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Abstract

Somatostatin-expressing, low threshold-spiking (LTS) cells and fast-spiking (FS) cells are two common subtypes of inhibitory
neocortical interneuron. Excitatory synapses from regular-spiking (RS) pyramidal neurons to LTS cells strongly facilitate
when activated repetitively, whereas RS-to-FS synapses depress. This suggests that LTS neurons may be especially relevant
at high rate regimes and protect cortical circuits against over-excitation and seizures. However, the inhibitory synapses from
LTS cells usually depress, which may reduce their effectiveness at high rates. We ask: by which mechanisms and at what
firing rates do LTS neurons control the activity of cortical circuits responding to thalamic input, and how is control by LTS
neurons different from that of FS neurons? We study rate models of circuits that include RS cells and LTS and FS inhibitory
cells with short-term synaptic plasticity. LTS neurons shift the RS firing-rate vs. current curve to the right at high rates and
reduce its slope at low rates; the LTS effect is delayed and prolonged. FS neurons always shift the curve to the right and
affect RS firing transiently. In an RS-LTS-FS network, FS neurons reach a quiescent state if they receive weak input, LTS
neurons are quiescent if RS neurons receive weak input, and both FS and RS populations are active if they both receive large
inputs. In general, FS neurons tend to follow the spiking of RS neurons much more closely than LTS neurons. A novel type of
facilitation-induced slow oscillations is observed above the LTS firing threshold with a frequency determined by the time
scale of recovery from facilitation. To conclude, contrary to earlier proposals, LTS neurons affect the transient and steady
state responses of cortical circuits over a range of firing rates, not only during the high rate regime; LTS neurons protect
against over-activation about as well as FS neurons.
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Introduction

Low threshold-spiking (LTS) neurons are a specific subtype of

interneuron in the neocortex. Their somata are located in layers

2–6 [1], and they include the Martinotti cells of layer 5 [2,3,4,5]

and the green fluorescent protein (GFP)-expressing neurons of the

GIN line of transgenic mice [6,7,8]. LTS neurons express the

neuropeptide, somatostatin, their action potentials have interme-

diate duration, and they adapt in response to suprathreshold step

current injections [9]. The difference between the resting

membrane potential and firing threshold of LTS cells is about

12 mV, smaller than observed in excitatory neurons or other types

of inhibitory neurons [7]. LTS cells are mutually coupled by

electrical synapses [10], but inhibitory chemical synapses between

them are only rarely observed [9]. Excitatory synapses from

regular-spiking (RS) neurons onto LTS neurons show strong short-

term facilitation [7,9,11,12,13], whereas inhibitory synapses from

LTS neurons onto to RS neurons usually depress [7,9]. LTS

neurons are reciprocally coupled by depressing synapses to

inhibitory neurons of the parvalbumin-expressing, fast-spiking

(FS) type [10,14]. RS and FS neurons, but not LTS neurons in

layer 4, receive thalamic input [10,15]. There are conflicting data

regarding the possibility that LTS neurons in other layers are

innervated by thalamocortical axons (see [15,16]). LTS neurons in

layer 3 are excited by sensory inputs during whisking [17]), but

these inputs could represent ascending layer 4-to-layer 3 excitation

or neuromodulatory pathways.

Because of the strongly facilitating nature of the RS-to-LTS

excitatory synapses, rapid stimulation of a few RS neurons or,

sometimes, even a single RS neuron can cause LTS neurons to fire

spikes [13]. As a result, LTS neurons may mediate disynaptic

inhibition between neocortical pyramidal neurons [18,19], and

simultaneous short bursts in four excitatory neurons are sufficient

to exert disynaptic inhibition in all neighboring excitatory neurons

[20]. When an RS neuron is stimulated and spikes repetitively, this

disynaptic inhibition is delayed with respect to the stimulus

initiation because RS-to-LTS synapses need time to facilitate

before the LTS neuron can fire its own spikes. Based on their

experimental results, Beierlein et al. [9], Silberberg and Markram

[18] and Kapfer et al. [19] hypothesized that LTS neurons are

important for maintaining the balance between excitation and

inhibition in the cortical circuit. Because the amount of excitation
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varies with the activity of neurons that are presynaptic to cortical

neurons (e.g. thalamic relay cells), maintaining this balance is a

dynamic process in which LTS neurons may play an important

role. For example, when the firing rate of excitatory neurons is

high, facilitating excitatory input could generate a supralinear

response of LTS neurons and thus prevent overactivation of

excitatory neurons (i.e., activation beyond what is normal, leading

to pathological behavior). This could protect the cortical network

against seizures. Consistent with the idea that LTS cells serve a

protective function is the observation that selective loss of

somatostatin-positive dendritic-targeting interneurons (cells similar

to neocortical LTS neurons) in hippocampus correlates with

epileptic states [21,22]. More recently, it was suggested that LTS

neurons balance excitation and prevent runaway cortical activity

by decreasing the gain of pyramidal cell output [23].

The ability of LTS neurons to protect against network over-

activation may be limited, however, by the depressive nature of

LTS-to-RS inhibitory synapses. Furthermore, short-term synaptic

plasticity can lead to firing patterns more complex than stable

firing rates. The existence of two time-scales in the system

dynamics — the fast time-scale of the AMPA receptor- and

GABAA receptor-mediated postsynaptic potentials (PSPs), and the

slow time-scale of synaptic depression and facilitation processes —

may, in principle, lead to various types of network oscillations or

more complicated patterns. Such network oscillations were

observed in previous models of excitatory and inhibitory neurons

[24,25,26,27], but those models did not take into account the

specific physiological characteristics of LTS neurons.

In this study we ask: by which mechanisms and at what firing

rates do LTS neurons control the activity of cortical circuits

responding to thalamic input, and how is control by LTS neurons

different from that of FS neurons? To be more specific, we

compare the dynamical behavior of LTS neurons with those of FS

neurons in networks with only one type of inhibitory interneuron

and in networks with both inhibitory populations, to address the

hypothesis of Beierlein et al. [9], Silberberg and Markram [18] and

Kapfer et al. [19]. We consider a rate model of cortical networks

[28,29,30] that includes RS, LTS and FS neurons with short-term

synaptic plasticity [31,32], and study its responses to external

inputs.

Results

Model Description
Circuit architecture. The architecture of the full RS-LTS-

FS cortical network, based on [9,10], is shown in Figure 1. RS

neurons excite RS, LTS and FS neurons. FS neurons inhibit RS,

LTS and FS neurons. LTS neurons inhibit RS and FS neurons,

but not LTS neurons. In this article, we focus on the short-term

plasticity of chemical synapses between cortical neurons, and

therefore assume three simplifications. First, we use firing rate

models and effectively average over the spiking dynamics of

neurons [29,31,33,34]. Second, we do not consider electrical

synapses between cortical interneurons [1,10]. Third, we assume

constant or step external input, and do not take into account

depression or facilitation of thalamocortical synapses [35].

RS and FS neurons [15,36], but not LTS neurons in layer 4 [9]

receive external thalamic input. Whether LTS neurons in other

layers are innervated by the thalamus still remains unresolved (see

[15] vs. [16,17]). Therefore, we initially study a model in which

LTS neurons do not receive thalamic input, and analyze the

effects of thalamic input onto LTS neurons separately. In addition,

LTS neurons are activated by various neuromodulators [7]. This

effect is modeled as a reduction of the LTS threshold.

We examine the model in four stages. First, we consider a

network of RS and LTS neurons, where RS neurons receive

external inputs (either step or absence-seizure-like). Second, we

study an RS-FS network to demonstrate the differences between

the effects of the FS and LTS populations on the circuit. Third, we

consider a full network composed of RS, LTS and FS neuronal

populations. Finally, we analyze a slow oscillation state emerging

from this network.
Synaptic dynamics and neuronal firing rates. Our

technical approach makes use of the formulation of Shriki et al.

for rate equations [28,29,30]. Each neuronal population is

described by its firing rate M with a subscript i denoting the

population: R for RS, F for FS and L for LTS. A synaptic

connection from a neuron from population j to a neuron from

population i is characterized by three dynamic variables with the

subscripts ij: the fraction of open synaptic channels s, the running

fraction of vesicles available for release x, and the running value of

the ‘‘utilization’’ parameter u [31,32]. The variable u quantifies the

conditional probability of release of a vesicle in response to an

Figure 1. Schematic architecture of the RS-LTS-FS cortical
circuit. Open triangles denote excitatory synapses, and solid ellipses
denote inhibitory synapses. Black lines denote depressing synapses,
and grey lines denote facilitating synapses.
doi:10.1371/journal.pcbi.1002248.g001

Author Summary

The brain consists of circuits of neurons that signal to one
another via synapses. There are two classes of neurons:
excitatory cells, which cause other neurons to become
more active, and inhibitory neurons, which cause other
neurons to become less active. It is thought that the
activity of excitatory neurons is kept in check largely by
inhibitory neurons; when such an inhibitory ‘‘brake’’ fails, a
seizure can result. Inhibitory neurons of the low-threshold
spiking (LTS) subtype can potentially fulfill this braking, or
anticonvulsant, role because the synaptic input to these
neurons facilitates, i.e., those neurons are active when
excitatory neurons are strongly active. Using a computa-
tional model we show that, because the synaptic output of
LTS neurons onto excitatory neurons depresses (decreases
with activity), the ability of LTS neurons to prevent strong
cortical activity and seizures is not qualitatively larger than
that of inhibitory neurons of another subtype, the fast-
spiking (FS) cells. Furthermore, short-term (,one second)
changes in the strength of synapses to and from LTS
interneurons allow them to shape the behavior of cortical
circuits even at modest rates of activity, and an RS-LTS-FS
circuit is capable of producing slow oscillations, on the
time scale of these short-term changes.

Inhibitory Neurons and Cortical Circuit Dynamics
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action potential arriving to the presynaptic terminal, assuming that

vesicle is ready for release before the spike arrives. Each synaptic

connection is characterized by a set of five parameters: the efficacy

g, the initial conditional probability of release U, assuming that a

previous presynaptic spike has not occurred for a long time, the

decay time of the post-synaptic current ts, and the recovery time

constants from facilitation and depression, tf and tr respectively.

The dynamics for each synaptic connection are therefore

described by the following equations:

dsij

dt
~{

sij

ts,ij
zuijxijMj ð1Þ

dxij

dt
~

1{xij

tr,ij
{uijxijMj ð2Þ

duij

dt
~

Uij{uij

tf ,ij
zUij 1{uij

� �
Mj ð3Þ

The firing rates Mi for the three neuronal populations are

determined according to the circuit diagram (Figure 1):

MR~bR IR(t)zgRRsRR{gRLsRL{gRFsRF{hR½ �z ð4Þ

ML~bL gLRsLR{gLFsLF{hL½ �z ð5Þ

MF~bF IF(t)zgFRsFR{gFLsFL{gFFsFF{hF½ �z ð6Þ

where, for each population, Ii(t) is the external input from sources

outside of the local cortical network, hi is the neuronal threshold,

and bi is the neuronal gain calculated according to the f-I curve at

steady state [8,9]. The coefficients of synaptic conductances are

denoted by gij, and the total synaptic input from neuronal

population j to a neuron from population i is gij sij. The function

[]+ is the rectification (linear-threshold) function: [x]+ = x for x$0

and [x]+ = 0 otherwise. Note that the currents Ii and the

conductances gij are measured in arbitrary units [30].

Model parameters. Despite the fact that our model is

relatively simple, it includes many parameters. Therefore, it is

important to consider ranges of biophysical parameters. It is, of

course, impossible to study the entire multidimensional space of

parameters. We limit the range of parameters by taking most of

their values from the literature, but some of them remain

unknown. In particular, the maximal synaptic conductances a

neuron receives from its presynaptic neurons are often hard to

determine. Knowing these difficulties, we use the following

strategy that we have often used in the past (e.g., [37]). We

choose a biophysically plausible parameter set as a reference point

in the parameter space. The reference parameter values for the

model are written in Tables 1 and 2 (see Methods). Starting from

this point, we vary one or two parameters to study their effect.

Specifically, we study sub-networks of RS-LTS and RS-FS

populations to investigate the respective role of the two types of

interneurons before studying the full RS-LTS-FS network.

Exploring the dependence on parameters provides us with an

understanding of the different dynamical patterns the network can

exhibit.

RS-LTS Networks without RS-to-RS Recurrent
Connections

We consider a network of two populations, composed of RS and

LTS neurons. To explore the role of RS-to-LTS and LTS-to-RS

synapses, our first step is to study a model with these synaptic

connections only, and the effect of the RS-to-RS synapses will be

studied later. RS-to-LTS synapses facilitate (tf,LR = 670 ms) and

LTS-to-RS synapses depress (tr,RL = 1250 ms) [18] (see Methods

and Table 2). Therefore, xLR = 1, uRL = URL, and equations 1–3

for the RS-LTS system become

dsLR

dt
~{

sLR

ts,LR
zuLRMR ð7Þ

duLR

dt
~

ULR{uLR

tf ,LR
zULR 1{uLRð ÞMR ð8Þ

dsRL

dt
~{

sRL

ts,RL
zURLxRLML ð9Þ

dxRL

dt
~

1{xRL

tr,RL

{URLxRLML ð10Þ

Steady-state firing. When the input to the RS population,

IR, is constant in time, the steady-state values of the system are

Table 1. Reference parameters for the neuronal populations,
based on [7].

Neuronal population h (nA) b (ms21 nA21)

RS 0.1 0.11

LTS 0.05 0.32

FS 0.28 0.35

doi:10.1371/journal.pcbi.1002248.t001

Table 2. Reference parameters for the synapses between the
various types of neurons.

Synaptic
connection ts (ms) tf (ms) tr (ms) U g Reference

RSrRS 2 0 463 0.21 5 [83]

RSrLTS 6.3 0 1250 0.3 35 [18]

LTSrRS 2 670 0 0.09 7 [18]

RSrFS 2 0 875 0.14 38 [47]

FSrRS 2 0 227 0.3 18 [47,84]

FSrLTS 2 0 400 0.3 5

LTSrFS 2 0 400 0.3 10

FSrFS 2 0 400 0.3 20

doi:10.1371/journal.pcbi.1002248.t002

Inhibitory Neurons and Cortical Circuit Dynamics
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sLR~
ts,LR ULR 1ztf ,LR MR

� �
MR

1ztf ,LR ULR MR
ð11Þ

sRL~
ts,RL URL ML

1ztr,RL URL ML
ð12Þ

where

MR~bR IR{gRLsRL{hR½ �z ð13Þ

and

ML~bL gLRsLR{hL½ �z ð14Þ

The firing rates of the two populations, MR and ML, as functions

of IR for several values of the LTS-to-RS synaptic conductance

coefficient gRL are shown in Figure 2A. When gRL = 0, the RS

population is silent for IR#hR, and MR increases linearly with

IR2hR for IR.hR. LTS neurons fire for IR.IR,LTS,th

(IR,LTS,th.hR), (‘‘Threshold for LTS firing for gRR = 0’’ in

Methods, Equations 22,23), and inhibit RS neurons for gRL.0.

For IR just above IR,LTS,th, ML is small and MR increases only

weakly with IR. Since tr,RL URL ML,,1, equation 12 becomes

sRL&URLts,RLML, and dMR/dIR just above IR,LTS,th is

(Equations 24,25)

dMR

dIR

&
1

bR

zgRLURLts,RLbLgLRts,LR 1{
1{ULR

(1zULRtf ,LRMR)2

 !" #{1

ð15Þ

i.e., the slope dMR/dIR at threshold scales like 1/gRL for large gRL.

For large input IR, the firing rates MR and ML are large as well,

and sRL<ts,RL/tr,RL (Equation 12). Using equation 13, we obtain

MR~bR IR{gRLts,RL=tr,RL{hRð Þ ð16Þ

Therefore, MR increases linearly with IR with a slope (gain) bR,

and is reduced by inhibition by a constant value bR gRL ts,RL/tr,RL.

Like MR, ML increases linearly with IR for large IR:

ML&bL gLRts,LRMR{hLð Þ (Figure 2A). The gains of MR and

ML with IR remain relatively small in an IR range of about gRL

ts,RL/tr,RL, before they reach approximately their maximal values.

The reduction of activity by a constant value at large IR (and

large firing rates) is a result of the properties of the depressing

LTS-to-RS synapses at high firing rates ML. The postsynaptic

current (PSC) amplitude for such a synapse is inversely

proportional to ML, the firing rate of the presynaptic neuron

Figure 2. Steady-state response of the RS-LTS network with gRR = 0 to constant inputs to the RS neurons. (A) MR-IR curves (top panel)
and ML-IR curves (bottom panel) are plotted for gRL = 0 (black), 17.5 (red) and 35 (green). Additional parameters are tr,RL = 1250 ms, gLR = 7.5. The
arrow below the abscissa in the top panel points to the value of IR,LTS,th. (B) MR-IR curves are plotted for tr,RL = 1250 ms (black), 500 ms (red) and
150 ms (green) and 0 (blue). Additional parameters are gRL = 35, gLR = 7.5. (C) MR-IR curves are plotted for gLR = 0 (black), 7.5 (red), 15 (green) and 22.5
(blue). Additional parameters are gRL = 35, tr,RL = 1250 ms.
doi:10.1371/journal.pcbi.1002248.g002

Inhibitory Neurons and Cortical Circuit Dynamics
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[38], and therefore the total LTS-to-RS inhibition is independent

of ML. This constant inhibition shifts the MR-IR curve to the right

by a fixed value, and this shift is translated to a constant reduction

of MR because of the linear dependency of MR on the total input

to the neuronal population. Indeed, the inhibitory effect on the

MR-IR curve is enhanced when tr,RL is small and LTS-to-RS

neurons recover faster from depression (Figure 2B). Just above

IR,LTS,th, the slope of the MR-IR curve does not depend on tr,RL

because the neurons hardly depress for small ML. When tr,RL = 0

(no depression), the slope of MR-IR curve is always smaller than bR

when the LTS neurons fire. Increasing the RS-to-LTS excitatory

conductance gLR reduces IR,LTS,th but does not affect the value of

MR at large MR (and therefore IR) values (Figure 2C).

Dynamics of firing response to step inputs. We consider

step inputs to the RS population starting at time t = 0 with

amplitudes IR, IRH(t) (H being the Heaviside function). Temporal

profiles of the firing response of the RS and LTS population to

those inputs are shown in Figure 3A. For a just-suprathreshold

input IR, LTS neurons start to fire after a delay tdelay (‘‘Delay of

LTS firing in response to step input’’ in Methods), because RS-to-

LTS synapses need time to facilitate and excite LTS cells. The

dependence of tdelay on IR, computed both from simulations and

from Equation 28 (Methods), is shown in Figure 3B. The time tdelay

diverges logarithmically as IR approaches IR,LTS,th from above,

and is small, on order ts,LR, when IR is much larger than IR,LTS,th.

After LTS neurons are recruited, they inhibit RS neurons, and this

inhibition is stronger for larger IR (Figure 3A). For even longer

times (and levels of inhibition that are not weak), LTS-to-RS

inhibition depresses, and MR rebounds, whereas ML continues to

grow toward its steady-state value.

Effects of the Extensions to the Model
Tonic thalamic or neuromodulatory input to LTS

neurons. According to some experimental studies, LTS

neurons in layers 2–3 or 5 receive thalamic input [16] [17] (see

also [15]). Furthermore, LTS neurons may be tonically active in

response to the application of various neuromodulators [7], or

perhaps from inputs originating in distant cortical areas.

Therefore, we study the response of the RS-LTS network when

LTS neurons are active in response to tonic thalamic input or

neuromodulators, mimicked in the model by introducing external

input IL to the LTS neurons. This is equivalent to reducing the

threshold hL. At steady state, the current IL reduces IR,LTS,th

(Figure 4A). At high rates, the activity of RS neurons is not affected

by IL, and the activity of LTS neurons is increased by bLIL. The

temporal response of the RS and LTS neurons in the circuit to

step current for IL,hL is similar to the response for positive IL.hL

(cf. Figures 3A and 4B), except that ML starts from a positive value

in the second case.

Spike-frequency adaptation. The parameters hi and bi

(Equations 4–6) are calculated according to the f-I curve of the

neurons at steady state, but spike frequency adaptation is not

considered explicitly in our model. To assess the adaptation effects

on the cortical circuit responses, we model adaptation in each

neuronal population by introducing an adaptation current variable

ai for each neuronal population i [39,40], which evolves according

to the differential equation

ta,i
dai

dt
~{aizJa,iMi ð17Þ

where ta,i and Ja,i are the adaptation time constant and the

adaptation strength constant of the ith neuronal population

respectively. The firing rates Mi (Equations 4–6) are

Mi~b�i Ii(t)zIsyn,i(t){ai{hi

� �
z

ð18Þ

where Isyn,i(t) is the total synaptic current the neuron receives from

the other neurons within the circuit and b�i is the neuronal gain of

the model with adaptation for ai = 0. At steady state, ai~Ja,iMi,

Figure 3. Response of the RS-LTS network with gRR = 0 to step
inputs IRH(t) to the RS neurons. Additional parameters are gRL = 35,
gLR = 7.5. (A) Time courses of MR (top panels) and ML (middle panels) for
IR = 0.25 (black), 0.38 (red) and 0.5 (green)(bottom panels). The right top
and middle panels depict the time course of MR and ML in a shorter
time scale to emphasize the delay to the onset of LTS activity. (B) The
delay time tdelay to the onset of firing of LTS neurons as a function of IR.
The tdelay values computed from simulations are almost indistinguish-
able from those computed from Equation 28.
doi:10.1371/journal.pcbi.1002248.g003

Inhibitory Neurons and Cortical Circuit Dynamics
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and, with Isyn = 0, the slope of the f-I curve is (Equation 18) [40]

dMi

dIi

~
b�i

1zb�i Ja
ð19Þ

Therefore, to keep the slope of the f-I curve equal in the models

without and with adaptation, we set bi~b�i =(1zb�i Ja,i). In

response to a step function, the initial slope of the f-I curve (ai = 0)

is bi, and it decreases to b�i at large times after the stimulus onset

(i.e., it is reduced by a factor 1zb�i Ja,i). Therefore, based on the

values of bi from Table 1 and Figure 1C in [9], we find:

Ja,R = 2, b�R = 0.33, Ja,L = 1, b�L = 0.64.

The relation between bi, b�i and Ja,L holds as long as the total

current Ii+Isyn,i is constant in time, namely at steady state. This

means that the Mi-Ii curve obtained in the model without adaptation

(e.g., Figure 2) remains exactly the same when adaptation is

introduced, as along as the isolated single cells in the two models

have the same f-I curves. The dynamical response to time-varying

stimuli, however, may be modified because the initial response to

input is stronger. Indeed, Figure 5 shows that the initial response to

a step stimulus of the RS-LTS model with adaptation is stronger,

and the model reaches steady state a little bit faster. Except for these

differences, the dynamical responses of the model with and without

spike-frequency adaptation are very similar.

Firing-rate saturation. Neurons exhibit refractoriness and

their firing rates saturate and do not diverge in response to strong

depolarizing inputs. We explore saturation effects in Supplementary

Information Text S1 and Figure S1. Whereas saturation affects the

activity at high rates, we find that the contribution of LTS neurons

in preventing the circuit from reaching the over-activated regime is

qualitatively similar without and with saturation.

RS-LTS networks with RS-to-RS recurrent connec-

tions. We analyze the effects of RS-to-RS depressing

excitatory synapses with a strength gRR on the response of RS-

LTS circuits to thalamic inputs effects in Supplementary

Information Text S1 and Figures S2, S3, S4. If gRR is large

enough, the system exhibits a stable rest state only if the firing rate

MR is larger than a critical firing rate MR,c. Therefore, as happens

without depression [41], RS neurons cannot fire at very low rates.

At high rates, RS-to-RS connections increase the firing rate by the

term gRRts,RR=tr,RR. If gRR is strong enough, it may induce fast

network oscillations with frequencies about 20–60 Hz, which may

either be stopped by synaptic depression or be an attractor. During

these fast oscillations, LTS neurons are active only when RS

neurons are active, i.e. the two populations fire nearly in phase.

Figure 4. Response of the RS-LTS network with input IL.0 to LTS neurons. Additional parameters are gRL = 35, gLR = 7.5, gRR = 0. (A) MR-IR
curves (top panel) and ML-IR curves (bottom panel), representing the steady-state response of the circuit to the inputs IR and IL to the RS and LTS
neurons respectively, are plotted for IL = 0 (black), 0.04 (red) and 0.08 (green). (B) Response of the circuit to a step input IRH(t) to the RS neurons. Time
courses of MR (top panel) and ML (middle panel) are plotted for IR = 0.5 (bottom panel). The current IL = 0.08 remains constant.
doi:10.1371/journal.pcbi.1002248.g004

Inhibitory Neurons and Cortical Circuit Dynamics
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Cortical Response in an Absence-Seizure State
Absence seizures are a type of epilepsy that is considered to

originate from the thalamus or at least to be driven by thalamic

input [42,43]. Such seizures are characterized by periodic

thalamic input to cortex with a frequency of about 3 Hz or

somewhat higher [43,44,45], and a duty cycle of the active phase

of each thalamic cycle that is larger than 0.1 [46]. To investigate

the response of the RS-LTS circuits to such thalamic inputs, we

stimulate RS neurons by square-wave periodic input (Figure 6A).

Both RS and LTS neurons respond to the onset of each cycle by a

brief elevation of their M followed by a deep decrease in activity

and then more prolonged rebound. The integrated responses of

MR and ML over a cycle (Figure 6A) increase with time towards

their steady-state values, which are reached within about 1 sec.

This behavior is similar to the evolution of MR and ML to step

inputs (Figure 3). To characterize the properties of the steady-state

response to the periodic, absence-seizure-like input, we define the

time-averaged value SMiT~(1=Tinteg)
Ð Tinteg

0 Mi(t)dt, calculated

for a large integration time Tinteg after the system has converged to

an attractor. Similarly, we define SIRT~(1=Tinteg)
Ð Tinteg

0 IR(t)dt.
The values of ,MR. and ,ML. as functions of ,IR. are

shown in Figure 6B for two values of the duty cycle of the active

phase, 0.1 and 0.5 (note that the amplitude of IR during the active

phase decreases with the duty cycle, to keep ,IR. fixed). In both

cases, the steady-state dependencies of ,MR. and ,ML. on

,IR. resemble those of MR and ML on IR for constant stimuli

(Figure 2). In particular, these curves become straight lines at high

rates with slopes bR and bL respectively, and are shifted to the left

by LTS-to-RS inhibition. As the duty cycle of the active phase of

the input is reduced, the value IR,LTS,th in which LTS neurons start

to fire decreases because the amplitude of the input during that

active phase increases. We conclude that the RS-LTS circuit

responds to absence-seizure inputs and constant thalamic inputs in

qualitatively similar ways.

RS-FS Networks
To characterize the difference between the roles of FS and LTS

neurons in the cortical circuit, we examine a network composed of

RS and FS neurons. The RS-FS network is qualitatively different

from the RS-LTS network in three respects [5,9,47]. First, RS-to-

FS excitatory synaptic connections depress whereas RS-to-LTS

connections facilitate. Second, FS neurons, but not LTS neurons,

receive thalamic input. Third, FS neurons are mutually coupled by

chemical synapses. We analyze the response of RS-FS circuits to

constant and step inputs.

Steady-state firing. The steady-state M-IR curves of the RS

and FS populations are shown in Figure 7. FS neurons fire even

for IR,hR, and their firing rate increases as RS neurons fire for

IR.hR. For large IR, and therefore large MR, sFR&ts,FR=tr,FR,

the firing rate MF approaches a constant limiting value, MF,max,

that is a solution of the implicit equation (Equations 6,1,2):

MF,max&bF IFzgFRts,FR=tr,FR{gFF
ts,FF UFF MF,max

1ztr,FF UFF MF,max

{hF

� �
ð20Þ

The variable sRF,max for large IR (Equation 1,2) is

sRF,max~ts,RF URF MF,max= 1ztr,RF URF MF,maxð Þ, and

MR~bR IRzgRRts,RR=tr,RR{gRFsRF,max{hRð Þ ð21Þ

Inhibition from FS neurons, like that from LTS neurons, reduces

the steady-state firing rate of RS neurons at high RS firing rate by

a constant value, but for a different reason. FS neurons, because of

the depressing excitation from RS neurons, reach a maximal firing

rate. In contrast, the firing rate of LTS neurons increases with IR,

but the opening variable s of the depressing LTS-to-RS synapses

saturates. Increasing gFF reduces the maximal firing rate of the FS

neurons (Equation 20) and their effects on RS neurons.

Dynamics of firing response to step inputs. The temporal

responses of MR and MF to step inputs IR and IF given at time t = 0

are presented in Figure 8A. The two neuronal populations respond

to the steps with a brief, punctate response, after which the FS-to-

RS inhibition rapidly reduces MR, and as a result MF decreases as

well. This component of the response resembles the brief

experimentally observed response of RS neurons in vibrissa

somatosensory cortex to whisker deflection because of feed-

forward inhibition from FS neurons, known as the ‘‘window of

excitability’’ [48,49]. If IF is large enough, MR is reduced to zero

(Figure 8B). Depression of the FS-to-RS synapses causes MR to

rebound. The rate MR reaches a local maximum and then

decreases somewhat towards its steady state value because

tr,RR,tr,RF (reference parameter set; Table 2). Without the RS-

to-RS connections, the local maximum almost disappears; with

strong RS-to-RS connections, fast oscillations, like those obtained

in RS-LTS networks, may be generated (not shown).

RS-LTS-FS Networks
Firing of excitatory neurons in cortex is controlled by inhibition

from both LTS and FS interneurons, and we therefore

characterize responses of the RS-LTS-FS network (Figure 1) to

external input that may reach the RS and FS populations. We

start by describing the steady-state response of the circuit with the

reference parameter set (Table 2) to constant IR and IF, as

Figure 5. Effects of spike-frequency adaptation. The response of
the RS-LTS network to step inputs IRH(t) to the RS neurons is shown by
plotting the time courses of MR (top panels) and ML (middle panels) for
IR = 0.5 (bottom panels). Solid black lines represent the model with
adaptation and dotted red lines represent the model without
adaptation. The right top and middle panels depict the time course
of MR and ML in a shorter time scale to emphasize the initial response to
stimulus onset. Additional parameters are gRL = 35, gLR = 7.5, gRR = 0.
doi:10.1371/journal.pcbi.1002248.g005
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summarized in the phase diagram in Figure 9. The RS population

is quiescent for small IR (MR = 0). It is active for larger IR values,

and the behavioral regimes in the phase diagram are denoted by

the inhibitory population(s) that is (are) silent. Just above the RS

firing threshold, and when IF is small, both FS and LTS

populations are quiescent (ML = MF = 0). For larger IR values

and for small IF, LTS neurons fire and FS neurons are quiescent

(MF = 0). For moderate values of IR and large values of IF, LTS

neurons are quiescent and FS neurons fire (ML = 0). For large

Figure 6. Response of the RS-LTS circuits to absence-seizures
input from the thalamus. Additional parameters are gRL = 35,
gLR = 7.5, gRR = 0. (A) Response of the circuit to a periodic square input
to the RS neurons, mimicking thalamic input during an absence-seizure
state (bottom panel). Time courses of MR (top panel) and ML (middle
panel) are plotted for IR with amplitude 3.5 and duty cycle of 0.1 (i.e.,
,IR. = 0.35). The right top and middle panels depict the time course of

MR and ML in a shorter time scale to emphasize the temporal form of
steady-state activity. (B) ,MR.-,IR. curves (top panel) and ,ML.-
,IR. (bottom panel), representing the steady-state response of the
circuit to absence-seizure-like thalamic input to the RS neurons, are
plotted for duty cycles of the active phase of 0.1 (black) and 0.5 (red).
doi:10.1371/journal.pcbi.1002248.g006

Figure 7. Steady-state response of the RS-FS network to
constant inputs to the RS and FS neurons. MR-IR curves (top
panel) and MF-IR curves (bottom panel) are plotted for gRF = 0 (black), 25
(red) and 50 (green). Additional parameters are: gRR = 20, gFR = 25,
gFF = 5, IF = 0.35 (independent of IR).
doi:10.1371/journal.pcbi.1002248.g007

Inhibitory Neurons and Cortical Circuit Dynamics

PLoS Computational Biology | www.ploscompbiol.org 8 October 2011 | Volume 7 | Issue 10 | e1002248



values of IR and IF, both populations of interneurons are active

(ML.0, MF.0). Between the last three regimes (MF = 0, ML = 0,

and ML.0, MF.0), there is a state of slow oscillations, on the time

scale of short-term synaptic plasticity (see below). This phase

diagram remains qualitatively the same if the synaptic conduc-

tances are varied, except that fast oscillations, like those shown in

Figure S4C, are observed for large gRR (not shown).

When thalamic input is varied, both IR and IF vary in a

coordinated manner [15,36]. Therefore, we examine how the

steady state firing rates of the neuronal populations vary with IR

while keeping IF/IR fixed. When IF/IR = 1.4 (Figure 10A; denoted

by a dotted line in Figure 9), the two inhibitory populations are

quiescent just above the RS firing threshold. FS neurons start to fire

for IR = 0.16, and cause the RS firing rate to decrease. This decrease

occurs because FS neurons receive independent input, IF, that

increases with IR. As IR continues to increase, MR increases again

because FS-to-RS synapses depress. For IR = 0.33, LTS neurons

start also to fire, and the RS gain decreases again before converging

to bR for very large IR. When IF/IR = 0.75 (Figure 10B; dashed line

in Figure 9) LTS neurons start to fire for IR = 0.17 and reduce the

RS gain, but do not make it negative because LTS neurons do not

receive external input. Oscillations occur for 0.31,IR,0.34. For

just above IR = 0.34, FS and LTS neurons fire at steady state and

reduce the RS gain. This gain increases with IR and approaches bR

for large IR. Similarly, the gain of FS neurons approaches bF. Note

that the value of ML for IR values just above the oscillatory regime

Figure 9. Phase diagram of the steady-state behavior of an RS-
LTS-FS network (Table 2) in the IR2IF plane. Regimes are defined
according to the network state at large times. The network reaches a
rest state with constant MR, ML, and MF in all the regimes except of the
oscillatory regime, denoted by ‘‘osc.’’. In the regime denoted by
‘‘MR = 0’’, RS cells are quiescent; they are active in all other regimes.
Those regimes are defined according to the activity of LTS and FS
neurons. FS neurons are active and LTS neurons are quiescent in the
regime denoted by ‘‘ML = 0’’, LTS neurons are active and FS neurons are
quiescent in the regime denoted by ‘‘MF = 0’’, and both neuronal
populations are active in the regime denoted by ‘‘ML.0, MF.0’’. The
dotted and dashed lines denote the ratios IF = 1.4 IR and IF = 0.75 IR
respectively, for which calculations shown in Figure 10 are made. The
solid circles labeled ‘‘A’’–‘‘D’’ denote values of IF and IR for Figure 11A–D.
doi:10.1371/journal.pcbi.1002248.g009

Figure 8. Response of the RS-FS network to step inputs IRH(t)
and IFH(t) to the RS and FS neurons. Time courses of MR (top panel)
and MF (bottom panel) are shown. Parameters: gRR = 20, gFR = 25,
gRF = 50, gFF = 5, IR = 0.29. (A) IF = 0.35. (B) IF = 0.45.
doi:10.1371/journal.pcbi.1002248.g008
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(IR>0:342) is smaller than its value just below this regime

(IR=0:31), because FS neurons fire and inhibit LTS neurons.

At high rate, MR increases linearly with IR for all values of fixed

IF/IR. This linear dependency is caused by LTS neurons only for

low IF/IR and by both LTS and FS neurons if IF/IR is not low.

Similar behavior is obtained for absence seizure thalamic input

(not shown). The control of seizures by the two inhibitory

populations is therefore qualitatively the same.

The dynamic response of three neuronal populations to step

inputs IR and IF given at time t = 0 are presented in Figure 11A–

D for four values of IR and IF. In all cases, RS and FS neuronal

populations respond to the step initiation by a brief firing during

a ‘‘window of opportunity’’ before settling slowly to an attractor.

In Figure 11A, representing the steady-state regime ‘‘ML = 0’’,

those two populations increase slowly to their steady-state value

after a rapidly-evolving initial response. In Figure 11B (‘‘MF = 0’’

in steady-state), RS and FS neurons are active during a time

interval of a few tenths of seconds. Then, at about t = 0.35 s, LTS

neurons start sharply to fire, whereas the activity of RS and FS

neurons is reduced to non-zero and zero values respectively. In

Figure 11C (‘‘MF.0, ML.0’’ in steady-state), RS and FS are also

active during an initial period of a few tenths of ms whereas the

Figure 10. Steady-state response of the RS-LTS-FS network constant inputs to the RS and FS neurons with fixed IF/IR. Parameters are
listed in Table 2. In the two left columns, values of MR (top panels), MF (middle panels) and ML (bottom panels) are plotted as a function of IR. Thin
solid lines: stable fixed points; thick solid lines: minimum and maximum of M on stable limit cycles (slow-oscillations states). (A) IF = 1.4 IR (dotted line
in Figure 9). (B) IF = 0.75 IR (dashed line in Figure 9). The small panels on the right display the oscillation frequency f and the duty cycle of the
oscillations (the ratio between the time interval during which RS neurons are in the more active state and the oscillation time period).
doi:10.1371/journal.pcbi.1002248.g010
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LTS neurons are silent. Here, however, the firing rate of LTS

neurons increases continuously as they start to fire. The firing

rates of the RS and FS neurons are reduced as a result of

inhibition by LTS neurons, but both firing rates approach non-

zero values at large times. The initial time courses of MR, MF,

and ML in Figure 11D (oscillations) are similar to those in

Figure 11B. At longer times, however, the time courses converge

to an oscillatory state. Interestingly, the amplitude of LTS

oscillations develops more gradually towards its steady-state value

than the amplitudes of RS and FS oscillations. During the

oscillatory state, RS neurons oscillate between a more-active

phase and a less-active phase, where the firing rate in both phases

is larger than zero. FS neurons fire episodes of spikes, represented

by positive MF, when the RS neuronal population is in its more-

active phase. They are quiescent when the RS neurons are less

active. LTS neurons oscillate in opposite phase: they fire when

RS neurons are in the less-active phase, and are quiescent

otherwise. The oscillation frequency is on the order of a few Hz,

corresponding to the time scale of short-term synaptic plasticity,

and it increases as IR, and therefore IF, increases (Figure 10B,

top-right). The duty cycle of the more-active state is defined as

the time that the RS population spends in that state (and the FS

neurons are active) divided by the time period. This ratio varies

from 0.2 to about 0.6, and it first increases and then decreases

with IR (Figure 10B, bottom-right).

Mechanism of Slow Oscillations in RS-LTS-FS Circuits
We find that a slow oscillation state appears in our model only

when it includes the two neuronal populations, whereas models of

RS-LTS networks and RS-FS networks exhibit either rest states

or, in restricted values of gRR, fast oscillations. What is the

dynamical mechanism that leads to the slow oscillations state?

Such states are often studied using fast-slow analysis

[50,51,52,53,54,55]. In our case, equations 1–6 for the RS-LTS-

FS network (Figure 1) include 8 slow variables, and it is practically

impossible to analyze them. Fortunately, we find that slow

oscillations still prevail in a reduced RS-LTS-FS circuit with only

RS-to-LTS, LTS-to-RS, RS-to-FS and FS-to-LTS synaptic

connections and without short-term plasticity properties of the

depressing synapses, i.e. tr = 0 for all the synaptic connections

(Figure 12). Facilitation of the RS-to-LTS synapses is, however,

necessary to maintain the oscillations.

The reduced system has only one slow variable, uLR, and all the

other variables are much faster. We use the technique of fast-slow

analysis (See ‘‘Fast-slow analysis of slow network oscillations’’ in

Methods) to define the mechanism of slow oscillations. We find

that in order for the slow oscillations to emerge, the fast subsystem

that includes all the variables except uLR should be bistable

(Figure 13A). In one stable state, denoted ‘‘more active’’, LTS

neurons are silent and RS and FS neurons are active. In the

second state, denoted ‘‘less active’’, LTS neurons are active, RS

Figure 11. Response of the RS-LTS-FS network to step inputs IRH(t) and IFH(t) to the RS and FS neurons. Parameters are listed in Table 2.
Time courses of MR (top panels), MF (middle panels) and ML (middle panels) are plotted. (A) IR = 0.2, IF = 0.28. ML = 0 for all times. (B) IR = 0.28, IF = 0.21.
MF = 0 for large t. (C) IR = 0.44, IF = 0.33. MF and ML are non-zero for large t. (D) IR = 0.316, IF = 0.237. The network oscillates at large t. RS neuron oscillate
between a more active state and a less active state. FS neurons fire during the more active state of RS neurons, and LTS neurons fire during the less
active state of RS neurons.
doi:10.1371/journal.pcbi.1002248.g011
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neurons are active, but less than in the more active state, and FS

neurons are silent. The dynamics of the full system switch rapidly

back and forth between these two states. This explains the pattern

of activation seen in the reduced RS-LTS-FS system (Figure 12) as

well as in the full system (Figure 11D). Bistability ceases to exist if

IF and IR are large enough, and in this case the system reaches a

steady state in which both ML and MF are non-zero (Figure 13).

Another condition needed to obtain oscillations is that the fixed

point of the full dynamical system is not stable. This condition is

broken if IF is too small, and then the system converges to a steady

state where MF = 0 and ML.0 (see ‘‘Borders of the regime of slow

network oscillations in the phase diagram’’ in Methods). It is also

broken if IR and IF are small and large enough respectively. In this

case, the system converges to a steady state where MF.0 and

ML = 0. Qualitatively, this behavior is also shown by the original

RS-LTS-FS network (Figure 9). Analysis of the reduced system

also reveals that the oscillatory regime extends over a limited range

of IF (Figure 13B and Methods), as also found for the full model

(Figure 9). The oscillatory regime of the reduced model extends

over a larger IR range. This range is more limited in the case of the

full model (Figure 9), probably because of the effects of synaptic

depression.

Discussion

Summary of Results
Because of the facilitatory nature of RS-to-LTS connections, it

was hypothesized that these neurons prevent overactivation and

seizures by reducing cortical activity mostly at high rates [9,18,19].

It was also suggested that they do so by decreasing the gain of

pyramidal cell output [23]. However, we find that the dynamical

picture is different due to the LTS-to-RS synaptic depression. At

high firing rates, LTS neurons do not change the RS gain at all,

and reduce the firing rates of RS neurons by a constant value,

independent of the input IR. Importantly, LTS neurons do reduce

RS gain at modest firing rates, just above the LTS firing threshold,

where LTS-to-RS depression is weak [38]. LTS neurons therefore

have a divisive effect on the RS firing at modest rates and a

subtractive effect at high rates. Their effect at high rates is

therefore limited, because a divisive effect is more potent than a

subtractive one during gradual elevations in cortical activity as it

increases with the elevation of firing rates. Responses to absence-

seizure-like inputs are qualitatively similar to the response to step

inputs. Although RS-to-LTS synapses facilitate and RS-to-FS

synapses depress, the two inhibitory populations reduce the firing

rates of RS neurons in a similar manner at high rates. In response

to input step currents, RS cells in all three networks (RS-LTS, RS-

FS and RS-LTS-FS) respond with a brief firing epoch followed by

reduced firing (and even quiescence) and then rebound to larger

firing rates. This initial firing epoch terminates faster for FS

neurons than for LTS neurons.

An RS-LTS-FS network usually reaches a steady state with FS

neurons quiescent for small IF, LTS neurons quiescent for small

IR, and both populations active for large IR and IF. Between these

behavioral regimes, there is a relatively narrow regime of slow (few

Hz) oscillations. These oscillations are induced by the slow

facilitation variable of the RS-to-LTS synapses that transfers the

system alternately between two bistable states of the fast dynamics.

During these oscillations, RS neurons switch from a more-active to

a less active state alternately, whereas LTS and FS neurons switch

alternately from an active state to a silent state. In general, FS

neurons tend to follow the spiking of RS neurons closely, whereas

LTS neurons follow it with delays.

Inhibitory neurons can reduce the response of their targets by

either shifting the target’s response curve (a subtractive effect) or

by reducing its gain (a divisive effect). A simple biophysical

model without synaptic depression predicts constant inhibition

(i.e., independent of the activity of the target) and causes a

subtractive effect [29,56]; this result is confirmed experimentally

[57]. If the activity of the inhibitory neurons is caused by the

firing pattern of the excitatory target population, the effect is

divisive (Figure 2B, blue curve), whether the excitatory-to-

inhibitory synapses facilitate or not. We show, using a rate

model, that synaptic depression in the inhibitory-to-excitatory

synapses exhibits similar divisive behavior at low rates, where

depression effects are small. At high rates, depression causes the

Figure 12. Oscillatory response of the reduced RS-LTS-FS
network to constant inputs. Time courses of MR (top panels), MF

(middle panels) and ML (middle panels) are plotted during the
oscillatory state (limit cycle). Parameters that are different than those
listed in Table 2 are: g LR = 7.5, gRR = 0, gF R = 9.3, gL F = 8,
gRR = gRF = gFL = gFF = 0, tr = 0 for all the synapses. Additional parameters:
IR = 0.29, IF = 0.232.
doi:10.1371/journal.pcbi.1002248.g012
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effect to be subtractive because the efficacy of the depressed

inhibitory synapse scales as one divided by the firing frequency

of its presynaptic inhibitory neuron.

RS-LTS vs. RS-FS Networks
RS-LTS networks are different from RS-FS circuits primarily

because of the facilitating nature of RS-to-LTS synapses versus the

Figure 13. Fast-slow analysis of network oscillations: analysis of the reduced model. Synaptic parameters are as in Figure 12. (A) The
bifurcation diagram of the fast subsystem is presented by plotting MR as a function of the parameter uLR. Solid black lines denote branches of stable
fixed points; ML = 0 on the upper line and MF = 0 on the lower line. The points uz,Mz

R

� �
and u{,M{

R (u{)
� �

(Equations 31, 32) are denoted by black
solid circles. The green line denotes the slow nullcline of Equation 30, uLR = CMR/(1+CMR). The red line denotes the projection of the limit cycle of the
full dynamical system (Equations 1, 3–6) on the MR–uLR plane. Parameters: IR = 0.29, IF = 0.232. (B) Phase diagram of the RS-LTS-FS network in the IR2IF
plane. The network exhibits slow network oscillations in the grey area. Outside of this regime, the network reaches a steady state with constant MR,
ML, and MF. The LTS and FS populations are quiescent to the left of the black line. To the right of the black line and below the blue line, MF = 0 and
ML.0. To the right of the black line and to the left and above the green line, ML = 0 and MF.0. To the right of the green line and above the red line,
ML.0 and MF.0.
doi:10.1371/journal.pcbi.1002248.g013

Inhibitory Neurons and Cortical Circuit Dynamics

PLoS Computational Biology | www.ploscompbiol.org 13 October 2011 | Volume 7 | Issue 10 | e1002248



depressing nature of the RS-to-FS synapses, and because FS

neurons receive strong external input [9]. As a result, tested

independently of one another, the LTS and FS inhibitory

populations have distinctly different effects on the input-output

properties of cortical circuits that are demonstrated at steady states

and low firing rates. LTS neurons do not affect the minimal input

level IR above which RS neurons fire. Just above the LTS firing

threshold IR.LTS,th, LTS neurons affect the RS gain most strongly,

but reduce MR less strongly than at high rates. The value IR.LTS,th

decreases with IL if LTS neurons receive their own thalamic input.

In contrast, FS neurons, which receive substantial external input,

increase the current threshold IR for RS firing, do not considerably

affect the RS gain, and reduce MR effectively starting from just

above this threshold. The effect of FS neurons on RS firing is

therefore always subtractive. At high firing rates, both the LTS

and the FS neuronal populations affect the RS firing properties in

a similar manner by reducing the firing rate of RS neurons by a

constant value. The reasons for this behavior, however, are

different: the LTS input to RS neurons reaches a constant value at

high rates because of the LTS-to-RS synaptic depression (Figure 2),

whereas FS input to RS neurons is limited by the saturation of the

firing rate of FS neurons themselves (Figure 7).

In response to step input currents, LTS neurons respond with a

delay just above IR,LTS,th (Figure 3). After the delay, LTS neurons

decrease the activity of RS neurons to a minimal value, after which

MR rebounds. FS neurons reduce the activity of RS neurons much

more rapidly after a stimulus onset, leaving only a brief ‘‘window

of opportunity’’ for RS initial firing (Figure 8). The RS activity

then decreases to low (even zero) values before rebounding to its

steady-state values. Interestingly, the temporal profiles of MR in

the RS-LTS network with large IR and RS-FS networks are

similar (Figures 3A and 8), except that the initial decay of MR in

the RS-LTS network is more gradual. The temporal profiles of the

activity of the two inhibitory neurons in these networks are,

however, different: FS neurons, but not LTS neurons, respond

with brief initial activity to the step input activity. Strong RS-to-RS

connections may induce fast oscillations in both circuits (Figures

S3,S4) [28,58].

In general, FS cells tend to track spiking of the RS cells much

more closely than the LTS cells do. This behavior is seen by

comparing RS-FS and RS-LTS circuits (Figures 3, 8) as well as in

RS-LTS-FS circuits (Figures 11, 12). FS and LTS neurons behave

dynamically quite differently from one another.

Response of RS-LTS-FS Circuits to External Inputs
At steady state, cortical networks with active RS neurons show

four types of resting states in which: only LTS neurons are active,

only FS neurons are active, both interneuron populations are

active, or neither is active (Figure 9). The oscillatory regime is

located near the intersection of all these states. Despite the fact that

it is narrower than the other states, analysis of its existence

determines the structure of the other states. If the fast subsystem of

variables ceases to be bistable as a parameter is varied, a state with

active LTS and FS neurons is obtained. If the fast subsystem is

bistable and a rest state of the full subsystem occurs on a branch

with FS (respectively LTS) neurons quiescent, a state with a

quiescent FS (respectively LTS) population is obtained. We show

this theoretically in a reduced circuit (Figure 13) and numerically

in the full circuit (Figure 9). In the parameter regimes when LTS

neurons are active in the steady state, the initial response to step

currents is similar to that in the oscillatory regime (Figure 11). RS

and FS neurons are active in the initial several tenths of one

second while LTS neurons are silent. Then, LTS neurons start to

fire and reduce the firing rate of FS neurons.

When thalamic input varies, it is expected that IR and IF will

vary proportionally [36]. Increasing the input can therefore cause

non-monotonic variation of the firing rate of one of the neuronal

populations, with or without passing through the oscillatory

regime (Figure 10). In RS-LTS-FS circuits, as in circuits with one

population of interneurons only, the gain of RS and FS neurons at

high rates is not affected by the circuit.

Slow and Fast Oscillations in Cortical Circuits
Our cortical circuit model exhibits two types of cortical

oscillations. Large gRR may generate fast oscillations, as was

shown in previous models of cortical circuits [28,59]. One type of

inhibitory interneuron, either LTS or FS, is sufficient for the

generation of fast oscillations, together with large (but not

extremely large) values of gRR. The oscillation frequency is on

the scale of 1/ts, about tens of Hz. Excitatory and inhibitory

neurons fire nearly in phase (Figure S4C), and there is a substantial

time interval in each period during which both neuronal

populations are quiescent.

In this study, we discovered a novel type of oscillation in cortical

networks that depends on RS-to-LTS synaptic facilitation and on

external input to the FS neurons, and can occur without any RS-

to-RS recurrent excitation. These oscillations have several

characteristics. Both LTS and FS populations are necessary for

generating them. The oscillation frequency, ,1–10 Hz, is on the

time scale of 1/tf,LR, the facilitation recovery time constant. RS

neurons oscillate between more-active and less-active states, both

with positive firing rates. FS and LTS neurons fire in phase and in

anti-phase with the RS more-active state, respectively. Hence, in

contrast to the fast oscillations, at least one population of neurons

is active at every time point.

Slow cortical oscillations have been observed during sleep,

anesthesia and quiet wakefulness in vivo [60,61,62,63], in vitro [64]

and in computational models [26,65]. During these oscillations,

the neurons in the network switch from an active ‘‘up’’ state to a

silent ‘‘down’’ state and back. The oscillations we observe in the

RS-LTS-FS model are different from those oscillations because the

RS neurons during the less-active state are not silent, and because

the LTS neurons fire during the less-active state. Cortical

oscillations with a frequency on the order of 1 Hz, during which

the network is not completely silent during the less-active state,

have also been observed [66,67], and spontaneous activity was

observed during which neurons fired in episodes with similar

frequencies [68]. Using future recordings from LTS and FS

neurons in vivo [17], or using optogenetics techniques to activate

RS or FS populations selectively [15], it will be possible to

determine whether LTS neurons are active during the less-active

state of the RS populations, as the theory predicts.

Interestingly, the frequency range (,1–10 Hz) of the slow

oscillation observed in our RS-FS-LTS model overlaps with that of

absence seizures and both the tonic and clonic phases of tonic-

clonic seizures [44]. While other mechanisms may contribute to

these seizure components (e.g. rhythmic thalamic input in absence

seizures), the oscillatory pattern observed in our model could

conceivably perpetuate or reinforce such pathological conditions.

It remains to be seen whether FS and LTS cells alternate their

firing during these conditions, as suggested by our results.

Comments on Our Theoretical Approach
Each neuronal population is represented in our model by its

firing rate. Rate models can describe the properties of large

networks of neurons represented by conductance-based schemes

provided that the level of synchrony in the network is small, and

the input is stationary or slowly modulating in time [29]. The level
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of synchrony in cortical networks, especially in awake animals, is

often small [69,70]. Therefore, our rate model is expected to

describe the dynamics of cortical networks that receive stationary

input reasonably well in comparison to more complicated models

of spiking neurons. In addition, we examine the response of

networks to step or absence-seizure-like inputs. In such cases, the

outcome of rate models should be regarded as a qualitative

estimation of the full dynamics. In particular, neurons often show

sharply transient responses to step inputs when FS neurons play a

major role in the dynamics. Using rate models we can claim that

such a response occurs, but cannot determine its properties on

time scales of milliseconds.

Our basic form of the model does not include spike-frequency

adaptation and firing-rate saturation. Adaptation does not change

the steady-state response of the circuits. Dynamically, with the

slope of the f-I curve scaled to be equal with and without

adaptation (Equation 19), a model with adaptation exhibits a

stronger initial response to step inputs, whereas its subsequent

long-term response is similar to that of the model without

adaptation (Figure 5). Saturation reduces the activity at high rates

but does not change the qualitative effects of LTS and FS

inhibition on the cortical circuit.

LTS neurons project mostly to distal dendrites of pyramidal

neurons [4,5], but their inhibitory effects are clearly observed in

the soma [8,18,19,20]. Such effects can be described by the rate

model presented here, which is based on linear summation of

inhibitory PSPs in the soma [29]. Developing more elaborate rate

models, that can account for spatial properties of neurons and

describe LTS effects on local dendritic computation [71], remains

a challenge.

We use the fast-slow analysis to determine the conditions for

obtaining slow oscillations. This analysis is often used when one or

several time constants in the system are much larger than the other

time constants [51,52]. We apply the method to our reduced

circuit (Figure 13) with no synaptic depression, by assuming that

both tf,LR is large and ULR is small. These approximations yield

good fits of the predictions of the fast-slow analysis (Figure 13) to

the full dynamics of the reduced system, computed using

numerical simulations (Figure 12). The phase diagram

(Figure 13B) of the reduced circuit is qualitatively similar to that

of the full circuit (Figure 9) and displays the same behavioral

regimes, but the locations of the borders between the regimes in

the phase diagrams of the two circuits are quantitatively different.

Comparison with Previous Theoretical Work
Most models of the response of cortical circuits (e.g.,

[28,58,59,72]) to input do not consider short-term synaptic

plasticity. Like our model, these models can show fast oscillations

as a result of interactions between excitatory and inhibitory

neurons. The contribution of LTS neurons was shown to shape

the response of cortical circuits to periodic inputs [73] in a model

with short-term synaptic plasticity of excitatory synapses but

without considering depression of inhibitory synapses.

While our model may exhibit slow oscillations with facilitation

of the RS-to-LTS synapses and depression of all other synaptic

connections (Figure 11D), depression is not necessary for obtaining

oscillations (Figure 12). In contrast, depression is essential for

various slow oscillations in other models of cortical networks

[24,25,26]. Facilitation of the excitatory-to-inhibitory synapses

generates slow oscillations in a rate model of cortical circuits

composed of excitatory and inhibitory populations [27]. Inhibitory

neurons in that model receive external input and are mutually

coupled by inhibitory synapses. In our model, inhibitory LTS

neurons receive facilitating input from excitatory RS neurons, but

do not receive external input and are not mutually coupled,

according to circuit properties discovered experimentally [9].

Excitatory and inhibitory populations in the model of Melamed

et al. [27] fire during the same phase interval during the cycle,

whereas LTS and RS neurons in our model fire in anti-phase.

Another difference is that the firing rate of excitatory neurons

during the ‘‘down’’ state in the Melamed et al. model is zero,

whereas the firing rate of the RS neurons in our model during the

less-active state is positive.

Functional Significance
Roles of specific types of interneurons in diseases such as

epilepsy [21,22] and schizophrenia [74] have been suggested. By

analyzing a rate model of cortical circuits with Tsodyks-Markram

kinetics for short-term synaptic plasticity, we observe that in

response to high input IR, the LTS population reduces the firing

rate of the RS neurons by a constant factor, independent of IR. We

demonstrate this behavior specifically for a model with absence-

seizure-like input. This implies that LTS neurons can help to

prevent seizures in cortex, but the role of LTS cells in this task is

qualitatively as limited as that of FS neurons. Indeed, selective

damage to the LTS neurons (for which there is evidence in

experimental seizure models and human cortex) may be

compensated by FS neurons or by other types of inhibitory

interneurons such as neurogliaform cells [23]. Our results are

consistent with experimental results showing that the death of LTS

interneurons does not initiate hyperexcitability in a neonatal rat

model of human polymicrogyria, which is often characterized by

severe seizures [75].

Whereas most of our calculations are carried out for constant or

step stimuli, our results are applicable also for pulsatile thalamic

input (Figure 6), at least above 3 Hz. Increasing the frequency will

make the approximations of the model even more accurate.

During whisking, cortical circuits receive periodic thalamic input

at frequencies of about 10 Hz [76]. Similarly, visual thalamic

input to cortex is often described as Poisson firing, with firing rates

of about 20 Hz [77]. Since the time constants of synaptic

depression and facilitation are much longer, the slow dynamics

will average over the spiking process and will depend on the

underlying firing rate, similar to the response to constant or slowly-

varying stimuli. Therefore, our finding that LTS neurons have a

strong impact on the response to modest thalamic input, and not

just during high frequency activity, are valid also for the cortical

response to somatosensory and visual stimuli.

Our conclusion is an outcome of the depression kinetics of the

Tsodyks-Markram model, where the total synaptic input reaches a

saturating value as the presynaptic firing rate, M, increases.

Saturation occurs because the additional postsynaptic conductance

in response to one additional presynaptic spike scales as 1/M [38].

In various other types of depressing synapses characterized

experimentally and using models, the response to an additional

spike is larger than expected by the Tsodyks-Markram model,

probably because the recovery from depression is faster at high

presynaptic rates [78,79,80]. One reason we use the Tsodyks-

Markram model in this work is that Silberberg and Markram fit

their data for RS-to-LTS and LTS-to-RS synapses to it [18]. The

theoretical results, however, suggest that the kinetics of these

synapses in a broad frequency range should be measured in a

more detailed manner.

In this work, we observe that LTS neurons affect the gain of RS

neurons at rates on the order of 10 Hz and less. These rates are

comparable with the rates of LTS neurons measured in vitro

during a variety of diverse activating conditions [7], such as group

I metabotropic glutamate or muscarinic cholinergic receptor
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agonists. Therefore, LTS neurons can affect cortical dynamics

even if cortical neurons do not fire at high rates.

Methods

Model Parameters
The parameters of the neuronal populations are provided in

Table 1. They were determined based on the experimental

observations of Fanselow et al. [7]. The parameters of the synaptic

connections are written in Table 2. These parameters are used in

all calculations unless otherwise stated. The parameters determin-

ing the short-term synaptic plasticity properties of LTS-to-RS and

RS-to-LTS synapses are taken from Silberberg and Markram [18]

who carried out experiments in layer 5. This layer is most active in

the initiation [81] and horizontal propagation of epileptiform [82]

and normal [64] activity in the neocortex. Short-term plasticity

parameters for the RS-to-RS synapses are taken from [83], and

those for the FS-to-RS and RS-to-FS are taken from [47,84]. We

are not aware of any systematic research on the short-term

synaptic plasticity properties of FS-to-FS, LTS-to-FS and FS-to-

LTS connections, except that these synapses depress [85].

Therefore, we use the generic values tr = 400 ms and U = 0.3.

To simplify the analysis, we assume that tr = 0 if tr,,tf and tf = 0

if tf,,tr. The constant ts is taken for AMPA and fast GABAA

excitation, and it is larger for the LTS-to-RS synapses than for the

FS-to-RS synapses [9,18].

Threshold for LTS Firing for gRR = 0
LTS neurons fire if sLR.hL/gLR (Equation 14). Using Equation

11, we find that LTS neurons fire for MR.MR,th, where

MR,th~

tf ,LR hL{ts,LR gLRz tf ,LR hL{ts,LR gLR

� �2
z4ts,LR tf ,LR gLR hL=ULR

h i1=2

2 ts,LR tf ,LR gLR

ð22Þ

The rate MR,th is obtained for the LTS firing threshold IR = IR,th,

where

IR,th~MR,th=bRzhL ð23Þ

From Equation 12, sRL<URL ts,RL ML for ML,,1. Using

Equations 13, 14 we find that just above IR,th,

MR&bR IR{gRLURLts,RLbL gLR
ULRts,LR(1ztf ,LRMR)MR

1zULRtf ,LRMR

{hL

� 	
{hR


 �
ð24Þ

Differentiating both sides of Equation 24 with respect to IR, we

obtain that the RS gain, dMR/dIR, is

dMR

dIR

&
1

bR

zgRLURLts,RLbLgLRts,LR 1{
1{ULR

(1zULRtf ,LRMR)2

 !" #{1

ð25Þ

Delay of LTS Firing in Response to Step Input
During the delay period, MR = bR(IR2hR). From Equation 8,

uLR(t)~uLR,?{ uLR,?{ULRð Þe{at ð26Þ

where

a~1=tf ,LRzULRMR, uLR,?~ MRz1=tf ,LR

� �
ULR=a ð27Þ

Since tf,LR..ts,LR, sLR reaches a quasi-steady-state value,

sLR = ts,LR uLR MR (Equation 7). LTS neurons start to fire when

gLR sLR = hL, i.e., when uLR reaches the value uLR,th = hL/(gLR ts,LR

MR). From Equation 26, the delay time is

tdelay~
1

a
log

uLR,?{ULR

uLR,?{uLR,th

� �
ð28Þ

Fast-Slow Analysis of Slow Network Oscillations
The reduced RS-LTS-FS dynamical system (Figure 12) has five

dynamical variables. The four variables sLR, sRL, sFR, sLF, are fast,

with ts, on the order of a few ms (Table 2). The fifth equation

(Equation 3), describing the facilitation process of the RS-to-LTS

synapses, is

duLR

dt
~

ULR{uLR

tf ,LR
zULR 1{uLRð ÞMR ð29Þ

We use the method of fast-slow analysis to describe the dynamics

of the system for both large tf,LR and small ULR. Formally, we

define C;ULR tf,LR and study the system in the limit tf,LRR‘ and

constant C. This approximation is expected to be justified for the

RS-to-LTS synapses because tf,LR, 670 ms, is two order of

magnitude larger than the ts’s, and ULR, 0.09, is an order of

magnitude smaller than 1. Using the definition of C and neglecting

a term on the order of 1=t2
f ,LR, Equation 29 becomes

duLR

dt
~

1

tf ,LR
{uLR 1zCMRð ÞzCMR½ � ð30Þ

The full dynamical system describing the network can be

separated into a fast subsystem, composed of the four equations for

the variables s, and a slow subsystem, that includes the variable

uLR. The first step in this method is to study how the attractors of

the dynamics of the fast subsystem depend on the value of uLR,

taken as a time-independent parameter. In a second step, one

derives the dynamics of the full system taking into account the slow

variations of uLR (Equation 30).

The bifurcation diagram of the fast subsystem as a function of

uLR for the parameter set of Figure 12 is plotted in Figure 13A.

The subsystem can settle into stable fixed points that belong to one

of two branches. The upper branch is characterized by ML = 0,

MF.0, and a high value of MR, denoted by Mz
R , that does not

depend on uLR. This branch exists for small uLR values and

disappears for uLR = u+ at a saddle-node bifurcation [50], where it

coalesces with an unstable branch (not shown). The lower branch

is characterized by MF = 0, ML.0 and a low value of MR, denoted

by M{
R uLRð Þ, that depends on uLR. This branch exists for large

uLR values and disappears for uLR = u2 at a second saddle-node

bifurcation.

The slow nullcline of Equation 30, characterized by

uLR = CMR/(1+CMR), does not intersect with either of the stable

branches. Therefore, the full system does not have any stable fixed

point. Instead, it exhibits relaxation-oscillation dynamics [50]. The

system converges rapidly to one of the two stable branches of the

fast subsystem. If it converges to the upper branch, it will then

progress slowly to the ‘‘knee’’ at uLR = u+ and then will move

ð22Þ

ð24Þ

ð25Þ
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rapidly to the lower branch. On that branch, the system progresses

slowly to uLR = u2 and then moves rapidly to the upper branch,

completing the oscillatory cycle. The trajectory of the full

dynamical system with the reference parameter set that is overlaid

on the bifurcation diagram in Figure 13A fits this bifurcation

picture very well. This fit shows that analysis in the limit tf,LRR‘

and constant C describes well the dynamics with biologically

realistic parameters.

Borders of the Regime of Slow Network Oscillations in
the Phase Diagram

The fast-slow analysis yields three conditions that together are

both necessary and sufficient for the generation of slow oscillations:

1. To enable bistability, u+.u2.

2. The upper branch should not intersect with the slow nullcline,

uz
v

CMz
R

1zCMz
R

: ð31Þ

3. The lower branch should not intersect with the slow nullcline,

u{>
CM{

R (u{)

1zCM{
R (u{)

: ð32Þ

We calculate u+ (resp. u2), the value of uLR above (resp. below)

where the upper (resp. lower) branch of the fixed points of the fast

subsystem no longer exists (Figure 13A). We define

Mz
F ~MF(uz), M{

R ~MR(u{) and M{
L ~ML(u{). From

Equation 1, at a steady state of the fast subsystem,

sLR~ts,LRuLRMR, sLF~ts,LFuLFMF, sFR~ts,FRuFRMR ð33Þ

LTS neurons fire above u+. According to Equation 5, at the onset

of LTS firing (ML = 0+),

gLRsLR{gLFsLF{hL~0 ð34Þ

Substituting Equation 33 in Equation 34, we obtain for uLR = u+,

uz~
gLFts,LFULFMz

F zhL

gLRts,LRMz
R

ð35Þ

Using Equations 4, 6 and 33, and because FS neurons are active

and LTS neurons are silent on the upper branch, we obtain

Mz
F ~bF IFzgFRts,FRUFRMz

R {hF

� �
ð36Þ

Mz
R ~bR IR{hRð Þ ð37Þ

To calculate u2, the value of uLR below which the lower branch of

the fixed points of the fast subsystem no longer exists (Figure 13A),

we note that FS neurons fire below this value. According to

Equation 6, at the onset of FS firing (MF = 0+),

IFzgFRsFR{hF~0 ð38Þ

Substituting Equation 33 in Equation 38, we obtain for uLR = u2,

M{
R ~

{(IF{hF)

ts,FRUFRgFR
ð39Þ

From Equations 4,5 and 33, and because LTS neurons are active

and FS neurons are silent on the upper branch, we obtain

M{
L ~

IR{hR{M{
R =bR

gRLts,RLURL
ð40Þ

u{~
M{

L =bLzhL

gLRts,LRM{
R

ð41Þ

The parameter regime that fulfills the three conditions written

above (u+.u2 and Equations 31–32, computed using Equations

35–37, 39–41) is denoted in a phase diagram in the IR–IF plane

(Figure 13B). Slow oscillations are observed for levels of IR that are

not too small and levels of IF within a certain narrow range. This

range is always below hF, such that excitation from RS neuron is

needed to induce firing in the FS neurons. Above a certain value of

IR (0.32 in Figure 13B), this IF range has an (almost) constant

width, and its borders decrease (almost) linearly with IR. Outside of

the oscillatory regime, the network reaches a steady state. For large

IR and small IF, MF = 0 and ML.0. For large IR and IF, MF.0

and ML.0. For large IR and medium values of IF, MF.0 and

ML = 0. Finally, for small IR and IF, the two inhibitory neuronal

populations are quiescent.

Numerical Methods
Simulations were performed using the fourth-order Runge-

Kutta method with a time step of 0.02 ms implemented as a C

program or within the software package XPPAUT [86], which

was used also for computing the bifurcations of fixed points in the

diagram in Figures S4A.

Supporting Information

Figure S1 Effects of firing rate saturation. MR-IR curves

(top panel) and ML-IR curves (bottom panel) are plotted for gRL = 0

(black) and 35 (red). Solid line: Mi values are calculated according

to Equation S1; dotted line: Mi values are calculated according to

Equations 4–6. Additional parameters are gRL = 35, gLR = 7.5,

gRR = 0.

(EPS)

Figure S2 Steady-state response of the RS-LTS network
with RS-to-RS synaptic connections to constant inputs to
the RS neurons. Additional parameters are gRL = 35, gLR = 7.5.

Solid lines denote stable states, and dashed lines denote unstable

states. (A) MR-IR curves (top panel) and ML-IR curves (bottom

panel) are plotted for gRR = 0 (black), 20 (red), 40 (green) and 60

(blue). Additional parameter is tr,RR = 463 ms. The values of MR,c

for gRR = 40 and 60 are denoted by solid circles. (B) MR-IR curves

are plotted for tr.RR = 0 (black), 60 ms (red), 200 ms (green),

463 ms (blue) and 1000 ms (yellow). Additional parameter is

gRR = 40.

(EPS)

Figure S3 Response of the RS-LTS network with RS-to-
RS synaptic connections to step inputs IRH(t) to the RS
neurons. Time courses of MR (top panel) and ML (bottom panel)

are shown. Additional parameters are gRL = 35, gLR = 7.5,
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gRR = 40. Graphs on the right side present the same curves during

the onset of activity with a shorter time scale.

(EPS)

Figure S4 Fast cortical oscillations for large gRR.
Additional parameters are gRL = 35, gLR = 7.5. (A) Top: bifurca-

tion diagram of the system in the MR-gRR plane. Thin solid lines:

stable fixed points; thin dotted line: unstable fixed points. Thick

solid lines: minimum and maximum of MR on stable limit cycles

(periodic states). Open circles denote Hopf (HB) and saddle-node

of periodics (SNP) bifurcation points. Bottom: the frequency f of

the limit cycle plotted as a function of gRR. Additional parameter is

IR = 0.15. (B) Phase diagram of the system in the IR-gRR plane.

The fixed point is a stable state above the outer solid line, and the

limit cycle is a stable state below the inner solid line. In the bistable

grey area, both states are stable. (C) Traces of MR (solid line) and

ML (dashed line) for gRR = 60 and IR = 0.15. LTS neurons fire

almost exclusively during the periods when RS neuron fire.

(EPS)

Text S1 Supplementary text. RS-LTS networks: effects of

firing-rate saturation and RS-to-RS recurrent connections.

(DOC)
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