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Adults often exhibit a marked decline in cognitive function with aging. However, some adults 

show remarkable abilities to maintain cognitive function into older adulthood. There is 

increasing evidence that healthy lifestyle factors, such as sleep quality and physical activity, 

may benefit cognition in older adults. However, the pathway through which physical activity 

benefits cognition is unknown. Given that physical activity improves sleep (Lopez, 2008), and 

sleep often benefits cognition (Goel, Rao, Durmer, & Dinges, 2009), sleep may mediate the 

relationship between physical activity and cognition (Vitiello, 2008). The present study 

examined individual differences in sleep quality and executive function in young and older 

adults. Subjects wore an accelerometer armband for one week, which estimated minutes of 

physical activity and sleep. These estimates were used to calculate objective sleep quality 

operationalized as sleep efficiency (total time asleep/total time lying down) and physical activity, 

operationalized as average metabolic equivalents (METs) while awake (“awake METs”). Using a 

task-switching paradigm, which manipulated time to prepare, Study 1 showed that subjects with 

high sleep efficiency maximized time to prepare more so than subjects with low sleep efficiency. 

In Study 2, after controlling for age, gender, and education, sleep efficiency was a significant 

mediator of the relationship between awake METs and cognitive performance in terms of 
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switching, inhibition, working memory, and memory retrieval: all executive functions that show 

age-related decline. Thus, the relationship between physical activity and cognition may be driven 

by sleep quality. In Study 3, time of day was shown to influence whether older adults exhibited 

impaired performance relative to young adults. Additionally, this effect applied specifically to 

older adults with low sleep efficiency. This finding suggests that sleep quality combined with 

time of day are important factors in whether or not older adults exhibit cognitive impairments.  
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1.0  INTRODUCTION 

Age-related cognitive impairments often include decline in executive control (Buckner, 2004; 

Cepeda, Kramer, & Gonzalez de Sather, 2001; Cohn, Emrich, & Moscovitch, 2008; Hasher & 

Zacks, 1988; Kramer, Hahn, & Gopher, 1999). Volumetric studies have suggested that atrophy 

of the prefrontal cortex (PFC) mediates this age-related decline (Raz, Gunning-Dixon, Head, 

Dupuis, & Acker, 1998; Weinstein et al., 2011). Impairments in executive control include 

difficulties selecting relevant and inhibiting irrelevant information and actions, and difficulties 

monitoring and updating information (Funahashi, 2001; Jones & Harrison, 2001). Further, white 

matter in older adults is particularly compromised in anterior brain regions. This has been shown 

with white matter lesions (De Groot et al., 2002) as well as white matter integrity assessed using 

diffusion tensor imaging (DTI) (Head et al., 2004; Pfefferbaum, Adalsteinsson, & Sullivan, 

2005; Salat et al., 2005). Such white matter breakdown disrupts the connectivity between frontal 

and other cortical regions, ultimately affecting executive control. These PFC changes tend to 

manifest themselves in a range of cognitive tasks including task-switching, inhibition, and 

controlled memory retrieval (Buckner, 2003, 2004; Bucur et al., 2008). Given that decline in 

memory can be particularly debilitating in older adults, determining factors that contribute to 

PFC decline is of utmost importance. The prevalence of sleep disruption in older adults (Bliwise, 

2011; Carskadon & Dement, 2011; Ohayon, Carskadon, Guilleminault, & Vitiello, 2004) and its 

negative impact on cognition (Durmer & Dinges, 2005; Goel, et al., 2009) suggest that sleep may 
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play an important role in the extent to which older adults exhibit decline in PFC function and in 

turn, executive control. One compelling implication of this model is that ameliorating sleep 

deficits in healthy older adults could lead to improvements in PFC function and in turn, 

cognition. 

1.1 EXECUTIVE CONTROL AND AGING 

Older adults tend to show decline in cognitive processes that depend on the PFC and in turn 

impairments on tasks that engage executive control. For instance, older adults show impaired 

inhibition (Colcombe, Kramer, Erickson, & Scalf, 2005; Gazzaley & D'Esposito, 2007; Monsell, 

2003; West & Bell, 1997), working memory (Craik, Morris, & Gick, 1990) as well as controlled 

episodic memory retrieval (i.e. free recall) (Daselaar, Fleck, Dobbins, Madden, & Cabeza, 

2006; Kensinger & Schacter, 1999; Macht & Buschke, 1983; Velanova, Lustig, Jacoby, & 

Buckner, 2007). This is perhaps not surprising because frontal lobe integrity is often affected in 

aging. 

One theory of cognitive aging posits that while young adults are more likely to rely on an 

“early selection” strategy, older adults rely more on a “late correction” cognitive strategy (Braver 

& West, 2008; Jacoby, 1999; Paxton, Barch, Racine, & Braver, 2008; Velanova, et al., 2007). An 

early selection strategy is more proactive and involves filtering of irrelevant information and 

selecting relevant information. In contrast, a late correction strategy takes place late within the 

processing stream and compensates for less efficient early filtering involving a more reactive 

strategy (Paxton, et al., 2008; Velanova, et al., 2007). These age-related differences in proactive 
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versus reactive strategies may influence executive functions such as preparation and task-

switching. 

In a study comparing retrieval preparation between younger and older adults (Wilckens, 

Wolk, & Wheeler, 2010), I examined whether preparation during memory retrieval was 

diminished with aging. I found that retrieval preparation was absent in older adults, as indicated 

by event-related potentials (ERP) correlates of “task-set adoption”. This may reflect a more 

“diffuse” memory search strategy among older adults. However, additional processing post-

retrieval was robust in older adults. These results suggest that retrieval strategies may become 

altered and less efficient with advanced age. This finding extended the results of an earlier study, 

Wolk et al. (2009), which also found ERP evidence to support the late correction model of 

cognitive aging for memory retrieval. Wolk et al. (2009) found that early ERP retrieval success 

effects were diminished in older adults, but that retrieval success effects late within the retrieval 

phase were larger in older adults. In addition, late retrieval success effects were largest in older 

subjects with poor performance suggesting that it is older adults who exhibit decline that tend to 

adopt this “late correction” strategy. This finding points to the possibility that some older adults 

may be able to maintain cognitive abilities and use the same strategies as young adults.  

The “late selection” model of aging is consistent with other theories of cognitive decline 

posited outside the realm of memory retrieval (Gazzaley & D'Esposito, 2007; Hasher & Zacks, 

1988; Paxton, et al., 2008). In a review of age-related differences in neural activity associated 

with top-down modulation of attention, Gazzaley and D’Esposito (2007) proposed that normal 

working memory decline is associated with a selective impairment in older adults’ ability to 

inhibit or suppress irrelevant processing, a view originally proposed by Hasher and Zacks 

(1988). Testing selection and inhibition, they further suggested that older adults’ ability to 
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enhance processing related to relevant information is left intact. Gazzaley and colleagues found 

evidence to support this claim using a variety of neuroimaging techniques. In an fMRI 

(functional magnetic resonance imaging) study, Gazzaley et al. (2005) investigated enhancement 

and suppression of neural activity selective for information that was cued as relevant or 

irrelevant, respectively. Using a working memory task in which young adults were instructed to 

either remember or ignore faces versus scenes, or passively view either stimulus, Gazzaley and 

colleagues found that instructions to remember scenes were associated with enhancement of 

neural activity related to scene processing above baseline in a scene-selective region (left 

parahippocampal/lingual gyrus), whereas instructions to ignore scenes were associated with 

reduced scene-selective activity below baseline. In contrast, an older group displayed 

enhancement of scene-selective neural activity with instructions to remember scenes, but were 

less likely to show significant suppression activity below baseline with instructions to ignore 

scenes. This finding suggests that inhibitory processes were impaired in older adults. Relating 

these findings to behavior, they found that suppression deficits were exhibited only by older 

adults who were impaired at remembering target stimuli following a working memory delay, and 

those who were more likely to later remember stimuli they were instructed to ignore. These 

results revealed that older adults with poor performance were less likely to inhibit task-irrelevant 

processing and reflect age-related deficits in inhibitory control particularly for poor performing 

older adults.  
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1.2 AGE-RELATED CHANGES IN SLEEP CONTRIBUTE TO COGNITIVE 

DECLINE 

Having established that age-related changes involve deficits in early selection processes 

including preparation and inhibition for episodic and working memory tasks, we can ask which 

factors result in this specific pattern of impairments. Several factors including sleep have been 

shown to influence PFC function and executive control in both young and older adults 

(Blackwell et al., 2006; Harrison, Horne, & Rothwell, 2000; Jones & Harrison, 2001; Nebes, 

Buysse, Halligan, Houck, & Monk, 2009; Pace-Schott & Spencer, 2011). Although sleep 

behaviors change dramatically with aging (Table 1), sleep has been relatively ignored in studies 

of normal cognitive decline. Research examining the relationship between cognition and age-

related changes in sleep is important however, given the negative impact of sleep deprivation and 

disruption on cognition (Durmer & Dinges, 2005; Goel, et al., 2009).  
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Table 1. Consistent sleep changes reported from young to older adulthood 

 

Total sleep time (decrease) (Bliwise, 2011; Ohayon, et al., 2004; Pace-Schott & Spencer, 

2011; Vitiello, 2006) 

Sleep efficiency (decrease) (Bliwise, 2011; Kupfer, Reynolds, Ulrich, Shaw, & Coble, 

1982; Ohayon, et al., 2004)  

Wake after sleep onset (WASO) (increase) (Bliwise, 2011; Ohayon, et al., 2004; 

Vitiello, 2006)  

Slow-wave sleep (decrease) (Cajochen, Munch, Knoblauch, Blatter, & Wirz-Justice, 

2006; Carrier, Land, Buysse, Kupfer, & Monk, 2001; Carskadon & Dement, 2011; Espiritu, 

2008; Kupfer, et al., 1982; Landolt, Dijk, Achermann, & Borbely, 1996; Ohayon, et al., 2004; 

Van Cauter, Leproult, & Plat, 2000; Vitiello, 2006)  

 

 

 

In addition to being more sleep-deprived than younger adults, older adults also show a 

decline in sleep efficiency, sleep continuity, and slow-wave sleep, (Bliwise, 2011; Cajochen, et 

al., 2006; Carskadon & Dement, 2011; Duffy, Willson, Wang, & Czeisler, 2009; Feinberg, 1974; 

Kupfer, et al., 1982; Landolt, et al., 1996; Ohayon, et al., 2004; Prinz, 1977). Slow-wave sleep 

refers to stages 3 and 4 of non-REM (rapid eye movement) sleep measured with 

polysomnography, an electrophysiological technique to characterize sleep. Slow-wave sleep is 

characterized by high amplitude, low-frequency delta waves measured with EEG 

(electroencephalogram) (Muzur, Pace-Schott, & Hobson, 2002). Slow-wave sleep is thought to 
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restore PFC function (Harrison, et al., 2000; Muzur, et al., 2002), given that from wake to slow-

wave sleep, there is significant deactivation in the PFC. Results from PET (positron emission 

tomography), fMRI, and EEG support this theory (Kajimura et al., 1999; Kaufmann et al., 2006; 

Maquet et al., 1997; Muzur, et al., 2002; Werth, Achermann, & Borbely, 1997). Muzur et al. 

(2002) hypothesized that a PFC respite is critical to restore frontal lobe function for wakefulness, 

which in turn may benefit executive control. Another possibility, suggested more recently by 

Dang-Vu et al. (2008) is that slow-wave sleep actively supports frontal lobe function, based on 

increased activity found during slow-wave sleep in frontal regions relative to baseline non-REM 

activity.  In contrast to prior studies, Dang-Vu et al. (2008) compared discrete slow-wave sleep 

waves with baseline non-REM activity as opposed to wake EEG activity. This lead to the 

conclusion that slow-wave sleep is not a quiescent state, but rather actively restores brain 

function. The decrease in slow-wave sleep that is found in late adulthood may contribute to a 

decline in PFC restoration. This may in turn affect waking PFC function and performance on 

executive control tasks in older adults. 

In the next sections, I will review studies involving sleep and sleep deprivation and how 

they relate to deficits in executive control processes (i.e. inhibition). I propose that age-related 

decreases in slow-wave sleep may drive age-related changes in PFC function and in turn 

executive control. 
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1.3 IMPACT OF SLEEP DEPRVIATION ON EXECUTIVE CONTROL AND THE 

PFC 

Sleep deprivation influences performance on a variety of cognitive tasks (Durmer & 

Dinges, 2005; Goel, et al., 2009; Jones & Harrison, 2001). This outcome does not appear, 

however, to be explained simply by fatigue or boredom, but by direct effects of sleep deprivation 

on frontal lobe function, and in turn, cognitive processes that depend on the frontal lobes 

(Gosselin, De Koninck, & Campbell, 2005; Harrison & Horne, 2000a; Harrison, et al., 2000; 

Horne, 1993; Jones & Harrison, 2001; Muzur, et al., 2002). It is principally the loss of slow-

wave sleep that occurs with sleep deprivation that is thought to affect the frontal lobes and 

underlie the impact of sleep deprivation on executive control (Harrison & Horne, 2000a; Muzur, 

et al., 2002). 

Significant decreases in frontal lobe metabolism have been demonstrated in studies of 

sleep deprivation (Muzur, et al., 2002; Thomas et al., 2000; J. C. Wu et al., 2006). This may be 

driven particularly by the lack of slow-wave sleep (J. C. Wu, et al., 2006). Moreover, this 

decrease in metabolism is not fully restored with a full night of recovery sleep (J. C. Wu, et al., 

2006), suggesting that while a recovery sleep may increase alertness (Tietzel & Lack, 2001) 

underlying effects on the frontal lobes may persist.  

It is hypothesized that sleep-deprived young adults may serve as an experimental model 

for age-related cognitive decline (Harrison, et al., 2000). Similarities in patterns of cognitive 

performance and brain activity between older adults and sleep-deprived young adults support this 

view (Chee & Choo, 2004; Drummond, Meloy, Yanagi, Orff, & Brown, 2005). Older adults 

often paradoxically over-recruit the PFC during tasks that depend on executive control such as 

inhibition and controlled retrieval (Colcombe, et al., 2005; Grady, 2008; Reuter-Lorenz, 2002; 
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Velanova, et al., 2007). Similarly, young adults over-recruit PFC during executive tasks 

following sleep deprivation (Chee & Choo, 2004; Drummond, et al., 2005) but see (Drummond 

et al., 1999; Mograss, Guillem, Brazzini-Poisson, & Godbout, 2009; Mograss, Guillem, & 

Godbout, 2008). In one of these studies, Drummond et al. (2005) had subjects take part in a 

verbal learning task. Subjects that were sleep-deprived for 36 hours showed increased activation 

of several “control” regions including the dorsolateral PFC relative to control subjects.  As noted 

by the authors, this pattern of activation was similar to the pattern found in older adults. 

Similarly, Chee and Choo (2004) found with a working memory paradigm that young subjects 

sleep-deprived for 24 hours showed a pattern of activation and deactivation in parts of frontal 

and parietal cortex that closely resembled the pattern typically observed in healthy older subjects. 

They found that while anterior medial frontal and posterior cingulate cortex showed significant 

deactivation, the left dorsolateral PFC showed an increase with sleep deprivation. These 

similarities in PFC over-recruitment among healthy older adults and sleep-deprived young adults 

suggest a common mechanism between sleep disruption and cognitive decline (Harrison, et al., 

2000). This common mechanism may be decline in executive control, or broadly PFC function. 

Cognitive impairments that arise from sleep deprivation are often found for executive 

control tasks (Breimhorst, Falkenstein, Marks, & Griefahn, 2008; Drummond, et al., 1999; 

Drummond, et al., 2005; Jennings, Monk, & van der Molen, 2003; Jones & Harrison, 2001; 

Mograss, et al., 2009; Pilcher & Huffcutt, 1996; Qi, Shao, Miao, Guo-Hua Bi, & Yang, 2010). 

Neuroimaging studies have also provided evidence to suggest that sleep deprivation affects 

executive control dependent on the frontal lobes (Breimhorst, et al., 2008; Chee & Choo, 2004; 

Chuah, Venkatraman, Dinges, & Chee, 2006; Drummond, et al., 1999; Drummond, et al., 2005; 

Durmer & Dinges, 2005; Goel, et al., 2009; Mograss, et al., 2009; Mu et al., 2005; Schapkin, 
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Falkenstein, Marks, & Griefahn, 2006; Thomas, et al., 2000). In contrast to some studies that 

have failed to demonstrate significant effects of sleep deprivation on cognition using non-

executive tasks (A. M. Morris, So, Lee, Lash, & Becker, 1992), studies using “executive tasks” 

have demonstrated a specific influence of sleep on PFC function. Some of these studies have 

investigated executive processes that are important for controlled memory retrieval, such as 

inhibition. For example, Breimhorst et al. (2008) and Schapkin et al. (2006) used a Go-NoGo 

paradigm to test the hypothesis that inhibitory processing is impaired with sleep disruption. This 

task requires inhibition on NoGo trials when subjects are instructed to inhibit their response to 

distracters. Using noise to disrupt sleep in young individuals, Schapkin et al. (2006) examined 

ERPs associated with Go and NoGo trials. They showed that the fronto-central P3 amplitude (a 

positive wave with a 300 ms peak latency) elicited by NoGo trials was reduced in the sleep 

disruption condition. However, the P3 elicited by Go trials was not affected by sleep disruption. 

The authors concluded based on these results that the decision process associated with Go trials 

was not influenced by sleep disruption. However, inhibitory processing associated with NoGo 

trials was negatively affected. This finding suggests that inhibitory control is impaired with sleep 

disruption. 

Also testing a Go-NoGo paradigm in young adults, Breimhorst et al. (2008) examined 

Go-NoGo ERP effects in good and poor sleepers based on an objective sleep disturbance index 

using polysomnography. Breimhorst et al. (2008) also found that the NoGo P3 latency was 

longer in poor sleepers relative to good sleepers, reflecting deficient inhibitory processing. 

However, in contrast to the Schapkin et al. (2006) study, Breimhorst et al. (2008) also found 

decreased Go P3 amplitude in poor sleepers. This suggests that poor sleep also affected task-
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relevant processing, not just inhibition. Despite these differences, these studies collectively 

suggest that inhibitory processes are negatively impacted by sleep disruption.  

Sleep deprivation also appears to influence task-switching processes. Task-switching 

involves cognitive flexibility and inhibition of irrelevant task-sets, and is often considered a 

model paradigm of executive control (Logan, 2004; Monsell, 2003). Couyoumdjian et al. (2010) 

found a significant increase in switch-costs with sleep deprivation in young adults. Importantly, 

this effect was driven by an increase in response time (RT) on switch trials. There was no change 

in RT on repeat trials, suggesting that sleep deprivation did not globally influence response time. 

Instead it specifically affected subjects’ ability to switch between task-sets. Also using a task-

switching paradigm, Heuer et al. (2004) found deficits with task-switching following sleep 

deprivation. In this study, the task-switching costs were influenced by sleep deprivation only 

when subjects switched between two tasks as opposed to two stimulus-response mappings. This 

dissociation may support the view that sleep-deprivation influences inhibition of competing task-

sets.  

Harrison & Horne (1998) revealed marked impairments on a short and entertaining test of 

inhibition shown to have a PFC-focus (The Haylings Test (Burgess & Shallice, 1996)) following 

36 hours of sleep deprivation. This study demonstrated that it was not the tedium of the task that 

brought about sleep-related deficits, but rather the putative impairments in PFC-mediated 

inhibition.  

Although multiple aspects of sleep deprivation, including a lack of all sleep stages, and 

increased stress and fatigue on the part of the subject, may contribute to these impairments, the 

lack of slow-wave sleep affecting PFC restoration is a possible mechanism by which sleep 

deprivation affects executive control (J. C. Wu, et al., 2006). Together, these behavioral and 
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neuroimaging investigations suggest that sleep deprivation has a considerable impact on 

executive control.  

In terms of episodic memory, there are very few studies that have investigated how 

different retrieval processes are influenced by sleep. Nonetheless, these studies have 

demonstrated specific impairments in retrieval processes that depend on the PFC (Table 2). 

Harrison & Horne (2000b) examined both recognition memory and temporal order memory 

judgments. Following a period of sleep or sleep deprivation, subjects were asked to identify 

whether faces were presented at study or not (recognition) and to make a recency judgment by 

identifying on which of two study lists the face appeared (temporal order). This temporal order 

task was posited to depend on the PFC. They found that while recognition memory was left 

intact, temporal order memory was significantly impaired following sleep deprivation. Using a 

verbal learning task, Drummond et al. (2005) found that recall, but not recognition performance 

decreased with sleep deprivation. FMRI data collected in this study found increased PFC 

recruitment during encoding following sleep deprivation. However, the retrieval phase was not 

scanned in this particular paradigm. So it is unclear whether PFC over-recruitment occurred 

during retrieval as well following sleep deprivation. These findings suggest that sleep affects 

controlled retrieval tasks like recall, but leaves more automatic retrieval processes intact. 
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Table 2. Controlled memory processes influenced by advanced aging, PFC damage, and sleep 

deprivation. 

 

Cued Recall  

Aging (Cabeza et al., 1997; McIntyre & Craik, 1987) 

Frontal Lobe Damage (Baldo, Delis, Kramer, & Shimamura, 2002) 

Sleep Deprivation (Drake et al., 2001; Nilsson, Backman, & Karlsson, 1989)  

False Recognition (False alarming to related lures)  

Aging (Buchler, Faunce, Light, Gottfredson, & Reder, 2011; Kensinger & Schacter, 

1999; Schacter, Koutstaal, & Norman, 1997)  

Frontal Lobe Damage (Baldo, et al., 2002; Baldo & Shimamura, 2002; Schacter, Curran, 

Galluccio, Milberg, & Bates, 1996; Verfaellie, Rapcsak, Keane, & Alexander, 2004) 

Sleep deprivation (Diekelmann, Landolt, Lahl, Born, & Wagner, 2008)  

Free Recall  

Aging (Kensinger & Schacter, 1999; Macht & Buschke, 1983)  

Frontal Lobe Damage (Baldo & Shimamura, 2002; Gershberg & Shimamura, 1995; 

Incisa della Rocchetta & Milner, 1993) 

Sleep Deprivation (Drummond et al., 2000; Drummond, et al., 2005) 
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Table 2 Continued 

Temporal Order Memory  

Aging (Cabeza, Anderson, Houle, Mangels, & Nyberg, 2000; Trott, Friedman, Ritter, & 

Fabiani, 1997; Trott, Friedman, Ritter, Fabiani, & Snodgrass, 1999)1 

Frontal Lobe Damage (Mangels, 1997; McAndrews & Milner, 1991)  

Sleep deprivation (Harrison & Horne, 2000b)  

 

 

 

Supporting the notion that cognitive deficits in older adults and sleep-deprived young 

adults are similar, Nilsson et al. (1989) found similarities in memory performance between older, 

young alcohol intoxicated, and young sleep-deprived subjects. In a recall test using weakly and 

strongly related word pairs, they found that all experimental groups (older, intoxicated, and 

sleep-deprived) demonstrated the same pattern of deficits in which recall of weakly related word 

pairs was significantly lower than that of the control young adult group. Recall of strongly 

related word pairs, however was not affected. In this study, recall of weakly related word pairs 

should require greater reliance on executive control than recall of strongly related word pairs. 

The authors attributed this finding to both deficient encoding and retrieval and suggested a 

functional similarity between sleep deprivation, intoxication, and normal aging in terms of 

controlled memory processes.  
                                                 

1 Note that in table 2 some effects of aging, PFC, and sleep deprivation on these memory 

processes are attributable to impairments in both encoding and retrieval strategies. 

 



 15 

Recognition memory is primarily uninfluenced by sleep deprivation, however similar to 

frontal lobe patients (Baldo, et al., 2002; Baldo & Shimamura, 2002; Schacter, et al., 1996; 

Verfaellie, et al., 2004) and older adults (Kensinger & Schacter, 1999; Schacter, et al., 1997), 

false recognition to semantically related lures has been shown to increase with sleep deprivation 

(Table 2). Diekelmann et al. (2008) used a false memory paradigm (Roediger & McDermott, 

1995) to test false recognition in young subjects sleep deprived during memory retrieval. 

Subjects sleep deprived during memory retrieval were more likely to incorrectly judge new 

words semantically related to studied words as “old”. This suggests that forms of recognition 

memory that depend on the PFC (distinguishing semantically-related lures from studied items) 

are influenced by sleep deprivation. To further support the view that this effect was not a result 

of less consistent memory consolidation, this study found that manipulations in sleep within the 

study-test interval did not influence false recognition. It was specifically the effect of sleep 

deprivation on retrieval that brought about an increase in false recognition.   

Overall these sleep-deprivation studies of memory retrieval suggest that more controlled 

retrieval processes are impaired with sleep deprivation compared with more automatic ones and 

this dissociation may be driven by a breakdown in PFC function. 

These results point to the possibility that age-related decreases in sleep contribute to 

executive control deficits. Conversely, because there is more to age-related sleep changes than a 

mere overall decrease in sleep, the impact of age-related sleep changes on cognition may not be 

completely comparable to sleep deprivation in young adults. Further, while many older adults 

exhibit marked impairments in cognitive performance and changes in brain activity, some older 

adults show little cognitive decline (Stern, 2009). These individual differences in cognitive 

decline may be explained, at least partially, by individual differences in sleep. Determining the 
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way in which sleep plays a role in age-related cognitive decline may shed light on why some 

older adults but not others exhibit impairments.  

1.4 INDIVIDUAL DIFFERENCES IN SLEEP AND EXECUTIVE CONTROL IN 

OLDER ADULTS 

Inadequate sleep is very common among the adult population (Kapiro, Partinen, & Koskenvuo, 

2001). According to Mander et al. (2008) only 26 percent of adults report getting the 

recommended eight or more hours of sleep per night. In addition, total sleep deprivation (when 

subjects are deprived for a full night) is not necessary to reveal significant cognitive 

impairments. More ecologically valid studies of chronic sleep restriction involving less than 7 

hours of sleep per night for multiple nights have revealed a range of cognitive deficits including 

deficits on tasks of attention and working memory (Durmer & Dinges, 2005; Goel, et al., 2009; 

Van Dongen, Maislin, Mullington, & Dinges, 2003). Moreover, chronic sleep restriction for two 

weeks has been shown to result in cognitive deficits equivalent to that found with total sleep 

deprivation (Van Dongen, et al., 2003). This type of chronic inadequate sleep, which is similar to 

sleep behavior of older adults, could potentially result in cognitive impairments that may be 

difficult to reverse with a few good nights of sleep. Although the data are somewhat inconsistent, 

older adults with greater sleep quantity and quality tend to perform better on cognitive tasks 

(Blackwell, et al., 2006; Nebes, et al., 2009; Pace-Schott & Spencer, 2011).  

Given the importance of slow-wave sleep in PFC restoration, decline in slow-wave sleep is a 

critical age-related sleep change that may contribute to impairments in executive control. Both 

human and animal studies have shown a decrease in slow-wave sleep with age (Buechel et al., 
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2011; Cajochen, et al., 2006; Carrier, et al., 2001; Carskadon & Dement, 2011; Espiritu, 2008; 

Feinberg, 1974; Kupfer, et al., 1982; Ohayon, et al., 2004; Pace-Schott & Spencer, 2011; 2000). 

This decline in slow-wave sleep gradually manifests itself during the middle years of life 

(Cajochen, et al., 2006; Carrier, et al., 2001; Van Cauter, et al., 2000). It is possible that the 

decrease in slow-wave sleep that occurs with aging could negatively impact PFC function by 

diminishing the restoration process. In addition, older adults that exhibit reduced slow-wave 

sleep may be more likely to exhibit cognitive decline. This relationship leading to decline in 

executive control is illustrated in Figure 1: Increasing age leads to decline in slow-wave sleep, 

and in turn, decreased prefrontal restoration, which leads to impaired executive control. 

Alternatively, the proposed pathways illustrated in Figure 1 may be neither unidirectional 

nor an exhaustive model of moderators and possible mediators involved in age-related deficits. 

For example, amyloid deposition has been shown to disrupt slow-wave sleep (Hermann et al., 

2009). Accordingly, cognitive abilities may be related to slow-wave sleep as a result of age-

related neuropathological changes negatively impacting slow-wave sleep.  

 

 

 

 

Figure 1. Sleep-mediated relationship between aging and executive control 
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It should be noted that several reports suggest that older adults are more resilient to sleep 

deprivation than young adults (Duffy, et al., 2009; Philip et al., 2004), suggesting that sleep need 

declines with age. However, other studies suggest that young and older adults require the same 

amount of sleep, and time spent in slow-wave sleep to perform well on executive control tasks 

(Killgore, Balkin, & Wesensten, 2006). Moreover, older adults may be less likely to restore 

frontal lobe function following sleep deprivation compared with young adults (Munch et al., 

2004). Despite these age differences in responses to sleep deprivation, it is unclear from these 

studies whether sleep normally exhibited by older adults negatively impacts cognitive 

performance. Although there is a dearth of research on the topic, examining whether individual 

differences in sleep among older adults explain variation in memory and cognitive function is 

essential given the preponderance of sleep and cognition-related problems among older adults.  

A few studies have suggested that individual differences in slow-wave sleep are related to 

executive control abilities in older adults. Anderson & Horne (2003) examined low-frequency 

delta EEG activity during non-REM sleep, which is highest during slow-wave sleep, in a group 

of healthy older adults. They found a positive correlation between low-frequency delta activity in 

frontal EEG sites and performance on cognitive tasks thought to be relatively “PFC-specific”, 

including the Wisconsin Card-Sorting Task, and the Tower of London task (a non-verbal 

planning task). According to the authors, the non-verbal planning task required flexibility in 

planning and in changing of strategies. The Wisconsin card sorting task is thought to depend on 

inhibitory control (and other processing) in that it tests for perseveration of strategies. Though 

this study was purely behavioral, this result points to the relationship between slow-wave sleep 

and PFC function among older adults.  
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In an earlier study, Crenshaw and Edinger (1999) investigated whether slow-wave sleep 

was related to performance on “simple reaction time” and vigilance tasks among older adults 

with normal sleep and those with insomnia. Older adults who were normal sleepers showed no 

relationship between cognitive performance and slow-wave sleep. In contrast to the Anderson & 

Horne (2003) study mentioned above, the cognitive measures of this study were not “executive 

tasks”. Based on the view that slow-wave sleep specifically affects PFC function responsible for 

executive control, slow-wave sleep would not be related to behavior on these tasks in healthy 

older adults. Accordingly, the Anderson & Horne (2003) study measured simple response time 

as well and found no relationship between this cognitive measure and slow-wave sleep. 

To corroborate these findings, a more recent study, Nebes et al. (2009) showed that 

subjective poor sleep (sleep latency and sleep efficiency) in older adults was associated with 

poor performance on a range of executive control tasks, including those that tested working 

memory and attentional set shifting. There was however, no relationship between sleep quality 

and a processing speed task. Though, in this study there was not a clear distinction between 

executive and non-executive tasks: no relationship was found between sleep and inhibitory 

processing as assessed by the Stroop task and Haylings task, or episodic memory, as assessed by 

the logical memory test (Wechsler, 1987). Regardless of the lack of a clear distinction, these 

studies examining individual differences in sleep suggest that poor sleep, particularly slow-wave 

sleep, in older adults may lead to poor performance on some tasks of executive control. It should 

also be noted that subjective sleep quality, as measured by the Pittsburgh Sleep Quality Index 

(Buysse, Reynolds, Monk, Berman, & Kupfer, 1989) in the Nebes et al. study, primarily 

measures sleep quality based on time spent in bed, as opposed to objective amount of time spent 

sleeping, sleep efficiency, or time spent in specific sleep stages. Consequently, relationships 
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between sleep and these cognitive tasks may have differed if objective sleep measures, such as 

amount of time spent in slow-wave sleep, were investigated. 

Based on the studies reviewed above, there is clearly some support for the hypothesis that 

age-related changes in sleep quality contribute to decline in PFC and executive control and this 

may affect controlled memory abilities. Should future research support this model of cognitive 

aging, treatments aimed at improving slow-wave sleep in healthy older adults could improve 

executive control, potentially leading to improvements in memory.  

1.5 SLEEP AS A MEDIATING VARIABLE FOR EFFECTS OF EXERCISE ON 

COGNITION 

Having concluded that age-related changes in sleep may contribute to the pattern of cognitive 

deficits displayed by older adults, we can next ask whether sleep acts as a mediating factor for 

other variables that influence cognition. For example, physical activity interventions have been 

shown to improve executive control in both young and older adults (Erickson, Miller, Weinstein, 

Akl, & Banducci, 2012; Kramer, Erickson, & Colcombe, 2006). There are consistent benefits of 

physical activity and exercise interventions on executive control that appear to be mediated by 

biological markers of brain function (Erickson, et al., 2012; Kramer, et al., 2006; Weinstein, et 

al., 2011). The pathway through which exercise benefits executive control however, is not well 

understood (Vitiello, 2008). One possibility is that exercise improves cerebral vasculature, 

thereby influencing cognitive function (Brown et al., 2010). Another possible mechanism is that 

exercise improves sleep, which in turn benefits cognition. Figure 2 illustrates the possible 

mediating relationship between sleep, physical activity and executive control. This mediation 
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model taken from (Wilckens, Erickson, & Wheeler, 2012) illustrates slow-wave sleep as 

mediating the relationship between physical activity and PFC function: With an increase in 

physical activity, there is an increase in slow-wave sleep, leading to improved PFC function and 

in turn improved executive control function. 

Reviews of the literature on the relationship between sleep and physical activity suggest that 

exercise improves both subjective and objective sleep measures, especially in older adults with 

poor sleep (Driver & Taylor, 2000; Lopez, 2008; 2008). Older adults who are more physically fit 

tend to have shorter sleep latencies (time it takes to fall asleep) and more slow-wave sleep than 

sedentary older adults (Vitiello, 2008). Subjective sleep quality has also been shown to improve 

with chronic exercise (Benloucif et al., 2004; King, Oman, Brassington, Bliwise, & Haskell, 

1997; Reid et al., 2010). King, Oman, Brassington, Bliwise, and Haskell (1997) found that 

subjective sleep quality in older adults, as measured by the Pittsburgh Sleep Quality Index, 

improved with 16 weeks of aerobic exercise. Though few studies have used objective sleep 

measures, particularly polysomnography, to test the effects of chronic exercise on sleep (Lopez, 

2008), chronic aerobic exercise in sedentary older adults has been shown to selectively improve 

slow-wave sleep with a 6-month exercise intervention (Vitiello, Prinz, & Schwartz, 1994). 

Although not directly addressing cognition, these findings are noteworthy in that they suggest 

that exercise might improve PFC function and executive control by improving slow-wave sleep.  
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Figure 2. Model illustrating slow-wave sleep as mediating the relationship between physical activity 

and PFC function 

 

1.6 CONCLUSIONS 

Given that aging is (a) associated with changes in sleep, and (b) that sleep deprivation and aging 

reveal similar patterns of deficient cognition and brain activity, it is conceivable that sleep-

deprived young adults may serve as a model for cognitive deficits found in older adults 

(Harrison, et al., 2000). Although sleep deprivation consistently reveals significant impairments 

in executive control, the sleep deprivation literature has also revealed a wide range of cognitive 

impairments, some consistent and others inconsistent with the pattern of results typically found 

in older adults. Additionally, some aging studies have used sleep deprivation to examine how 

poor sleep affects cognition in older adults. This literature points to both increased and decreased 

cognitive impairments in older adults relative to young (Duffy, et al., 2009; Killgore, et al., 

2006). These inconsistencies could be explained by there being different mechanisms underlying 

cognitive deficits with aging and sleep deprivation. One drawback to using sleep deprivation as a 

model for cognitive decline is that slow-wave sleep is the sleep stage that most reliably shows 
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age-related changes (Pace-Schott & Spencer, 2011) and appears to restore PFC function (Muzur, 

et al., 2002). Total sleep deprivation studies however, deprive subjects of both REM and non-

REM sleep. Further, sleep deprivation is known to influence not only the PFC and “control 

regions”, but other brain regions including the thalamus, and in turn alertness (J. C. Wu, et al., 

2006). Thus, sleep deprivation’s influence on cognition may not be specific to executive control. 

The way in which age-related decreases in slow-wave sleep affect the PFC may shed light on 

whether similar mechanisms underlie cognitive deficits resulting from aging and sleep 

deprivation. For instance, age-related changes in slow-wave sleep may have an immediate or 

gradual cumulative impact on PFC structure and function. It may be that chronic diminished 

slow-wave sleep over time brings about changes in the PFC seen with advanced age. 

Alternatively age-related reductions in slow-wave sleep could have an immediate effect, similar 

to experimentally induced sleep deprivation. Examination of individual differences in slow-wave 

sleep among healthy older adults may prove effective in revealing the specific processes 

influenced by age-related changes in sleep and more directly address whether age-related 

changes in sleep robustly affect cognitive decline. The present study examined individual 

differences in objective sleep, measured with accelerometry, in young and older adults to 

identify how sleep normally exhibited by older adults relates to executive control abilities. 

 

1.7 PRESENT STUDY 

The present study elaborated upon this literature in several ways. The first question, which is 

based on my prior research in memory retrieval, that retrieval preparation is impaired with aging 
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(Wilckens, et al., 2010), was whether this age-related change in preparation reflects a general 

preparation deficit. The first section describes a task-switching paradigm that manipulated 

preparation time to test whether age-related impairments include diminished engagement of 

preparation strategies to improve performance compared with young adults.  

Because some older adults exhibit marked impairments in cognition and show altered 

brain activations compared with young adults, while others show remarkable abilities to maintain 

cognition, Study 1 also sought to identify whether individual differences sleep behavior had an 

influence on whether older adults showed impairments or not. Because both sleep and cognition 

tend to decline with aging, and sleep is thought to restore the PFC (Muzur, et al., 2002), I posited 

that older adults who exhibited poor sleep would be more likely to exhibit impairments in 

executive control. To test this, in Study 1, I examined how individual differences in subjects’ 

sleep quality and quantity were related to improvement in performance with preparation.  

In addition, given that physical activity and cardiovascular fitness in older adults is 

associated with higher cognitive performance (Colcombe et al., 2004; Erickson, et al., 2012; 

Weinstein, et al., 2011), I proposed that sleep behavior mediates the relationship between 

physical activity and executive control. In Study 2, I tested the mediating effect of sleep on the 

relationship between physical activity and cognition. I hypothesized that the mediating effect of 

sleep would be significant, but that this effect would be specific to tasks that tax executive 

control; not those that measure processing speed. Given that prior research has shown that sleep 

efficiency is related to cognition more so than sleep time (Blackwell, et al., 2006; Nebes, et al., 

2009), I expected that sleep efficiency would relate to cognition more consistently than sleep 

time. In addition, I posited that sleep efficiency would more consistently be a significant 

mediator of the relationship between physical activity and cognition. This is the first study, to my 
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knowledge, that has specifically tested the mediating effect of sleep on the relationship between 

physical activity and cognitive performance. 

Finally, there is evidence that time of day influences the degree to which older adults 

show impairments in cognitive performance relative to young adults (Winocur & Hasher, 1999). 

Arousal often peaks in the morning in older adults, resulting in higher cognitive performance in 

the morning. In Study 3, I examined whether older adults who participated in the experiment in 

the morning were more likely to perform similarly to young adults and perform better. I also 

tested whether time of day had an influence on the extent to which sleep was related to cognitive 

performance in older adults. I expected that older adults with high sleep efficiency who 

participated in the morning would exhibit the highest cognitive performance, similar to young 

adults. 

1.7.1 General methods  

Each of the three studies derived from the same data set (“Frontal Lobe” collected in the Wheeler 

lab). Analytic methods specific to each of the studies are described in the individual sections 

below.  

Subjects 

Subjects were paid at a rate of $10 per hour for participation in the experiment and $50 

for wearing an accelerometer armband for one week. Subjects provided informed consent as 

required by the University of Pittsburgh Institutional Review Board. 125 subjects participated in 

the experiment. Exclusion criteria included having depression or currently taking psychiatric 

medication, dependence on drugs or alcohol, or a diagnosis with a neurodegenerative disease. All 

subjects had normal or corrected vision. Subjects were excluded from further analysis if their 
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accelerometer collected less than 4 days of data, the subject did not complete both experimental 

sessions, or scored below 27 on the mini mental state exam (MMSE) (n = 15). One subject that 

was an outlier in Trails B analyses was excluded from all analyses due to an extreme Trails B 

time and a low sleep efficiency to avoid biasing the data to favor a relationship between 

performance and sleep efficiency (Appendix C). Additional exclusion of subjects was 

determined on a task-by-task basis depending upon whether the subject achieved above chance 

accuracy. 

1.7.2 General results  

Neuropsychological Assessments 

Results from the neuropsychological assessments, sleep, and physical activity metrics for 

young and older adults are displayed in Table 3. 
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Table 3. Demographic data, means and standard deviations (SD) for neuropsychological assessment 

scores, sleep, and physical activity measures 

 

 Younger  Older  

N 59  50  
Females 39  34  
     

 Mean SD Mean SD 
Age 23.03 2.44 62.80 6.17 
Education 16.05 1.65 15.33 3.09 
MMSW 29.58 0.67 29.02 0.91 
Forward Digit Span 7.57 1.17 7.26 1.26 
Backward Digit 
Span 5.28 1.42 5.02 1.38 
Recall 1 5.12 1.23 4.40 1.50 
Recall 2 7.95 1.09 7.34 1.39 
Recall 3 9.12 0.91 8.24 1.49 
Delayed Recall 7.17 1.66 5.70 1.99 
Trails A (sec) 21.57 7.27 30.14 11.36 
Trails B (sec) 46.84 20.60 75.90 27.25 
Digit Symbol 45.61 7.02 34.30 7.48 
Nighttime Sleep 
Efficiency 0.83 0.07 0.83 0.09 
Overall Sleep 
Efficiency 0.80 0.08 0.81 0.10 
Overall Sleep Time 6.95 1.01 6.42 1.15 
Awake METs 1.86 0.33 1.51 0.31 
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Age and Sleep 

Figure 3 shows age differences in sleep efficiency and sleep time. There was no 

difference in sleep efficiency overall t(107) = 0.533, p = 0.595, or nighttime, t(107) = 0.246, p = 

0.806, between age groups. The mean overall sleep efficiency was M (mean) = 0.805, SD 

(standard deviation) = 0.079 for the younger group and M = 0.814, SD = 0.0955 for the older 

group. The mean nighttime sleep efficiency was M = 0.829, SD = 0.072 in the younger group, 

and M = 0.825, SD = 0.093 in the older group. Sleep time overall, t(107) = 2.553, p = 0.012, and 

nighttime, t(107) = 2.044, p = 0.043, were significantly greater in the young group. The mean 

number of sleep hours overall was M = 6.95, SD = 1.01 in the younger group, and M = 6.42, SD 

= 1.15 in the older group. The mean number of nighttime sleep hours in the young group was M 

= 6.33, SD = 1.00. The mean number of nighttime sleep hours in the older group was M = 5.91, 

SD = 1.15.  
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Figure 3. Nighttime and overall sleep efficiency (upper) and sleep time (lower) for young and older 

adults 
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2.0  STUDY 1: AGING AND SLEEP INFLUENCE PREPARATION ABILITIES 

2.1 INTRODUCTION 

Among the “executive tasks” in which older adults tend to show decline, is task-switching 

(DiGirolamo et al., 2001; Monsell, 2003). In particular, “switch costs”, in which performance is 

poorer on switch trials compared to repeat trials, are often smaller in older adults (Kramer et al. 

1999, Kray et al., 2006); but see (Cepeda, et al., 2001). This is due to difficulties adopting a task-

set. In contrast, young adults exert executive control to adopt a task-set which is maintained on 

repeat trials to improve performance. However, this sometimes leads to a decrement in 

performance on switch trials (Kramer et al. 1999, Kray et al., 2006). Time to prepare often leads 

to improved performance and a reduction in switch costs (differences in performance between 

switch and repeat trials) in young adults (Monsell, 2003). This is referred to as the “preparation 

effect”.  

One factor that may contribute to individual differences in decline executive functions, 

like switching and preparation, is sleep. Given that sleep declines with age and sleep is thought 

to restore the prefrontal cortex (Muzur, et al., 2002), age-related sleep changes may play a role in 

the extent to which older adults exhibit decline in executive control and in turn impaired 

switching and preparation abilities.  
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One ERP study (Wilckens, et al., 2010), used a memory task-switching paradigm to 

compare memory retrieval preparation effects between younger and older adults. This study 

found that retrieval preparation was absent in older adults, as indicated by ERP correlates of 

“memory task-set adoption”.  However, there is conflicting behavioral evidence to suggest that 

preparation in general is impaired in older adults; and practice may play a role (Cepeda, et al., 

2001; Kramer, et al., 1999). 

The goals of Study 1 were three-fold. First, I investigated whether older adults showed 

deficits in preparatory processing compared with young adults. In other words, whether older 

adults demonstrated a “preparation effect” in which preparation time, operationalized as longer 

cue to target intervals (CTIs), would reduce switch costs to the same degree as young adults. 

Second, using several metrics of sleep, I examined whether subjects with poor sleep were less 

likely to capitalize on preparation time. The third goal was to determine whether switching and 

preparation abilities differed in young and older adults with good versus poor sleep quality and 

quantity, and whether older adults with good sleep would exhibit a preparation effect similar to 

young adults.  

I expected that preparation effects would be diminished in older adults, but that older 

adults with good sleep would demonstrate preparation effects similar to young adults.  
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2.2 METHODS 

2.2.1 Subjects 

After excluding subjects with less than 4 days of accelerometer data, MMSE scores below 27, 

and switching block accuracy below 55% accuracy at either session (n = 29 ), analyses included 

a total of 100 subjects (57 younger, 21- 30 years of age, 43 older, 55 – 76 years of age). A 

conservative cut off for accuracy (55%) was set to ensure that all subjects included in the 

analysis had paid attention to the task cues during the switching block. A median split on the 

remaining subjects separated subjects into high and low overall sleep efficiency groups (+/- 

0.825) and nighttime sleep efficiency groups (+/- 0.847). Subjects were separated into overall 

and nighttime sleep time groups based on the median for their age group:  overall sleep time 

groups (+/- 428.74 minutes for young adults, +/- 387.03 minutes for older adults) , and nighttime 

sleep time groups (+/- 393.29 minutes for young adults, +/- 357.5 minutes for older adults). 

 

 

 

 

 

 

 

 

 

 



 33 

 

Figure 4. Example sequence of trials in the Task-switch procedure 

 

 

 

2.2.2 Experimental procedure 

Subjects participated in the Task-switch procedure (Figure 4) twice (once at session 1 and again 

at session 2) spaced one week apart. In the Task-switch procedure the CTI varied on a trial-by-

trial basis. Subjects were cued on each trial to perform one of two tasks that required judgments 

about a single-digit number presented on the screen. For one task they judged whether the 
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number was greater than or less than 5 (GL task). In the other task, they judged whether the 

number was odd or even (OE task). A circle preceding or accompanying the target number cued 

subjects to perform the GL task. A square preceding or accompanying the target number cued 

subjects to perform the OE task. The CTI was either 0 ms (simultaneous cue and target), 750 ms, 

or 1500 ms. A practice session comprised of 48 trials (24 of each task) and one experimental 

block session of each task (GL and OE), comprised of 32 trials of each task, preceded the task-

switching block. The switching block was comprised of a total of 96 trials: 16 trials of each cue 

type (GL and OE) for each of the 3 CTI conditions were presented randomly in the switching 

block with 8 of each correct response type (greater than, less than, odd, even). This Task-switch 

paradigm allowed us to assess switch costs with no preparation time (0 CTI) and with 

preparation time (750 and 1500 CTIs). Figure 4 illustrates an example sequence of trials in the 

Task-switch procedure: The subject is cued with the circle instructing them to say whether the 

number is greater than or less than 5. Following a 750 ms CTI, the number appears on the screen 

(6) and the subject responds “greater”. The next trial, the square and number are presented 

simultaneously (0 ms CTI) and the subject responds “even”. The last trial, the square cues the 

subject to prepare to indicate whether the number is odd or even. The number appears following 

a 1500 ms CTI (9) and the subject responds “odd”. The second trial is a switch trial (switch from 

circle to square).The third trial is a repeat trial (square to square). 
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2.3 RESULTS 

2.3.1 Preparation and switching 

For clarity’s sake, in the present section, effects involving sleep efficiency are graphed in red, 

effects involving sleep time are graphed in purple, and effects involving neither of these factors 

are graphed in gray. 

Task-switch data were separated by CTI or “preparation time” (0, 750, and 1500 ms) and 

transition condition (switch and repeat).  

Response Times 

Initial analyses involved a preparation × transition × age group × sleep efficiency group 

mixed effects ANOVA on RTs collapsed across session to investigate how preparation effects 

were influenced by sleep efficiency in young and older adults. 

Main effects 

There were significant main effects of preparation, F(2,192) = 573.21, p < 0.001 and 

transition, F(1,192) = 52.123, p < 0.001, reflecting that subjects were faster with longer 

preparation times (750 and 1500 ms CTIs) and on repeat trials. There were also significant main 

effects of age group, F(1,96) = 49.088, p < 0.001, and sleep efficiency group, F(1,96) = 5.850, p 

= 0.017. The main effect of age group reflected that young adults were faster to respond than 

older adults. The main effect of sleep efficiency group reflected that subjects with higher sleep 

efficiency were faster to respond.  

Interactions with preparation 

There was a significant preparation × transition interaction, F(2,192) = 6.494, p = 0.002, 

reflecting a “preparation effect” in which switch costs in RT were reduced with time to prepare.  
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Interactions with Age Group 

There were no significant interactions with age group for RT collapsed across session.  

Interactions with Overall Sleep Efficiency 

There were no significant interactions with overall sleep efficiency group for RT 

collapsed across session. 

Interactions with Overall Sleep Time 

A preparation × transition × age group × overall sleep time group ANOVA revealed a significant 

preparation × overall sleep time group interaction, F(2,192) = 4.566, p = 0.012, reflecting that 

subjects with longer sleep times were faster to respond, especially on trials with no time to 

prepare (0 ms CTI). There was also a significant preparation × age group × sleep time group 

interaction, F(2,192) = 5.207, p = 0.006, reflecting that age differences in RT were largest in the 

0 ms preparation time condition, for subjects with short sleep times, but that 1500 ms preparation 

times eliminated sleep group differences. This suggests that older adults with shorter sleep times 

show impairments when they have less time to prepare. Figure 5 illustrates this pattern of age 

differences (Older – Younger) in RT based on overall sleep time group. Age differences were 

largest in subjects with shorter sleep times in the 0 ms preparation condition. Error bars reflect 

age differences in standard error. 
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Figure 5. Age differences in RT based on overall sleep time group 
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Main Effects 

There were significant main effects of preparation, F(2,192) = 191.921, p < 0.001 and 

transition, F(1,104) = 113.28, p < 0.001, reflecting higher accuracy with time to prepare and 

higher accuracy on repeat trials. There was also a main effect of age group, F(1,96) = 12.123, p = 

0.001, reflecting higher accuracy in the younger group.  

Preparation 

There was a significant preparation × transition interaction, F(2,192) = 13.103, p < 0.001, 

reflecting a preparation effect in which switch costs in accuracy were reduced with longer 

preparation times.  

Interactions with Age Group 

There was a marginally significant transition × age group interaction, F(1,96) = 3.314, p 

= 0.072, reflecting greater switch costs in the younger group due to a greater benefit from repeat 

trials compared with older adults. This finding is consistent with the view that younger adults are 

more likely to adopt a task set. There was no interaction involving preparation and age group, p 

= 0.360 collapsed across session. 

Interactions with Overall Sleep Efficiency 

Of primary interest was the significant preparation × transition × overall sleep efficiency 

interaction, F(2,192) = 7.105, p = 0.001. This finding reflects that subjects with high sleep 

efficiency were more likely to exhibit a “preparation effect” than subjects with low sleep 

efficiency. In other words, subjects with high sleep efficiency were more likely to display a 

reduction in switch costs with time to prepare. Figure 6 shows this “preparation effect” in 

subjects with high (upper graph) and low (lower graph) sleep efficiency collapsed across 
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younger and older subjects. A reduction in switch costs with longer preparation times 

(preparation effect) was only evident in the high sleep efficiency group.  
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Figure 6. Preparation effect in subjects high (upper) and low (lower) sleep efficiency 
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Interactions with Overall Sleep Time 

 There were no significant effects of overall sleep time on accuracy. However, 

there was a marginally significant transition × overall sleep time interaction, reflecting larger 

switch costs in subjects with longer sleep times due to higher accuracy on repeat trials and lower 

accuracy on switch trials, consistent with the view that subjects with longer sleep times are more 

likely to adopt a task-set. 

Nighttime Sleep 

 There were no differences in significant effects on accuracy between overall sleep 

efficiency and nighttime sleep efficiency, though there was a marginally significant main effect 

of nighttime sleep efficiency, p = 0.081. There were no differences in significant effects on 

accuracy between overall sleep time and nighttime sleep time.  

2.3.2 Influence of practice on effects of age and sleep on preparation 

Prior task-switching studies in older adults have demonstrated that practice can significantly 

influence age-related impairments in performance (Kramer, et al., 1999). To investigate how 

practice effects may have influenced effects of age group on preparation, I performed the mixed 

effects ANOVA reported above again with session as a within subjects factor.  

Response Times 

In addition to the effects reported above, there were significant interactions between 

session, preparation time, and age group, as well as significant interactions between session, 

preparation time, and sleep group.  
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Interactions with Session, Preparation, and Transition 

There was a significant main effect of session, F(1,96) = 45.381, p < 0.001, reflecting that 

subjects were significantly faster at session 2. There was also a significant session × preparation 

time interaction, F(2,192) = 5.506, p = 0.004, reflecting that the 0 ms CTI benefitted most with 

practice from session 1 to session 2. 

Interactions with Age Group 

There was a significant session × preparation time × age group interaction, F(2,192) = 8.574, p < 

0.001. As shown in Figure 7 below, this interaction reflected the finding that at session 1, young 

adults showed a disproportionate decrease in RT with time to prepare (750 and 1500 ms CTIs) 

compared with older adults. However, at session 2, older adults showed a disproportionate 

decrease in RT with time to prepare. There was no preparation time × transition × age group 

interaction, F < 1. Thus, contrary to what I expected, a reduction in switch costs with time to 

prepare was not diminished in the older group. However, without practice (session 1), older 

adults were less likely to maximize time to prepare in terms of overall RT in the switching block. 

It can be seen in Figure 8, that at session 1, age differences increased from 0 to 750 to 1500 ms 

preparation time. However, at session 2, age differences decreased from 0 to 750 to 1500 ms 

preparation time, reflecting that at session 2, older adults began to maximize time to prepare and 

decrease RT. (Error bars reflect age differences in standard errors). 
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Figure 7. Session 1 (upper) and session 2 (lower) RT as a function of preparation time in young and 

older adults 
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Figure 8. Age differences in RT as a function of preparation time and session 
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Sleep Time 

There were no significant interactions involving session and sleep time group for RT. 

Accuracy 

In addition to the significant effects on accuracy reported above, there were significant 

interactions involving session, preparation time, age group, and sleep time group.  

There was a significant main effect of session, F(1,96) = 19.254, p < 0.001, reflecting 

improved accuracy at session 2. 

Interactions with Age Group 

Similar to what was found with RT, there was also a significant session × preparation time × age 

group interaction with accuracy, F(2,192) = 3.825, p = 0.024, reflecting that at session 1, young 

adults displayed a disproportionate benefit in accuracy with time to prepare compared with older 

adults (Figure 9, upper panel). However at session 2, older adults improved with time to prepare 

similarly to young adults (Figure 9, lower panel), and the advantage went away in the young 

group. This result again suggests that older adults may, with practice, engage preparation 

strategies similar to young adults. Similar to the effect found with RT, this effect can be seen as 

an increase in age differences with time to prepare at session 1, but smaller age differences with 

time to prepare at session 2 (Figure 10). Figure 10 below shows how age differences increased 

with preparation time at session 1, but to a lesser degree at session 2. Age differences were 

largest with 1500 ms preparation times at session 1, but these age differences were diminished at 

session 2 when older adults also benefitted from preparation time. (Error bars reflect age 

differences in standard errors). 
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Figure 9. Session 1 (upper) and 2 (lower) accuracy as a function of preparation time in young and 

older adults 

 

0.5
0.6
0.7
0.8
0.9

1

0 750 1500

P
ro

p
or

ti
on

 C
or

re
ct

 

Preparation Time 

Session 1: Young adults 
benefit from time to prepare 

Younger
Older

0.5

0.7

0.9

0 750 1500

P
ro

p
or

ti
on

 C
or

re
ct

 

Preparation Time 

Session 2: Younger and Older 
benefit from time to prepare 

Younger
Older



 47 

 

Figure 10. Age differences in accuracy as a function of preparation time and session 

 

 

 

Sleep Time 

There was a significant session × transition × age group × overall sleep time group interaction, 

F(1,96) = 4.265, p = 0.042,  reflecting that young adults with longer sleep times showed a greater 

benefit from task repeats at session 2. This may suggest that they were able to adopt a task set 

more readily than young adults with less sleep time, particularly when the task was well learned 

at session 2. This effect was also significant for nighttime sleep time group, F(1,96) = 7.367, p = 

0.008. Though, this interaction is difficult to interpret because it is driven by a reduction in 

switch costs from session 1 to session 2 for young adults with shorter sleep times (Figure 11, 

upper panel) and older adults with longer sleep times (Figure 11, lower panel). Figure 11 shows 

0

0.02

0.04

0.06

0.08

0.1

0 750 1500P
ro

p
or

ti
on

 C
or

re
ct

 

Preparation Time 

Age Differences in Accuracy 

Session 1
Session 2



 48 

switch costs in accuracy from session 1 to session 2 in young and older adults. Young adults with 

longer sleep times benefitted more from repeat trials reflecting larger switch costs at session 2.  
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Figure 11. Switch costs in accuracy by session as a function of sleep time 
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2.3.3 Switching versus single task block performance 

To examine how age and sleep influenced task “mixing” compared with single task block 

performance, I performed a mixed effects ANOVA with switch and repeat trials types in the 

switching block and GL and OE single task blocks. Performance on repeat trials in the switching 

block reflects costs from “mixing” tasks compared with performance in either single task block. 

Only effects of age group and sleep efficiency group are reported here. 

Response Times  

A block (switch, repeat, GL, OE) × age group sleep × efficiency group mixed effects ANOVA 

revealed a significant main effect of age group, F(1,96) = 56.621, p < 0.001, a main effect of 

sleep efficiency group, F(1,96) = 5.598, p = 0.020, a significant block × age group interaction, 

F(3,288) = 14.048, p < 0.001, and a significant block × sleep efficiency group interaction, 

F(3,288) = 4.183, p = 0.006 reflecting that the greatest effects of sleep efficiency group were on 

RTs in switch trials, t(98) = 2.011, p = 0.047, especially compared with the GL task block, p = 

0.239, reflecting an effect of sleep efficiency on switching (Figure 12). Figure 12 shows RTs for 

switch and single task blocks as a function of sleep efficiency group: Subjects with high sleep 

efficiency were faster on switch trials compared with subjects with low sleep efficiency. These 

differences in sleep efficiency were not significant for the other trial types (repeats, GL block, or 

OE block). 
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Figure 12. RTs by block as a function of sleep efficiency 

 

 

 

Accuracy 

A block (switch, repeat, GL, OE) × age group × overall sleep efficiency group ANOVA 

revealed a main effect of age group, F(1,96) = 10.148, p = 0.002. There was also a significant 

block × age group interaction, F(3,288) = 5.748, p = 0.001, reflecting that age differences were 

larger in the switching block and GL block compared with the OE block.  

These findings with block as a within subjects factor reveal that effects of overall sleep 

efficiency did not differentially influence switching versus single task block accuracy. However, 

they did differentially influence RT in switching versus single task blocks.  
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Nighttime Sleep Efficiency 

Nighttime sleep efficiency group as a between subjects factor revealed the same effects 

on RT and accuracy as well as a main effect of nighttime sleep efficiency group on overall 

accuracy, F(1,96) = 5.504, p = 0.021. 

 

Sleep Time 

Response Times 

 In terms of RT, there was a significant block × age group × overall sleep time 

group interaction, F(3,288) = 2.793, p = 0.041, reflecting that age differences in the switching 

block were exacerbated in subjects with shorter sleep times. In other words, older adults 

performed worse in the switching block if they were in the shorter sleep time group (Figure 13).  

Figure 13 shows that age differences in RT were largest on switch trials for subjects with shorter 

sleep times: Older adults with shorter sleep times showed the largest impairments compared with 

young adults on switch trials. 
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Figure 13. Age differences in RT based on sleep time 

 

 

 

There was however, no block × nighttime sleep time interaction, p > 0.25, again 

reflecting that sleep outside of the nighttime sleep bout may influence performance in older 

adults. 

Accuracy 

There were no significant interactions between block and overall sleep time for 

accuracy. 
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2.3.4 Inhibition and Working Memory 

Preparation in this task may have been dependent on inhibitory control. This would be consistent 

with the view that preparation involves inhibition of irrelevant task-sets. To test this, I assessed 

whether preparation effects were eliminated after controlling for inhibitory control abilities. 

Inhibition was operationalized as Stroop inhibition (incongruent/congruent) response time and 

accuracy. I reasoned that if the effect of sleep was eliminated when controlling for inhibition, 

this would suggest that preparation in the Task-switch paradigm depends on inhibitory control. 

Using Stroop inhibition RT and accuracy as a covariate, both age group and sleep efficiency 

group interactions with preparation remained robust, p’s < 0.03.  

Likewise, preparation in this task may have been dependent on working memory, suggesting that 

preparation involves the maintenance of a relevant task-set during the cue-target interval. I 

assessed whether preparation effects were eliminated after controlling for working memory 

abilities operationalized as Sternberg 5-letter and 2-back RT and accuracy. Accordingly, if the 

effect of sleep on preparation was eliminated when controlling for working memory abilities, this 

would suggest that preparation in the Task-switch paradigm depends on working memory. 

Indeed, accuracy in the 2-back task altered the session × preparation × age group interaction with 

accuracy (Figure 14, upper panel). This effect was no longer significant, F(2,188) < 1 after 

controlling for 2-back accuracy (Figure 14, lower panel). This finding suggests that age 

differences in preparation abilities may be driven by individual differences in working memory 

abilities during the cue-target interval. Controlling for working memory abilities (2-back 

accuracy) reduced age differences, particularly at session 1. However, the effect was not 

eliminated, suggesting that there is something above and beyond working memory that 

contributes to age differences in preparation. Figure 14 shows age differences in accuracy before 
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(upper) and after (lower) controlling for 2-back accuracy. Age differences are diminished such 

that the session × preparation time × age group interaction (upper) is no longer significant 

(lower). 
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Figure 14. Influence of working memory on age differences in preparation 

0

0.02

0.04

0.06

0.08

0.1

0 750 1500P
ro

p
or

ti
on

 C
or

re
ct

 

Preparation Time 

Age Differences in Accuracy 

Session 1
Session 2

0
0.02
0.04
0.06
0.08

0.1

0 750 1500P
ro

p
or

ti
on

 C
or

re
ct

 

Preparation Time 

Age Differences in Accuracy 
after controlling for working 

memory 

Session 1
Session 2



 57 

2.4 DISCUSSION 

2.4.1 Preparation 

Consistent with prior studies, young and older adults exhibited a robust preparation effect in 

which RTs were faster, accuracy was higher, and switch costs in terms of response time and 

accuracy are reduced with time to prepare.  

2.4.2 Age and preparation 

In terms of effects of age group on preparation, the novel finding here was that young adults 

were more likely to maximize time to prepare during session 1. Young adults demonstrated 

disproportionately faster RT and higher accuracy with time to prepare. However, during session 

2, older adults also maximized time to prepare by demonstrating disproportionately faster RT 

and higher accuracy with time to prepare compared with their session 1 performance. This result 

suggests that with sufficient practice, older adults also engage preparatory strategies. This may 

also suggest that for tasks that are more difficult, older adults may be less likely to engage 

preparatory strategies compared with tasks that are either easier or better learned.  

These results are reminiscent of the results of Kramer et al. (1999) who showed that older 

adults exhibited large age differences in switch costs early on, however with a modest amount of 

practice, switch costs were similar between young and older adults, reflecting that when a task is 

well learned, switch costs are smaller in older adults. Similarly, in the present study, age 

differences in response time and accuracy for longer preparation times were reduced at session 2, 

reflecting that age-related decrements in preparation are reduced with practice. Similar to the 
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present study, Cepeda et al. (2001) examined how CTI influenced switch costs in young and 

older adults. They expected that without practice older adults would benefit less from preparation 

time (longer CTIs), but that with practice, older adults would be able to benefit from preparation. 

Instead they found that older adults were able to benefit from preparation time just as much as 

young adults in terms of switch costs. The critical difference with their findings compared to the 

present interaction between session, age group, and preparation is that Cepeda et al. (2001) 

specifically examined switch costs, whereas the present interaction applied to RT and accuracy 

collapsed across switch and repeat trials, suggesting that age decrements in preparation more 

broadly, decrease with practice. Future analyses will examine how age differences in preparation 

change within each session. It may be that age differences in preparation are eliminated by the 

end of session 2. 

 It is possible that the diminishing of age differences with preparation at session 2 

was driven by a floor effect with RT and a ceiling effect with accuracy. However, the means are 

below 90% correct for young adults at session 2, so a ceiling effect in the younger group may not 

entirely explain the reduction in age differences with longer preparation times. 

2.4.3 Working memory and preparation 

I tested whether the age differences in preparation were driven by higher working memory 

abilities in the younger group. Using 2-back accuracy as a covariate, I found that the interaction 

between session, age group, and preparation time on accuracy was no longer significant after 

accounting for working memory abilities. However, age differences were not eliminated 

suggesting that some advantage above and beyond working memory underlies age differences in 

preparation. 
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2.4.4 Sleep efficiency 

Two novel results reported here support the view that adults with high sleep efficiency are more 

likely to engage preparatory strategies to enhance performance compared with adults with low 

sleep efficiency. The most robust of these findings was the transition × preparation time × sleep 

efficiency interaction found with accuracy. This interaction reflected that the preparation effect 

was only evident in subjects with high sleep efficiency (switch costs were reduced with time to 

prepare only in subjects with high sleep efficiency). Studies using sleep manipulations, such as 

sleep deprivation have shown significant impairments in task-switching with sleep deprivation 

(Couyoumdjian, et al., 2010). However, this is the first report of differences in switching and 

preparation abilities as a function of individual differences in sleep quality. This finding provides 

evidence that adults who have difficulties sleeping may be impaired cognitively; it is not 

necessary to experimentally disrupt or deprive subjects of sleep to find robust effects of sleep on 

executive control. In addition, this effect was not moderated by session, suggesting that practice 

does not eliminate sleep group differences in the benefit that preparation has on switching. 

The second of these findings was the marginal session × preparation time × sleep 

efficiency group interaction. Particularly in the first session, subjects with high sleep efficiency 

were disproportionately faster to respond with time to prepare compared with subjects with low 

sleep efficiency. This result suggests that subjects with high sleep efficiency engage preparatory 

strategies to enhance response speed when they are cued in advance. The finding that this effect 

of preparation time disappeared at session 2, suggests that with practice, sleep efficiency has less 

of an influence on subjects’ ability to engage preparatory strategies. This finding supports the 

view that sleep quality is important for more controlled tasks. When a task becomes automated, 
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sleep quality is less critical for overall response speed. It should be noted again, that because this 

effect was marginally significant, this interpretation is tentative. 

2.4.5 Sleep time 

Sleep time was the only sleep metric to reveal significant interactions with age group. These 

were found for both RT and accuracy. Young and older adults were split into sleep groups based 

on the median for their age group, given that older adults had significantly shorter sleep times on 

average compared with young adults. Analyses involving sleep time revealed significant effects 

of preparation time in terms of RTs: In the 0 ms preparation time condition older adults with 

longer sleep times had faster RTs compared with those with shorter sleep times. In addition, age 

differences in the switching block were exacerbated for older adults with shorter sleep durations. 

This finding is in contrast to sleep deprivation studies that suggest that older adults are resilient 

to sleep deprivation (Duffy, et al., 2009; Philip, et al., 2004) or require less sleep than younger 

adults. It appears as though older adults with shorter sleep times are slower especially on more 

cognitively demanding trials (switching block compared with single task block and trials with no 

time to prepare). It is also noteworthy that in contrast to sleep efficiency, there were no main 

effects of sleep time on RTs or accuracy, again suggesting that the influence of sleep time on 

performance is more specific to cognitively demanding tasks. This is consistent with the view 

that older adults exhibit impairments in cognition with less sleep time when “executive tasks” are 

used (Killgore, et al., 2006). Interactions in accuracy between age group and sleep time depended 

on session, which makes these effects more difficult to interpret, especially since they were 

driven by a reduction in switch costs in young adults with shorter sleep durations and older 
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adults with longer sleep durations. Nonetheless, these results suggest that switch costs in 

accuracy may be influenced by sleep duration.  
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3.0  STUDY 2: SLEEP EFFICIENCY MEDIATES THE RELATIONSHIP BETWEEN 

PHYSICAL ACTIVITY AND COGNITION IN YOUNG AND OLDER ADULTS 

3.1 INTRODUCTION 

Aging is often characterized by a decline in executive control. Physical activity interventions 

have been shown to improve executive control in both young and older adults (Erickson, et al., 

2012; Kramer, et al., 2006). There are consistent benefits of physical activity and exercise 

interventions on executive control that appear to be mediated by biological markers of brain 

function (Erickson, et al., 2012; Kramer, et al., 2006; Weinstein, et al., 2011). It is not well 

understood, however, how exercise directly benefits cognition. One possibility is that exercise 

improves cerebral vasculature, thereby influencing cognitive function (Brown, et al., 2010). 

Another possible mechanism is that exercise improves sleep, which in turn benefits cognition. In 

terms of objective sleep measures, older adults who are more physically fit tend to have shorter 

sleep latencies (time it takes to fall asleep) and more slow-wave sleep than sedentary older adults 

(Vitiello, 2008). Significant improvement in subjective sleep quality has been shown in 

sedentary older adults with poor sleep who took part in an exercise intervention (Reid, et al., 

2010). In addition, exercise in sedentary older adults has been shown to selectively improve 

slow-wave sleep (Vitiello, 2008; Vitiello, et al., 1994). It has yet to be determined, however, 

whether these improvements in sleep affect cognition in older adults.  



 63 

One prior pilot study examined how sleep and performance on neuropsychological tasks 

improved with physical activity (Benloucif, et al., 2004). This study revealed improvement in 

subjective sleep assessed with the PSQI and improvement in neuropsychological performance 

following a physical activity intervention. However, there was no relationship between 

subjective sleep quality and cognitive performance. The lack of a sleep-cognition correlation in 

this study is likely due to the small sample size (n = 12). This sample size was also insufficient to 

test mediation which requires a sample size of 100 -150 subjects.  

The present study used accelerometry (SenseWear) to assess physical activity and sleep 

behavior in young and older adults. A battery of cognitive tasks, some thought to depend on 

executive control (i.e. Trails B) and others thought to be “non-executive” and depend more on 

processing speed (i.e. Trails A), was used to assess cognition. I used these measures to test the 

mediating effect of sleep on the relationship between physical activity and executive control in 

109 subjects. I expected to find significant relationships between physical activity and sleep, 

physical activity and executive control, and sleep and executive control in young and older 

adults. I expected that neither physical activity nor sleep would be significantly related to 

performance on processing speed tasks (Trails A and digit symbol substitution). Critically, I 

expected that the mediating effect of sleep on the relationship between physical activity and 

executive control would be significant. This finding would suggest that physical activity 

improves executive control abilities, at least in part, through improvements in sleep (Figure 15). 

Figure 15 shows the theoretical mediation model illustrating the indirect pathway of sleep 

between physical activity and executive control. Physical activity influences executive control 

through its influence on sleep. 
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Figure 15. Mediation model of indirect pathway of sleep between physical activity and executive 

control 

 

 

 

3.2 METHODS 

3.2.1 Subjects 

109 subjects were included in the analysis. 59 were young adults (mean age = 23.03, SD = 2.26) 

and 50 were older adults (mean age = 62.80, SD = 6.17).  
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3.2.2 Experimental Procedure 

Neuropsychological Assessments 

The computer-based tasks and neuropsychological assessments were used to test the 

mediating effect of sleep on cognition. The assessments included in this analysis were the Digit 

Span (forward and backward) and digit symbol substitution subsets of the Wechsler Adult 

Intelligence Scale III (Wechsler, 1997), Consortium to Establish a Registry for Alzheimer’s 

Disease (CERAD) Word List Memory test (J. C. Morris et al., 1989), which includes three trials 

of immediate word recall and one trial of delayed word recall, and Trail making Tests A and B 

(Reitan, 1958). The computer-based tasks included here were the Stroop, Flanker, N-back, 

Sternberg Working Memory, and the Task-switch paradigm described above in Study 1. 

Cognitive Tasks 

Switching 

Switching was assessed with the computerized Task-switch paradigm (TS) (described in 

detail in Study 1) and a paper-and-pencil version of Trials B. In contrast to Trails A, in which the 

subject is asked to draw lines connecting encircled numbers distributed throughout a sheet of 

paper in sequential order 1-25,  for Trails B, the subject must alternate between numbers and 

letters distributed throughout the page (1- A- 2- B) (Tombaugh, 2004). Time to complete the 

Trail making tests was the dependent variable.  

Inhibition 

Inhibition was assessed with a computerized version of the Stroop and Flanker tasks. In 

the Stroop task, subjects viewed words one at a time on the screen in blue, red, or green ink 

colors and were asked to judge the ink color of the word. There were congruent (i.e. red), 

incongruent (i.e. red), and neutral (i.e. table) trials. In the Flanker task, subjects viewed 5 arrows 



 66 

(“flankers”) on the screen on a given trial (< < < < <) and were asked to judge the direction in 

which the center arrow was pointing. This task included congruent (< < < < <) and incongruent 

trials (< < > < <). For both tasks inhibition was assessed for RT and accuracy, which was 

calculated as incongruent mean/congruent mean) multiplied by 100%. Because both congruent 

and incongruent trials included color information in the form of the word itself and the ink color, 

both of these conditions impose demands on attentional control (Milham et al., 2002). 

Working Memory 

Working memory was assessed with a computerized version of the Sternberg working 

memory and N-back tasks and paper-and-pencil version of backward digit span. In the Sternberg 

task, subjects viewed 2 and 5-letter strings in upper case letters. After a 3000 ms delay, subjects 

saw a lower case letter and were asked to judge whether the lower case letter matched one of the 

previous upper case letters. In the N-back task, subjects viewed a series of letters appearing one 

at a time on the screen. Subjects were required in one condition to identify whether the letter 

currently on the screen was the same as the previous letter (1-back) or, in the other condition, the 

same as the letter two previous (2-back). The 5-letter condition in the Sternberg task and the 2-

back condition in the N-back task were expected to engage working memory more than the other 

conditions and be more strongly related to sleep and physical activity.  

Processing speed 

Processing speed was assessed with Trails A (described above) and the digit symbol 

substitution task. In the digit symbol substitution task subjects were given a series of symbols 

that corresponded to the numbers 1-9. The test required subjects to write as many symbols as 

possible in 60 seconds within a box below each number.  
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3.2.3 Analytic Techniques 

Sleep 

Overall and nighttime sleep efficiency and sleep time were used as sleep metrics posited 

to relate to cognitive performance. Given that prior research has shown that sleep efficiency is 

more related to cognition than sleep time, I expected that sleep efficiency would be correlated 

with cognition more consistently than sleep time with cognition. In addition, I posited that sleep 

efficiency would more consistently be a significant mediator of the relationship between physical 

activity and cognition due to the established effect of physical activity on sleep quality 

(Benloucif, et al., 2004; Driver & Taylor, 2000; Lopez, 2008; Vitiello, 2008).  

Physical activity 

A number of physical activity metrics were calculated from the accelerometer physical 

activity estimates, including average METs while awake, referred to here as “awake METs”, 

overall average daily METs, average daily METs while physically active, average daily minutes 

of moderate, vigorous, and very vigorous physical activity. Awake METs was used here to avoid 

skewing average METs in the lower direction due to the amount of time spent sleeping. 

Regression analysis 

Relationships between sleep efficiency and sleep time (overall and nighttime), physical 

activity, and cognition were subjected to a linear regression analysis with age, gender, and 

education as covariates. 

Outliers 

Outliers were identified by visually inspecting scatterplots of all subjects in terms of 

sleep efficiency, cognitive performance, and physical activity. Analyses were conducted with 

and without potential outliers.  Any such cases are reported in detail in Appendix C. Subjects 
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were excluded if they performed at or below chance accuracy on incongruent conditions in 

Stroop and Flanker tasks (33% accuracy on Stroop, 50% accuracy on Flanker). 3 subjects were 

excluded from Sternberg task analyses because they achieved below 10% accuracy on the 2-

letter condition (Appendix C). 

Mediation analysis 

Mediating effects of sleep on the relationship between physical activity and cognition 

were assessed using the bias corrected and accelerated bootstrapping method (Preacher & Hayes, 

2008) in SPSS with 5000 bootstrap samples. A mediating factor is part of a causal pathway 

through which an independent variable (physical activity) affects a dependent variable 

(cognition). The main requirement for mediation is that the indirect effect of the independent 

variable (physical activity) through the mediator variable (sleep) on the dependent variable 

(cognition) be significant. There is no requirement that the direct effect of the independent 

variable on the dependent variable be significant (Gelfand, Mensinger, & Tenhave, 2009; Zhao, 

Lynch, & Chen, 2010). Covariates were age, gender, and years of education. 

3.3 RESULTS 

3.3.1 Objective and subjective physical activity and sleep metrics 

Objective and subjective physical activity 

Scores from the self-report exercise history questionnaire were significantly correlated 

with all physical activity metrics, awake METS, r = 0.197, p = 0.040, peak METs, r = 0.265, p = 

0.005, average physical activity (METs => 3) minutes per day, r = 0.255, p = 0.007, average total 
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METs, r = 0.201, p = 0.036, average minutes of moderate activity (3-6 METs), r = 0.244, p = 

0.010, average minutes of vigorous activity (6-9 METs), r = 0.019, and average minutes of very 

vigorous (9+ METs), r = 0.255, p = 0.007. These significant correlations reflect that overall, 

subjects were accurate in their self-report of physical activity. 

Subjective physical activity and sleep 

There were no significant correlations between subjective physical activity measured 

with the exercise history questionnaire and subjective or objective sleep quality and quantity 

measured with the PSQI and accelerometer, nor was subjective physical activity a significant 

predictor of subjective sleep quality or quantity after accounting for age, gender, and education. 

Though subjective physical activity was a marginally significant predictor of objective overall 

sleep efficiency, β = 0.175, R2 Change = 0.029, F(1,104) = 3.231, p= 0.075. 

Objective physical activity and sleep 

There was no correlation between sleep efficiency or sleep time and any physical activity 

measures. However, a regression testing the predictive value of all of the physical activity 

metrics, taking age, gender, and education into account, revealed that awake METs was the only 

physical activity metric that was a significant predictor of sleep efficiency β = 0.562, t(109) = 

2.061, p = 0.042. Therefore, awake METs was used as the physical activity metric in subsequent 

analyses.  

A regression testing the predictive value of awake METs on sleep efficiency, taking age, 

gender, and education into account, revealed that awake METs was a significant predictor of 

overall sleep efficiency, β  = 0.191, R2 Change = 0.035, F(1,104) = 5.08, p = 0.026, and a 

marginally significant predictor of nighttime sleep efficiency, β  = 0.167, R2 Change = 0.026, 

F(1,104) = 3.812, p = 0.054. Awake METs was not a significant predictor of sleep time. This 
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suggests that if physical activity improves sleep, improvements may be specific to sleep quality. 

This finding is consistent with exercise interventions studies which have shown improvements in 

sleep quality, not quantity (Benloucif, et al., 2004; Driver & Taylor, 2000; Lopez, 2008; Vitiello, 

2008; Vitiello, et al., 1994). This makes sense given that subjects may have more control over 

their sleep duration than sleep quality. 

To further ensure that the relationship between physical activity and sleep efficiency was 

not driven by time spent lying down during the day, average lying down time was included with 

age, gender, and education in model 1 of the regression analyses to account for all of these 

factors. This analysis revealed that awake METs was still a significant predictor of overall sleep 

efficiency, R2 change = 0.036, F(1,103) = 4.205, p = 0.043. A Pearson Correlation analysis 

revealed no relationship between average time spent lying down and awake METs, r = 0.00, p = 

0.99. 

3.3.2 Relationship between Sleep and Cognitive Performance 

Correlations 

Consistent with my hypotheses, sleep efficiency was significantly correlated with a 

number of cognitive variables (Figure 16). Significant correlations between sleep and cognition 

were found with nighttime sleep efficiency and Trails B, r = -0.20, p < 0.037, delayed recall, r = 

0.204, p = 0.033, NART accuracy, r = 0.243, p = 0.011, Stroop performance in terms of RT and 

accuracy in congruent, incongruent, and neutral conditions,  all p’s < 0.015, Stroop 

inhibition accuracy, r = 0.218, p = 0.027, 2-back accuracy, r = 0.237, p = 0.014, and Sternberg 

working memory accuracy in the 5-letter condition, r = 0.198, p < 0.041. There were no 

significant correlations with any other computer task conditions or neuropsychological 
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assessments, including Trails A, r = -0.067, p = 0.490, or digit symbol substitution, r = 0.120, p = 

0.214. Scatterplots of the significant relationships (in bold) between nighttime sleep efficiency 

and executive task performance, and digit symbol substitution (bottom right), which was not 

significantly correlated with nighttime sleep efficiency are illustrated in Figure 16. 

 

 

 

 

 

 

 

 

 

 

 



 72 

 

Figure 16. Scatterplots of nighttime sleep efficiency and task performance by age 
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Overall Sleep Efficiency Correlations 

The relationship between the cognitive tasks and overall sleep efficiency was weaker 

compared with nighttime sleep efficiency. The correlation with Trails B, Stroop congruent RT 

and accuracy, incongruent accuracy, and 2-back were all marginally significant (p’s < 0.1) and 

the correlations between overall sleep efficiency and Stroop incongruent RT, inhibition accuracy, 

Sternberg working memory accuracy, and delayed recall were not significant, p’s > 0.1.  

3.3.3 Sleep as a predictor for performance on cognitive tasks 

Regression 

Multiple linear regression analyses were performed to determine the predictive value of sleep 

efficiency and sleep time on each of the cognitive task conditions. Figure 17 indicates the sleep 

factors (sleep efficiency in the upper graph and sleep time in the lower graph) that were 

significant predictors for each of the cognitive domains after accounting for age, gender, and 

education: Switching as assessed by TS switching block accuracy, inhibition as assessed by 

Stroop inhibition accuracy, working memory as assessed by the 2-back, and processing speed as 

assessed by digit symbol substitution. Beta values in green are from the regression analyses 

between awake METs and each sleep variable. Beta values in black are from the regression 

analyses between nighttime sleep and cognitive domains. Thick arrows represent significant 

relationships, thin arrows represent marginal relationships, and dotted arrows represent non-

significant relationships, all after taking age, gender, and education into account.  
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Figure 17. Diagram illustrating relationships between physical activity, sleep, and executive control 
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Nighttime Sleep Efficiency 

After accounting for age, gender, and education, nighttime sleep efficiency was a 

significant predictor for Trails B performance, p = 0.005, TS Switching Block RT, p = 0.033, 

and accuracy, p = 0.005, TS Single Task Block RT, p = 0.047, and accuracy, p = 0.021, 

Stroop Congruent RT, p = 0.013, Incongruent RT, p = 0.011, Neutral RT, p = 0.003, 

Congruent Accuracy, p = 0.012, Incongruent Accuracy, p = 0.007, Neutral Accuracy, p = 

0.001, and Stroop Inhibition Accuracy (Incongruent/Congruent), p = 0.034, Flanker 

Incongruent RT, p = 0.014,  Delayed Recall, p = 0.019, 2-back accuracy, p = 0.002, and 5-

letter Sternberg working memory accuracy, p = 0.014. β, R2 Change, and F Change values are 

displayed for each of these conditions in Table 4.  

Because preparation time was a clear moderator of performance in the Task-switch 

paradigm (Study 1), I tested the predictive value of nighttime sleep efficiency on performance in 

each of the 3 preparation times collapsed across session and transition conditions. This analysis 

revealed that nighttime sleep efficiency was a marginally significant predictor of accuracy in the 

0 ms CTI condition, p = 0.053, but was a significant predictor of performance in the 750 ms and 

1500 ms CTI conditions, p = 0.016 and p = 0.002, respectively.  
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Table 4. Significant R2 change with sleep efficiency 

 
 

Condition β R2 Change df F Change p value 
Trails B -0.231 0.5 1,104 8.195 0.005 
TS Switching Block 
RT -0.171 0.028 1,103 4.696 0.033 
TS Switching Block 
Acc 0.257 0.062 1,103 8.371 0.005 
TS Single Task 
Block RT -0.156 0.023 1,103 4.042 0.047 
TS Single Task 
Block Acc 0.222 0.046 1,103 5.456 0.021 
Stroop Congruent 
RT -0.219 0.46 1,98 6.367 0.013 
Stroop Incongruent 
RT -0.215 0.044 1,98 6.794 0.011 
Stroop Neutral RT -0.255 0.62 1,98 9.379 0.003 
Stroop Congruent 
Acc 0.252 0.061 1,98 6.509 0.012 
Stroop Incongruent 
Acc 0.256 0.063 1,98 7.556 0.007 
Stroop Neutral Acc 0.33 0.104 1,98 11.523 0.001 
Stroop Inhibition 
Accuracy 0.201 0.039 1,98 4.619 0.034 
Flanker 
Incongruent RT -0.17 0.027 1,98 6.199 0.014 
Delayed Recall 0.208 0.41 1,104 5.697 0.019 
2-back Acc 0.257 0.063 1,104 10.545 0.002 
5-letter Sternberg 
WM 0.244 0.054 1,101 6.215 0.014 
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Overall Sleep Efficiency 

After accounting for age, gender, and education, overall sleep efficiency was a significant 

predictor of the same set of task conditions for which nighttime sleep efficiency was a significant 

predictor, except for Stroop inhibition accuracy, β = 0.140, R2 Change = 0.19 F(1,98) = 2.194, p 

= 0.142. (Neither sleep efficiency metric was a significant predictor for Stroop Inhibition RT). 

Nighttime Sleep Time 

After accounting for age, gender, and education, average nighttime sleep time was a 

significant predictor of digits forward, β = 0.267, R2 Change = 0.068, F(1,103) = 7.933, p = 

0.006, 2-back accuracy, β = 0.191, R2 Change = 0.035, F(1,102) = 5.627, p = 0.020, and TS 

switching block accuracy, β = 0.205, R2 Change = 0.040, F(1,103) = 5.238,  p = 0.024.  

Overall Sleep Time 

Similar to nighttime sleep time, after accounting for age, gender, and education, average 

overall sleep time was a significant predictor for digits forward, β = 0.348, R2 Change = 0.111, 

F(1,103) = 13.635, p < 0.001, and 2-back accuracy, β =  0.243, R2 Change = 0.054, F(1,102) = 

9.010, p = 0.003. These relationships for overall and nighttime sleep time are illustrated in Figure 

17B.  

Subjective Sleep: PSQI 

After accounting for age, gender, and education, sleep latency and hours of sleep assessed 

with the PSQI did not significantly predict performance on any of the tasks.  

Control Tasks 

After accounting for age, gender, and education, no sleep metrics were significant 

predictors for the digit symbol substitution task, p = 0.114, Trails A, p = 0.163, or immediate 

Recall 1, p = 0.631, Recall 2, p = 0.511, or Recall 3, p = 0.114). These p values represent the 
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regression analyses with nighttime sleep efficiency. β, R2 Change, and F Change values are 

presented in Table 5. 

 

 

 

 

Table 5. Non-significant R2 change with sleep efficiency 

Condition β R2 Change df F Change p value 
Digit Symbol 0.124 0.015 1,104 2.539 0.114 
Trails A -1.404 0.018 1,104 1.972 0.163 
Recall 1 0.05 0.002 1,104 0.232 0.631 
Recall 2 0.068 0.004 1,104 0.434 0.511 
Recall 3 0.165 0.022 1,104 2.544 0.114 

  

  

 

 

The fact that sleep efficiency remained a significant predictor of performance on a wide 

range of executive tasks above and beyond individual differences in age, gender, and education, 

suggests that sleep efficiency in itself may have an influence on cognition in young and older 

adults.  

3.3.4 Physical activity as a predictor for cognitive performance 

Physical activity operationalized as awake METs was significantly correlated with many 

cognitive variables. Significant correlations between awake METs and cognition were found for 
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Trails A, r = -0.256, p = 0.007, Trails B, r = -0.384, p < 0.001, immediate recall 1, 2, and 3,  all 

p’s < 0.038, delayed recall, r = 0.213, p = 0.026, digit symbol substitution, r = 0.435, p < 

0.001, Stroop RT on congruent, r = -0.253, p = 0.010, neutral, r = -0.311, p = 0.001, and 

incongruent trials, r = -0.329, p = 0.001, and Stroop accuracy on incongruent trials, r = 0.208, 

p = 0.035, and Stroop  inhibition accuracy, r = 0.235, p = 0.017, Flanker RT on congruent, r 

= -0.378, p < 0.001, and incongruent trials, r = -0.409, p < 0.001, 2-back accuracy, r = 0.404, p 

< 0.001 and Sternberg working memory RT in the 5-letter condition, r = -0.219, p = 0.023.  

However, after accounting for age, gender, and education, the only conditions for which 

awake METs was a significant predictor was digit symbol substitution, p = 0.023, reflecting that 

to a large degree, the correlations reported above between awake METs and cognitive 

performance were driven by individual differences in age, gender, and education.  

In sum, there were multiple cognitive variables that significantly correlated with both 

sleep efficiency and awake METs, especially nighttime sleep efficiency. The tasks which were 

significantly correlated with both nighttime sleep efficiency and awake METs were Trails B, 

delayed recall, Stroop RT in all conditions, Stroop incongruent accuracy, Stroop inhibition 

accuracy, and 2-back accuracy. It should be emphasized, however, that according to the Preacher 

and Hayes (2008) bootstrapping method, a significant bivariate correlation between the 

independent variable (physical activity) and the dependent variable (cognition) is not required to 

test the mediating effect of a potential mediator (sleep). Therefore, it is not necessary to restrict 

mediation analyses to the cognitive variables that were significantly related to both physical 

activity and sleep. 



 81 

3.3.5 Mediation Analysis 

To examine whether sleep mediated the relationship between physical activity and cognition, I 

conducted a series of mediation analyses to determine whether sleep efficiency and sleep time 

significantly mediated the relationship between physical activity and any of the cognitive 

conditions. Awake METs was used as the physical activity metric for all analyses because of its 

relation to sleep efficiency. In addition, this physical activity metric reflects how physically 

active subjects are during the day and is not biased by how much time they spend sleeping. In 

addition, this variable had a wider range of values compared with vigorous and very vigorous 

activity. Many subjects had no vigorous or very vigorous activity, (22.9% and 86.2%, 

respectively).   

Nighttime Sleep Efficiency 

Consistent with what I expected, after accounting for age, gender, and education, the mediating 

effect of nighttime sleep efficiency was significant for many of the task conditions (Figure 18A 

& B). For each of the following tasks, the 95% confidence interval (CI) did not contain zero 

reflecting that mediation was established. The indirect effect of awake METs through nighttime 

sleep efficiency on cognition was significant for Trails B (indirect effect = -3.58, CI = -13.56 : -

0.09), congruent and incongruent Flanker RT (congruent indirect effect = -9.20, CI = -33.93 : 

- 0.52) (incongruent indirect effect = -9.65, CI = -34.56: - 0.45), congruent and incongruent 

Flanker accuracy, (congruent indirect effect = 0.35, CI = 0.03 : 2.24), incongruent indirect 

effect = 0.71, CI = 0.0015 : 2.73), congruent, incongruent, and neutral Stroop RT (congruent 

indirect effect = -8.98, CI = -37.01: -0.15) (incongruent indirect effect = -10.04, CI = -32.84 : -

0.07) (neutral indirect effect = -10.49, CI = -0.32 : -35.78), congruent, incongruent, and 

neutral Stroop accuracy, (congruent indirect effect = 0.88, CI = 0.08: 2.55) (incongruent 
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indirect effect = 2.20, CI = 0.02 : 7.01) (neutral indirect effect = 1.17, CI = 0.04 : 3.50), 2-back 

accuracy (indirect effect = 2.96, CI = 0.12 : 9.50), Sternberg working memory accuracy in 

the 2-letter (indirect effect = 1.20, CI = 0.07 : 3.75), and 5 letter conditions (indirect effect = 

1.65, CI = 0.17 : 5.28), TS switching and single task blocks accuracy (switching block indirect 

effect = 1.36, CI = 0.12 : 4.00) (single task block indirect effect = 0.87, CI = 0.03 : 3.31)  and 

delayed recall (indirect effect = 0.23, CI = 0.01 : 0.73). Flanker and Stroop inhibition RT & 

accuracy were not significant for nighttime or overall sleep efficiency. The mediating effect of 

nighttime sleep efficiency on performance was not significant for any other task conditions 

including Trails A and digit symbol substitution (Figure 18C). Figure 18 indicates cognitive 

measures for which sleep efficiency was a significant mediator with performance and awake 

METs.  

Indirect mediating effects (blue square) and lower and upper confidence intervals (green 

and red lines) are displayed in Figure 18 for nighttime sleep efficiency for tasks in which A) the 

indirect mediating effect of nighttime sleep efficiency was significant for response times (RT), 

B) the indirect mediating effect of nighttime sleep efficiency was significant for accuracy, and C) 

the indirect mediating effect of nighttime sleep efficiency was not significant. None of the 

confidence intervals contained zero in the tasks displayed in A or B indicating that mediation 

was established. Note that in contrast to the other accuracy measures which are on a scale of 

100%, delayed recall is on a 0-10 scale, making the effect size appear small relative to the other 

tasks, when it is actually much larger when on a 100% scale. Fln = Flanker task, Str = Stroop 

task, Cng = Congruent, Incng = Incongruent, Neut = Neutral, 2 WM and 5 WM = 2 and 5-letter 

Sternberg Working Memory, TS Switch = Switching Block, TS Single = Single Task Block 750 

= 750 ms CTI, 1500 = 1500 ms CTI, recall = delayed recall. 
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Figure 18. Mediation analysis results: Indirect effects and confidence intervals 
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 Overall Sleep Efficiency 

After accounting for age, gender, and education, the mediating effect of overall sleep 

efficiency was significant for Trails B (indirect effect = -4.38, CI = -14.53: -0.64), incongruent 

RT in the Stroop task, (indirect effect = -8.59, CI= -33.41 : -.0701), delayed recall (indirect effect 

= 0.22, CI = 0.01: 0.67) and 5-letter Sternberg working memory accuracy (indirect effect = 

0.0159, CI = 0.0016 : 0.05). 

Nighttime sleep time and Overall Sleep time 

Nighttime sleep time and overall sleep time were not significant mediators for any tasks 

primarily because of the lack of a relationship between sleep time and physical activity. 

3.3.6 Potential Confounds 

Mood 

When relating sleep quality to cognitive performance, one must consider depression and 

mood as potential confounds (Nebes, et al., 2009). Although all participants reported not having 

depression and were not currently taking psychiatric medication, subjects also completed a mood 

questionnaire, which included questions of both positive and negative affect. This questionnaire 

was compiled into a single score based on the number of “no” responses to positive affect 

questions and “yes” responses to negative affect questions. (Higher scores corresponded to less 

positive and more negative affect). A correlation analysis revealed no significant relationship 

between mood and nighttime sleep efficiency, r = -0.108, p = 0.30. A regression analysis 

including mood score as a control variable along with age, education, and gender between sleep 

efficiency and each of the significant effects again revealed that sleep efficiency was a 

significant predictor of Trails B,  β = -0.206, R2 Change = 0.039, F Change (1,92) = 5.882, p = 
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0.017, delayed recall, β = R2 Change = 0.045, F Change(1,92) = 5.514, p = 0.021, 2-back 

accuracy, β = 0.249, R2 Change = 0.056, F Change (1,92) = 7.813, p = 0.006, Stroop congruent 

RT, β = -0.225, R2 Change = 0.045, F Change (1,86) = 5.487, p = 0.021, incongruent RT, β = -

0.245, R2 Change = 0.053, F Change (1,86) = 7.114, p = 0.009, neutral RT, β = -0.265, R2 

Change = 0.062, F Change (1,86) = 8.166, p = 0.005, congruent accuracy, β = 0.261, R2 

Change = 0.061, F Change (1,86) = 5.730, p = 0.019, incongruent accuracy, β = 0.297, R2 

Change = 0.078, F Change (1,86) = 8.274, p = 0.005, neutral accuracy, β = 0.378, R2 Change = 

0.127, F Change (1,86) = 12.697, p = 0.001, inhibition accuracy, β = 0.242, R2 Change = 

0.052, F Change (1,86) = 5.392, p = 0.023, incongruent Flanker RT, β = -0.172, R2 Change = 

0.027, F Change (1,90) = 5.375,  p = 0.023. 5-letter accuracy was marginally significant, p = 

0.078. This analysis did not include subjects who did not complete the mood questionnaire (n = 

11). These results suggest that the relationship between sleep efficiency and cognitive 

performance was not driven by individual differences in mood. 

3.4 DISCUSSION 

This study examined whether sleep efficiency and sleep time were related to cognitive 

performance and whether the mediating effect of sleep on the relationship between physical 

activity and cognition was significant. I predicted that these relationships would be specific to 

executive control. Sleep efficiency, particularly nighttime sleep efficiency, which takes into 

account both objective and self-report sleep measures, most reliably predicted cognitive 

performance and was the most reliable mediator of the relationship between physical activity and 
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cognition. Sleep time was a significant predictor only for digits forward, 2-back accuracy, and 

TS switching block performance. This finding that sleep efficiency, more consistently than sleep 

time, influenced performance (Figure 17) is consistent with prior work (Blackwell, et al., 2006; 

Nebes, et al., 2009). Blackwell et al. (2006) found that sleep efficiency, but not sleep time was 

related to performance on Trails B and the MMSE, and that cognitive impairment was more 

common in subjects with poor sleep efficiency. Though, as reported in Study 1, sleep time did 

have an influence on task-switching performance, particularly on the most cognitively 

demanding trials. This suggests that sleep time may influence performance, but sleep efficiency 

may be more sensitive in identifying sleep-related cognitive impairments.  

Consistent with my predictions, sleep efficiency was a significant predictor for multiple 

task conditions that depend on executive control (switching as assessed by Trails B and Task-

switch, attentional control and inhibition as assessed with the Flanker and Stroop tasks, 

controlled memory retrieval as assessed with delayed recall, working memory as assessed with 

Sternberg working memory accuracy in the 5-letter condition and 2-back accuracy). Thus, each 

domain of executive control (switching, inhibition, working memory and controlled retrieval) 

that I tested was related to sleep efficiency after controlling for age, gender, and education. To 

contrast this to task conditions that measure processing speed, sleep efficiency was not a 

significant predictor of Trails A time or digit symbol substitution performance. No sleep metrics 

(sleep efficiency or sleep time) were significant predictors of performance on the digit symbol 

substitution task suggesting that sleep efficiency has less of an influence on overall processing 

speed. Rather high sleep efficiency may have a specific benefit on more goal-driven executive 

functions. 
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One interpretation of this finding that sleep efficiency was related to executive control is 

that disrupted sleep has an influence on more PFC-mediated cognitive processes. I speculate that 

this specificity to executive control may be driven by disruption of slow-wave sleep in subjects 

with poor sleep efficiency. Because slow-wave sleep benefits PFC function, it is plausible that 

with improved sleep quality, time spent in slow-wave sleep increases, restoring PFC function to 

in turn benefit executive control.  

Alternatively, brain changes that affect cognition may precede disruptions in sleep. For 

instance, decline in brain volume with aging may influence an individual’s ability to fall asleep 

and stay asleep, in which case sleep quality would not directly or indirectly influence cognition. 

Nebes et al. (2009) showed significant relationships between subjective sleep quality and 

performance on a range of executive tasks, but not processing speed. As mentioned in the 

introduction, there was not a clear distinction in which all “executive tasks” were related to 

subjective sleep quality. This study found no relationship between inhibition as assessed by the 

Stroop task and sleep quality, which may be due to the use of subjective sleep measures. The 

current study, however, showed a robust relationship between nighttime sleep efficiency and 

inhibition as assessed by the Stroop task. Thus, lack of a clear distinction between executive and 

non-executive tasks in the Nebes study may be due to the fact that purely subjective self-report 

sleep measures were used. However, purely objective overall sleep efficiency was not a 

significant predictor of Stroop inhibition accuracy, suggesting that it may nighttime sleep 

efficiency in particular that relates to inhibition. 

I tested the mediating effect of sleep efficiency on the relationship between physical 

activity (operationalized as awake METs) and executive control (operationalized as switching, 

inhibition, working memory, and controlled retrieval). The mediating effect of nighttime sleep 
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efficiency on the relationship between awake METs and performance was significant for a wide 

range of task conditions including Trails B, Flanker RT and accuracy, Stroop RT and accuracy, 

2-back accuracy, 2 and 5-letter Sternberg working memory accuracy, Task-switch accuracy, and 

delayed recall. I also tested the mediating effect of sleep efficiency on the relationship between 

awake METs and processing speed (Trails A and digit symbol substitution). The mediating effect 

was not significant for either of these tasks, reflecting that indirect effects of physical activity 

through sleep may apply less to processing speed. These findings are consistent with the view 

that physical activity-related benefits to executive control may be partly attributable to sleep. 

Young and older adults who are more physically active may have better sleep, and this improved 

sleep may benefit the PFC and in turn result in superior day time executive function. 

Overall these results suggest that for many cognitive tasks, the association between 

physical activity and executive function is driven by individual differences in sleep quality. 

 



 89 

4.0  STUDY 3: SLEEP EFFICIENCY INFLUENCES TIME-OF-DAY EFFECTS IN 

OLDER ADULTS 

4.1 INTRODUCTION 

Decades of research have shown that older humans and other animals tend perform better in the 

morning on cognitive tasks (May, Hasher, & Foong, 2005; Winocur & Hasher, 1999). This is 

due to age-related changes in circadian rhythms in which peak arousal takes place earlier in the 

day. As a result, older adults tend to be morning chonotypes, whereas young adults tend to be 

evening chronotypes (night owls). Accordingly, it is possible that time of day may have 

influenced whether older adults showed cognitive impairments in the present set of studies. In 

addition, time of day may influence whether sleep impacts older adults’ performance. For 

instance, if an older adult has poor sleep efficiency, this may impact his/her performance in the 

afternoon or evening, when arousal is low, more so than it would in the morning. 

In Study 3, I tested the interaction between sleep efficiency and time of day on younger 

and older adults’ performance on the computer-based cognitive tasks described above.  
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4.2 METHODS 

4.2.1 Analytic techniques 

Responses from the morningness/eveningness questionnaire were used to identify age group 

differences in chronotype. Subjects were separated into two groups (AM/PM), based on when 

they participated in the experiment, to identify how performance differed for the two age groups 

in the morning and in the afternoon.  

Principal components analysis (PCA) with virimax rotation was used to reduce the data 

from the computer-based cognitive tasks (Stroop, Flanker, N-back, and Sternberg working 

memory) to fewer variables given that performance on these tasks were highly correlated. This 

analysis resulted in 1 factor for RT and 4 factors for accuracy. Two ANOVAs were performed: 

One on PCA values generated from RT (Table 6) and one on PCA values generated from 

accuracy. 
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Table 6. Means, standard deviations and N’s for time-of-day analyses with RT (PCA values) 

Age Group Sleep 

Efficiency 

Time of Day Mean  SD  N 

Younger 

Low 

AM -.4123 .8813 16 

PM -.5214 .6701 10 

Total -.4542 .7941 26 

High 

AM -.6089 .6754 20 

PM -1.0260 .4783 10 

Total -.7480 .6402 30 

Older 

Low 

AM .5838 .6230  9 

PM 1.1215 .7370 15 

Total .9199 .7324 24 

High 

AM .4435 .9382 14 

PM .5816 .6622  9 

Total .4975 .8273 23 
 

 

 

 

4.3 RESULTS 

4.3.1 Age differences in morningness/eveningness 

Older subjects had significantly higher scores on the morningness/eveningness questionnaires, 

suggesting that they were more likely to be morning chronotypes, t(105) = 5.93, p < 0.001.  
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4.3.2 Time of Day, Age and Sleep Efficiency 

Response Time 

To test whether time of day influenced the effect of nighttime sleep efficiency on RT, I 

conducted a 2 (age group) × 2 (nighttime sleep efficiency) × 2 time of day (AM/PM) ANOVA. 

This analysis revealed significant main effects of age group, F(1,95)  = 76.13, p < 0.001, and 

sleep efficiency group, F(1,95) = 5.17, p = 0.025, and a marginally significant age group × 

AM/PM interaction, F(1,95) = 3.92, p = 0.051. These findings reflected that RT was fastest in 

young adults and subjects with high sleep efficiency across tasks. The marginal age group × 

AM/PM interaction reflected a time-of-day effect in which older adults had faster RT in the 

morning compared with the afternoon (Figure 19).  

Figure 19 illustrates the marginally significant time-of-day effect in which RTs were 

fastest for young adults in the PM and fastest for older adults in the AM. Y-axis represents 

values generated from the principal components analysis. 
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Figure 19. Marginally significant time-of-day effect on RTs 

  

 

 

 

Accuracy 

To test whether time of day influenced the effect of nighttime sleep efficiency on 

accuracy, I conducted a 4 (factor) × 2 (age group) × 2 (nighttime sleep efficiency group) × 2 

(AM/PM) mixed effects ANOVA with factor as a within subjects variable. This analysis 

revealed a significant main effect of age group, F(1,97) = 7.89, p = 0.006, an age group × factor 

interaction, F(3,291) = 7.612, p < 0.001, an age group × AM/PM interaction, F(1,97) = 4.931, p 

= 0.029, reflecting a time-of-day effect, and a significant age group × nighttime sleep efficiency 

group × AM/PM interaction, F(1,97) = 4.00, p = 0.048. The latter interaction revealed that the 

time of day effect was particularly robust for subjects with low sleep efficiency (Figure 20A). 

The effect was virtually absent in young and older subjects with high sleep efficiency (Figure 
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20B). This result reflects that the extent to which older adults showed impairments in the 

afternoon depended on how low their sleep quality was. However, this interpretation is tentative 

because older adults with low sleep efficiency performed numerically higher than older adults 

with high sleep efficiency in the morning, possibly exaggerating the size of the interaction. 

Figure 20 displays the time-of-day effect in subjects with A) low sleep efficiency and B) high 

sleep efficiency. The figure illustrates that the time-of-day effects were absent for the high sleep 

efficiency group, but robust in the low-sleep efficiency group. 
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Figure 20. Time-of-day effect as a function of sleep efficiency 
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4.4 DISCUSSION 

 

Consistent with prior studies, time of day influenced how large an impairment in cognition older 

adults exhibited relative to young adults. Older adults who participated in the morning performed 

better than those who participated in the afternoon. However, for accuracy, this time of day 

effect applied only to subjects with low sleep efficiency. These results suggest that high sleep 

efficiency may counteract time-of-day effects, although they do not eliminate impairments in 

older adults.  

4.4.1 Limitations 

One limitation to the present time-of-day analysis is that this study was not designed to 

specifically examine time-of-day effects and age groups were not counterbalanced across 

morning and afternoon times. As a result, there were an uneven number of groups (age, sleep 

efficiency, and AM/PM) as can be seen in Table 6. This discrepancy may explain why the mean 

for older adults with low sleep efficiency in the morning was numerically higher than those with 

high sleep efficiency. There were 9 older adults with low sleep efficiency who participated in the 

morning, and 14 with high sleep efficiency who participated in the morning. This may have 

exaggerated the time-of-day effect in the low sleep efficiency group, possibly exaggerating the 

age group × sleep efficiency group × AM/PM interaction.  

Overall, these effects reflect that although time-of-day effects are influenced by sleep 

efficiency, they do not eliminate age differences in older adults with high sleep efficiency.  
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5.0  GENERAL DISCUSSION 

The results presented above revealed that individual differences in sleep efficiency were robustly 

related to individual differences in cognitive performance in younger and older adults. This was 

found with a variety of analytic techniques. A simple median split was robust enough to reveal 

highly significant differences between sleep efficiency groups. Analyses splitting subjects into 

high and low sleep efficiency revealed robust between-group effects on task-switching and 

preparation. In particular, subjects with high sleep efficiency showed a more robust “preparation 

effect” which is often reported in the task switching literature and reflects engagement of 

preparation strategies. In addition, regression analyses with sleep efficiency as a continuous 

variable showed that sleep efficiency was a significant predictor of many cognitive variables that 

are thought to depend on executive control. 

Not only are these cognitive effects reported above novel, but the finding that individual 

differences in sleep measured by accelerometry were significantly related to cognition is novel in 

itself. Accelerometer-measured sleep efficiency was overall, a better predictor of cognitive 

function compared with subjective sleep. While it is less accurate than polysomnography and 

does not measure sleep architecture, it is a more naturalistic, convenient, and cost-effective 

measure of objective sleep relative to polysomnography. Overall, these studies demonstrate the 

feasibility of using accelerometry to estimate sleep metrics that relate to cognitive performance. 
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The most noteworthy finding reported here is the significant mediating effect of sleep 

efficiency on the relationship between physical activity and cognitive performance on a wide 

range of cognitive and neuropsychological tasks. There are very few studies that have examined 

sleep, physical activity, and cognition together in one study (Vitiello, 2008) and those studies 

failed to provide strong evidence that subjects with high cognitive performance and high 

physical activity also have good sleep behavior. Nor were those studies large enough to 

specifically test whether sleep mediates the relationship between physical activity and cognition 

(Benloucif, et al., 2004). The present study, on the other hand, was sufficiently large to test 

mediation, and successfully demonstrated that the mediating effect of sleep on the association 

between physical activity and cognition was significant. Thus subjects who are physically active 

may have higher sleep efficiency, and this higher sleep efficiency may restore cognitive function 

during the day for both young and older adults. 

Intervention studies manipulating both physical activity and sleep may be useful in 

identifying the mechanisms underlying this mediating effect and address whether sleep-related 

benefits to executive control are directly driven by sleep. Physical activity interventions will be 

useful in demonstrating whether improved physical activity improves sleep and whether these 

improvements predict changes in cognition and brain regions important in executive control. 

Interventions may also serve as a useful technique for improving sleep-related cognitive decline 

in older adults (Wilckens, Erickson, & Wheeler, 2012).  
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5.1 LIMITATIONS 

The present study did not exclude subjects based on their sleep habits, sleep complaints, or 

whether subjects reported a sleep disorder. Instead, I was interested in examining cognition in 

relation to a wide range of sleep quality and quantity in young and older adults. From the 

perspective of determining whether very poor sleep is associated with very poor cognition, it is 

important to include subjects with a wide range of sleep habits. However, it is possible that the 

relationship between sleep and cognition is different in subjects with sleep disorders from those 

with no sleep disorders. In addition, it is possible that sleep relates to cognition differently with 

different sleep disorders. For example, cognitive impairments may be greater in patients with 

sleep-related breathing disorders and narcolepsy compared with insomnia (Fulda & Schulz, 

2001).  

Moreover, there are many different factors that affect sleep, some which apply to older 

adults more so than young adults, including pain, which may also affect how physically active an 

individual is. Future research should address this issue by taking into account reasons for sleep 

troubles and low physical activity.  

Another limitation of the present study is the fact that the nighttime sleep measure was a 

combination subjective and objective sleep measure. Because no experimenter was physically 

present to observe when the subject got in and out of bed for the last time each night and each 

morning, it is not possible to know exactly what minutes estimated as sleep were true nighttime 

sleep minutes. Further, because subjects frequently failed to report nighttime sleep or 

misestimated nighttime and daytime sleep times relative to accelerometer estimates, sleep logs 

could not be the sole determinant of nighttime sleep (Appendix B). If subjects in this study had 

slept in the lab and exact times subjects got into and out of bed for the last time could be 
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determined, the nighttime sleep metric would be more objective and accurate. However, one 

advantage to having subjects sleep at home as opposed to in a laboratory setting is that measured 

sleep may be more representative of their typical sleep habits (Ajilore, Stickgold, Rittenhouse, & 

Hobson, 1995). The goal of the present study was to examine the typical sleep habits of the 

subjects that participated in the study. 

5.2 CLINICAL RELEVANCE 

This dissertation has focused on the influence of sleep on cognition in healthy aging, but in the 

interest of informing interventions in healthy older adults, it is worthwhile to acknowledge the 

efficacy of treating sleep disorders and its impact on cognition. Treatment of obstructive sleep 

apnea syndrome with continuous positive airway pressure has been associated with significant 

improvements in performance on executive control tasks (see Jones & Harrison (2001) for a 

review). Naegele et al. (1998) showed improvements in a range of tasks thought to be sensitive 

to frontal lobe function, including the Wisconsin card sorting task, the Stroop task, and a long-

term visual memory task. Neau et al. (1996) found significant improvement Trails B, but not 

Trails A. Given that Trails B involves executive control, more so than Trails A, treatment to 

improve disordered sleep may have specific benefits to executive control and the PFC.  

Patients with Alzheimer’s disease often have disturbed sleep, sleep disorders, and exhibit 

decreased slow-wave sleep (Bliwise, 2004; Loewenstein et al., 1982). This may be the result of 

disruption in circadian rhythms (Y. H. Wu & Swaab, 2007). Given that sleep treatments have 

been effective in improving cognition in non-demented patients with sleep disorders, it is 

important that future studies investigate whether sleep treatments would aid in improving 
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dementia symptoms in patients with memory disorders. A recent study (Westerberg et al., 2010) 

demonstrated a significant positive relationship between measures of sleep quality and memory 

performance in patients with mild cognitive impairment- an intermediate stage between normal 

aging and Alzheimer’s disease. This points to the possibility that symptoms of mild cognitive 

impairment may be alleviated with improvements in sleep.  

5.3 GENERAL CONCLUSIONS 

Overall, the present findings reveal compelling evidence to suggest that sleep may play an 

important role in cognitive decline. The current study suggests that sleep quality, and under some 

circumstances, sleep quantity, influence cognition on a range of tasks. These findings suggest 

that improvements in sleep may lead to improvements in cognitive performance in young and 

older adults. More research focused on the ameliorating effects of sleep treatment on cognition is 

needed to determine whether changes in sleep as a lifestyle factor may improve cognition in 

older adults. Further, there ought to be a greater public awareness about the importance of sleep 

hygiene in cognitive function. There is a common misconception that less sleep is associated 

with increased productivity. However, good sleep hygiene may translate into higher cognitive 

function that may influence performance on everyday activities relevant to individuals of all 

ages. 
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APPENDIX A 

GLOSSARY TERMS 

Retrieval success: Refers to old/new effects typically found in parietal regions reflecting 
successful memory recovery. Retrieval success is often operationalized as differences between 
brain activity elicited by correctly categorized studied items and brain activity elicited by 
correctly categorized new items presented at test 

Slow-wave sleep: Non-REM sleep stages (3 and 4) in which low-frequency delta EEG activity is 
the highest. 

Sleep quality: Sleep measures based on time spent lying in bed, including sleep efficiency 
(proportion of time spent lying down asleep), wake after sleep onset and sleep latency (time it 
takes to fall asleep) 

Sleep efficiency: Proportion of time spent asleep versus time spent lying down 

Executive control: Mechanism responsible for goal-oriented processes that involve selection of 
relevant and inhibition of irrelevant information and actions and the monitoring and updating of 
information. 

Episodic memory retrieval: Recovery of memories for personally experienced events usually 
involving some recollection of details. In an experimental paradigm, studied information must 
exceed working memory capacity and be cleared from working memory prior to retrieval 

Sleep architecture: Refers to sleep stages and other sleep phenomena measured with EEG 

Obstructive Sleep Apnea Syndrome: Sleep disorder characterized by frequent breathing 
cessation leading to brief arousals 
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APPENDIX B 

NIGHTTIME SLEEP FROM ACCELEROMETERS 

Nighttime sleep was determined from sleep logs and activity levels. Self-report nighttime sleep 

and daytime naps from the sleep diary were incorporated into the subjects’ accelerometer data 

files to distinguish nighttime sleep from naps. Because subjects frequently misestimated when 

they were sleeping or failed to report nighttime sleep, self-report sleep logs did not solely 

determine the block of time chosen for nighttime sleep versus daytime naps (example in Figure 

21). Each subjects’ accelerometer dataset was visually inspected to identify the nighttime sleep 

bout.  

Figure 21 displays an example graph of accelerometer data; A) showing a week of sleep 

bouts and physical activity for a subject whose self-report sleep was consistent with 

accelerometer sleep estimates; B) showing a week of sleep bouts and physical activity for a 

subject who misestimated their nighttime sleep and nap time. (Self-report nighttime sleep bout 

did not overlap with accelerometer estimated lying down or sleep bout). 

 

If there was a nap close to bedtime, it was considered a nap if it was either logged as a 

nap by the subject, or was outside of their nighttime lying down bout and outside of the time they 
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said they went to sleep and was followed by (evening naps) or preceded by (morning naps) a 

cluster of peaks in physical activity. It was important to distinguish these naps close to bedtime 

from nighttime sleep because older adults are more likely to nap close to bedtime than young 

adults (Yoon, Kripke, Youngstedt, & Elliott, 2003).  
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Figure 21. Example graph of accelerometer data with self-report sleep logs 
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APPENDIX C 

OUTLIERS 

C.1 TRAILS B 

One outlier was identified with Trails B. This subject had a very long Trails B time (269 

seconds) and low sleep efficiency, exaggerating the relationship between these two factors. The 

Trails B value was well outside of 3 standard deviations from the mean. With this outlier, the 

correlation between nighttime sleep and Trails B was r = -0.237, p = 0.013 (Figure 22A). 

Without the outlier, the correlation remained significant, r = -0.20, p = 0.037 (Figure 22B). The 

regression and mediation analyses involving Trails B and sleep efficiency remained significant 

regardless of whether this subject was included or not. This subject was however, excluded from 

all analyses to avoid biasing the remainder of the analyses in the direction of a significant 

relationship. 
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Figure 22. Scatterplots of Trails B performance with and without outlier 

 

 

 

C.2 STERNBERG WORKING MEMORY 

 

Three subjects with performance below 10% correct accuracy on the Sternberg working memory 

task in the 2-letter condition were detected, one of them being a clear outlier in relation to sleep 

efficiency. Scatterplots of 2-letter and 5-letter accuracy as a function of nighttime sleep 

efficiency, with (top panel) and without (bottom panel) subjects who performed below 10% 

accuracy are displayed in Figure 23. Removal of the outliers resulted in sleep efficiency being a 

marginally significant predictor of 2-letter accuracy, β = 0.183, R2 Change = 0.031, F(1,101) = 

3.262, p = 0.074. The relationship between nighttime sleep efficiency and 5-letter accuracy, 

however remained significant, β = 0.244, R2 Change = 0.054, F(1,101) = 6.215, p = 0.014.  
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Figure 23. Scatterplots of Sternberg working memory performance with and without outliers 
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