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Abstract

A hallmark of severe sepsis is systemic inflammation which activates leukocytes and can result in their misdirection. This
leads to both impaired migration to the locus of infection and increased infiltration into healthy tissues. In order to better
understand the pathophysiologic mechanisms involved, we developed a coarse-grained phenomenological model of the
acute inflammatory response in CLP (cecal ligation and puncture)-induced sepsis in rats. This model incorporates distinct
neutrophil kinetic responses to the inflammatory stimulus and the dynamic interactions between components of a
compartmentalized inflammatory response. Ensembles of model parameter sets consistent with experimental observations
were statistically generated using a Markov-Chain Monte Carlo sampling. Prediction uncertainty in the model states was
quantified over the resulting ensemble parameter sets. Forward simulation of the parameter ensembles successfully
captured experimental features and predicted that systemically activated circulating neutrophils display impaired migration
to the tissue and neutrophil sequestration in the lung, consequently contributing to tissue damage and mortality. Principal
component and multiple regression analyses of the parameter ensembles estimated from survivor and non-survivor cohorts
provide insight into pathologic mechanisms dictating outcome in sepsis. Furthermore, the model was extended to
incorporate hypothetical mechanisms by which immune modulation using extracorporeal blood purification results in
improved outcome in septic rats. Simulations identified a sub-population (about 18% of the treated population) that
benefited from blood purification. Survivors displayed enhanced neutrophil migration to tissue and reduced sequestration
of lung neutrophils, contributing to improved outcome. The model ensemble presented herein provides a platform for
generating and testing hypotheses in silico, as well as motivating further experimental studies to advance understanding of
the complex biological response to severe infection, a problem of growing magnitude in humans.
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Introduction

Sepsis is defined as infection accompanied by signs of systemic

inflammation, such as fever, tachycardia, tachypnea, or an

abnormal white blood cell count [1]. The complex pathophysi-

ological interaction network of sepsis and its systemic nature

involve many inflammatory mediators including a number of cell

types, tissues and organs, making it difficult to fully understand the

exact mechanisms contributing to its high mortality and morbidity

despite recent progress in underlying molecular mechanisms.

Furthermore, a highly variable clinical presentation significantly

hampers timely diagnosis and treatment of patients with severe

sepsis and adds another layer of complexity. [2,3].

Adequate recruitment of neutrophils to sites of infection is one of

the early and important features of a successful immune response.

Mounting evidence suggests that severe sepsis is characterized by

impaired neutrophil migration to the primary infected site and

deleterious accumulation of neutrophils in distant, yet uninfected

organs, resulting in organ dysfunction and death [4,5]. Neutrophil

migration to a site of bacterial infection occurs through a highly

coordinated sequence of stages. Circulating quiescent neutrophils are

first primed by interacting with inflammatory mediators that have

entered the circulation as a consequence of a large local production

by dedicated tissue macrophages at the site of infection and

subsequent spill over of these mediators in tissue capillaries. Primed

neutrophils express integrins, surface molecules that can interact with

similarly activated capillary endothelial cells, resulting in rolling and

activation. Activated neutrophils adhere to endothelial cells followed by

transmigration into tissue [6,7]. This delicate coordination is achieved

through paracrine cell-cell communication, effected by chemokines

and cytokines, which when present in large quantities, results in

distant endocrine effects such as systemic manifestations of

inflammation, distant organ endothelial activation, and overwhelm-

ing activation of neutrophils, all contributing to dysregulated

neutrophil trafficking [5,6]. Quiescent, primed, and activated

neutrophils carry distinct surface molecules which can be experi-

mentally identified, and which also play important functional roles

such that specific signatures of neutrophil receptors can quantify the

stage and appropriateness of the systemic inflammatory response. For

example, excessive neutrophil activation leads to sequestration in

distant organs and promotes tissue damage by release of reactive

oxygen and nitrogen species nefarious to healthy cells [8,9].
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To better understand the pathophysiologic mechanisms involved,

we developed a population-based computational framework that

incorporates distinct neutrophil kinetic responses in a compartmen-

talized model of CLP (cecal ligation and puncture)-induced sepsis in

rats. Experimentally constrained model ensembles were generated

to represent a heterogeneous population, data uncertainty and other

unexplained sources of variability. We previously showed that

uncertain deterministic ensembles collectively exhibited population-

like behavior and suggested deterministic ensembles could be a

coarse-grained strategy to model population heterogeneity [10]. We

explored population heterogeneity using multivariate comparative

analyses of the parameter ensembles from different phenotypes

(survivors and non-survivors) and identified mechanisms that may

play an important role in the expression of such phenotypes.

The primary motivation of this work is the experimental

observation that one form of extracorporeal blood purification,

known as hemoadsorption (HA), was found to be beneficial in

animal models of sepsis, including endotoxic shock [11] and CLP

[12]. HA is a non-specific immunomodulatory intervention that

successfully removes circulatory molecular effectors [11]. Recent

evidence suggests that it may also directly impact neutrophil

behavior, either by direct adsorption to the filter, or indirectly by

altering immune signaling. HA is observed to decrease lung

accumulation of neutrophils and improve outcome [13], but the

underlying mechanisms remain elusive. The mathematical model

constructed herein provides a physiologic rationale that explains

such experimental observations and constitutes an in silico platform

for generating and testing immunomodulatory interventions for

sepsis. Presumably, insight as to dominant mechanisms at work

would guide the rational engineering of improved HA devices

resulting in an enhanced impact on outcome.

Results

Overview
We developed a compartmentalized, coarse-grained phenome-

nological model of the inflammatory response to an invading

pathogen in the specific context of CLP-induced sepsis in rats.

Model parameters sets were optimized to reproduce the time

courses of mean plasma measurements from a cohort of septic rats,

while insuring that some basic heuristic behaviors of the system in

accord with published literature were maintained [14]. Because of

population variability and other sources of uncertainty, we

generated population-based ensemble models (survivor and non-

survivor populations) which describe distinct distributions of

parameter sets consistent with their experimental observations

and heuristics. These ensembles were statistically generated using

Markov-Chain Monte Carlo (MCMC) sampling of their posterior

parameter distributions. Convergence diagnostics was applied to

support that the sampling process had reached equilibrium.

Prediction uncertainties in the model states were quantified over

the resulting ensemble.

Simulation of the model ensembles successfully reproduced

experimental observations and desired heuristic behaviors, and

suggests that systemic activation of circulatory neutrophils impair

their migration to primarily infected tissue, while promoting

sequestration in lung tissue favoring local damage and presumably,

mortality. Statistical analysis of the model ensembles obtained for

separate populations provided useful insights as to key pathologic

mechanisms associated with mortality in sepsis.

We next simulated a hypothetical blood purification interven-

tion on the calibrated model ensemble. Simulations suggest that

this therapy might improve targeting of primed neutrophils to the

primary site of infection while interfering with lung sequestration

of activated neutrophils, but that there is also a potential for harm

in animal with poorly responsive immune systems.

The dynamics of sepsis following CLP in rats
We hypothesized that dysregulated neutrophil trafficking in

severe sepsis may contribute to mortality [15]. We therefore

developed a model of the acute innate response to an infectious

challenge, with special emphasis on neutrophil trafficking and

phenotypic variation. The network components and interactions

were assembled based on qualitative domain knowledge of the

acute inflammatory response, including multiple phenotypes of

neutrophils and major effectors in three compartments: blood,

peritoneum, and lung (Figure 1). To capture impaired recruitment

of neutrophils, one of the key pathophysiologic features in severe

sepsis, coarse-grained mechanisms influencing neutrophil migra-

tion were included in the model. In the blood compartment,

neutrophils can be characterized as belonging to one of three

phenotypes: resting, primed, and systemically activated. While

primed blood neutrophils migrate to the site of infection and

become activated locally in tissue, blood neutrophils activated in

the circulation have an impaired ability to migrate to infected

tissue because they possess fewer essential chemokine receptors.

We chose the lung as a preferred site for the accumulation of

activated blood neutrophils due to the long and narrow

microvascular bed and in accord with experimental data [16].

As a result, systemically activated blood neutrophils are easily

sequestered in lung capillaries. Sequestered activated neutrophils

can then migrate into the lung tissue when lung vascular

endothelium becomes activated by systemically circulating inflam-

matory mediators. The network of interactions included in the

model includes 19 variables and 57 parameters. Although some

parameter values were available from literature, most of them

represent lumpedprocesses and therefore not directly available

from published experimental studies.

Experimental data were collected from CLP-induced sepsis in

rats (n~23), consisting of eight longitudinal measurements of key

cytokines and damage-related markers in blood (see Materials and

Author Summary

The pathophysiology of sepsis is complex and our
mechanistic understanding remains incomplete. Mathe-
matical models of the inflammatory response have been
providing intellectual frameworks to reason about the
complexity of sepsis. Due to an incompletely understood
system along with very limited data, our approach focuses
on building simplified, falsifiable and predictive models,
and offers a means to quantify parametric uncertainty.
Based on the construct that deterministic ensemble
models exhibit population-like behavior, we developed a
population-based computational framework that incorpo-
rates dysregulated neutrophil hyperactivity as a cellular
dysfunction in septic processes. We hypothesize that
probability distributions of physiological parameters con-
ditional on population observations can characterize the
range of possible physiologic responses in a population.
Comparing the parameter ensembles from different
phenotypes reveals some factors that play an important
role in the expression of such phenotypes, such as sepsis
survival. This framework can serve as an effective tool to
gain insight into the pathophysiology of severe sepsis and
generate testable hypotheses that guide future experi-
ments. Our approach holds promise as a tool for
integrating domain knowledge and experimental data
into a quantitative assessment of population dynamics.

Ensemble Models of Sepsis
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Methods). Seven rats (30%) survived to seven days (the survivor

population), while the remaining animals died between two and

five days after CLP (the non-survivor population). In addition to

the experimental data, we used the two qualitative constraints to

define survival for in silico septic rats: at the end of the simulation

time (200 hours), both the following constraints should be satisfied:

(1) the number of bacteria (B) is less than Bmin which was set to

1:0e5 (CFU/ml), (2) the value of systemic inflammation (PI ) is less

than 0.5 (see Materials and Methods). Otherwise rats were

considered non-survival. To explore the ability of the model to

synthesize the inflammatory responses of both the survivor and the

non-survivor populations, we estimated a model ensemble

separately for each population without changing model structure

or initial conditions. In other words, it is assumed that the

experimental settings are identical for both populations and the

differences in the inflammatory responses of the two populations

can be adequately represented by model parameterization.

Ensemble methods have been developed to approach ill-posed

inverse problems in fields as diverse as systems biology, weather

forecasting, and nuclear reaction modeling [17–20]. Furthermore,

experimentally constrained model ensembles could capture qualita-

tively important network features without exact parameter informa-

tion [10]. The multiple starting points for the construction of the

model ensemble were constructed as initial parameter sets that

produced simulations reasonably close to experimental data, while

exhibiting behaviors compatible with heuristic domain knowledge

(summarized in Table 1, 2). To ensure consistent observation

mappings for both the survivor and non-survivor populations, only

the 34 model parameters in Table 1 among the total parameters

were allowed to be sampled by MCMC chains and the other

parameters were kept in their baseline distribution. Five million

parameter sets for each population (survivor and non-survivors) were

sampled from five MCMC chains initiated from different starting

points randomly chosen from the baseline parameter distribution

(Figure 2).

To estimate whether stationarity had been achieved in the

MCMC chains, we preformed Gelman-Rubin diagnostics, com-

puting the potential scale reduction factor (PSRF) for each

parameter [21]. The Gelman-Rubin diagnostics tests whether

parallel chains converge to the same posterior distribution. PSRF is

defined as the square root of the ratio of the between-chain variance

and the within-chain variance. A large PSRF indicates that the

between chain variance is substantially greater than the within-

chain variance, so that more samples are needed. Approximate

convergence was diagnosed as the PSRFs of all parameters were

close to one.

The proposed model reproduced quantitative dynamic features

observed in CLP-induced septic rats, verifying the description of

the model reflects the inflammatory responses in CLP-induced

septic rats (Figure 3). Instead of exploring explicit interactions

among observation variables due to the lack of kinetic and causal

information, each experimental observation was nonlinearly

mapped from its high level coarse-grained state variable (see

Materials and Methods). These mapping functions, which include

16 parameters (Table 2), should be consistent in both survivor and

non-survivor populations and estimated in a way that minimizes

the sum of cost functions for both populations. Some observation

points are out of the 5%–95% quantiles, e.g. the early time points

of Lsel and ALT in 3, suggesting our proposed structure may be

too simple to capture finer dynamic details of the biological

process. In particular, HMGB1, CRT, and ALT are collectively

used to constrain the damage state in the model. This coarse-

grained approach does not allow the independent dynamic

mapping of three observables from the single damage state.

However, the general trends were well captured by the model,

suggesting that our phenomenological description could be used to

explore the general inflammatory response to CLP.

Impaired neutrophil migration to infected tissue and deleterious

neutrophil accumulation in lung were predicted in the simulation

of the non-survivor population. It should be emphasized that the

model prediction of dysregulated neutrophil trafficking is an

emergent property of the model since no neutrophil data were

used to constrain model behavior (Figure 3: panels Nl, Ns, and Nt).

In other words, the proposed mechanism of action about

functionally heterogeneous neutrophil populations was consistent

with experimental evidence not used in model training.

Multivariate analysis of the model parameter ensembles
Principal component analysis. The model parameters and

their correlations reflect the influence of internal and external

factors on the model. To explore potential factors that can

differentiate the survivor population from the non-survivor

population, we analyzed and compared the model parameter

ensembles derived from the survivor and non-survivor cohorts. In

the setting of parameter estimation of complex models, it has been

well recognized that model behavior is very sensitive to a few

directions called stiff directions and insensitive to the others, so-

called sloppy directions [22]. The stiff directions represent

parameter combinations that are well constrained by the

experimental observations and affect the cost function the most.

These stiff and sloppy directions are identified by performing

principal component analysis (PCA) on the Hessian of the cost

function. Hessians were approximated by inverting the empirical

covariance matrices of the survivor and non-survivor parameter

Figure 1. Interaction network of inflammatory responses in
CLP-induced sepsis. Network nodes in different colors represent key
network components in separate compartments (yellow: peritoneum,
red: blood, and blue: lung). Edges represent network interactions
compiled from literature (see text for details). Total 19 state variables
including 8 observables. CLP, cecal ligation and puncture; B, bacteria;
Nt, peritoneal neutrophil; Nr, resting blood neutrophil; Np, primed
blood neutrophil; Na, activated blood neutrophil; PI, systemic pro-
inflammatory response; AI, systemic anti-inflammatory response; Ns,
neutrophil sequestered in lung capillaries; Nl, lung neutrophil; Lsel, L-
selectin; HMGB1, High-mobility group protein B-1; CRT, creatinine; ALT,
alanine aminotransferase; TNFa, tumor necrosis factor-a; IL1b, interleu-
kin-1 b; IL6, interleukin-6; IL10, interleukin-10.
doi:10.1371/journal.pcbi.1002422.g001
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ensembles [17]. The eigenvalues measure the total variability

explained by each principal component and the eigenvectors

corresponding to the largest eigenvalues denote the stiffest

directions in the shape of the cost manifold, or the parameter

combinations that best characterize the inflammatory response. A

few principal components carry most of the observed variability,

and therefore the eigenvectors corresponding to these eigenvalues

also display the most difference between the survivor and non-

survivor ensembles (Figure 4 (A)). Contrasting eigenvectors

between the survivor and non-survivor ensembles illustrates key

differences between the survivor and non-survivor ensembles.

The coefficients of the linear combinations of the original

variables contributing to the first three largest principal compo-

nents, which represents the individual parameter’s contributions to

the corresponding principal components, are illustrated in Figure 4

(panels B, C, D). Large absolute magnitude of a coefficient (in

either survivor, x-axis, or non-survivor, y-axis) imply major

contributions of that parameter to the principal component

direction. Deviations from the diagonal line indicate the

parameters that lead to different behaviors between the survivor

and non-survivor models. These comparative plots between the

survivor and non-survivor populations reveal parameter subsets

that characterize mechanisms associated with mortality in the non-

survivor population. This is especially applicable to the first

principal components, but not exclusively given the non-negligible

nature of other components to total variability in Figure 4 A. In

Table 1. Model parameters used for the baseline case.

ID Name Value (m++s) Unit Description

1 hPI{B 0:0128+0:00369 none PI activation by bacteria

2 hPI{D 0:0928+0:0214 none PI activation by damage

3 hPI{AI 0:610+0:125 none PI inhibition by AI

4 tPI 11:8+4:75 hr PI decay

5 hAI{PI 0:741+0:120 none AI activation by PI

6 hAI{Na
0:103+0:0377 none AI activation by Na

7 tAI 7:94+4:56 hr AI decay

8 tBM 3.22e-06+1.17e-06 hr basal neutrophil release from bone marrow reserve

9 hBM{B 0:00949+0:0043 none neutrophil release activation by bacteria

10 tBM{Nr
3.15e-07+1.29e-07 hr maximum neutrophil release from bone marrow reserve in

infection

11 tNr
9:63+3:04 hr resting blood neutrophil death

12 hNr{Np
0:00974+0:00403 cells/ml blood neutrophil priming by bacteria

13 tNr{Np
0:472+0:187 hr blood neutrophil priming

14 hNr{Na
0:62+0:176 none blood neutrophil activation by PI

15 tNr{Na
2:80+1:22 hr blood neutrophil activation

16 tNp
11:1+3:26 hr primed neutrophil death

17 hNp{Na
0:691+0:183 none primed neutrophil activation by PI

18 tNp{Na
3:31+1:24 hr primed neutrophil activation

19 tNp{Nt
10:9+3:61 hr neutrophil migration to tissue

20 tNa
9:29+3:18 hr activated blood neutrophil death

21 hNa{Ns
0:629+0:16 none activation of neutrophil sequestration by PI

22 tNa{Ns
5:1+1:70 hr neutrophil sequestration

23 tNs
9:46+2:94 hr sequestered neutrophil death

24 tNs{Nl
20:3+7:46 hr primed neutrophil migration

25 hN{B 0:00105+0:000333 cells/ml activation of neutrophil migration to tissue

26 hN{PI 0:723+0:174 hr inhibition of neutrophil migration to tissue

27 tN 35:9+11:3 hr tissue neutrophil death

28 hNs{Nl
0:312+0:115 none sequestered neutrophil migration to lung

29 tNl
43:8+12:9 hr lung neutrophil death

30 ka
D{Ns

0:521+0:17 none damage activation by sequestered neutrophil

31 ka
D{Nl

0:49+0:18 none damage activation by lung neutrophil

32 tD 44:5+12:5 hr damage resolution

33 sCLP 9.40e+07+3.04e+07 numbers/ml/hr Bacteria producing rate by CLP

34 sN 6.61e-08+1.38e-08 ml/neu/hr Rate of bacteria removal by migrated neutrophils

h: activation/inhibition constant.
t: time constant.
doi:10.1371/journal.pcbi.1002422.t001
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Figure 4 B, parameters 1 (PI activation threshold by bacteria), 3

(PI inhibition threshold by AI), and 22 (time constant of neutrophil

sequestration) that are aligned with the diagonal line are major

contributors to the first principal components of both populations.

It is also noted that most components lies along this diagonal,

suggesting that that the immune response to sepsis triggers similar

mechanisms, in first approximation, in survivors and non-

survivors. On the other hand, parameters 5 (AI activation

threshold by PI) and 32 (time constant of damage resolution) are

off-diagonal and contribute more to the non-survivor ensemble

than the survivor ensemble, suggesting that unbalanced anti-

inflammatory response and damage resolution contribute to death.

In addition, parameters 19 (time constant of neutrophil migration

to tissue) and 13 (time constant of blood neutrophil priming) are

stronger contributors to the survivor ensemble, suggesting prompt

neutrophil response to infection is a critical element for survival.

Larger deviations were observed in the directions of principal

components 2 and 3, as shown in Figure 4 C and D. Many of the

parameter incongruences between survivor and non-survivor

ensembles pertain to the regulation of pro- and anti-inflammatory

regulators (1, 2, 3, 4, 5), indicating that differential dynamics is

encapsulated in regulatory influences, rather than the main drivers

of the inflammatory response.

Multivariate correlation analysis. While the correlation

matrix provides merely bivariate information, the inverse

correlation matrix reveals true multivariate interactions. The

diagonal elements of the inverse of the correlation matrix are

directly related to the multiple correlation of each parameter with

the other parameters [23] (Equation 25 in the Materials and

Methods). The coefficient of multiple correlation (Rk) for the

parameter k, ranging from 0 to 1, quantifies the extent of multiple

correlation between the parameter k as the dependent variable

and all of the other parameters as the independent variables: the

larger the value of the multiple correlation coefficient, the stronger

the association with all other parameters as a whole. Given that

the parameter ensemble was estimated around the minima of the

cost function, parameters with very small multiple correlation

coefficients which are nearly independent of the other parameters

behave like noises with respect to the cost function and could be set

to constants in a model reduction exercise [24]. Figure 5 A
compares the Rk of the 34 model parameters for the survivor and

non-survivor ensembles. The most notable feature of this

comparative plot is that many parameters in the non-survivor

population lose their multiple correlations with other parameters.

This observation can be interpreted as potentially indicative of a

loss of survival-associated regulation as characterized by weaker

mechanistic cross-talk among inflammatory processes in the non-

survivor ensemble. Interestingly, three parameters (5: AI activation

by PI, 7: AI decay, 32: damage resolusion) showed increased

multiple correlations, also suggesting these parameters represent

mechanisms playing significant roles leading to death. These

results are in line with the previous finding from PCA where

Table 2. Observation mapping parameters and other constants in the model.

ID Name Value (m++s) Unit Description

35 hTNF 0:576+0:107 none activating TNFa by PI

36 tTNF 3:88+1:55 hr TNFa decay

37 hIL1 0:228+0:054 none activating IL-1b by PI

38 tIL1 15:8+2:76 hr IL-1b decay

39 hIL6 0:397+0:123 none activating IL-6 by PI

40 tIL6 9:40+2:00 hr IL-6 decay

41 hIL10 0:724+0:15 none activating IL-10 by PI

42 tIL10 0:133+0:0233 hr IL-10 decay

43 hLsel 0:0111+0:00512 none activating Lsel by PI

44 tLsel 24:8+4:15 hr Lsel decay

45 hHMGB1 0:166+0:049 none activating HMGB1 by PI

46 tHMGB1 0:134+0:0237 hr HMGB1 decay

47 hCRT 0:660+0:141 none activating CRT by PI

48 tCRT 0:135+0:025 hr CRT decay

49 hALT 0:149+0:0406 none activating ALT by PI

50 tALT 0:163+0:0382 hr ALT decay

Constant parameters

51 sB 0.1 1/hr Rate of bacterial growth

52 sM0 0.1 1/hr Rate of bacterial removal by resident macrophages

53 B? 1.0e9 CFU/ml Maximum bacteria in tissue

54 Bmin 1.0e5 CFU/ml Bacteria concentration in tissue controlled by local
Macrophages (see text)

55 N? 2.0e7 cells/ml Maximum neutrophil in tissue

56 RVb=Vt
34.4/25 none Volume ratio of blood and tissue

57 RVb=Vl
34.4/48 none Volume ratio of blood and lung

h: activation/inhibition constant t: time constant.
doi:10.1371/journal.pcbi.1002422.t002
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prompt anti-inflammatory responses and damage resolution are

critical element in survival.

Each element of the inverse correlation matrix is also directly

related to a partial correlation [23]. Partial correlation analysis

explores the linear relationship between two variables after

adjusting for the effect of all other parameters, providing a more

accurate reflection of the bivariate relationship between these

parameters. The survivor ensemble included significantly more

partial correlation than the non-survival ensemble (Figure 5 B).

The parameter pairs that displayed statistically significant changes

in their partial correlations between two ensembles (pv0:01) were

categorized into three groups: lose correlation, gain correlation, and flip

correlation (5 C). The parameter pairs in the lose correlation group

significantly lose their partial correlations in the non-survivor

population. gain correlation implies the opposite. The parameter

pairs in the flip correlation group change their direction of

correlations (positive or negative) between two population. Sixty

percent of the significant changes are found in the lose correlation

group, which confirms the previous finding that a loss of regulation

(correlation) in the non-survivor population is associated with

mortality. We also identified some key parameters that are

frequently involved in the significant changes of pair correlations.

Among them are parameters 19 (time constant for neutrophil

migration), and 13 (time constant for neutrophil priming),

suggesting again that coordinated neutrophil functions are critical

for survival. The most significant loss of correlation was observed

in the pair of parameters 13 and 1 (PI activation threshold by

bacteria), suggesting that a positive correlation between the PI

activation threshold and the time constant for blood neutrophil

priming is essential for survival (Table 3). In other words,

parameter sets which become more susceptible to systemic

inflammation require more prompt neutrophil priming. The same

line of interpretation can be inferred for the parameter pair 1 and

19.

Blood purification in sepsis: hypothetical mechanisms of
action

Although blood purification using HA results in important

survival benefits in animal models of sepsis [11,13,25], our early

attempts at understanding mechanisms through modeling sug-

gested that cytokine removal alone was inadequate to explain the

experimental findings [26,27]. We confirmed this experimentally

Figure 2. Box plot of parameter distributions for the survivor and non-survivor models.
doi:10.1371/journal.pcbi.1002422.g002
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by scaling down cytokine removal below that which resulted in

acute changes in circulating mediators and still found reduced

organ injury and improved survival [12]. We then extended the

model to include elimination of these inflammatory effector from

the circulatory compartment by a hypothetical HA device. We

hypothesized that the HA device adsorbs activated neutrophils

(Na) as well as pro- and anti-inflammatory mediators (PI and AI)

from the circulation. To emulate reported experimental work [12],

we simulated four hours of treatment starting at 18 hrs after CLP

using a random set of 10000 parameter vectors sampled from the

non-survivor ensemble. Output profiles were classified into

survivor and non-survivor populations based on a 7-day value of

PIw0:5. Figure 6 compares the non-survivor ensemble (shams) to

survivors and non-survivor sub-ensembles obtained after treating

shams with HA. About 18% of the treated population (n = 1768)

survived. We observe that enhanced neutrophil migration to the

tissue (increased Nt) and reduced sequestered and lung neutrophils

(decreased Ns and Nl ) were all present in the survivor population

after treatment, contributing to the improved outcome. These

prediction results are consistent with our experimental observa-

tions [12], supporting that the proposed model could be used to

guide future experiments and as a computational framework for

generating hypotheses.

To investigate which factors play an important role in successful

HA treatment in a population that would otherwise die, we

analyzed the two sub-ensembles of survivor and non-survivor after

HA treatment in the same manner as the previous section (see

Figure 7). We observed that systemic pro-inflammation related

parameters are involved in most of the parameter pairs whose

partial correlations changed significantly between the two sub-

ensembles (Table 4). In particular, partial correlations involving

parameter 3 (PI inhibition by AI) disappeared in the HA non-

survivor population, suggesting a robust anti-inflammatory

response is a critical factor for treatment success. Interestingly,

when HA treatment was applied to a sample of the survivor

ensemble, 2% (201=10000) died according to our criteria,

suggesting that there also exists a sub-population of survivors for

whom treatment is actually harmful. Further analysis of univariate

differences in parameter distribution between survivor and the

harmed sub-population identified that non-survivors had larger PI

inhibition by AI (parameter 3, p~0:0285) and faster PI decay

rates (parameter 4, PI decay, p~2:23e{10).

Figure 3. Fits and predictions of the model states. Blue denotes the survivor group and black denotes the non-survivor group. The solid lines
represent the median values of the output profiles from the simulations with 1000 parameter realizations that were randomly sampled from each
group of the MCMC chains (5e6 samples in each group). The shaded areas correspond to the 95% posterior limits of the model uncertainty. The error
bars represent experimental observations from our septic rat experiments (normalized means and standard deviations).
doi:10.1371/journal.pcbi.1002422.g003
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Discussion

We have developed a coarse-grained phenomenological model of

the inflammatory response to CLP-induced sepsis in rats that

centers on dynamic interactions of distinct neutrophil phenotypes

and fundamental effectors. The model simulations and reproduc-

tion of experimental data support our main hypothesis that systemic

inflammation leads to heterogeneous circulating neutrophil subsets

which contribute to differential fates of septic animals. The

emergent properties observed in the in silico non-survivor population

that systemically activated neutrophils lose their chemotactic ability

to the infectious focus and instead become trapped in narrow lung

capillaries comply with biological domain knowledge [8,28].

Given that the experimental sepsis model was performed with a

high consistency in a standardized manner to minimize extrinsic

noises [29], the heterogeneity of sepsis severity can be assumed to

originate from intrinsic (genetic and epigenetic) differences in rats. In

order to investigate the underlying differences, we identified ensemble

models for two distinct severity populations, survivor and non-survivor.

The network structure and initial conditions of the model were

assume to be identical in all populations. Therefore, the heterogeneity

in populations is represented by differences in parameter distributions

within ensemble. This population-based ensemble approach allows us

not only to assess parametric uncertainty, but also to characterize

differences in parameters between distinct populations. Multivariate

analyses of the population ensembles suggest that balanced regulation

of the pro-/anti-inflammations and coordinated neutrophil functions

play important roles in survival. The non-survivors are characterized

by a loss of dynamic features in survival-associated regulation of

inflammatory responses. First, delayed anti-inflammatory response

and damage resolution contribute to mortality. Second, prompt

neutrophil priming and migration to the infectious focus before

uncontrollable systemic inflammation develops are critical for

survival. These in silico findings underline the importance of timely

diagnosis and treatment of sepsis in clinical practice.

Figure 4. Principal component analysis of the inverse correlation matrix of the parameter ensembles for survivor and non-survivor
populations. (A) Eigenvalues as measures of the total variability explained by each principal component, showing a couple of stiff directions in the
parameter space. For each group (survivor or non-survivor), ten thousands parameter sets were randomly sampled from the five million parameter sets
of pool and analyzed based on the inverse correlation matrix (approximate Hessian). The coefficients of the linear combinations of the original variables
that generate the first (B), second (C), and third (D) principal components were compared between the survivor and non-survivor populations. These
comparative plots reveal the differences of the individual parameter’s contributions to the first three largest principal components between two groups.
The parameters that are contributing up to 90% in each principal component were indexed.
doi:10.1371/journal.pcbi.1002422.g004
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With the extremely complex nature of sepsis in mind, determining

the precise inflammatory status can be very useful to start timely and

specific treatment. Patients with hyper-responsive inflammatory states

will benefit from limiting their inflammation, whereas others with

hypo-responsive states would be better treated by boosting inflam-

mation [1]. However, assessing the precise inflammatory status still

poses a significant challenge. Plasma levels of cytokines may not be

sufficient to define accurately the inflammatory state because pro- and

anti-inflammatory mediators increase simultaneously in septic patients

and animals [30]. In addition, the dynamic changes of cytokine levels

in severely septic patients are not clearly consistent with the course of

sepsis [31].

Our simulation work therefore supports the notion that an

evaluation of cellular function would be a better method than

measuring soluble mediators alone to define the precise inflam-

matory response and should be targeted clinically [32]. Among the

Figure 5. Multivariate correlation analysis of the parameter ensembles for survivor and non-survivor populations. For each group
(survivor or non-survivor), ten thousands parameter sets were randomly sampled from the five million parameter sets of pool and analyzed based on
the approximate Hessian matrix (the inverted empirical covariance). (A) The sample multiple correlation coefficient (R) as a measure of the strength of
the single parameter’s association with the other parameters. The shaded area represents the region below 0.25 that is generally interpreted as weak
association. The partial correlations between two parameters are plotted for the survivor population (the upper triangular part in B) and the non-
survivor one (the lower triangular part in B). The columns and the rows are rearranged according to the descending order of the multiple correlation
coefficients in A. The parameter pairs whose correlations changed significantly between two groups are illustrated in C. The insert is the histogram
showing the distribution of pairwise differences of the partial correlation coefficients in B.
doi:10.1371/journal.pcbi.1002422.g005

Ensemble Models of Sepsis

PLoS Computational Biology | www.ploscompbiol.org 9 March 2012 | Volume 8 | Issue 3 | e1002422



effector cells in the septic response, neutrophils are critical

elements of the innate immune response to the infection. Recent

studies have reported several molecular mechanisms for dysreg-

ulated neutrophil trafficking over the whole spectrum of neutrophil

migration. The systemic activation of TLR4 results in down-

regulation of neutrophil rolling on endothelial cell surface and

migration to the tissue [6,33]. Patients with a deficiency of

leukocyte adhesion molecules show easier bacterial infection and

sepsis development [34]. Gaseous molecules such as nitric oxide

(NO) and peroxynitrite (ONOO{) downregulate neutrophil

migration by reducing leukocyte adhesion and migration

[35,36]. Cunha et al showed that excessive production of NO

during sepsis induced by Toll-like activation reduces the

expression of the chemokine receptor CXCR2 in circulating

neutrophils and contributes to the impairment of neutrophil

migration [37]. These results provide experimental evidence that

altered neutrophil phenotypes in the circulation contribute to the

pathogenesis of sepsis and its mortality. More precisely then, our

study suggests that a phenotypic characterization of circulatory

neutrophils would be an effective way to determine the

inflammatory status and guide future therapeutic strategies.

Changes in the relative proportion of neutrophil phenotypes and

their absolute numbers, as measured in the circulation, could

constitute an effective early marker of disease progression or the

therapeutic effect of an intervention on infection control and

downstream organ dysfunction. In view of the multiple factors

modulating neutrophil functions, using multiple markers to

quantify the differential expression of neutrophil receptors looks

promising [8,9,38].

Considering the highly heterogeneous population of patients

with sepsis, identifying a sub-population of patients that is most

likely to benefit from a specific intervention is potentially of great

benefit in the design of interventional trials or bedside therapeutic

decisions. Mathematical modeling can be a useful framework

toward this goal. Our model simulations coupled to a hypothetic

HA device model generated a subset of animals that survived after

HA treatment and their survival features were characterized by

their parametric description. In order to make this in silico work

meaningful for translation, the parametric descriptions should be

translated into measurable biological or physiological phenotypes,

that is predictive biomarkers. The key idea is that population

dependent parameter distributions reflect the heterogeneity of the

treatment efficacy. A distribution of physiologically interpretable

model parameters and states inferred from the patient information

may be able to serve as early-stage markers for identifying a sub-

population that can be benefited from a certain treatment option.

Further experimental investigations are warranted to validate our

computational findings. Furthermore, the experimental and

clinical relevance of our analysis on HA treatment simulations

are limited by a simplistic HA device model which was not

calibrated by experimental data. We recently developed a more

realistic HA device model calibrated by in vitro experimental data

[39]. Coupling to a calibrated HA device model and rigorous

analysis of the effects of HA treatment are currently underway.

In conclusion, the ensemble models constructed herein in order

to explore heterogeneity in distinct sepsis severity populations

provided useful insights as to key pathologic mechanisms

associated with mortality in sepsis. The population-based ensemble

approach can be extended to explore critical mechanistic

differences between different pathologies within a same context

of disease. One could therefore apply the method to investigate

differences in chronic/acute, old/young, races, or any other

‘‘natural’’ groups. The population-based computational frame-

work holds promise as a tool for integrating domain knowledge

and experimental data into a quantitative assessment of population

dynamics.

Materials and Methods

Experimental protocol
The CLP-induced sepsis experimental protocol is a recom-

mended proxy for human sepsis, where the infection spreads

beyond a local focus, resulting in systemic symptoms, septic shock

and a high mortality [29,40]. The experiments were designed to

evaluate long-term (one week) survival in a model of sepsis that

resulted in a mortality rate similar to that observed clinically.

Following approval by the Animal Care and Use Committee of the

University of Pittsburgh, the CLP procedure was modified (25%

ligated length of cecum and 20-gauge needle, two-puncture) in rats

to induce less lethal sepsis compared to that which we have

described previously [25]. Plasma cytokines (tumor necrosis factor

(TNF), interleukin(IL)-1b, IL-6 and IL-10), high mobility group

box1 (HMGB1), creatinine (CRT) and alanine aminotransferase

(ALT) were measured from 0:8 ml blood samples from 23 rats at

18, 22, 48, 72, 120, 144, and 168 h after CLP. Each cytokine

measurement data was natural log transformed and normalized by

its maximum value across all time points for all animals. Other

measurements were also normalized by their maximum values.

Seven rats out of the total population survived up to 7 days, being

considered as the survivor population; the remaining 16 animals

comprised the non-survivor population.

Model formulation and simulation
The network components and interactions of the model were

compiled from available information in the literature and the

general domain knowledge about the acute inflammatory

Table 3. Parameter pairs whose partial correlations changed
significantly between the survivor and non-survivor
ensembles.

Parameter Index Pair Partial Correlation Coefficient

P1 P2 Survival Death Difference

Lose Correlation

13 1 0.39081 0.076671 0.31414

33 1 0.57338 0.27114 0.30224

22 2 20.37232 20.086561 20.28576

13 19 20.39436 20.11036 20.284

19 1 0.33753 0.064503 0.27303

34 19 0.33952 0.070164 0.26936

14 13 0.2003 20.051309 0.25161

19 17 0.28643 0.04326 0.24317

32 2 20.24411 20.021828 20.22228

34 1 20.25182 20.036964 20.21486

Gain Correlation

32 22 20.20802 20.51495 0.30693

2 1 20.026593 20.2824 0.2558

5 1 0.073148 0.31583 20.24268

Flip Correlation

1 10 0.19069 20.11887 0.30956

5 4 0.16015 20.11315 0.2733

doi:10.1371/journal.pcbi.1002422.t003
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response. Ordinary differential equations (ODEs) governing the

phenomenological signaling interactions in the network were

formulated based on the standardized steps presented in [41,42].

We wished to represent the qualitative interactions in the system as a

Boolean model and then transform the logic operations into a

system of ODEs. We chose HillCube ODEs as continuous

homologues of the Boolean interactions, in which model parameters

were regularized as one of three types: Hill coefficient(n), half

maximal activation constant(h), or time constant (t). Exceptions

were made for model parameters that should be constrained by

mass action kinetics.

Bacteria. The following equation describes the population of

bacteria (B) in the peritoneum, the local site of infection.

dB

dt
~ sCLPCLP2|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

CLP forcing

z sBB 1{
B

B?

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

bacteria growth

{

sNBNfs(B,0,B?=10)zsM0fs(B,0,Bmin)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
phagocytosis

ð1Þ

where the function fs(x,a,b) is linear function of x between its

saturation points a and b. CLP induces bacteria in the peritoneum

assuming peritoneal bacteria increase in number at the constant

rate of sCLP. The unit interval continuous variable CLP ½0,1�
stands for the severity grade of the CLP operation that is known to

depend on the puncture size and the length of ligation [43]. The

logistic growth term assumes that bacteria increase in number at

the growth rate sB(numbers=ml=hr) until bacterial count

approaches the carrying capacity (B?) at which point growth

slows. Tissue neutrophils migrate from the blood circulation and

kill Bacteria at the rate sN upon encountering. The function fs was

introduced to describe the saturation of neutrophil-killing capacity

at a high bacterial concentration [44]. The last term was

introduced in order to account for the bacterial removal by

peritoneum-resident macrophages even before effective neutrophil

migration into the infection site. Bmin was set to 1:0e5 (CFU/ml),

assuming resident macrophages can remove up to this amount of

bacteria without migrated neutrophil before bacteria increase in

number significantly.

Neutrophils. The following set of equations describe multiple

populations of neutrophils; resting blood neutrophils Nr, primed

Figure 6. Hypothetical simulation of blood purification treatment. Ten thousands parameter samples from the non-survivor population
were simulated with or without the extracorporeal blood purification device. Black denotes the sham case (without treatment), blue denotes the
survivor case after the treatment, and red denotes the non-survivor case. The criterion of deciding survival was based on the last value of PI
(threshold: 0.5). The shaded areas correspond to the 95% posterior limits of the model prediction uncertainty.
doi:10.1371/journal.pcbi.1002422.g006
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Figure 7. Multivariate correlation analysis of the parameter ensembles for survivor and non-survivor populations after blood
purification (HA) treatment. (A) Eigenvalues plots for the two populations. Ten thousands parameter samples from the non-survivor population
before HA treatment (sham) were classified into the survivor and non-survivor ones after the HA treatment. The coefficients of the linear
combinations of the original variables that generate the first (B), second (C), and third (D) principal components were compared between the
survivor and non-survivor populations after the HA treatment. (E) Multiple correlation coefficients of the two populations. (F) The parameter pairs
with significantly changed correlations between two groups are illustrated. The notations are same as Figure 5 D.
doi:10.1371/journal.pcbi.1002422.g007
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blood neutrophils Np, activated blood neutrophils Na, neutrophils

that migrated to the peritoneum Nt, neutrophils sequestered in the

lung capillaries Ns, and migrated lung neutrophils Nl .

dNr

dt
~

1

tBM

z
B

hNr BzB

1

tNr B

{
Nr

tNr

{

Nr(B=B?)n

hn
Nr Np

zPIn

1

tNr Np|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
transition from Nr to Np

{
NrPIn

hn
Nr Na

zPIn

1

tNr Na|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
transition from Nr to Na

ð2Þ

dNp

dt
~

Nr(B=B?)n

hn
Nr Np

zPIn

1

tNr Np

ð3Þ

{
Np

tNp

{
NpPIn

hn
Np Na

zPIn

1

tNp Na|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
transition from Np to Na

{

Np(B=B?)

hNp Ntz(B=B?)
1{

PIn

hn
Np Nt

zPIn

 !
1

tNp Nt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
migration from Np to Nt

ð4Þ

dNa

dt
~

NrPIn

hn
Nr Na

zPIn

1

tNr Na

z
Nr(B=B?)n

hn
Nr Np

zPIn

1

tNr Np

{

Na

tNa

{
NaPIn

hn
Na Ns

zPIn

1

tNa Ns|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
transition from Na to Ns

ð5Þ

dNs

dt
~

NaPIn

hn
Na Ns

zPIn

1

tNa Ns

{
Ns

tNs

{

NsPIn

hn
Ns Nl

zPIn

1

tNs Nl|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
trafficking from Ns to Nl

ð6Þ

dNt

dt
~

Np(B=B?)

hNp Ntz(B=B?)
1{

PIn

hn
Np Nt

zPIn

 !
1

tNp Nt

RVb=Vt{
Nt

tNt

ð7Þ

dNl

dt
~

NsPIn

hn
Ns Nl

zPIn

1

tNs Nl

RVb=Vt{
Nl

tNl

ð8Þ

The bone marrow reserve of neutrophils releases mature

neutrophils into the circulation at the rate of 1=tBM under

homeostatic conditions and circulating neutrophils die at the rate

of 1=tNr
by undergoing normal apoptosis. During inflammatory

reactions, neutrophils are rapidly mobilized from the bone

marrow, and this rate is nonlinearly dependent on the bacteria

burden. The variable PI stands for the extent of the systemic

inflammation that are coarse-grained to conceptually expresses

systemically acting pro-inflammatory factors in circulation. It is

hypothesized that neutrophils in the circulating pool exist in three

states: resting, primed, and activated. Resting neutrophils (Nt) are

first primed (Np) by interacting with inflammatory mediators before

migrating into tissue (Nt). When neutrophils become activated (Na)

in the blood compartment, they lose their chemotactic ability into

the infected tissue by downregulating their chemotactic receptors

and become sequestered in the lung capillaries (Ns). The mass-

action based transitions of neutrophils from a resting state to a

primed state and/or an activated state were controlled by Hill

functions that are nonlinearly dependent on the local infection

level (B=B?) or the systemic inflammatory status PI . The term,

1{(PIn=hn
Np Nt

zPIn) in the equation (4) and (7) was introduced

to represent a collective response of several processes that have

been reported to contribute to the impairment of neutrophil

migration during severe sepsis [6,15]. All Hill coefficients are

identically set to three for parametric simplicity.

Inflammation and damage. The following set of equations

describe three conceptual unit interval variables in the network:

PI , AI , and D. As a counteracting variable of PI , AI describes the

level of the anti-inflammation corresponding to systemically acting

anti-inflammatory mediators such as IL-10. D is a course grained

representation of integrated tissue damage expressing neutrophil-

induced tissue injuries that may lead to organ failure.

dPI

dt
~

(B=B?)

hPI Bz(B=B?)
1{

Dn

hn
PI DzDn

� �
1{

AIn � (1{PI)

hn
PI AIzAIn

� ��

z 1{
(B=B?)

hPI Bz(B=B?)

� �
Dn

hn
PI DzDn

1{
AIn � (1{PI)

hn
PI AIzAIn

� �

z
(B=B?)

hPI Bz(B=B?)

Dn

hn
PI DzDn

1{
AIn � (1{PI)

hn
PI AIzAIn

� �
{PI

�
1

tPI

ð9Þ

Table 4. Parameter pairs whose partial correlations changed
significantly between the survivor and non-survivor
ensembles after HA treatment.

Parameter Index Pair Partial Correlation Coefficient

P1 P2 HA Survival HA Death Difference

Lose Correlation

4 3 0.45487 0.129 0.32588

4 7 0.28884 0.062232 0.2266

7 3 20.48204 20.36471 20.11733

3 1 0.49145 0.3787 0.11275

Gain Correlation

2 3 0.1966 0.36179 20.16519

5 2 0.22854 0.3917 20.16316

33 1 0.1906 0.30413 20.11353

1 21 20.10914 20.21761 0.10848

1 30 20.079448 20.18667 0.10723

Flip Correlation

4 5 0.046393 20.1257 0.17209

doi:10.1371/journal.pcbi.1002422.t004
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dAI

dt
~

PIn

hn
AI PIzPIn

1{
(Na=N?)

hAI Naz(Na=N?)

� �
z

�

1{
PIn

hn
AI PIzPIn

� �
(Na=N?)

hAI Naz(Na=N?)
z

PIn

hn
AI PIzPIn

(Na=N?)

hAI Naz(Na=N?)
{AI

�
1
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ð10Þ

dD

dt
~

(Ns=N?)

hD Nsz(Ns=N?)
1{

(Nl=N?)

hD Nl
z(Nl=N?)

 !
z

 

1{
(Ns=N?)

hD Nsz(Ns=N?)

� �
(Nl=N?)

hD Nl
z(Nl=N?)

z

(Ns=N?)

hD Nsz(Ns=N?)

(Nl=N?)

hD Nl
z(Nl=N?)

{AI

!
1

tD

ð11Þ

PI can be activated by bacteria B or damage factor D, but it is

inhibited by AI . However, plasma cytokine measurements in

severe sepsis have shown that a high level of anti-inflammatory

activity coexists with the increased activation of the inflammatory

response, reflecting the fact that anti-inflammatory effect cannot

fully counteract the pro-inflammatory stimuli beyond a certain

high level of systemic inflammation [30]. Therefore a partial

inhibition of PI by AI , depending on the level of the systemic

inflammation, was assumed by introducing the term (1{PI)
which moderates the effect of AI in high PI .

Observations. Explicit interactions among observational state

variables were not constructed due a lack of kinetic and causal

information available. Instead, we hypothesized that pro(anti)-

inflammatory blood cytokines (TNFa, IL-1b, IL-6 or IL-10) levels

are nonlinear reflections

of a higher-level pro(anti)-inflammatory status with sigmoidal

relationships.

dTNF

dt
~

PI

hTNFzPI
{TNF

� �
=tTNF ð12Þ

dIL1

dt
~

PI

hIL1zPI
{IL1

� �
=tIL1 ð13Þ

dIL6

dt
~

PI

hIL6zPI
{IL6

� �
=tIL6 ð14Þ

dIL10

dt
~

AI

hIL10zAI
{IL1

� �
=tIL10 ð15Þ

Damage related markers (HMGB1, CRT, ALT) are also

nonlinearly mapped from a higher-level state variable, which

represents the systemic damage abstractly.

dHMGB1

dt
~

D

hHMGB1zD
{HMGB1

� �
=tHMGB1 ð16Þ

dCRT

dt
~

D

hCRTzD
{HMGB1

� �
=tCRT ð17Þ

dALT

dt
~

D

hALTzD
{ALT

� �
=tALT ð18Þ

L-selectin, known to be a marker of neutrophil activation, was

quantified by mapping from the rate of neutrophil activation

(Nactivation) which is quantified by the sum of the transitions from

Nr to Na, Np to Na, and Np to Nt.

dLsel

dt
~

Nactivation

hLselzNactivation

{Lsel

� �
=tLsel ð19Þ

Hypothetic HA mechanisms of action. The hypothetic

mechanisms of action of the blood purification was implemented

by assuming the HA device eliminates only three components in

the circulation: activated neutrophils (Na), pro-inflammatory

mediators (PI), and anti-inflammatory mediators (AI) during the

treatment period (from 18 hours to 22 hours after CLP). The rate

of elimination was modeled by a Hill equation (Hill coefficient

n~1) that are nonlinearly dependent on the concentration of each

component.

dNaHA

dt
~

(Na=N?)
hAIHAz(Na=N?)

18ƒtƒ22

0 otherwise

(
ð20Þ

dPIHA

dt
~

PI
hPIHAzPI

18ƒtƒ22

0 otherwise

(
ð21Þ

dAIHA

dt
~

AI
hAIHAzAI

18ƒtƒ22

0 otherwise

(
ð22Þ

In the setting of HA simulations, these terms were subtracted

from equations 5, 9 and 10 respectively.

Implementation of Metropolis Monte Carlo sampling
The five parameter sets randomly sampled from the baseline

parameter distribution in Table 1 were used as starting points to

generate Markov Chain Monte Carlo samples based on the

Metropolis Algorithm [45,46]. A uniform (non-informative) prior

distribution over the range specified by the lower and upper

bounds of parameters was chosen. The prior ranges were made

very wide to include all plausible values. For example, the prior

ranges for threshold parameters were set to ½0,1� and the ones for

time constants were set to ½0,100�. The goal is then to draw

samples in the accessible parameter space from the posterior

target distribution p(h), which was taken to be proportional to

the likelihood L(h), the probability that our model with

parameters h would generate the observed data yi,j . The

difference between the measured and simulated value of species
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j at time i was quantified by the cost function, or the weighted

sum of squared residuals,

x2(h)~
X

i,j

(yi,j{ŷy(h)i,j)
2

2s2
i,j

ð23Þ

with yi,j and si,j denoting the mean and standard deviation of the

measured value of species j at time i and ŷyi,j denoting its

simulated value. Assuming that the measurement noises

represent Gaussian random measurement errors, the target

distribution is as follows.

p(h)!L(h)~ exp {
x2(h)

T

� �
ð24Þ

which is an analogy to a Bolzmann distribution with energy

x2(h) and temperature T . The temperature T was used to tune

the rate of acceptance of candidate parameter sets as the Markov

chain is constructed, where the acceptance ratio increases with

increasing temperatures. The proposal density that generates a

new candidate set of parameters using current values (h) was

chosen to be a normal distribution centered at the current point,

N(h,e). The parameter e was also used to tune the acceptance

ratio of candidate samples with smaller values increasing the

ratio. We tuned T and e to get a reasonable convergence with

the acceptance ratio being around 0.25 [47].

The numerical integration of the systems of ODEs described

above was implemented by using the SUNDIALS package

(https://computation.llnl.gov/casc/sundials/main.html). All other

algorithms used for this work were implemented in the MATLAB

version 7.10.0.499 (The MathWorks). The source code used in

generating results is available at http://code.google.com/p/

source-code-sepsis-model/.

Multivariate analysis of the parameter ensemble
The stiff directions in the parameter space can be identified by

the principal component analysis of the Hessian matrix [17].

Instead of using the computationally expensive Hessian matrix, we

used S{1
h the inverse of the correlation matrix of the parameter

ensemble, with the understanding that in a maximum likelihood

estimation setting the covariance matrix of the parameters can be

approximated by the Hessian matrix of the likelihood function

[48]. An eigenvalue decomposition of S{1
h allowed us to obtain

the information about stiff (large eigenvalue) directions in the

parameter space.

The inverse of the correlation matrix can also be used to extract

valuable information in multivariate data [23]. The basic formulas

for computing the multiple correlation coefficients and the partial

correlation coefficients are as follows. The diagonal elements of

S{1
h , aii, are related to the multiple correlation between the

parameter i and all other parameters.

Ri~

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1{

1

aii

s
ð25Þ

The partial correlation between the parameter i and the

parameter j controlling all other variables can be calculated as

ri,j~
{aijffiffiffiffiffiffiffiffiffiffi
aiiajj
p ð26Þ
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