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Abstract

Background: Evidence suggests a role of both innate and adaptive immunity in the development of pulmonary arterial
hypertension. The complement system is a key sentry of the innate immune system and bridges innate and adaptive
immunity. To date there are no studies addressing a role for the complement system in pulmonary arterial hypertension.

Methodology/Principal Findings: Immunofluorescent staining revealed significant C3d deposition in lung sections from
IPAH patients and C57Bl6/J wild-type mice exposed to three weeks of chronic hypoxia to induce pulmonary hypertension.
Right ventricular systolic pressure and right ventricular hypertrophy were increased in hypoxic vs. normoxic wild-type mice,
which were attenuated in C32/2 hypoxic mice. Likewise, pulmonary vascular remodeling was attenuated in the C32/2
mice compared to wild-type mice as determined by the number of muscularized peripheral arterioles and morphometric
analysis of vessel wall thickness. The loss of C3 attenuated the increase in interleukin-6 and intracellular adhesion molecule-
1 expression in response to chronic hypoxia, but not endothelin-1 levels. In wild-type mice, but not C32/2 mice, chronic
hypoxia led to platelet activation as assessed by bleeding time, and flow cytometry of platelets to determine cell surface P-
selectin expression. In addition, tissue factor expression and fibrin deposition were increased in the lungs of WT mice in
response to chronic hypoxia. These pro-thrombotic effects of hypoxia were abrogated in C32/2 mice.

Conclusions: Herein, we provide compelling genetic evidence that the complement system plays a pathophysiologic role in
the development of PAH in mice, promoting pulmonary vascular remodeling and a pro-thrombotic phenotype. In addition
we demonstrate C3d deposition in IPAH patients suggesting that complement activation plays a role in the development of
PAH in humans.
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Introduction

Pulmonary arterial hypertension (PAH) is a progressive disease

characterized by increased pulmonary vascular resistance and

pulmonary arterial pressure leading to right heart failure [1]. The

pathogenesis of PAH is complex involving pulmonary vasocon-

striction, remodeling of the pulmonary vascular wall, and in situ

thrombosis [2]. It is becoming increasingly recognized that

immune system activation and inflammation play important roles

in the pathogenesis of PAH [3].

The complement system is a key sentry of innate immunity

acting as a first line of defense against injurious stimuli and

invading pathogens [4]. It may be activated by the classical,

alternative or lectin pathways. All three pathways converge at the

level of C3 cleavage and activation leading to the production of

opsonins (C3b), the membrane attack complex (C5b-9) [5], and

anaphylatoxins (C3a and C5a). The anaphylatoxins are particu-

larly interesting as potential effectors in PAH because they recruit

inflammatory cells, cause degranulation of mast cells, increase

vascular permeability and stimulate pulmonary vascular smooth

muscle contraction [6,7,8]. In addition, complement components

C3 and C4a have been implicated as biomarkers of idiopathic

pulmonary hypertension [9,10]. To date, however, there are no

studies exploring a role for complement activation in PAH. In this

study we utilized C32/2 mice to explore the role of complement

in chronic hypoxia (CH)-induced PAH in mice.

Methods

Ethics Statement
Human tissue and cell samples were obtained in compliance

with Cleveland Clinic and University of Pittsburgh institutional

review board guidelines as previously described [11,12,13,14].

Animal studies were approved by the University of Pittsburgh
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Institutional Animal Care and Use Committee (University of

Pittsburgh Animal Assurance # A3187-01).

Mice
C57Bl/6J (stock #000664) and C3 2/2 mice (stock #003641)

were purchased from Jackson Laboratories. C3 2/2 mice are

reported by the Jackson Laboratories to be backcrossed to the

C57BL/6J background for 7 generations. All experiments were

performed on age-matched male mice between 8–10 weeks old.

Materials
Complement component C3d antibody (AF2655), complement

component C5a antibody (AF2150) and recombinant mouse

complement component C5a (2150-C5) were from R&D Systems.

Recombinant human complement C3a (204881) and recombinant

human complement C5a (234397) were from Calbiochem. Tissue

factor antibody (SATF-IG) was from Affinity Biologicals.

Chronic hypoxia-induced pulmonary hypertension
Pulmonary hypertension was induced by housing mice under

chronic hypoxic conditions (FiO2 = 0.10, normobaric) for three

weeks with age matched mice in normoxia serving as control.

Measurement of right ventricular systolic pressure (RVSP)
Mice were anesthetized with sodium pentobarbital (50 mg/kg i.p.)

and ventilated via tracheotomy with room air (175 breaths/min,

175 ml tidal volume). Body temperature was monitored and regulated

with a rectal probe and heating pad. Right ventricular systolic

pressure (RVSP) was determined by placing a 1F solid state pressure

transducing catheter (Millar Instruments Inc., Houston, TX) directly

into the RV. Data were acquired using a PowerLab data acquisition

system and LabChart Pro software (AD Instruments).

RV hypertrophy (RVH)
RVH was determined by the ratio of the weight of the RV to the

left ventricle plus septum (Fulton index) as previously described [15].

Pulmonary vascular remodeling
Lung sections were stained against smooth muscle alpha actin

antibody (1:100, DAKO) after deparaffinization and antigen retrieval.

Pulmonary vascular remodeling was assessed by counting the number

of partially and fully muscularized peripheral arterioles (35–100 mm)

per high power field (2006 total magnification). For each mouse,

more than 20 high power fields were analyzed in multiple lung

sections. Wall thickness of muscularized vessels was determined by

measuring the thickness at 4 points on pulmonary arterioles using the

Java-based image processing program: Image J (NIH).

Cultured Cells
Human pulmonary artery smooth muscle cells (hPASMC) [16]

and human aortic smooth muscle cells (hASMC) [17] were isolated

as previously described. hPASMC were grown in DMEM/F12

media supplemented with 10% FBS and penicillin/streptomycin

and were maintained at 37uC and 5% CO2. hASMC were

maintained in SMC growth medium (Cell Applications, San Diego,

CA). Cells were used between passage 4–9.

Cell Proliferation
Proliferation of hASMC and hPASMC was determined by

measuring [3H]-incorporation as previously described [18].

Briefly, cells were serum starved for 24 h in 12-well plates and

treated with either 10 or 100 nM Human C3a or C5a with or

without PDGF (10 ng/ml,Sigma P4056) for 24 h. During the last

16 hrs 0.2 mCi [3H]thymidine was added. After the incubation

period cells were washed twice with ice-cold PBS, and 1 ml of ice-

cold 10% trichloroacetic acid (Sigma T0699) was added to each

well for a 30-min incubation at 4uC, after which each well was

washed with 1 ml of ice-cold 10% trichloroacetic acid. To each

well 0.5 ml of 0.4 N NaOH, 0.1% (wt/vol) SDS was added, and

the plates were incubated for 1 h at room temperature. The

contents of each well were then transferred to 7 ml scintillation

vials containing 4.5 ml of Pico-Fluor-15 scintillation mixture (ICN)

and counted in a liquid scintillation spectrometer.

Bleeding Time
Mice were anesthetized with isoflurane and a cut was made

3 mm from the tip of the tail. After transection, the tail was placed

in a beaker filled with 37uC phosphate buffered saline, and

bleeding time was recorded. After bleeding succession another

30 sec was waited for possible rebleeding. Bleeding was stopped at

10 min and all tails were cauterized.

Immunohistochemistry
After sacrifice, mice were perfused intracardially with phosphate

buffered saline to clear the vasculature of blood. After perfusing

Figure 1. C3d deposition in human PAH. (A–D) Lung sections from
non-PAH or IPAH patients (n = 3) were stained with a-C3d and a-SMA
antibody and counterstained with DAPI to detect nuclei. Images shown
are representative (E) Quantification of C3d staining in non-PAH and
IPAH patients. Bars represent the mean 6 SD (n = 4). *P,0.05.
doi:10.1371/journal.pone.0028578.g001
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the lungs via the trachea with 4% paraformaldehyde the trachea

was tied off, the lungs excised, and kept for an additional 24 hrs in

paraformaldehyde at 4uC. The tissue was paraffin embedded and

sectioned (5 mm) by the University of Pittsburgh Research

Histology Laboratory. Sections were warmed for 60 min at

56uC followed by deparaffinization in Xylene (3 times 3 min)

and rehydrated to PBS (100% Ethanol 263 min, 90% Ethanol

163 min, 70% Ethanol 163 min and PBS 163 min). All slides

were treated for antigen retrieval in citrate buffer followed by

blocking and staining for either smooth muscle-a-actin (1:100

DAKO), fibrin (Nordic Immunology, polyclonal goat), Von

Willebrand Factor (Santa Cruz, polyclonal rabbit), C3d (R&D

Systems, goat) following manufacturer’s recommendations and

appropriate HRP- or fluorescently-labeled secondary antibodies.

For morphometric analysis, the Vectastin Elite ABC DAB kit was

used to visualize smooth muscle actin staining and images

captured by light microspcopy. Fluorescently-labeled antibodies

were detected by confocal microscopy using an Olympus Fluoview

1000. For all immunohistochemical staining a no primary control

was used to confirm the specificity of the staining.

Quantification of C3d and Fibrin Deposition
Percent area of C3d and fibrin deposition was quantified using

computer-assisted image analysis (Adobe Photoshop 5.0, NIH

Image J) with the observer blinded as to tissue source.

ELISA
ELISA for endothelin-1 and intracellular adhesion molecule-1

were performed as per the manufacturer’s instructions (R&D

Systems).

Figure 2. C3d deposition in chronic hypoxia-induced PH in mice. (A–D) Lungs from normoxic and hypoxic C57Bl/6J mice were stained with
a-C3d and a-SMA antibody and counterstained with DAPI to detect nuclei(n = 4). (E) Quantification of C3d staining in WT vs. C32/2 mice in normoxia
and hypoxia. Bars represent the mean 6 SD (n = 4). *P,0.05. (F) Representative Western blot for C3d in normoxic vs. hypoxic C57Bl/6J mice. (G)
Quantification of Western blots for C3d in normoxic vs. hypoxic mice. Bars represent the mean 6 SD (n = 4). *P,0.05. (H) C5a was
immunoprecipitated from lung or plasma of normoxic and hypoxic C57Bl/6J mice and analyzed by Western blot (rC5a = recombinant mouse C5a).
doi:10.1371/journal.pone.0028578.g002
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Flow Cytometry
Mouse blood was obtained via cardiac puncture at the time of

sacrifice using syringes containing 100 ul of citrate phosphate

dextrose solution and spun at room temp for 15 min at 1000 rpm

to obtain platelet rich plasma (PRP). PRP was transferred and

labeled with PE-anti-mouse-CD41 and FITC-anti-mouse-CD62P

(BD bioscience) antibodies following the manufacturer’s protocol

for ‘‘staining platelets for activation’’. PE-IgG1-k or FITC IgG1-l
were used as isotype control. Cells were analyzed by FACS

(Guava-easy-cyte *HT) using Guava Express Pro 8.1 software,

gating for CD41 positive cells (platelet marker).

Immunoprecipitation
C5a was immunoprecipitated from plasma or lung using anti-

C5a antibody conjugated to protein A/G Dynal beads (Invitrogen)

per the manufacturer’s instructions [19].

Western blot
Tissue homogenates were separated by SDS–PAGE and

transferred to nitrocellulose membranes. Membranes were

blocked in TBST (Tris buffered saline, 0.1% Tween 20), 5%

non-fat dry milk for 30 min, followed by incubation in primary

antibody. Membranes were washed in TBST before incubation for

1 h with horseradish peroxidase-conjugated secondary antibodies.

Membranes were washed and developed using enhanced chemi-

luminescence substrate (Pierce). The intensity of the bands was

quantified using Image J software (rsbweb.nih.gov/ij/).

Real time PCR
RNA was isolated after homogenization of snap frozen lungs

using the RNeasy Mini Kit (Qiagen). RNA was reverse transcribed

using random hexamers and reverse transcriptase enzyme

(Applied Biosystems). Taqman primer/probe mix for interleukin-

6, and b2 microglobulin were from Applied Biosystems. IL-6

expression was normalized to b2-microglobulin.

Statistical Analysis
Data were analyzed by Student’s T-test when comparing two

groups or by one-way ANOVA and Tukey’s post-hoc test when

comparing 3 or more groups. P,0.05 was considered significant.

Results

Complement deposition was assessed in lung sections of IPAH

or control patients by immunofluorescent staining with anti-C3d

antibody. We detected significant C3d deposition in the vascular

wall of IPAH patients whereas it was nearly undetectable in

control lungs (Fig. 1A–D). Likewise, C57BL/6J mice exposed to 3-

weeks CH, but not normoxic controls, showed significant C3d

deposition in the vascular wall (Fig. 2A–D). Quantification of C3d

staining reveals that C3d deposition was increased approximately

3.5-fold in humans (Fig. 1E) and 3.9-fold in mouse (Fig. 2E).

Figure 3. Genetic deletion of C3 attenuates CH-induced PAH in
mice. WT or C32/2 mice were exposed to CH to induce PAH. After 3
weeks (A) RVSP and (B) RVH (Fulton index), were determined. Bars
represent the mean 6 SD (n = 8–12). *P,0.05.
doi:10.1371/journal.pone.0028578.g003

Figure 4. Loss of C3 attenuates muscularization of pulmonary
arterioles in response to CH. (A–B) Representative photomicro-
graphs of lungs stained against SMA from (A) hypoxic WT and (B)
C32/2 mice. Arrows indicate muscularized arterioles. (C) Quantification
of the number of partially and fully muscularized arterioles (,100 mm)
per high power field (2006 total magnification). Bars represent the
mean 6 SD (n = 4). *P,0.05.
doi:10.1371/journal.pone.0028578.g004
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Western blot analysis of lung from normoxic and hypoxic C57BL/

6J mice showed a similar 3.5 fold increase in C3d in the hypoxic

mouse lung (Fig. 2F–G). Immunoprecipitation of C5a from plasma

or lung followed by Western blot analysis for C5a failed to detect

the C5 cleavage product suggesting that activation of complement

in chronic hypoxia is limited to C3 (Fig. 2H). Recombinant mouse

C5a served as a positive control.

We next compared the effect of CH on WT vs. C32/2 mice.

CH elicited a significant increase in RVSP in WT mice

(19.9 mmHg, normoxia vs. 34.3 mmHg, hypoxia) that was

attenuated in the C32/2 mice (18.3 mmHg, normoxia vs.

25.1 mm Hg, hypoxia) (Fig. 3A). Likewise, RVH, a normal

sequelae of increased RVSP, was attenuated in C32/2 hypoxic

mice as determined by the fulton index (0.390, WT vs. .346,

C32/2) (Fig. 3B).

Increased peripheral vascular resistance leading to elevated

RVSP and RVH is in part caused by pulmonary vascular

remodeling characterized by the muscularization and increased

wall thickness of small (.100 mm) non-muscular arterioles. C32/

2 hypoxic mice showed significantly less pulmonary vascular

remodeling compared to WT hypoxic mice. SMA staining of the

lung revealed significantly less muscularization of small peripheral

arterioles in hypoxic C32/2 mice vs. WT mice (Fig. 4). Likewise,

morphometric analysis of small peripheral arterioles revealed

significantly less thickening of the vessel wall in C32/2 mice vs.

WT mice (Fig. 5). Previous studies show that C3a, a cleavage

product of C3, stimulates aortic smooth muscle cells [20] and

genetic deletion of C3a receptor or C5a receptor attenuates

neointimal hyperplasia and vascular smooth muscle cell prolifer-

ation after arterial injury. To confirm this finding we stimulated

human aortic smooth muscle cells with C3a or C5a in the presence

or absence of platelet-derived growth factor. In our hands C3a and

C5a alone had no effect on hASMC proliferation, but enhanced

PDGF-stimulated hASMC proliferation at 10 nm. Interestingly, a

higher concentration of C3a or C5a (100 nM) had no effect on

PDGF-stimulated hASMC (Fig. 6A). In order to determine

whether C3a or C5a has a similar effect on vascular smooth

muscle cells in the pulmonary vasculature, hPASMC were exposed

to varying concentrations of C3a or C5a 6 PDGF. Neither C3a

nor C5a had any effect on hPASMC proliferation alone or in the

presence of PDGF (Fig. 6B).

Endothelial dysfunction and inflammation contribute to the

development of PH and are promoted by complement activation.

Among inflammatory cytokines, interleukin-6 (IL-6) has recently

been shown to play a prominent role in the development of

pulmonary hypertension. In WT mice CH induced an approxi-

mate 2-fold increase in IL-6 mRNA at three weeks that was

abrogated in C3 2/2 mice (Fig. 7A). In terms of endothelial

dysfunction, adhesion molecules and vasoconstrictors play impor-

tant roles in PH. We observed increases in lung intracellular

adhesion molecule 1 (ICAM-1) and plasma endothelin-1 (ET-1) in

WT mice exposed to CH. Interestingly, while the increase in

Figure 5. Loss of C3 attenuates vascular wall thickening in
response to CH. (A–B) Representative photomicrographs of muscu-
larized arterioles from (A) hypoxic WT and (B) hypoxic C32/2 mice. (C)
Quantification of the % wall thickness of peripheral arterioles
(,100 mm). Bars represent the mean 6 SD (n = 4). *P,0.05.
doi:10.1371/journal.pone.0028578.g005

Figure 6. Complement C3a and C5a do not promote hPASMC
proliferation. (A) hASMC and (B) hPASMC were treated with C3a or
C5a with or without concurrent PDGF (10 ng/ml) stimulation and
assessed for proliferation. Bars represent mean 6 SD of four individual
experiments. *P,0.05 vs. PDGF. n.s. = not significant.
doi:10.1371/journal.pone.0028578.g006
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ICAM-1 was abrogated in C3 2/2 mice the increase in ET-1 was

not (Fig. 7B–C).

The complement system interacts with the coagulation cascade

and C3 2/2 mice exhibit abnormal platelet activation.

Therefore, we were interested in determining whether the loss of

C3 would protect against platelet activation caused by CH. In

normoxia bleeding time, a reflection of platelet activation, was

significantly prolonged in C3 2/2 mice as previously described

[21]. In WT mice, CH led to a significant decrease in bleeding

time compared to normoxic mice (Fig. 8A). In contrast, CH had

no effect on bleeding time in C32/2 mice. In concordance with

decreased bleeding time, the fraction of P-selectin (a marker of

activated platelets) positive platelets in hypoxic WT mice, but not

C32/2 mice, was significantly increased compared to normoxic

control as determined by flow cytometry (Fig. 8B–F).

Previous studies demonstrate that CH in mice results in

increased TF expression and enhanced fibrin deposition [22,23].

Therefore, we further explored the interaction of the complement

system with the coagulation cascade by examining TF expression

and fibrin deposition in WT vs. C32/2 mice. In response to 3-

weeks of CH, TF expression was significantly increased in WT but

not C3 2/2 mice (Fig. 9A,B). Likewise, CH increased fibrin

deposition in WT mice but had no effect on fibrin deposition in

C32/2 mice (Fig. 10A,B). Fibrin colocalized with vWF

confirming that fibrin deposition was primarily within the vessel

lumen (Fig. 10C).

Discussion

The complement system is an evolutionarily ancient and highly

complex biological system playing a major role in body defense as

part of the innate and adaptive immune systems. The complement

system consists of three activation pathways that merge at the

proteolytic cleavage of C3, the nexus of the complement system.

Herein, we provide for the first time genetic evidence that the

complement system contributes to the development of PAH in

mice. Genetic deletion of C3 caused significant attenuation of

PAH in the mouse model of CH-induced PAH. This was

associated with attenuated pulmonary vascular remodeling and

reversal of the pro-coagulant phenotype induced by CH exposure.

Furthermore, we document the deposition of C3d, a stable C3

cleavage product, in the pulmonary vasculature of humans and

mice with PAH. While genetic deficiency may lead to chronic

phenotypic changes which may be the true pathogenetic factors,

our data strongly support a role for C3 in the pathogenesis of PH.

Activation of C3 also leads to downstream cleavage of C5 and

C5 cleavage has been shown to take place in the absence of C3 by

alternative mechanisms [19]. Our results suggest that C5 does not

play an active role in chronic hypoxia-induced PH since we were

unable to detect the C5 cleavage product C5a in plasma or lung

tissue. That being said, we can not rule out the possibility that C5

cleavage takes place at earlier time points and then dissipates by

three weeks.

The loss of C3 led to decreased pulmonary vascular remodeling

in response to CH. The complement component C3a stimulates

the proliferation of systemic vascular smooth muscle cells [20] and

genetic deletion of C3a receptor or C5a receptor attenuates

neointimal hyperplasia and vascular smooth muscle cell prolifer-

ation after arterial injury [24]. Our studies confirm a role for C3a

and C5a in enhancing PDGF-stimulated human aortic smooth

muscle cell proliferation. In contrast, C3a or C5a had no effect on

the proliferation of hPASMC. These data suggest that either

different complement components are responsible for promoting

hPASMC proliferation or that complement activation contributes

to pulmonary vascular remodeling by indirect means. Cobra

venom factor, which causes rapid activation of C3 (and then

depletion), elicits acute pulmonary vasoconstriction leading to a

transient increase in pulmonary arterial pressure [25]. Our data

suggest more chronic complement activation, which could

contribute to sustained vasoconstriction and pulmonary vascular

remodeling. In addition, TF as well as chronic exposure to fibrin

stimulates hPASMC proliferation [26]. Finally, ICAM-1 is a

ligand for lymphocyte function-associated antigen 1 (LFA-1), a

receptor found on leukocytes [27]. Activated leukocytes bind to

Figure 7. Markers of Inflammation and endothelial dysfunction
in WT vs. C3 2/2 mice. (A) IL-6 mRNA was measured by quantitative
rtPCR in RNA prepared from normoxic or hypoxic WT and C32/2 lungs.
IL-6 levels were normalized to the house keeping gene b2-micro-
globulin. (B) ICAM-1 was quantified by ELISA in lung homogenates from
normoxic or hypoxic WT or C32/2 mice. (C) ET-1 was quantified by
ELISA in plasma from normoxic or hypoxic WT or C32/2 mice. Bars
represent mean 6 SD (n = 4) for A–C. *P,0.05.
doi:10.1371/journal.pone.0028578.g007
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ECs via ICAM-1/LFA-1 allowing them to transmigrate into

tissues [28]. Also C3a and C5a are potent chemoattractants

promoting the recruitment of leukocytes. This suggests an

additional mechanism by which complement may promote

pulmonary vascular remodeling.

IL-6 has recently been shown to play a prominent role in the

development of pulmonary hypertension. Overexpression of IL-6

promotes PH in mice, where as IL-6 knockout mice are protected

from hypoxia-induced PH [29,30]. In addition, elevated serum IL-

6 concentrations have been reported in patients with idiopathic

PH or PH associated with inflammatory diseases such as

scleroderma and lupus [31,32,33]. Our data suggest that

complement activation may play a role in stimulating IL-6

production in pulmonary hypertension since IL-6 expression was

increased in hypoxic WT mice but not in C3 2/2 mice.

In contrast to IL-6 we found that the ET-1 was increased in

response to CH in both WT and C3 2/2 mice. ET-1 is a potent

vasoconstrictor and is a well established contributor to human

PAH as evidenced by the fact that the ET-1 receptor antagonist,

Bosentan, is currently used to treat PAH patients [34]. Clearly

more studies need to be performed to determine whether

complement inhibition might be a therapeutic avenue for treating

PH. However, the fact that loss of C3 attenuates PH without

affecting ET-1 levels leads to the intriguing possibility that

complement inhibition might make an effective combination

therapy with Bosentan.

Complement contributes to coagulation by augmenting inflam-

mation, promoting the TF coagulation pathway, activating

platelets, increasing TF expression, and modifying the activity of

mast cells and basophils [35]. C3 2/2 mice also exhibit defective

platelet activation in response to the thrombin receptor agonist

PAR4 peptide, but not collagen or ADP, suggesting a role for

complement in thrombin activated platelet aggregation. Interest-

ingly, pulmonary arterial hypertensive patients have increased

platelet membrane expression of PAR1 and PAR-mediated

surface exposure of P-selectin which may represent increased

propensity to thrombosis [36]. Experimental models have also

implicated platelet abnormalities in the thrombotic tendency of

PAH. In the mouse model of hypoxia-induced PAH a small

number of in situ vascular thrombi are found in the pulmonary

vasculature [37,38] and the development of monocrotaline-

induced PAH in the rat is attenuated by inducing thrombocyto-

Figure 8. Loss of C3 prevents platelet activation caused by CH. (A) Bleeding time of WT and C32/2 mice exposed to normoxia or CH (n = 5–
7). (B) Scatter plot showing platelet population in platelet rich plasma. All experiments were similarly gated to the area encircled. (C) Flow cytometry
histogram demonstrating that the gated cell population is positive for the platelet marker CD41. (D–E) Representative flow cytometry histograms of
platelets from (D) hypoxic WT or (E) hypoxic C32/2 mice stained with P-selectin antibody or isotype control. (F) Percent P-selectin positive platelets
in PRP isolated from normoxic and hypoxic WT or C32/2 mice (n = 6). Bars represent mean 6 SD. *P,0.05; n.s. = not significant.
doi:10.1371/journal.pone.0028578.g008
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penia [39]. There are only a few clinical studies of platelet function

and activation in patients with PAH. A case report described

thrombocytosis in association with increased pulmonary vascular-

specific fibrin generation and platelet activation in a patient with

PAH [40]. Moreover, urinary metabolites of thromboxane A2

(TxA2) are increased in PAH vs control subjects [41]. This is

consistent with significant platelet activation since TxA2 produc-

tion is predominantly from platelets.

In our experiments CH led to decreased bleeding time and

increased surface expression of P-selectin (CD62P) on platelets in

WT mice providing evidence of platelet activation in PAH. In

contrast, C32/2 mice had prolonged bleeding time in normoxia

as previously described, and hypoxia had no effect on bleeding

time or surface P-selectin expression in these mice. These data

suggest that complement activation contributes to platelet

activation in CH-induced pulmonary hypertension.

In addition to platelet activation, CH led to increased TF

expression and fibrin deposition in WT mice but not C32/2

mice. TF is a procoagulant protein that triggers the extrinsic

coagulation cascade leading to the generation of thrombin and

conversion of fibrinogen to fibrin. Independent of its procoagulant

activity TF also stimulates vascular cell migration and proliferation

[42,43]. Multiple lines of evidence suggest that the TF pathway

may be involved in the pathogenesis of PAH. In humans,

increased pulmonary expression of TF and an increase in TF-

bearing microparticles have been observed [44,45]. TF is also

expressed in pulmonary plexiform lesions in humans and in a rat

model of severe pulmonary hypertension [46,47]. Additionally, TF

expression is strongly induced by hypoxia, promoting pulmonary

fibrin deposition and pulmonary in situ thrombosis [22,23,48,49].

While there is little thrombosis per se in the mouse model of

CH-induced PAH, increased fibrin deposition in WT but not

C3 2/2 mice demonstrate that, in CH, complement contributes

to a pro-thrombotic environment. In addition, like TF, fibrin

Figure 9. Loss of C3 prevents hypoxia-induced TF upregula-
tion. (A) Representative Western blot analysis of normoxic or hypoxic
WT and C32/2 lungs for TF expression. (B) Densitometric anlysis of
Western blots from (A). Bars represent the mean 6 SD (n = 4 animals per
group). *P,0.05.
doi:10.1371/journal.pone.0028578.g009

Figure 10. Decreased fibrin deposition in hypoxic C32/2 mice. (A) Representative images of lung sections from normoxic or hypoxic WT or
C3 2/2 mice stained for fibrin(ogen) and nuclei (DAPI). Scale bar represents 150 mm. (B) % Area fibrin staining per total lung area (n = 4) in hypoxic or
normoxic WT or C32/2 mice. (C) Representative photomicrograph of WT hypoxic mouse lung showing colocalization (yellow to orange) of Fibrin
(green) and vWF (red). Scale bar represents 50 mm. (A, B, E). Bars represent the mean 6 SD. *P,0.05; n.s. = not significant.
doi:10.1371/journal.pone.0028578.g010
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enhances hPASMC proliferation suggesting that fibrin deposition

may play a role in pulmonary vascular remodeling [26]. It is also

interesting that activation of the coagulation cascade leads to

activation of the complement system via cleavage of C3 and C5

[50]. This suggests the intriguing possibility that in PAH there

exists a cycle of complement and coagulation system activation,

each promoting the other.

In conclusion, our data provide the first evidence for a direct

role of the complement system in the development of pulmonary

arterial hypertension. These seminal findings have the potential to

open up new areas of PAH research as well as novel therapeutic

avenues in the treatment of this deadly disease.
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