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Abstract

Aberrant interactions between the host and the intestinal bacteria are thought to contribute to the pathogenesis of many
digestive diseases. However, studying the complex ecosystem at the human mucosal-luminal interface (MLI) is challenging
and requires an integrative systems biology approach. Therefore, we developed a novel method integrating lavage
sampling of the human mucosal surface, high-throughput proteomics, and a unique suite of bioinformatic and statistical
analyses. Shotgun proteomic analysis of secreted proteins recovered from the MLI confirmed the presence of both human
and bacterial components. To profile the MLI metaproteome, we collected 205 mucosal lavage samples from 38 healthy
subjects, and subjected them to high-throughput proteomics. The spectral data were subjected to a rigorous data
processing pipeline to optimize suitability for quantitation and analysis, and then were evaluated using a set of biostatistical
tools. Compared to the mucosal transcriptome, the MLI metaproteome was enriched for extracellular proteins involved in
response to stimulus and immune system processes. Analysis of the metaproteome revealed significant individual-related as
well as anatomic region-related (biogeographic) features. Quantitative shotgun proteomics established the identity and
confirmed the biogeographic association of 49 proteins (including 3 functional protein networks) demarcating the proximal
and distal colon. This robust and integrated proteomic approach is thus effective for identifying functional features of the
human mucosal ecosystem, and a fresh understanding of the basic biology and disease processes at the MLI.
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Introduction

The intestinal mucosal surface plays diverse and critical roles in

nutrient uptake, host defense, and local and systemic endocrinol-

ogy [1,2,3,4]. Anatomic regions of the intestine differ in these

properties and their resultant disease susceptibility, in part due to

corresponding differences in the composition and function of

mucosal cell types. However, the functional state of the mucosa in

health and disease is also profoundly affected by its interplay with

luminal intestinal microbiota [5,6]. Molecular phylotypic analysis

has uncovered great complexity and inter-individual heterogeneity

of the organisms comprising the intestinal microbiome [7,8,9].

Accordingly, functional assessment of the microbiome has recently

emphasized metagenomic and biochemical analysis, uncovering

commonalities in metabolic and other traits responsive to diet, and

reciprocal interactions with host physiology [10,11,12,13].

Thus far, such studies have almost exclusively focused on the

biology of the fecal compartment, and there have been only

limited assessments of the mucosal surface itself. Gnotobiotic mice

have delineated extensive, reciprocal adaptive gene expression and

functional change in both colonic mucosal and microbial

populations [14,15], and extensive and unique microbial commu-
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nities have been detected at the human mucosal-luminal interface

(MLI) [7,8]. However, there are few strategies available to directly

analyze the function of the MLI in humans as an integrated host-

commensal biologic unit.

In this study, we introduced a novel approach to directly sample

the MLI by endoscopic saline lavage of the mucosal surface at

multiple anatomic regions in individual patients. High-throughput

proteomic analysis and a suite of bioinformatics tools were utilized

to profile the human mucosal metaproteome represented in these

samples. A schematic flowchart of sample collection and initial

characterization is illustrated in Figure 1. Using this approach, we

found that mucosal lavage specimens contain components of both

human and microbial origin. Comparison of inter- and intra-

subject variation of the mucosal metaproteome found that a

significant feature of the metaproteome is biogeographic, distin-

guishing the distal and proximal colon regions. We used

quantitative shotgun proteomics to further identify host proteins

carrying strong biogeographic features. The results showed that

this new integrated sampling and analytical approach is capable of

analyzing molecular compositions at different locations along the

gastrointestinal tract, and hence provides a new dimension to the

characterization of host-microbial interaction at the human MLI.

Results

Characterizing the phylotypic origin of mucosal lavage
proteins

To study the mucosal luminal interface, we established a novel

protocol to directly examine this environment using samples obtained

by endoscopic lavage. Briefly, 30 ml of sterile saline was injected onto

a discrete surface of the mucosal surface in each colon region. The

wash was then collected by vacuum suction. Based on the live time

imaging from the video camera attached to the colonoscope,

approximately 1 cm2 of the mucosal surface area was thoroughly

rinsed in each lavage procedure. We initially collected 18 mucosal

lavage samples from 6 intestinal regions of 3 healthy individuals

undergoing cancer surveillance colonoscopic screening. Samples

were centrifuged to separate the insoluble components (pellet) from

the supernatant. We first analyzed the 18 cell pellets by cytology with

Gram (Fig. 2a, b) or hematoxylin and eosin (H&E) staining. We

observed 99% of the pellet consisted of bacterial cells. Human cell or

food debris was only rarely observed. The bacteria population was a

mixed population, consisting of both Gram-negative and -positive

organisms with diverse morphological features.

To get a general estimate of the soluble composition of the MLI,

supernatant fractions from the 18 mucosal lavage fluid specimens

were combined, processed, trypsin digested, and analyzed by a

shotgun proteomic approach. We were able to characterize tryptic

peptides from 117 unique proteins in the sample, among which

63% (74) were human proteins, 30% (35) were bacterial, and 9

proteins were from phage or Amoebozoa (Fig. 2c). A list of

identified proteins is provided (Table S1). Among the bacterial

proteins, 48% belonged to the Bacteroidetes, the most abundant

phylum of human intestinal microbiota. We also observed proteins

from other bacterial phyla, including Proteobacteria, Acidobacteria,

Firmicutes, Chlorobi, and Cyanobacteria (Fig. 2d). These findings

demonstrated that mucosal lavage proteins represent a mixture of

host and microbial products.

Profiling the mucosal metaproteome in healthy subjects
To establish a more detailed characterization of the human

mucosal metaproteome, we collected an additional 205 lavage

samples from 38 healthy individuals. Typically, samples from six

different colon regions were collected from the same subject. The

demographics of the study population are summarized in Table 1.

Each lavage sample was pre-processed and analyzed identically by

matrix-assisted laser desorption/ionization (MALDI) time-of-flight

(TOF) mass spectrometry (MS) proteomics in duplicates or

triplicates. In total, 491 MALDI-TOF-MS spectra were collected

from the 205 samples.

High-resolution, high-throughput mass spectrometric proteo-

mics presents a variety of challenges in data pre-processing and

analysis [16]. Also, there are few mature commercially-available

data management platforms, nor widely-accepted standards, for

comprehensive proteomics data management. Therefore, we

established a working protocol for high-resolution MALDI-TOF-

MS data management from inception to final analysis, using

software that is freely downloadable and open-source. The

detailed spectral pre-processing procedure is summarized in

Figure 3a.

To process high-resolution MALDI data, we used a recent

edition of SpecAlign [17]. After pre-processing, 438 protein/

peptide features (‘‘peaks’’) were selected from each metaproteomic

spectrum. Each peak was labeled using the m/z value detected by

MALDI-TOF-MS. In addition, we developed a stringent quality

control protocol to remove outlier spectra. Each spectrum was

inspected individually at two levels: total ion intensity level and

average correlation with the entire dataset. Spectra with both

intensity level and average correlation in the bottom 20% of the

spectral profiles were disqualified, yielding a rate of outliers of

1.2%. Six spectra from two samples failed quality control criteria,

likely due to low protein concentration. The remaining 485

spectrum data from 203 samples were used for subsequent study.

Prior to analyzing the complete set of data, we set out to

characterize the reproducibility and robustness of our strategy.

First, to test the reproducibility of the mucosal lavage sampling

strategy, we collected lavage samples from two adjacent mucosa

sites in the transverse colon. The sampling control replicates

showed similar spectrum and had a correlation of 0.97 (Figure 3b).

This indicated that our sampling strategy was reproducible. To

further assess the reproducibility of sample processing and

instrumental analysis, we also calculated the correlation between

duplicate or triplicate samples. The average correlation coefficient

is 0.99, indicating a high reproducibility of sample processing

(Fig. 3c).

Due to the large number of samples, it was necessary to divide

analysis into several MALDI-TOF-MS runs. This could poten-

tially introduce an instrumental batch-effect noise which would

contribute an artificial variance to our final results [18]. Therefore,

we not only randomized all the samples to 7 batches, but also

included batch control samples in quadruplicates on every 96-well

MALDI-target plate for batch effect assessment. Not surprisingly,

correlation analysis revealed a batch effect, as the intra-batch

average correlation was 0.99, higher than the inter-batch average

correlation 0.96 (Table S2). Therefore, a subsequent step was

included to remove the batch effect before further analysis [19].

To adjust for batch effects in nucleotide microarray data, the

empirical Bayes framework has proven robust for both large and

small sample size. We adopted this strategy and performed similar

adjustment on our MALDI-TOF-MS spectral data. After

correction, the batch effect was no longer a predominant source

of variance in the data, thus allowing us to characterize biological

variations and similarities.

Determining individual and biogeographic-related
features of metaproteome

After pre-processing, the metaproteome dataset containing 438

peaks from 203 samples was analyzed by a number of biostatistical

Protein Neighborhoods of the Mucosal Interface
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methods (Dataset S1). First, to gain an overview of the source of

variance in the human mucosal metaproteome, we conducted a

principal variance component analysis. We first used a common

multivariate method, Principal Component Analysis (PCA), to

reduce the dimensions of the variance. This analysis revealed the

first component (PC1) accounts for 34.4% of the total variance in

the data (Fig. 4a). Second, we performed variance component

analysis using a non-linear mixed-effect model (NLME) on PC1

specifically [20]. This analysis revealed that inter-subject (individ-

ual) factors contributed the majority of the variance. However,

within each individual, there was a 5% biological variance among

regions of the colon (referred to as ‘intra-subject, biogeographic

factor’) (Fig. 4b). Consistent with other metagenomic data [7], the

inter-subject difference was more predominant than the intra-

subject level.

Next, we further examined the significance of the intra-subject

biogeographic feature. Because of the hierarchical structure of the

variation resources, we used the NLME model to compensate for

Figure 1. Flowchart of mucosal lavage sampling.
doi:10.1371/journal.pone.0026542.g001

Protein Neighborhoods of the Mucosal Interface
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individual factor. We analyzed the metaproteomic data to find

peaks with differential abundance across the 6 colon anatomic

regions. We then calculated the P-value which indicates the

significance of the biogeographic feature for each peak (Table S3),

and tabulated all 438 P-values on a frequency plot. If the effect was

a random observation, less than 5% of the total peaks would have

P-values smaller than 0.05. Instead, we observed a non-uniform

distribution with over 25% of the peaks with P-values below 0.05

(Fig. 4c), suggesting the observed biogeographic feature was indeed

significant.

To determine the similarities and differences among the 6

anatomic regions, we carried out a permutation test [21]. Only the

significant P-values from this analysis were shown in Fig. 4d. No

significant difference was observed in any adjacent two regions.

However, we discovered significant differences between the

proximal colon (including cecum, ascending, transverse, and

descending colon), and the distal colon (including the sigmoid and

rectum). Notably, the transverse colon (the most central colonic

region) did not significantly differ with either proximal or distal

colonic regions.

Lastly, we noticed our analysis left 20% of the PC1 unexplained

by either individual or biogeographic effects. We speculated that it

might be a mixed contribution from other physiological factors,

such as age or gender. However, when tested in NLME or

permutation test, neither age nor gender reached statistical

significance, indicating that gender or age alone was not a

significant factor in determining the mucosal metaproteome. The

frequency plot of P-values for gender factor was shown as a

negative example (Fig. 4e).

Comparison of mucosal metaproteome and
transcriptome

We next sought to biochemically validate the bioinformatically-

defined biogeographic feature. To do so, we used a quantitative

shotgun proteomic methodology [22] to directly identify proteins

in sets of randomly selected individual samples from cecum,

Figure 2. Cellular and protein composition at the MLI. Upper panel: Cytology analysis of the cell pellet obtained from each mucosal lavage
sample using gram staining. a.1006b. 5006. Lower panel: Distribution of proteins with different origins identified from the mucosal lavage sample
using shotgun proteomic analysis. c. Composition of proteins from all species as identified by tandem MS. Other origin includes phage and
amoebozoa. d. Composition of bacterial proteins. Other bacterial origin includes Chlorobi and Cyanobacteria.
doi:10.1371/journal.pone.0026542.g002

Table 1. Summary of sample collection and clinical traits.

Total subjects 38

Total mucosal lavage samples 205

Gender Female 84 (41%)

Male 121 (59%)

Age Median ± SD 59610

Region Cecum 37 (18.0%)

Ascending 35 (17.1%)

Transverse 34 (16.6%)

Descending 38 (18.5%)

Sigmoid 31 (15.1%)

Rectum 30 (14.6%)

doi:10.1371/journal.pone.0026542.t001

Protein Neighborhoods of the Mucosal Interface

PLoS ONE | www.plosone.org 4 November 2011 | Volume 6 | Issue 11 | e26542



ascending colon, sigmoid, and rectum. As we expected, searches

against different protein databases identified both microbial and

human proteins. Here, we specifically focused on human proteins

since they have the richest annotation information for subsequent

analysis. In total, 31,224 spectra were collected and 300 human

proteins were identified. The complete protein list and the

spectrum count is organized into a spreadsheet (Dataset S2).

To determine the association of proteins isolated from colonic

lavage compared to cells from biopsied tissues, we annotated the

proteomic data in Scaffold using the latest protein information

available from UniproKB/Swiss-Prot database. Since high dimen-

sional proteomic datasets are not available from mucosal biopsy

samples, we used for comparison the mucosal transcriptome

recently reported as mRNA expression data for a large human

mucosal biopsy sample set [23], and annotated using GeneTools

[24]. Figure 5 shows the comparisons of the two datasets where the

proteome software has defined expressed product based on

‘‘biological processes’’, ‘‘cellular components’’, and ‘‘molecular

functions’’. For biological process annotations, proteins involved in

response to stimulus and immune system process were enriched in

Figure 3. Reproducibility of metaproteomic analysis. a. Steps for MALDI-TOF-MS data pre-processing. b. Scatterplot of two samples obtained
from the sample subject in adjacent colonic regions (sampling replicates). c. A representative 3D scatterplot of triplicate runs of the same sample
(technical replicates).
doi:10.1371/journal.pone.0026542.g003

Protein Neighborhoods of the Mucosal Interface
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lavage samples compared to biopsies (Fig. 5a). For cellular

components, the extracellular protein segment was greatly enriched

in the lavage samples compared to biopsies as expected (Fig. 5b). For

the segments defined by molecular function, the identified

expression profile between the lavage samples and biopsies were

similar with the majority of the proteins/transcripts involved in

binding and catalytic activity (Fig. 5c).

Identifying specific proteins with biogeographic feature
For the 300 human proteins identified from lavage samples, we

used a stringent quality control protocol (described in Materials

and Methods) to filter out proteins with poor coverage or low

abundance. The ‘label-free spectrum counting’ method has been

adopted to quantify the relative abundance of protein in analyzing

shotgun proteomic data [22,25,26]. The Z-score transformed

relative abundance of each protein is presented in a heatmap

(Fig. 6), and the samples as well as the proteins were co-clustered

by Pearson correlations (Fig. 6). The sample tree was mainly

segregated into two large clusters with one outlier sample isolated

to the far left. The first cluster consisted of 7 proximal and 2

sigmoid samples, whereas the second cluster consisted of 5 distal

and 3 proximal samples. This suggested that the 49 proteins were

differentially detected in proximal and distal regions, further

confirming the biogeographic segmentation.

As shown in Figure 6 (brackets on the right-side y-axis), there

were a number of similar proteins that co-clustered. We selected

Figure 4. Features of human mucosal metaproteome. a. PCA analysis revealed PC1 represents the largest component of the overall variance. b.
Variance component analysis showed variance in PC1 comes from both individual and biogeographic levels. c. Frequency plot of region-related P-
value for each peak from NLME analysis indicated a significant biogeographic feature. d. Frequency plot of gender-related P-value for each peak from
NLME analysis indicated no significance. e. Distal colon regions were significantly different from proximal regions in permutation analysis. Only
significant P-values (,0.05) were shown.
doi:10.1371/journal.pone.0026542.g004

Protein Neighborhoods of the Mucosal Interface
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Figure 5. Comparison of lavage and biopsy samples by protein annotations. a. Biological process. b. Cellular component. c. Molecular
function.
doi:10.1371/journal.pone.0026542.g005

Protein Neighborhoods of the Mucosal Interface
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several of these proteins for individual analysis with regard to

biogeographical expression levels (Fig. 7). First, the immunoglob-

ulin-related proteins Ig gamma-1 chain C region (IGHG1), Ig

alpha-2 chain C region (IGHA2), Ig kappa chain V-III region VG

(KV309), and polymeric immunoglobulin receptor (PIGR) all

showed a similar pattern of lower expression in the proximal colon

compared to the distal colon (Fig. 7a and b). This is consistent with

the abundance of plasma cells and epithelial specialization for

immunoglobulin transcytosis at this anatomic location. Second, a

number of members of the elastase subfamily of serine hydrolases

Figure 6. Heatmap view of proteins identified by shotgun proteomics. Horizontal tree indicates 18 independent lavage samples. Vertical
tree indicates the 49 proteins analyzed, and the protein identities are listed on the right. Three of the proteins clusters showed biogeographic
features are bracketed.
doi:10.1371/journal.pone.0026542.g006
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[27] were identified and clustered. Three chymotrypsin-like

elastase family members 2A (CEL2A), 3A (CEL3A), 3B (CEL3B)

and chymotrypsin (CTRC) formed a tight cluster indicating a

similar expression pattern for the four proteins (Fig. 6). CEL3B

showed a particularly high level in the ascending colon, and then

declined gradually towards the distal regions (Fig. 7c). Conversely,

leukocyte elastase inhibitor (ILEU), the endogenous elastase

inhibitor [28], showed the lowest level in ascending and highest

in rectum colon (Fig. 7d). A third protein cluster was the meprin

family including two members meprin A subunit alpha (MEP1A)

and meprin A subunit beta (MEP1B). The relative levels of both

proteins were higher in proximal regions as compare to distal

regions (Fig. 7e and 7f). In addition, there were two other proteins

with low P-values as a biogeographic feature. Ectonucleotide

pyrophosphatase/phosphodiesterase family member 7 (ENPP7)

decreased from proximal to distal regions (Fig. 7g), yet

carcinoembryonic antigen-related cell adhesion molecule 5

(CEAM5) increased expression in these same regions (Fig. 7h).

In contrast to the foregoing, some known intestinal proteins

demonstrated no significant biogeographic features, including

mucin 2 (MUC2), trypsin-2 (TRY2), alpha-1-antitrypsin (A1AT),

carboxypeptidase A1 (CBPA1), carboxypeptidase B (CBPB1), and

intestinal-type alkaline phosphatase (PPBI) (Table S4).

Discussion

To understand the basic biology and investigate host-microbial

interaction at the human intestinal MLI, we used endoscopic

lavage as a straightforward but novel methodology to sample the

mucosal surface. This procedure involves minimal clinical risk,

and yields analytically reproducible samples composed of both

human and bacterial components expected at the MLI. Using

high-throughput MALDI-TOF-MS proteomics and a suite of

bioinformatics methods, we produced a high-dimensional dataset

containing both human and bacteria peaks, which we termed the

human mucosal metaproteome. Analysis of the mucosal metapro-

teome in healthy adults revealed substantial inter-individual

variation, but also revealed a significant biogeographic feature.

Furthermore, 49 distinct proteins were investigated in details in its

biogeographic feature, and 4 protein networks were identified.

These data suggest that MLI proteomics offer an informative,

integrative strategy for studying the human mucosal ecosystem.

A new way of viewing mucosal surface
Fecal or mucosal tissue biopsy samples are widely used in

human mucosal studies, but have certain limitations. Whereas the

fecal microbiota is a major biosynthetic and catabolic compart-

ment with local and systemic physiologic effects [5,6], it bears a

microbial composition distinct from that of the mucosal surface

[7,8,29], which instead is selected for adherence, host resistance,

and mucosal trophic factors. Also, fecal samples are a mixture of

products from all intestinal regions, which may obscure unique

host-bacteria interactions present at individual sites along the

mucosal interface [29]. Mucosal tissue biopsies are a useful

biospecimen for mucosal luminal interaction, but since they

require disruption of the mucosal barrier and are very small in

surface area, they are suboptimal for proteomic and other

functional analyses of the MLI. In comparison, mucosal lavage

sampling is appealing because it spares disruption of the mucosal

epithelium, permits repetitive sampling along the intestinal

anatomy, and is abundant in biochemical yield for analysis.

Recent studies have also shown that mucosal lavage yields robust

recovery of surface microbiota whose composition associates with

the host immunologic state and IBD disease state [30,31].

Shotgun proteomics demonstrated that mucosal lavage recov-

ered a diversity of both host and microbial proteins. With respect

to the host, the predominance of identified MLI proteins were

involved in binding and catalytic activity, comparable to a recent

analysis of the mucosal transcriptome [23]. As might be

anticipated, the MLI proteome was enriched compared to the

transcriptome for extracellular proteins, and these were predom-

inantly involved in response to stimulus and immune system

processes. With regard to the abundant microbiome detected

morphologically in the mucosal lavage specimens, it was surprising

that identifiable peptides were predominantly of human proteins

origin. However, shotgun proteomics preferably detects proteins

with relatively high abundance, and hence may under-detect

products from low frequency microbial taxa which in aggregate

account for most of the microbial population [7,8,9]. Also, there is

relatively incomplete documentation of bacterial proteins in the

current protein database, particularly for poorly characterized

taxa in the largely uncultured commensal microbiota. It is also

notable that the shotgun analysis only identifies proteins of the

microbes whose genomes have been sequenced and indexed in the

database. Therefore, it is likely that the contribution from

microbiota was underrepresented in our shotgun proteomic data.

Nevertheless, an interesting finding was the high number of

identifications for bacterial proteins from two-component signaling

systems. Two-component systems serve as a basic stimulus-

response coupling mechanism to allow organisms to sense and

respond to changes in many different environmental conditions

[32]. A published bioinformatics study of phylogenetic distribution

of nearly 5,000 histidine protein kinases from 207 sequenced

prokaryotic genomes suggested that this two-component signaling

system is crucial for the niche-adaption of bacteria [33]. Similarly,

competition in the intestinal habitat for Bacteroides thetaiotamicron is

exquisitely sensitive to the hybrid two-component system for

efficient glycan utilization [14]. In this study, we not only identified

proteins from Bacteroidetes, but also other bacterial phyla suggesting

a more comprehensive role of the two-component system in

intestinal microbiota.

Integration of bioinformatics and proteomics
High-resolution, high-throughput MS proteomics presents a

variety of challenges in data processing and analysis [16]. Without

careful design and analysis, the results and conclusions from high-

throughput proteomics can sometimes be misleading [18]. To

overcome the lack of mature, commercially-available data

management platforms, we established a unique data processing

pipeline for the high-resolution MALDI-MS data from inception

to final analysis. With regard to spectral data preprocessing

procedures (binning, deisotoping, baseline subtraction, peak

alignment, and intensity normalization), there are a variety of

algorithms [34,35,36,37,38,39,40] and software [17,41,42] avail-

able. For this study, we selected a recent edition of SpecAlign [17]

to process high-resolution spectrum data. In addition, we

developed a stringent quality control protocol to remove outlier

spectra. Consistent with other studies, we also found a batch effect

in our MALDI-MS experiments [18]. To address this, we adopted

an algorithm COMBAT [19,43] written in R, which successfully

corrected for the undesired batch effect before further analysis. We

not only tested the reproducibility and robustness of our sampling

strategy (sampling replicates), but also our working protocol

(technical replicates). The results showed that our protocol

includes all the important check-points for proteomic data

management, and consistently produced high-quality spectral

data for quantitative analysis. Since all the software and algorithms

used in our protocol are open source and readily accessible to the

Protein Neighborhoods of the Mucosal Interface
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public, we have tabulated the pipeline on our institutional website

for the convenience of other investigators.

Biogeographic features of mucosal metaproteome
A biogeographic feature of the microbiome [7] previously has

been described in healthy subjects. However, a systemic study of

the mucosa as an ecosystem at the colon surface has not yet been

reported. Using mucosal lavage sampling, each subject was

sampled 6 times at different colonic regions. The metaproteomic

data revealed both inter-individual variation, and also a significant

common biogeographic feature in the colon (distal versus proximal

colonic regions). Interestingly, no age or gender related feature was

observed. The distal colon is distinguished from more proximal

colonic regions by the distinctive ultrastructure in the epithelial

cells and the composition in the mucosal barrier [29,44]. In

addition, region-specific susceptibility is observed in ulcerative

Figure 7. Boxplots of representative proteins with biogeographic features. The bottom and top of the boxes are the 25th and 75th
percentile (the lower and upper quartiles, respectively), and the band near the middle of the box is the median. The whiskers present minimum to
maximum value in the group. CE: cecum. AS: ascending colon. SI: sigmoid colon. RE: rectal colon. ANOVA is used for comparison between different
regions. a. IGHA2 (P,0.001). b. KV309 (P,0.001). c. CEL3B (P = 0.017). d. ILEU (P = 0.017). e. MEP1A (P = 0.069). f. MEP1B (P = 0.044). g. ENPP7
(P = 0.014). h. CEAM5 (P,0.001).
doi:10.1371/journal.pone.0026542.g007
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colitis and colon cancer. Thus, the biogeographic metaproteome

may offer a functional counterpart to these distal colonic traits.

Quantitative shotgun proteomics established the identity and

confirmed the biogeographic association of 49 host proteins

demarcating the proximal and distal colon. These proteins

clustered into several functional protein networks, including:

immunoglobulin synthesis and transcytosis; the elastase subfamily

of serine hydrolases and their inhibitors; and, members of the

meprin metalloprotease family. Concordant with the latter

observation, mucosal mRNA levels of meprin-a and meprin-b
also decline from the proximal to distal colon. It is interesting to

note that MEP1A l (meprin A) is a susceptibility gene for ulcerative

colitis in human and immune colitis in mice [45]. In addition to

these networks of proteins, strong biogeographic distributions were

also observed for ENPP7 and CEAM5. ENPP7 is an ectoenzyme

with sphingomyelin-specific phospholipase C specificity, that is

released from the epithelial apical surface by luminal bile acid and

trypsin-like activity [27]. As in our study, it also shows a decreasing

expression gradient from ileum to distal colon [46], and has been

associated with inflammation and tumorigenesis [47,48,49].

CEAM5 is a member of the carcinoembryonic antigen (CEA)

family notable for epithelial cell adhesion and intracellular

signaling, and colorectal carcinogenesis [50,51,52,53]. CEAM5

mediates epithelial interaction with bacteria binding CEA-

associated glycans, and its rapid physiologic exfoliation is

considered a protective anti-microbial mechanism [54]. It is

possible that its elevated abundance in the distal colon may reflect

a role in interrupting bacterial intrusion in this region of

exceptional luminal bacterial load.

In summary, this paper has described and validated an

integrated proteomic approach that identifies functional features

of the human mucosal surface. These include impressive

distinctions between the proximal and distal colon, in accord with

the concept that these regions are functional and developmentally

distinct [55,56]. This analytic approach offers a new and robust

tool for understanding the basic biology and disease processes

involving the MLI.

Materials and Methods

Mucosal lavage sample collection
All enrolled subjects were consented with a valid IRB protocol,

and were prepared for colonoscopy by taking GolytelyH the day

before the procedure. During the colonoscopy procedure, 30 ml of

sterile 0.9% saline was injected to the surface of each of the six

different locations of the colon (cecum, ascending, transverse,

descending, sigmoid, and rectum) (Fig. 1). The mucosal lavage

samples were collected by vacuum suction with a Fujinon

magnifying colonoscope. Typically, 20 ml of saline was recovered

for each region. Lavage samples were kept on ice immediately

after collection, and then transferred to the UCLA High-

Throughput Clinical Proteomic Laboratory on the same day for

processing.

Cytology analysis
Mucosal lavage samples were spun at 1,0006g for 10 min to

form a cell pellet. Pellets were fixed and sectioned following a

standard cytology protocol by the UCLA Clinical Cytology

Laboratory, and sections were stained by either H&E or Gram

stain.

Shotgun proteomic analysis
The supernatant from each mucosal lavage sample was spun at

4,0006g for 30 min to remove solid components, and the clear

supernatant was transferred to a clean 50 ml tube, and acetone

added to the supernatant to precipitate proteins and peptides.

Samples were inverted several times to mix thoroughly and frozen

at 280uC overnight. The following day, samples were thawed and

spun down at 4,0006g for 30 min. The supernatant was

discarded, and the precipitated pellet was dried at room

temperature for 30 min. Each purified protein sample was

dissolved in 1 ml 25 mM Tris-HCl buffer pH 8 with 2 M Urea

by vortexing and pipetting. Samples were transferred to 2 ml

protein LoBind microcentrifuge tubes (Eppendorf, Hamburg,

Germany). The protein concentration of each combined sample

was quantified using the Bradford reagent. 5 ml of 1 M

dithiothreitol (DTT) was added to the remaining samples and

incubated in 37uC bath for 1 hour. 50 ml aliquots of 0.5 M

iodoacetamide (IAA) were added to the samples and incubated at

room temperature with rocking for 1 hour in aluminum foil. After

quenching with 10 ml of 1 M DTT and incubating at room

temperature for 30 minutes, the samples were diluted two-fold to

lower the DTT concentration. 10 mg of trypsin was added to each

sample and incubated in a 37uC bath overnight. Post-digestion

samples were run on a 4–18% Tris-Glycine gel to check the

digestion efficacy. The digested samples were then cleaned-up

through a 100 mg C18 cartridge (Alltech, Ontario, Canada), and

then resuspended in 24 ml of 2% methylnitrile with 0.1% TFA

solution. 10 ml of aliquots of each peptide sample was analyzed by

liquid chromatography tandem mass spectrometer (LC-MS/MS)

using an Eksigent autosampler coupled with Nano2DLC pump

(Eksigent, Dublin, CA) and LTQ-Orbitrap (Thermo Fisher

Scientific, Waltham, MA). The analytical column (10 cm675 mm

i.d.) contained 5 mm Integrafit Proteopep2 300 Å C18 (New

Objective, Woburn, MA). Peptides were eluted using a HPLC

gradient of 5% to 40% Buffer B in 45 min followed by a quick

gradient of 40% to 90% Buffer B in 10 min, where Buffer A

contains 0.1% formic acid in water and Buffer B contains 0.1%

formic acid in acetonitrile. Mass spectra were collected in positive

ion mode using the Orbitrap for parent mass determination and

the LTQ for data dependent MS/MS acquisition of the top 5 most

abundant peptides. MS/MS fragmentation spectra were searched

using SEQUEST (Version v.27, rev. 12, Thermo Fisher Scientific)

against the non-redundant Uniprot database indexed for human

and bacteria proteins. Search parameters included carbamido-

methyl cysteine (*C) as a static modification. Results derived from

database searching were filtered using the following criteria: Xcorr

.1.0(+1), 1.5(+2), 2(+3), and peptide probability score ,0.001,

and dCn .0.1 using Bioworks version 3.2 (Thermo Electron

Corp).

High-throughput MALDI-TOF-MS analysis and data
processing

To each precipitated protein sample, 500 ml of PBS with 1%

Triton-X was added and thoroughly mixed, and then transferred

to a 2 ml microcentrifuge tubes. Samples were centrifuged at

10,0006g and the supernatant was collected. The concentration of

each supernatant sample was determined by Bradford assay.

300 mg of total protein from each sample was diluted in PBS and

applied to subsequent analyses. Samples were then passed through

a 1-mm filter plate separately. 10 ml aliquots of the extracts were

mixed with 200 mg of weak cation exchange (WCX) magnetic

beads (MoBiTec, Goettingen, Germany) with 90 ml of 0.2 M

ammonium acetate pH 4.0 with 0.01% TX-100. The process has

been automated in a 96-well format with a Hamilton Starlet robot

(Reno, NV) where the beads are pelleted on a strong plate magnet

and washed 3 times. The beads were then desalted with 5 mM

ammonium acetate and extracted with 15 ml of 1% trifluoroacetic
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acid. 10 ml of the extracts were removed and mixed with an equal

volume of 5 mg/mL a-cyano-hydroxycinnamic acid matrix

(CHCA) dissolved in 90% acetonitrile. 2 ml each of the extract-

matrix mixture was then applied to a 96-well MALDI target in

triplicates. After drying, the plate was read in a Perkin-Elmer Sciex

prOTOF2000 reflectron mass spectrometer (San Jose, CA) with

settings for optimal detection of peptides and small proteins

between 2 and 20 kDa.

Since the samples were divided into 7 batches to complete the

MALDI analyses, the potential batch effects was addressed by

randomizing all samples, with each assigned an analysis date and

the position on MALDI plate. In addition, 5 ml aliquots from each

filtered sample were combined into a pooled sample, which was

analyzed in quadruplicate on each plate to serve as a batch control

of the inter- and intra-plate variation of MALDI analysis.

The pre-processing procedures are summarized in Fig. 3a.

MALDI data were exported using PG600 prOTOF Loader

software and cleaned in Python software using a homemade script.

This initial data cleaning step was critical to render the MALDI-

TOF-MS data accessible for the subsequent visualization and pre-

analytic processing in SpecAlign software (http://physchem.ox.ac.

uk/,jwong/specalign/index.htm). Each spectrum was first

trimmed to 2,000 to 20,000 m/z range, and binned at 0.25 m/z

window size to reduce the data dimension to a manageable size.

All spectra were then loaded simultaneously into SpecAlign.

Combining of all isotopic peaks was achieved by smoothing the

spectrum at 5 m/z window size twice. Baseline subtraction was

performed using 5 m/z window size. Stringent quality control

(QC) rules were applied to pick out spectra with poor qualities.

Each spectrum was inspected individually at two levels: total ion

intensity level and average correlation with the entire dataset.

Spectra with both intensity level and average correlation in the

bottom 20% of the spectral profiles were disqualified. The

remaining spectra were then normalized to total ion current

(TIC). Peaks were identified using criteria of signal threshold 0.5,

window size of 5 m/z, and signal-to-noise ratio of 1.5. Average

spectra of all technical replicates from the same sample were

produced in Python using a homemade script. All scripts are

downloadable from our laboratory website.

Quantitative shotgun analysis and data processing
Fifteen supernatant samples previously analyzed by MALDI-

MS were selected for quantitative shotgun analysis. It is the same

as described earlier with the exception of performing in-gel trypsin

digestion instead of in-solution. Briefly, 50 ug proteins of each

sample were loaded onto a NuPAGE 4–12% Bis-tris gel. The gel

was run at 100 V for about 15 minutes to allow the proteins to

migrate through the stacking portion of the gel. The entire lane

was excised, reduced with DTT, alkylated with IAA, and digested

with trypsin at a 1:50 ratio. We did notice that the in-gel digestion

greatly increased the efficacy of trypsin, and it was probably due to

inactivation of the trypsin inhibitor A1AT present at large amount

in the lavage samples.

All MS/MS spectra were then analyzed using Mascot (Version

2.2.2, Matrix Science, London, UK), and searched against the

SwissProt 57.15 database (selected for Homo sapiens only, 20266

entries). Mascot was searched with a fragment ion mass tolerance

of 0.40 Da and a parent ion tolerance of 10.0 PPM. Iodoaceta-

mide derivative of cysteine was specified in Mascot as a fixed

modification. Oxidation of methionine was specified in Mascot as

a variable modification. Scaffold (Proteome Software Inc., Port-

land, OR) was used to validate MS/MS based peptide and protein

identifications. Peptide identifications were accepted if they

exceeded specific database search engine thresholds. Mascot

identifications required at least ion scores must be greater than

both the associated identity scores and 20, 30, 40 and 40 for singly,

doubly, triply and quadruply charged peptides. Protein identifica-

tions were accepted if they contained at least 1 identified peptide.

Proteins that contained similar peptides and could not be

differentiated based on MS/MS analysis alone were grouped to

satisfy the principles of parsimony.

The following quality control criteria were further implemented

to select candidate proteins: 1) Minimal peptide hits had to be 2 for

each protein. 2) Sample U053 and U188 were removed as the

total spectrum counts were significantly lower than the others. 3)

Each protein had to be present in more than 50% of the samples.

49 proteins were filtered out for subsequent statistical analysis. The

label-free spectrum counting method was adopted to quantify the

relative abundance of protein in analyzing shotgun proteomic data

[22,25,26]. Normalization factor was calculated for each sample

by dividing the total spectrum counts by the average spectrum

counts. The spectrum count of a specific protein was multiplied by

the normalization factor to calculate the relative abundance. The

list of the normalized abundance and the P-values from ANOVA

for biogeographic effect of the 49 selected proteins is shown in

Table S4.

Statistics
All statistical analyses were conducted in R software (http://

www.r-project.org/). The averaged spectrum of each sample was

loaded into R. For the MALDI-MS data, Pearson correlation

coefficient was used to evaluate the batch effect, which was later

corrected using the COMBAT package [19,43]. Principal

Variance Component Analysis (PVCA) was used to calculate the

inter- and intra-subject variability in the metaproteome, and the

significance of the difference was further evaluated by permutation

test and NLME analysis. For permutation test, an average

spectrum for each region was calculated by averaging the intensity

of each peak within the same group, e.g. anatomic region, and

gender. The differences between two groups were measured by the

correlation coefficient between averaged spectra. The spectral data

was then permutated 1000 times, and the difference between two

groups was calculated after each permutation. The number of

distance smaller than the observed distance was divided by 1000 to

give the P-value of the specific group feature in examination. For

NLME analysis, the individual factor was set as the random effect

in the model, and the region, gender, and age were set as the fixed

effects. For the quantitative shotgun data, Z-score transformation

was carried out within each protein, and the normalized levels of

the 49 proteins identified were visualized in a heatmap with

hierarchical clustering. The P-value of the biogeographic feature

for each protein was calculated by ANOVA. All scripts written in

R are available from our laboratory website.

Supporting Information

Table S1 Proteins identified with shotgun proteomic analysis.

(RTF)

Table S2 Correlation matrix of the 28 quality control samples

from 7 batches.

(RTF)

Table S3 P-values of all protein/peptide features in the NLME

analysis.

(RTF)

Table S4 P-values of 49 proteins with biogeographic feature.

(RTF)
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Dataset S1 Metaproteome MALDI dataset containing relative

ion intensities of 438 peaks from 203 samples.

(CSV)

Dataset S2 Metaprotome shotgun dataset containing spectrum

counts of 300 proteins from 20 samples.

(CSV)
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