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Abstract

Background: Understanding the mechanism of influenza spread across multiple geographic scales is not complete. While
the mechanism of dissemination across regions and states of the United States has been described, understanding the
determinants of dissemination between counties has not been elucidated. The paucity of high resolution spatial-temporal
influenza incidence data to evaluate disease structure is often not available.

Methodology and Findings: We report on the underlying relationship between the spread of influenza and human
movement between counties of one state. Significant synchrony in the timing of epidemics exists across the entire state
and decay with distance (regional correlation = 62%). Synchrony as a function of population size display evidence of
hierarchical spread with more synchronized epidemics occurring among the most populated counties. A gravity model
describing movement between two populations is a stronger predictor of influenza spread than adult movement to and
from workplaces suggesting that non-routine and leisure travel drive local epidemics.

Conclusions: These findings highlight the complex nature of influenza spread across multiple geographic scales.
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Introduction

Despite the regularity of influenza epidemics, understanding the

nature of influenza spread remains unclear. Inferences reflecting

the spatiotemporal patterns of disease spread have been advanced

in recent years through availability of detailed spatial-temporal

data and the application of synchrony and time-frequency

decomposition methods [1,2]. Evidence of spatial synchrony and

traveling waves have been reported in infectious diseases such as

measles and dengue resulting in novel insights into urban and rural

infection hierarchies and the impact of spatial heterogeneities of

the host population of incidence waves [1,3,4]. These approaches

have been extended to influenza which has observed population

density, human movement, and antigenic dominance as key

determinants of influenza spread at the country scale [5,6,7,8,9].

The current understanding of the intrinsic properties of

influenza epidemics is limited by the geographic scales used to

evaluate the data. Often the spatial scale of analysis is the

continent or country [6,8,10]. Analyses conducted at larger spatial

scales may potentially conceal local trends in disease structure.

High resolution spatial-temporal infection data is often not

available. As a result, there are few opportunities to validate

findings at large spatial scales with finer spatial scale observations.

The mechanism of influenza spread is one such example.

Brownstein et al. showed the importance of air travel in the

dissemination of influenza cases across census regions in the

United States [9]. Viboud et al. used state-specific mortality data

to demonstrate the relative importance of workflows compared to

distance and other movement metrics in capturing the spatial

synchrony of influenza mortality in the United States [6]. While

these finding are relevant to understanding the spread of influenza

within the United States, confirmation of these results using more

spatially refined incidence data would test the consistency of these

relationships across a broad geographic spectrum.

Gravity models have been used to explain spatial dynamics of

epidemics [6,11,12,13]. They were developed in transportation

theory to model the flow of travelers across a landscape [14]. The

gravity model describes the magnitude of travel between two

locations as a function of the population sizes in the two locations

and the distance between those locations. Because a gravity model

estimates a general pattern of movement without preconditions on

type or geographic features of the location, evaluation of a gravity-
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model may provide insight into local interactions not captured by

well-defined mechanisms of travel.

In this report, laboratory confirmed influenza cases from

Pennsylvania, United States are used to compare county-specific

incidence patterns. As the sixth most populated state in the United

States, Pennsylvania is divided among 67 counties, of which two

counties, Allegheny and Philadelphia, account for greater than

22% of the state’s population. The state is trifurcated by two major

interstate highways with limited transportation networks in the

northern counties and has international airports on opposite ends

of the state. With extreme segmentation in the population

structure and a divisive transportation network, Pennsylvania is

a unique locale to assess the predictors of influenza spread at a local

level.

This is the first report to evaluate the underlying relationship of

disease spread and human movement using county-specific

influenza cases. Estimates of spatial synchrony are evaluated using

correlation coefficients and the Mantel statistic to determine

whether synchrony is associated with large numbers of adult

workflows or gravity-like estimates of interaction. Understanding

the mechanism of spread at a fine spatial scale would provide an

improved level of understanding not previously available for local,

county and city public health officials to implement surveillance

and response activities.

Methods

Data
Weekly estimates of reported influenza cases from 2003–2009

were provided by the Pennsylvania Department of Health. Briefly,

the Pennsylvania National Electronic Disease Surveillance System

(PA-NEDSS) is a computer application used to conduct surveil-

lance of reportable diseases including influenza. Case reports are

routinely collected by providers and laboratories and are trans-

mitted electronically to the PA-NEDSS system. The surveillance

system defines each influenza season to begin in the 40th week of

the calendar year through the last week of April of the following

year. Influenza data occurring during this entire time period were

used for this analysis. Cases were aggregated by week and to one of

67 Pennsylvania counties, respectively. The analysis for this study

used 186 weeks of surveillance data accumulated over 6 seasons

(31 weeks/year). The total number of reported influenza cases

during the study period (2003–2009) was 57,598. A map

illustrating the features of Pennsylvania has been included as

Figure 1. The US census provided annual population estimates to

calculate seasonal incidence for each county [15]. Rates of human

work flux data between counties for the year 2000 was obtained

from the US Census [16]. The workflow data describes in which

county people work and in which county they reside; thus

approximations of flow between counties could be calculated.

Synchrony and Mantel Correlation Analysis
Spatial synchrony provides an estimate of the correlation of an

epidemic time series across a geographic region [1,17]. For this

analysis, spatial synchrony was measured as the Spearman rank

correlation of the pairwise comparisons of weekly cases for each

county over the entire study period. Algorithms for the spatial

correlation function estimating the relationship between synchrony

and Euclidean distance were obtained from the NCF library for R,

specifically the non-parametric covariance function [18,19].

Often linked with ecological and environmental analyses,

Mantel tests are used to describe the distribution of species and

their association with environmental and geographic attributes.

Typically, the inherent autocorrelation of such predictors con-

strains traditional analytic approaches. However, the Mantel test is

a regression which characterizes each variable as a dissimilarity or

distance matrix describing the pair-wise relationship between

locations [20]. For example, a predictor variable describes the

dissimilarity of population values at locations i and j. For this

analysis, the question of interest is whether locations with similar

influenza epidemics can be explained by similarities in other

identifiable characterizes between those same locations. Thus,

Mantel tests were used to compare the matrix of pair-wise

Spearman correlations of influenza time series to matrices

describing pair wise county to county human movement, geo-

graphic distance, and population size [21].

The Mantel statistics estimated the correlation of the compar-

ative elements between two 67667 matrices. For every pair of

counties, a Spearman correlation was generated between each

186 week time series. As a result, the influenza matrix consisted of

pair-wise correlations for 67 county pairs; a total of 4489

Spearman correlations. A separate Mantel test was conducted

between the influenza matrix and each predictor variable. A

workflow matrix was composed of the number of individuals who

reported commuting from county i to county j in the US Census

dataset by summing the movement to and from each county

resulting in a symmetric 67667 matrix. Distances between

counties were represented by a Euclidian distance matrix based

on the geographic centroid for each county. The population

matrix consisting of the product of counties i and j was also tested.

Partial Mantel’s test, a technique theoretically similar to a multiple

regression, was used to measure the association of two matrices in

the presence of a third matrix. In essence, the Partial Mantel’s test

estimated the contribution of a second independent variable in the

presence of the first independent variable.

Two Pennsylvania counties may have limited movement

between one another but may engage in substantial workflow

contact through a third non-Pennsylvania county; thus having an

indirect effect on the epidemic synchrony. In order to explore

whether this workflow might explain the pattern of correlations of

influenza observed in Pennsylvania, an additional workflow matrix

capturing these second-order movements (inter-state) for counties

in border states was created and included in the Mantel tests. This

matrix incorporated workflows to and from 302 counties from the

six states bordering Pennsylvania (Delaware, Maryland, Ohio,

New Jersey, New York, and West Virginia).

We estimated the exponents of a gravity model that maximized

the Mantel correlation of the gravity model with the disease spread

or workflow matrices using Nelder-Mead optimization. This

optimization procedure searches for the local minimum of

a function of interdependent variables (population and distance)

through continually refining the vertices of a multi-dimensional

trangle (simplex) derived from a set of starter values [22].

Model 1 Cij~h
P
t1
i P

t2
j

d
r
ij

A gravity model for either workflows or disease spread (Cij) was

parameterized by the population of counties i and j (Pi, Pj) and the

distance between the two counties (Dij) (Model 1). The exponents

t1, t2, and r, estimated by the model, quantify the attraction of

the receiving and generating counties by population size and the

distance between two counties. Theta, h, is the proportionality

constant.

The Mantel test compared the pair-wise Spearman correla-

tions of influenza time series and the gravity matrix. An

Spatial Synchrony of Influenza Epidemics
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additional Mantel statistic measured the association of influenza

time series and a matrix based on a gravity model that used

Pennsylvania population and distance parameters and the

exponents from an established gravity model developed from

national influenza mortality data [6]. The purpose of this matrix

was to determine whether the gravity model observed in

national influenza data could describe the movement patterns

seen at a finer spatial scale.

Sampling
Small case counts from counties with a small population may

have resulted in increased sampling variability and poor correla-

tion with other counties. Even with uniform reporting efficiencies

in each county, we expected small counties to report more weeks

with zero cases which may have led to greater variability. Thus, it

would have been difficult to differentiate the effect of population

size and reporting error on disease spread. To address these

concerns, a sampling method adapted from Grassly et al. was

employed to test if the differences in influenza epidemics could be

attributed to reporting error [23].

To appropriately evaluate the effect of reporting error, we

constructed a time series with additional sampling error for the

largest populated counties using the binomial distribution. For the

30 counties with the largest populations, the reported incidence

rates at each time point for each of the 30 counties was resampled

1,000 times from a binomial distribution with a sample size equal

to the remaining 37 counties (randomly sampled with replace-

ment). The selection of 30 counties for the resampling was based

on a natural break in the distribution of population sizes. This

resulted in a new time series for each of the 30 larger populated

counties as if they had sampling error equivalent to the 37 smaller

populated counties. Next, 1000 pair-wise Spearman correlation

matrices were created from the binomial-generated time series.

The average correlation was calculated from each new correlation

matrix and they were ranked to obtain the 25th and 975th values,

in essence a confidence interval. This distribution was compared

with the mean correlation of the observed correlation matrix for

the 37 smaller populated counties. A statistically significant

difference in the correlation between large populated and small

populated counties will result if the distribution of binomial

sampled correlations excludes the mean correlation of the smaller

populated counties. Thus, a statistically significant result is not

likely to reflect differences in sampling error and provide further

confidence in the synchrony and correlation analysis.

Institutional review board approval was obtained from the

Pennsylvania Department of Health and the University of

Pittsburgh.

Results

A map illustrating the features of Pennsylvania can be found in

Figure 1. Weekly incidence of cases for all 67 counties is presented

in Figure 2. The 2007/08 season experienced a particularly severe

influenza season as noted by the darker color intensity. Of the

186 weeks of influenza data analyzed for each county, the mean

number of weeks with at least one case was 76 weeks and the

range was 11 weeks (Cameron) to 141 weeks (Allegheny). Addi-

tional statistics describing the differences between the large and

small population counties were presented in Table 1. The partition

of counties by population size was determined by a natural break

in the data.

Results of the binomial sampling demonstrated that sampling

error has limited effect on the correlation of epidemic time series

between counties. The mean correlation of the 1000 pair-wise

binomial sampled correlations was 0.692 (95% CI: 0.658, 0.726).

The mean Spearman correlation from the correlations of the 30

larger populated counties was 0.76 and 0.54 for the 37 smaller

Figure 1. Map of Pennsylvania, US detailing the county boundaries, urban areas, and transportation networks. Pittsburgh in
Allegheny County is highlighted in the West and Philadelphia is highlighted in the South East. Both urban areas have international airports and are
connected by a major interstate highway.
doi:10.1371/journal.pone.0043528.g001

Spatial Synchrony of Influenza Epidemics
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populated counties. Because the confidence interval of binomial

sampled correlations excludes the mean correlation of the smaller

counties, we concluded that differences in the correlation were

more likely to reflect natural differences in county structure than in

the sampling error of the smaller counties. As a result, we are

confident in using the incidence data for all counties to further

evaluate estimates of synchrony and the predictors of disease

spread.

Estimation of spatial synchrony from all 67 counties used

Spearman rank correlations of the epidemic time series and

a distance matrix composed of county centroids. Considerable

correlation existed across the entire state as the regional

correlation was 62% (Figure 3A). Adjacent counties had a high

mean correlation of 80%; although, synchrony declined with

distance and approached the regional mean correlation at 127 km.

The lower bound of the 95% confidence interval crosses the

regional correlation at 36 km. Prior to this distance, the local

synchrony is statistically significantly different than the state

correlation. Fewer than 2% of county pairs have county centroids

separated by 36 km or less, thus the correlation in epidemic time

series between neighboring counties was not extensive. Seasonal

analysis of synchrony as a function of distance did not note

Figure 2. Weekly case incidence for 67 counties by population size. Intensity image displace weekly case incidence (per 10,000 persons)
sorted by population size. The counties are arranged from largest population size (67= Philadelphia) to the smallest population size (1 = Forest). The
surveillance system defines each influenza season to begin in the 40th week of the calendar year through the last week of April of the following year.
doi:10.1371/journal.pone.0043528.g002

Spatial Synchrony of Influenza Epidemics
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observable differences for five of the six seasons presented. The

2006–07 season had a weak correlation but similar distance trend

which can be attributed to the weak epidemic season [24]. Details

can be found in Figure S1. The rising, yet not significant, increase

in synchrony over distance (U-shaped curve) reflected strong

correlation among the larger population regions separated by

several hundred kilometers.

Measurement of spatial synchrony as a function of population

sizes and county workflows also revealed interesting patterns.

Synchrony increased as the product of the county population size

increased ranging from a correlation of 0.51 in the smallest

quartile to a correlation of 0.75 in the largest quartile (Figure 3B).

A positive, but not significant trend existed for synchrony and

county to county workflows (Figure 4A). These county-specific

synchrony results were consistent with the observations of distance,

population size, and workflow observed by Viboud et al. using

state-specific mortality time series [6]. The inter-state workflows

consisting of neighboring counties of Pennsylvania also exhibited

a positive trend, though less variation between quartiles compared

to the intra-state workflows (Figure 4B). Figure 5 describes the

three dimensional relationship between workflows, distance, and

population size.

The Mantel statistic describing the relationship between the

epidemic time series and distance, population, and human

Table 1. County characteristics.

All Counties (N=67) Large Counties (N=30) Small Counties (N=37)

Mean population size 183,300 349,600 48,440

Population range 4,946–1,518,000 120,000–1,518,000 4,946–94,640

Total number of weeks* 12462 5580 6882

Proportion of total weeks with a case 41% 53% 31%

Mean number of weeks with a case for each county 76 98 58

*186 weeks over 6 epidemic seasons (31*6).
doi:10.1371/journal.pone.0043528.t001

Figure 3. Correlation of weekly time series with distance and population size. A) Synchrony as a function of distance. The spline function
(middle curve) is presented with a 95% confidence interval (outer curves). B) Synchrony as a function of population size (product of population i, j).
The distribution of population was categorized by quartile. The boxplot within each quartile represent the distribution of the correlation of
population between pairs of counties.
doi:10.1371/journal.pone.0043528.g003

Spatial Synchrony of Influenza Epidemics
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Figure 4. Correlation of weekly time series with human movement. A) Synchrony as a function of workflows. B) Synchrony as a function of
Pennsylvania and neighboring county workflows. The distribution of workflow was categorized by quartile. The boxplot within each quartile
represent the distribution of the correlation of workflow between pairs of counties.
doi:10.1371/journal.pone.0043528.g004

Figure 5. Association of workflows, population and distance. (y-axis and z-axis log10 scale). The relationship between workflows (z-axis),
population size (y-axis) and distance (x-axis).
doi:10.1371/journal.pone.0043528.g005

Spatial Synchrony of Influenza Epidemics
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movement are presented in Table 2. Only Euclidian distance was

not significantly associated with influenza when evaluating all 67

Pennsylvania counties. The inter-state workflow matrix had

a smaller correlation than the intra-state workflows likely implying

that work-related movement of individuals from the neighboring

states was not strongly associated with disease spread within

Pennsylvania. Many counties in Pennsylvania did not experience

work-related movements to all of the border state counties;

thereby, necessarily reducing the correlations.

The gravity matrix fitted to Pennsylvania county disease data

was the strongest predictor of influenza spread within the state.

After adjusting for population size, distance, and workflows, the

gravity model remained the strongest predictor of influenza

spread. Similar to the 3-dimensional figure of workflows, distance,

and population (Figure 5), distance as a function of the gravity

model also displayed a U-shaped pattern (Figure 6A). A

comparable but less pronounced trend of workflows as a function

of distance was observed (Figure 6C). The gravity model fitted to

Pennsylvania-specific workflows was not a strong predictor of

disease spread (r=0.19, p,0.001), and the trend over distance

noted in the gravity model fitted to disease data did not materialize

(Figure 6B). A comparison of the parameter estimates fitted by the

gravity model is presented in Table 3.

Discussion

Few studies have explored synchrony of influenza epidemics

and the predictors that drive influenza spread. This study further

evaluated these quantities though at a finer spatial scale than

previously reported. These results demonstrated evidence of

spatial-temporal correlation in the incidence of influenza across

counties of Pennsylvania. Significant synchrony among neighbor-

ing counties existed and a gravity model describing movement

between two populations was the best predictor of influenza

spread.

Comparison of these results to influenza spread in the United

States could reflect differences in the mechanisms of spread at

different geographic scales. Analysis of influenza incidence among

the US Census regions demonstrated the importance of air travel

in long-range dissemination. While adult workflows effectively

captured the spread of influenza across the United States, a gravity

model did better at the smaller county to county scale. Interstate

commerce and other opportunities for interstate workflows may be

responsible for the majority of interactions at these larger

distances. Within one state, other interactions including those for

errands, leisure, and school may be relatively more important. A

gravity model may have captured these interactions more

effectively than workflows despite observing a less pronounced

pattern among workflows by distance. The small correlation

between intra-state workflows and the Pennsylvania gravity model

(r=0.19) indicated that movement within the state was not

completely dependent on workflows. This notion was further

confirmed by the differences in distance as a function of gravity

models fitted to disease and workflows where the movement trends

did not coincide at longer distances. Thus mechanistically, work-

related commuting did not account for the majority of movement

at longer distances and disease synchrony within Pennsylvania,

and the epidemics between counties in Pennsylvania were

synchronized by non-routine travel.

Estimating the movement kernel has important implications for

accurately simulating disease spread. Multiple large-scale epidemic

simulations have used a gravity-like model to simulate movement

patterns [25,26]. A simulation of pandemic influenza in the United

States used a power law model for commuting data at the census

tract resolution and fit a distribution of travel to work distances up

to 200 km reasonably well [26]. The gravity model fitted to

workflows in the United States mortality analysis displayed

evidence of a distance threshold whereby limited work movements

occurred beyond distances of 119 km [6]. A similar distance

threshold existed for the Pennsylvania gravity model fitted to

workflows where work movements declined rapidly until 200 km;

this further validates the movement kernel used for the simulation

modeling.

A comparison of the exponents between the Pennsylvania

gravity models (disease and workflows) highlighted differences in

the movement kernel. As expected, for travel to work, the gravity

model fitted to workflows produced larger distance and population

exponents than the gravity model fitted to disease spread. The

Table 2. Observed Mantel statistics.

All counties (N=67)

Matrix Correlation P-value* Lower CI Upper CI

Euclidian distance 20.03 0.5528 20.079 0.006

Workflow (Intra-state) 0.14 0.0001 0.129 0.157

Workflow (Inter-state) 0.08 0.0260 0.058 0.099

Population 0.33 0.0004 0.310 0.389

Gravity (United States){ 0.11 0.0013 0.094 0.140

Gravity (Pennsylvania – Workflows) 0.19 0.0001 0.169 0.245

Gravity (Pennsylvania - Disease) 0.63 0.0001 0.593 0.656

Gravity(Pennsylvania - Disease) adjusting for:

Euclidian distance 0.63 0.001

Workflow (Intra-state) 0.62 0.001

Population 0.60 0.001

Pearson correlation of the dissimilarity matrices and Spearman rank correlations of the epidemic time series for all counties (N = 67). P-values and the corresponding
95% confidence intervals (CI) are presented. Gravity Pennsylvania refers to the gravity model fitted to Pennsylvania-specific data.
{Gravity matrix generated using parameters derived from Viboud et al.
*Significance is determined at P,0.05.
doi:10.1371/journal.pone.0043528.t002
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larger distance exponent reflected a rapid decline in movement

which was more common with routine work commuting. The

estimated distance exponent of 0.098 from the Pennsylvania

gravity model fitted to disease spread was only slightly larger than

0 which indicated that movement was independent of distance

which was evidenced by the U-shaped curve of distance as

a function of gravity. The smaller population exponent for the

gravity model fitted to disease revealed the importance of smaller

populations in the movement of non-routine travel and ultimately

in the spread of disease.

The gravity matrix fitted to the parameters obtained from

United States gravity model did not correlate well with disease

spread using Pennsylvania’s county-specific influenza data. Differ-

ences in strength of correlation between gravity matrices may be

the result of local variations within Pennsylvania captured more

efficiently such as the range of county size and distance. A gravity

model fitted to the United States may have smoothed over these

differences and concealed the variation in smaller states.

Accounting for sampling error among the smaller communities

with the binomial sampling method was one approach to adjust for

the inherent problems associated with passive influenza surveil-

lance system data. However the extent of this sampling (reporting)

error was not known and may not be fully accounted for in the

analysis. Sampling error could have presented in the form of

noncompliance in reporting, subject failure to seek testing, and

severity of illness. These biases led to fewer reported cases and

potentially affected the timing of the cases resulting in smaller

correlations. Without data on complete reporting for any one

county in Pennsylvania, it was difficult to assess the extent of the

bias in the correlations. Additionally, variation in vaccination rates

across the counties, particularly lower vaccination rates among

rural, smaller populated counties, could have lead to an increase in

the number of cases; thereby, overestimating the Mantel

correlation with smaller counties [27]. County-specific vaccination

rates for Pennsylvania are not known; however, vaccinations rates

among the elderly (Age ,65) have met the 70% Healthy People

2010 goals suggesting vaccination rates for this at-risk population

were quite high [28,29].

Determining edge effects remains a challenging task in spatial

analysis. For this analysis, special concern was devoted to adult

movement across state borders which necessitated the develop-

ment of an intrastate workflow matrix. Incorporating a total of 302

counties from the bordering states, including Pennsylvania,

resulted in minimal flow between several counties outside of

Pennsylvania and those within Pennsylvania, thus, not significantly

impacting the correlations with disease spread. Though, the

correlation between the workflow matrices was 70%, indicating

nearly a third of work-related travel occurs across the state borders

and of non-neighboring states. While the correlation with this

matrix was not a strong predictor of overall disease synchrony, the

opportunity for border transmission still exists in the form of non-

routine travel. We did not account for interstate long distance or

air travel as these forms of travel are negligible for each county of

the state.

Age-specific attack rates vary by influenza strain and subtype

[30,31]. Influenza B and A/H1N1 typically infect younger

populations which may be more mobile within communities but

are less likely to be accounted for in the workflow matrix or gravity

Figure 6. Correlation of gravity model and workflows with distance. A) Each point represents the distance between two counties as
a function of the gravity model fitted to disease for the pair of counties. B) Each point represents the distance between two counties as a function of
the gravity model fitted to workflows for the pair of counties (y-axis log10 scale). C) Each point represents the distance between two counties as
a function of the workflows for the pair of counties (y-axis log 10 scale).
doi:10.1371/journal.pone.0043528.g006

Table 3. Parameter estimates for gravity models (disease spreads and workflows) and the corresponding 95% confidence intervals
(CI).

Coefficient (exponents)
Gravity Model -
Disease Lower CI Upper CI

Gravity Model -
Workflows Lower CI Upper CI

t1, t2 Population 0.265 0.257 0.268 0.47 0.37 0.57

r Distance 0.098 0.086 0.11 1.76 1.74 1.78

doi:10.1371/journal.pone.0043528.t003

Spatial Synchrony of Influenza Epidemics
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model. Mortality analyses among the elderly have shown greater

synchrony among A/H3N2 seasons than seasons dominated by

A/H1N1 and B [6,8]. Nonetheless, strain and subtype-specific

analyses would further illuminate the determinants of disease

spread between counties. However, small influenza B samples

from each county and limited data on influenza A subtypes

prevented further analysis.

This study documented the gravity-like spread of disease within

the state of Pennsylvania; thus placing less emphasis on the value

of administrative borders for public health prevention methods.

Public health officials should target interventions to multiple

counties to effectively capture the flow of residents and the spread

of disease. Interventions targeted to patches of the state that

display significant gravity-like spread of disease might be more

efficient than statewide campaigns and provide greater public

health value.

The precision gained from using county-specific disease and

exposure data improved our knowledge of spatial-temporal

predictors of disease spread enabling this study to delineate

differences in mechanisms dependent on geographic scale. While

this study incorporated workflows from neighboring states, it did

not include disease data. Future studies should incorporate disease

data from the neighboring states to confirm the gravity-like spread

of disease across a larger administrative boundary. Through

analysis of county-specific data, these results can be used to inform

mathematical models of influenza spread at a narrow spatial scale.

Supporting Information

Figure S1 Correlation of weekly time series with
distance for each influenza season. The spline function

(middle curve) is presented with a 95% confidence interval (outer

curves). Each graph represents a different season.

(TIF)
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