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Detection of Disease Outbreaks 
by the Use of Oral Manifestations

INTRODUCTION

T he mailing of letters containing anthrax in 2001 (Jernigan et al., 2001) and the 
emergence of Severe Acute Respiratory Syndrome in 2003 (Samaranayake 

and Peiris, 2004) have made the early detection of disease outbreaks a sig-
nificant concern. Bioterrorist and naturally occurring outbreaks require 
“extreme timeliness of detection” (Wagner et al., 2001a) to safeguard public 
health and mitigate deleterious effects.

In this study, we examine a novel data source for electronic biosurveil-
lance (Wagner, 2006): oral manifestations. Some of the diseases resulting 
from bioterrorist agents cause oral manifestations that are likely to be 
detected in dental or medical care settings, and some (Flores et al., 2003) 
have advocated a role for dentists in detecting outbreaks. Oral manifestations 
could be used for biosurveillance, especially in combination with other data, 
such as signs and symptoms of respiratory infections (Chapman et al., 2004b) 
and over-the-counter medication sales (Goldenberg et al., 2002).

Biosurveillance systems use a three-phase approach to detect outbreaks 
(Centers for Disease Control and Prevention, 2008). First, they gather early 
symptom data (Wagner et al., 2001b) from systems such as hospital medical 
records. Second, they aggregate those data in real time, creating an electronic 
signal. Third, the system issues an alarm (Duchin, 2003) when the signal 
deviates from the predicted (i.e., sudden spike in clinical cases). The alarm 
prompts public health officials to investigate and take action.

Biosurveillance systems are evaluated by assessments of sensitivity, spe-
cificity, and timeliness (Buehler et al., 2004). This evaluation is made diffi-
cult by the lack of true ‘gold standards’ (i.e., data from real outbreaks). 
Instead, detection algorithms are challenged to detect artificial spikes in the 
data from simulated outbreaks (Goldenberg et al., 2002; Reis et al., 2003; 
Wallstrom et al., 2005).

To our knowledge, this is the first study that describes a new detection algo-
rithm based on oral manifestations of bioterrorist agents. For 4 diseases (anthrax, 
botulism, smallpox, and tularemia), we developed baseline frequencies for oral 
manifestations based on clinical historical data from the Emergency Department 
at the University of Pittsburgh Medical Center. We evaluated the performance of 
the detection algorithm using simulated outbreaks.

MATERIALS & METHODS
The project consisted of 4 phases: (1) identification of signs and symptoms in the head 
and neck region caused by 4 bioterrorist agents; (2) development of an algorithm to 
retrieve emergency department reports; (3) establishment of baseline frequencies of 
oral manifestations for each disease; and (4) development and evaluation of the detec-
tion algorithm.

First, we selected the bioterrorist agents from a list of public health threats (Wagner 
et al., 2003) identified as significant by organizations such as the Defense Threat 
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absTracT
Oral manifestations of diseases caused by bioter-
rorist agents could be a potential data source for 
biosurveillance. This study had the objectives of 
determining the oral manifestations of diseases 
caused by bioterrorist agents, measuring the preva-
lence of these manifestations in emergency depart-
ment reports, and constructing and evaluating a 
detection algorithm based on them. We developed a 
software application to detect oral manifestations in 
free text and identified positive reports over three 
years of data. The normal frequency in reports for 
oral manifestations related to anthrax (including buc-
cal ulcers-sore throat) was 7.46%. The frequency for 
tularemia was 6.91%. For botulism and smallpox, the 
frequencies were 0.55% and 0.23%. We simulated 
outbreaks for these bioterrorism diseases and evalu-
ated the performance of our system. The detection 
algorithm performed better for smallpox and botu-
lism than for anthrax and tularemia. We found that 
oral manifestations can be a valuable tool for biosur-
veillance.
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Reduction Agency, Centers for Disease Control and Prevention, and the 
North Atlantic Treaty Organization. Anthrax, botulism, pneumonic 
plague, smallpox, and tularemia appeared in all source lists. We then 
searched MEDLINE (1966 to present), CINAHL (1982 to present), all 
available years in EMBASE, and the Science Citation Index for papers 
describing clinical manifestations of these diseases. One author (MHTU) 
reviewed all articles and extracted the terms describing signs/symptoms 
occurring in the head and neck region (APPENDIX 1). We included 
only manifestations that were likely to be detected either by a dentist or 
a physician during a head and neck and/or oral exam. In addition, we 
recorded the time of onset of oral relative to systemic manifestations. 
Plague was omitted because of no evidence of oral manifestations.

Second, we developed a set of synonyms and variants for the clini-
cal terms describing oral manifestations (Chapman et al., 2004a), to 
identify comprehensively the emergency department reports containing 
evidence for the diseases of interest. We drew this set from the National 
Library of Medicine’s Unified Medical Language System Metathesaurus, 
Release 2004AA. For instance, synonym-variants for the term “oral 
ulcer” included “mouth ulcer, mouth ulceration, oral ulceration, ulcera-
tion of oral mucosa, ulcer of oral mucosa, mouth ulcers, buccal ulcera-
tion”, and “ulcer buccal”. It is important to note that several diseases 
have similar signs/symptoms. This “overlap” does not necessarily affect 
the performance of our data source, since the primary purpose is to 
detect an outbreak early, not to identify the causal agent conclusively. 
Our compilation included original terms, synonyms/variants, and onset 
of oral manifestations relative to systemic manifestations (Table 1).

Third, we developed an application in Python (V. 2.4.2, http://www.
python.org/) to identify reports containing at least one term of interest. 
Our primary data sources were all 199,691 free-text emergency depart-
ment reports stored in the University of Pittsburgh Medical Center 
Presbyterian Hospital’s Medical Archiving Record System from 2001 to 
2003. The reports were de-identified (Gupta et al., 2004), and the date was 
substituted with the report’s number for the week in the year of record. Our 
application searched each report for the listed terms (Table 1). When a 
term was found, the application checked whether the term was negated 
(e.g., “lacking oral ulcers”) (Chapman et al., 2001). Once the application 
verified a positive report (i.e., that the term was not negated), it recorded 
a “hit” (case of interest) for the year and week of the report. Additional 
terms in the same report were ignored. Subsequently, the number of hits 
was plotted over time in Microsoft Excel (Redmond, WA, USA). The 
system had a sensitivity (0.98) and specificity (0.93) for term-matching 
(identification) (Torres-Urquidy, unpublished material).

Finally, our method used historical data (previous weeks) to forecast 
the number of cases for the upcoming week. The algorithm generated an 
alert if the observed number differed significantly from the forecast.

We used a four-week moving average to calculate the expected 
number of cases:

µt + 1 = 1–
4
 (Xt + Xt − 1 +…+ Xt − 3)

where Xt is the count of cases for week t. The algorithm 
generates an alert if 

Xt + 1 > µt + 1 + kσ

where k is a constant that controls the sensitivity and specificity of the 
algorithm, and σ is an estimate of the standard deviation of the forecast 
error. We computed σ empirically by calculating the standard deviation 
of the forecast errors for the previous 12 weeks (for review, see Wong 
and Moore, 2006).

The metrics we used to evaluate detection algorithms were sensitivity, 
specificity, and timeliness. Because no outbreaks of the 4 diseases 
occurred in Pittsburgh from 2001 to 2003, we simulated their effect on our 
baseline data (Wallstrom et al., 2005). For each of the 4 diseases, we 

assumed that each case had a probability of 0.4 of visiting an emergency 
department with oral symptoms. Since our surveillance system uses data 
from only one emergency department, we used published emergency 
department utilization data (Pennsylvania Department of Health, 2007) to 
estimate that each emergency department visit had a 0.0876 probability of 
being captured by our surveillance system. We estimated the case-detec-
tion sensitivity for our system as 0.9 for all 4 diseases. The above values 
imply that 3.15% of all cases would be expected to appear in the time 
series generated by our system.

We simulated outbreaks by randomly selecting a week and day of 
initial exposure. For each disease except smallpox, we assumed a uni-
form distribution of cases extending throughout the incubation period 
(anthrax, 1-7 days; botulism, 12-72 hrs; and tularemia, 3-5 days). In the 
smallpox simulation, we had to account for its high level of contagion. 
Using a four-component stochastic disease model, we selected an initial 
number of cases, and assumed that each patient infected 1.5 other indi-
viduals (Meltzer et al., 2001), that all patients remained in the region 
covered by the surveillance system, and that no intervention (e.g., quar-
antine) was undertaken. For all diseases, we estimated a probability of 
0.0315 that a case would visit the emergency department with oral 
manifestations immediately upon onset and be detected by the system. 
Simulated cases were aggregated weekly and added to the baseline 
data.

Because of the uncertainty about whether a case would visit the emer-
gency department with oral manifestations (0.4), and our system would 
detect this event (0.9), we conducted one-way sensitivity analyses on 
these two probabilities. Specifically, we measured sensitivity, specificity, 
and timeliness when the ED visit probabilities are 0.2 and 0.6 (other 
parameters unchanged). We also evaluated detection performance for 
case-detection sensitivity values of 0.8 and 1.0, leaving the other param-
eters unchanged.

For each disease, we simulated 25 outbreaks at random between 
Week 17 and Week 144. Selecting this interval provided at least 16 
weeks of training data for the algorithm and 12 weeks to observe the 
effect of each outbreak. We simulated outbreaks of anthrax, tularemia, 
and botulism with 100, 500, and 1000 cases, and for smallpox with 1, 
10, and 50 initial cases. For each simulated outbreak, we constructed a 
time series of emergency department visits, ran our detection algorithm 
on the series, and determined the number of weeks, if any, from the 
initial exposure that the algorithm produced an alert. When our algo-
rithm did not detect an outbreak, we assumed that other methods would 
finally detect it in the week following the last week of the simulated 
outbreak. We characterized overall sensitivity of detection using 
receiver operating characteristic curves that display the relationship 
between false alarm rate (controlled by the parameter k) and sensitivity. 
We also used activity monitor operating characteristic curves (Fawcett 
and Provost, 1999) to show the relationship between false alarm rate 
and detection timeliness. This analysis allows public health officials to 
evaluate a specific surveillance system according to the potential costs 
of false alarms. The University of Pittsburgh’s IRB approved this study 
as exempt (approval #0406164).

RESULTS

Readers should note that no outbreaks of anthrax, botulism, 
smallpox, and tularemia were reported in the Pittsburgh area dur-
ing the period. Nevertheless, we captured the frequency of 
related oral manifestations naturally occurring as recorded by 
physicians from 2001–2003 (Table 2). Out of a total of 199,691 
emergency department reports, 30,233 contained at least one 
term of interest. As shown (Table 2), the highest term frequencies 
were found for anthrax (including buccal ulcers, sore throat) and 
tularemia (e.g., tonsillitis), both at approximately 7%, while 
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those for botulism (dry mouth) and smallpox (enanthema) were 
relatively low (0.55% and 0.23%). This finding makes intuitive 
sense, because both anthrax and tularemia have symptoms that 
occur quite commonly in other diseases, such as the common 
cold. Inspection of the graphs displaying weekly frequencies did 
not reveal any obvious patterns, as shown in the detected reports 
with oral manifestations (Fig. 1). (End-of-year valleys are arti-
facts resulting from the de-identification process.)

Next, we report on the performance of the detection algo-
rithm (Fig. 2). The receiver operating characteristic curves show 

the algorithm sensitivity as a function of false alarms per year, 
while the activity monitor operating characteristic curves do so 
for the week of detection from the beginning of the outbreak. 
The algorithm performed best for smallpox and botulism in 
detecting actual outbreaks, especially with a large number of 
cases. For instance, the algorithm can detect a smallpox epi-
demic of 50 initial cases with a sensitivity of 80%, with slightly 
over two false alarms per year. For botulism (1000 cases), the 
false alarm rate at the same level of sensitivity is about 4/yr. The 
sensitivity characteristics for anthrax and tularemia, in contrast, 

Table 1. Oral and Head and Neck Manifestations of Bioterrorist Agents

Disease  Anthrax Botulism Smallpox Tularemia

Original term(s) buccal ulcer, dry mouth enanthema oral ulcer, tonsillitis
 hoarseness,  
 oral ulcer,
 sore throat
Synonyms and macula, aptyalia, enanthem, buccal ulceration,
  variants macule, aptyalism, enanthema, enlargement of lymph nodes,
 mouth ulcer, asialia, maculopapulae, mouth ulcer,
 papulae, asialias, mucous membrane eruption,  mouth ulceration,
 pain in the pharynx, clinical xerostomia,  papulae, oral mucositis,
 pain in throat, dry mouth, papular rash, lymphadenopathies,
 papule, hyposalivation, papule lymphatic disease, oral ulcer,
 pharyngeal pain, hyposalivations,  oral ulceration,
 pharynx discomfort, hyposecretion of salivary gland,  purulent tonsillitis 
      with lymphadenitis,
 round ulcer, mouth became dry,  ulcer buccal,
 sore throat, mouth dryness,   ulcer of the oral mucosa,
 throat discomfort, odynophagia,   ulceration of oral mucosa
 throat soreness oral dryness, 
  saliva decreased,  
  salivary hyposecretion,
  salivary secretion absent,
  salivary secretion decreased,
  xerostomia,
  xerostomias
Time of onset simultaneous simultaneous, patient may be 24 hrs before the systemic simultaneous 
  relative to    prompted to visit the ED   rash 
  systemic    because of the oral 
  manifestations    manifestations

Table 2. Frequency of Emergency Department Reports Containing Terms Describing Oral Manifestations of Diseases Caused by Bioterrorist 
Agents during 2001–2003

Year  2001 2002 2003 Total

ED Reports   61,808 68,046 69,837 199,691
Anthrax Frequency #  5256 5009 4627 14,892
  % 8.50 7.36 6.63 7.46
 Weekly mean #  99.1 94.5 87.3 93.6
Botulism Frequency #  506 293 296 1095
  % 0.82 0.43 0.42 0.55
 Weekly mean #  9.7 5.6 5.5 7.25
Smallpox Frequency #  118 163 171 452
  % 1.91 0.24 0.24 0.23
 Weekly mean #  2.22 3.13 3.28 2.87
Tularemia Frequency #  4,520 4,666 4,608 13,794
  % 7.31 6.86 6.60 6.91
 Weekly mean #  85.28 88.03 86.94 86.75
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resemble the line of no discrimination, indicating poor perform-
ance of our algorithm. The activity monitor operating character-
istic curves present a similar impression with regard to timeliness 
of detection. For instance, a botulism outbreak (500 cases) is 
detected within one week at a false alarm rate of 4/yr. Smallpox 
outbreaks take longer to detect (between 6 and 7 wks) at the 
same false alarm rate. For anthrax and tularemia, detection 
timeliness ranges between 2 and 3, and 1 and 2 wks, respec-
tively, given 4 false alarms/yr. However, the poor sensitivity of 
the algorithm for the two diseases reduces its application.

The sensitivity analyses showed that the sensitivity and time-
liness were impervious to changes in case-detection sensitivity 
and moderately sensitive to large changes in the probability of 
reporting oral symptoms (APPENDICES 2-5). For example, the 
time to detect a botulism outbreak with 500 cases and 4/yr false 
alarms varied from 1.03 to 0.95 and 1.11 wks when the case-
detection sensitivity was changed from 0.9 to 0.8 and 1.0, 
respectively. However, when the probability of reporting oral 
symptoms varied from 0.4 to 0.2 and 0.6, timeliness changed to 
0.74 and 1.48 wks.

DISCUSSION

This study characterized the frequency of oral manifestations in 
a population and developed a model for the detection of bioter-
rorist attacks by monitoring these manifestations in emergency 
department reports. In this model, the performance differential 
among different diseases may have occurred for several rea-
sons. One major factor is that oral manifestations for smallpox 
and botulism occurred much less frequently (0.23% and 0.55%, 
respectively) in emergency department reports at baseline than 
those for anthrax and tularemia (7.46% and 6.91%). Any 
increase in corresponding oral manifestations thus had a propor-
tionally larger effect for smallpox and botulism than for anthrax 
and tularemia. Second, the incubation periods for anthrax and 
tularemia are much longer than for the other two diseases. The 
uniform distribution of simulated cases over the incubation 
period thus “diluted” the signal compared with the diseases with 
a shorter incubation period. In the case of smallpox, the highly 
contagious nature of this disease had the effect of amplifying 
the initial signal rapidly, and thus may be primarily responsible 
for the superior performance of the algorithm.

The main objective of this study was to identify certain oral 
manifestations and explore the feasibility of using these as a 
data source for biosurveillance, not to construct a definitive 
algorithm. As such, our model is contingent on assumptions for 
which, at present, little support exists. First, our assumptions 
about oral manifestations of bioterrorist diseases are based on a 
literature review, not on systematic studies conducted by oral 
health researchers. Future studies should focus on determining 
oral manifestations in detail, and how health professionals 
report them. Second, we do not know how likely it is that 
patients would seek care for oral manifestations during an out-
break. With the exception of those for smallpox, none is prodro-
mal, making systemic manifestations equally useful for 
monitoring. Third, the ‘moving average’ analysis we used is 
only one approach for detection. More sophisticated univariate 
detection methodologies exist, and other factors, such as day- 
of-week effects and seasonality, should be utilized in refining 

Figure 1. Detected reports with oral manifestations.
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Figure 2. Performance of the detection algorithm.
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the algorithm. Last, the lack of data from real outbreaks limited 
our ability to evaluate the proposed detection system. A reason-
able approach in leveraging our method would be to combine the 
developed signal with others to improve detection performance.

In conclusion, our study determined the prevalence of specific 
oral manifestations in a population and showed that this is a viable 
novel method for their monitoring. In this way, dentists and physi-
cians could contribute to effective and efficient biosurveillance.

ACKNOWLEDGMENTS

The authors thank Wendy Chapman, Rebecca Crowley, Melissa 
Saul, and Robert Weyant for their assistance. M.H.T.U. received 
support from CONACyT, Mexico (#167967) and NIDCR/NIH 
(1R21DE018548-01). G.W. was supported by a grant from the 
CDC (R01PH000025). This work is solely the responsibility of 
its authors and does not necessarily represent the views of the 
funding sources. Preliminary results of this project were pre-
sented as a poster at the 84th General Session & Exhibition of 
the IADR (2006) in Brisbane, Australia.

REFERENCES
Buehler JW, Hopkins RS, Overhage JM, Sosin DM, Tong V, CDC Working 

Group (2004). Framework for evaluating public health surveillance 
systems for early detection of outbreaks: recommendations from the 
CDC Working Group. MMWR Recomm Rep 53:1-11.

Centers for Disease Control and Prevention (2008). Syndromic surveillance: 
an applied approach to outbreak detection. http://www.cdc.gov/ncphi/ 
disss/nndss/syndromic.htm (accessed Sept 24, 2008)

Chapman WW, Bridewell W, Hanbury P, Cooper GF, Buchanan BG (2001). 
A simple algorithm for identifying negated findings and diseases in 
discharge summaries. J Biomed Inform 34:301-310.

Chapman WW, Dowling JN, Wagner MM (2004a). Fever detection from free-
text clinical records for biosurveillance. J Biomed Inform 37:120-127.

Chapman WW, Fiszman M, Dowling JN, Chapman BE, Rindflesch TC 
(2004b). Identifying respiratory findings in emergency department 
reports for biosurveillance using MetaMap. Stud Health Technol Inform 
107(Pt 1):487-491.

Duchin JS (2003). Epidemiological response to syndromic surveillance 
signals. J Urban Health 80(2 Suppl 1):i115-i116.

Fawcett T, Provost F (1999). Activity monitoring: noticing interesting 
changes in behavior. Proceedings of the Fifth International Conference 
on Knowledge Discovery and Data Mining. http://doi.acm.org/ 
10.1145/312129.312195 (accessed Sept 24, 2008)

Flores S, Mills SE, Shackelford L (2003). Dentistry and bioterrorism. Dent 
Clin North Am 47:733-744.

Goldenberg A, Shmueli G, Caruana RA, Fienberg SE (2002). Early statisti-
cal detection of anthrax outbreaks by tracking over-the-counter medica-
tion sales. Proc Natl Acad Sci USA 99:5237-5240.

Gupta D, Saul M, Gilbertson J (2004). Evaluation of a deidentification 
(De-Id) software engine to share pathology reports and clinical docu-
ments for research. Am J Clin Pathol 121:176-186.

Jernigan JA, Stephens DS, Ashford DA, Omenaca C, Topiel MS, Galbraith 
M, et al. (2001). Bioterrorism-related inhalational anthrax: the first 
10 cases reported in the United States. Emerg Infect Dis 7:933-944.

Meltzer MI, Damon I, LeDuc JW, Millar JD (2001). Modeling potential 
responses to smallpox as a bioterrorist weapon. Emerg Infect Dis 
7:959-969.

Pennsylvania Department of Health (2007). Data from the Annual Hospital 
Questionnaire, Reporting Period July 1, 2001—June 30, 2002. 
Pennsylvania Department of Health, Bureau of Health Statistics and 
Research. http://www.dsf.health.state.pa.us/health/lib/health/facilities/ 
hosamb/2001-2002/H0204.PDF. (accessed Sept 24, 2008)

Reis BY, Pagano M, Mandl KD (2003). Using temporal context to improve 
biosurveillance. Proc Natl Acad Sci USA 100:1961-1965.

Samaranayake LP, Peiris M (2004). Severe acute respiratory syndrome and 
dentistry: a retrospective view. J Am Dent Assoc 135:1292-1302.

Wagner MM (2006). Introduction. In: Handbook of biosurveillance. Wagner 
MM, Moore AW, Aryel RM, editors. Burlington: Elsevier Academic 
Press, pp. 3-12. 

Wagner MM, Tsui FC, Espino JU, Dato VM, Sittig DF, Caruana RA, et al. 
(2001a). The emerging science of very early detection of disease out-
breaks. J Public Health Manag Pract 7:51-59.

Wagner M, Aryel R, Dato VM, Krenzelok E, Fapohunda A, Sharma R 
(2001b). Availability and comparative value of data elements required 
for an effective detection system. Contract No. 290-00-0009. Rockville, 
MD: Agency for Healthcare Research and Quality.

Wagner MM, Dato V, Dowling JN, Allswede M (2003). Representative 
threats for research in public health surveillance. J Biomed Inform 
36:177-188.

Wallstrom GL, Wagner M, Hogan W (2005). High-fidelity injection detecta-
bility experiments: a tool for evaluating syndromic surveillance sys-
tems. MMWR Morb Mortal Wkly Rep 54(Suppl):85-91.

Wong WK, Moore AW (2006). Classical time-series methods for biosur-
veillance. In: Handbook of biosurveillance. Wagner MM, Moore AW, 
Aryel R, editors. Burlington: Academic Press, pp. 217-234.


