with expression of Cx43dT
construct in wildtype cells. Together, these findings suggest the essential role of Cx43 gap junctions in development is
mediated by regulation of the tubulin cytoskeleton and cell polarity by Cx43 via a nonchannel function.
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Introduction

Gap junctions are specialized cell junctions that contain

hydrophilic membrane channels that allow the passive diffusion

of ions and small molecules between cells [1,2,3]. They are

encoded by a multigene family known as the connexins. All

connexins exhibit a conserved protein structure comprising of four

transmembrane domains, and a cytoplasmic localized carboxy

terminus with important regulatory functions [1,2,3]. Connexins

are widely expressed, with most cells and tissues expressing

multiple connexin isotypes. Analyses of knockout mice suggest

different connexins may have unique functions in specific cells and

tissues. For example, Cx40 have been shown to have an essential

role in cardiac conduction [4], while Cx43 is critically important

for cardiovascular development [5,6,7,8,9]. While the role of Cx40

in heart conduction is likely mediated by electrical coupling via the

gap junction channel [4], the role of Cx43 in heart development is

still not well understood.

Connexin 43 knockout (KO) mice die shortly after birth from

cardiac defects associated with pulmonary outflow obstruction and

coronary anomalies [5,6,7,8,9], defects that arise from the

abnormal deployment of cardiac neural crest and epicardially

derived cells [5,6,7,8,10,11,12,13]. These are two migratory cell

populations of extracardiac origin that must migrate into the

embryonic heart to support normal heart development. While the

cardiac neural crest cells play an essential role in the patterning of

coronary arteries and outflow tract [14], the epicardially-derived

cells generate the endothelial and smooth muscle cells of the

coronary arteries [15].

In the Cx43 KO mouse, abnormal patterning of the coronary

arteries are accompanied by outflow obstruction associated with

conotruncal pouch tissue containing ectopic and disorganized

deployment of endothelial and vascular smooth muscle cells

[5,6,7,9]. Cardiac neural crest and epicardial cells both express

Cx43 and are well coupled by gap junctions [7,8]. Using time-

lapse video microscopy, we previously showed Cx43 deficiency

caused significant perturbation in neural crest and epicardial cell

migration [7,10,11,12,13,16]. In addition, we showed transgenic

mice overexpressing Cx43 or expressing a dominant negative

Cx43-lacZ fusion protein exhibited defects in neural crest cell

migration [17,18]. Consistent with our findings, studies by others

have shown a role for Cx43 in the modulation of cell motility in

various tissue culture and tumor cell lines [19,20,21,22,23,24,25].

Together these findings support the notion that Cx43 has an

important role to play in cell motile behavior. However, Cx43 has

been shown to either stimulate or inhibit cell migratory behavior

in different biological contexts. In keratinocytes, reducing Cx43

expression elevated wound healing with increased kerationocyte
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migration in both healthy [26,27] and diabetic animal skin models

[28]. Paradoxically, neuronal cell migration is impaired with

similar reductions in Cx43 expression [19,20,24,29], while

elevating Cx43 expression in cancer cells increased cell migration

[30,31]. Finally, a recent study demonstrated common Cx43

mutations associated with ODDD can result in significant

reductions in cell migration and wound healing, while cell surface

Cx43 expression can remain unchanged (p.D3N) or become

significantly reduced (p.V216L) [32]. Cumulatively, these findings

suggest an important role for Cx43 in the modulation of cell

migration, one that is likely complex and is the focus of the current

study.

While the importance of Cx43 in cell motility is well

documented, the underlying mechanism remains unclear, and

whether this requires the gap junction channel is unknown.

Directional cell migration requires polarized alignment of the

cytoskeleton with the microtubule organizing center (MTOC) and

Golgi positioned forward facing at the cell’s leading edge

[13,16,33,34]. We previously showed Cx43KO cells failed to

realign their MTOC and Golgi with the direction of cell migration

[13,16]. This was accompanied by a loss of stabilized microtu-

bules, which is required for establishing cell polarity. In addition,

we also observed alteration in the organization of the actin

cytoskeleton and focal adhesion contacts essential for directional

cell migration [13,16]. Together, these observations suggest Cx43

may modulate cell motile behavior through modulation of the

cytoskeleton. Interestingly, our analysis of multiple transgenic and

knockout mouse lines have found no correlation between the

level of gap junctional coupling and cell motile behavior

[8,10,11,12,13,18,35]. Similar findings have been reported in

several tissue culture cell line studies [19,36]. In light of these

findings, the question that has emerged is whether Cx43

modulation of cell motility may involve a distinct non-channel

function of the protein.

Cx43 interactions with the cytoskeleton have been suggested by

several previous studies. The Cx43 carboxy terminus (CT) has

been shown to bind ZO-1 [37], a scaffold protein that facilitates

linkage of the membrane with the actin cytoskeleton [38,39].

Cx43/ZO-1 interaction has been shown to modulate trafficking

and turnover of Cx43 [40]. In Cx43KO epicardial cells, a

redistribution of cell surface localized ZO-1 to the cytoplasm is

observed in conjunction with disruption in organization of the

epithelial sheet [16]. More intriguing is the finding that Cx43 can

directly bind tubulin [37,41]. This is mediated via amino acid

residues 234–243 in the juxtamembrane region of the carboxy

terminus of Cx43 [41]. Microtubules have previously been

identified as playing a critical role in Cx43 trafficking to the cell

membrane [42], and this trafficking has been seen to rely on the

Cx43 tubulin binding domain [43,44,45,46]. Previous studies

showed microtubules extend preferentially to Cx43 gap-junction

plaques at the cell surface, and remain at these sites longer [45].

Whether such Cx43-microtubule interactions or the Cx43 tubulin

binding domain may play a role in directional cell migration has

not been examined.

To investigate whether modulation of cell polarity and polarized

cell migration by Cx43 may involve Cx43 regulation of

microtubule dynamics, we used a wound healing assay with

mouse embryonic fibroblasts (MEFs) and NIH3T3 cells to

quantitatively assess cell polarity and directional cell migration.

Using this wound healing assay, we also examined the requirement

for the previously identified Cx43 tubulin binding domain with

forced expression of a Cx43 construct with the tubulin binding

domain deleted (Cx43dT). To further assess the requirement for

the gap junction channel in Cx43 modulation of cell motility, we

examined the expression of a Cx43 mutation (Cx43Y17S)

recovered from an oculodentodigital dysplasia (ODDD) patient.

This Cx43 mutant protein was previously shown to have no gap

junction channel activity, but nevertheless can make gap junction

plaques at the cell surface [47]. We also used TIRF imaging with

tubulin-GFP to directly assess tubulin dynamics in Cx43 KO

MEFs and in cells expressing Cx43dT-dsRED constructs missing

the tubulin binding domain. Together these studies showed Cx43

modulates microtubule dynamics and this requires the tubulin

binding domain but not cell-cell communication mediated by the

Cx43 gap junction channel.

Results

Cx43 deficiency causes defects in directional cell
migration

To assess the role of Cx43 in directional cell migration, we

generated primary mouse embryonic fibroblasts (MEFs) from

Cx43 wildtype and KO mouse embryos for assessment of cell

motility using a well described wound healing assay [33,48,49].

Briefly, this entailed growing the MEFs to confluence followed by

48 hrs of serum starvation. Then a scratch is introduced across the

monolayer to generate a small wound or gap, and serum is

restored which stimulates cell migration across the gap to close the

wound. Typically with wildtype cells, the gap is quickly filled in a

few hours. However, with Cx43KO MEFs, wound closure

occurred more slowly (Fig 1). Quantitation of the rate of wound

closure by measuring the advancing wound edge showed wildtype

MEFs migrated at an average rate of 20.761.5 um/hour, as

compared to 8.161.3 um/hour for the Cx43 KO MEFs (Fig. 1E).

We quantitatively assessed the directionality of cell movement at

the wound edge by tracking the motion of individual cells at the

migration front and measuring the total distance traveled and the

net displacement achieved to calculate the directionality of cell

movement (net displacement divided by total distance traveled).

Cx43 KO MEFs exhibited a directionality of 0.6360.03 vs.

0.8860.02 for wildtype MEFs, with 1 corresponding to cell

migration in a straight line across the gap. (Fig. 1F). Despite the

reduced directionality of cell locomotion, the KO MEFs showed

increased cell protrusive activity (Fig. 1G–I). Thus the decrease in

the rate of wound closure is not due to an overall reduction in cell

motility.

Cx43 deficiency causes defects in cell polarity with loss of
stabilized microtubules

Cells undergoing directional cell locomotion exhibit a polarized

cell morphology that is essential for productive cell migration.

Typically the Golgi apparatus and microtubule-organizing center

(MTOC) are situated in the forward facing direction or leading

edge of the cell and the microtubule cytoskeleton is aligned with

the direction of cell migration [50,51]. We examined the polarity

of wildtype and KO MEFs at the closing wound edge using

GM130 antibodies to track the position of the Golgi apparatus and

c-tubulin antibodies to localize the MTOC (Fig. 2A–F). Wildtype

MEFs displayed the expected polarized distribution of the Golgi/

MTOC in the leading edge of the cell, aligned with the direction

of wound closure (Fig. 2A,C). However, in the Cx43 KO MEFs,

the Golgi and MTOC localization were randomized in orientation

(Fig. 2B,D), similar to serum starved wildtype MEFs not stimulated

to undergo cell migration (Fig. 2F). These results show Cx43

deficiency causes a defect in cell polarity. Immunostaining with an

a-tubulin antibody showed in wildtype MEFs, microtubules were

mostly aligned with the direction of wound closure (Fig. 2G), but in

the Cx43 KO MEFS, microtubule orientation was randomized

Cx43 Regulation of Cell Polarity
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Figure 1. Wound closure assay shows defect in polarized cell movement in Cx43 KO MEFs. (A–F). A wound scratch was introduced in
confluent monolayers of Cx43 KO (n = 7 scratches) (C) or wildtype MEFs (n = 7 scratches) (A). After 7 hrs, wildtype MEFs have migrated into the gap to
close the wound (B), while there are still extensive gaps in the wound edge of KO MEFs (D). Tracking the position of the advancing wound edge
revealed a significant decrease in the rate of wound closure in the KO MEFs (E). There was also a marked decrease in the directionality and speed of
wound closure (F). Asterisks indicate p,0.05 when comparing wildtype vs. KO MEFs. (G–I). Tracings of individual cells at the wound edge showed a
distinct polarized cell morphology associated with wildtype cells (n = 42 cells) (G), with cytoplasmic protrusions (green) concentrated at the leading
edge of the cell, facing the wound edge, while retractions of cell processes (red) were situated mostly at the ipsilateral or trailing edge of the cell. In
contrast, in KO MEFs (n = 42 cells) (H), cytoplasmic protrusions and retractions were observed around the entire cell circumference, with extensive
overlap between regions of protrusions and retractions, thereby indicating a defect in polarized or directional cell movement. Quantitative analysis
showed this was associated with an increase in both cytoplasmic protrusions and retractions (I). Data presented as mean 6 SEM. Scale bars in (A–D)
represent 100 mm. Scale bars in (G, H) represent 10 mm.
doi:10.1371/journal.pone.0026379.g001
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(Fig. 2J). Also essential for establishing cell polarity and directional

cell migration is stabilization of microtubules mediated by the

detyrosination of a-tubulin at the cell’s leading edge [52] and

positioning of Golgi at the cell’s leading edge to facilitate protein

and membrane synthesis required for cell motility (for review see,

[51]. Stabilized microtubules can be detected with antibodies to

Glu-tubulin, which detects the exposed N-terminal glutamate

residue in detyrosinated tubulin [48,49,53]. Glu-tubulin was

observed to be markedly reduced in Cx43KO vs. wildtype MEFs

(Fig. 2H, K). This loss of stabilized microtubules is consistent with

the defects observed in cell polarization and directional cell

migration.

Cx43 tubulin binding domain required for directional cell
migration

The perturbation of the microtubule cytoskeleton in the Cx43

KO MEFs is likely central to the cell migration defects observed

with Cx43 loss, and in this regard, it is interesting to consider the

Figure 2. Microtubule organizing center, Golgi apparatus, and microtubules fail to reorient in Cx43a1 KO MEFs, which also display
a reduction in stabilized microtubules. (A–D). The polarity of Cx43 wildtype and KO MEFs (n = 75 and 67 cells respectively) at the wound edge
were examined by immunostaining with a GM130 antibody (A, B) to delineate the Golgi apparatus, and with a c-tubulin antibody to delineate the
microtubule organizing center (C, D). In wildtype cells (A,B), the Golgi and the MTOC were usually forward facing relative to the direction of wound
closure (white arrow), but in KO MEFs (C,D), the position of the Golgi and MTOC appear to be randomized. (E,F). Orientation of the MTOC/Golgi was
scored with each cell divided into one 120 degree sector facing the lead edge, and a second sector comprising the remainder 240 degrees (E). Cells
with MTOCs located in the sector facing the lead edge were considered oriented and scored 1, cells with MTOCs positioned outside of this were
considered not oriented and scored 0. Compilation of such scoring showed a significant reduction in the reorientation of the MTOC in Cx43 KO MEFs
when compared to the wildtype MEFs, and this reduction was not statistically different when compared with cells with non-orientated MTOC when
cultured in the absence of serum (F). These observations suggest KO MEFs have a defect in reorientation of the MTOC at the wound edge. (G–L)
Immunostaining with an a-tubulin antibody showed microtubules align with the direction of wound closure in wildtype MEFs, but not in KO MEFs (G
vs J). Much of the microtubules in wildtype MEFs were also immunostained by a Glu-tubulin antibody (H), while little or no Glu-tubulin staining was
observed in the KO MEFs (K). Data presented as mean 6 SEM. All scale bars represent 25 mm.
doi:10.1371/journal.pone.0026379.g002

Cx43 Regulation of Cell Polarity

PLoS ONE | www.plosone.org 4 October 2011 | Volume 6 | Issue 10 | e26379



potential role of a previously identified Cx43 tubulin binding

domain [41,54]. To examine whether this Cx43 tubulin binding

domain may be important in cell motility, we generated a Cx43

expression vector in which the tubulin binding domain was deleted

(Cx43dT). To facilitate live cell tracking, we added a C-terminal

in-frame fusion of either GFP or dsRED (Cx43dT-GFP, Cx43dT-

DsRed). In parallel, control constructs were generated encoding

wildtype full length Cx43 similarly fused in frame with either GFP

or DsRed (Cx43FL-GFP, Cx43FL-DsRed).

To determine whether these Cx43 fusion protein constructs

could function normally, we transfected these expression vectors

into gap junction deficient N2A cells and dye coupling was

assessed following iontophoretic injection of sulforhodamine 101, a

low molecular weight fluorescent tracer that can pass through gap

junction channels. As expected, dye injection into N2A cells

expressing a GFP control plasmid showed no dye transfer from the

site of injection (Fig. 3A–C, M). In contrast, N2A cells expressing

full-length Cx43-GFP showed significant sulforhodamine transfer

from the site of injection into surrounding cells (Fig. 3D–F, M).

This same result was observed with expression of a Cx43FL-

dsRED construct (data not shown). In contrast, dye injection into

N2A cells expressing the Cx43dT-GFP construct did not show dye

transfer (Fig. 3G–I, M), but this is presumably due to inability of

the Cx43dT-GFP fusion protein to traffic to the cell surface.

Previous studies have shown Cx43-microtubule interactions are

required for Cx43 cell surface trafficking [43]. Consistent with this,

cell surface trafficking of Cx43dT-GFP was rescued when this

construct was transfected into NIH3T3 cells expressing endoge-

nous Cx43; presumably this is mediated by formation of hetero-

oligomers between endogenous Cx43 and the Cx43dT-GFP fusion

protein (Figure 5G). Together these findings suggest the Cx43-

GFP and Cx43dT-GFP fusion proteins can both generate gap

junction plaques at the cell surface.

To determine whether the Cx43dT protein missing the tubulin

binding domain may affect cell motile behavior, we transfected

NIH3T3 cells with the Cx43dT-GFP, Cx43FL-GFP, or Cx43-GFP

constructs and examined cell motile behavior using the same wound

closure assay. NIH3T3 cells expressing the Cx43dT-GFP protein

displayed a reduced rate of wound closure (Fig. 4E–G) when

compared to GFP or Cx43FL-GFP expressing NIH3T3 cells

(Fig. 4A–D, G). Time lapse imaging and motion analysis of cells

migrating at the wound edge showed a significant decrease in both

the directionality and speed of cell locomotion in the Cx43dT-GFP

expressing cells when compared with cells expressing either GFP or

Cx43FL-GFP (Fig. 4H–K). While the Cx43dT-GFP expressing cells

showed reduced cell locomotion, this was accompanied by increased

cytoplasmic protrusions and retractions (Fig. 4K, L). These results

suggest the tubulin-binding domain of Cx43 is required for

directional cell locomotion, but not cell motility. Consistent with

the reduction in directional cell migration, we also observed cells

expressing Cx43dT-GFP were compromised in their ability to

reorient their MTOC when compared with cells expressing GFP or

Cx43FL-GFP constructs (Fig. 5A–D). A reduction in Glu-tubulin

staining was observed in NIH3T3 cells expressing Cx43dT-GFP as

compared to cells expressing GFP or Cx43FL-GFP (Fig. 5E–G, I),

indicating a reduction in stabilized microtubules. Together, these

results show the Cx43 tubulin-binding domain is required for

directional cell migration and this entails a role in establishing

polarized cell morphology.

Cx43 maintenance of stabilized microtubules does not
require gap junction channel

To examine the role of the gap junction channel in the

modulation of cell polarity and directional cell migration we

generated a GFP C-terminal tagged Cx43 construct with a point

mutation (Cx43Y17S-GFP) that eliminates gap junction channel

function without perturbing protein trafficking or assembly of gap

junction plaques at the cell surface [47]. This mutation was

recovered from a patient with oculodentodigital dysplasia (ODDD)

[47]. We transfected the Cx43Y17S-GFP construct into gap

junction communication deficient N2A cells to evaluate its ability

to mediate gap junctional coupling [55]. When N2A cells

expressing the mutant Cx43Y17S-GFP protein were injected with

dye, there was no dye transfer (Fig. 3J–M). This is despite the

localization of fusion protein at cell-cell interface consistent with

gap junction plaque formation (arrow in Fig. 3J). These results

confirm the previously published finding that the Cx43Y17S

mutation does not affect gap junction formation, but rather gap

junction communication competency [47].

To assess whether the mutant Cx43Y17S-GFP protein may

alter microtubule dynamics, we examined the abundance of

stabilized microtubules with Glu-tubulin immunostaining in

NIH3T3 cells transfected with the Cx43Y17S-GFP construct.

Cells expressing the Cx43Y17S-GFP construct showed no change

in the level of Glu-tubulin expression (Fig. 5H, I) as compared to

NIH3T3 cells expressing either GFP (Fig. 5E, I) or wildtype Cx43-

GFP (Fig. 5F, I). This contrasts with cells expressing Cx43dT-

GFP, which showed a marked reduction in Glu-tubulin (Fig. 5G,

I). Together, these results suggest gap junction communication is

not required for Cx43 modulation of microtubule dynamics.

Cell migration defects in neural crest cells expressing
Cx43dT-GFP

To determine if Cx43 is also required for the modulation of cell

migration in neural crest cells, we explanted neural crest cells from

the E8.5 postotic hindbrain neural tube, the region where cardiac

crest cells emerge (Fig. 6). Explant cultures were transfected with

the Cx43FL-GFP or Cx43dT-GFP plasmid and 24 hrs later

neural crest cell migration was examined. In GFP construct

transfected controls, motion analysis of individual neural crest cells

emerging from the explants showed a distinct polarized cell

morphology (Fig. 6A, D). This was also observed in explants

expressing the Cx43FL-GFP construct (Fig. 6B, E). In contrast,

neural crest cells expressing the Cx43dT-GFP construct (Fig. 6C,

F), though exhibiting more cell protrusive activity (Fig. 6I), had cell

protrusions/retractions that were not aligned with the direction of

cell migration (Fig. 6F). Consistent with this, there was a trend for

decreased directionality of cell migration in neural crest cells

expressing Cx43dT-GFP (Fig. 6H) when compared to the GFP

transfected controls or explants transfected with the Cx43FL-GFP

constructs. This further highlights the importance of Cx43

expression level on the dynamic regulation of cell migration. In

contrast to the changes in directional cell movement, the speed of

cell locomotion was not significantly altered by expression of either

the Cx43FL-GFP or Cx43dT-GFP constructs (Fig. 6G). Overall,

these observations suggest the previously identified Cx43 tubulin

binding domain is likely to play an important role in neural crest

cell migration.

Increased microtubule instability in Cx43 deficient cells
To delineate the role of Cx43 in the modulation of microtubule

dynamics, we used TIRF microscopy to examine microtubule

membrane targeting events in Cx43 KO and wildtype MEFs.

Cells were transfected with a tubulin-GFP construct to allow direct

visualization of microtubules (Fig. 7). We quantitatively assessed

microtubule-cell membrane events and categorized them into

three classes: polymerization, depolymerization, and searching

events. Polymerization refers to microtubule targeting of the cell

Cx43 Regulation of Cell Polarity
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membrane (arrowhead in Fig. 7A, see Movie S1), deploymeriza-

tion refers to microtubule retraction from the cell membrane

(arrow in Fig. 7A), and searching refers to multiple polymeriza-

tion/depolymerization events associated with a single microtubule

(arrowhead in Fig. 7B, see Movie S2). Quantitation of these

dynamic microtubule-cell membrane events in randomly selected

cell membrane areas revealed significant increases in microtubule

polymerization, depolymerization, and searching events in Cx43

KO MEFs as compared to wildtype MEFs (Fig. 7C). These results

suggest an increase in microtubule instability in the Cx43KO

MEFs, consistent with the observed decrease in Glu-tubulin in

these cells (Fig. 2H, K).

Cx43 tubulin binding domain promotes microtubule
membrane targeting

To examine whether modulation of tubulin dynamics by Cx43

may require the previously described Cx43 tubulin binding

domain, we used two colour TIRF microscopy to directly visualize

Cx43-tubulin interactions in the living cell. For these experiments,

the Cx43dT-dsRED construct was transfected into NIH3T3 cells

to allow cell surface trafficking of Cx43dT via hetero-oligomer-

ization with endogenous wildtype Cx43. Control experiments with

time-lapse sequences obtained by TIRF imaging of cells expressing

wildtype Cx43FL-dsRED showed punctuate Cx43 red dots

trafficking to the cell membrane along GFP labeled microtubules

(Fig. 8C, see Movie S3). This is similar to the results previously

reported [43]. In the transfected cells, Cx43FL-dsRED plaques

can be seen at the cell surface and these were strong targets for

capture of the polymerizing GFP labeled microtubules (Fig. 8D,

see Movie S4). In cells expressing Cx43FL-DsRed, there is

typically an orderly arrangement of microtubules emanating from

a centrally located MTOC and the microtubules are aligned in

parallel with the direction of cell migration (Fig. 8A). Similar

analysis of NIH3T3 cells expressing Cx43dT-DsRed showed the

Cx43dT-dsRED protein also can traffick to the cell surface along

microtubules, but the incidence of microtubule capture at cell

surface localized Cx43dT-dsRED was significantly decreased

(Fig. 8D). In contrast to cells expressing the Cx43FL-dsRED

construct, these cells displayed a disorganized pattern of

microtubule distribution with no single focal origin (Fig. 8A vs

B). These results suggest the tubulin-binding domain of Cx43 is

required to promote microtubule targeting to the plasma

membrane and for the formation of a focal MTOC.

Discussion

Using a wound closure assay together with cell motion analysis,

we showed Cx43KO MEFs have defects in directional cell

migration. While the speed and directionality of cell migration

were both decreased, cell protrusive activity was increased. These

paradoxical results are explained by defects in cell polarity and

polarized cell movement required for directional cell movement.

Thus Cx43KO MEFs failed to reorient their MTOC and Golgi

with the direction of cell migration and this was associated with a

reduction in stabilized microtubules. MTOC/Golgi reorientation

and microtubule stabilization are essential for directional cell

Figure 3. Gap junction communication competency of Cx43 constructs assayed by dye injection analysis. GFP, Cx43FL-GFP, and
Cx43dT-GFP constructs were transfected into N2A cells, a cell line which does not express Cx43 and is not dye coupled. Iontophoretic injection of
sulforhodamine (red) into N2A cells transfected with GFP expressing plasmid showed no dye transfer (n = 5) (A-C). In contrast, N2A cells transfected
with the Cx43FL-GFP plasmid (n = 17) showed abundant dye transfer between the injected cell (denoted by asterisk) and surrounding cells (D–F).
However, N2A cells transfected with either the Cx43dT-GFP plasmid (n = 15) (G–I) or the Cx43Y17S-GFP (n = 10) (J–L) plasmid did not display any dye
transfer from the site of injection (see asterisks in H, K). Quantitation of the extent of dye transfer showed only N2A cells transfected with the Cx43FL-
GFP plasmid acquired significant dye-coupling (n = 17) (M). Asterisks denote injected cells. Data presented as mean 6 SEM. Scale bars represent
20 mm
doi:10.1371/journal.pone.0026379.g003
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migration (for review see, [50,56]). We showed the regulation of

the microtubule cystoeketon by Cx43 may involve the previously

identified tubulin binding domain of Cx43 [37,41].

Wildtype MEFs or NIH3T3 cells expressing the Cx43dT

construct with deletion of the tubulin binding domain exhibited

migration defects similar to the Cx43KO MEFs. Thus wound

closure was delayed due to defects in directional cell migration,

and both the speed and directionality of cell movement was

reduced even as cell protrusive activity was increased. There was

also a similar defect in MTOC reorientation and stabilized

Figure 4. NIH3T3 cells expressing Cx43dT-GFP show defects in wound closure and polarized cell movement. (A–H) NIH3T3 cells
transfected with plasmids expressing GFP, Cx43FL-GFP or Cx43dT-GFP were examined for wound closure 5 hrs after a wound scratch was made
(n = 10, 10, and 8 scratches respectively). The rate of wound closure in the Cx43dT-GFP transfected cells (E, F) was reduced when compared with the
GFP (A,B) or Cx43FL-GFP transfected cells (C,D). Quantitative assessment showed a significant decrease in wound closure rate in the Cx43dT-GFP
expressing NIH3T3 cells at 4 and 5 hrs after wounding (G) (p,0.05). This was associated with a significant decrease in both the directionality and
speed of wound closure (H). (I–L). Motion analysis with the tracing of individual cells at the wound edge showed a distinct polarized cell morphology
in cells expressing GFP (n = 20 cells) (I) or Cx43FL-GFP (n = 20 cells) (J), with cytoplasmic protrusions (green) seen at the cell’s leading edge facing the
wound, and retracting cell processes (red) in the cell’s trailing edge at the ipsilateral side. In contrast, in cells expressing the Cx43dT-GFP construct
(n = 22 cells) (K), cell protrusions and retractions were not as distinctly polarized. This defect in cell polarity in cells expressing the Cx43dT-GFP
construct was associated with an overall increase in cell protrusive activity (L). Data presented as mean 6 SEM. Scale bars in (A–F) represent 100 mm.
Scale bars in (G–I) represent 10 mm.
doi:10.1371/journal.pone.0026379.g004
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microtubules were reduced in abundance. The overall magnitude

of these effects was less when compared to the Cx43KO MEFs.

This is likely due to expression of endogenous Cx43 masking the

full effects of the Cx43dT construct. We note expression of

endogenous Cx43 is necessary to allow Cx43dT trafficking to the

cell surface. We also showed cell-cell communication mediated by

Cx43 gap junction is not essential, as cells expressing the

previously identified ODDD mutation, Cx43Y17S, showed

normal Glu-tubulin expression level and normal microtubule

cytoskeletal organization [47].

While our findings demonstrate a reduction in Cx43 (Cx43 KO)

significantly reduces cell migration in a wound closure model, they

appear as odds with other wound healing assays [26,27,28] which

show that reducing Cx43 is associated with elevated wound

healing via elevated kerationocyte migration in both healthy

[26,27] and diabetic animal skin models [28]. The in vivo wound

healing response is a much more complex processes involving

many different cell types and signaling mechanisms, thus it’s hard

to state with certainty that the elevated kerationocyte migration

reported in these studies was due to a Cx43 effect within the

kerationocyte cells themselves or the result of external signaling

factors by other cell types that may influence their migration

[26,27,28]. It is interesting to note that other simpler in vitro

experiments utilizing only a single cell type report a similar

relationship between Cx43 and migration as we report here,

namely reducing Cx43 results in a reduction in neuronal cell

migration [19,20,24,29]. Conversely, Cx43 elevation was reported

to elevate cancer cell migration [22,30,31].

Our TIRF analysis suggests Cx43 plays an important role in

regulating tubulin dynamics. Thus Cx43KO MEFs showed

increased microtubule instability. These findings are consistent

with previous studies showing cell surface localized Cx43 are

targets for microtubule capture [41,45]. Microtubules were

reported to be three times more likely to grow to Cx43 membrane

Figure 5. Cells expressing Cx43dT construct fail to reorient the microtubule organizing center and display loss of stabilized
microtubules. (A–D) The MTOC in NIH3T3 cells stably transfected with plasmids expressing GFP (A), Cx43FL-GFP (B), or Cx43dT-GFP was visualized
using c-tubulin immunostaining (n = 481, 390, and 396 cells respectively), with the direction of wound closure indicated by the white arrow. In
contrast to cells expressing GFP (A) or Cx43FL-GFP (B) plasmids, the MTOC in cells expressing Cx43dT-GFP (C) were often not aligned with the
direction of wound closure. This is indicated by the quantitation showed in (D) (asterisk indicate p,0.05). (E–I) Glu-tubulin antibody staining showed
comparable levels of stabilized microtubules in cells expressing GFP (E), Cx43FL-GFP (F), and Cx43Y17S-GFP (H), while cells expressing Cx43dT-GFP
showed little or no Glu-tubulin staining (G). Quantitative assessment of the immunofluorescence staining shown in (I) confirmed a significant
decrease only in cells expressing Cx43dT-GFP (n = 49 cells) compared with cells expressing GFP, Cx43FL-GFP, or Cx43Y17S-GFP (n = 55, 47, and 15 cells
respectively). Note fluorescent gap junctional plaques are seen in cells expressing Cx43FL-GFP, Cx43Y17S-GFP, and Cx43dT-GFP (see white
arrowheads), with noticeably fewer such plaques seen in cells expressing the Cx43dT-GFP. Data presented as mean 6 SEM. Scale bars represent
25 mm.
doi:10.1371/journal.pone.0026379.g005
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plaques where they persisted 3.5 times longer [45]. Our TIRF

imaging analysis of cells expressing wildtype Cx43 and Cx43dT-

dsRED showed the Cx43 tubulin binding domain is required for

membrane targeting of tubulin to cell surface localized Cx43. This

is consistent with previous report of the delivery of Cx43 to non-

junctional area of the plasma membrane [43]. Expression of

Cx43dT missing the tubulin binding domain also disrupted the

normal orderly arrangement of microtubules from a centrally

located MTOC, suggesting the Cx43 tubulin binding domain is

essential for normal regulation of the tubulin cytoskeleton. Our

observation of Cx43 trafficking to the cell surface at non cell-cell

contact sites and its involvement in microtubule capture is further

consistent with the notion of a non-channel function for Cx43 in

the regulation of the cytoskeleton.

Overall, these findings are consistent with our previous studies

showing no correlation between gap junctional communication

level and changes in cell motile behavior in various transgenic and

KO mouse models [13]. We previously showed neural crest cells

from Wnt1 KO mice have normal cell motility, but are not gap

junction communication competent even though they had Cx43

gap junction plaques at the cell surface [11]. Based on these

observations, we previously proposed that the cell surface

localization of Cx43 might play a role in cell motility independent

of gap junction channel activity. The results of our present study

would suggest this may involve the stabilization of microtubules

required for cell polarization and directional cell locomotion

mediated by the tubulin binding domain of Cx43. Consistent with

this, we showed expression of the Cx43dT construct missing the

Figure 6. Neural crest cells expressing Cx43dT-GFP also show defects in polarized cell migration. Neural crest cell explants from E8.5
wildtype mouse embryos were transfected with either Cx43FL-GFP or Cx43dT-GFP plasmid constructs and neural crest cell migration behavior was
examined 24 hours after transfection. Motion analysis with the tracing of individual cells at the explants edge showed a distinct polarized cell
morphology in GFP construct-transfected control cells (n = 11 cells) (A, D) or Cx43FL-GFP transfected cells (n = 12 cells) (B, E), with cytoplasmic
protrusions (green) seen at the cell’s leading edge, and retracting cell processes (red) in the cell’s trailing edge at the ipsilateral side. In contrast, in
cells expressing the Cx43dT-GFP construct (n = 21 cells) (C, F), cell protrusions and retractions were not as distinctly polarized. This defect in cell
polarity in neural crest cells expressing the Cx43dT-GFP construct was associated with an overall increase in cell protrusive activity (I), a significant
decrease in cell directionality (H) (i.e. a more randomized migration pathway), and a not significantly altered migration speed (G). Scale bars = 20 mm.
Data presented as mean 6 SEM.
doi:10.1371/journal.pone.0026379.g006
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tubulin binding domain in neural crest cells disrupted directional

cell migration, and caused cell motility defects similar to those seen

in the Cx43KO neural crest cells.

Together, these findings suggest Cx43 modulation of directional

cell migration involves the regulation of tubulin dynamics, while

cell-cell communication mediated by the Cx43 gap junction

channel may be dispensable. We propose Cx43 may have two

distinct functions, one involving formation of gap junction

channels to mediate direct cell-cell communication, and a separate

role in modulating the cytoskeleton. The integration of these two

distinct functions in one protein may be evolutionarily advanta-

geous as it may allow efficient integration of extracellular signals

with intra/intercellular cues. We note there are a plethora of

studies showing interactions of Cx43 with proteins associated with

the cytoskeleton, including studies showing Cx43 interactions with

N-cadherin [12,35], p120 [35], b-catenin [12,45], vinculin [13],

p150 [45], ZO-1 [57] and various actin associated proteins

including drebrin [13,19,58,59]. In future studies, the precise

delineation of the biochemical interactions between Cx43, tubulin

and other proteins that regulate the cytoskeleton will help to

address the precise mechanism by which cell polarity and cell

motility is regulated by Cx43.

Methods

Isolation of mouse embryonic fibroblasts
All experiments were conducted in accordance with an

approved animal protocol of the National Heart Lung Blood

Institute (Protocol Number H-0175). Mouse embryonic fibroblasts

(MEF) were obtained from E13.5 day embryos generated from

interbreeding heterozygous Cx43 +/2 animals as previously

described [60]. The protocol used for genotyping the Cx43KO

mice were modified as previously reported [9] using the wildtype

primer pair (IMR3: 59-CCCCACTCTCACCTATGTCTCC-39,

IMR5: 59-ACTTTTGCCGCCTAGCTATCCC-39) and KO

primer pair (IMR4: 59-TAAGGGCTGGAGTTCGTGTC-39,

NEO4: 59-ACCGCTTCCTCGTGCTTTAC-39). MEFs were

allowed to grow in standard DMEM (Invitrogen, CA) supple-

mented with 10% FBS (HyClone, UT) and 50 U/ug/ml

penicillin-streptomycin (Invitrogen, CA).

Wound closure assay
Confluent MEFs grown in 4-well chamber slides (BD Falcon,

MA) were serum starved for 48 hr before use. The monolayer was

wounded using a scratch made with a 20 ul micropipette tip for

the analysis of wound closure. For time-lapse imaging, MEFs were

cultured on a heated stage (37uC) in L-15 medium (+10% FBS,

50 U/ug/ml pen-strep) and imaged using a Leica inverted

microscope (Leica, DMIRE2). Time-lapse images were taken

every 20 minutes over 5–7 hours using 10x and/or 40x objectives

using Openlab 3.1.7 software (Improvision, UK). Images were

subsequently analyzed using DIAS cell tracking software (Soll

Technologies, IA) to determine cell speeds, directionality, and

membrane flows. Directionality was defined as the net displace-

ment achieved divided by the total distance traveled, with a cell

moving in a straight line having a directionality of one.

Immunohistochemistry
For immunohistochemistry, cells were fixed with 4% parafor-

maldehyde in PBS for 10–15 min, then rinsed with PBS,

permeabilized with PBST (0.15%–0.3 triton in PBS) for 10–20

minutes and blocked with 5% FBS in PBST for 1 hour. This is

followed by incubation in primary antibodies in PBST (+5% FBS)

overnight at 4uC, then 3 washes in PBST, and then incubation

with secondary antibodies diluted in PBST for 30 minutes. After 3

washes with PBS, the cells were mounted in Vectashield with

DAPI (Vector Laboratories, CA). Cells were imaged using a Leica

DMIR fluorescent imaging microscope with 40x and 63x oil

Figure 7. TIRF imaging show increased microtubule instability in Cx43 KO MEFs. Time lapse TIRF imaging of Cx43 KO (A) and wildtype
MEFs (B) transfected with a tubulin-GFP plasmid construct (see Movie S1 and Movie S2) showed increased microtubule polymerization (arrowhead in
A), depolymerization (arrow in A), and searching events (multiple polymerization/depolymerization; arrowhead in B) in the Cx43 KO MEF.
Quantification of the data obtained from the TIRF imaging is shown in (C) (Cx43 +/+ n = 13 cells, Cx43 2/2 n = 22 cells). Data presented as mean 6

SEM. Scale bars represent 5 mm.
doi:10.1371/journal.pone.0026379.g007

Cx43 Regulation of Cell Polarity

PLoS ONE | www.plosone.org 10 October 2011 | Volume 6 | Issue 10 | e26379



objectives and Orca-ER C4742-95 CCD camera (Hamamatsu,

NJ). Primary antibodies used included anti-vinculin, a-tubulin, c-

tubulin, GM130 (Sigma, MO), and Glu-tubulin (Chemicon).

Secondary antibodies were from Jackson Laboratories (Jackson

ImmunoResearch Laboratories, PA). Orientation of the MTOC/

Golgi was scored according to the methods of Gomes &

Gundersen [61]. It the case of MTOC/Golgi orientation

measurements of cells transfected with Cx43 plasmid constructs,

only cells displaying successful plasmid transfection based on

visualization of GFP fluorescence were scored.

Plasmids
To generate GFP or DsRed-tagged Cx43 expressing vectors,

cDNA encoding Mus musculus full-length Cx43 (amino acids 1–

382) was generated by PCR and the fragment was cloned into

either pcDNA3.1/CT-GFP-TOPO vector (Invitrogen, Carlsbad,

Figure 8. Two colour TIRF imaging show reduction in microtubule targeting to cell surface localized Cx43dT-DsRed. NIH3T3 cells
transfected with GFP-tubulin and either Cx43dT-DsRed or Cx43FL-DsRed were examined by two colour TIRF imaging. In Cx43FL-DsRed expressing
cells, microtubules were centrally organized around a single MTOC (asterisk in A), while in cells expressing Cx43dT-DsRed, microtubules appear
disorganized in distribution (B). Time-lapse TIRF imaging shows Cx43FL-DsRed (arrowhead in C) being transported to the cell membrane along
microtubules (arrows in C) (see Movie S3). Also observed is microtubule polymerization and targeting (labeled 1-3 in D) to Cx43FL-DsRed plaques in
the cell membrane (labeled a, b in D) (see Movie S4). Such microtubule targeting events were significantly decreased in NIH3T3 cells expressing
Cx43dT-DsRed (n = 18) when compared with those expressing Cx43FL-DsRed (n = 16) (E). Data presented as mean 6 SEM. All scale bars represent
5 mm.
doi:10.1371/journal.pone.0026379.g008
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CA) or pDsRed-Monomer-N1 vector (Clontech, Mountain View,

CA). Cx43Y17S and Cx43-D234–243 (Cx43dT) mutants were

generated using QuikChange II Site-Directed Mutagenesis Kit

(Stratagene, La Jolla, CA) according to manufacturer’s protocol.

The GFP-tagged Tubulin was kindly supplied by Dr Chloe

Bulinski (Columbia University, NY).

Neural tube explant cultures
Embryos used for neural tube explant cultures were harvested at

E8.5 day as described previously [13]. In brief, the hindbrain

neural folds were treated with collagenase/dispase (Roche,

Indianapolis, IN), and the dorsal ridge of the neuroepithelium

spanning the postotic region of the hindbrain neural fold was

surgically removed from the surrounding tissue and cultured

overnight on plates coated with human plasma fibronectin (Life

Technologies or Sigma) in Dulbecco’s modified Eagle’s medium

(DMEM) with high glucose and 10% fetal bovine serum (FBS).

The next day explants were transfected with plasmid DNA using

PolyFect (Qiagen, CA).

Neural crest cell migration was subsequently recorded and

analyzed 24 hours after transfection as previously described [13].

In brief, neural tube explants were cultured in phosphate buffered

L-15 medium (Sigma) containing 10% FBS on a Leica DMIRE2

inverted microscope with 37uC heated stage. Timelapse images

were captured using an Orca-ER camera. Quantitative motion

analysis of individual cells located at the migration front of the

emerging explant was carried out using Dynamic Image Analysis

Software (Solltech, Oakdale, IA).

Dye Coupling Analysis of Cx43 Constructs
Gap junction communication competency of cells expressing

various Cx43 constructs was determined using Neuro-2a (N2A)

cells (ATCC, VA). N2A cells where cultured on fibronectin coated

12 mm glass coverslips (Fisherbrand, Fisher Scientific, PA) and

transfected with plasmid DNA using PolyFect (Qiagen, CA). 24–

48 hours after transfection coverslips were placed on a heated

stage of a Leica DMLFSA microscope in a dish containing

prewarmed L-15 medium (+10% FBS) and dye-coupling was

quantified by iontophoretic dye injection (0.5 nA current pulses at

1 Hz) of sulforhodamine 101 dye (MW 606.71, 12.5 mg/ml,

Invitrogen, CA). Fluorescent images were collected every 30

seconds over 4 minutes using Cy3 filters. Dye-coupling was

quantified by counting the percentage of dye containing

transfected cells surrounding the injected cell.

Total internal reflection fluorescence (TIRF) imaging
NIH3T3 (ATCC, VA) or MEF cells were plated on fibronectin

coated glass bottomed culture dishes (WillCo Wells, Netherlands)

and allowed to grow overnight. The next day cells were transfected

with Cx43 and/or tubulin-GFP constructs using lipofectamine

(Invitrogen, CA). Western blot anaylsis was used to confirm

expression levels were comparable between groups (Figure S1).

Cells were imaged 24–48 hours after transfection in L-15 medium

(+10% FBS, pen-strep, no phenol red). Single colour time-lapse

images of tubulin-GFP were collected at 2 fps on a Leica DMI

6000 B TIRF microscope with 488 nm laser, 100x NA 1.46 oil

immersion objective, and a Cascade:512B EM CCD camera

(Roper Scientific, AZ). Two colour time-lapse images of Cx43-

DsRed and tubulin-GFP interactions were collected at ,2.7 fps on

a Leica AF 6000 LX TIRF microscope fitted with 488 nm and

561 nm lasers, 100x NA 1.46 oil immersion objective, and

Hamamatsu C9100-13 ImagEM enhanced EM CCD camera

(Hamamatsu, NJ). Both TIRF microscopes were fitted with

incubation chambers (37uC) and movies were collected over 2

minutes using the Leica software provided.

Statistical analysis
Data is presented as mean 6 SEM as analyzed using Instat 3

(GraphPad Software, Inc.) with one-way analysis of variance

(ANOVA) and Bonferroni correction. P,0.05 was considered

significant.

Supporting Information

Figure S1 Relative expression levels of Cx43 isoforms following

transfection into NIH3T3 cells. Separate Cx43 and EGFP western

blots were run using rabbit polyclonal antibodies. Merge image

was generated by lining up fragment ladders. * highlights location

of GFP tagged Cx43 (ie GFP: 27 kb+Cx43: 43 kb = ,70 kb in

total) { highlights unbound GFP protein (GFP: 27 kb).

(TIF)

Movie S1 TIRF microscopy and time lapse imaging show

microtubule polymerization/depolymerization events at the cell

membrane of a Cx43 KO MEF. Images from this video sequence

was used to generate the panels in Figure 7A. Green fluorescence

is GFP-tubulin. Frames were collected at 2 fps, playback is at 20

fps. Scale bar = 5 mm.

(MOV)

Movie S2 Time lapse imaging with single colour TIRF

microscopy shows polymerization/depolymerization of a single

microtubule, termed searching, at the cell membrane of a Cx43

KO MEF. Images from this video sequence was used to generate

the panels in Figure 7B. Green fluorescence is GFP-tubulin.

Frames were collected at 2 fps, playback is at 20 fps. Scale

bar = 5 mm.

(MOV)

Movie S3 Two colour TIRF microscopy and time lapse imaging

showing a Cx43FL-DsRed plaque being transported to the cell

membrane along a microtubule (from bottom to top of movie) in a

NIH3T3 cell. Images from this video was used to generate the

panels in Figure 8C. Green fluorescence is GFP-tubulin, red

fluorescence is Cx43-DsRed. Frames were collected at 2.7 fps,

playback is at 10 fps. Scale bar = 5 mm.

(MOV)

Movie S4 Two colour TIRF microscopy and time lapse imaging

showing microtubule polymerization and targeting of Cx43FL-

DsRed plaques in the cell membrane of a NIH3T3 cell. Images

from this video was used to generate the panels in Figure 8D.

Green fluorescence is GFP-tubulin, red fluorescence is Cx43-

DsRed. Frames were collected at 2.7 fps, playback is at 10 fps.

Scale bar = 5 um.

(MOV)
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